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PHY2403H Quantum Field Theory. Lecture 9: Unbroken and
spontaneously broken symmetries, Higgs Lagrangian, scale invariance,
Lorentz invariance, angular momentum quantization. Taught by Prof.
Erich Poppitz

DISCLAIMER: Very rough notes from class, with some additional side notes. These are notes for the UofT
course PHY2403H, Quantum Field Theory I, taught by Prof. Erich Poppitz fall 2018.

1.1 Last time

We followed a sequence of operations

1. Noether’s theorem

2. → conserved currents

3. → charges (classical)

4. → “correspondence principle”

5. → Q̂

• Hermitian operators

• “generators of symmetry"

(1.1)Û(α) = eiαQ̂

We found
(1.2)Û(α)φ̂Û†(α) = φ̂ + iα

[
Q̂, φ̂

]
+ · · ·

Example: internal symmetries: (non-spacetime), such as O(N) or U(1).
In QFT internal symmetries can have different “modes of realization”.
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I “Wigner mode”. These are also called “unbroken symmetries”.

(1.3)Q̂ |0〉 = 0

i.e. Û(α) |0〉 = 0. Ground state invariant. Formally : Q̂ : annihilates |0〉.
[
Q̂, Ĥ

]
= 0 implies that

all eigenstates are eigenstates of Q̂ in U(1). Example from HW 1

(1.4)Q̂ = “charge” under U(1).

All states have definite charge, just live in QU.

II “Nambu-Goldstone mode” (Landau-ginsburg). This is also called a “spontaneously broken sym-
metry”1. H or L is invariant under symmetry, but ground state is not.

Example:
(1.5)L = ∂µφ∗∂µφ − V(|φ|),

where
(1.6)V(|φ|) = m2φ∗φ +

λ

4
(
φ∗φ

)2 .

When m2 > 0 we have a Wigner mode, but when m2 < 0 we have an issue: φ = 0 is not a minimum
of potential. When m2 < 0 we write

(1.7)

V(φ) = −m2φ∗φ +
λ

4
(
φ∗φ

)2

=
λ

4

((
φ∗φ

)2 − 4
λ

m2
)

=
λ

4

(
φ∗φ − 2

λ
m2
)2

− 4m4

λ2 ,

or simply

(1.8)V(φ) =
λ

4
(
φ∗φ − v2)2

+ const.

The potential (called the Mexican hat potential) is illustrated in fig. 1.1 for non-zero v, and in fig. 1.2
for v = 0. The following is a Mathematica code listing that can be used to play with this shape

In[1]:= ClearAll[potential]
potential[x_, y_, v_] := (x^2 + y^2 - v^2)^2

Manipulate[
Plot3D[ potential[x, y, v], {x, -5, 5}, {y, -5, 5}, PlotRange →→→Full],
{{v,4}, 0, 10}
]

2



Figure 1.1: Mexican hat potential.

Figure 1.2: Degenerate Mexican hat potential v = 0.
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We choose to expand around some point on the minimum ring (it doesn’t matter which one). When
there is no potential, we call the field massless (i.e. if we are in the minimum ring). We expand as

(1.9)φ(x) = v
(

1 +
ρ(x)

v

)
eiα(x)/v,

so

(1.10)

λ

4
(
φ∗φ − v2)2

=

(
v2
(

1 +
ρ(x)

v

)2

− v2

)2

=
λ

4
v4

((
1 +

ρ(x)
v

)2

− 1

)

=
λ

4
v4
(

2ρ

v
+

ρ2

v2

)2

.

(1.11)∂µφ =
(

v
(

1 +
ρ(x)

v

)
i
v

∂µα + ∂µρ

)
eiα

so

(1.12)

L = |∂φ∗|2 − λ

4

(
|φ∗|2 − v2

)2

= ∂µρ∂µρ + ∂µα∂µα
(

1 +
ρ

v

)
− λv4

4
4ρ2

v2 + O(ρ3)

= ∂µρ∂µρ − λv2ρ2 + ∂µα∂µα
(

1 +
ρ

v

)
.

We have two fields, ρ : a massive scalar field, the “Higgs”, and a massless field α (the Goldstone
Boson).

U(1) symmetry acts on φ(x) → eiωφ(x) i.t.o α(x) → α(x) + vω. U(1) global symmetry (broken) acts
on the Goldstone field α(x) by a constant shift. (U(1) is still a symmetry of the Lagrangian.)

The current of the U(1) symmetry is:

(1.13)jµ = ∂µα
(
1 + higher dimensional ρ terms

)
.

When we quantize

(1.14)α(x) =
∫ d3 p

(2π)3
√

2ωp
eiωpt−ip·x â†

p +
∫ d3 p

(2π)3
√

2ωp
e−iωpt+ip·x âp

(1.15)
jµ(x) = ∂µα(x)

=
∫ d3 p

(2π)3
√

2ωp

(
iωp − ip

)
eiωpt−ip·x â†

p +
∫ d3 p

(2π)3
√

2ωp

(
−iωp + ip

)
e−iωpt+ip·x âp.

(1.16)jµ(x) |0〉 6= 0,

instead it creates a single particle state.

1 First encounter example (HWII, SU(2)× SU(2)→ SU(2)). Here a U(1) spontaneous broken symmetry.
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1.2 Examples of symmetries

In particle physics, examples of Wigner vs Nambu-Goldstone, ignoring gravity the only exact inter-
nal symmetry in the standard module is (B#− L#), believed to be a U(1) symmetry in Wigner mode.

Here B# is the Baryon number, and L# is the Lepton number. Examples:

• B(p) = 1, proton.

• B(q) = 1/3, quark

• B(e) = 1, electron

• B(n) = 1, neutron.

• L(p) = 1, proton.

• L(q) = 0, quark.

• L(e) = 0, electron.

The major use of global internal symmetries in the standard model is as “approximate” ones. They
become symmetries when one neglects some effect( “terms in L”). There are other approximate
symmetries (use of group theory to find the Balmer series).

Example from HW2: QCD in limit
mu = md = 0. (1.17)

mumd � mp (the products of the up-quark mass and the down-quark mass are much less than a
composite one (name?)). SU(2)L × SU(2)R → SU(2)V

EWSB (Electro-Weak-Symmetry-Breaking) sector When the couplings g2, g1 = 0. (g2 ∈ SU(2), g1 ∈
U(1)).

1.3 Scale invariance

(1.18)

x → eλx

φ→ e−λφ

Aµ → e−λ Aµ

Any unitary theory which is scale invariant is also conformal invariant. Conformal invariance means
that angles are preserved. The point here is that there is more than scale invariance.

We have classical internal global continuous symmetries. These can be either

1. “unbroken” (Wigner mode)

(1.19)Q̂ |0〉 = 0.
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2. “spontaneously broken”
(1.20)jµ(x) |0〉 6= 0

(creates Goldstone modes).

3. “anomalous”. Classical symmetries are not a symmetry of QFT. Examples:

• Scale symmetry (to be studied in QFT II), although this is not truly internal.

• In QCD again when ωq = 0, a U(1 symmetry (chiral symmetry) becomes exact, and cannot
be preserved in QFT.

• In the standard model (E.W sector), the Baryon number and Lepton numbers are not sym-
metries, but their difference B#− L# is a symmetry.

1.4 Lorentz invariance.

We’d like to study the action of Lorentz symmetries on quantum states. We are going to “go by the
book”, finding symmetries, currents, quantize, find generators, and so forth.

Under a Lorentz transformation
xµ → x′µ = Λµ

νxν, (1.21)

We are going to consider infinitesimal Lorentz transformations

(1.22)Λµ
ν ≈ δµ

ν + ωµ
ν,

where ωµ
ν is small. A Lorentz transformation Λ must satisfy ΛTGΛ = G, or

(1.23)gµν = Λα
µgαβΛβ

ν,

into which we insert the infinitesimal transformation representation

(1.24)

0 = −gµν +
(
δα

µ + ωα
µ

)
gαβ

(
δβ

ν + ωβ
ν

)
= −gµν +

(
gµβ + ωβµ

) (
δβ

ν + ωβ
ν

)
= −gµν + gµν + ωνµ + ωµν + ωβµωβ

ν.

The quadratic term can be ignored, leaving just

(1.25)0 = ωνµ + ωµν,

or
(1.26)ωνµ = −ωµν.

Note that ω is a completely antisymmetric tensor, and like Fµν this has only 6 elements. This means
that the infinitesimal transformation of the coordinates is

xµ → x′µ ≈ xµ + ωµνxν, (1.27)
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the field transforms as
φ(x)→ φ′(x′) = φ(x) (1.28)

or
(1.29)φ′(xµ + ωµνxν) = φ′(x) + ωµνxν∂µφ(x)

= φ(x),

so
(1.30)δφ = φ′(x)− φ(x)

= −ωµνxν∂µφ.

Since L is a scalar

(1.31)
δL = −ωµνxν∂µL

= −∂µ (ωµνxνL) + (∂µxν)ωµνL
= ∂µ (−ωµνxνL) ,

since ∂νxµ = gνµ is symmetric, and ω is antisymmetric. Our current is

(1.32)Jµ
ω = −ωµνxµL.

Our Noether current is

(1.33)

jν
ωµρ =

∂L
∂φ,ν

δφ − Jµ
ω

= ∂νφ
(
−ωµρxρ∂µφ

)
+ ωνρxρL

= ωµρ
(
∂νφ

(
−xρ∂µφ

)
+ δν

µxρL
)

= ωµρxρ

(
−∂νφ∂µφ + δν

µL
)

We identify
(1.34)−Tν

µ = −∂νφ∂µφ + δν
µL,

so the current is
jν
ωµρ

= −ωµρxρTν
µ = −ωµρxρTνµ. (1.35)

Define
(1.36)jνµρ =

1
2

(xρTνµ − xµTνρ) ,

which retains the antisymmetry in µρ yet still drops the parameter ωµρ. To check that this makes
sense, we can contract jνµρ with ωρµ

(1.37)

jνµρωρµ = −1
2

(xρTνµ − xµTνρ) ωµρ

= −1
2

xρTνµωµρ −
1
2

xµTνρωρµ

= −1
2

xρTνµωµρ −
1
2

xρTνµωµρ

= −xρTνµωµρ,

which matches eq. (1.35) as desired.
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Example. Rotations µρ = ij

(1.38)J0ijεijk =
1
2

(
xiT0j − xjT0i

)
εijk

= xiT0jεijk.

Observe that this has the structure of (x× p)k, where p is the momentum density of the field. Let

Lk ≡ Qk =
∫

d3xJ0ijεijk. (1.39)

We can now quantize and build a generator

(1.40)
Û(α) = eiα·L̂

= exp
(

iαk

∫
d3xxiT̂0jεijk

)
From eq. (1.34) we can quantize with T0j = ∂0φ∂jφ→ π̂

(
∇φ̂

)
j, or

(1.41)
Û(α) = exp

(
iαk

∫
d3xxiπ̂(∇φ̂)jεijk

)
= exp

(
iα ·

∫
d3xπ̂∇φ̂ × x

)
(up to a sign in the exponent which doesn’t matter)

(1.42)

φ̂(y)→ Û(α)φ̂(y)Û†(α)

≈ φ̂(y) + iα ·
[∫

d3xπ̂(x)∇φ̂(x)× x, φ̂(y)
]

= φ̂(y) + iα ·
∫

d3x(−i)δ3(x − y)∇φ̂(x)× x

= φ̂(y) + α ·
(
∇φ̂(y)× y

)
Explicitly, in coordinates, this is

(1.43)
φ̂(y)→ φ̂(y) + αi

(
∂jφ̂(y)ykεjki

)
= φ̂(y)− εikjα

iyk∂jφ̂

= φ̂(yj − εikjαiyk).

This is a rotation. To illustrate, pick α = (0, 0, α), so yj → yj − εikjαykδi3 = yj − ε3kjαyk, or

(1.44)

y1 → y1 − ε3k1αyk = y1 + αy2

y2 → y2 − ε3k2αyk = y2 − αy1

y3 → y3 − ε3k3αyk = y3,

or in matrix form

(1.45)

y1

y2

y3

→
 1 α 0
−α 1 0
0 0 1

y1

y2

y3

 .
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