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PHY2403H Quantum Field Theory. Lecture 23: QED and QCD interaction
Lagrangian, Feynman propagator and rules for Fermions, hadron pair
production, scattering cross section, quark pair production. Taught by Prof.
Erich Poppitz

DISCLAIMER: Notes from class, with auxillary details. These are notes for the UofT course PHY2403H,
Quantum Field Theory, taught by Prof. Erich Poppitz, fall 2018.

These notes cover the final lecture of the course, which followed ch. 1 [1] §5.1 fairly closely (filling in
some details, leaving out some others.)

1.1 Review.

Our Lagrangian is
(1.1)LDirac = Ψ

(
iγµ∂µ − m

)
Ψ,

which can be consider solved by fields Ψ(x), Ψ(x) = Ψ†(x)γ0

(1.2a)Ψ(x) =
2

∑
s=1

∫ d3 p
(2π)3

√
2ωp

(
e−ip·xus(p)as

p + eip·xvs(p)as†
p

)

(1.2b)Ψ(x) =
2

∑
s=1

∫ d3 p
(2π)3

√
2ωp

(
eip·xus(p)as†

p + e−ip·xvs(p)as
p

)
where the creation and annihilation operators satisfy

(1.3a)
{

as
p, ar†

q

}
= (2π)3δsrδ(3)(p − q),

(1.3b)
{

bs
p, br†

q

}
= (2π)3δsrδ(3)(p − q),

(plus various relations for the u, v’s.)
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1.2 Photon.

Recall that we identified a number of symmetries

• SO(1, 3)

• P, C, T : DIY

• U(1)V : Ψ→ eiαΨ

• U(1)A : If m = 0, then U(1)A : Ψ→ eiαγ5 Ψ. If m 6= 0 only for α = π : Ψ→ −Ψ.

Photon interaction can be introduced by utilizing a U(1) gauge field, demanding invariance under
U(1)V with α = α(x). That is

(1.4)Ψ(x)→ eiα(x)Ψ(x),

which has derivatives
(1.5)∂µΨ(x)→ eiα(x) (∂µΨ(x) + i∂µα(x)Ψ(x)

)
.

Solution. Introduce Aµ(x), such that under U(1)V we have

(1.6)Aµ(x)→ Aµ(x)− 1
e

∂µα(x)

where “e” is a dimensionless coupling constant

(1.7)∂µΨ(x)→
(
∂µ + ieAµ

)
Ψ

→ eiα(x) (∂µΨ +���i∂µαΨ −���i∂µαΨ
)

We’ve now constructed the QED Lagrangian density

(1.8)LQED = Ψ
(
iγµ

(
∂µ + ieAµ

)
− m

)
Ψ − 1

4
FµνFµν.

We may write this as

(1.9)LQED = −1
4

FµνFµν + Ψ
(
iγµ∂µ − m

)
Ψ

Free Lagrangian

− eΨγµΨAµ

interaction Lagrangian

We introduce spinor fields Ψe and muon fields Ψµ, so that the total Lagrangian is now

(1.10)LQED = −1
4

FµνFµν + Ψe
(
iγµ∂µ − m

)
Ψe − eΨeγµΨe Aµ + Ψµ

(
iγµ∂µ − m

)
Ψµ − eΨµγµΨµ Aµ
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• me ∼ 0.5 MeV

• mµ ∼ 105 MeV

There are also quark fields that we can add into the mix

(1.11)Lquarks = ∑
q

Ψq
(
iγµ − mq

)
Ψq + eQqΨqγνΨq Aν

Quark charges are Qq = (2/3,−1/3). It turns out that the only way to produce quarks is through (elec-
tron?) interaction?

Can also introduce a Fermi interaction

(1.12)L4−Fermi =
c

v2 Ψµγν (1− γ5) Ψν,µ − Ψe (1− γ5) ....

We now want to do some calculations with the photon interactions from eq. (1.10). In particular, we
will study the effects of the −eΨeγµΨe Aµ interaction Lagrangian.

1.3 Propagator.

Before we can study the interaction, we need to determine the structure of the propagator. For Grassman
(anti-commuting) operators

(1.13)T(O f (x)O′f (x)) = Θ(x0 − x′0)O f (x)O f (x′) + Θ(x′0 − x0)O f (x′)O f (x)

The propagator can be determined from

(1.14)
〈

T(Ψα(x)Ψβ(x)
〉

0 = DFαβ
(x − y),

where α, β = 1, 2, 3, 4.
Referring back to eq. (1.2a), eq. (1.2b), that propagator is

(1.15)

〈
T(Ψα(x)Ψβ(x)

〉
0 =

∫ d3 p
(2π)3

√
2ωp

∫ d3q
(2π)3

√
2ωq

(
e−ip·xe+iq·yΘ(x0 − y0)us

α(p)ur
β(q)

〈
as

par†
q

〉
+ eip·xe−iq·yΘ(y0 − x0)vs

β(p)vr
β(q)

〈
bs

qar†
p

〉)
=
∫ d3 p

(2π)32ωp

(
e−ip·(x−y)Θ(x0 − y0)us

α(p)ur
β(p)

+ eip·(x−y)Θ(y0 − x0)vs
β(p)vr

β(p)
)

=
∫ d3 p

(2π)32ωp

(
e−ip·xΘ(x0 − y0)

(
γ

µ
αβ pµ + m

)
+ eip·xΘ(y0 − x0)

(
γ

µ
αβ pµ − m

))
=

where γ
µ
αβ are the α, β components of the gamma matrices. Now we can replace the pµ’s with derivatives

acting on the exponentials
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(1.16)

〈
T(Ψα(x)Ψβ(x)

〉
0 = Θ(x0 − y0)

(
iγµ

αβ∂µ + m
) ∫ d3 p

(2π)32ωp
e−ip·(x−y)

− Θ(y0 − x0)
(
−iγµ

αβ∂µ − m
) ∫ d3 p

(2π)32ωp
e−ip·(x−y) = Θ(x0 − y0)

(
iγµ

αβ∂µ + m
)

D(x − y)

− Θ(y0 − x0)
(
−iγµ

αβ∂µ − m
)

D(y − x) =
(

γ
µ
αβ∂(x)

µ + m
) (

Θ(x0 − y0)D(x − y)

+ Θ(y0 − x0)D(y − x)
)
− iγ0δ(x0 − y0)

((((
((((

(((
(D(x − y)− D(y − x)),

where we’ve killed off a factor that is zero (off the light cone?)
We are left with just an action on the Feynman propagator

(1.17)
〈

T(Ψα(x)Ψβ(x)
〉

0 =
(

γ
µ
αβ∂(x)

µ + m
)

DF(x − y) =
∫ d4 p

(2π)4

i(γµ
αβ pµ + m)

p2 − m2 + iε
e−ip·(x−y)

Now that we have a propagator, let’s try

(1.18)Lint =
∫

dtd3x
(
eΨγµΨAµ

)
.

1.4 Feynman rules.

We can consider various scattering processes, such as e+e− → µ+µ− as sketched in fig. 1.1, or e+e− → e+e−

as sketched in fig. 1.2, or Compton scattering e−γ→ e−γ as sketched in fig. 1.3.

Figure 1.1: Electron, positron decay to muon pairs.

To do so we need to determine the Feynman rules for Fermions. For Fermions Ψ and anti-Fermions Ψ
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Figure 1.2: Electron, positron collision.

Figure 1.3: Compton scattering.
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we have

(1.19)

Ψ |p, s〉 = us(p)

Ψ |p, s〉 = vs(p)

〈p, s|Ψ = us(p)

〈p, s|Ψ = vs(p),

where we mean
(1.20)|p, s〉 = as†

p |0〉
√

2ωp,

for Fermions, and
(1.21)|p, s〉 = bs†

p |0〉
√

2ωp,

for anti-Fermions.
The flow of Fermion and anti-Fermion number charge is designated by arrow direction in the diagram,

as in the respective diagrams of fig. 1.4.

Figure 1.4: Flow of # charge.

The Feynman propagator for Fermions is

(1.22)
i
(
/p + m

)
p2 − m2 + iε

,

whereas the photon propagator is
(1.23)

〈
Aµ Aν

〉
= −i

gµν

q2 + iε
.
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1.5 Example: e−e+ → µ−µ+.

As an example, consider the process sketched in fig. 1.5. Such a process is “ultra-relativistic”, in that the

Figure 1.5: e−e+ → µ−µ+ process.

electron and positron pair must be moving very fast to create muons.
The matrix element is

(1.24)〈µ+µ−|ΨγσΨAσ AρΨγρΨ|e+e−〉 = vs′(p′)

incoming anti-electron

(−ieγρ) us(p)

incoming electron

(−igρσ

q2

)
ignoring iε.

ur(k)(−ieγσ)vr′(k′)

Question: Why are we writing the factors of the matrix element from left to right, corresponding to the
right to left reading of the matrix element?

Equation (1.24) reduces to

(1.25)iM = i
e2

q2 vs′(p′)γρus(p)ur(k)γρvr′(k′),

where the (2π)4δ(4)(...) term hasn’t been made explicit.
We’d like to compute the absolute square of eq. (1.25), and use the following lemma to do so.

Lemma 1.1: Some conjugates.
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(vγµu)† = uγµv

(uγµv)† = vγµu.

The proof is left to exercise 1.1. Employing this, we have

(1.26)|M|2 =
e4

q4

(
vr′(k′)γρur(k)us(p)γρvs′(p′)

)
×
(

vs′(p′)γµus(p)ur(k)γµvr′(k′)
)

.

The problem can be simplified by computing the cross section that sums over all spins, assuming that
the states are not polarized (i.e. average over all the up, down states).

Such an average is related to the density matrix

(1.27)ρin = ∑
ss′

∣∣ss′
〉 1

4
〈
ss′
∣∣ .

(1.28)tr
(

eiHtρineiHtρf
∣∣rr′
〉 〈

rr′
∣∣)

Digression

That is, We want to sum over all the initial and final state polarizations 1
4 ∑ss′ ∑rr′ |M|

2

(1.29)

1
4 ∑

ss′ ,rr′
|M|2 = ∑

ss′rr′

e4

4q4 vr′(k′)γρur(k)ur(k)γµvr′(k′)us(p)γρvs′(p′)vs′(p′)γµus(p)

=
e4

4q4 ∑
r′

vr′(k′)γρ

(
/k + mµ

)
γµvr′(k′)×∑

s
us(p)γρ

(
/p′ − me

)
γµus(p),

where we first used the freedom to move the uγv, vγu terms, which are scalars, and then used ?? to
eliminate the sum over s′, r indexes.

Temporarily expressing the remaining factors in coordinates exposes a trace structure. For example

(1.30)

∑
r′

vr′(k′)γρ

(
/k + mµ

)
γµvr′(k′) = ∑

r′
(vr′(k′))a(γρ)ab

(
/k + mµ

)
bc (γµ)cd(vr′(k′))d

= ∑
r′

(vr′(k′))d(vr′(k′))a(γρ)ab
(
/k + mµ

)
bc (γµ)cd

=
(
/k′ − mµ

)
da

(γρ)ab
(
/k + mµ

)
bc (γµ)cd

= tr
((

/k′ − mµ

)
γρ

(
/k + mµ

)
γµ

)
,
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since the cyclic sum of matrix coordinates can be expressed as a trace, namely tr ABC = AabBbcCca. We
are left with

(1.31)
1
4 ∑

ss′ ,rr′
|M|2 =

e4

4q4 tr
((

/k′ − mµ

)
γν

(
/k + mµ

)
γµ

)
× tr

((
/p + me

)
γν
(
/p′ − me

)
γµ
)

.

Each trace is now a product of two, three, or four gamma matrices, which can be reduced using the
identities:

Lemma 1.2: Dirac matrix product traces.

tr
(
γµγν

)
= 4gµν

tr
(
γµγνγα

)
= 0

tr
(
γµγνγαγβ

)
= 4
(

gµνgαβ − gµαgνβ + gµβgαν

)
The proof is left to exercise 1.2.

Utilizing the above, and setting me = 0 (compared to mµ) the p, p′ dependent trace reduces to

(1.32)

tr
(

(/p + me)γν( /p′ − me)γµ
)

= tr
(
/pγν /p′γµ

)
= pα p′β tr

(
γαγνγβγµ

)
= 4pα p′β

(
gανgβµ − gαβgνµ + gαµgνβ

)
= 4
(
−p · p′gνµ + pν p′µ + pµ p′ν

)
,

and the k, k′ dependent trace reduces to

(1.33)

tr
((

/k′ − mµ

)
γν

(
/k + mµ

)
γµ

)
= tr

(
/k′γν/kγµ

)
− m2

µ tr
(
γνγµ

)
+ mµ��

���
�

tr
(
/k′γνγµ

)
− mµ���

���tr
(
γν/kγµ

)
= 4
(

k′αkβ

(
gανgβµ − gαβgνµ + gαµgνβ

)
− m2

µgνµ

)
= 4
(

k′νkµ + k′µkν −
(

k · k′ + m2
µ

)
gνµ

)
.

We can now multiply out the traces and simplify (exercise 1.3) to get

(1.34)
1
4 ∑

spins
|M|2 =

8e4

q4

(
p · k′p′ · k + p · kp′ · k′ + p · p′m2

µ

)
.

The next task is to consider these four vector dot products from the center of mass frame for the electrons,
as sketched in fig. 1.6. Let q represent the total rest frame four momentum
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Figure 1.6: Electron center of mass frame.

(1.35)q = p + p′

= (2E, 0),

where q2 = 4E2. We also have

(1.36a)
p · p′ = (E, Eẑ) · (E,−Eẑ)

= E2 − E2(ẑ · (−ẑ))
= 2E2.

(1.36b)p · k = (E, Eẑ) · (E, k)
= E2 − E ‖k‖ cos θ,

(1.36c)
p · k′ = (E, Eẑ) · (E,−k)

= E2 − (Eẑ) · (−k)
= E2 + E ‖k‖ cos θ

(1.36d)
p′ · k′ = (E,−Eẑ) · (E,−k)

= E2 − (−Eẑ) · (−k)
= E2 − E ‖k‖ cos θ

(1.36e)
p′ · k = (E,−Eẑ) · (E, k)

= E2 − (−Eẑ) · k
= E2 + E ‖k‖ cos θ,
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but
(1.37)k2 = E2 − m2

µ,

or

(1.38)‖k‖ = E

√
1−

m2
µ

E2 .

We can now put the pieces back together and almost have the non-polarized cross section

(1.39)

1
4 ∑

spins
|M|2 =

8e4

(4E2)2

((
E2 + E ‖k‖ cos θ

)2
+
(
E2 − E ‖k‖ cos θ

)2
+ m2

µ2E2
)

=
e4

2


1 +

√
1−

m2
µ

E2 cos θ

2

+

1−

√
1−

m2
µ

E2 cos θ

2

+ 2
m2

µ

E2


=

e4

2

(
2 + 2

(
1−

m2
µ

E2

)
cos2 θ + 2

m2
µ

E2

)
,

or
1
4 ∑

spins
|M|2 = e4

(
1 +

m2
µ

E2 +

(
1−

m2
µ

E2

)
cos2 θ

)
. (1.40)

The total (average polarization) differential cross section ([1] eq. 4.84), is

(1.41)
dσ

dΩ CM
=

1
2EA2EB|vA − vB|

|k|
(2π)24ECM

1
4 ∑

spins
|M|2.

Plug in EA = EB = 2ECM, vA − vB ∼ 2c = 2, e2 = 4πα, and eq. (1.40) for

(1.42)

dσ

dΩ CM
=

1
E2

CM(2)
1

(4π)2ECM

ECM

2

√
1−

m2
µ

E2 (4πα)2

(
1 +

m2
µ

E2 +

(
1−

m2
µ

E2

)
cos2 θ

)

=
α2

4E2
CM

√
1−

m2
µ

E2

(
1 +

m2
µ

E2 +

(
1−

m2
µ

E2

)
cos2 θ

)
.
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Integrating to find the total cross section we have

(1.43)

σtotal =
∫

dΩ
dσ

dΩ

= 2π
∫ 1

−1
d cos θ

α2

4E2
CM

√
1−

m2
µ

E2

(
1 +

m2
µ

E2 +

(
1−

m2
µ

E2

)
cos2 θ

)

=
2πα2

4E2
CM

√
1−

m2
µ

E2

(
2

(
1 +

m2
µ

E2

)
+

(
1−

m2
µ

E2

) ∫ 1

−1
u2du

)

=
4πα2

4E2
CM

√
1−

m2
µ

E2

(
1 +

m2
µ

E2 +
1
3

(
1−

m2
µ

E2

))
,

or

σtotal =
4πα2

3E2
CM

√
1−

m2
µ

E2

(
1 +

1
2

m2
µ

E2

)
, (1.44)

where ECM = 2E.
At the start of the year dimensional analysis was used to state the total cross section, which was

determined to have the form

(1.45)σtotal ∼
α2

s
,

whereas for E� mµ we’ve now found

(1.46)σtotal =
4πα2

3E2
CM

.

Three months of work has gained us an additional factor of 4/3!

1.6 Measurement of intermediate quark scattering processes.

In the diagram that we are working from for the e−e+ → µ−µ+ process, we can replace the muon half
of the interaction (fig. 1.7) with anything else that is charged, as sketched in fig. 1.8. In particular, quark
pairs from QCD are possible at high energies (mµ ∼ 105 MeV) and such products can be measured indi-
rectly. Quarks were the theorized to be strong force carriers, an intermediate stage similar to the photon
propagators of QED, connecting two branches of a diagram, as sketched in fig. 1.9. If one hypothesizes
a proportionality relationship between the hadron (i.e. muon) and quark scattering cross sections

σtotal(e−e+ → hadrons) ∝ σtotal(e−e+ → quarks), (1.47)
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Figure 1.7: Electron and muon halves of the diagram

Figure 1.8: Alternate charged pair production.
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Figure 1.9: Quark pair production.

the ratio between the two

(1.48)
R =

σtotal(e−e+ → quarks)
σtotal(e−e+ → hadrons)

= 3 ∑
q

(Qq)4,

can be measured, and such measurement was deemed to be one of the validations of the QCD theory.
The 3 ∑q(Qq)4 expression includes a 3 that is related to quark “color”, and a sum over only the quark
charges q that are light enough to be produced. [1] fig. 5.3 includes an experimental depiction of such a
measurement, which has a step function form roughly like fig. 1.10, where the steps occur at the energy
levels that are sufficient to produce new quarks.

1.7 Problems.

Exercise 1.1 Prove lemma 1.1

Answer for Exercise 1.1
We will prove only the first, which is representative

(1.49)
(vγµu)† = u†(γµ)†(v†γ0)†

= u†γ0γµγ0γ0v
= uγµv.

Exercise 1.2 Prove lemma 1.2
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Figure 1.10: R quark step function.

Answer for Exercise 1.2
For the two matrix trace, consider

(1.50)tr
(
γµγν + γνγµ

)
= 2gµν tr (1)
= 8gµν,

but

(1.51)tr
(
γµγν + γνγµ

)
= tr

(
γµγν

)
+ tr

(
γνγµ

)
= 2 tr

(
γµγν

)
,

so tr
(
γµγν

)
= 4gµν as claimed. For the traces of the three matrix products, there are three possible

products of interest (for r 6= s)

(1.52)γ0γrγs = −iεrst
[

0 σt

σt 0

]
,

which is traceless. We also have (for distinct r, s, t)

(1.53)γrγsγt = −
[

0 σrσsσt

σrσsσt 0

]
,

which is also traceless. All other three matrix products (except permutations of the two above) are pro-
portional to a single γµ, which is traceless. A lazier, brute force proof by Mathematica (tracesOfDirac-
MatrixProducts.nb) is also possible. For the four matrix traces, the trace will be zero unless we have
two matching pairs of gamma matrices (since γ0γ1γ2γ3 or its permutations is traceless.) Assuming such
matched pairs, we can reduce the product like so

• µ = ν =⇒ tr (γµγνγαγβ) = 4gαβ
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• µ = α, ν 6= α =⇒ tr (γµγνγαγβ) = −4gνβ

• µ = β(µ 6= ν, µ 6= α) =⇒ tr (γµγνγαγβ) = 4gνα

It’s clear that we can summarize these possibilities as stated in lemma 1.2.

Exercise 1.3

Show that(
pβ p′α + pα p′β − p · p′gαβ

)
×
(

k′βkα + k′αkβ −
(

k · k′ + m2
µ

)
gαβ

)
= 2
(

p · kp′ · k′ + p · k′p′ · k + m2
µ p · p′

)
Answer for Exercise 1.3

Proceeding mechanically, but carefully, we have

(1.54)

pβ p′αk′βkα + pβ p′αk′αkβ − pβ p′α
(

k · k′ + m2
µ

)
gαβ

+ pα p′βk′βkα + pα p′βk′αkβ − pα p′β
(

k · k′ + m2
µ

)
gαβ

− p · p′gαβk′βkα − p · p′gαβk′αkβ + p · p′gαβ
(

k · k′ + m2
µ

)
gαβ

= p · k′p′ · k + p · kp′ · k′ − p · p′
(

k · k′ + m2
µ

)
+ p · kp′ · k′ + p · k′p′ · k − p · p′

(
k · k′ + m2

µ

)
− p · p′k · k′ − p · p′k · k′ + 4p · p′

(
k · k′ + m2

µ

)
= 2p · k′p′ · k + 2p · kp′ · k′ − 2p · p′k · k′ + 2p · p′

(
k · k′ + m2

µ

)
= 2p · k′p′ · k + 2p · kp′ · k′ + 2p · p′m2

µ

= 2
(

p · k′p′ · k + p · kp′ · k′ + p · p′m2
µ

)
.
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