Peeter Joot
 peeterjoot@protonmail.com

Multivector plane wave representation

The geometric algebra form of Maxwell's equations in free space (or source free isotopic media with group velocity c) is the multivector equation

$$
\begin{equation*}
\left(\nabla+\frac{1}{c} \frac{\partial}{\partial t}\right) F(\mathbf{x}, t)=0 . \tag{1.1}
\end{equation*}
$$

Here $F=\mathbf{E}+I c \mathbf{B}$ is a multivector with grades 1 and 2 (vector and bivector components). The velcoty c is called the group velocity since F, or its components \mathbf{E}, \mathbf{H} satisfy the wave equation, which can be seen by pre-multiplying with $\boldsymbol{\nabla}-(1 / c) \partial / \partial t$ to find

$$
\begin{equation*}
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) F(\mathbf{x}, t)=0 . \tag{1.2}
\end{equation*}
$$

Let's look at the frequency domain solution of this equation with a presumed phasor representation

$$
\begin{equation*}
F(\mathbf{x}, t)=\operatorname{Re}\left(F(\mathbf{k}) e^{-j \mathbf{k} \cdot \mathbf{x}+j \omega t}\right), \tag{1.3}
\end{equation*}
$$

where j is a scalar imaginary, not necessarily with any geometric interpretation.
Maxwell's equation reduces to just

$$
\begin{equation*}
0=-j\left(\mathbf{k}-\frac{w}{c}\right) F(\mathbf{k}) \tag{1.4}
\end{equation*}
$$

If $F(\mathbf{k})$ has a left multivector factor

$$
\begin{equation*}
F(\mathbf{k})=\left(\mathbf{k}+\frac{\omega}{c}\right) \tilde{F}, \tag{1.5}
\end{equation*}
$$

where \tilde{F} is a multivector to be determined, then

$$
\begin{align*}
\left(\mathbf{k}-\frac{\omega}{c}\right) F(\mathbf{k}) & =\left(\mathbf{k}-\frac{\omega}{c}\right)\left(\mathbf{k}+\frac{\omega}{c}\right) \tilde{F} \\
& =\left(\mathbf{k}^{2}-\left(\frac{\omega}{c}\right)^{2}\right) \tilde{F} \tag{1.6}
\end{align*}
$$

which is zero if if $\|\mathbf{k}\|=\omega / c$.

Let $\hat{\mathbf{k}}=\mathbf{k} /\|\mathbf{k}\|$, and $\|\mathbf{k}\| \tilde{F}=F_{0}+F_{1}+F_{2}+F_{3}$, where F_{0}, F_{1}, F_{2}, and F_{3} are respectively have grades $0,1,2,3$. Then

$$
\begin{align*}
F(\mathbf{k}) & =(1+\hat{\mathbf{k}})\left(F_{0}+F_{1}+F_{2}+F_{3}\right) \\
& =F_{0}+F_{1}+F_{2}+F_{3}+\hat{\mathbf{k}} F_{0}+\hat{\mathbf{k}} F_{1}+\hat{\mathbf{k}} F_{2}+\hat{\mathbf{k}} F_{3} \\
& =F_{0}+F_{1}+F_{2}+F_{3}+\hat{\mathbf{k}} F_{0}+\hat{\mathbf{k}} \cdot F_{1}+\hat{\mathbf{k}} \cdot F_{2}+\hat{\mathbf{k}} \cdot F_{3}+\hat{\mathbf{k}} \wedge F_{1}+\hat{\mathbf{k}} \wedge F_{2} \tag{1.7}\\
& =\left(F_{0}+\hat{\mathbf{k}} \cdot F_{1}\right)+\left(F_{1}+\hat{\mathbf{k}} F_{0}+\hat{\mathbf{k}} \cdot F_{2}\right)+\left(F_{2}+\hat{\mathbf{k}} \cdot F_{3}+\hat{\mathbf{k}} \wedge F_{1}\right)+\left(F_{3}+\hat{\mathbf{k}} \wedge F_{2}\right) .
\end{align*}
$$

Since the field F has only vector and bivector grades, the grades zero and three components of the expansion above must be zero, or

$$
\begin{align*}
& F_{0}=-\hat{\mathbf{k}} \cdot F_{1} \\
& F_{3}=-\hat{\mathbf{k}} \wedge F_{2}, \tag{1.8}
\end{align*}
$$

so

$$
\begin{align*}
F(\mathbf{k}) & =(1+\hat{\mathbf{k}})\left(F_{1}-\hat{\mathbf{k}} \cdot F_{1}+F_{2}-\hat{\mathbf{k}} \wedge F_{2}\right) \tag{1.9}\\
& =(1+\hat{\mathbf{k}})\left(F_{1}-\hat{\mathbf{k}} F_{1}+\hat{\mathbf{k}} \wedge F_{1}+F_{2}-\hat{\mathbf{k}} F_{2}+\hat{\mathbf{k}} \cdot F_{2}\right) .
\end{align*}
$$

The multivector $1+\hat{\mathbf{k}}$ has the projective property of gobbling any leading factors of $\hat{\mathbf{k}}$

$$
\begin{align*}
(1+\hat{\mathbf{k}}) \hat{\mathbf{k}} & =\hat{\mathbf{k}}+1 \tag{1.10}\\
& =1+\hat{\mathbf{k}}
\end{align*}
$$

so for $F_{i} \in F_{1}, F_{2}$

$$
\begin{equation*}
(1+\hat{\mathbf{k}})\left(F_{i}-\hat{\mathbf{k}} F_{i}\right)=(1+\hat{\mathbf{k}})\left(F_{i}-F_{i}\right)=0 \tag{1.11}
\end{equation*}
$$

leaving

$$
\begin{equation*}
F(\mathbf{k})=(1+\hat{\mathbf{k}})\left(\hat{\mathbf{k}} \cdot F_{2}+\hat{\mathbf{k}} \wedge F_{1}\right) . \tag{1.12}
\end{equation*}
$$

For $\hat{\mathbf{k}} \cdot F_{2}$ to be non-zero F_{2} must be a bivector that lies in a plane containing $\hat{\mathbf{k}}$, and $\hat{\mathbf{k}} \cdot F_{2}$ is a vector in that plane that is perpendicular to $\hat{\mathbf{k}}$. On the other hand $\hat{\mathbf{k}} \wedge F_{1}$ is non-zero only if F_{1} has a nonzero component that does not lie in along the $\hat{\mathbf{k}}$ direction, but $\hat{\mathbf{k}} \wedge F_{1}$, like F_{2} describes a plane that containing $\hat{\mathbf{k}}$. This means that having both bivector and vector free variables F_{2} and F_{1} provide more degrees of freedom than required. For example, if \mathbf{E} is any vector, and $F_{2}=\hat{\mathbf{k}} \wedge \mathbf{E}$, then

$$
\begin{align*}
(1+\hat{\mathbf{k}}) \hat{\mathbf{k}} \cdot F_{2} & =(1+\hat{\mathbf{k}}) \hat{\mathbf{k}} \cdot(\hat{\mathbf{k}} \wedge \mathbf{E}) \\
& =(1+\hat{\mathbf{k}})(\mathbf{E}-\hat{\mathbf{k}}(\hat{\mathbf{k}} \cdot \mathbf{E})) \\
& =(1+\hat{\mathbf{k}}) \hat{\mathbf{k}}(\hat{\mathbf{k}} \wedge \mathbf{E}) \tag{1.13}\\
& =(1+\hat{\mathbf{k}}) \hat{\mathbf{k}} \wedge \mathbf{E}
\end{align*}
$$

which has the form $(1+\hat{\mathbf{k}})\left(\hat{\mathbf{k}} \wedge F_{1}\right)$, so the solution of the free space Maxwell's equation can be written

$$
\begin{equation*}
F(\mathbf{x}, t)=\operatorname{Re}\left((1+\hat{\mathbf{k}}) \mathbf{E} e^{-j \mathbf{k} \cdot \mathbf{x}+j \omega t}\right) \tag{1.14}
\end{equation*}
$$

where \mathbf{E} is any vector for which $\mathbf{E} \cdot \mathbf{k}=0$.

