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PHY2403H Quantum Field Theory. Lecture 17: Scattering, decay, cross
sections in a scalar theory. Taught by Prof. Erich Poppitz

DISCLAIMER: Very rough notes from class, with some additional side notes. These are notes for the UofT
course PHY2403H, Quantum Field Theory, taught by Prof. Erich Poppitz, fall 2018.

1.1 Review: S-matrix

We defined an S−matrix

〈 f | S |i〉 = S f i = (2π)4 δ(4)

(
∑
(

pi −∑
p f

))
iM f i, (1.1)

where
iM f i = ∑ all connected amputated Feynman diagrams . (1.2)

The matrix element 〈 f | S |i〉 is the amplitude of the transition from the initial to the final state. In
general this can get very complicated, as the number of terms grows factorially with the order.

We also talked about decays.

1.2 Scattering in a scalar theory

Suppose that we have a scalar theory with a light field Φ, M and a heavy field ϕ, m, where m > 2M.
Perhaps we have an interaction with a z2 symmetry so that the interaction potential is quadratic in Φ

(1.3)Vint = µϕΦΦ.

We may have ΦΦ→ ΦΦ scattering.
We will denote diagrams using a double line for φ and a single line for Φ, as sketched in fig. 1.1.
There are three possible diagrams:
The first we will call the s-channel, which has amplitude

(1.4)
A(s-channel) ∼ i

p2 − m2 + iε

=
i

s − m2 + iε
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Figure 1.1: Particle line convention.

(a) (b)

(c)

Figure 1.2: Possible diagrams.
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(1.5)(p1 + p2)2 = s

In the centre of mass frame
(1.6)p1 = −p2,

so

(1.7)s =
(

p0
1 + p0

2
)2

= E2
cm.

To the next order we have a diagram like fig. 1.3. and can have additional virtual particles created,

Figure 1.3: Higher order.

with diagrams like fig. 1.4.

Figure 1.4: More virtual particles.

We will see (QFT II) that this leads to an addition imaginary iΓ term in the propagator

(1.8)
i

s − m2 + iε
→ i

s − m2 − imΓ + iε
.

If we choose to zoom into the such a figure, as sketched in fig. 1.5, we find that it contains the inter-
action of interest for our diagram, so we can (looking forward to currently unknown material) know
that our diagram also has such an imaginary iΓ term in its propagator.

Assuming such a term, the squared amplitude becomes

(1.9)
σ|snearm2 ∼ |As|2

∼ 1
(s − m)2 + m2Γ2

This is called a resonance (name?), and is sketched in fig. 1.6.
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Figure 1.5: Zooming into the diagram for a higher order virtual particle creation event.

Figure 1.6: Resonance.
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Where are the poles of the modified propagator?

(1.10)
i

s − m2 − imΓ + iε
=

i
p2

0 − p2 − m2 − imΓ + iε

The pole is found, neglecting iε, is found at

(1.11)

p0 =
√

ω2
p + imΓ

= ωp

√
1 +

imΓ
ω2

p

≈ ωp +
imΓ
2ωp

1.3 Decay rates.

We have an initial state
(1.12)|i〉 = |k〉 ,

and final state
(1.13)| f 〉 =

∣∣∣p f
1 , p f

2 · · · p
f
n

〉
.

We defined decay rate as the ratio of the number of initial particles to the number of final particles.
The probability is

(1.14)ρ ∼ |〈 f | S |i〉|2

= (2π)4δ(4)(pin −∑ p f )(2π)4δ(4)(pin −∑ p f )×
∣∣M f i

∣∣2
Saying that δ(x) f (x) = δ(x) f (0) we can set the argument of one of the delta functions to zero, which

gives us a vacuum volume element factor

(1.15)(2π)4δ(4)(pin −∑ p f ) = (2π)4δ(4)(0)
= V3T,

so
(1.16)

probability for i→ f
unit time

∼ (2π)4δ(4)(pin −∑ p f )V3 ×
∣∣M f i

∣∣2
(1.17)〈k|k〉 = 2ωkV3

coming from

(1.18)〈k|p〉 = (2π)32ωpδ(3)(p − k)

so
(1.19)〈k|k〉 = 2ωpV3
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(1.20)
probability for i→ f

unit time
∼

(2π)4δ(4)(pin − ∑ p f )
∣∣M f i

∣∣2V3

2ωkV32ωp1 · · · 2ωpn Vn
3

If we multiply the number of final states with p f
i ∈ (p f

i , p f
i + dp f

i ) for a particle in a box

(1.21)px =
2πnx

L

(1.22)∆px =
2π

L
∆nx

(1.23)∆nx =
L

2π
∆px

and

(1.24)∆nx∆ny∆nz =
V3

(2π)3 ∆px∆py∆pz

(1.25)
Γ =

number of events i→ f
unit time

= ∏
f

d3 p
(2π)32ωp f

(2π)4δ(4)(k − ∑ f p f )
∣∣M f i

∣∣2
2ωk

Note that everything here is Lorentz invariant except for the denominator of the second term (
2ωk). This is a well known result (the decay rate changes in different frames).

1.4 Cross section.

For 2→ many transitions

(1.26)

probability i→ f
unit time

×
(

number of final states with p f ∈ (p f , p f + dp f )
)

=
(2π)4δ(4)(∑ pi − ∑ f p f )

∣∣M f i
∣∣2
��V3

2ωk1V32ωk2��V3
∏

f

d3 p
(2π)32ωp f

We need to divide by the flux
In the CM frame, as sketched in fig. 1.7, the current is

(1.27)j = nv1 − nv2,

so if the density is

(1.28)n =
1

V3
,
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Figure 1.7: Centre of mass frame.

(one particle in V3), then

(1.29)j =
v1 − v2

V3
.

This is where [1] stop,

(1.30)σ =
(2π)4δ(4)(∑ pi − ∑ f p f )

∣∣M f i
∣∣2
��V3

2ωk12ωk2 |v1 − v2| ∏
f

d3 p
(2π)32ωp f

There is, however, a nice Lorentz invariant generalization

(1.31)j =
1

V3ωkA ωkB

√
(kA − kB)2 − m2

Am2
B

(Claim: DIY)

(1.32)

j|CM =
1

V3

(
|k|
ωkA

+
|k|
ωkB

)
=

1
V3

(|vA| + |vB|)

=
1

V3
|v1 − v2|

(1.33)σ =
(2π)4δ(4)(∑ pi − ∑ f p f )

∣∣M f i
∣∣2
��V3

4
√

(kA − kB)2 − m2
Am2

B

∏
f

d3 p
(2π)32ωp f

.
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