Peeter Joot
 peeterjoot@pm.me

Reflection using Pauli matrices.

In class yesterday (lecture 19 , notes not yet posted) we used $\sigma^{T}=-\sigma_{2} \sigma \sigma_{2}$, which implicitly shows that $(\sigma \cdot \mathbf{x})^{\mathrm{T}}$ is a reflection about the y-axis. This form of reflection will be familiar to a student of geometric algebra (see [1]). I can't recall any mention of the geometrical reflection identity from when I took QM. It's a fun exersize to demonstrate the reflection identity when constrained to the Pauli matrix notation.

Theorem 1.1: Reflection about a normal.

Given a unit vector $\hat{\mathbf{n}} \in \mathbb{R}^{3}$ and a vector $\mathbf{x} \in \mathbb{R}^{3}$ the reflection of \mathbf{x} about a plane with normal $\hat{\mathbf{n}}$ can be represented in Pauli notation as

$$
-\sigma \cdot \hat{\mathbf{n}} \sigma \cdot \mathbf{x} \sigma \cdot \hat{\mathbf{n}} .
$$

In standard vector notation, we can decompose a vector into its projective and rejective components

$$
\begin{equation*}
\mathbf{x}=(\mathbf{x} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+(\mathbf{x}-(\mathbf{x} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}) . \tag{1.1}
\end{equation*}
$$

A reflection about the plane normal to $\hat{\mathbf{n}}$ just flips the component in the direction of $\hat{\mathbf{n}}$, leaving the rest unchanged. That is

$$
\begin{equation*}
-(\mathbf{x} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+(\mathbf{x}-(\mathbf{x} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}})=\mathbf{x}-2(\mathbf{x} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}} . \tag{1.2}
\end{equation*}
$$

We may write this in σ notation as

$$
\begin{equation*}
\sigma \cdot \mathbf{x}-2 \mathbf{x} \cdot \hat{\mathbf{n}} \sigma \cdot \hat{\mathbf{n}} . \tag{1.3}
\end{equation*}
$$

We also know that

$$
\begin{align*}
& \sigma \cdot \mathbf{a} \sigma \cdot \mathbf{b}=a \cdot b+i \sigma \cdot(\mathbf{a} \times \mathbf{b}) \\
& \sigma \cdot \mathbf{b} \sigma \cdot \mathbf{a}=a \cdot b-i \sigma \cdot(\mathbf{a} \times \mathbf{b}), \tag{1.4}
\end{align*}
$$

or

$$
\begin{equation*}
a \cdot b=\frac{1}{2}\{\sigma \cdot \mathbf{a}, \sigma \cdot \mathbf{b}\}, \tag{1.5}
\end{equation*}
$$

where $\{\mathbf{a}, \mathbf{b}\}$ is the anticommutator of \mathbf{a}, \mathbf{b}. Inserting eq. (1.5) into eq. (1.3) we find that the reflection is

$$
\begin{align*}
\sigma \cdot \mathbf{x}-\{\sigma \cdot \hat{\mathbf{n}}, \sigma \cdot \mathbf{x}\} \sigma \cdot \hat{\mathbf{n}} & =\sigma \cdot \mathbf{x}-\sigma \cdot \hat{\mathbf{n}} \sigma \cdot \mathbf{x} \sigma \cdot \hat{\mathbf{n}}-\sigma \cdot \mathbf{x} \sigma \cdot \hat{\mathbf{n}} \sigma \cdot \hat{\mathbf{n}} \\
& =\sigma \cdot \mathbf{x}-\sigma \cdot \hat{\mathbf{n}} \sigma \cdot \mathbf{x} \sigma \cdot \hat{\mathbf{n}}-\sigma \cdot \mathbf{x} \tag{1.6}\\
& =-\sigma \cdot \hat{\mathbf{n}} \sigma \cdot \mathbf{x} \sigma \cdot \hat{\mathbf{n}},
\end{align*}
$$

which completes the proof.
When we expand $(\sigma \cdot \mathbf{x})^{\mathrm{T}}$ and find

$$
\begin{equation*}
(\sigma \cdot \mathbf{x})^{\mathrm{T}}=\sigma^{1} x^{1}-\sigma^{2} x^{2}+\sigma^{3} x^{3}, \tag{1.7}
\end{equation*}
$$

it is clear that this coordinate expansion is a reflection about the y-axis. Knowing the reflection formula above provides a rationale for why we might want to write this in the compact form $-\sigma^{2}(\sigma \cdot \mathbf{x}) \sigma^{2}$, which might not be obvious otherwise.

Bibliography

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003. 1

