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PHY2403H Quantum Field Theory. Lecture 19: Pauli matrices, Weyl spinors,
SL(2,c), Weyl action, Weyl equation, Dirac matrix, Dirac action, Dirac
Lagrangian. Taught by Prof. Erich Poppitz

DISCLAIMER: Very rough notes from class, with some additional side notes. These are notes for the UofT
course PHY2403H, Quantum Field Theory, taught by Prof. Erich Poppitz, fall 2018.

1.1 Fermions: R3 rotations.

Given a real vector x and the Pauli matrices

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (1.1)

We may form a Pauli matrix representation of a vector

(1.2)σ · x =
[

x3 x1 − ix2
x1 + ix2 −x3

]
,

where σ =
(
σ1, σ2, σ3). This matrix, like the Pauli matrixes, is a 2× 2 Hermitian traceless matrix. We

find that the determinant is
(1.3)det(σ · x) = −x2

3 − x2
1 − x2

2

= −x2.

We may form
(1.4)U(σ · x)U†,

where U is a unitary 2× 2 unit determinant matrix, satisfying

(1.5)
U†U = 1

det U = 1.
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Further
(1.6)det(Uσ · x)U† = det U det(σ · x) det U†

= det(σ · x).

Moral: U(σ · x)U† = σ · x′, where x′ has the same length of x.
We may use this to represent an arbitrary rotation

(1.7)U(σ · x)U† = Ri
jxjσi

We say that U ∈ SU(2) and R ∈ SU(3), and SU(2) is called the “universal cover of SO(3)”.
Pauli figured out that, in non-relativistic QM, that this type of transformation also applies to (spin)

wave functions (spinors)
Ψ(x)→ Ψ′(x′) = UΨ(x) (1.8)

where
x→ x′ = Rx, (1.9)

and RTR = 1. Here Ψ is a two element vector

(1.10)Ψ(x) =
[

Ψ↑(x)
Ψ↓(x)

]
,

so the transformation should be thought of as a matrix operation[
Ψ↑(x)
Ψ↓(x)

]
→
[

Ψ′↑(x
′)

Ψ′↓(x
′)

]
= U

[
Ψ↑(x)
Ψ↓(x)

]
. (1.11)

Having seen such representations and their SU(2) transformations in NRQM, we want to know what the
relativistic generalization is.

1.2 Lorentz group

Let

(1.12)
(x0, x) = x0σ0 + σ · x

=
[

x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

]
.

This has determinant

(1.13)det(x0, x) = (x0)2 − (x1)2 − (x2)2 − (x3)2

= xµxµ.

We therefore identify (x0, x) as a four vector

(1.14)(x0, x) = xµσµ

We say that SL(2, C) is a double cover of SO(1, 3).
Note that the matrix U can be built explicitly. For example, it may be built up using Euler angles as

sketched in fig. 1.1. or algebraically
(1.15)U = eiψσ3/2eiθσ1/2eiφσ3/2.
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Figure 1.1: Euler angle rotations.

1.3 Weyl spinors.

We will see that there is generalization of Pauli spinors, called Weyl spinors, but we will have to intro-
duce 4 component objects.

We’d like to argue that there is a correspondence (also 2→ 1) between SL(2, C)→ SO(1, 3). Here:

• S : special

• L : linear

• 2 : 2× 2

• C : complex.

and we say that M ∈ SL(2, C) if det M = 1, where M is a complex 2× 2, but not necessarily unitary. The
SU(2) group is a subset of SL(2, C). In this representation SU(2) matrices are SL(2, C) matrices, but not
necessarily the opposite.

We introduce a special notation for the identity matrix

(1.16)σ0 ≡
[

1 0
0 1

]
and can now form four vectors in a matrix representation

(1.17)

x · σ ≡ xµσµ

≡ x0σ0 + σ · x

=
[

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]
.
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Such 2× 2 matrices are Hermitian. Notice that the space of 2× 2 Hermitian matrices is 4 dimensional.
We found that

(1.18)det(xµσµ) = (x0)2 − x2.

The transformation
(1.19)xµσµ → M

(
xµσµ

)
M†,

maps 2× 2 Hermitian matrices to 2× 2 Hermitian matrices using a unit determinant transformation M.
Note that M is not unitary, as it is an arbitrary (Hermitian) matrix. In particular MM† 6= 1! Also note
that the determinant of the transformed object is

(1.20)det
(

M
(
xµσµ

)
M†
)

= 1× det
(
xµσµ

)
× 1,

since det M = 1, so that we see that the Lorentz invariant length is preserved by such a transformation.
This can be expressed as

x · σ→ Mx · σM† = x′ · σ, (1.21)

where (x′)2 = x2.
Motivated by this SL(2, C)→ SO(1, 3) correspondence, postulate that we study two component objects

(1.22)U(x) =
[

U1(x)
U2(x)

]
,

where x = (x0, x1, x2, x3) is a four-vector, and assume that such objects transform as follows in SO(1, 3)

(1.23)
U(x)→ U′(x′) = M†U(x)

xµ → x′µ = Λµ
νxν,

where M† is the one giving rise to Λ. To understand what is meant by “giving rise to”, consider

(1.24)Mxµσµ M† = x′νσν

= σνΛν
µxµ,

and this holds for all xµ, we must have

Mσµ M† = σνΛν
µ. (1.25)

Theorem 1.1: Transformation of U†(x)σµU(x)

U†(x)σµU(x) transforms as a four vector.

4



Proof:

(1.26)

U†(x)σµU(x)→ U′†(x′)σµU′(x′)
= (M†U(x))†σµ M†U(x)

= U†(x)
(

Mσµ M†
)

U(x)

= U†(x)σνU(x)Λν
µ

so we find that U†(x)σµU(x) transforms as a four vector as claimed.

Theorem 1.2: Transformation of partials.

The four-gradient coordinates transform as a four vector

(∂µ)′ = (Λ−1)
σ

µ∂σ.

Proof1: Inverting the transformation relation

(1.27)x′µ = Λµ
νxν,

gives
xσ = (Λ−1)

σ
µΛµ

νxν = (Λ−1)
σ

µx′µ, (1.28)

so

(1.29)

∂µ → (∂µ)′

=
∂

∂x′µ

=
∂xσ

∂x′µ
∂

∂xσ

= (Λ−1)
σ

µ

∂

∂xσ

= (Λ−1)
σ

µ∂σ.

Theorem 1.3: Transformation of U†σµ∂µU

U†σµ∂µU transforms as a four vector.

1In class we proved this by considering the transformation properties of a direction derivative dxµ · ∂µ, but that isn’t the
method that seems most intuitive to me.
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Proof:

(1.30)

U†(x)σµ ∂

∂xµ
U(x)→ U′†(x′)σµ ∂

∂x′µ
U′(x′)

= Λµ
νU†(x)σν ∂

∂x′µ
(Λ−1)

µ′

µU(x)

= U†(x)σν ∂

∂x′µ
δµ′

νU(x)

= U†(x)σν ∂

∂xν
U(x)

We can now define

Definition 1.1: Weyl action (name?)

We may construct the following Lorentz invariant action

SWeyl =
∫

d4xiU†(x)σµ∂µU(x),

where U(x) is a Weyl spinor.

The i factor here is so that the action is real. This can be seen by noting that (iσµ)† = −iσµ and
integrating the Hermitian conjugate by parts

(
iσ0)†

=
([

0 i
i 0

])†

= −iσ0 (1.31a)

(
iσ1
)†

=
[

0 i
i 0

]†

= −iσ1 (1.31b)

(
iσ2)†

=
[

0 1
−1 0

]†

= −iσ2 (1.31c)

(
iσ3)†

=
[

i 0
0 −i

]†

= −iσ3 (1.31d)

(1.32)

S†
Weyl =

∫
d4x∂µU†(x)(iσµ)†U(x)

= −
∫

d4x∂µU†(x)iσµU(x)

= −
∫

d4x∂µ

(
U†(x)iσµU(x)

)
+
∫

d4xU†(x)iσµ∂µU(x)

=
∫

d4xU†(x)iσµ∂µU(x)

= SWeyl,
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where it was assumed that any boundary terms vanish.

Theorem 1.4: Weyl equation.

Variation of the action definition 1.1 gives rise to the equations of motion

σµ ∂

∂xµ
U = 0

which is called the Weyl equation.

Proof:

(1.33)

δS = i
∫

d4x
(

δU†σµ∂µU + U†σµ∂µδU
)

= i
∫

d4x
(

δU†σµ∂µU + ∂µ

(
U†σµδU

)
− (∂µU†)σµδU

)
= i
∫

d4x
(

δU† (σµ∂µU
)
−
(

(∂µU†)σµ
)

δU
)

=
∫

d4x
(

δU† (iσµ∂µU
)

+
(

δU† (iσµ∂µU
))†
)

.

Requiring this to vanish for all variations δU† proves the result.
Written out explicitly in matrix form, the Weyl equation is

(1.34)
[

∂0 + ∂3 ∂1 − i∂2
∂1 + i∂2 ∂0 − ∂3

] [
U1
U2

]
= 0,

or
(1.35a)(∂0 + ∂3)U1 + (∂1 − i∂2)U2 = 0

(1.35b)(∂1 + i∂2)U1 + (∂0 − ∂3)U2 = 0.

Theorem 1.5: Weyl equation relation to the massless KG equation.

The Weyl equation is equivalent to a set of massless KG equations.

∂µ∂µUk = 0,

for k = 1, 2.
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Proof:
Multiplying eq. (1.35a) by ∂1 + i∂2 gives

(1.36)

(∂1 + i∂2)

(
(∂0 + ∂3)U1 + (∂1 − i∂2)U2

)
= (∂0 + ∂3) (∂1 + i∂2) U1 + (∂1 + i∂2) (∂1 − i∂2)U2

= −(∂0 + ∂3)(∂0 − ∂3)U2 + (∂1 + i∂2) (∂1 − i∂2)U2

= (−∂00 + ∂33 + ∂11 + ∂22) U2

=
(
−∂0∂0 − ∂3∂3 − ∂1∂1 − ∂2∂2

)
U2

= −∂µ∂µU2.

Similarly, multiplying eq. (1.35b) by ∂1 − i∂2 we find

(1.37)

0 = (∂1 − i∂2)

(
(∂1 + i∂2)U1 + (∂0 − ∂3)U2

)
= (∂11 + ∂22) U1 + (∂0 − ∂3) (∂1 − i∂2)U2︸ ︷︷ ︸

=−(∂0+∂3)U1

= (∂11 + ∂22 − ∂00 + ∂33) U1
= −∂µ∂µU1.

Because SWeyl results in a massless KG equation, this is no good for electrons, and we have to look for
a different action.

Claim: UTσ2U is the only bilinear Lorentz invariant that we can add to the action.
An action like:

(1.38)Lmass =
1
2

mUTσ2U +
1
2

m∗U†σ2(U†)T,

may exist in nature (we don’t know), and are called Majorana neutrino masses. The problem with such
a Lagrangian density is that it breaks U(1) symmetry. In particular U → eiαU symmetry of the kinetic
term. This means that the particle associated with such a Lagrangian cannot be charged.

Recall that we introduced electromagnetic potentials into NRQM with

(1.39)ih̄
∂

∂t
Ψ =

1
2m

(∇ − eA)2 Ψ

which is a gauge transformation. We’d like to have this capability.
What we can do instead and maintain U(1) symmetries, is to introduce two U’s, like

(1.40)Lmass =
1
2

mUT
1 σ2U2 +

1
2

m∗U†
2 σ2(U†

1 )T

What we are really doing is assembling a four component spinor out of the two U’s.
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1.4 Lorentz symmetry.

We want to examine the Lorentz invariance of UTσ2U, but need an intermediate result first.

Lemma 1.1: Transpose of Pauli vector representation

For any x ∈ R3

(σ · x)T = −σ2(σ · x)σ2,

or more compactly
σT = −σ2σσ2.

Geometrically, this transposition operation reflects x about the y-axis.

Proving lemma 1.1 is well suited to software (FIXME: link: diracWeylMatrixRepresentationAndIdenti-
ties.nb), but can also be done algebraically with ease. First note that

(1.41)

σT
1 = σ1

σT
2 = −σ2

σT
3 = σ3

which means that

(1.42)

(σ · x)T = σ1x1 − σ2x2 + σ3x3

= σ2σ2
(

σ1x1 − σ2x2 + σ3x3
)

= σ2
(
−σ1x1 − σ2x2 − σ3x3

)
σ2

= −σ2(σ · x)Tσ2.

Now we are ready to proceed.

Theorem 1.6: UTσ2U invariance

UTσ2U is Lorentz invariant.

Proof:

(1.43)UTσ2U → U′Tσ2U′

= UTM†T
σ2M†U,

where U′ = M†U and U′T = UTM†T.
Note that if we can show that M†T

σ2M† = σ2, then we are done.
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It is simple to show that any
(1.44)U = eiσ·a,

for a ∈ R3, has eigenvalues ±i|a|. The determinant of such a matrix is

det U =
∣∣∣∣ei|a| 0

0 e−i|a|

∣∣∣∣ = 1, (1.45)

so we see that such a matrix has the U†U = 1 and det U = 1 properties that we desire for elements of
SU(2)2. We haven’t shown that all matrices U ∈ SU(2) can be written in this form, but let’s assume that’s
the case.

Claim: Generalizing from the exponential form of SU(2) elements seen above, we assume that any
SL(2, C) matrix M can be written as

(1.46)M† = eiσ·(a+ib),

for a, b ∈ R3.
The transpose of an exponential of a sigma matrix goes like

(1.47)

(eσ·u)T =
∞

∑
k=0

1
k!

(
(σ · u)k

)T

=
∞

∑
k=0

1
k!

(−σ2(σ · u)σ2)k

= σ2

(
∞

∑
k=0

1
k!

(−σ · u)k

)
σ2

= σ2e−σ·uσ2,

so

(1.48)
M†T

σ2M† =
(

eiσ·(a+ib)
)T

σ2eiσ·(a+ib)

=
(

σ2e−iσ·(a+ib)σ2

)
σ2eiσ·(a+ib)

= σ2,

which is the result required to finish the proof of theorem 1.63.

1.5 Dirac matrices.

2In class the suitability of eiσ·a as an element of SU(2) was demonstrated with an argument that diagonalizable matrices satisfy
det eA = etr A

3A slightly different derivation was done in class, but this one makes more sense to me.
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Definition 1.2: Dirac matrices.

The Dirac matrices γµ, µ ∈ {0, 1, 2, 3} are matrices that satisfy

{γµ, γν} = 2gµν,

that is
γµγν + γνγµ = 2gµν,

We will use the explicit 4× 4 matrix representation

γ0 =
[

0 1
1 0

]
,

and

γi =
[

0 σi

−σi 0

]
.

The metric relations can also be written explicitly in the handy form

(1.49)

(
γ0)2

= 1(
γi
)2

= −1.

Written out explicitly, these matrices are

(1.50)

γ0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 .

We will see (HW4) that Lorentz transformations take the form

(1.51)x′ · γ = Λ−1
1/2 (x · γ) Λ1/2,

where
(1.52)Λ1/2 = e−

i
2 ωµνSµν

,

where
(1.53)Sµν =

i
4
[
γµ, γν

]
.
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In particular

(1.54)

S0k =
i
4

[
γ0, γk

]
=

i
2

γ0γk

=
i
2

[
0 1
1 0

] [
0 σk

−σk 0

]
=

i
2

[
−σk 0

0 σk

]
will generate boosts, whereas

(1.55)

Sjk =
i
4

[
γj, γk

]
=

i
2

γjγk

=
i
2

[
0 σj

−σj 0

] [
0 σk

−σk 0

]
= − i

2

[
σkσj 0

0 σkσj

]
=

1
2

εjkl
[

σl 0
0 σl

]
,

are rotations (and in this case, are Hermitian).
The explicit expansion of the half Lorentz transformation operator is

(1.56)

Λ1/2 = e−
i
2 ωµνSµν

= e−iω0kS0k− i
2 ωjkSjk

= exp
(
−1

2

[
ω0kσk 0

0 −ω0kσk

]
− i

4

[
ωjkεjklσl 0

0 ωjkεjklσl

])
=

[
e−(

1
2 ω0kσ0+ i

4 ωjkejklσl) 0
0 e−(−

1
2 ω0kσ0+ i

4 ωjkejklσl)

]

where the 1/2 factor of ω0i vanished because we had a sum over 0i and i0 which have been grouped.

Lemma 1.2: Some Dirac matrix identities.

(γ0)† = γ0

(γk)† = −γk
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γ0(iγµ)†γ0 = −iγµ.

The first two are clear from inspection of eq. (1.50). For the last, for µ = 0

(1.57)
γ0(iγ0)†γ0 = γ0(γ0)†(−i)γ0

= −iγ0γ0γ0

= −iγ0,

and for µ = k 6= 0

(1.58)

γ0(iγk)†γ0 = γ0(−i)(−γk)γ0

= +iγ0γkγ0

= −iγ0γ0γk

= −iγk,

which completes the proof.

1.6 Dirac Lagrangian.

We postulate that there is a four-component object

Ψ =


ψ1
ψ2
ψ3
ψ4

 Ψ† = (ψ∗1 , ψ∗2 , ψ∗3 , ψ∗4) , (1.59)

where ψµ’s are all complex fields, and assume that the fields transform as

Ψ(x)→ Ψ′(x′) = Λ1/2Ψ(x), (1.60)

where our vectors transform in the usual x → x′ = Λx fashion, where the incremental form of the
Lorentz transformation is the usual

(1.61)Λµ
ν = δµ

ν + ωµ
ν + O(ω2).

Definition 1.3: Overbar operator (name?).

Ψ = Ψ†γ0.
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Definition 1.4: Dirac Lagrangian.

LDirac = Ψ(x)
(
iγµ∂µ −m

)
Ψ(x).

Armed with lemma 1.2 we can now show the following.

Theorem 1.7: The Dirac action is a real Lorentz scalar.

The action
S =

∫
d4xΨ

(
iγµ∂µ −m

)
Ψ,

is a real scalar and is Lorentz invariant.

Real: To show that the action is real, we compute it’s Hermitian conjugate, apply lemma 1.2 and inte-
grate by parts

(1.62)

S† =
∫

d4xΨ†
(
−i(γµ)† ←

∂ µ −m
)

(γ0)†Ψ

=
∫

d4xΨ†
(

(iγµ)† ←
∂ µ −m

)
γ0Ψ

=
∫

d4xΨ†
(
−γ0(iγµ)γ0 ←

∂ µ −m
)

γ0Ψ

=
∫

d4xΨ
(
−iγµ

←
∂ µ −m

)
Ψ

= −
∫

d4x∂µ

(
ΨiγµΨ

)
+
∫

d4xΨiγµ∂µΨ −
∫

d4xΨmΨ

=
∫

d4xΨ
(
iγµ∂µ − m

)
Ψ

= S,

where ∂µ without an overarrow means the traditional right acting operator, and assuming that the
boundary terms vanish.

To show the Lorentz invariance, we will consider just the transformation of the Dirac Lagrangian den-
sity. We need a couple additional pieces of information to do so, the first of which is the transformation
property4

(1.63)Ψ→ ΨΛ−1
1/2,

and (from HW4)
(1.64)Λ−1

1/2γµΛ1/2 = Λµ
αγα.

4Not proven here, but there’s an argument for that in [1] (eq. 3.33).
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The Lagrangian transforms as

(1.65)

Ψ(x)
(
iγµ∂µ − m

)
Ψ(x)→ Ψ′(x′)γ0

(
iγµ ∂

∂x′µ
− m

)
Ψ′(x′)

= Ψ(x)Λ−1
1/2

(
iγµ(Λ−1)

α
µ∂α − m

)
Λ1/2Ψ(x)

= Ψ(x)
(

iΛ−1
1/2γµΛ1/2(Λ−1)

α
µ∂α − m

)
Ψ(x)

= Ψ
(
iγµ∂µ − m

)
Ψ

We find that ΨΨ = Ψ†γ0Ψ is a Lorentz scalar, whereas ΨγµΨ is a 4 vector.

1.7 Problems:

Exercise 1.1 Show that ΨΨ is a Lorentz scalar.

Answer for Exercise 1.1
The Lorentz property follows from eq. (1.63)

(1.66)ΨΨ→
(

ΨΛ−1
1/2

) (
Λ1/2Ψ

)
= ΨΨ.

The scalar nature of this product can be seen easily by expansion.

(1.67)

ΨΨ = Ψ†γ0Ψ

=
[
Ψ∗1 Ψ∗2 Ψ∗3 Ψ∗4

] 
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




Ψ1
Ψ2
Ψ3
Ψ4



=
[
Ψ∗1 Ψ∗2 Ψ∗3 Ψ∗4

] 
Ψ3
Ψ4
Ψ1
Ψ2


= Ψ∗1Ψ3 + Ψ∗2Ψ4 + Ψ∗3Ψ1 + Ψ∗4Ψ2

= 2 Re (Ψ∗1Ψ3 + Ψ∗2Ψ4) .

Clearly any individual Ψ†γµΨ product will also be a scalar.

Exercise 1.2 Show that ΨγµΨ transforms as a four vector.
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Answer for Exercise 1.2

(1.68)

ΨγµΨ→
(

ΨΛ−1
1/2

)
γµ
(

Λ1/2Ψ
)

= Ψ
(

Λ−1
1/2γµΛ1/2

)
Ψ

= Ψ (Λµ
νγν) Ψ

= Λµ
νΨγνΨ.
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