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PHY2403H Quantum Field Theory. Lecture 23: QED and QCD interaction
Lagrangian, Feynman propagator and rules for Fermions, hadron pair
production, scattering cross section, quark pair production. Taught by Prof.
Erich Poppitz

DISCLAIMER: Notes from class, with auxillary details. ~ These are notes for the UofT course PHY2403H,
Quantum Field Theory, taught by Prof. Erich Poppitz, fall 2018.

These notes cover the final lecture of the course, which followed ch.1 [1] §5.1 fairly closely (filling in
some details, leaving out some others.)

1.1 Review.

Our Lagrangian is B
Lpirac =Y (i'YVa;x, - m) ¥, (1.1)

which can be consider solved by fields ¥(x), ¥(x) = ¥t (x)y0

2 dsp —ip-x,,s s ip-x,.s st
Y(x) = ;/ m (e PYut(p)ag +e'P o (p)ap) (1.2a)
% 2 d3p ip-X s st —ip-x=s s
Y(x) = ;/ m (e Prut(p)ay, +e 7o (p)up) (1.2b)
where the creation and annihilation operators satisfy
{a;,ag} = 2n)5" 58 (p — q), (1.3a)
{5,057} = @nys"s9(p — ), (1.3b)

(plus various relations for the u,v’s.)



1.2 Photon.

Recall that we identified a number of symmetries
e 50(1,3)
e PC,T:DIY
e UMy : ¥ — Y
e Ul)g:Ifm=0,then U(1)4: ¥ — Y. If m #0only fora =m: ¥ — —V¥.

Photon interaction can be introduced by utilizing a U(1) gauge field, demanding invariance under
U(1)y with « = a(x). That is '
Y(x) — O (y), (1.4)

which has derivatives ‘
9, F(x) — €™ (9, ¥(x) + idua(x)¥F(x)) . (1.5)

Solution. Introduce A;(x), such that under U(1)y we have
1
Au(x) = Au(x) — EGVa(x) (1.6)

where “e” is a dimensionless coupling constant

0, ¥(x) — (9, +ieA,) ¥

. (1.7)
— €™ (9, ¥ + id @Y — idg¥)
We’ve now constructed the QED Lagrangian density
T (i (9. +i 1 ”
Loep =¥ (iv" (04 +ieA,) —m) ¥ — ZLFF“’F ) (1.8)

We may write this as

Free Lagrangian

1 & /- T
LqEp = —ZLPWF’“’ +¥ (z'y"ay — m) Y| —|e¥y, YA (1.9)

interaction Lagrangian

We introduce spinor fields ¥, and muon fields ¥, so that the total Lagrangian is now

1 _ - = -
Lagep = —ZLFWFVV + ¥, (i7"9, — m) Yo — ¥y Y AY + ¥, (iv"0, — m) ¥, — ¥y, ¥ AY  (1.10)



o m, ~ 0.5MeV
o my ~ 105MeV

There are also quark fields that we can add into the mix

Lauarks = Y ¥ (in" — my) ¥y +eQ, ¥ 71" ¥, A, (1.11)
q

Quark charges are Q; = (2/3, —1/3). It turns out that the only way to produce quarks is through (elec-
tron?) interaction?
Can also introduce a Fermi interaction

C — —
£47Fermi = ?Ty')’v (1 - ')’5) Tv,y - Y. (1 - 75) (1~12)

We now want to do some calculations with the photon interactions from eq. (1.10). In particular, we
will study the effects of the —e'¥.7, Y. A" interaction Lagrangian.

1.3 Propagator.

Before we can study the interaction, we need to determine the structure of the propagator. For Grassman
(anti-commuting) operators

T(Of(x)0%(x)) = ©(x9 — x0)Of(x)O(x) + O(xy — x0)O(x")O(x) (1.13)
The propagator can be determined from
(T(¥u(x)¥p(x)), = Dr,(x — y), (1.14)

wherew,=1,2,3,4.
Referring back to eq. (1.2a), eq. (1.2b), that propagator is

a3 a3 . ‘
(TCHa () ¥p(0) = | (ij / (ij (e e rv@(xo — yoyus(piiy(a) (apay )

ip-x ,—iq- =S r s & —ip-(x— s =t
+ e 10y — 2033 (p)op@) (Vyay ) ) = [ ﬁ (700 — yo)us () (p)
P

(1.15)
e s r d3 —ip-x
+ POy — xO)U'B(p)Uﬁ(p)> = / ﬁ <e PrO(xo — o) ('riﬁpy + m)
P
+e'P*@(yo — xo) (’)/zﬁpﬂ - m)) =

where 7/ g are the «, B components of the gamma matrices. Now we can replace the p,’s with derivatives
acting on the exponentials



. Py
(T(Fo (¥ (1)) = O — o) (i + m) / ngwpe p—y)

as ;
_ _ it _ TP -ipay = _ i _
O(yo xo)( WMBV m) / (27T)32wpe POTY) = O(x0 — yo) (mﬁay +m) D(x —y) (1.16)

— O(yo — x0) (—i’ygﬁay — m) D@y — x) = (75/58;,’“) + m) (O(x0 — yo)D(x — )

+O(yo — x0)D(y — x)) — i7%(x* — y°)(D(x = v — X)),

where we've killed off a factor that is zero (off the light cone?)
We are left with just an action on the Feynman propagator

d*p i(’ri’,gpy + m)e

_ (~AH 3 ) = —ip-(x—y)
(T(EL()¥5(2)), (Ma;, + m) D=9 = | i e (1.17)
Now that we have a propagator, let’s try
Lint = /dtd3x (e¥y, YA"). (1.18)

1.4 Feynman rules.

We can consider various scattering processes, such ase*e™ — p*p~ assketched in fig. 1.1, ore*e™ — e*e™
as sketched in fig. 1.2, or Compton scattering e~y — e~y as sketched in fig. 1.3.
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Figure 1.1: Electron, positron decay to muon pairs.

To do so we need to determine the Feynman rules for Fermions. For Fermions ¥ and anti-Fermions ¥
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Figure 1.2: Electron, positron collision.

Figure 1.3: Compton scattering.



we hav
€ € I

Yp,s) =u’(p)
iy
Yp,s) =0°(p) (1.19)

(p,s|¥ = #(p)
(p,s|¥ = o°(p),

p,s) = a3 |0) /2wy, (1.20)

[p,s) = by 0) /2wy, (1.21)
for anti-Fermions.

The flow of Fermion and anti-Fermion number charge is designated by arrow direction in the diagram,
as in the respective diagrams of fig. 1.4.

where we mean

for Fermions, and

Figure 1.4: Flow of # charge.

The Feynman propagator for Fermions is

M (1.22)

p* — m? +ie’

whereas the photon propagator is

_ . 8w
<AyAv> = lq2 e (1.23)



1.5 Example: e"e* — ppu*.

As an example, consider the process sketched in fig. 1.5. Such a process is “ultra-relativistic”, in that the

Figure 1.5: e~ e¢™ — u~ p* process.

electron and positron pair must be moving very fast to create muons.
The matrix element is

ignoring ie.
incoming anti-electron

+— P AT T NPT AP0 e W - N R N
(' Yy 7Y ATARY et >—( ier”) u(p))

incoming electron

i (k) (—iey?)o" (k) (1.24)

Question: ~ Why are we writing the factors of the matrix element from left to right, corresponding to the
right to left reading of the matrix element?

Equation (1.24) reduces to
2

; €7 S(\ii" vt
iM = 559" () () (R’ ), (1.25)

where the (271)*6™(...) term hasn’t been made explicit.
We’d like to compute the absolute square of eq. (1.25), and use the following lemma to do so.

|* Lemma 1.1: Some conjugates.



@y"w)" = ayto
(o)t = oyt u.

The proof is left to exercise 1.1. Employing this, we have
2 et =1 1/ T (1\735 st =8 (1 S(\i7" 't
M= (3" )0 R (P10 (p)) x (37 ()" (T (R)7,0” (K)) (1.26)

The problem can be simplified by computing the cross section that sums over all spins, assuming that
the states are not polarized (i.e. average over all the up, down states).

Digression

Such an average is related to the density matrix

Pin =Y [ss") i (ss'| . (1.27)

ss’
tr (ethpmethpf |rr") <rr’|) (1.28)
That is, We want to sum over all the initial and final state polarizations % Yoo L |[M |2

1 €4 o _ / _ / o
7 L IMP =Y 0 Kyou 0 (R0 K)a(p)y*o” (05 (p')yu ()
ss’rr’ ss’rr! (1‘29)

4
e _ ! _
4 Y 0 (K)yp (K +my) vuo" (K) x Y@ (p)y® (¢ — me) v"u(p),
r s
where we first used the freedom to move the v, oyu terms, which are scalars, and then used ?? to

eliminate the sum over s’, r indexes.
Temporarily expressing the remaining factors in coordinates exposes a trace structure. For example

Y 0" (k) v (K +my) 70" (k) = Y@ (K aYodaw (K +my) . (v)ea(@” (K))a

) ;(vr/ K@ 6 Narpdas (K +my) . (1)ed (1.30)

- (’{ - mﬂ)du (Yodab (K +my), (Yidea
= tr ((k/’ — my) Yo (K+my) 'yﬂ>,



since the cyclic sum of matrix coordinates can be expressed as a trace, namely tr ABC = A;,Bp.Ceq. We
are left with

- Z/ IM)? = —; ((l/ — my> Yo (K+my) W) X tr ((p + me> v (ff — me) fy”). (1.31)

Each trace is now a product of two, three, or four gamma matrices, which can be reduced using the
identities:

— Lemma 1.2: Dirac matrix product traces.

tr (Vuyv) = 48
tr (Yuvvya) =0
tr (')’}l')’v%x')’ﬁ) =4 (gyvgac/% — Sua8vp +gyﬁgav)

The proof is left to exercise 1.2.
Utilizing the above, and setting m, = 0 (compared to m,) the p, p’ dependent trace reduces to

tr ((p+ mr (@ — mr) = e (pr' )
= Paplﬁ tr (fy"‘ry’/r),ﬁr),ﬂ> (1.32)
= 4pop/y (38 — g + 8P )
=4 (=p-p'g"+pp" "),

and the k, k' dependent trace reduces to

tr ((k// _ m;4) Tv (k + mH) ')/y) =tr (M'}’vk’)’y) - m]21 tr (’)’V’)/H) + m‘u%_ m‘uw
=4 (k/,xkﬁ (gtxvgﬁll — &ap8vp t+ gwgv,g) — migvy> (1.33)
s (et = () 50)
We can now multiply out the traces and simplify (exercise 1.3) to get
- Z ’ 2 ( k/p/ k+P kp k/+P‘P/mi). (1.34)
SPII’IS

The next task is to consider these four vector dot products from the center of mass frame for the electrons,
as sketched in fig. 1.6. Let g represent the total rest frame four momentum



where g% = 4E2. We also have

Figure 1.6: Electron center of mass frame.

g=p+p
= (2E,0),

p-p' =(E E2)-(E, —E2)
=E* -~ EX(2 - (-2))
= 2E?.

p-k=(E Ez)-(E k)
= E? — E||k| cos®,

p-k' =(E E2)-(E,—k)
= E* — (E2) - (—k)
= E?+ E ||k]|| cos 8

p' k' =(E,—E2)- (E,—Kk)
= E* — (—E2)- (-k)
= E?> — E||k|| cos @

p' k= (E,—E2) - (E, k)

=E* - (-E2)-k
= E? + E||k]|| cos ¥,
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(1.35)

(1.36a)

(1.36b)

(1.36¢)

(1.36d)

(1.36€)



but

K* = E* —my,

mZ
Il = By1—

We can now put the pieces back together and almost have the non-polarized cross section

or

4 5 )
3 T M7= G (B E il cose)” + (E° — E [ic] cos)” + mi2E?)

SplnS
2 2
ot m2 m2 m
:E 1+ 1—E—5C059 + 11— 1—E—gcos9 +2E—g
et mz 2 m%t
:E 2+2 1—§ COSs 6+2§ ’
2 2
= Z IM|* = ¢ ( +m+(1—m>c0529>
E2 E2 ’
spms

The total (average polarization) differential cross section ([1] eq. 4.84), is

or

do 1
M
dQCM 2EA2EB‘UA — UB| (27'[ 24ECM4 Z | |

spins

Plugin E4 = Ep = 2Ecm, U4 — VB ~ 2¢ = 2, e = 4ma, and eq. (1.40) for

do 1 1 Ecm my m; m; 2
L J1- =L@ 1+ (18 0
dOcv ~ E2,(Q2) 4n)2Ecy 2 g2 () | 1+ 5 + Ez ) ©°

o2 m% m> m?
iz, 2 tE (1= cos?
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(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)



Integrating to find the total cross section we have
do
Ttotal = / dQE

o2 my (o mg m\
—271/ dCOSG4EéM ~ B2 1+§+ 1—§ cos” 0

270 m2 " mi\ o, (1.43)
4E%M 1—§ 2 1+§ + 1—§ /_1udu
2 2 2
— 47-[7“2 1 — @ 1+ @ + 1 1 — ﬂ
4EZ\, E? E? 3 E ’
or
4702 ms 1 m?
Utotal 3E%M 1 - ? (1 + 2E§> 7 (144)

where Ecy = 2E.
At the start of the year dimensional analysis was used to state the total cross section, which was
determined to have the form

o
Ototal ™~ ?/ (1-45)
whereas for E > m, we’ve now found
4702
Ototal = 3EZ " (1.46)
CM

Three months of work has gained us an additional factor of 4/3!

1.6 Measurement of intermediate quark scattering processes.

In the diagram that we are working from for the e"e* — p~ " process, we can replace the muon half
of the interaction (fig. 1.7) with anything else that is charged, as sketched in fig. 1.8. In particular, quark
pairs from QCD are possible at high energies (1, ~ 105 MeV) and such products can be measured indi-
rectly. Quarks were the theorized to be strong force carriers, an intermediate stage similar to the photon
propagators of QED, connecting two branches of a diagram, as sketched in fig. 1.9. If one hypothesizes
a proportionality relationship between the hadron (i.e. muon) and quark scattering cross sections

Total(e €7 — hadrons) o« oyoa1(e” €™ — quarks), (1.47)
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Figure 1.7: Electron and muon halves of the diagram

© N\

Figure 1.8: Alternate charged pair production.

X
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f 1
Figure 1.9: Quark pair production.

the ratio between the two
R - Ototal(6~€* — quarks)
" Oiotai(e—e™ — hadrons) (1.48)

=3 Z(Qq)4,
q

can be measured, and such measurement was deemed to be one of the validations of the QCD theory.
The 3 Z‘,q(Qq)4 expression includes a 3 that is related to quark “color”, and a sum over only the quark
charges g that are light enough to be produced. [1] fig. 5.3 includes an experimental depiction of such a
measurement, which has a step function form roughly like fig. 1.10, where the steps occur at the energy
levels that are sufficient to produce new quarks.

1.7 Problems.

Exercise 1.1 Prove lemma 1.1

Answer for Exercise 1.1

We will prove only the first, which is representative

@y"u)" = u' (") (@"7°)
N NI N
= uyMo.

(1.49)

Exercise 1.2 Prove lemma 1.2

14
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Figure 1.10: R quark step function.
Answer for Exercise 1.2
For the two matrix trace, consider
tr (')’;t')’v + ')’1/')/]4) = Zg;w tr (1) (1_50)
= 8g uvs
but
tr ('YV'YV + ’Yv’)’y) =tr ('Yy’)’v) +tr ('Yv')’y) (1.51)

= Ztr (7}!')’1/)1

so tr (vuYv) = 48u as claimed. For the traces of the three matrix products, there are three possible
products of interest (for r # s)

t
Wffz—yﬁﬁ %y (1.52)

which is traceless. We also have (for distinct 7, s, t)

(1.53)

0 oSt
oosot 0 ’

,Yr,)/s,yt - _ |:

which is also traceless. All other three matrix products (except permutations of the two above) are pro-
portional to a single 7#, which is traceless. A lazier, brute force proof by Mathematica (tracesOfDirac-
MatrixProducts.nb) is also possible. For the four matrix traces, the trace will be zero unless we have
two matching pairs of gamma matrices (since 7%y!7273 or its permutations is traceless.) Assuming such
matched pairs, we can reduce the product like so

o u=v = tr(yryVy"yP) = 4"

15



o u=a,vFa = tr (,Y]/t,)/v,),tx,)/ﬁ) = _4gvﬁ
e u=puAv,u#a) = tr (fyP‘rery“'yﬁ) = 4gv®
It’s clear that we can summarize these possibilities as stated in lemma 1.2.

Exercise 1.3

Show that

(pﬁp/a+pap/ﬁ_p.p/gaﬁ> % (k//ska+k,akﬁ— (k'k/+m%,> gaﬁ) =2<P'kp/'k/+P'k/p/-k+m;%P'p')

Answer for Exercise 1.3
Proceeding mechanically, but carefully, we have

pﬁp/“k’ﬁka +p5p“"k’“k,g — pﬁp/a (k.k/+mf,) Sap
+p“p’ﬁk’5ka+p“p’ﬁk’ak5 - p”‘p’ﬁ (k-k/+mi) Sup
—p- p’g“ﬂk/ﬁkfx —p- P’g“ﬁk’akﬁ +p- P'g”‘ﬁ (k.k/+mi> Sup

=p-k'p -k+p-kp'- kK —p-p (k-k’+mi)
+p-kp’-k’+p-k'p’-k—p-p’(k-k’+m§> (1.54)
—p-pk-kK—p-pk-K +4p-p' (k-k’+mi)

=2p-k'p k+2p-kp' - K —2p-p'k-K +2p-p <k-k/+m}24>

=2p-Kp' -k+2p-kp' - K +2p - p'm,

=2(p-k’p/-k+p-kp/-k’+p-p/m%,).
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