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PHY2403H Quantum Field Theory. Lecture 15b: Wick’s theorem, vacuum
expectation, Feynman diagrams, φ4 interaction, tree level diagrams,
scattering, cross section, differential cross section. Taught by Prof. Erich
Poppitz

DISCLAIMER: Very rough notes from class, with some additional side notes. These are notes for the UofT
course PHY2403H, Quantum Field Theory, taught by Prof. Erich Poppitz, fall 2018.

1.1 Wick contractions

Here’s a double dose of short hand, first an abbreviation for the Feynman propagator

(1.1)DF(1− 2) ≡ DF(x1, x2),

and second
(1.2)φiφj = DF(i − j),

which is called a contraction.
Contractions allow time ordered products to be written in a compact form. In HW4 we are set with

the task of demonstrating how this is done (i.e. proving Wick’s theorem.)

Theorem 1.1: Wick’s theorem.

Sounds like stating the theorem is difficult, but the rough idea (from the example below) is that
the time ordering of the fields has all the combinations of the pairwise contractions and normal
ordered fields.

Illustrating by example for the time ordering of n = 4 fields, we have

(1.3)T(φ1φ2φ3φ4) = :φ1φ2φ3φ4: + φ1φ2:φ3φ4: + φ1φ3:φ2φ4: + φ1φ4:φ2φ3: + φ2φ3:φ1φ4:

+ φ2φ4:φ1φ3: + φ3φ4:φ1φ2: + φ1φ2φ3φ4 + φ1φ3φ2φ4 + φ1φ4φ2φ3.
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Theorem 1.2: Corollary: Vacuum expectation of Wick’s theorem expansion

For n even
〈0| T(φ1φ2 · · · φn) |0〉 = φ1φ2φ3φ4φ5φ6 · · · φn−1φn + all other terms.

For n odd, this vanishes.

1.2 Simplest Feynman diagrams

For n = 4 we have
(1.4)〈0| T(φ1φ2φ3φ4) |0〉 = φ1φ2φ3φ4 + φ1φ3φ2φ4 + φ1φ4φ2φ3,

the set of Wick contractions can be written pictorially fig. 1.1, and are called Feynman diagrams

Figure 1.1: Simplest Feynman diagrams.

These are the very simplest Feynman diagrams.

1.3 φ4 interaction

Introducing another shorthand, we will use an expectation like notation to designate the matrix ele-
ment for the vacuum state

(1.5)〈blah〉 = 〈0| blah |0〉 .

For the φ4 theory, this allows us to write the numerator of the perturbed ground state interaction as

(1.6)
〈Ω| φ(x)φ(y) |Ω〉 ∼ 〈0| T

(
φI(x)φI(y)e−i

∫ T
−T HI,int(t′)dt′

)
|0〉

=
〈

φI(x)φI(y)e−i
∫

d4zφ4(z)
〉

.

To first order, this is

(1.7)
〈

Tφxφy
〉
− i

λ

4

∫
d4z
〈

Tφxφyφzφzφzφz
〉

,

The first braket has the pictorial representation sketched in fig. 1.2. whereas the second has the
diagrams sketched in fig. 1.3.
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Figure 1.2: First integral diagram.

(a) (b)

Figure 1.3: Second integral diagrams.

Figure 1.4: Integrals as diagrams.
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We can depict the entire second integral in diagrams as sketched in fig. 1.4.
Solving for the perturbed ground state can now be thought of as reduced to drawing pictures. Each

line from x → x′ represents a propagator DF(x− x′), and each vertex−iλ
∫

d4z× symmetry coefficients.1

We may also translate back from the diagrams to an algebraic representation. For the first order φ4

interaction, that is

(1.8)
〈

Tφxφy
〉
− iλ

4

∫
d4zDF(x − y)D2

F(z − z) + DF(x − z)DF(y − z).

Other diagrams can be similarly translated. For example F5 represents

(1.9)
∫

d4zD2(z − z) = V3T
(∫ d4 p

(2π)4
1

p2 − m2 + iε

)2

.

Clearly, additional interpretation will be required, since this diverges. The resolution of this unfortu-
nately has to be deferred to QFT II, where renormalization is covered.

1.4 Tree level diagrams.

We would like to only discuss tree level diagrams, which exclude diagrams like fig. 1.5 2.

Figure 1.5: Not a tree level diagram.

For the braket 3

(1.10)
〈∫

d4zφ1φ2φ3φ4φzφzφzφz

〉
we draw diagrams like those of fig. 1.6, the first of which is a tree level diagram.

1Symmetry coefficients weren’t discussed until the next lecture. This means making combinatorial arguments to count
the number of equivalent diagrams.

2I think this is what is referred to as connected, amputated graphs in the next lecture. Such diagrams are the ones of
interest for scattering and decay problems.

3I’d written:
〈∫

φ1φ2φ3φ4λ
∫

d4zφzφzφzφz
〉
. Is this two fold integral what was intended, or my correction in eq. (1.10)?
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Figure 1.6: First order interaction diagrams.

1.5 Scattering.

In QM we did lots of scattering problems as sketched in fig. 1.7, and were able to compute the re-
flected and transmitted wave functions and quantities such as the reflection and transmission coeffi-
cients

Figure 1.7: Reflection and transmission of wave packets.

(1.11)

R =
|Ψref|2

|Ψin|2

T =
|Ψtrans|2

|Ψin|2
.

We’d like to consider scattering in some region of space with a non-zero potential, such as the scat-
tering of a plane wave with known electron flux rate as sketched in fig. 1.8. We can imagine that we
have a detector capable of measuring the number of electrons with momentum pout per unit time.
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Figure 1.8: Plane wave scattering off a potential.

Definition 1.1: Total cross section (X-section).

σtotal =
number of scattering events with pout 6= kin per unit time

Flux of incoming particles
,

where the flux is the number of particles crossing a unit area in unit time.

Units of the x-section are (with h̄ = c = 1)

[σ] = area =
1

M2 . (1.12)

The concept of scattering cross section may not be new, as it can even be encountered in classical
mechanics. One such scenario is sketched in fig. 1.9 where the cross section is just the area

(1.13)σ = πR2.

Other classical fields where cross section is encountered includes antenna theory (radar scattering
profiles, ...).

Definition 1.2: Differential cross section.
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Figure 1.9: Classical scattering.

d3σ

dpxdpydpz
=

number of scattering events with pout between (p, p + ∆p)
flux

.
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