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PHY2403H Quantum Field Theory. Lecture 13: Forced Klein-Gordon
equation, coherent states, number density, time ordered product, pole
shifting, perturbation theory, Heisenberg picture, interaction picture,
Dyson’s formula. Taught by Prof. Erich Poppitz

DISCLAIMER: Very rough notes from class, with some additional side notes. These are notes for the UofT
course PHY2403H, Quantum Field Theory, taught by Prof. Erich Poppitz, fall 2018.

1.1 Review: “particle creation problem”.

We imagined that we have a windowed source function j(y0, y), as sketched in fig. 1.1, which is acting
as a forcing source for the non-homogeneous Klein-Gordon equation

Figure 1.1: Finite window impulse response.

(1.1)
(
∂µ∂µ + m2) φ = j

Our solution was
(1.2)φ(x) = φ(x0) + i

∫
d4yDR(x − y)j(y),

where φ(x0) obeys the homogeneous equation, and

(1.3)Dr(x − y) = Θ(x0 − y0)
(

D(x − y)− D(y − x)
)

,
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and D(x) =
∫ d3 p

(2π)32ωp
e−ip·x∣∣

p0=ωp
is the Weightmann function.

For x0 > tafter

φ(x) =
∫ d3 p

(2π)3
√

2ωp

(
e−ip·xap + eip·xa†

p

)∣∣∣
p0=ωp

+ i
∫ d3 p

(2π)32ωp

(
e−ip·x j̃(p) + eip·x j̃(p0,−p)

)∣∣∣
p0=ωp

(1.4)

where we have used j̃∗(p0, p) = j̃(p0,−p). This gives

(1.5)φ(x) =
∫ d3 p

(2π)3
√

2ωp

(
e−ip·x

(
ap + i

j̃(p)√
2ωp

)
+ eip·x

(
a†

p − i
j̃∗(p)√

2ωp

))∣∣∣∣∣
p0=ωp

It was left as an exercise to show that given

(1.6)H =
∫

d3 p
(

1
2

π2 +
1
2
(
∇φ

)2 +
m2

2
φ2
)

,

we obtain

(1.7)Hafter =
∫

d3xωp

(
a†

p − i
j̃∗(p)√

2ωp

)(
ap + i

j̃(p)√
2ωp

)
System in ground state

〈0| Ĥbefore |0〉 = 〈E〉before = 0. (1.8)

(1.9)

〈0| Ĥafter |0〉 = 〈E〉after

=
∫

d3xωp
j̃∗(p) j̃(p)

2ωp

=
1
2

∫
d3x|j(p)|2.

We can identify

(1.10)N(p) =
|j(p)|2

2ωp
,

as the number density of particles with momentum p.

1.2 Digression: coherent states.

Definition 1.1: Coherent state.

A coherent state is an eigenstate of the destruction operator

a |α〉 = α |α〉 .
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For the SHO, if we solve for such a coherent state, we find

(1.11)|α〉 = constant×
∞

∑
n=0

αn

n!

(
a†
)n
|0〉 .

If we assume the existence of a coherent state

(1.12)ap

∣∣∣∣∣ j(p)√
2ωp

〉
=

j(p)√
2ωp

∣∣∣∣∣ j(p)√
2ωp

〉
,

then the expectation value of the number operator with respect to this state is the number density
identified in eq. (1.10) 〈

j(p)√
2ωp

∣∣∣∣∣ a†
pap

∣∣∣∣∣ j(p)√
2ωp

〉
=
|j(p)|2

2ωp
= N(p). (1.13)

1.3 Feynman’s Green’s function

(1.14)DF(x) = Θ(x0)D(x) + Θ(−x0)D(−x)
= Θ(x0) 〈0| φ(x)φ(0) |0〉 + Θ(x0) 〈0| φ(−x)φ(0) |0〉

Utilizing a translation operation U(a) = eiaµPµ
, where U(a)φ(y)U†(a) = φ(y + a), this second operation

can be written as

(1.15)
〈0| φ(−x)φ(0) |0〉 = 〈0|U†(a)U(a)φ(−x)U†(a)U(a)φ(0)U†(a)U(a) |0〉

= 〈0|U(a)φ(−x)U†(a)U(a)φ(0)U†(a) |0〉
= 〈0| φ(−x + a)φ(a) |0〉 ,

In particular, with a = x
(1.16)〈0| φ(−x)φ(0) |0〉 = 〈0| φ(0)φ(x) |0〉 ,

so the Feynman’s Green function can be written

(1.17)DF(x) = Θ(x0) 〈0| φ(x)φ(0) |0〉 + Θ(x0) 〈0| φ(x)φ(x) |0〉
= 〈0|

(
Θ(x0)φ(x)φ(0) + Θ(−x0)φ(0)φ(x)

)
|0〉 .

We define

Definition 1.2: Time ordered product.

The time ordered product of two operators is defined as

T(φ(x)φ(y)) =
{

φ(x)φ(y) x0 > y0

φ(y)φ(x) x0 < y0 ,
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or
T(φ(x)φ(y)) = φ(x)φ(y)Θ(x0 − y0) + φ(y)φ(x)Θ(y0 − x0).

Using this helpful construct, the Feynman’s Green function can now be written in a very simple
fashion

DF(x) = 〈0| T(φ(x)φ(0)) |0〉 . (1.18)

Remark: Recall that the four dimensional form of the Green’s function was

(1.19)DF = i
∫ d4 p

(2π)4 e−ip·x 1
p2 − m2 .

For the Feynman case, the contour that we were taking around the poles can also be accomplished
by shifting the poles strategically, as sketched in fig. 1.2.

Figure 1.2: Feynman deformation or equivalent shift of the poles.

This shift can be expressed explicit algebraically by introducing an offset

(1.20)DF = i
∫ d4 p

(2π)4 e−ip·x 1
p2 − m2 + iε

which puts the poles at

(1.21)

p0 = ±
√

ωp − iε

= ±ωp

(
1− iε

ω2
p

)1/2

= ±ωp

(
1− 1

2
iε
ω2

p

)

=

{
+ωp − 1

2 i ε
ωp

−ωp + 1
2 i ε

ωp
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FIXME: don’t see how this was connected to this lecture. Move this section into notes for last class.

1.4 Interacting field theory: perturbation theory in QFT.

We perturb the Hamiltonian
(1.22)H = H0 + Hint

where H0 is the free Hamiltonian and Hint is the interaction term (the perturbation).

Example:

H0 = SHO =
p2

2
+

ω2q2

2
Hint = λq4,

(1.23)

i.e. the anharmonic oscillator.
In QFT

(1.24)
H0 =

∫
d3x

(
1
2

π2 +
1
2
(∇φ)2 +

m2

2
φ2
)

Hint = λ
∫

d3xφ4.

We will expand the interaction in small λ. Perturbation theory is the expansion in a small dimen-
sionless coupling constant, such as

• λ in λφ4 theory,

• α = e2/4π ∼ 1
137 in QED, and

• αs in QCD.

1.5 Perturbation theory, interaction representation and Dyson formula

(1.25)H = H0 + Hint

Example interaction
(1.26)Hint = λ

∫
d3xφ4

We know all there is to know about H0 (decoupled SHOs, ...)

(1.27)H0 |0〉 = |0〉 E0
vac

where E0
vac = 0. Assume

(1.28)(H0 + Hint) |Ω〉 = |Ω〉 Evac,

where the ground state energy of the perturbed system is zero when λ = 0. That is Evac(λ = 0) = 0.
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So for

(1.29)φ(x)|x0 =t0 ,some fixed value =
∫ d3

(2π)3
√

2ωp

(
e−ip·xap + eip·xa†

p

)∣∣∣
p0=ωp

.

Let’s call φ(x, t0) the free Schrödinger operator, where φ(x, t0) is evaluated at a fixed value of t0. At
such a point, the Schrödinger and Heisenberg pictures coincide.

(1.30)
[
φ(x, t0), π(y, t0)

]
= iδ3(x − y).

Normally (QM) one defines the Heisenberg operator as

(1.31)OH = eiH(t−t0)OSe−iH(t−t0),

where OH depends on time, and OS is defined at a fixed time t0, usually 0. From eq. (1.31) we find

(1.32)
dOH

dt
= i [H, OH] .

The equivalent of eq. (1.31) in QFT is very complicated. We’d like to develop an intermediate picture.
We will define an intermediate picture, called the “interaction representation”, which is equivalent

to the Heisenberg picture with respect to H0.

Definition 1.3: Intermediate picture operator.

φI(t, x) = eiH0(t−t0)φ(t0, x)e−iH0(t−t0).

This is familiar, and is the Heisenberg picture operator that we had in free QFT

(1.33)φI(t, x) =
∫ d3

(2π)3
√

2ωp

(
e−ip·xap + eip·xa†

p

)∣∣∣
p0=ωp

,

where x0 = t.
The Heisenberg picture operator is

(1.34)

φH(t, x) = φ(t, x)

= eiH(t−t0)e−iH0(t−t0)
(

eiH0(t−t0)φS(t0, x)e−iH0(t−t0)
)

eiH0(t−t0)e−iH(t−t0)

= eiH(t−t0)e−iH0(t−t0)φI(t, x)e−iH0(t−t0)eiH(t−t0)

or
(1.35)φH(t, x) = U†(t, t0)φI(t0, x)U(t, t0),

where
(1.36)U(t, t0) = eiH0(t−t0)e−iH(t−t0).

We want to apply perturbation techniques to find U(t, t0) which is complicated.
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(1.37)
i

∂

∂t
U(t, t0) = ieiH0(t−t0)iH0e−iH(t−t0) + ieiH0(t−t0)e−iH(t−t0)(−iH)

= eiH0(t−t0) (−H0 + H) e−iH(t−t0)

= eiH0(t−t0)Hinte−iH0(t−t0)eiH0(t−t0)e−iH(t−t0)

so we have

i
∂

∂t
U(t, t0) = Hint,I(t)U(t, t0). (1.38)

For the (Schrödinger) interaction Hint = λ
∫

d3xφ4(x, t0), what we really mean by Hint,I(t) is

(1.39)Hint,I(t) = λ
∫

d3xφ4
I (x, t).

It will be more convenient to remove the explicit λ factor from the interaction Hamiltonian, and
write instead

(1.40)Hint,I(t) =
∫

d3xφ4
I (x, t),

so the equation to solve is

(1.41)i
∂

∂t
U(t, t0) = λHint,I(t)U(t, t0).

We assume that

(1.42)U(t, t0) = U0(t, t0) + λU1(t, t0) + λ2U2(t, t0) + · · · + λnUn(t, t0)

Plugging into eq. (1.40) we have

(1.43)
iλ0 ∂

∂t
U0(t, t0) + iλ1 ∂

∂t
U1(t, t0) + iλ2 ∂

∂t
U2(t, t0) + · · · + iλn ∂

∂t
Un(t, t0)

= λHint,I(t)
(
1 + λU1(t, t0) + λ2U2(t, t0) + · · · + λnUn(t, t0)

)
,

,

so equating equal powers of λ on each side gives a recurrence relation for each Uk, k > 0

(1.44)
∂

∂t
Uk(t, t0) = −iHint,I(t)Uk−1(t, t0).

Let’s consider each power in turn.

O(λ0): Solving eq. (1.38) to O(λ0) gives

(1.45)i
∂

∂t
U0(t, t0) = 0,

or
(1.46)U(t, t0) = 1 + O(λ).
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O(λ1):

(1.47)
∂U1(t, t0)

∂t
= −iHint,I(t),

which has solution
(1.48)U1(t, t0) = −i

∫ t

t0

Hint,I(t′)dt′.

O(λ2):

(1.49)

∂U2(t, t0)
∂t

= −iHint,I(t)U1(t, t0)

= (−i)2Hint,I(t)
∫ t

t0

Hint,I(t′)dt′,

which has solution

(1.50)
U2(t, t0) = (−i)2

∫ t

t0

Hint,I(t′′)dt′′
∫ t′′

t0

Hint,I(t′)dt′

= (−i)2
∫ t

t0

dt′′
∫ t′′

t0

dt′Hint,I(t′′)Hint,I(t′).

O(λ3):

(1.51)
∂U3(t, t0)

∂t
= −iHint,I(t)U2(t, t0)

so

(1.52)

U3(t, t0) = −i
∫ t

t0

dt′′′Hint,I(t′′′)U2(t′′′, t0)

= (−i)3
∫ t

t0

dt′′′Hint,I(t′′′)
∫ t′′′

t0

dt′′
∫ t′′

t0

dt′Hint,I(t′′)Hint,I(t′)

= (−i)3
∫ t

t0

dt′′′
∫ t′′′

t0

dt′′
∫ t′′

t0

dt′Hint,I(t′′′)Hint,I(t′′)Hint,I(t′)

Simplifying the integration region. For the two fold integral, the integration range is the upper trian-
gular region sketched in fig. 1.3.

Claim: We can integrate over the entire square, and divide by two, provided we keep the time
ordering

(1.53)U2(t, t0) =
(−i)2

2

∫ t

t0

dt′′
∫ t′′

t0

dt′T(Hint,I(t′′)Hint,I(t′))

Demonstration:

(1.54)

(−i)2

2

∫ t

t0

dt′′
∫ t

t0

dt′T(HI(t′′)HI(t′))

=
(−i)2

2

∫ t

t0

dt′′
∫ t

t0

dt′Θ(t′′ − t′)HI(t′′)HI(t′) +
(−i)2

2

∫ t

t0

dt′′
∫ t

t0

dt′Θ(t′ − t′′)HI(t′)HI(t′′),
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Figure 1.3: Upper triangular integration region.

but the Θ(t′′ − t′) function is non-zero only for t′′ − t′ > 0, or t′ < t′′, and the Θ(t′ − t′′) function is
non-zero only for t′ − t′′ > 0, or t′′ < t′, so we can adjust the integration ranges for

(1.55)

(−i)2

2

∫ t

t0

dt′′
∫ t

t0

dt′T(HI(t′′)HI(t′))

=
(−i)2

2

∫ t

t0

dt′′
∫ t′′

t0

dt′HI(t′′)HI(t′) +
(−i)2

2

∫ t′

t0

dt′′
∫ t

t0

dt′HI(t′)HI(t′′)

=
(−i)2

2

∫ t

t0

dt′′
∫ t′′

t0

dt′HI(t′′)HI(t′) +
(−i)2

2

∫ t

t0

dt′′
∫ t′′

t0

dt′HI(t′′)HI(t′)

= U2(t, t0),

where we swapped integration variables in second integral. We can clearly do the same thing for the
higher order repeated integrals, but instead of a 1/2 = 1/2! adjustment for the number of orderings,
we will require a 1/n! adjustment for an n-fold integral.

Summary:

(1.56)

U0 = 1

U1 = −i
∫ t

t0

dt1HI(t1)

U2 =
(−i)2

2

∫ t

t0

dt1

∫ t

t0

dt2T(HI(t1)HI(t2))

U3 =
(−i)3

3!

∫ t

t0

dt1

∫ t

t0

dt2

∫ t

t0

dt3T(HI(t1)HI(t2)HI(t3))

Un =
(−i)n

n!

∫ t

t0

dt1

∫ t

t0

dt2

∫ t

t0

dt3 · · ·
∫ t

t0

dtnT(HI(t1)HI(t2) · · ·HI(tn))
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Summing we find

(1.57)
U(t, t0) = T exp

(
−i
∫ t

t0

dt1HI(t′)
)

=
∞

∑
n=0

(−i)n

n!

∫ t

t0

dt1 · · · dtnT(HI(t1) · · ·HI(tn)).

This is called Dyson’s formula.

1.6 Next time.

Our goal is to compute: 〈Ω| T(φ(x1) · · · φ(xn)) |Ω〉.
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