Peeter Joot peeterjoot@protonmail.com

Multivector plane wave representation

The geometric algebra form of Maxwell's equations in free space (or source free isotopic media with group velocity *c*) is the multivector equation

$$\left(\boldsymbol{\nabla} + \frac{1}{c}\frac{\partial}{\partial t}\right)F(\mathbf{x},t) = 0.$$
(1.1)

Here $F = \mathbf{E} + Ic\mathbf{B}$ is a multivector with grades 1 and 2 (vector and bivector components). The velcoty *c* is called the group velocity since *F*, or its components **E**, **H** satisfy the wave equation, which can be seen by pre-multiplying with $\nabla - (1/c)\partial/\partial t$ to find

$$\left(\boldsymbol{\nabla}^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) F(\mathbf{x}, t) = 0.$$
(1.2)

Let's look at the frequency domain solution of this equation with a presumed phasor representation

$$F(\mathbf{x}, t) = \operatorname{Re}\left(F(\mathbf{k})e^{-j\mathbf{k}\cdot\mathbf{x}+j\omega t}\right),$$
(1.3)

where *j* is a scalar imaginary, not necessarily with any geometric interpretation.

Maxwell's equation reduces to just

$$0 = -j\left(\mathbf{k} - \frac{\omega}{c}\right)F(\mathbf{k}). \tag{1.4}$$

If $F(\mathbf{k})$ has a left multivector factor

$$F(\mathbf{k}) = \left(\mathbf{k} + \frac{\omega}{c}\right)\tilde{F},\tag{1.5}$$

where \tilde{F} is a multivector to be determined, then

$$\left(\mathbf{k} - \frac{\omega}{c}\right) F(\mathbf{k}) = \left(\mathbf{k} - \frac{\omega}{c}\right) \left(\mathbf{k} + \frac{\omega}{c}\right) \tilde{F}$$
$$= \left(\mathbf{k}^2 - \left(\frac{\omega}{c}\right)^2\right) \tilde{F},$$
(1.6)

which is zero if if $\|\mathbf{k}\| = \omega/c$.

Let $\hat{\mathbf{k}} = \mathbf{k}/\|\mathbf{k}\|$, and $\|\mathbf{k}\| \tilde{F} = F_0 + F_1 + F_2 + F_3$, where F_0, F_1, F_2 , and F_3 are respectively have grades 0,1,2,3. Then

$$F(\mathbf{k}) = (1 + \hat{\mathbf{k}}) (F_0 + F_1 + F_2 + F_3)$$

= $F_0 + F_1 + F_2 + F_3 + \hat{\mathbf{k}}F_0 + \hat{\mathbf{k}}F_1 + \hat{\mathbf{k}}F_2 + \hat{\mathbf{k}}F_3$
= $F_0 + F_1 + F_2 + F_3 + \hat{\mathbf{k}}F_0 + \hat{\mathbf{k}} \cdot F_1 + \hat{\mathbf{k}} \cdot F_2 + \hat{\mathbf{k}} \cdot F_3 + \hat{\mathbf{k}} \wedge F_1 + \hat{\mathbf{k}} \wedge F_2$
= $(F_0 + \hat{\mathbf{k}} \cdot F_1) + (F_1 + \hat{\mathbf{k}}F_0 + \hat{\mathbf{k}} \cdot F_2) + (F_2 + \hat{\mathbf{k}} \cdot F_3 + \hat{\mathbf{k}} \wedge F_1) + (F_3 + \hat{\mathbf{k}} \wedge F_2).$ (1.7)

Since the field *F* has only vector and bivector grades, the grades zero and three components of the expansion above must be zero, or

$$F_0 = -\hat{\mathbf{k}} \cdot F_1$$

$$F_3 = -\hat{\mathbf{k}} \wedge F_2,$$
(1.8)

so

$$F(\mathbf{k}) = (1 + \hat{\mathbf{k}}) (F_1 - \hat{\mathbf{k}} \cdot F_1 + F_2 - \hat{\mathbf{k}} \wedge F_2)$$

= $(1 + \hat{\mathbf{k}}) (F_1 - \hat{\mathbf{k}}F_1 + \hat{\mathbf{k}} \wedge F_1 + F_2 - \hat{\mathbf{k}}F_2 + \hat{\mathbf{k}} \cdot F_2).$ (1.9)

The multivector $1 + \hat{k}$ has the projective property of gobbling any leading factors of \hat{k}

$$(1+\hat{\mathbf{k}})\hat{\mathbf{k}} = \hat{\mathbf{k}} + 1$$

= 1 + $\hat{\mathbf{k}}$, (1.10)

so for $F_i \in F_1, F_2$

$$(1 + \hat{\mathbf{k}})(F_i - \hat{\mathbf{k}}F_i) = (1 + \hat{\mathbf{k}})(F_i - F_i) = 0,$$
(1.11)

leaving

$$F(\mathbf{k}) = \left(1 + \hat{\mathbf{k}}\right) \left(\hat{\mathbf{k}} \cdot F_2 + \hat{\mathbf{k}} \wedge F_1\right).$$
(1.12)

For $\hat{\mathbf{k}} \cdot F_2$ to be non-zero F_2 must be a bivector that lies in a plane containing $\hat{\mathbf{k}}$, and $\hat{\mathbf{k}} \cdot F_2$ is a vector in that plane that is perpendicular to $\hat{\mathbf{k}}$. On the other hand $\hat{\mathbf{k}} \wedge F_1$ is non-zero only if F_1 has a nonzero component that does not lie in along the $\hat{\mathbf{k}}$ direction, but $\hat{\mathbf{k}} \wedge F_1$, like F_2 describes a plane that containing $\hat{\mathbf{k}}$. This means that having both bivector and vector free variables F_2 and F_1 provide more degrees of freedom than required. For example, if \mathbf{E} is any vector, and $F_2 = \hat{\mathbf{k}} \wedge \mathbf{E}$, then

$$(1 + \hat{\mathbf{k}}) \, \hat{\mathbf{k}} \cdot F_2 = (1 + \hat{\mathbf{k}}) \, \hat{\mathbf{k}} \cdot (\hat{\mathbf{k}} \wedge \mathbf{E}) = (1 + \hat{\mathbf{k}}) \, (\mathbf{E} - \hat{\mathbf{k}} \, (\hat{\mathbf{k}} \cdot \mathbf{E})) = (1 + \hat{\mathbf{k}}) \, \hat{\mathbf{k}} \, (\hat{\mathbf{k}} \wedge \mathbf{E}) = (1 + \hat{\mathbf{k}}) \, \hat{\mathbf{k}} \wedge \mathbf{E},$$

$$(1.13)$$

which has the form $(1 + \hat{\mathbf{k}}) (\hat{\mathbf{k}} \wedge F_1)$, so the solution of the free space Maxwell's equation can be written $F(\mathbf{x}, t) = \operatorname{Re} \left((1 + \hat{\mathbf{k}}) \operatorname{E} e^{-j\mathbf{k}\cdot\mathbf{x}+j\omega t} \right), \qquad (1.14)$

$$F(\mathbf{x},t) = \operatorname{Re}\left(\left(1+\hat{\mathbf{k}}\right) \mathbf{E} \, e^{-j\mathbf{k}\cdot\mathbf{x}+j\omega t}\right),\tag{1.14}$$

where **E** is any vector for which $\mathbf{E} \cdot \mathbf{k} = 0$.