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PHY2403H Quantum Field Theory. Lecture 22: Dirac sea, charges, angular
momentum, spin, U(1) symmetries, electrons and positrons. Taught by Prof.
Erich Poppitz

DISCLAIMER: These are notes for the UofT course PHY2403H, Quantum Field Theory, taught by Prof.
Erich Poppitz, fall 2018.

Notes for this particular class were kindly provided by Emily Tyhurst, and Stefan Divic. I’ve done my
best to make my own sense of them, as I was not able to attend the class.

1.1 Recall:

From the Dirac Lagrangian density
(1.1)L = Ψ

(
iγµ∂µ − m

)
Ψ,

we found that the energy can be expressed using Hamiltonian

(1.2)H =
∫ d3 p

(2π)3

2

∑
s=1

ωp

(
as†

p as
p − bs†

p bs
p

)
.

This appears to be an energy with no bottom. Dirac prescribes: assume Pauli exclusion for b and fill
all the negative energy levels. If we treat a, b as Bosonic (commuting), then energy is unbounded from
below. This is a problem, because once you add interactions the system falls into the abyss, something
that we can represent as sketched in fig. 1.1. Another representation of such unstable system that comes
to mind is the inverted pendulum sketched in fig. 1.2.

Dirac fixed this by imagining that all negative energy states are “full”. This doesn’t quite fix it, unless
the particles obey the Pauli Principle. Creating a particle of negative energy b† is like destroying a hole.

Mathematically, we postulate that our operators

1. Obey Fermi statistics, behaving like “Grassman numbers”(
b†
)2

= 0 = b2 = a2 =
(

a†
)2

. (1.3)
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Figure 1.1: Unbounded potential well.

Figure 1.2: Unstable configuration (inverted pendulum).

All the a, b, a†, · · ·’s square to zero1

2. Our creation and annihilation operators are presumed to have non-trivial anti-commutation rela-
tions (unlike the scalar theory where we had the same sort of commutation relations)

(1.4)

{
as

p, ar†
q

}
= (2π)3δsrδ(3)(p − q){

b̃s
p, b̃r†

q

}
= (2π)3δsrδ(3)(p − q).

The relations were used to cast the Hamiltonian in a more familiar form

(1.5)
H =

∫ d3 p
(2π)3

2

∑
s=1

ωp

as†
p as

p + b̃s†
p b̃s

p − (2π)3δ(3)(0)︸ ︷︷ ︸
zero point energy


=
∫ d3 p

(2π)3

2

∑
s=1

ωp

(
as†

p as
p + b̃s†

p b̃s
p

)
− V3

∫ d3 p
(2π)3 2ωp.

Fermions have negative zero-point energy −4× that of real massive scalar.

1Is it a coincidence that these look like lightlike four-vectors x2 = xµxµ = 0?
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Supersymmetry transforms these into one another, and was thought to solve the cosmic constant
problem.

Digression

1.2 Hamiltonian action on single particle states.

We now switch notations, drop the tildes, and ignore the zero point energy

(1.6)H =
∫ d3 p

(2π)3

2

∑
s=1

ωp

(
as†

p as
p + bs†

p bs
p

)
We define the Fock vacuum by

(1.7)
as

p |0〉 = 0

bs
p |0〉 = 0,

and presume that we have relativistically normalized creation operators

(1.8)
as(p) |0〉 =

√
2ωpas†

p |0〉

bs(p) |0〉 =
√

2ωpbs†
p |0〉 .

Let’s see how the Hamiltonian acts on each of our possible a single particle states (with momentum p
and spin r)

(1.9)

H |p, r〉 = H
√

2ωpar†
p |0〉

=
∫ d3q

(2π)3

2

∑
s=1

ωq

(
as†

q as
q + bs†

q bs
q

)√
2ωpar†

p |0〉

=
∫ d3q

(2π)3

2

∑
s=1

ωqas†
q as

qar†
p |0〉

√
2ωp

=
∫ d3q

(2π)3

2

∑
s=1

ωqas†
q

(
−as

qar†
p + (2π)3δ(3)(p − q)

)
|0〉
√

2ωp

=
∫ d3q

(2π)3

2

∑
s=1

ωqas†
q

−as
q ar†

p |0〉︸ ︷︷ ︸
=0

+(2π)3δrsδ(3)(p − q) |0〉

√2ωp

= ωp

(
ar†

p |0〉
√

2ωp

)
= ωp |p, r〉 .

The Hamiltonian has the expected energy operator characteristics. This is also clearly the case for our b
operators too.
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1.3 Spacetime translation symmetries.

For the scalar field, using Noether’s theorem, we identified the conserved charge of a spatial translation
as the momentum operator

(1.10)
Pi =

∫
d3xT0i

= −
∫

d3xπ(x)∇φ(x),

and if we plugged in the creation and annihilation operator representation of π, φ, out comes

(1.11)P =
1
2

∫ d3q
(2π)3 p

(
a†

pap + apa†
p

)
,

(plus e±2iωpt terms that we can argue away.)
For the Dirac field, this works the same way if we systematically apply Noether’s theorem. In partic-

ular, for a spacetime translation
(1.12)xµ → xµ + aµ,

we find
(1.13)δΨ = −aµ∂µΨ,

so for the Dirac Lagrangian, we have

(1.14)

δL = δ
(
Ψ
(
iγµ∂µ − m

)
Ψ
)

= (δΨ)
(
iγµ∂µ − m

)
Ψ + Ψ

(
iγµ∂µ − m

)
δΨ

= (−aσ∂σΨ)
(
iγµ∂µ − m

)
Ψ + Ψ

(
iγµ∂µ − m

)
(−aσ∂σΨ)

= −aσ∂σL
= ∂σ(−aσL),

i.e. Jµ = −aµL. To plugging this into the Noether current calculating machine, we have

(1.15)
∂L

∂(∂µΨ)
=

∂

∂(∂µΨ)
(
Ψiγσ∂σΨ − mΨΨ

)
= Ψiγµ,

and
(1.16)

∂L
∂(∂µΨ)

= 0,

so

(1.17)

jµ = (δΨ)
∂L

∂(∂µΨ)
+

∂L
∂(∂µΨ)

(δΨ)− aµL

= Ψiγµ(−aσ∂σΨ)− aσδµ
σL

= −aσ
(
Ψiγµ∂σΨ + δµ

σL
)

= −aν

(
Ψiγµ∂νΨ + gµνL

)
.
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We can now define an energy-momentum tensor

(1.18)Tµν = Ψiγµ∂νΨ + gµνL.

A couple things are of notable in this tensor. One is that it is not symmetric, and there’s doesn’t appear
to be any hope of making it so. For example, the space+time components are way different

(1.19)
T0k = Ψiγ0∂kΨ

Tk0 = Ψiγk∂0Ψ,

so if we want a momentum like creature, we have to use T0k, not Tk0. The charge associated with that
current is

(1.20)
Qk =

∫
d3xΨiγ0∂kΨ

=
∫

d3xΨ†(−i∂k)Ψ,

or translating from component to vector form

(1.21)P =
∫

d3xΨ†(−i∇)Ψ,

which is the how the momentum operator is first stated in [3]. Here the vector notation doesn’t have any
specific representation, but it is interesting to observe how this is directly related to the massless Dirac
Lagrangian

(1.22)

L(m = 0) = Ψiγµ∂µΨ

= Ψ†iγµ∂µΨ

= Ψ†i(∂0 + γ0γk∂k)Ψ
= Ψ†i(∂0 − γ0γk∂k)Ψ,

but since γ0γk is a 4× 4 representation of the Pauli matrix σk
2 Lagrangian itself breaks down into

(1.23)L(m = 0) = Ψ†i∂0Ψ + σ ·
(

Ψ†(−i∇)Ψ
)

,

components, and lo and behold, out pops the momentum operator density! Some part of this should
be expected this since the Dirac equation in momentum space is just (/p − m)e−ip·x = 0, so there is an
intimate connection with the operator portion and momentum.

2There is ambiguity as to what order of products γ0γk, or γkγ0 to pick to represent the Pauli basis ([1] uses γkγ0), but we also
have sign ambiguity in assembling a Noether charge from the conserved current, so I don’t think that matters.
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Theorem 1.1: Creation and annihilation form of the momentum operator.

The momentum operator can be written as

P =
2

∑
s=1

∫ d3q
(2π)3 p

(
as†

p as
p + bs†

p bs
p

)
.

To derive this, we have to assign meaning to P =
∫

Ψ†(−∇)Ψ. There is an implied basis for these
vectors that presumably commutes with Ψ, Ψ†. Let’s suppose that we have a standard orthonormal
basis for R3 {e1, e2, e3}, so that our two vectors can be written.

(1.24)

P =
3

∑
k=1

ekPk

∇ =
3

∑
k=1

ek∂k = −
3

∑
k=1

ek∂k.

Now we can express the momentum operator in coordinate form (sums implied), as

(1.25)ekPk =
∫

d3xΨ†(iek∂k)Ψ,

so if we can commute these assumed basis elements ek with Ψ† we have

(1.26)Pk = i
∫

d3xΨ†∂kΨ.

Note that this disagrees with [2], but I believe it is correct (and it works).
Inserting the field representations ([3] eq. 3.99, 3.100)

(1.27)

Ψ(x) =
∫ d3 p

(2π)3
√

2ωp

2

∑
s=1

(
as

pus(p)e−ip·x + bs†
p vs(p)eip·x

)
Ψ(x) =

∫ d3q
(2π)3

√
2ωq

2

∑
r=1

(
br

qvr(q)e−iq·x + ar†
q ur(q)eiq·x

)
,
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we can now compute

Pk = i
∫

Ψ†∂kΨ

= i
∫ d3xd3 pd3q

(2π)6
√

2ωp2ωq

2

∑
r,s=1

(
br

qvr(q)e−iq·x + ar†
q ur(q)eiq·x

)
γ0(ipk)

(
−as

pus(p)e−ip·x + bs†
p vs(p)eip·x

)
=
∫ d3 p

(2π)32ωp
pk

2

∑
r,s=1

(
+br
−qas

pvr(−p)γ0us(p)e−2iωpt − ar†
−qbs†

p ur(−p)γ0vs(p)e2iωpt

− br
pbs†

p vr(p)γ0vs(p) + ar†
p as

pur(p)γ0us(p)
)

.

(1.28)

Using

(1.29)
vr†(−p)us(p) = ur†(p)vs(−p) = 0

ur†(p)us(p) = vr†(p)vs(p) = 2ωpδsr,

the frequency dependent cross terms are killed3, and the rest simplify to give

(1.30)Pk =
∫ d3 p

(2π)3 pk
2

∑
r=1

((
+br†

p br
p + (2π)3δ(3)(0)

)
+ ar†

p ar
p

)
.

This has a vacuum term that can be ignored, so a final multiplication with and sum over the basis vectors
ek, completes the proof.

Theorem 1.2: Momentum operator eigenvalues.

The eigenvalues of the momentum operator with respect to single particle momentum states are
just those momenta

Pas†
q |0〉 = q(as†

q |0〉).

Here’s a partial proof, introducing a state associated with a Fermion creation operator

(1.31)|q, r〉 =
√

2ωqar†
q |0〉 .

3For the KG field we had to work much harder to argue those cross terms away in the momentum operator.
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The action of the momentum operator on such as state is

(1.32)

P |q, r〉 =
2

∑
r=1

∫ d3 p
(2π)3 p

(
br†

p �
�br
p + ar†

p ar
p

)√
2ωqar†

q |0〉

=
2

∑
r=1

∫ d3 p
(2π)3 par†

p

(
−ar†

q ar
p + δrs(2π)3δ(3)(q − p)

)√
2ωq |0〉

= qar†
q

√
2ωq |0〉

= q |q, r〉 .

Clearly the same argument holds for antifermion states.

1.4 Rotation symmetries: angular momentum operator.

Under Lorentz transformation, including rotations:

(1.33)

Ψ(x)→ Ψ′(x′) = Λ1/2Ψ(x)

δΨ(x) = Ψ′(x)− Ψ(x)

Λ1/2 = e−
i
2 ωµνSµν ≈ 1−

iωµν

2
Sµν

Ψ′(x) = Λ1/2Ψ(Λ−1x).

For a rotation around ẑ only ω12 is non-zero. We also have S12 = S21 and

(1.34)

S12 =
i
4

[
γ1, γ2

]
=

i
2

γ1γ2

=
i
2

[
0 σ1

−σ1 0

] [
0 σ2

−σ2 0

]
=

i
2

[
−σ1σ2 0

0 −σ1σ2

]
=

i
2

[
−iσ3 0

0 −iσ3

]
=

1
2

[
σ3 0
0 σ3

]
so

− i
2

ωµνSµν = −iω12S12 = − i
2

ω12

[
σ3 0
0 σ3

]
. (1.35)
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If we let ω12 = α, we have

(1.36)Λ1/2 = 1− iα
2

[
σ3 0
0 σ3

]
.

To compute the in the field we also need

(1.37)

Ψ(Λ−1x) = Ψ(xµ − ωµ
νxν)

= Ψ(x)− aσ∂σΨ(x)|aσ=ωσ
νxν

= Ψ(x)− ωσ
νxν∂σΨ(x)

= Ψ(x)− ωσνxν∂σΨ(x)
= Ψ(x)− ωσνxν∂σΨ(x)
= Ψ(x)− ∑

σ<ν

ωσν (xν∂σΨ(x)− xσ∂νΨ(x))

= Ψ(x)− α (x2∂1Ψ(x)− x1∂2Ψ(x))

= Ψ(x)− α
(

x1∂2Ψ(x)− x2∂1Ψ(x)
)

= Ψ(x)− α(x ×∇)zΨ(x).

We can now compute the variation of the field

(1.38)

δΨ = Λ1/2Ψ(Λ−1x)− Ψ(x)

=
(

1− iα
2

[
σ3 0
0 σ3

])
(Ψ(x)− α(x ×∇)zΨ(x))− Ψ(x)

= − iα
2

[
σ3 0
0 σ3

]
Ψ − α(x ×∇)zΨ(x) + O(α2).

Because the Dirac Lagrangian is Lorentz invariant, the Noether current has no Jµ term, and is

(1.39)
jµ
α =

∂L
∂(∂µΨ)

δΨ

=
(
Ψiγµ

) (
− iα

2

[
σ3 0
0 σ3

]
− α(x ×∇)z

)
Ψ.

In particular, the conserved charge (setting α = 1) is

(1.40)J0 =
∫

d3x
(

Ψ†
)(1

2

[
σ3 0
0 σ3

]
− i(x ×∇)z

)
Ψ.

Generalizing to arbitrary rotation orientation, this can be written out as

(1.41)J =
∫

d3xΨ†(x)

 x × (−i∇)︸ ︷︷ ︸
orbital angular momentum

+
1
2

1 ⊗ σ︸ ︷︷ ︸
spin angular momentum

Ψ,
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where
(1.42)1 ⊗ σ =

[
σ 0
0 σ

]
,

and where the orbital and spin angular momenta have been called out.
For the rest frame of a particle (zero momentum), [3] makes an argument that

(1.43)
J3as†

p |0〉 = ±1
2

as†
p |0〉

∣∣∣
p=0

J3bs†
p |0〉 = ∓1

2
bs†

p |0〉
∣∣∣
p=0

.

where the + is for s = 1 and the − is for s = 2. The eigenvectors of the angular momentum operator
are the single particle states, with eigenvalues ±1/2, where the sign of the eigenvalues toggles for anti-
Fermions.

1.5 U(1)V symmetry: charge!

We also have a U(1) global symmetry which implies charge. If we let

(1.44)
Ψ→ eiαΨ

Ψ→ e−iαΨ,

then

(1.45)

jµ =
∂L

∂(∂µΨ)
δΨ

=
∂L

∂(∂µΨ)
iαΨ

= ΨiγµiαΨ
= −ΨγµαΨ
≡ −αJµ,

that is
(1.46)Jµ = ΨγµΨ
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Define the charge as

(1.47)

Q =
∫

d3xJ0

=
∫

d3xΨγ0Ψ

=
∫

d3xΨ†Ψ

=
∫ d3 p

(2π)32ωp

2

∑
r,s=1

(
+br
−qas

pvr(−p)γ0us(p)e−2iωpt + ar†
−qbs†

p ur(−p)γ0vs(p)e2iωpt

+ br
pbs†

p vr(p)γ0vs(p) + ar†
p as

pur(p)γ0us(p)
)

=
∫ d3q

(2π)3

2

∑
s=1

(
as†

p as
p − bs†

p bs
p

)
,

where the expansion of Ψ†Ψ was lifted from eq. (1.28) (removing the pk’s and flipping all signs positive),
and where any charge associated with the Dirac sea has been dropped.

This charge operator characterizes the a, b operators. a particles have charge +1, and b particles have
charge −1, or vice-versa depending on convention.

• a : call it an electron.

• b : call it an positron.

Each come with spin up and down variations.

1.6 U(1)A symmetry: what was the charge for this one called?

There are two sets of U(1) symmetries, the first called a vector symmetry (above)

U(1)V : Ψ→ eiαΨ, (1.48)

where α is scalar valued. The other U(1) symmetry is called an axial symmetry4

U(1)A : Ψ→ eiαγ5 Ψ, (1.49)

where

γ5 = iγ0γ1γ2γ3 =
[
−1 0
0 1

]
. (1.50)

FIXME: link to uvspinor.nb

4It was apparently pointed out in class that we should recall that for m = 0 electrons and positrons separate, obeying separate
equations. I’m not sure how that is connected to this symmetry, nor what that really means.

11



Observe that γ†
5 = γ5

(1.51)

γ†
5 = −iγ†

3γ†
2γ†

1γ0

= −iγ0γ3γ0γ0γ2γ0γ0γ1γ0γ0

= −iγ0γ3γ2γ1

= γ5.

It can also be shown that
(1.52){γ5, γµ} = 0.

FIXME: link to uvspinor.nb
Under this transformation

(1.53)

Ψiγµ∂µΨ→
(

Ψ†e−iαγ5 γ0
)

iγµ∂µ

(
eiαγ5 Ψ

)
=
(

Ψ†γ0eiαγ5
)

ie−iαγ5 γµ∂µΨ

= Ψ†γ0iγµ∂µΨ,

since the anticommutator property eq. (1.52) implies eiαγ5 γµ = γµe−iαγ5 .
Also

(1.54)mΨΨ→ m
(

Ψ†e−iαγ5
)

γ0
(

eiαγ5 Ψ
)

= mΨe2iαγ5 Ψ,

We see that for m 6= 0 the axial U(1) transformation is only a symmetry when α = π. This is called the Z2
subgroup.

1.7 CPT symmetries

Left to us to study up on the interesting stories of

• time reversal

• parity

• charge conjugation

Each of these can be studied as separate symmetries. References include [3], [4], and [2].
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