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Potential solutions to the static Maxwell’s equation using geometric
algebra

When neither the electromagnetic field strength F = E + IηH, nor current J = η(cρ − J) + I(cρm −
M) is a function of time, then the geometric algebra form of Maxwell’s equations is the first order
multivector (gradient) equation

∇F = J. (1.1)

While direct solutions to this equations are possible with the multivector Green’s function for the
gradient

G(x, x′) =
1

4π

x− x′

‖x− x′‖3 , (1.2)

the aim in this post is to explore second order (potential) solutions in a geometric algebra context.
Can we assume that it is possible to find a multivector potential A for which

F = ∇A, (1.3)

is a solution to the Maxwell statics equation? If such a solution exists, then Maxwell’s equation is
simply

∇2A = J, (1.4)

which can be easily solved using the scalar Green’s function for the Laplacian

G(x, x′) = − 1
‖x− x′‖ , (1.5)

a beastie that may be easier to convolve than the vector valued Green’s function for the gradient.
It is immediately clear that some restrictions must be imposed on the multivector potential A. In

particular, since the field F has only vector and bivector grades, this gradient must have no scalar,
nor pseudoscalar grades. That is

〈∇A〉0,3 = 0. (1.6)

This constraint on the potential can be avoided if a grade selection operation is built directly into the
assumed potential solution, requiring that the field is given by

F = 〈∇A〉1,2. (1.7)
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However, after imposing such a constraint, Maxwell’s equation has a much less friendly form

∇2A−∇〈∇A〉0,3 = J. (1.8)

Luckily, it is possible to introduce a transformation of potentials, called a gauge transformation, that
eliminates the ugly grade selection term, and allows the potential equation to be expressed as a plain
old Laplacian. We do so by assuming first that it is possible to find a solution of the Laplacian
equation that has the desired grade restrictions. That is

∇2A′ = J〈
∇A′

〉
0,3 = 0,

(1.9)

for which F = ∇A′ is a grade 1,2 solution to ∇F = J. Suppose that A is any formal solution, free of
any grade restrictions, to ∇2A = J, and F = 〈∇A〉1,2. Can we find a function Ã for which A = A′ + Ã?

Maxwell’s equation in terms of A is

J = ∇〈∇A〉1,2

= ∇2A−∇〈∇A〉0,3

= ∇2(A′ + Ã)−∇〈∇A〉0,3

(1.10)

or
∇2Ã = ∇〈∇A〉0,3. (1.11)

This non-homogeneous Laplacian equation that can be solved as is for Ã using the Green’s function
for the Laplacian. Alternatively, we may also solve the equivalent first order system using the Green’s
function for the gradient.

∇Ã = 〈∇A〉0,3. (1.12)

Clearly Ã is not unique, as we can add any function ψ satisfying the homogeneous Laplacian equa-
tion ∇2ψ = 0.

In summary, if A is any multivector solution to ∇2A = J, that is

A(x) =
∫

dV ′G(x, x′)J(x′) = −
∫

dV ′
J(x′)
‖x− x′‖ , (1.13)

then F = ∇A′ is a solution to Maxwell’s equation, where A′ = A − Ã, and Ã is a solution to the
non-homogeneous Laplacian equation or the non-homogeneous gradient equation above.

Integral form of the gauge transformation. Additional insight is possible by considering the gauge
transformation in integral form. Suppose that

A(x) = −
∫

V
dV ′

J(x′)
‖x− x′‖ − Ã(x), (1.14)
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is a solution of ∇2A = J, where Ã is a multivector solution to the homogeneous Laplacian equation
∇2 Ã = 0. Let’s look at the constraints on Ã that must be imposed for F = ∇A to be a valid (i.e. grade
1,2) solution of Maxwell’s equation.

F = ∇A

= −
∫

V
dV ′

(
∇ 1
‖x− x′‖

)
J(x′)−∇Ã(x)

=
∫

V
dV ′

(
∇′ 1
‖x− x′‖

)
J(x′)−∇Ã(x)

=
∫

V
dV ′∇′ J(x′)

‖x− x′‖ −
∫

V
dV ′

∇′ J(x′)
‖x− x′‖ −∇Ã(x)

=
∫

∂V
dA′n̂′

J(x′)
‖x− x′‖ −

∫
V

∇′ J(x′)
‖x− x′‖ −∇Ã(x).

(1.15)

Where n̂′ = (x′ − x)/‖x′ − x‖, and the fundamental theorem of geometric calculus has been used to
transform the gradient volume integral into an integral over the bounding surface. Operating on
Maxwell’s equation with the gradient gives ∇2F = ∇J, which has only grades 1,2 on the left hand
side, meaning that J is constrained in a way that requires ∇J to have only grades 1,2. This means
that F has grades 1,2 if

∇Ã(x) =
∫

∂V
dA′
〈n̂′ J(x′)〉0,3

‖x− x′‖ . (1.16)

The product n̂J expands to
n̂J = 〈n̂J1〉 + 〈n̂J2〉3

= n̂ · (−ηJ) + 〈n̂(−IM)〉3
= −ηn̂ · J− In̂ ·M,

(1.17)

so

∇Ã(x) = −
∫

∂V
dA′

ηn̂′ · J(x′) + In̂′ ·M(x′)
‖x− x′‖ . (1.18)

Observe that if there is no flux of current density J and (fictitious) magnetic current density M
through the surface, then F = ∇A is a solution to Maxwell’s equation without any gauge transforma-
tion. Alternatively F = ∇A is also a solution if limx′→∞ J(x′)/‖x− x′‖ = limx′→∞ M(x′)/‖x− x′‖ = 0
and the bounding volume is taken to infinity.
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