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PHY2403H Quantum Field Theory. Lecture 6: Canonical quantization,
Simple Harmonic Oscillators, Symmetries. Taught by Prof. Erich Poppitz

DISCLAIMER: Very rough notes from class, with some additional side notes (esp. the QM SHO review).
These are notes for the UofT course PHY2403H, Quantum Field Theory I, taught by Prof. Erich
Poppitz fall 2018.

1.1 Quantization of Field Theory

We are engaging in the “canonical” or Hamiltonian method of quantization. It is also possible to
quantize using path integrals, but it is hard to prove that operators are unitary doing so. In fact,
the mechanism used to show unitarity from path integrals is often to find the Lagrangian and show
that there is a Hilbert space (i.e. using canonical quantization). Canonical quantization essentially
demands that the fields obey a commutator relation of the following form

(1.1)
[
π(x, t), φ(y, t)

]
= −iδ3(x − y).

We assumed that the quantized fields obey the Hamiltonian relations

(1.2)

dφ

dt
= i [H, φ]

dπ

dt
= i [H, π] .

We were working with the Hamiltonian density

(1.3)H =
1
2

(π(x, t))2 +
1
2

(∇φ(x, t))2 +
m2

2
φ2 +

λ

4
φ4,

which included a mass term m and a potential term (λ). We will expand all quantities in Taylor series
in λ assuming they have a structure such as

(1.4)f (λ) = c0λ0 + c1λ1 + c2λ2 + c3λ3 + · · ·

We will stop this perturbation theory approach at O(λ2), and will ignore functions such as e−1/λ.
Within perturbation theory, to leaving order, set λ = 0, so that φ obeys the Klein-Gordon equation

(if m = 0 we have just a d’Lambertian (wave equation)).
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We can write our field as a Fourier transform

(1.5)φ(x, t) =
∫ d3 p

(2π)3 eip·xφ̃(p, t),

and due to a Hermitian assumption (i.e. real field) this implies

(1.6)φ̃∗(p, t) = φ̃(−p, t).

We found that the Klein-Gordon equation implied that the momentum space representation obey
Harmonic oscillator equations

(1.7)
¨̃φ(p, t) = −ωpφ̃(p, t)

ωp =
√

p2 + m2.

We may represent the solution to this equation as

(1.8)φ̃(q, t) =
1√
2ωq

(
e−iωqtaq + eiωqtb∗q

)
.

This is a general solution, but imposing aq = b−q ensures eq. (1.6) is satisfied. This leaves us with

(1.9)φ̃(q, t) =
1√
2ωq

(
e−iωqtaq + eiωqta∗−q

)
.

We want to show that iff
(1.10)

[
aq, a†

p

]
= (2π)3 δ3(p − q),

then
(1.11)

[
π(y, t), φ(x, t)

]
= −iδ3(x − y)

where everything else commutes (i.e.
[
ap, aq

]
=
[

a†
p, a†

q

]
= 0). We will only show one direction, but

you can go the other way too.

(1.12)φ(x, t) =
∫ d3 p

(2π)3
√

2ωp
eip·x

(
e−iωptap + eiωpta†

−p

)

(1.13)
π(x, t) = φ̇

= i
∫ d3q

(2π)3
√

2ωq
ωqeiq·x

(
−e−iωqtaq + eiωqta†

−q

)
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The commutator is[
π(y, t), φ(x, t)

]
= i
∫ d3 p

(2π)3
√

2ωp

d3q
(2π)3

√
2ωq

ωqeip·y+iq·x
[
−e−iωqtaq + eiωqta†

−q, e−iωptap + eiωpta†
−p

]
= i
∫ d3 p

(2π)3
√

2ωp

d3q
(2π)3

√
2ωq

ωqeip·y+iq·x
(
−ei(ωp−ωq)t

[
aq, a†

−p

]
+ ei(ωq−ωp)t

[
a†
−q, ap

])
= i
∫ d3 p

(2π)3
√

2ωp

d3q
(2π)3

√
2ωq

ωq(2π)3eip·y+iq·x
(
−ei(ωp−ωq)tδ3(q + p)

− ei(ωq−ωp)tδ3(−q − p)
)

= −2i
∫ d3 p

(2π)32ωp
ωpeip·(y−x)

= −iδ3(y − x),
(1.14)

which is what we wanted to prove.

1.2 Free Hamiltonian

We call the λ = 0 case the “free” Hamiltonian.

H =
∫

d3x
(

1
2

π2 +
1
2

(∇φ)2 +
m2

2
φ2
)

=
1
2

∫
d3x

d3 p
(2π)3

d3q
(2π)3

ei(p+q)·x√
2ωp

√
2ωq

(
−(ωp)(ωq)

(
−e−iωptap +eiωpta†

−p

) (
−e−iωqtaq +eiωqta†

−q

))
−p

· q
(

e−iωptap + eiωpta†
−p

) (
e−iωqtaq + eiωqta†

−q

)
+ m2

(
e−iωptap + eiωpta†

−p

) (
e−iωqtaq + eiωqta†

−q

)
.

(1.15)

An immediate simplification is possible by identifying a delta function factor
∫

d3xei(p+q)·x/(2π)3 =
δ3(p + q), so

(1.16)

H =
1
2

∫ d3 p
(2π)3

1
2ωp

(
−(ωp)2

(
−e−iωptap + eiωpta†

−p

) (
−e−iωpta−p + eiωpta†

p

))
+ (p2 + m2)

(
e−iωptap + eiωpta†

−p

) (
e−iωpta−p + eiωpta†

p

)
=

1
2

∫ d3 p
(2π)3

1
2ωp

(
apa−p

(
������−ω2

pe−2iωpt +�����ω2
pe−2iωpt

)
+ a†
−pa†

p

(
−�����ω2

pe2iωpt +�����ω2
pe2iωpt

)
+ apa†

pω2
p(1 + 1) + a†

−pa−pω2
p(1 + 1)

)
When all is said and done we are left with

(1.17)H =
∫ d3 p

(2π)3

ωp

2

(
a†
−pa−p + apa†

p

)
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and finally with a p → −p transformation (
∫∫∫ R
−R d3 p → (−1)3

∫∫∫ −R
R d3 p′ = (−1)6

∫∫∫ R
−R d3 p′) in the

first integral our free Hamiltonian (λ = 0) is

H0 =
∫ d3 p

(2π)3

ωp

2

(
a†

pap + apa†
p

)
(1.18)

From the commutator relationship eq. (1.10) we can write

(1.19)apa†
q = a†

qap + (2π)3δ3(p − q),

so

(1.20)H0 =
∫ d3 p

(2π)3 ωp

(
a†

pap +
1
2

(2π)3δ3(0)
)

The delta function term can be interpreted using

(1.21)(2π)3δ3(q) =
∫

d3xeiq·x,

so when q = 0

(2π)3δ3(0) =
∫

d3x = V. (1.22)

We can write the Hamiltonian now in terms of the volume

H0 =
∫ d3 p

(2π)3 ωpa†
pap + V3

∫ d3 p
(2π)3

ωp

2
× 1 (1.23)

1.3 QM SHO review

In units with m = 1 the non-relativistic QM SHO has the Hamiltonian

(1.24)H =
1
2

p2 +
ω2

2
q2.

If we define a position operator with a time-domain Fourier representation given by

(1.25)q =
1√
2ω

(
ae−iωt + a†eiωt

)
,

where the Fourier coefficients a, a† are operator valued, then the momentum operator is

p = q̇ =
iω√
2ω

(
−ae−iωt + a†eiωt

)
, (1.26)

or inverting for a, a†

(1.27)
a =

√
ω

2

(
q − 1

iω
p
)

e−iωt

a† =
√

ω

2

(
q +

1
iω

p
)

eiωt.
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By inspection it is apparent that the product a†a will be related to the Hamiltonian (i.e. a difference
of squares). That product is

(1.28)

a†a =
ω

2

(
q +

1
iω

p
)(

q − 1
iω

p
)

=
ω

2

(
q2 +

1
ω2 p2 − 1

iω
[
q, p
])

=
1

2ω

(
p2 + ω2q2 − ω

)
,

or
(1.29)H = ω

(
a†a +

1
2

)
.

We can glean some of the properties of a, a† by computing the commutator of p, q, since that has a
well known value

(1.30)

i =
[
q, p
]

=
iω
2ω

[
ae−iωt + a†eiωt,−ae−iωt + a†eiωt

]
=

i
2

([
a, a†

]
−
[

a†, a
])

= i
[

a, a†
]

,

so
(1.31)

[
a, a†

]
= 1.

The operator a†a is the workhorse of the Hamiltonian and worth studying independently. In par-
ticular, assume that we have a set of states |n〉 that are eigenstates of a†a with eigenvalues λn, that
is

(1.32)a†a |n〉 = λn |n〉 .

The action of a†a on a† |n〉 is easy to compute

(1.33)a†aa† |n〉 = a†
(

a†a + 1
)
|n〉

= (λn + 1) a† |n〉 ,

so λn + 1 is an eigenvalue of a† |n〉. The state a† |n〉 has an energy eigenstate that is one unit of energy
larger than |n〉. For this reason we called a† the raising (or creation) operator. Similarly,

(1.34)a†aa |n〉 =
(

aa† − 1
)

a |n〉
= (λn − 1)a |n〉 ,

so λn − 1 is the energy eigenvalue of a |n〉, having one less unit of energy than |n〉. We call a the an-
nihilation (or lowering) operator. If we argue that there is a lowest energy state, perhaps designated
as |0〉 then we must have

(1.35)a |0〉 = 0,
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by the assumption that there are no energy eigenstates with less energy than |0〉. We can think of
higher order states being constructed from the ground state from using the raising operator a†

(1.36)|n〉 =
(a†)n
√

n!
|0〉

1.4 Discussion

We’ve diagonalized in the Fourier representation for the momentum space fields. For every value of
momentum p we have a quantum SHO.

For our field space we call our space the Fock vacuum and

(1.37)ap |0〉 = 0,

and call ap the “annihilation operator”, and call a†
p the “creation operator”. We say that a†

p |0〉 is the
creation of a state of a single particle of momentum p by a†

p.
We are discarding the volume term, a procedure called “normal ordering”. We define

a†a + aa†

2
:≡ a†a (1.38)

We are essentially forgetting the vacuum energy as some sort of unobservable quantity, leaving us
with the free Hamiltonian of

(1.39)H0 =
∫ d3 p

(2π)3 ωpa†
pap

Consider

(1.40)

H0a†
q |0〉 =

∫ d3 p
(2π)3 ωpa†

papa†
q |0〉

=
∫ d3 p

(2π)3 ωpa†
p

(
a†

qap + (2π)3δ3(p − q)
)
|0〉

=
∫ d3 p

(2π)3 ωpa†
p

(
a†

q�
��ap |0〉 + (2π)3δ3(p − q) |0〉

)
= ωqa†

q |0〉 .

Question: Is it possible to modify the Lagrangian or Hamiltonian that we start with so that this
vacuum ground state is eliminated? Answer: Only by imposing super-symmetric constraints (that
pairs this (Bosonic) Hamiltonian to a Fermonic system in a way that there is exact cancellation).

We will see that the momentum operator has the form

(1.41)P =
∫ d3 p

(2π)3 pa†
pap.

We say that a†
pa†

q |0〉 a two particle space with energy ωp + ωq, and (a†
p)m(a†

q)n |0〉 ≡ (a†
p)m |0〉 ⊗

(a†
q)n |0〉, a m + n particle space.
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There is a connection to statistical mechanics that is of interest

(1.42)
〈E〉 =

1
Z ∑

n
Ene−En/kBT

=
1
Z ∑

n
〈n| e−Ĥ/kBT Ĥ |n〉 ,

so for a SHO Hamiltonian system

(1.43)

〈E〉 =
1
Z ∑

n
e−En/kBT 〈n| Ĥ |n〉

=
1
Z ∑

n
e−En/kBT 〈n|ωa†a |n〉

=
ω

eω/kBT − 1
=
〈

ωa†a
〉

kBT

the kBT ensemble average energy for a SHO system. Note that this sum was evaluated by noting that
〈n| a†a |n〉 = n which leaves sums of the form

(1.44)

∑∞
n =0 nan

∑∞
n =0 an = a ∑∞

n=1 nan−1

∑∞
n=0 an

= a(1− a)
d
da

(
1

1− a

)
=

a
1− a

.

If we consider a real scalar field of mass m we have ωp =
√

p2 + m2, but for a Maxwell field E, B
where m = 0, our dispersion relation is ωp = |p|.

We will see that for a free Maxwell field (no charges or currents) the Hamiltonian is

(1.45)HMaxwell =
2

∑
i=1

∫ d3 p
(2π)3 ωpai†

pai
p,

where i is a polarization index.
We expect that we can evaluate an average such as eq. (1.43) for our field, and operate using the

analogy

(1.46)
aa† = a†a + 1

apa†
p = a†

pap + V3.

so if we rescale by
√

V3

(1.47)ap =
√

V3 ãp
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Then we have commutator relations like standard QM

(1.48)ãã† = ã† ã + 1.

So we can immediately evaluate the energy expectation for our quantized fields

(1.49)

〈H0〉 =
〈∫ d3 p

(2π)3 ωpa†
pap

〉
=
∫ d3 p

(2π)3 ωpV3

〈
ã†

pap

〉
= V3

∫ d3 p
(2π)3

ωp

eωp/kBT − 1
.

Using this with the Maxwell field, we have a factor of two from polarization

(1.50)UMaxwell = 2V3

∫ d3 p
(2π)3

|p|
eωp/kBT − 1

,

which is Planck’s law describing the blackbody energy spectrum.

1.5 Switching gears: Symmetries.

The question is how to apply the CCR results to moving frames, which is done using Lorentz trans-
formations. Just like we know that the exponential of the Hamiltonian (times time) represents time
translations, we will examine symmetries that relate results in different frames.

Examples. For scalar field(s) with action

(1.51)S =
∫

ddxL(φi, ∂µφi).

For example, we’ve been using our massive (Boson) real scalar field with Lagrangian density

(1.52)L =
1
2

∂µφ∂µφ − m2

2
φ2 − V(φ).

Internal symmetry example

(1.53)H = J ∑
〈n,n′〉

Sn · Sn′ ,

where the sum means the sum over neighbouring indexes n, n′ as sketched in fig. 1.1.
Such a Hamiltonian is left invariant by the transformation Sn → −Sn since the Hamiltonian is

quadratic.
Suppose that φ→ −φ is a symmetry (it leaves the Lagrangian unchanged). Example
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Figure 1.1: Neighbouring spin cells.

(1.54)φ =

 φ1

φ2

...φn


the Lagrangian

(1.55)L =
1
2

∂µφT∂µφ − m2

2
φTφ − V(φTφ).

If O is any n× n orthogonal matrix, then it is symmetry since

(1.56)φTφ→ φTOTOφ

= φTφ.

O(2) model, HW, problem 2. Example for complex φ

(1.57)φ→ eiφφ,

(1.58)φ =
ψ1 + iψ2√

2

(1.59)
[

ψ1
ψ2

]
→
[

cos α sin α
− sin α cos α

] [
ψ1
ψ2

]
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