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Reflection using Pauli matrices.

In class yesterday (lecture 19, notes not yet posted) we used σT = −σ2σσ2, which implicitly shows that
(σ · x)T is a reflection about the y-axis. This form of reflection will be familiar to a student of geometric
algebra (see [1]). I can’t recall any mention of the geometrical reflection identity from when I took QM.
It’s a fun exersize to demonstrate the reflection identity when constrained to the Pauli matrix notation.

Theorem 1.1: Reflection about a normal.

Given a unit vector n̂ ∈ R3 and a vector x ∈ R3 the reflection of x about a plane with normal n̂ can
be represented in Pauli notation as

−σ · n̂σ · xσ · n̂.

In standard vector notation, we can decompose a vector into its projective and rejective components

(1.1)x = (x · n̂)n̂ + (x − (x · n̂)n̂) .

A reflection about the plane normal to n̂ just flips the component in the direction of n̂, leaving the rest
unchanged. That is

(1.2)−(x · n̂)n̂ + (x − (x · n̂)n̂) = x − 2(x · n̂)n̂.

We may write this in σ notation as
(1.3)σ · x − 2x · n̂σ · n̂.

We also know that

(1.4)
σ · aσ · b = a · b + iσ · (a × b)
σ · bσ · a = a · b − iσ · (a × b),

or
(1.5)a · b =

1
2
{σ · a, σ · b},

where {a, b} is the anticommutator of a, b. Inserting eq. (1.5) into eq. (1.3) we find that the reflection is

(1.6)
σ · x − {σ · n̂, σ · x}σ · n̂ = σ · x − σ · n̂σ · xσ · n̂ − σ · xσ · n̂σ · n̂

= σ · x − σ · n̂σ · xσ · n̂ − σ · x
= −σ · n̂σ · xσ · n̂,
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which completes the proof.
When we expand (σ · x)T and find

(1.7)(σ · x)T = σ1x1 − σ2x2 + σ3x3,

it is clear that this coordinate expansion is a reflection about the y-axis. Knowing the reflection formula
above provides a rationale for why we might want to write this in the compact form −σ2(σ · x)σ2, which
might not be obvious otherwise.
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