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PHY2403H Quantum Field Theory. Lecture 16: Differential cross section,
scattering, pair production, transition amplitude, decay rate, S-matrix,
connected and amputated diagrams, vacuum fluctuation, symmetry
coeffiecient. Taught by Prof. Erich Poppitz

DISCLAIMER: Very rough notes from class, with some additional side notes. These are notes for the UofT
course PHY2403H, Quantum Field Theory, taught by Prof. Erich Poppitz, fall 2018.

1.1 Review

We finished by defining the differential cross section

Definition 1.1: Differential cross section.

d3σ

dpxdpydpz
=

number of scattering events with pf between (pf, pf + dpf)
flux of incoming particles

.

1.2 Scattering

In QFT we typically study 2 → n inelastic scattering. Most commonly the nature of the final state
particles are different from the nature of the incoming state.

For example, we can collide an electron and anti-electron, and can get muon and anti-muon par-
ticles as sketched in fig. 1.1, or pions as sketched in fig. 1.2, or even both as sketched in fig. 1.3.

In the λφ4 theory we can have scattering events such as 2→ 2 and 2→ 2n production as sketched
in fig. 1.4.

How to calculate in QFT. Initial state of 2 particles A, B with initial state

(1.1)|kA, kB〉in,T→−∞

and final n-particle state
(1.2)|p1, p2, · · · , pn〉out,T→+∞
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Figure 1.1: Muon pair production.

Figure 1.2: Pion pair production.

Figure 1.3: Muon and pion pair production.

(a) (b)

Figure 1.4: lambda fourth scattering events.
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The QM transition amplitude from the initial to the final state is

(1.3)out〈p1, p2, · · · , pn| |kA, kB〉in = 〈p1, p2, · · · , pn| e−2iHT |kA, kB〉 .

This is the amplitude for AB→ 1 · · · n. Ultimately, we want the scattering x-section.
We will also be interested in decay rates, as there are unstable particles in QFT that can decay.

This doesn’t happen in λφ4 theory. In a theory with 2 scalar fields Φ, ϕ with mΦ > 2mϕ. A possible
interaction for such a theory is

(1.4)Hint = µΦϕ2,

which would permit Φ→ ϕϕ decays. HW4 has a coupling like (h/V)∂µφa∂µφa for which a h→ φaφa

decay is possible.

Definition 1.2: Decay rate.

The decay rate is defined as

Γ =
Number of decays Φ→ ϕϕ in unit time

Number of Φ particles present

What is the amplitude for such a decay transition?

(1.5)
〈
kφ

∣∣
in,T→−∞ → 〈k1, k2|out,T→+∞ .

The amplitude for kφ → k1, k2.

(1.6)〈k1, k2| e−i2HT ∣∣kφ

〉
= out

〈
k1, k2

∣∣kφ

〉
mysterious seeming statement something like : “The decays are essentially due to interactions with
vacuum fluctuations.”

1.3 Calculating interactions

We write

(1.7)
out〈p1, · · · pn|kA, kB〉in = lim

T→∞
〈p1, · · · pn| e−i2HT |kA, kB〉

= 〈p1, · · · pn| Ŝ |kA, kB〉
= 〈p1, · · · pn| 1 + iT̂ |kA, kB〉 ,

where Ŝ is called the S-matrix or scattering matrix, which is decomposed into a unit portion 1 which
is a convenient way to exclude events with no scattering. 1 contributes for n = 2 only, but is an n
scattering amplitude. We are really interested in the iT̂ portion of this amplitude

〈p1, · · · pn| iT̂ |kA, kB〉 = (2π)4δ(4)(kA + kB −
n

∑
i=1

pi)× iM(kA + kB → p1 · · · pn). (1.8)
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This amounts to a definition of M. Recall that we found

(1.9)U(T,−T) = T
(

e−i
∫ T
−T HI (t′)dt′

)
= eiH0(T−t0)e−i2HTe−iH0(−T−t0).

We want to replace the e−i2HT in the matrix element above with U.
In perturbation theory, we assume (conjecture) that

(1.10)
|kA, kB〉 ∼ |kA, kB〉o

∼ const a†
kA

a†
kB
|0〉

Because we’ll be squaring the amplitudes, we can assume that the eiH0(T−t0) will result in just phase
factors that won’t survive, so in eq. (1.7) we can insert U

(1.11)out〈p1, · · · pn|kA, kB〉in = lim
T→∞
〈p1, · · · pn|U(T,−T) |kA, kB〉

(1.12)〈p1, · · · pn| iT̂kA, kB = lim
T→∞(1−iε) 0〈p1, · · · pn| T(e−i

∫ T
−T Hi(t′)dt′) |kA, kB〉0

These are connected and amputated graphs.

What is “connected and amputated”? Explaining by example. n = 2, λφ4/4!.

(1.13)〈0| ap1 ap2

(
�1−

iλ
4!

∫
d4xφ4

I (x) +
1
2

(
iλ
4!

)2 ∫
d4xd4yφ4

I (x)φ4
I (y) + · · ·

)
a†

kA
a†

kB
|0〉

Here time ordering operations are implied, but not written explicitly. Also, the “amputated” indicates
that we are going to be dropping the 1 portion of the exponential expansion (as we’ve also dropped
that in eq. (1.12)). We will also be using a relativistic normalization so that the a†

kA
a†

kB
terms include√

2ωkA 2ωkB contributions and the ap1 ap2 include
√

2ωp12ωp2 contributions.

(1.14)TφI(x1)φI(x2) = DF(x1 − x2)

When we look at

(1.15)

φI(x1)a†
k

√
2ωk =

∫ d3 p
(2π)3

e−ip·x√
2ωp

apa†
k

√
2ωk

=
∫ d3 p

(2π)3
e−ip·x√

2ωp
δ(3)(p − k)

√
2ωk

= e−ik·x.
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Similarly

(1.16)

apφI(x1)
√

2ωp =
∫ d3k

(2π)3
eik·x
√

2ωk
apa†

k

√
2ωk

=
∫ d3k

(2π)3
eik·x
√

2ωk
δ(3)(p − k)

√
2ωk

= e+ip·x.

Summarizing

(1.17)
φI(x1)a†

p = e−ip·x

apφI(x1) = eip·x.

1.4 Example diagrams.

We want to examine the relevant diagrams corresponding to a transition amplitudes for the φ4 theory.
Contractions such as

(1.18)〈ap1 ap2 |a†
kA

a†
kB
〉

0
.

result in diagrams that are not connected as sketched in fig. 1.5.

Figure 1.5: Not connected diagrams.

There are no other possibilities for the first order (and these ones are not interesting). For the
second order transition amplitudes we want to sum of all the contractions for the expectation

(1.19)
〈

ap1 ap2 φ4
I (x)a†

kA
a†

kB

〉
= −i

λ

4! ∑ all contractions.

Our diagrams include fig. 1.6, which are not connected. The figure eight is a vacuum fluctuation that
represents virtual processes. Another diagram is fig. 1.7, also not connected.

We want diagrams that we will describe as “connected and amputated”. We are clearly discarding
non-connected diagrams like those above, but will need to demonstrate what is meant by amputated,
and will continue to consider examples to make that clear.

Here’s another diagram fig. 1.8 that is also not connected. From the diagrams we can construct the
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Figure 1.6: Not connected second order interactions, including vacuum fluctuations.

Figure 1.7: Another second order diagram.

Figure 1.8: Another not-connected diagram.
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functionals that they represent. The single line in this one is a δ(3)(p1 − kA) whereas the balloon with
two strings is

(1.20)
∫

d4xe−ikB·xDF(x − x)eip2·x.

There are similar not-connected variations of the possible diagrams that we will also discard. The
connected diagrams all come from contractions such as

(1.21)〈0| ap1 ap2 φ4
I (x)a†

kA
a†

kB
|0〉

The diagram for this interaction now has a vertex representing the contractions with φ4
I (x) with four

edges from that vertex as sketched in fig. 1.9. The algebraic expression for this diagram is

Figure 1.9: Not non-connected diagram.

(1.22)4!
(
−iλ
4!

) ∫
d4xe−i(kA+kB)·xei(p1+p2)·x = −iλ(2π)4δ(4)(p1 + p2 − kA − kB).

Such a diagram has the general form

(2π)4δ(4) (∑ in−∑ final
)
× iM(A, B→ 1, 2), (1.23)

so
M(A, B→ 1, 2) = −λ. (1.24)

Here the “symmetry factor” 4! was added in to count all possible ways of constructing such a dia-
gram.

Next order How about an amplitude like

(1.25)〈0| ap1 ap2

1
2

(
−iλ
4!

)2 ∫
d4x

∫
d4yφ4

I (x)φ4
I (y)a†

kA
a†

kB
|0〉

Disconnected diagrams include fig. 1.10. However, we have connected diagrams like fig. 1.11. The
loop in this diagram represents an interaction with “vacuum fluctuation”. Such an interaction is
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Figure 1.10: Disconnected third order interaction.

Figure 1.11: Connected diagram.

Figure 1.12: Other amputatable diagrams.
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not relevant to scattering, and we may consider just the portion of the diagram that leaves off this
vacuum fluctuation. This is what is meant by amputated. Amputated diagrams do not include such
factors. Other example interactions that may also be amputated include fig. 1.12.

At the next order we can have fun interactions like that of fig. 1.13, which is not amputatable (it
connects branches), and must be considered.

Figure 1.13: Fun interaction.

At the λ2 order, the relevant diagrams are sketched in fig. 1.14 At this order φ4(x), φ4(y) each con-

(a) (b) (c)

Figure 1.14: Second order connected amputated diagrams.

tribute a vertex with 4 edges.

Definition 1.3: Amputated

Omit anything that only effects input or output lines.

1.5 The recipe.

The general transition amplitude for a 2→ n event has the form

〈p1 · · · pn|kAkB〉 = (2π)4δ(4)(∑ kin −∑ pout)iM(A, B→ 1, · · · n). (1.26)
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Our recipe is

1. iM = ∑ of all connected amputated diagrams, lines and vertices.

2. to every internal line (not connected to input or final particle)

3. associate a propagator

(1.27)
i

p2 − m2 − iε
,

where p is the 4-momentum of the line. External lines are ≡ 1.

4. Impose non-conservation with every vertex.

5. integrate
∫

d4 p/(2π)4 over all momenta not fixed.

6. symmetry factors

7. vertex: (−iλ).

1.6 Back to our scalar theory

Applying these rules to the diagram fig. 1.15, we get

(1.28)−iλ = iM,

or
(1.29)M = −λ.

Figure 1.15: First order interaction.

For the second order diagrams The first diagram gives

(1.30)(−iλ)2 i
q2

1 − m2 − iε
i

q2
2 − m2 − iε

,

where q1 + q2 = kA + kB, so we can let q2 = kA + kB − q1, which gives

(1.31)
∫ d4q1

(2π)4 (−iλ)2 i
q2

1 − m2 − iε
i(

kA + kB − q1
)2 − m2 − iε
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(a) (b) (c)

Figure 1.16: Second order diagrams.

Figure 1.17: Symmetry coefficient counting.

Calculating the symmetry coefficients is a counting game, illustrated roughly in fig. 1.17, where the
1/2 factor was eliminated by the two choices, and the rest by factorial counting (4 ways to pick first,
leaving 3 ways for the next choice, two for the next, until the last.) In the end we have a symmetry
factor of (4× 3)× 2× (4× 3).
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