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UofT QFT Fall 2018 Lecture 2. Units, scales, and Lorentz transformations.
Taught by Prof. Erich Poppitz

DISCLAIMER: Very rough notes from class. Some additional side notes, but otherwise barely edited. At
Compton wavelength, multiple particle pair production is possible

1.1 Natural units.

(1.1)

[h̄] = [action] = M
L2

T2 T =
ML2

T

[c] = [velocity] =
L
T

[energy] = M
L2

T2 .

Setting c = 1 means

(1.2)
L
T

= 1

and setting h̄ = 1 means

(1.3)
[h̄] = [action]

= ML
�
��
L
T

= ML

therefore

(1.4)[L] =
1

mass
and

(1.5)[energy] = M
�
�
�L2

T2

= mass eV

Summary
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• energy ∼ eV

• distance ∼ 1
M

• time ∼ 1
M

From:

(1.6)α =
e2

4π��̄hc

which is dimensionless (1/137), so electric charge is dimensionless.
Some useful numbers in natural units

(1.7)

me ∼ 10−27g ∼ 0.5MeV
mp ∼ 2000me ∼ 1GeV
mπ ∼ 140MeV
mµ ∼ 105MeV
h̄c ∼ 200MeV fm = 1

1.2 Gravity

Interaction energy of two particles

(1.8)GN
m1m2

r

(1.9)[energy] ∼ [GN]
M2

L

(1.10)[GN] ∼ [energy]
L

M2

but energy x distance is dimensionless (action) in our units

(1.11)[GN] ∼ dimensionlessM2

(1.12)

GN

h̄c
∼ 1

M2

∼ 1
1020GeV

Planck mass
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(1.13)

MPlanck ∼

√
h̄c
GN

∼ 10−4g

∼ 1(
1020GeV

)2

We can revisit the scale diagram from last lecture in terms of MeV mass/energy values, as sketched
in fig. 1.1.

Figure 1.1: Scales, take II.

At the classical electron radius scale, we consider phenomena such as back reaction of radiation,
the self energy of electrons. At the Compton wavelength we have to allow for production of multiple
particle pairs. At Bohr radius scales we must start using QM instead of classical mechanics.

1.3 Cross section.

Verbal discussion of cross section, not captured in these notes. Roughly, the cross section sounds like
the number of events per unit time, related to the flux of some source through an area.

We’ll compute the cross section of a number of different systems in this course. The cross section
is relevant in scattering such as the electron-electron scattering sketched in fig. 1.2.

We assume that QED is highly relativistic. In natural units, our scale factor is basically the square
of the electric charge

(1.14)α ∼ e2,

so the cross section has the form

(1.15)σ ∼ α2

E2

(
1 + O(α) + O(α2) + · · ·

)
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Figure 1.2: Electron electron scattering.

In gravity we could consider scattering of electrons, where GN takes the place of α. However, GN
has dimensions.

For electron-electron scattering due to gravitons

(1.16)σ ∼
G2

NE2

1 + GNE2 + · · ·

Now the cross section grows with energy. This will cause some problems (violating unitarity:
probabilities greater than 1!) when O(GNE2) = 1.

In any quantum field theories when the coupling constant is not-dimensionless we have the same
sort of problems at some scale.

The point is that we can get far considering just dimensional analysis.
If the coupling constant has a dimension (1/mass)N , N > 0, then unitarity will be violated at

high energy. One such theory is the Fermi theory of beta decay (electro-weak theory), which had a
coupling constant with dimensions inverse-mass-squared. The relevant scale for beta decay was 4
Fermi, or GF ∼ (1/100GeV)2. This was the motivation for introducing the Higgs theory, which was
motivated by restoring unitarity.

1.4 Lorentz transformations.

The goal, perhaps not for today, is to study the simplest (relativistic) scalar field theory. First studied
classically, and then consider such a quantum field theory. How is relativity implemented when we
write the Lagrangian and action?

Our first step must be to consider Lorentz transformations and the Lorentz group.
Spacetime (Minkowski space) is R3,1 (or Rd−1,1). Our coordinates are

(1.17)(ct, x1, x2, x3) = (ct, r).

4



Here, we’ve scaled the time scale by c so that we measure time and space in the same dimensions.
We write this as

(1.18)xµ = (x0, x1, x2, x3),

where µ = 0, 1, 2, 3, and call this a “4-vector”. These are called the space-time coordinates of an
event, which tell us where and when an event occurs.

For two events whose spacetime coordinates differ by dx0, dx1, dx2, dx3 we introduce the notion of
a space time interval

(1.19)
ds2 = c2dt2 − (dx1)2 − (dx2)2 − (dx3)2

=
3

∑
µ,ν=0

gµνdxµdxν

Here gµν is the Minkowski space metric, an object with two indexes that run from 0-3. i.e. this is a
diagonal matrix

(1.20)gµν ∼


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


i.e.

(1.21)

g00 = 1
g11 = −1
g22 = −1
g33 = −1

We will use the Einstein summation convention, where any repeated upper and lower indexes are
considered summed over. That is eq. (1.19) is written with an implied sum

(1.22)ds2 = gµνdxµdxν.

Explicit expansion:

(1.23)
ds2 = gµνdxµdxν

= g00dx0dx0 + g11dx1dx1 + g22dx2dx2 + g33dx3dx3

= (1)dx0dx0 + (−1)dx1dx1 + (−1)dx2dx2 + (−1)dx3dx3.

Recall that rotations (with orthogonal matrix representations) are transformations that leave the
dot product unchanged, that is

(1.24)
(Rx) · (Ry) = xTRTRy

= xTy
= x · y,
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where R is a rotation orthogonal 3x3 matrix. The set of such transformations that leave the dot
product unchanged have orthonormal matrix representations RTR = 1. We call the set of such trans-
formations that have unit determinant the SO(3) group.

We call a Lorentz transformation, if it is a linear transformation acting on 4 vectors that leaves the
spacetime interval (i.e. the inner product of 4 vectors) invariant. That is, a transformation that leaves

(1.25)xµyνgµν = x0y0 − x1y1 − x2y2 − x3y3

unchanged.
Suppose that transformation has a 4x4 matrix form

(1.26)x′µ = Λµ
νxν

For an example of a possible Λ, consider the transformation sketched in fig. 1.3. We know that

Figure 1.3: Boost transformation.

boost has the form

(1.27)

x =
x′ + vt′√
1− v2/c2

y = y′

z = z′

t =
t′ + (v/c2)x′√

1− v2/c2

(this is a boost along the x-axis, not y as I’d drawn), or

(1.28)


ct
x
y
z

 =


1√

1−v2/c2

v/c√
1−v2/c2

0 0
v/c√

1−v2/c2
1√

1−v2/c2
0 0

0 0 1 0
0 0 0 1




ct′

x′

y′

z′


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Other examples include rotations (λ0
0 = 1 zeros in λ0

k, λk
0, and a rotation matrix in the remainder.)

Back to Lorentz transformations (SO(1, 3)+), let

(1.29)
x′µ = Λµ

νxν

y′κ = Λκ
ρyρ

The dot product

(1.30)gµκx′µy′κ = gµκΛµ
νΛκ

ρxνyρ

= gνρxνyρ,

where the last step introduces the invariance requirement of the transformation. That is

gνρ = gµκΛµ
νΛκ

ρ. (1.31)

Upper and lower indexes We’ve defined

(1.32)xµ = (t, x1, x2, x3)

We could also define a four vector with lower indexes

(1.33)xν = gνµxµ

= (t,−x1,−x2,−x3).

That is

(1.34)

x0 = x0

x1 = −x1

x2 = −x2

x3 = −x3.

which allows us to write the dot product as simply xµyµ.
We can also define a metric tensor with upper indexes

(1.35)gµν ∼


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


This is the inverse matrix of gµν, and it satisfies

(1.36)gµνgνρ = δµ
ρ

Exercise: Check:

(1.37)

gµνxµyν = xνyν

= xνyν

= gµνxµyν

= δµ
νxµyν
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Class ended around this point, but it appeared that we were heading this direction:
Returning to the Lorentz invariant and multiplying both sides of eq. (1.31) with an inverse Lorentz

transformation Λ−1, we find

(1.38)
gνρ

(
Λ−1

)ρ

α
= gµκΛµ

νΛκ
ρ

(
Λ−1

)ρ

α

= gµκΛµ
νδκ

α

= gµαΛµ
ν,

or
(1.39)

(
Λ−1

)
να

= Λαν.

This is clearly analogous to RT = R−1, although the index notation obscures things considerably.
Prof. Poppitz said that next week this would all lead to showing that the determinant of any Lorentz
transformation was ±1.

For what it’s worth, it seems to me that this index notation makes life a lot harder than it needs to
be, at least for a matrix related question (i.e. determinant of the transformation). In matrix/column-
(4)-vector notation, let x′ = Λx, y′ = Λy be two four vector transformations, then

(1.40)

x′ · y′ = x′TGy′

= (Λx)TGΛy
= xT(ΛTGΛ)y
= xTGy.

so
ΛTGΛ = G. (1.41)

Taking determinants of both sides gives −(det(Λ))2 = −1, and thus det(Λ) = ±1.
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