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PREFACE

This is a set of course notes from the Fall 2018, University of Toronto
Quantum Field Theorry (PHY?2403), taught by Prof. Erich Poppitz.

The course syllabus included the following topics:

o Introduction: Energy and distance scales; units and conventions.
Uncertainty relations in the relativistic domain and the need for
multiple particle description.

o Canonical quantization. Free scalar field theory.
e Symmetries and conservation laws.

o Interacting fields: Feynman diagrams and the S matrix; decay widths
and phase space.

e Spin 1/2 fields: Spinor representations, Dirac and Weyl spinors,
Dirac equation. Quantizing fermi fields and statistics.

e Vector fields and Quantum electrodynamics.

This book contains:
e Lecture notes.
o Personal notes exploring auxiliary details.
o Worked practice problems.

o My solutions (as-is, with errors.) for problem sets 1-4.

On the problem set solutions: ~ These notes are no longer redacted and
include whatever portions of the problem set 1-4 solutions I completed,
errors and all. In the event that any of the problem sets are recycled for
future iterations of the course, students who are taking the course (all
mature grad students pursuing science for the love of it, not for grades) are
expected to act responsibly, and produce their own solutions, within the
constraints provided by the professor.
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Thanks: My thanks go to Professor Poppitz for teaching this course,
to the study gang, and to Emily Tyhurst and Stefan Divic who kindly
provided me their notes for lecture 22.

Peeter Joot  peeterjoot@pm.me
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1

FIELDS, UNITS, AND SCALES.

1.1 WHAT IS A FIELD?

A field is a map from space(time) to some set of numbers. These set of
numbers may be organized some how, possibly scalars, or vectors, ...
One example is the familiar spacetime vector, where x € IR?

(x,1) » R“D. (1.1)
Examples of fields:

1. 0+ 1 dimensional “QFT”, where the spatial dimension is zero di-
mensional and we have one time dimension. Fields in this case are
just functions of time x(#). That is, particle mechanics is a 0 + 1
dimensional classical field theory. We know that classical mechanics
is described by the action

S = %fdtxz. (1.2)

This is non-relativistic. We can make this relativistic by saying this
is the first order term in the Taylor expansion

S = —mczfdt\/l —i2/c2. (1.3)

Classical field theory (of x(¢)). The “QFT” of x(¢). i.e. QM. All of
you know quantum mechanics. If you don’t just leave. Not this way
(pointing to the window), but this way (pointing to the door). The
solution of a quantum mechanical state is

(x| eI R 'x') , (1.4)

which can be found by evaluating the “Feynman path integral”

> s (1.5)

all paths x



FIELDS, UNITS, AND SCALES.

This will be particularly useful for QFT, despite the fact that such
a sum is really hard to evaluate (try it for the Hydrogen atom for
example).

2. 3 + 0 dimensional field theory, where we have 3 spatial dimensions
and 0 time dimensions. Classical equilibrium static systems. The
field may have a structure like

x — M(x), (1.6)

for example, magnetization. We can write the solution to such a
system using the partition function

Z~ Z ¢ EMV/ksT (1.7)
allM(x)

For such a system the energy function may be like

3
E[M] = f d3x(aM2(x)+bM4(x)+cZ(% )((%M)}

i=1

(1.8)

There is an analogy between the partition function and the Feynman
path integral, as both are summing over all possible energy states in
both cases. This will be probably be the last time that we mention
the partition function and condensed matter physics in this term for
this class.

3. 3 + 1 dimensional field theories, with 3 spatial dimensions and 1
time dimension. Example, electromagnetism with E(x, 1), B(x, f) or
better use A(X, t), ¢(X, r). The action is

_ 1 3 2 2
S——16ﬂcfdxdt(E —B). (1.9)

This is our first example of a relativistic field theory in 3 + 1 dimen-
sions. It will take us a while to get there.

These are examples of classical field theories, such as fluid dynamics
and general relativity. We want to consider electromagnetism because this
is the place that we everything starts to fall apart (i.e. blackbody radiation,



1.2 SCALES.

relating to the equilibrium states of radiating matter). Part of the resolution
of this was the quantization of the energy states, where we studied the
normal modes of electromagnetic radiation in a box. These modes can

be considered an infinite number of radiating oscillators (the ultraviolet
catastrophe). This was resolved by Planck by requiring those energy states
to be quantized (an excellent discussion of this can be found in [3]. In that
sense you have already seen quantum field theory.

For electromagnetism the classical description is not always good. Ex-
amples:

1. blackbody radiation.

2. electron energy e /r. of a point charge diverges as . — 0. We can

define the classical radius of the electron by

62
— ~ mec?, (1.10)
re
or
] mec” 15
rd ~ ~107Pm (1.11)
e

Don’t treat this very seriously, but it becomes useful at frequencies
w ~ c/re, wWhere r/c is approximately the time for light to cross a
distance re. At frequencies like this, we should not believe the solu-
tions that are obtained by classical electrodynamics. In particular,
self-accelerating solutions appear at these frequencies in classical
EM. This is approximately w, ~ 10>*Hz, or

hw, ~ (10—21 MeVs) (1023 1 /s)
~ 100MeV.

(1.12)

At such frequencies particle creation becomes possible.

1.2

SCALES.

A (dimensionless) value that is very useful in determining scale is

B e? 1
YT dnhe T 137

(1.13)

called the fine scale constant, which relates three important scales relevant
to quantum mechanics, as sketched in fig. 1.1.

3



4

FIELDS, UNITS, AND SCALES.

e
b
[ /é,\,_fi 5-'_"\:
et

| |
I [

/o-lsm /O_Bm r™°
w to ? L
Ged) (S (52

Figure 1.1: Interesting scales in quantum mechanics.

e The Bohr radius (large end of the scale).
e The Compton wavelength of the electron.

e The classical radius of the electron.

1.2.1 Bohr radius.

A quick motivation for the Bohr radius was mentioned in passing in class
while discussing scale, following the high school method of deriving the
Balmer series ([7]).

That method assumes a circular electron trajectory (i = eje;)

r = reje
vV = wreye'’ (1.14)
a=-wree

The Coulomb force (in cgs units) on the electron is

F =ma
= —mwzrele (]‘]5)
— —e(e) iwt
r2 ’

or

m(f)zrze_ (1.16)



1.2 SCALES.

giving

my- = —. (1.17)

The energy of the system, including both Kinetic and potential (from an
infinite reference point) is

= ——my (1.18)

or

mvr ~ . (1.19)

Eliminating v using eq. (1.17), assuming a ground state radius r = ag gives

h2
a~ 1 (1.20)
me

The Bohr radius is of the order 10~ %m.

1.2.2  Compton wavelength.

When particle momentum starts approaching the speed of light, by the
uncertainty relation (AxAp ~ h) the variation in position must be of the
order

h

/lC ~ s
mecC

(1.21)

called the Compton wavelength. Similarly, when the length scales are re-
duced to the Compton wavelength, the momentum increases to relativistic
levels. Because of the relativistic velocities at the Compton wavelength,
particle creation and annihilation occurs and any theory has to account for
multiple particle states.

5
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1.2.3 Relations.

Scaling the Bohr radius once by the fine structure constant, we obtain the
Compton wavelength (after dropping factors of 4r)

W &2
ag = —
me? 4n he

h

- drmc
n

mc
= Ac.

(1.22)

Scaling once more, we obtain (after dropping another 4x) the classical
electron radius

"~ damc? (1.23)

~ —_—

mc?’

1.3 NATURAL UNITS.

>  ML?
h] = [action] = M =T = —
[ 2] = [action] 72 T
L
[c] = [velocity] = T (1.24)
2
[energy] = M T2
Setting ¢ = 1 means
L
7= 1 (1.25)

and setting 7 = 1 means

[ %] = [action]

_ ML/? (1.26)

=ML



1.4 GRAVITY.

therefore

(1.27)

and

L
[energy] = M%é (1.28)

= masseV
Summary

e cnergy ~ eV

. 1
e distance i

e time ~ ﬁ

From:

&2

o =
vy

which is dimensionless (1/137), so electric charge is dimensionless.
Some useful numbers in natural units

(1.29)

me ~ 107%7g ~ 0.5MeV

my ~ 2000m ~ 1GeV

my ~ 140MeV (1.30)
my, ~ 105MeV

he ~ 200MeV fm = 1

1.4 GRAVITY.

Interaction energy of two particles

miniy
GN

(1.31)

r

2

M
[energy] ~ [GN] T (1.32)
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L
(Gx] ~ [energyl— (1.33)

but energy x distance is dimensionless (action) in our units

[Gn] ~ dimensionlessM? (1.34)

(&N 1

he M2 1 (1.35)
"~ 1020GeV

Planck mass

hic

MPlanck ~ G_N
~ 107%¢ (1.36)

1

(1020GeV)?

We can revisit the scale diagram from last lecture in terms of MeV
mass/energy values, as sketched in fig. 1.2.

WQM@W<@M

15 /U ﬂ(lM
Ilo m j.ll x/o— [ / /lo—”M Ssr
T Xg ] T —
< k- % %z e
mec <
%:;:(F Crmaptoa WL, Gohr Rodiug
Glechm,

Figure 1.2: Scales, take II.

At the classical electron radius scale, we consider phenomena such as
back reaction of radiation, the self energy of electrons. At the Compton
wavelength we have to allow for production of multiple particle pairs. At
Bohr radius scales we must start using QM instead of classical mechanics.



1.5 crROSS SECTION.

1.5 CcROSS SECTION.

(Verbal discussion of cross section, not captured in these notes). Roughly,
the cross section sounds like the number of events per unit time, related to
the flux of some source through an area.

We’ll compute the cross section of a number of different systems in
this course. The cross section is relevant in scattering such as the electron-
electron scattering sketched in fig. 1.3.

Figure 1.3: Electron electron scattering.

We assume that QED is highly relativistic. In natural units, our scale
factor is basically the square of the electric charge

a~ e, (1.37)

so the cross section has the form

2
o~ E(1+0(a)Jr0(oﬂ)+---) (1.38)
In gravity we could consider scattering of electrons, where Gy takes the
place of @. However, Gy has dimensions.
For electron-electron scattering due to gravitons

2 2
GLE

~N——— 1.39
v 1+GNEZ+--- (1.39)

Now the cross section grows with energy. This will cause some problems
(violating unitarity: probabilities greater than 1!) when O(GNE?) = 1.

When the coupling constant is not-dimensionless we have the same sort
of problems at some scale in any quantum field theories.

The point is that we can get far considering just dimensional analysis.

9
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If the coupling constant has a dimension (1/mass)" , N > 0, then uni-
tarity will be violated at high energy. One such theory is the Fermi theory
of beta decay (electro-weak theory), which had a coupling constant with
dimensions inverse-mass-squared. The relevant scale for beta decay was 4
Fermi, or Gg ~ (1/100GeV)?. This was the motivation for introducing the
Higgs theory, which was motivated by restoring unitarity.

1.6 PROBLEMS.

Exercise 1.1 Dimensional analysis. (2015 ps1.4)

Even though we have set i = ¢ = 1, we can still do dimensional analysis
because we still have one unit left, mass (or 1/length). In d space-time
dimensions (1 time and d — 1 space), what is the dimension in mass
units of a canonical free scalar field, ¢? (Work it out from the equal-time
commutation relations.) Still in d dimensions, the Lagrange density for a
scalar field with self-interactions might be of the form

L= % (aﬂgs)2 - Z and". (1.40)

n>2
a. What is the dimension (again in mass units) of the Lagrange den-
sity?
b. The action?

c. The coefficients a,? (as a check, whatever the value of d, a, had
better have the dimensions of mass? ).

Answer for Exercise 1.1

Parta.  With [¢(x), n(y)] = i6®)(x - y), which is dimensionless, we have

1= l¢n] (1.41)
= [¢*1/L,

SO

[¢] = L' (1.42)



1.6 PROBLEMS.

This means that the dimensions of the Lagrangian are

[L] = [(0,8)*]
1

=L (1.43)

Part b.  The dimensions of the action are

[S]=1 f dx.L]
1 (1.44)

Part c.  The dimensions of the coefficients are found from

1 n
7 = [and’] (1.45)
= [a, 1L,
or
[a,] = L™'"7"2, (1.46)

For n = 2 that is [a,] = L7172/ = L™2. Provided [L] = 1/[M] this is
what is expected. To see that is the case consider the dimensions of the
ratio

[h/c] = (ML?/T)/(L/T)] = [ML]. (1.47)

If both 7 and c are dimensionless then the dimensions of length must
be inverse mass.

Exercise 1.2 Zero point energy, and unit conversion. (2018 Hw1.1II)

In class, we showed that the zero-point energy of the quantized massless
scalar field (we are taking this case, because in the physically relevant case
of electrodynamics, the number of degrees of freedom and the associated
vacuum energy is the same as that of two massless scalar fields) can be
written as:

dSk Wi

Ey.c =V —.
vac 3 (27_[)3 )

(1.48)

11
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where V3 is the (large, i.e., almost infinite) volume of space. This expres-
sion diverges, because we assume that electromagnetic fields and photons
of arbitrarily large momenta exist. There’s no justification to this, as par-
ticle physicists have only probed the Standard Model up to energies of
order a few TeV. Assume, then, that the integral above is cut off at some
maximum value of the momentum A (called the “UV cutoff”), say of order
10 TeV.

a. What is the value of the vacuum energy density pyac, in units of
g/ cm’.

b. What value should A have in order that py,. matches the observed
value of the “dark energy”, of order pgak ~ 1072 g/cm?>. Express
A both as a high-energy scale cutoff and as a short-distance cutoff.

c. What is the ratio of py,c for A ~ Mpanck t0 Odark?

d. Note that the zero-point energies of phonons — the zero point
energies of the quantized collective sound oscillations of nuclei
in a crystal — are given, up to simple numerical factors counting
the numbers of polarizations (which we won’t worry about here)
by an expression similar to the above. This is because phonons
are massless scalar fields propagating with the speed of sound
instead of speed of light. Notice that this difference is irrelevant
as ¢ appears in Ey,c simply: k is a wavevector and wy = ck — a
frequency (secretly multiplied by 7, of course). In the case of
phonons, however, we are well aware that a cutoff scale exists
and we understand well its nature: it is given by the interatomic
separation, as the notion of phonons does not make sense for shorter
wavelengths. Now take kpnax = A ~ 1/ag, with ag of order the Bohr
radius and estimate the energy density of the zero point fluctuations
in a crystal. Compare your result to the typical rest energy (i.e.
mass) density of crystals.

The results from the first three items above lead to a puzzle com-
monly referred to as the “cosmological constant problem”. There
are various proposals for its solution, ranging from cancellations
between the contributions of high and low momentum oscillators,
anthropic principle (multiverse) considerations, modifications of
gravity at long distances, to name a few. The issue awaits your
input!

Answer for Exercise 1.2



1.6 PROBLEMS.

Part a.  'To make a bit more sense of the unit conversions required, let’s
insert factors of 7, ¢ back into the mix temporarily

&Pk ho
B ¥ [ st

h(4 k
g (7;) e m
2m)°2 Jo (1.49)

h ()
=Vi——— f wdw
2n)2c3 Jo

I 4
v
42m)2c3

SO

EVaC — 1
V3 1672

Pvac =

(hw) (9)3 (1.50)

c

Observe that [w/c] = 1/L so we have energy/L3 as desired. With the
following conversion factors ([25])

leV=178x10"3¢g

1.51
1eV)™' =1.97x 107 cm (1.51)

we have

(1eV)* = 1.78 x 1073 g/(cm)® =2.3x 107" g/(cm)?,

3
(1.97>< 10—5)

(1.52)
and
3__ Lt 4 _ 18 4
1g/(cm)’ = 3% 10-19 (eV)" =43x10°°(eV) (1.53)
The vacuum energy density at the 10 TeV cutoff is therefore
_ 1 13 1 \4 -19 3 4
Pvac = @(10 eV)' x23x 1077 g/(cm)’/(eV) (1.54)

=1.4x10% g/(cm)>.

This seems extraordinarily large to me, especially given the intuitive de-
scription of vacuum as empty.

13
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Part b.  The equivalent cutoff associated with the dark energy density is

A= (167r2p)1/4
B 1/4
= (167% x 107 g/(cm)?) (1.55)
= (1677 x 107 g/(cm)* x 4.3 x 10" (eV)4/(g/(cm)3))1/4
=9.1x107%eV.

(In contrast with the vacuum energy density, this seems extraordinarily
small.)
As a distance scale (wavelength), this is

2

A= —
k ,
2 (1.56)

T 91x103eV
=1.4%x10"%cm.

x 1.97 x 107 (eV)(cm)

Part c.  The Planck mass is

leV

Mptanek = 22X 1075 g x ——
Planck = 22X 10 8 X R X 103 g (1.57)

= 1.2x 10%¢V,
so the energy density ratio is
4
28
Prvac (Planck) _ (10 CV)

Pdark (102eV)*
=1 0120 )

(1.58)

This is an extraordinary difference, but what it means is not clear to me.

Part d.  Mathematica workbook attached.
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LORENTZ TRANSFORMATIONS.

2.1 LORENTZ TRANSFORMATIONS.

The goal, perhaps not for today, is to study the simplest (relativistic) scalar
field theory. First studied classically, and then consider such a quantum
field theory. How is relativity implemented when we write the Lagrangian
and action?

Our first step must be to consider Lorentz transformations and the
Lorentz group.

Spacetime (Minkowski space) is R>! (or R*~"1). Our coordinates are

(ct,xl,xz,x?’) = (ct,r). 2.1)

Here, we’ve scaled the time scale by ¢ so that we measure time and
space in the same dimensions. We write this as

=0 x X2 50, (2.2)

where u = 0, 1,2, 3, and call this a “4-vector”. These are called the space-
time coordinates of an event, which tell us where and when an event
occurs.

For two events whose spacetime coordinates differ by dx°, dx', dx?*, dx>
we introduce the notion of a space time interval

ds? = 2di* = (dx")? = (dx*)? = (dx>)?

= 23: gudx'dx”

u,v=0

(2.3)

Here g, is the Minkowski space metric, an object with two indexes that
run from 0-3. i.e. this is a diagonal matrix

1 0 0 O
0 -1 0 O

8uv ~ (2-4)
0 0 -1 0
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ie.
goo =1
2; z :1 2.5)
g3 = -1

We will use the Einstein summation convention, where any repeated
upper and lower indexes are considered summed over. That is eq. (2.3) is
written with an implied sum

ds* = gdx'dx’. (2.6)
Explicit expansion:
ds* = guvdx'dx’

= goodxodxo + glldxldx1 + gzgdxzd)c2 + g33dx3dx3
= ()dx%dx" + (- Ddx'dx' + (-1)dx*dx* + (-1)dx>dx>.

2.7)

Recall that rotations (with orthogonal matrix representations) are trans-
formations that leave the dot product unchanged, that is

(Rx) - (Ry) = x'R"Ry
= XTy
=X- y’

(2.8)

where R is a rotation orthogonal 3x3 matrix. The set of such transfor-
mations that leave the dot product unchanged have orthonormal matrix
representations RTR = 1. We call the set of such transformations that have
unit determinant the SO(3) group.

We call a Lorentz transformation, if it is a linear transformation acting
on 4 vectors that leaves the spacetime interval (i.e. the inner product of 4
vectors) invariant. That is, a transformation that leaves

unchanged.
Suppose that transformation has a 4x4 matrix form

xXH = A*,xY (2.10)



2.1 LORENTZ TRANSFORMATIONS.

Figure 2.1: Boost transformation.

For an example of a possible A, consider the transformation sketched in
fig. 2.1. We know that boost has the form

X+ vt
X= ——
V1 =v%/c?
y=y
, 2.11)
=2
. !+ Ww/cHx
V1 -=v%/c?
(this is a boost along the x-axis, not y as I'd drawn), or
] 1 Ve o ol
ct V1-12/c2 1 =122 ct’
X v/c ! 0 0f|x
= \/1—\/2/62 \/1—112/62 ) (2.12)
y 1 0 y,
¢ 0

Other examples include rotations (1% = 1 zeros in 1%, 2%, and a
rotation matrix in the remainder.)
Back to Lorentz transformations (SO(1, 3)"), let

xXH = AFxY

2.13

= Ay 13)
The dot product

X 'Y = gy N px"yP (2.14)

= gvpxyyp,

17



18 LORENTZ TRANSFORMATIONS.

where the last step introduces the invariance requirement of the transfor-
mation. That is

8vp = g,uKAﬂvAKp- (2.15)

Upper and lower indexes ~ We’ve defined
P () (2.16)

We could also define a four vector with lower indexes

Xy = gy (2.17)
= (ta _xl s _xz’ _x3)
That is
xp = x°
X1 = —xl
N (2.18)
Xy = —x
X3 =—x.
which allows us to write the dot product as simply x*'y,,.
We can also define a metric tensor with upper indexes
1 0 0 O
o ~ 0 -1 0 O (2.19)
0 -1 0
0 0 0 -1
This is the inverse matrix of g,,, and it satisfies
88w = 0 (2.20)
Exercise: Check:
gy = x,y”
_ v
A (2.21)

= g'uyxuyv
= éﬂvx/tyv
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Class ended around this point, but it appeared that we were heading this
direction:

Returning to the Lorentz invariant and multiplying both sides of eq. (2.15)
with an inverse Lorentz transformation A~!, we find

g A7), = g A (AT

N (2.22)
= gya/\#v,
or
(A—l) = Ay (2.23)
v

This is clearly analogous to RT = R~!, although the index notation obscures
things considerably. Prof. Poppitz said that next week this would all lead
to showing that the determinant of any Lorentz transformation was +1.

For what it’s worth, it seems to me that this index notation makes life
a lot harder than it needs to be, at least for a matrix related question (i.e.
determinant of the transformation). In matrix/column-(4)-vector notation,
let x’ = Ax,y" = Ay be two four vector transformations, then

X - y/ — x/TGy/

= (A9 GAy (2.24)
= xI(ATGA)y
= x! Gy.
o)
ATGA =G. (2.25)
Taking determinants of both sides gives —(det(A\))*> = -1, and thus
det(\) = 1.

2.2 DETERMINANT OF LORENTZ TRANSFORMATIONS.

We require that Lorentz transformations leave the dot product invariant,
thatis x-y=x"-y’, or

x#g,uvyv = x/#g,uvylv- (2.26)
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Explicitly, with coordinate transformations
X = AP
yH = Aﬂp)’p

such a requirement is equivalent to demanding that
Mgy’ = NpxP gy Ny

= W A%ugop Ny,

or

guv = N u8apN\P,
multiplying by the inverse we find

v

g A7) = A%ugap (A7)

= Aauga/l
= g/larAa/z-

This is now amenable to expressing in matrix form
(GA D = (GA),

= (GAN)H
= (ATG)u,

or

GA™' = (GA).

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

Taking determinants (using the normal identities for products of deter-

minants, determinants of transposes and inverses), we find

detc@ydet(N™") = detGydet(N),
or

det(A)? =1,

(2.33)

(2.34)

or det(A)> = +1. We will generally ignore the case of reflections in

spacetime that have a negative determinant.



2.3 PROBLEMS.

Smart-alec Peeter pointed out after class last time that we can do the
same thing easier in matrix notation

X = Ax
’ (2.35)
Yy =Ay
where
’ ’_ T ’
Xy =) 6y (2.36)
= xTATG Ay,

which we require to be x -y = x"Gy for all four vectors x, y, that is
ATGA =G. (2.37)

We can find the result eq. (2.34) immediately without having to first
translate from index notation to matrices.

2.3 PROBLEMS.

Exercise 2.1 Lorentz transformation. (2015 psl.1)
A Lorentz transformation x* — x’* = A# x" is such that it preserves the
Minkowski metric 7, meaning that 7, x*x” = 1, x"*x’” for all x.

a. Show that this implies that
My = Nor Ay (2.38)

b. Use this result to show that an infinitesimal transformation of the
form

A, =84, + W (2.39)

is a Lorentz transformation when «*” is antisymmetric i.e. "’ =
—w". (Note that there an antisymmetric 4 X 4 matrix has six param-
eters, as does a Lorentz transformation - 3 rotations and 3 boosts -
so the counting works out).

c. Write down the matrix form for «*, that corresponds to a rotation
through an infinitesimal angle 6 about the x*-axis.

d. Do the same for a boost along the x!-axis by an infinitesimal
velocity v.

Answer for Exercise 2.1

21
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Part a.  The dot product of the transformed coordinates is

IV

Dy XX = 1y N g XN g2 (2.40)
= UGTAO_yATvxﬂxv,

where the last step is just a change of indexesu — o,v —» 7, — u, — v.
The identity eq. (2.38) can be read off directly.

Part b.

T]O'T/\(TIUATV =Nor (60-;4 + wo-ﬂ) (6TV + (UTV)
= (e + o) (57 + 07)

= 77,u‘r(STV + 77,u‘erv + wT,uéTv + wTﬂwTV (2.41)
= Ny + Wy + Wy + W'y

=Ny + Wpy — Wyy + O(wz)
= Ny

Partc.  Witha y(z) =1, y]% = —1 metric, a rotation in the x-y plane around
the z-axis can be written as

yix' + 7222 5 (yix' + yp?) @2

= (lel + 7’2)52) (cos 0 + y2y1 sin ) (2.42)
= y1x' cos 6 + 217 cos 6 + y2x' sin6 — y1x” sin,

or
x! _ cosf —sinf||x! ’ (2.43)
x? sinf cosf ||x?
so in the small angle approximation, with a o, ¥ y2,y3 basis, we have
0

-0 (2.44)

S o © O
oS O O O



2.3 PROBLEMS.

Part d.  For the boost the rotation is also an exponential

71x' +y0x” — (yix! +yoxl) erone
= (ylxl + yoxo) (cosh @ + yyy; sinh @)
= lxl cosha + Oxo cosha + oxl sinha + 1x0 sinh «,
Y Y Y Y
(2.45)

or

o] ; 0
[xl} _ lcosha/ s1nha/] lxl] (2.46)

X sinha cosha||x

The rapidity angle @ can be related to velocity by considering a space-
time difference in position
40

x!

A

, (2.47)

[cosh aAx° + sinh @Ax!

sinh @Ax® + cosh aAx!

For a particle fixed at the origin in the unprimed frame (i.e. Ax! = 0V?),
we have

A X _|cosh aAx® (2.48)
x! sinhaAx° | .
In particular
Axll
A0 = tanh a. (2.49)

If the unprimed frame is moving at velocity v along the x-axis, then the
primed frame is moving at —v, or

—v = tanh a. (2.50)
Noting that cosh? @ — sinh? @ = 1,
)
2 sinh” «
V= —, (2.51)
1 + sinh? @

SO

sinh? a(v2 - 1) =2, (2.52)

23
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or
sinha = +———. (2.53)
V1-12
We also have
2
cosh®a = v 5+ 1
R

Picking the negative sign in eq. (2.53) to match eq. (2.50), we have

xo/ 1 1 —v[[x
H 1[ 1”} 2.55)

In the small velocity limit, this gives

0 —v 0 0
P 00 (2.56)

0 00

0 00



CLASSICAL FIELD THEORY.

3.1 FIELD THEORY.

The electrostatic potential is an example of a scalar field ¢(x) unchanged
by SO(3) rotations

x - X = Ox, (3.1)

that is
¢’ (x) = p(x). (3.2)

Here ¢’ (x’) is the value of the (electrostatic) scalar potential in a primed
frame.

However, the electrostatic field is not invariant under Lorentz transfor-
mation. We postulate that there is some scalar field

' (xX') = p(x), (3.3)

where x’ = Axis an SO(1, 3) transformation. There are actually no stable
particles (fields that persist at long distances) described by Lorentz scalar
fields, although there are some unstable scalar fields such as the Higgs,
Pions, and Kaons. However, much of our homework and discussion will
be focused on scalar fields, since they are the easiest to start with.

We need to first understand how derivatives d,¢(x) transform. Using the
chain rule

Op(x)  0¢’(x')
Ot OxH
i a¢/(x/) ox’Y
oxY O
o’ (x") y
= 6x’)‘c’ N (A pxp) (3.4)
_0p'(X)
- ox"” A/l
_ 3

ox" H:
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Multiplying by the inverse (A‘l)yk we get

9 w0
T = (A7) e (3.5)

This should be familiar to you, and is an analogue of the transformation
of the

dr-Vy=dr' -Vy. (3.6)

3.2 ACTIONS.

We will start with a classical action, and quantize to determine a QFT. In
mechanics we have the particle position g(¢), which is a classical field in
140 time and space dimensions. Our action is

S = fdt£(t)
X (3.7)
= fdt(EQZ - V(q)).

This action depends on the position of the particle that is local in time.
You could imagine that we have a more complex action where the action
depends on future or past times

S = fdt'q(t')K(t' -1, (3.8)

but we don’t seem to find such actions in classical mechanics.

3.3 PRINCIPLES DETERMINING THE FORM OF THE ACTION.

o relativity (action is invariant under Lorentz transformation)
e locality (action depends on fields and the derivatives at given (%, X).

o Gauge principle (the action should be invariant under gauge trans-
formation). We won’t discuss this in detail right now since we will
start with studying scalar fields. Recall that for Maxwell’s equations
a gauge transformation has the form

¢—>¢+x.A (3.9)
— A -Vy.



3.4 PRINCIPLES (CONT.)

Suppose we have a real scalar field ¢(x) where x € R4, We will be

integrating over space and time f dtd®'x which we will write as f d?x.

Our action is

S = f d®x (Some action density to be determined ) (3.10)

The analogue of ¢? is

oo \({ dp v .
= 6”(;5(9,,(/).
This has both time and spatial components, that is
¢ = > — (V) (3.12)

so the desired simplest scalar action is

S = fddx(¢2—(\7¢)2). (3.13)

The measure transforms using a Jacobian, which we have seen is the
Lorentz transform matrix, and has unit determinant

d'x’ = dx|det(A™")| = d'x. (3.14)

3.4 PRINCIPLES (CONT.)

e Lorentz (Poincaré : Lorentz and spacetime translations)
e Jocality

e dimensional analysis

e gauge invariance

These are the requirements for an action. We postulated an action that
had the form

f dxd,00", (3.15)

called the “Kinetic term”, which mimics f dtg® that we’d see in quantum
or classical mechanics. In principle there exists an infinite number of local
Poincaré invariant terms that we can write. Examples:

27



28 CLASSICAL FIELD THEORY.

e 0,¢0'¢
o 3,00,0"H¢p
o (8,00"9)

o f($)0upd¢
* f(#,0,40"¢)
* V(¢)

It turns out that nature (i.e. three spatial dimensions and one time di-
mension) is described by a finite number of terms. We will now utilize
dimensional analysis to determine some of the allowed forms of the action
for scalar field theories in d = 2, 3,4, 5 dimensions. Even though the real
world is only d = 4, some of the d < 4 theories are relevant in condensed
matter studies, and d = 5 is just for fun (but also applies to string theories.)

With [x] ~ ﬁ in natural units, we must define [¢] such that the kinetic
term is dimensionless in d spacetime dimensions

1
dx] ~ —
[dxl ~ 77 (3.16)
[0.] ~M
so it must be that
[¢] = M2/ (3.17)

It will be easier to characterize the dimensionality of any given term by
the power of the mass units, that is

[mass] =1
[d9x] = —d
[0.]=1 (3.18)
[¢] =(d-2)/2
[S]=0.

Since the action is
S = f d'x (L9, 040)). (3.19)

and because action had dimensions of 7, so in natural units, it must be
dimensionless, the Lagrangian density dimensions must be [d]. We will
abuse language in QFT and call the Lagrangian density the Lagrangian.



3.4 PRINCIPLES (CONT.)

341 d=2

Because [0,¢0"¢] = 2, the scalar field must be dimension zero, or in
symbols

[¢] = 0. (3.20)

This means that introducing any function f(¢) = 1 + ag + b + c¢> + - - -
is also dimensionless, and

[f($)0,00"¢] = 2, (3.21)

for any f(¢). Another implication of this is that the a potential term in the
Lagrangian [V(¢)] = 0 needs a coupling constant of dimension 2. Letting
w1 have mass dimensions, our Lagrangian must have the form

F($)0,00" ¢ + >V (9). (3.22)

An infinite number of coupling constants of positive mass dimensions for
V(¢) are also allowed. If we have higher order derivative terms, then we
need to compensate for the negative mass dimensions. Example (still for
d=2).

1 1
L= 100090+ i2V@) + - 50,000 09 + (9,00"9)" 329

The last two terms, called couplings (i.e. any non-kinetic term), are exam-
ples of terms with negative mass dimension. There is an infinite number of
those in any theory in any dimension.

Definitions
e Couplings that are dimensionless are called (classically) marginal.

o Couplings that have positive mass dimension are called (classically)
relevant.

e Couplings that have negative mass dimension are called (classically)
irrelevant.

In QFT we are generally interested in the couplings that are measurable
at long distances for some given energy. Classically irrelevant theories
are generally not interesting in d > 2, so we are very lucky that we don’t
live in three dimensional space. This means that we can get away with

29
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a finite number of classically marginal and relevant couplings in 3 or 4
dimensions. This was mentioned in the Wilczek’s article referenced in the
class forum [26]'

Long distance physics in any dimension is described by the marginal
and relevant couplings. The irrelevant couplings die off at low energy.
In two dimensions, a priori, an infinite number of marginal and relevant
couplings are possible. 2D is a bad place to live!

342 d=3.

Now we have

1
(4] = 5 (3.24)
so that
[8ﬂ¢8"¢] = 3. (3.25)

A 3D Lagrangian could have local terms such as
L= 0,00' ¢ +m*¢* + 127 + Wt + (W) 1/24° + g0, (3.26)

where m, u,u”’ all have mass dimensions, and A is dimensionless. i.e.
m, u, 1’ are relevant, and A marginal. We stop at the sixth power, since any
power after that will be irrelevant.

343 d=4.

Now we have

[¢] =1 (3.27)
so that
[0up0' @] = 4. (3.28)

In this number of dimensions ¢k8ﬂ¢8" is an irrelevant coupling.
A 4D Lagrangian could have local terms such as

L = 8,00 ¢ +m*¢* + ug® + 19", (3.29)

where m, u have mass dimensions, and A is dimensionless. i.e. m, u are
relevant, and A is marginal.

There’s currently more in that article that I don’t understand than I do, so it is hard to find
it terribly illuminating.
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344 d=5.

Now we have

3
[¢] = 7 (3.30)
so that
[0,00"$] = 5. (3.31)

A 5D Lagrangian could have local terms such as
1
L = 0,00"¢ + m*¢* + Jup® + —¢". (3.32)
7

where m, u, y’ all have mass dimensions. In 5D there are no marginal cou-
plings. Dimension 4 is the last dimension where marginal couplings exist.
In condensed matter physics 4D is called the “upper critical dimension”.

From the point of view of particle physics, all the terms in the La-
grangian must be the ones that are relevant at long distances.

3.5 LEAST ACTION PRINCIPLE.
Now we want to study 4D scalar theories. We have some action

S[¢] = f d*xL($,0,9). (

w
W
)
p—

Let’s keep an example such as the following in mind

Kinetic term

1
f:. 634

all relevant and marginal couplings

The even powers can be justified by assuming there is some symmetry that
kills the odd powered terms.

We will be integrating over a space time region such as that depicted in
fig. 3.1, where a cylindrical spatial cross section is depicted that we allow
to tend towards infinity. We demand that the field is fixed on the infinite
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Figure 3.1: Cylindrical spacetime boundary.

spatial boundaries. The easiest way to demand that the field dies off on the
spatial boundaries, that is

lim ¢(x) — 0. (3.35)

[Ix]| —o0

The functional ¢(x, f) that obeys the boundary condition as stated extrem-
izes S [¢].
Extremizing the action means that we seek @(x, ¢)

0S[¢] =0 = S[¢ + 6] = S[4]. (3.36)

How do we compute the variation?

S = f d'x (LD + 66,0, + 3,09) — L (¢, 0u0))

(0L oL
= fd x((’)qﬁ o + a(a#@(@#dgb))

B a (9L oL B oL
- Ja x( 500 O (6(6,,@‘”5) [ a(a,lcb))&b)
B d oL oL f 3 oL
- Ja ’“%( o~ a@«p)) ") (’“(a<aﬂ¢)5¢)
If we are explicit about the boundary term, we write it as
3 oL o [9L
Jaex(o(s50) -7 5w

oL 7T oL
= | & 5 —fddzs-(—é).
f RFTE N I Il VT

but 8¢ = 0 at t = +T and also at the spatial boundaries of the integration

(3.37)

(3.38)

region.
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This leaves

oL oL
6S[pl = | dx6¢|— — y=——
01= [ so( 35 “a«n¢J (339
= 0Vég.
That is
0 0
oL 5 0L _ (3.40)
0 9(09)
This is the Euler-Lagrange equations for a single scalar field.
Returning to our sample scalar Lagrangian
1 1 20 A4
== - = - —¢". 3.41
L 2(’)”(;58”(15 7 () 4¢ (3.41)

This example is related to the Ising model which has a ¢ — —¢ symmetry.
Applying the Euler-Lagrange equations, we have

oL

0L _ 24 343
% m-¢p — A¢°, (3.42)
and
oL 0 1
= -0, 00"
a@@a@@@¢¢)
1 1
= -0"¢p———0, —0,0———0,08""
370 5,070 * 399 55,5 009% (3.43)
1 1 ”
= Ea'u¢ + §3v¢g "
= ¢
so we have
0= % B oL
o Mo0,u) (3.44)

= —m’¢p — A¢p° — 9,0"¢.
For A = 0, the free field theory limit, this is just

3,0" ¢ +m*¢ = 0. (3.45)
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Written out from the observer frame, this is
Outd — V2 + m*¢p = 0. (3.46)
With a non-zero mass term
(0 = V? +m?) ¢ =0, (3.47)

is called the Klein-Gordan equation.
If we also had m = 0 we’d have

(0 - V*)¢ =0, (3.48)
which is the wave equation (for a massless free field). This is also called

the D’ Alembert equation, which is familiar from electromagnetism where
we have

(04 = V?)E =0
) (3.49)
(04 - V) B =0,
in a source free region.
3.6 PROBLEMS.
Exercise 3.1 Four vector form of the Maxwell gauge transformation.
Show that the transformation
AF — AR+ 'y (3.50)

is the desired four-vector form of the gauge transformation eq. (3.9), that
is

J = 0 F" = 8,F". (3.51)

Also relate this four-vector gauge transformation to the spacetime split.
Answer for Exercise 3.1

OuF"™ = 0, (0#A” - 0,4™")
=0, (0" (A" + 0"x) - 0, (A" + 0"x)) (3.52)
= O, F" + 8,00y — 0,0" 'y
= 9, F",



3.6 PROBLEMS.

by equality of mixed partials. Expanding eq. (3.50) explicitly we find

AH = AR 4 Oy, (3.53)
which is
"= A=A+ % = ¢+ 4
¢ Ch k)( d+x (3.54)
A'-ek:A’ =A +(9)(=(A—VX)-ek

The last of which can be written in vector notation as A’ = A — Vy.

Exercise 3.2 One dimensional string. (2015 ps1.3)

A string of length a, mass per unit length o~ and under tension 7 is fixed
at each end. The Lagrangian governing the time evolution of the transverse
displacement y(x, 7) is

= Lol 32)

where x identifies position along the string from one end point.

a. By expressing the displacement as a sine series Fourier expansion
of the form

y(x, 1) = f Z sm q,,(t) (3.56)

show that the Lagrangian becomes
(0, T(mr)2 )
L= =g, - == . 3.57
;(2% (5) @ (3.57)

b. Derive the equations of motion. Hence, show that the string is
equivalent to an infinite set of decoupled harmonic oscillators, and
find their frequencies.

Answer for Exercise 3.2

. . 2 .
Part a.  First observe that the functions {x|n) = \/j sin (nnx/a) are
a

orthonormal over the [0, a] domain.
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36 CLASSICAL FIELD THEORY.

(njn) = 2 f sin® (nrx/a) dx
aJo
1
= Zf sin? (nmu) du
0
1
= f (1 —cos (2nmu)) du
0

=1,

(3.58)

and forn # m

(njm) = 2 fa sin (nnx/a) sin (mnx/a) dx
0
1
= Zf sin (nmu) sin (mmu) du
0

— _1 fl (eimru . e—inﬂu) (eimnu _ e—imﬂu) du (3.59)
2 Jo

1
= - f du (cos((n + m)mu) — cos((m — n)mu))
0

nrx\ . (max\{o . . T (nm\ (mr
Jsin (%5 ) (Gt = 5 () (75 na)
a 2 2\a a

2 (7 ) awan)

h

1 Il

Mz 52
S =

s QI
— =
SIASTE 8
19 5[
3 2

3 =

| ’ )
NN Q‘
—_—

Il
ek
—_——— =
e
—_~
-

N

~

[\S]

|
Sl
—_—
8|5
~——
<
SN
~————

(3.60)

Part b.  We have an Euler-Lagrange equation for each g,. The conjugate
momenta are

oL
0gn

= o4 (3.61)

We also have

L 2
L") g, (3.62)
0qy a




3.6 PROBLEMS.

so we have

. T (nm\2
dn = —— (—) qdn. (3.63)
o

These have solutions

gn(t) = As exp (ii \/z Tt]. (3.64)
g a

The angular frequencies are

T
Wn =27V = 4| — =, (3.65)
o a
so the frequencies are
T
Vo = 2| = (3.66)
o 2a

Exercise 3.3 Maxwell Lagrangian with mass term. (2015 ps1.6)

(You can probably find this worked out in lots of places?, but it’s good
practice with working with four-vectors, so I strongly encourage you to do
it yourself!) Consider the Lagrangian for a real vector field A*:

2
L= —%aaAﬁ(x)aaA'B(x) + %aaAa(x)aﬂAﬁ(x) + %Aa(x)A“(ﬁ..m)

a. Show that this leads to the field equations

(ap (O + 1) = Badlp) AP(x) = 0, (3.68)
and that the field A%(x) satisfies the Lorentz condition
0,A%x) = 0. (3.69)

(NB: If you are not careful with your indices and Einstein sum-
mation convention you will get yourself hopelessly messed up
here.)

2 Including Hw1 from 2018 QFT I exercise 3.4, although that problem didn’t include the
mass term.
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38 CLASSICAL FIELD THEORY.

b. Consider the limiting case of a massless field, u — 0, and identify
the field A# with the scalar and vector potentials of electrodynamics:
A* = (¢, A), where

E=-Vo— — 3.70
¢ o (3.70)
B=VxA. 3.71)

Show that the field equations reproduce two of Maxwell’s equa-
tions, and that the other two hold as identities given the definitions
of E and B in terms of ¢ and A.

Answer for Exercise 3.3

Part a.  First rewrite the Lagrangian slightly

2
L= —%aaAﬁ(x)aaA'B(x) + %gTﬁaaA“(x)aTAﬁ(x) + %Aa(x)f(%(i‘l)

to compute
oL .
o = " (—0uAy + gn0aA”(x)
AL (3.73)
- 0AY
= +N2Av’
or

0 = —0A, + 8,0,A% — 1A,

= (—gm (D + qu) + avaa)Aa' (3.74)

After a sign switch and change of indexes, we have the desired result.
Operating on this with 9" gives

0= (00 (0 +12) + 0a) A
= —129,A°.

(3.75)

Unless ¢ = 0 we must have a zero four-divergence d,A% = 0.



3.6 PROBLEMS.

Part b.  Inthe u — 0 case with zero divergence, the field equation is just

0="01A,
= 0%0,A,
= 979,A, — 8,04, (3.76)
=0 (0aAy — 0,Aq)
= 0"F .

Now consider the various index combinations of the electromagnetic
field F,,. When one index is zero we have the electric field components

For = 00Ax — 0rAo

_ oA"Y 9 3.77)
or  Oxk
=E- €.

The remaining are the magnetic field components, for example

F1o = 01A2 — 0hAq
= —01A% + 9,A" (3.78)
=-B- €es3.

By cyclic permutation we have

B3 = -Fpp
B = —Fy3 (3.79)
By = -F3

The field relation eq. (3.76) for v = 0 expands to

0=0"Fi (3.80)
- -V-E,

which is one of the (source-less) Maxwell equations.
For the other indexes, the expansion is like

0= (TZFQI
= 82F21 + 83F31 + aoF()l
= —02(B3) — 03(=B2) + 9,E; (3.81)

OE
=|—=— -V xB|-e.
(3w
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Using cyclic permutation, we must have

OE
0=—-VxB, 3.82
ar (3.82)

another of the source free Maxwell equations.

Exercise 3.4 Electrodynamics, variational principle. (2018 Hw1.I)

Given the action In terms of the four-vector potential A, the Lagrangian
density of the electromagnetic field, interacting with a charged particle of
mass m can be written as follows:

1
S = f d4x(—ZFWF’”—A# j“)—m f ds. (3.83)
all spacetime worldline

Here, F},, = 0,A, — 0,A, field strength tensor. The current j* is the current
corresponding to the particle which can be written as:

Hx)=e f dX*(1)6W(x - X (1)), (3.84)
worldline

where 6®(x) is a four-dimensional delta function. All indices are raised
and lowered by means of the metric tensor g, and its inverse gt”.

The last term in eq. (3.83) is the relativistic kinetic energy of the particle
and the integral is over the particle’s worldline, X*(7). Note that 7 is a
parameter used to describe the particle’s location along the worldline. One
can take this parameter be equal to 1%, so that X#(r) means (X° = x°,
X' = Xi(x9)), where X(x9) is simply the trajectory of the particle (such
a choice of parametrization can be useful, but is not required). Notice
also that the term involving the current in eq. (3.83), after substitution of

eq. (3.84) simply becomes

—e f dX*()A(X(1)) , (3.85)

worldline

which is the usual coupling of a charged particle to the electromagnetic
field (choose the 7 = x° parameterization of the worldline to see this).
Whether you use this form of the one of eq. (3.83) depends on the problem
you’re solving (this is a hint).

The dynamical degrees of freedom in the action eq. (3.83) are the four-
vector potential A, and the particle position X*(7).



3.6 PROBLEMS.

Use the identification A? = ¢, the scalar potential, and (A, A%, A3) =
A, the vector potential, to convince yourself that Fo; = Ey, Fpp =
E,, Fo3 = E, and that Fj = —-B,, F31 = -By, Fy3 = —B,.

Prove the identity
€0, Fop = 0, (3.86)

and use this to show that the source free Maxwell’s equations can
be recovered directly from the definition of F;;.

. Write the Euler-Lagrange equations obtained when varying eq. (3.83)

with respect to A,,. Show that they can be cast in terms of the field
strength tensor F and j. Note that when varying with respect to A,
the current is kept fixed. Using the E and B fields as the appropriate
components of F, show that the Euler-Lagrange equations for A,
from eq. (3.83) reduce to the Maxwell equations familiar to you
from electrodynamics.

. Finally, write the Euler-Lagrange equation varying with respect

to the worldline of the particle. Show that they give mdU" /ds =
eF*U,, where U* = dX*/ds is the four velocity of the particle and
F is, of course, taken at the particle’s position. Convince yourself
that this is the relativistic Lorentz force equation.

The point of this problem is to make sure you remember/learn
how the action principle works in electrodynamics. The two cou-
pled equations, obtained by varying w.r.t. A, and X* complete the
equations of classical electrodynamics. Feel free to use [12], or
[20] while solving this problem.

Answer for Exercise 3.4

Part a.

With k = {1,2,3},

Z Forer = Z (OoAk — 0kAo) €
X X

oAk 9¢
=—Z o axk ) (3.87)
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which is the conventional scalar, plus vector potential definition of the
electric field in natural units. For the magnetic field, it’s easier to work
backwards

B=VxA

. 3.88
= € k0iA’ex, (5:59)

or, for each cyclic permutation of i jk = {1, 2, 3}

B = 0;AF - 5 A

Part b.  To prove eq. (3.86), we use explicit expansion and an index
exchange

= %0, (0oAp — OpAa)
= &%0,0,A5 — €"P10,05A, (3.90)
= 26"%3,0,Ap,

but because the partials are symmetric in va (assuming sufficient continuity
of the fields components), and because the sum is antisymmetric in the
same indexes, the result is zero as claimed.

Expanding eq. (3.86) explicitly for v = 0, we find Gauss’s law for the
magnetic field

0

Eijkaiij
=-9,B (3.91)
=-V.B,

Forv=1

0 = 0,F30 + 03F0 + 0oF 23

0B 1 ouE? dB!

= —0E" + O3E" - — - (3.92)
0B,

:_V EX_ ’
(VX E)y - —




and forv =2

0= 83F01 + (9()F13 + (91F30

OB?
=E' '+ — - 9,E°
3L + o 1

=(VXE) +6By
a Yoo

and forv =3

0=00F12 + 01F2 + 0,F01
0B’
=——— —9E> + &E'

ot
0B
= (VxXE), - —
(X )Z 6t’

SO
0B

0=VXE+ —,
ot

which is Faraday’s law.

3.6 PROBLEMS.

(3.93)

(3.94)

(3.95)

Part c.  For the source dependent Maxwell’s equations we vary the
action. Recall that for a single field Lagrangian density £ = L(¢, 0,,¢) the
variation of the action § = f L can be found by Taylor expansion

58 = f d*x6.L

(L f4 0L
_fdxa¢5¢+ x505.5009)

Y, f“ oL
—fdxa¢5¢+ dx6(8V¢)aV6¢

_ [ 0L f 4 oL _f 4 oL
‘f Txgg00+ dxav(@(@mf”) dxa”(@(@m))‘w

[P (0
‘f d m(«% av(t?(am)

)

(3.96)

Assuming that d¢ is stationary at the boundaries killed the second integral

in the second last step. Setting 65

= 0 gives the Euler-Lagrange equations
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for a Lagrangian density that is dependent on a single field and its first
derivatives
0L ( oL )

— -0, | —— 3.97
a6 ~ 50,9 .

For a multiple particle field we must Taylor expand around each field

variable, so we have one equation for each field
oL oL

tealiit)

0= = _
0A,, 8(8,A,)

(3.98)

We wish to apply eq. (3.98) to the field Lagrangian density
1 ,
L= _ZF”VFW - A, (3.99)

and vary with respect to the fields A, (or A*).
The first order partials are trivial

oL

= 3.100
oA, J ( )

but we have to do a bit more work for the rest

oL 1 0
e F,
00,A) 20 0B,A) T
1 d
= _—_F%# wAg — 0pAqg
> 6(6VA,,)(6 5~ OpAa) (3.101)
1 1
— __FVH
S+
= F",

Putting the pieces together, we have

0=—-j*-0,F", (3.102)

or

O, F¥ = . (3.103)

For v = 0 this is

9, F" = (3.104)



or

p= akaO
= —0rFro
= Ok Fox
=V-E,

which is Gauss’s law.

Jjt=0,F"
= 60F01 + 62F21 + 63F31
OE,
= - ot + azBZ - 83By

=(-E+VxB)-¢

j=08,F"
= 63F32 + (90F02 + 51F12

= 6B OE, d:B
= 03Dy ot 1Dz

=(-E+VxB)-e;

J=08,F"
= 50F03 + (91F13 + 52F23
OFE
= —a—tz +6lBy —asz

=(-E+VXxB)-ej3,
SO

J:—a—E+V><B,
ot

which recovers the Ampere-Maxwell equation.

3.6 PROBLEMS.

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)
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46 CLASSICAL FIELD THEORY.

Part d.  The portion of the action that is dependent on the worldline is

S = f (~mds — eA,dx"). (3.110)
worldline
Let’s consider the variation of each of these terms separately, starting
with dds
6fds = 6f \JdX+dX,
1
= | —2dX*6dX
f 2ds H
.G

= | —doX, 3.111
f ds K ( )

dx+ dx+
d|—oX,| -d|—|d0X
f(ds “) (ds) H

dx+ dx+
- | d|—X,.
As f ( ds ) K

—0X,
ds "

The endpoints of the worldline are presumed to be stationary, which kills

the boundary term, leaving just

6fds:—de"6Xﬂ. (3.112)

Now let’s compute the variation of the potential term

5 f A dX* = f (6A,)dXH + f A, SdXH
- f 0,A,6X"dX" — f dA,5X"

- f 0yA, X" Ukds — f 8,A,dX" 5X*

= f (0,4,U"6X” - 8,A,U"6X") ds (3.113)
- f (6,4, — 8,A,) UM5X"ds

:fFVﬂU”(SXVdS

= f FMU,6X,ds.

Here the boundary term has been dropped again after integration by parts,
and an index switcheroo was done to factor out a common U*6X”ds term



3.6 PROBLEMS.

from the integrand, and we finish off with a set of raising and lowering
operations on all the matched indexes. Putting the pieces back together we
have

S8 = f (-mU” - eF"U,) 6X,ds
(3.114)

- f (mU* - eF* U, ) 6X,uds.

Requiring 6§ = 0 for all worldline path variations 6X,, means that the
equations of motion are

dU#
mﬁ =€Fﬂva, (3]15)

as expected.
To unpack this and obtain the conventional Lorentz force equation
we need to relate the proper time derivatives to the time of a stationary

observer
d dr d
— - 3.116
ds dsdt’ ( )

The stationary observer’s world line is X* = (¢,x), and the spacetime
interval on that worldline is

ds* = di* — dx?, (3.117)
or
2 2
ds dx
—| =1-= =1-v% 3.118
(dt) dr v (3.118)
Equation (3.116) can now be written as
d 1 d d
4 _ 4_,2 (3.119)
ds  \[1 _y2dt dt
In particular, the proper velocity is
Ut =vy(,v). (3.120)
First inserting ¢ = 0 into eq. (3.115) now gives
d
a_nm = eFOkUk
ds 1-— 2
v (3.121)

= (—-1)2eFo U*
=¢E - vy,
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or

d_m __ 5.y (3.122)

dt V1 -v2
This is the timelike portion of the Lorentz force equation in non-covariant
form and natural units (cf. [12] eq. (17.7).)
For the u # 0 case, we find

d v ;
y—m— =eF"U,e;
dt 1—v2
=eFlej—c > Flley (3.123)
1<(j#k)<3
=cE + eejkiBivkejy
= ¢E + ev X By,
or
d
d—[t)zeE+ev><B, (3.124)

which is the Lorentz force equation in natural units in terms of p =
d(ymv)/dt, the relativistically correct momentum from the viewpoint of a
stationary observer. =



CANONICAL QUANTIZATION

4.1 CANONICAL QUANTIZATION.

The harmonic oscillator described by

1 w?
L= -Y2
21 4

which has solution § = —w?q. With

oL

Pza—q—q’

the Hamiltonian is given by

H(p,q) = pq = Lljp.q)
2

1 w
=pp-sp+—q

2 2
2 27

“.1)

(4.2)

(4.3)

In QM we quantize by mapping Poisson brackets to commutators.

(4.4)

One way to represent is to say that states are Y (§), a wave function, g acts

[p.q] =i
by g

gY = q¥(q@)
With

5 i 0

p - a ’
SO

(4.5)

(4.6)

(4.7)
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Returning to the field Lagrangian.  Let’s introduce an explicit space time
split. We’ll write

L:jﬁ%cw¢m0f—lwaxmﬁlﬁ&) (4.8)
2 O 2 ’ 27 ) '

so that the action is

S = fdtL. (4.9)

The dynamical variables are ¢(x). We define

SL
0(dog(x, 1)) (4.10)
= (?0¢(X, )]

= ¢(x,1),

n(x,t) =

called the canonical momentum, or the momentum conjugate to ¢(x, t).
Why 6?7 Has to do with an implicit Dirac function to eliminate the integral?

_ 3 (% Ah(% F)
H_jﬁx@@ﬁaxn Qamﬂm> )
_ 3 o 1 2, 1 2 ”Lz 2 .
—fd X((ﬂ(x,t)) 2(7T(X,t)) + 2(V¢) t59 )
or
3. (1 2, 1 » m 2
H= fd X E(ﬂ'(X, )" + §(V¢(x, )"+ 7(¢(x, 1)) (4.12)
In analogy to the momentum, position commutator in QM

[ﬁi’ Qj] = —i0;j, (4.13)

we “quantize” the scalar field theory by promoting r, ¢ to operators and
insisting that they also obey a commutator relationship

[7(x, 1), ¢(y, )] = —i6® (x - y). (4.14)

Note that in this commutator, the fields are evaluated at different spatial
points, but at the same time.



4.2 CANONICAL QUANTIZATION (CONT.)

4.2 CANONICAL QUANTIZATION (CONT.)

Last time we introduced a Lagrangian density associated with the Klein-
Gordon equation (with a quadratic potential coupling)

1 1 m? 5 2
L= 3x(= 2 (Vo) - —¢* - Z¢*. 4.1
fd X(2(80¢) S (Vo) = —¢"—2¢ (4.15)
This Lagrangian density was related to the action by

S = f dtL = f ditd’x.L, (4.16)

with momentum canonically conjugate to the field ¢ defined as

oL oL

n(x, 1) = 5D = D) 4.17)
The Hamiltonian defined as
H= f & x (r(x. DP(x. 1) - L), (4.18)
led to
(o Voo 1 5 Ay
H—fdx(zn +2(V¢) +2m¢ +4¢). (4.19)

Like the Lagrangian density, we may introduce a Hamiltonian density #
as

H= f dxH(x, 7). (4.20)
For our Klein-Gordon system, this is
1 1 1 A
Hx, 1) = = + =(Vo)? + —m*¢* + ~¢*. 4.21
(x,1) 27T+2( ¢)+2m¢+4¢ (4.21)

Canonical Commutation Relations (CCR)
We quantize the system by promoting our fields to Heisenberg-Picture
(HP) operators, and imposing commutation relations

|72, 0, d(y. )] = =isP(x - y), (4.22)
which is analogous to

|pi- ;] = -is3;. (4.23)
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52 CANONICAL QUANTIZATION

To choose a representation, we may map the ¥ of QM — to a wave
functional Y[¢]

d(y. 0¥ [¢] = ¢(y. ¥ [¢] (4.24)
This is similar to the QM wave functions
G:¥dqh) = ¥ (@)

0
piYdqh) = —ia—‘f(p)
qi

(4.25)

Our momentum operator is quantized by expressing it in terms of a
variational derivative

ax,t) = —i (4.20)

op(x, 1)

(Fixme: I'm not really sure exactly what is meant by using the variation
derivative ¢ notation here), and to quantize the Hamiltonian we just add
hats, assuming that our fields are all now HP operators

/—l&“. (4.27)

R 1 1. 1 5.
R(x,1) = 57%2 + E(V¢)2 + 5ngbz +7

OM SHO review  Recall the QM SHO had a Hamiltonian

1
P+ szef, (4.28)

[p.4] = —i, (4.29)
and that HP time evolution operators O satisfied

90 -i[n.o). (4:30)

In particular

T =ilni)
2
= i~ [a%.7] 4.31)
- % i)



4.2 CANONICAL QUANTIZATION (CONT.)

and
—_— '1
= 15 Pq (4.32)

Applying the time evolution operator twice, we find

L. dp
—§=— = —-w?g. 4.33
ar? =4 -1 (4.33)
We see that the Heisenberg operators obey the classical equations of
motion.
Now we want to try this with the quantized QFT fields we’ve promoted
to operators

%(x, 0 =i|A,a(x, 1)
—i [ @3 |(vow) e

2
vi [y [brae) + i [ @[awtaco).

(4.34)

Starting with the non-gradient commutators, and utilizing the HP field
analogues of the relations [¢", p] = nig"~", we find

[ @s]ewaw] = [ @ipmedx-y = 2. @35)

f Ly|(dw)" 7] = f Pydig(yy’s? (x —y) = 4ip(x)’. (4.36)

For the gradient commutators, we have more work. Prof Poppitz blitzed
through that, just calling it integration by parts. I had trouble seeing what he
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was doing, so here’s a more explicit dumb expansion required to calculate
the commutator

f ByVEy) R (x) = f &y (V(y) - Vd(y)) 7#(x)
_ f PyVH) - (VHx))
_ f Py - (Y@ + i60(x - )
= [ (7 (pwacw)- o) + 90 - 96V x-)
- f (¥ (70w + 00 x =) - V) + V)
V5O - y)
- f i) (Vo) - V)
+2i f dyV(y) - V6D (x - y)
_ f PyREOVZH(y) + 2i f &3V
(V- y)Va(y)) - 2i f dys¥(x ~ )V ()
= f EyR(X)V2H(y) + 2i fa d*yoP(x — y)n

- Va(y) — 2iV2(x).
(4.37)

Here we take advantage of the fact that the derivative operators V = Vy
commute with 7(x), and use the identity V - (aVb) = (Va) - (Vb) + av?b,
so the commutator is

f &y (Vo) a(x)| = 2i ﬁ d*ys(x — y)i - V(y) — 2in5§§@)
= —2iV?$(x),

where the boundary integral is presumed to be zero (without enough
justification.) All the pieces can now be put back together

%fr(x, 1) = V23(x, 1) — m*(x, 1) — A (X, 1). (4.39)



4.3 MOMENTUM SPACE REPRESENTATION.

Now, for the ¢ time evolution, which is much easier

9 .1y = i .0x.0)
1

= i [n ). )] (4.40)
- ,-% f Py(=20)#(y, P (x - y)
= #(x,1)

d2 . ~

ﬁqb(x,t)zvzqﬁ—mz‘?—/w?’- (4.41)

That is
5V 40+ A =0 e

which is the classical Euler-Lagrange equation, also obeyed by the Heisen-
berg operator ¢(X, 7). When A = 0 this is the Klein-Gordon equation.

4.3 MOMENTUM SPACE REPRESENTATION.

Dropping hats, we now consider the momentum space representation of
our operators, as determined by Fourier transform pairs

&3 R
ox.0) = [ S Lm0

() (4.43)
d(p,1) = f 4’ xe”PXp(x, 1).

We can discover a representation of the delta function by applying these
both in turn

b(p.1) = f & _ip'xf T4 i (444)
o(p,1) = xe (271)38 o(q, .
SO

f B xe** = 216D (A) (4.45)

Also observe that ¢*(x, 1) = ¢(x, 1) iff ¢(p, ) = ¢*(—p, 1).
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We want the equations of motion for ¢(p, t) where the operator obeys
the Klein-Gordon equation

(67 - V2 + m?) p(x,1) = 0 (4.46)

Inserting the transform relation eq. (4.43) we get

f (Czlng;eiplx (¢, 0 + (p* + m?) $(p, ) = 0, (4.47)
or
9(p. 1) = ~wj (p. 1), 4.48)
where

wp = [p? + m?. (4.49)

The Fourier components of the HP operators are SHOs!
As we have SHO’s and know how to deal with these in QM, we use the
same strategy, introducing raising and lowering operators

d(p, 1) = (e ap + e“¥'a’ ) (4.50)

pr
Observe that

@T(_p’ l‘) — ; (eiwptajp + e—iwptap)

A /2a)p (4.51)
= ¢(p, 1),
or
¢'(p.1) = ¢(-p. 1), (4.52)

so ¢(p, ) has a real representation in terms of a.
We will find (Wednesday) that

|aq. a}] = @n)6%p - ). (4.53)
which are equivalent to

|%(®. 0, 8(a, D] = =isP(p - @). (4.54)
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4.4  QUANTIZATION OF FIELD THEORY.

We are engaging in the “canonical” or Hamiltonian method of quantization.

It is also possible to quantize using path integrals, but it is hard to prove
that operators are unitary doing so. In fact, the mechanism used to show
unitarity from path integrals is often to find the Lagrangian and show
that there is a Hilbert space (i.e. using canonical quantization). Canonical
quantization essentially demands that the fields obey a commutator relation
of the following form

[7(x.0). 4(y.0)] = ~isV(x — y). (4.55)
We assumed that the quantized fields obey the Hamiltonian relations

d¢ _ .

E =1 [H, ¢]

dr (4.56)

E =1 [H, 7T] .

We were working with the Hamiltonian density

_1 21 2 nizZ 114
I = S ) + S(Vox.0) + 26> + T4, (4.57)

which included a mass term m and a potential term (1). We will expand all
quantities in Taylor series in A assuming they have a structure such as

F) =’ + 1A' + 22 + 33 + - - (4.58)

We will stop this perturbation theory approach at O(4?), and will ignore
/1

functions such as e~
Within perturbation theory, to leaving order, set A = 0, so that ¢ obeys
the Klein-Gordon equation (if m = 0 we have just a d’Lambertian (wave
equation)).
We can write our field as a Fourier transform

B(x.1) = f LD ogp,1 (459)
> (27'[')3 9 ’ o
and due to a Hermitian assumption (i.e. real field) this implies
¢*(p.1) = ¢(—p, ). (4.60)

We found that the Klein-Gordon equation implied that the momentum
space representation obey Harmonic oscillator equations

$(p, 1) = —wpd(p, 1), (4.61)
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where wp = 4/p? + m?. The solution of eq. (4.61) may be represented as
1

~\/2wq

This is a general solution, but imposing aq = b_q ensures eq. (4.60) is
satisfied. This leaves us with

#(q, 1) = (e7v'aq + e“4'by). (4.62)

(e‘iwqfaq + e"‘”q’aiq) ) (4.63)

$(q.1) =

2wq

We want to show that iff

|ag. a}| = @)’ 6®(p - @), (4.64)
then

[7(y, 1), ¢(x, )] = =i6 D (x —y), (4.65)
where everything else commutes (i.e. [ap, aq] = |a}, a:;] = 0). We will

only show one direction, but you can go the other way too.

&dp ‘ ~ ont ,
o(x,1) = f—e’p'x (e_“"l’tap + e""l’ta_p) (4.66)
(2m)?

A /2wp

3
= ifqueiq'x (_e_iwqtaq + eiwqtaiq) . (467)



4.5 FREE HAMILTONIAN.

The commutator is
[n(y, 1), ¢(x,1)]
3 3
— lf d p d q wqeip~y+iq-x X

(2n)3 \2wp (27)3 \2wq

—iwqt iwgt T —iwpt iwpt T
[—e aq +e“ial e ay + e“Pla p]

a3 a3 _
_ f p 9y ePYHax

(2n)3 \[2wp (27)3 \2wq

(_ei(a)p—a)q)t I:aq, aip] + ei((uq—(up)t [aiq’ ap]) (4.68)

d3 d3 ) )
— lf p q wq(zﬂ)3elp-y+lq'x X
(2n)3 \[2wp (27)3 \2wq

(_ @00t §3) (g + p) — @@ g®)(_q — p))

3
=2 f dprpeip-(y—x)
(2m)72wp

= —i6"(y - x),

which is what we wanted to prove.

4.5 FREE HAMILTONIAN.

We call the A = 0 case the “free” Hamiltonian. Plugging in the creation
and annihilation operator representation we have

1 1 2
H= fd3x(§7r2 + E(V¢)2 + m?&)
1 3 d3p d3q ei(p+q)-x
:Efdxz 3 2n) /—/—(
(2n)° (2n) 2wp +[20q
. v . (4.69)
. (a)p)(wq) (_e—zwptap + ezwptalp) (_e—zwqtaq + elwqta1 q)

—iwpt iwpt T —iwqt iwgt T
—p-q(e ap + e“?a’ )(e Vag +e qaq)

2 ( —iwpt iwpt T iw, la)tT
+m (e pap+€ Pa p)(e qaq+e a q))
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An immediate simplification is possible by identifying a delta function
factor [ d®xe®*9%/(2m)3 = 6@ (p + q), so

H= l (dst];ﬁ (_(wp)Z (_e—iwptap+etwpt Tp) (_e—iwpta_p+eiwpta£))

4 (pZ + m2) (e—ta)ptap + ezwptan) (e—ta)pta_p + eta)pta;)

1 d&p 1 L o
3 i i
+a_pap( M W) +apa 12)(1 + 1)+ aipa_pa)lz)(l + 1))

(4.70)
When all is said and done we are left with
dp w +
H= | i (a pd-p + apay). 4.71)

A final p — —p transformation ! in the first integral, puts the free Hamilto-
nian (4 = 0) into a nice symmetric form

dp (

n )3 apap + apa;f,) 4.72)

Hy =

Vacuum energy density.  From the commutator relationship eq. (4.64)
we can write

apay = afap + 20)*6V(p - @), (4.73)
SO
d’p T 1 3.6
Hy = f el (apap + 5@y sP0)]. 4.74)
The delta function term can be interpreted using
n)*6¥(q) = f d’xe'9*, (4.75)
so when q =0
2n)*6D(0) = f dPx=V. (4.76)
We can write the Hamiltonian now in terms of the volume
&p d*p wp
Hy = +V —_— 4.77
0= ] Gaprr sV | Gana “7D

L[5 dp = 0 [ dp = 08 [ dp.
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4.6 QM SHO REVIEW.
In units with m = 1 the non-relativistic QM SHO has the Hamiltonian

(4.78)

If we define a position operator with a time-domain Fourier representation
given by

(ae_iwt + aTe"“”) , (4.79)

where the Fourier coefficients a, a' are operator valued, then the momen-
tum operator is

(—ae—"“” +al l""f), (4.80)

(4.81)

By inspection it is apparent that the product a’a will be related to the
Hamiltonian (i.e. a difference of squares). That product is

¥ w 1 1
aa= 5 q+—pll9——p
iw iw
w 1 1
i)
w iw
1

% (p2 + w’g? —a)),

or

H = w(a%a + %) (4.83)
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We can glean some of the properties of a, a’ by computing the commutator
of p, g, since that has a well known value

i=q,p]

iw > . » .
_ [ae iwt +aTelwt, —aqe” @t +aTelwt]
2w

- L (fea]-[a'a)

= i[a,aT],

(4.84)

SO

[a, aT] = 1. (4.85)

The operator a'a is the workhorse of the Hamiltonian and worth studying
independently. In particular, assume that we have a set of states |n) that are
eigenstates of a'a with eigenvalues A,,, that is

a‘alny = A, In). (4.86)
The action of a’a on a' |n) is easy to compute

a'ad’ |ny = al (aTa + 1) |y

= (A, + Da' |n),

(4.87)

so A, + 1 is an eigenvalue of a' |n). The state a' |n) has an energy eigenstate
that is one unit of energy larger than |n). For this reason we called a' the
raising (or creation) operator. Similarly,

a‘aaln) = (aa’ - 1) aln) (4.88)
=1, — Daln),

so 4, — 1 is the energy eigenvalue of a |n), having one less unit of energy
than |n). We call a the annihilation (or lowering) operator. If we argue that
there is a lowest energy state, perhaps designated as |0) then we must have

al0) =0, (4.89)

by the assumption that there are no energy eigenstates with less energy
than |0). We can think of higher order states being constructed from the
ground state from using the raising operator a'

(@

In) = N

|0) . (4.90)
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47 DISCUSSION.

We’ve diagonalized in the Fourier representation for the momentum space
fields. For every value of momentum p we have a quantum SHO.
For our field space we call our space the Fock vacuum and

ap 0y =0, 4.91)

and call a; the “annihilation operator”, and call a; the “creation operator”.
We say that a;(, |0) is the creation of a state of a single particle of momentum
il
p by ay.
We are discarding the volume term, a procedure called “normal order-
ing”. We define

a'a+aa' ¥
i ————— =a
2

a. (4.92)

We are essentially forgetting the vacuum energy as some sort of unobserv-
able quantity, leaving us with the free Hamiltonian of

d3p T
H0=fwwpapap. (493)

Consider

d3
Hoal 10y = f L wpalapal 10y

(2n)3

= d’p wpd., (aTa +2n)6P(p - )) [0)

- (2m)3 P=p \"q™p P—q (4.94)
d3

= | Grpents (@07 + 20’67 ® - ) 10)

= wqay [0).

Question: s it possible to modify the Lagrangian or Hamiltonian that

we start with so that this vacuum ground state is eliminated? Answer:

Only by imposing super-symmetric constraints (that pairs this (bosonic)

Hamiltonian to a fermionic system in a way that there is exact cancellation).
We will see that the momentum operator has the form

d’p
P = f mpa;ap. (4.95)
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We say that apaq |0) is a two particle space with energy wp + wy, and
(ap)"(a)"10) = (a)" 10y ® (ag)" [0), (4.96)

is a m + n particle space.
There is a connection to statistical mechanics that is of interest

— 1 _En/kBT
(E) =~ Z Ene

4.97
1 ~-A/kgT 7 ( :
=~ ) (e Ay,
n

so for a SHO Hamiltonian system
1 N
(E) =~ Z e 5T (o] A |n)

1 _E,/kgT f
=~ Z e (n|wa'an) (4.98)

n
w

ew/kBT _ 1

<a)a7a

>kBT ’

which is the kg T ensemble average energy for a SHO system. Note that
this sum was evaluated by noting that (n|a’a |n) = n which leaves sums of

the form
Soond" 3 nd'!
2= d" - o @"
d (4.99)
=a(l —a)—
« a)da (1 - a)
_a
T l-a

If we consider a real scalar field of mass m we have wp = +/p* + m?, but
for a Maxwell field E, B where m = 0, our dispersion relation is wyp = [|p||.

We will see that for a free Maxwell field (no charges or currents) the
Hamiltonian is

.
Hytaxwenl = Z f Sy (4.100)
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where i is a polarization index.
We expect that we can evaluate an average such as eq. (4.98) for our
field, and operate using the analogy

aa' =a'a+1

To_ o f
apdp = apap + V.

(4.101)

so if we rescale by V3

ap = +Vaap, (4.102)
then we have commutator relations like standard QM
aid' =a'a+ 1. (4.103)

So we can immediately evaluate the energy expectation for our quantized

fields
43 4
i = [ o)

d3
= #wp V3 <&I,ap>

f dp Wp
=V .
(2m)3 ewn/keT _ |

Using this with the Maxwell field, we have a factor of two from polarization

d’p lIpll
(277)3 ewp/kBT _ 1’

(4.104)

UMaxwell — 2V3

(4.105)

which is Planck’s law describing the blackbody energy spectrum.

4.8 PROBLEMS.

Exercise 4.1 Scalar field creation operator commutator.

In [13] it is stated that the creation operators of eq. 2.78

1 &k i ikx
=32 ) @y (¢(x’ 0+ 5 Q0o 0))e (100

associated with field operator ¢ commute. Verify that.
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Answer for Exercise 4.1

[ak’ a/m]
1
T 420

fd?) xd3ye—ik-xe—im-y x

[«»(x, 0) + —dop(x, 0), ¢(y, 0) + — o(y, 0)}
Wi W

i1 —ik-x —im-
:Z(zn)6fd3m3ye e
1 1
[¢(x, 0), —080¢(y, 0) | + | —0dop(x, 0), (. 0)])
Wy Wi,
i

1 ‘ ; i i
_! & xd3ve KXo my §¥x—v)— —P(x —
4 (2m)° f e e w x-¥) wy (=)

m

— _1 1 fd3xe—i(k+m)~x L _ i
4 (2m)6 Wy W

11 1 1
= - 3( - )5<3>(k+m>
4 2n) \wj—k| Wik

=0.
(4.107)

Exercise 4.2

In [13] it is left as an exercise to expand the scalar field Hamiltonian in
terms of the raising and lowering operators. Let’s do that.
Answer for Exercise 4.2

The field operator expanded in terms of the raising and lowering opera-
tors is



4.8 PROBLEMS.

¢()C) =f d3k (ak th+aT lkx)
(271')3/2 \/Zwk
&k I
— ake—twkHth +a1t iwgt—ik-x
f(Zﬂ)3/2 2wy ) (4.108)

T iu)kt+ik~X)
a_ke

3
_ f d’k ( Ak
(2m)3/2 2wy,
3
_ f d’k ake_iwkz + aikeiwkt) eik-x.

(2m)3/2 \ 2wy,

Note that x and k here are both four-vectors, so this field is dependent
on a spacetime point, but the integration is over a spatial volume. This
is discussed in the class notes but also justified nicely in [19] using the
structure of the raising and lower operators. The trick of reversing the sign
above is also from that text.

The Hamiltonian in terms of the fields was

H=- fd3 (7 + (Vo)? + 17¢?). (4.109)

The field derivatives are

T=0 ¢f (ake—ia)kl +aT eiwkt) eik-x
(277)3/2 N K

(4.110)
Pk | . .
_ (27[)3/2 (Uk( —age —iwyt + aikelwkl‘) e1k~X,
and
On =0 f$ (ake—iwkl +a eiwkl) oKX
n® — Un -k
(2m)32 N 20 @.111)

Pk K
Qm>32 Py

Introducing a second set of momentum variables j, the momentum

(ake—lwkt + aikelwkt) elk~X.

portion of the Hamiltonian is
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1 3.2 _ 3 3Bk
2fdx = 2(2n)3fd fdd

+ aTJelw, )(_ake iwyt + aikezwkt) etk-xesz
W Wy _ .
— 2 fd3 dSk J ( aje iwjt +aTJe“"f)(—ake iwgt

+ aike"wk’) Ik +j)

—lu)J[

2
1 w . . .

— _E fd3 "k (_a_ke—twkt + alelwkt) (_ake—lwkt + ajkelwkt)
1 . . N
=-1 fd3kcuk (a aTez“”” + a_gage e — alzak - a_kal_k) .

4.112)

For the gradient portion of the Hamiltonian we have

1 3 2 _
Efdxw(») -

3 3 3 nn L pmiwjt
2(27r)3 fd fd -k " (Z k](‘he /
W wk n=1

+ aTJezw] ) (ake iwyt + aikezwkt) eij.xeik.x
1 .
- f & jdsk—J
2 4
wj(uk
k(aje iwjt 4 a e’wf )(ake_i‘”"t + ai ei“”‘t) 6(3)(j +Kk)
1 .
- _ d3k k2 (Cl K€ —iwyt + arelwkt) (ake—lwkt
2 N
Wi W
+ aikeiw"t)
f ¥ 1 lekl‘ + a_gage —2iwgt + alak

+ a_kaik).
(4.113)

1
4

Finally, for the mass term, we have



4.8 PROBLEMS.

1fd3xﬂ2¢2 — /J_ZL fd?’xfd:”jd?’k;(a'e_iwﬂ
2 2 2n)3 \/47 j
ijk
+ a:ieia)jt) (ake—i(ukt 4 ajkeiwkt) eij.xeik.x

2
— % fd3]d3k (aje—l(o_,'t + a"_'jelel‘) (ake—la)kl
\JAw Wi

+ aikeiwkt) §PG +k)

2 1 ) . ‘ .
= ,u? d3k—2 (a_ge ™ + alte"‘”‘t) (ake_"”"t + aike"”kt)
Wi
,u2 1 : R
=7 f hk— (a_kake_z"”"’ + aikal:{ez"“"t + a_kaik
wk
+ a:;ak) .
(4.114)
Now all the pieces can be put back together again
1 1
H=- f d*k— (
4 Wi,
- w,% (aikalteZi‘”"’ + a_gage Hor — alak - a_kaik)

+ k2 (aikalezu”“ + a_gage O 4 alak + a_kaik)

+ 2 (a_kake_zm”‘t + aika;e%w"t + a_kaik + altak))

1 3 1 Tt 20 2 2 2
=7 fd kw—k(a_kake 1kt (—wk +Kk*+u )

(4.115)

+ a_gage Her! (—a),% +K+ qu)
+ akal (w% + k% + ,uz)
+ altak (a)% + K+ ,112)).

With a)]% = k? + 2, the time dependent terms are killed leaving

V(5 t
H= f &k (axa) + afa). (4.116)

Exercise 4.3 Complex scalar field. (2018 Hwl.II (from [19] pr. 2.2))

Consider a complex scalar field with action §' = f d*x ((’)”gﬂa“q’) - mzq’fqﬁ).
When doing the variational principle consider ¢ and ¢ as independent,
rather than their real and imaginary parts (this is equivalent, but more

convenient).
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a. Show that H = f d’x (7TT7T +Vo' Vo + m2¢7¢) and that the Klein-
Gordon equation is obeyed by ¢ and ¢'.

b. Introduce complex amplitudes, diagonalize the Hamiltonian, and
quantize the theory. Show that the theory has now two sets of
particles.

c. Write the charge conserved due to the global U(1) symmetry,
| BE (st
Q_jﬁxz@n n$). 4.117)

in terms of creation and annihilation operators and find the charge
of the particles of each type.

Answer for Exercise 4.3

Part a.  Classically, evaluating the Euler-Lagrange equations gives us

oL
a5 =Y
0L
= oo’
00u?) ! (4.118)
% = _ 2¢ .
¢t
oL
T oy,
a@en !
so the equations of the field are respectively
0,0M¢" = —m?¢’
w9 %¢ (4.119)
0,0'p = —m~¢.

These are Klein-Gordon equations for each field variable ¢, ¢' as expected,
although this can be made more explicit written out explicitly in the
stationary observer frame

(0 = V> +m?) ¢ =0

(6,, v, mz) - (4.120)

To find the Hamiltonian, note that the Lagrangian density written out
explicitly is

L =009 00 — (V§') - (V§) — m*¢’ g, 4.121)
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so the conjugate momentum densities are

_ 0L g
i R

The Hamiltonian (including a “pg” term for each of ¢, ¢") is

H= fd3x (7180¢ + 7 9pe" — I)
= fd3x (7r7rJr +ain—an’ +(Ve') - (Vo) + m2¢f¢) (4.123)
= f Ix(r'n+ (Vo' - (V) + m¢7¢)

Part b.  To canonically quantize the fields, we promote the fields to oper-
ators, demand that we have commutators for conjugate pairs of operators

[0, 7(¥)] = [¢'x0), 7 ()] = i6P (x — y), (4.124)

and require all the other operator pairs ¢¢", 77", ¢' 7, g7 commute.

Before diagonalizing the Hamiltonian, let’s verify that applying com-
puting Hamilton’s equations using such quantized operators recovers the
Klein-Gordon equations we expect.

9¢
E(X’ t)

i[H, (x)]

i [ ([ . 000] + [ 9, 03 T

+|¢f )|

=i f Py’ (y) [n(y), p(x)]
=i f dyr' (y)(=i)sD(y - x)

= 7' (x)
(4.125a)
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;
f%um=4&w®]

ﬂijW0wnw®hb@&w%wﬁﬁ®T
~i [ @y [ @6 w]
=i [ @y v

= m(x)
(4.125b)

on .
E(X, 1 =1ilH, n(x)]
—i [ @y ([ ] + 9,6/ - Vo9, 7
+ 0?0, 7(x)
— i [ @396 9, (679 + 269 [009). 200
—i [ @ (7,610 9,68y - x) + 6 0oy - x)
:_ffﬂw(w@-mwwmyw%»«wwwn
— " (x)

= V' (x) - m*¢’ (x).
(4.125c¢)
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8@—’?(;(, N =i[Hx (x|
- f &y (|7 e ] + [Vy6' @) - Voo, 7' )]
+? [¢T o). 7 )
=i [ @ (7,000 9y ¢ 0.5 00] + 0 [ 6 (905" 0
=i [ @3(%,00) - 9,067y - )+ 10(0isy - x)

=- f &y (Vy- (6P (y - x)Vyo(y)) - 6P (y - x)V3(y)) - m*p(x)
= V2p(x) — m>$(x).

(4.1254d)
This recovers the Klein-Gordon equations
62
(ﬁ -V 4+ m2)¢(x, N=0
(4.126)

(8—2 -V2+ mz)qﬁ(x HN=0
or? ’ ’
consistent with eq. (4.120) found by evaluating the classical Euler-Lagrange
equations.

Somewhat cavalierly, the divergence integrals of the delta function above
were assumed to be zero. One possible justification for killing the delta
function divergence integrals above first transforms those into surface
integrals

fv &*yVy - (69(y -0V f(y)) = fa ) dAysD(y —X)hy - Vy f(y), (4.127)

after which one argue that this is non-zero only when X is on the boundary,
so if we let the boundary go to infinity, it is zero everywhere, regardless of
the normal derivative of the function being operated on?.

This was Prof. Poppitz’s argument. It’s not completely convincing to me, as it requires
integrating a delta function that may sit on the boundary. However, what is the meaning of
such a boundary integral, such as fom 6(x)dx? Apparently, such integrals are considered
well defined in field theory, and we’ll end up encountering these later too, and one of the
future problems will help us understand an interpretation.
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Diagonal basis for the Hamiltonian.  In class we saw that a momentum
space representation of ¢, r for the scalar single field Lagrangian simplified
the Hamiltonian considerably. Let’s assume a similar momentum space
representation of our field operator

(p.1) = (e P ap + e»'by). (4.128)

2wy

but will not make any a-priori assumption that the quantized field operator
¢ is Hermitian. We find the following spatial representation of the operator
¢ and it’s relations

d3 . 1 . .
P ipx (e_lwptap + eletb;) (4.129a)

(2m)° ‘ 2w
V4%¥p

¢)(Xa t) =

1

$Pp
S0 = f o
2n)3 /2wp

(e“P'ayy + e~ P'by) (4.129b)

W ~
_ p-x iwpt iwpt 1,1
Vo(x,1) = f T (7' ap + “*'b}) (4.129¢)

A /2wp

Bp o =D st
Voi(x,1) = f (zﬂ’;e—ll"" P_(eraf + e Pby)  (4.1294)

A /2wp

ap’

1) = ——
0 (4.129)
3 g ' . 129¢

_ 621 P3 J-ipx_1©p (em)pt al - e—lwpsz)
(2m) lzwp

\ ¢

i ,t -

' (X, 1) o
Pp oy i (4.129f)

—iwyt iwpt 1T
(—e Pap + e l’bp).

) (2n)? ’ 2w
p



4.8 PROBLEMS. 75

By inspection, we may read off the Fourier transform of ', which is

~ iw . .
(1) = 2 (~em Mgy + D). (4.130)

A /2a)p

which allows, with eq. (4.128), inversion for operators ay, bIT,

(4.131)
, [wp | - 1
bT _ —iwpt [ZZP "
p=€ 2 ¢ iijr
or, in terms of spatial operators
o w 1
ap = f d’ xe~PXeln! w/—p (¢(X, - —n'(x, t))
2 lwp
) ‘ ‘ wp [ . 1
az, = fd3xe'p'xe_""l” N -2 (¢'(X, 1)+ —n(x, t))
2 iwp
(4.132)

o 1
bp = fd3xe’p'xe’“’l” w/& (qﬁ(x, 1) — —n(x, t))
2 iwp
. . . 1 .
b£ = fd3xe_’p"‘e_""l” wlﬁ (¢5(X, 1+ —n'(x, t)).
2 iwp

We seek the commutators of all the eq. (4.132) Fourier coefficient operators,
which we expect to behave like creation and annihilation operators. By
inspection 0 = [ap, b;] = [ap, aq] = [bp,a:;] = [bp, bq], but the rest require
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evaluation. We expect 0 = [ap,bq| = [ap,bT] and explicit expansion
confirms this

o [y [w
[ap, by =fd3xd3ye_'p'xe’q'ye“”l"e“”q’ 713 qu

1 . " 1
[¢(X’ t) - _ﬂ-I (X’ t)’ ¢I (y’ t) - _ﬂ-(y’ t)]
lwp lg

— fd3xd3ye—1p~xezq~yezwptetwqt ,71’ [7‘1 %

1 1
(—_—i5<3>(x —y) = — ()6 (x - y)) (4.133a)
g iwp
= 1 f 3 xe' (AP X piwpt yiwgt N _ N 1
2 p®q wq | wp
j i 1 1
= (21)*6(q — p)y"¥'e“' \pug (_— + _)
wq Wp
=0,
[aT bT:I = fd3xd3 —iqy la)pt —iwqt wq
p7qf ye'® e / /
g 1 :
¢ (1) + (X, 1), $(y, 1) + —7r (v, 1)
Wp
faﬂxd%ye eIy pmiwpt =iyt , [wq
1
(+.—i5(3)(x -y)+ .—(—i)6(3)(x _ y))
g iwp
2 P\ s T wp
1 1
= 2n)’5(p — @' g (_ ) _) -0,
wq Wp

(4.133b)
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Finally, we expect that there are two pairs of non-zero commutators

[Clp, a;] = fd3xd3ye—1p-xetq'yetwpte—zwqt /71) [% %
Lo 1
¢(X’ t) - ._ﬂ- (Xa t)’¢ (ya t) + ._ﬂ(ya t)

3. —ipX lqy iwpt —iwqt
d*xd ye e'“Pe™ \Jwpwq X

NI>—‘

(,iza@)(x —y) - ._(_i)(;(z)(x _ y)) (4.134a)
lwg lwp

fd3xei(q—p)-xeiwpte—iwqt \/M (L + L)

Wq Wp

—_ N =

11
(2ﬂ) 8(q — p)e' e \Jwpwg (— + —)
w

q Wp
= <27r)36<q -p),

i / |w
[bpa b‘{l] = fd3xd3ye lqyelwpt —iwgt q

[¢ x,1) - —ﬂ(X 0, Py, 1) + —ﬂT(y, t)}

w,
fd3xd3ye —iqy yiwpt ,=iwqt [ , q

. . 4.134b
(.—zcs“)(x—y)—.—(—z)é“kx—y)) (4.134b)
la)q la)p
1 (s o o i 11
=y [ am( )
1 1
= —(2n)35<3>(p Q)eiwl it rpwa(_Jr_)

Wq Wp
= 2n)*s¥(p - q).

The [a;, a;] , [bT, bzl] commutators show that the fields may be represented
as a pair of independent creation and annihilation operators.
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Let’s compute the Hamiltonian representation next to verify that it
diagonalizes nicely with this representation. We use eq. (4.129) to find

fd3x7rT7T

:fd3 d3p d3q ipx —iqx__ P lwp lwq

N \/g

(_e—iwptap + eiwptb;:) (eza)qta(‘fl _ e—lwa’bq)

1 d : . , ,
i (2753 wp (e—t(uptap _ elwptb;) (etu)pta; _ e—zwptbp)
&*p
@2n)?

——wp (apap + bpr + 7wt (—pf ) + +e H P (g bp))

(4.135a)

f Bx (Vo' - Vo +m’pTo)

3
— lfd3 d p d C] z(q—p)-xx
2 (271)3 (277)3

d+m . . . .
(p-q )(ezwpta; +e—zwptbp) (e—lwqtaq + etwqtb(Tl)

V‘*’p‘“q
1 3 3) (p-q+ m?)
"2 fd (2 )35 @-p VwpWq *

iwpt T —iwpt —iwgt iwqt 1,1
(e Yay +e Pbp)(e Yaq +e qbq)

_ 1 d3p iwpt T —iwptp, —iwpt iwptb'l‘
== —a)p(e ap te p)(e ap +e p)

(2n)?

— 1 d3p T T iwpt (11T —2iwpt
== wwp (apap + bpby, + e (apbp) te (bpap))
(4.135b)
Summing eq. (4.135), we find the Hamiltonian has the expected diagonal

representation
1 (& + +

H=5 | SLwy(abap +apal + biby + bypby). (4.136)

(2n)?

or in normal form

d3
@np P

wp (abap + bybp) . (4.137)
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Part c.  Before diving into computation, it is worth deriving eq. (4.117)
manually, since the naive calculation using the current as derived in class
differs slightly. We can find the current/charge as stated in the problem if
our variation maintains the order of the conjugate pairs. The symmetry is
that imposed by the transformation

P(x) > e Pp(x) ~ (1 - i0/2)p(x)

. ) 4.138
¢ (x) = ¢ (x) = (1 +i6/2)¢" (x), 159

or

5p(x) = —éeqs(x)
; (4.139)
5¢" (x) = 59¢*<x>.

The Lagrangian is left unchanged by this transformation, so we can
determine the current directly by varying the action, but do so leaving the
order of the ¢ and ¢ terms in the Lagrangian unchanged

58 = f d*x5(0,0' ¢ — m*¢’ )
= [ @x(6(0,6") 0+ #6°6(0,0) - n* 307) 6 - 0" G0)
= f d*x (0, ((607)0¢) - (6¢7) (0u0"¢) + 0, (0" ¢700) - (3,0¢") 69
-m? (5¢") ¢ — m*¢’ (5¢))
f d*x0,, (50" ¢ + 4" 50) - f d* x50 ((9,0"¢) + m*¢)
- f d*x(0,0'¢" + m*¢") 69

= f d*xd, (66" "9 + 99" 50),
(4.140)

where the Euler-Lagrange equations for each of the fields has been imposed
to kill off the last two integrals. We are left with a current

H=06¢"Hp + P

; (4.141)
= 2 (6" @)~ (4")0).
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In particular

Flyes = 5 (6 (%) - (") 0)

: (4.142)
= % (¢Tﬂ”r - 7r¢).

This recovers eq. (4.117), and we are now set to compute the charge by
plugging in eq. (4.117)

i ¥
szfaﬁx((ﬂﬂ —7r¢)

i dp dq iw : . :
- de 14 q £ia-p)x q (ezwpta:; + e—lwptbp) (_e—zwqtaq

4 ) Y@y @np \@pig
; J &Ep dq ; iw :
" zwqth _ ifd3 4P Y9 ip-ox__ P ([ iwpt, T
eby) - e eyt \ﬁB;ZZi(e “p

—iwpt —iwqt iwqt 1,1
—e Pbp)(e Yaq +e ‘*bq)

L[ (o - ey )

iwpt T —iwpt —iwpt iwpt T
—(e Pa, + e Pbp)(—e Plap +e Pbp))

L[ &p (s t oyt F L it (pf gf _ T
= Q@A%%—%%+%%—%%+e%%%%—%%)
+ 2wt (—bpap + bpap))
L[ &p s i
= 3 2 (apap - bpbp) ,
(4.143)
or, in normal order
oL [ Lp (4 bib 4.144
Q—E W(apap— pp) ( )

To understand the action of the charge operator (a set of number operators)
we may apply it to the states corresponding to each creation operator. With
kYo = ay, [0)

; (4.145)
K)p = by 10},
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we find
0= 5 f s st~} 0
f(z )3 p pak |0)
B (i I))a ay (agap + 2m)°6% (k - p)) 10) (4.146)
1
- Qal 10)
1
5 K
and
&Pp o
ellon = f(z )3( p—b bp)b 10)
1 43 p .
"2 (27r)3b£bpbk 10)
1 . 4.147
=5 | Gt (e + ok -p)oy P
1
= =350
1
= _5 k), .

So, we could say that the particles associated with creation operator az;
have a (1/2) charge and particles associated with creation operator blT,
have a (-1/2) charge. However, the 1/2, as well as the sign itself, was
arbitrary, coming from the value of 6 used in the transformation of the
field. Therefore, it is probably more accurate to say that the agap portion
of the charge operator is associated with some unit of charge whereas the
b;bp portion of the charge operator is associated with a unit of charge that

has an opposite sign.

Exercise 4.4 Zero point energy, and Casimir force. (2018 Hwl1.V)

In class, when discussing the quantization of the real scalar field, we
found the sum of zero point energies of the harmonic oscillators (one per
each k ) into which we decomposed the field:

d*k  hwg
Qn} 2

Ezero point — =V; (4 148)
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Expression eq. (4.148) gives the zero point energy of the field in a spatial
volume V3. This energy is, of course, infinite and is usually discarded (as
we learned, by applying a “normal ordering” procedure) as unobservable.
Nevertheless, there are circumstances under which changes in the zero
point energy lead to measurable effects. The most celebrated example
is the Casimir effect 3, predicted by Casimir in 1948 [4] and discovered
experimentally in 1958 (see Lamoreaux’s more recent article linked to
in the “Summary of Sept. 25th class”). Another instance where this has
been “observed” (in numerical simulations) is the L* uscher term in the
confining string in QCD. Casimir energies generally also appear whenever
the topology of space(time) is changed and people have speculated that
dark energy may have something to do with that...

The Casimir effect can be described very simply (!): the zero point
energy of the electromagnetic field between two infinite conducting plates
is smaller than it would be in the absence of the plates. This is because the
boundary conditions on the plates eliminate some of the modes of the field
that would be otherwise present. The vacuum energy in the space between
the plates should be proportional to the area A of the plates, as well as to
h (as zero point energies are proportional to ). It can also depend on a,
the distance between the plates, and the speed of light c. By dimensional
analysis, the excess energy (negative) in the volume aA between the plates
should be

he he
AEvac(a) ~ —aA = - —A 3>
a a

(4.149)
where the aA factor is the volume, 7 has dimensions of energy X time,
c¢/a has dimensions of inverse time, and the extra factor of 1/a° is there
to make the dimension of energy right. Thus, to minimize E,,. the plates
“want to” get closer. In other words, there should be an attractive force per
unit area of the plates, called “Casimir pressure”

he
PCasimir ~ g > (4.150)

proportional to the inverse fourth power of the distance between the plates.
In what follows we shall calculate this force.

Notice that just like for the Planck derivation of blackbody radiation formula, where some
people would say that it does not imply that the electromagnetic radiation is quantized,
but only its sources (as radiation is emitted by the atoms of the cavity), there are similar
claims for the Casimir force (my take is to ignore these, as we know that the radiation is
quantized). See article by Lamoreaux that I put a link to online.
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We will use our real scalar massless field theory as a model for the real
thing (the electromagnetic field, that we have not formally learned how to
quantize yet). Casimir considered two infinite, conducting plates stretching
in the y, z plane and located at x = 0 and x = a, respectively; furthermore,
he used perfect conductor boundary conditions on the plates. These require
that the tangential component of the vector potential, A, vanishes at
the plates (in Coulomb gauge V - A = 0, A° = 0). Our two toy “conducting
plates” will be made of a “material” that requires that the scalar field ¢
vanish at the plates.

a. Show that the boundary conditions on the plates impose a quanti-
zation condition on the allowed values of field momentum perpen-
dicular to the plates, i.e. ky = nn/a,n = 0,x1,+2,--- [e.g., recall
your waveguide physics].

b. Consider now the contribution to the energy of the vacuum fluc-
tuations of the field in the space between the plates and find the
zero point energy per unit area of the plates... Consider now the
contribution to the energy of the vacuum fluctuations of the field
in the space between the plates and find the zero point energy per
unit area of the plates. To do this, replace the integral over k, in
eq. (4.148) by a sum over n, fdkx = (m/a) Y., [Hint: to save work,
use the fact that the correct expression should have the property
that as the plates are removed, a — oo, the energy (per unit volume)
should give back eq. (4.148)]. Does the resulting expression for the
zero point energy still diverge?

c. Show now, starting from eq. (4.148) , with integral replaced by
sum, that the difference between the zero point energies per unit
area, in the space between the plates in the presence of the plates
and without the plates is:

dk [k 1« n2m?
AEvac =h ~— K|~ = 24y —
(@) Cfo an[4+2;‘/k+ "
1 00 2.2
e T2
2 0 a

where, obviously, k is radial wave vector in y, z-directions.

(4.151)

d. The expression eq. (4.151) is still ill-defined, as every single term
is infinite
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Now, to make progress, we note that the idealization of perfect
conducting plates and the corresponding macroscopic boundary
conditions do not make sense for wavelengths smaller than the
atomic size. In particular, for frequencies above 1/ag (ag is of the
order of the Bohr radius) the conducting plates are totally invisible
for the electromagnetic field. To incorporate this in our calculation,
introduce a function f(k) into the integrand in eq. (4.151) such
that f(k) = 1 for k < 1/ag and f(k) = O for k > 1/agy, somehow
smoothly interpolating between these two values.

The integrals in eq. (4.151) thus become absolutely convergent—all
momenta larger than the inverse Bohr size are cut off.

Show that eq. (4.151) (with the cutoff f(k) as described in the
original problem spec) can be written as:

2 00 00
BE ela) = 2T [%F<0)+ZF<n)— fo dﬁﬂ(ilzi,
n=1

8a3

where

F(n) = foo duvVu + nzf((ﬂ'/a) Vu + n2). (4153)
0

e. To calculate eq. (4.152), use the Euler-Maclaurin formula:*

1 (o)
EF(O)+F(1)+F(2)+'“_fan(n)
a0 (4.154)
— 1B F' 0 lB F/// O
= 5P ()—54 O+...,
where B, = 1/6, B4 = —1/30, etc. are Bernoulli numbers, and

primes denote derivatives. Now, f(0) = 1 as stated above; further-
more, assume that all derivatives of our smearing function f(k)
vanish at zero (it is not difficult to construct examples of such
functions). Show that F’(0) = 0, F’”’(0) = —4, and that all higher
derivatives of F' vanish.

4 This formula is used to approximate sums with integrals. See, e.g., Wikipedia article for a
derivation by induction. Other, fun ways to proceed exist, my favorite is [9].
Most importantly, the result is independent of the method of regularization. “By definition”,
this is what we call a physical result in QFT (=cutoff independent). Notice the striking
difference with the E\,. of eq. (1.48), which inherently depends on the cutoff and can
not be made physical sense within QFT ... as you see, many lessons lurk in this “simple”
problem!
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Thus the “cutoff”” function f does not enter the final result—or the
fact that we assumed a cutoff at scales of order the inverse Bohr
radius; it only mattered that ag < L.

f. Show, now, that the final result for the Casimir energy per unit area
of the plates is:
% By : n? 1

AE . (a) = — —

203 4T 2x720 &3 (4.155)

giving rise to an attractive force between the plates. This force—
for the electromagnetic field, where there is an additional factor
of two—was measured in 1958, and not only the sign, but also
the ~ a~* distance dependence was observed! In fact, measur-
ing the distance dependence is crucial for verifying the nature of
this force—at atomic distances the Casimir force competes with
Van-der-Vaals forces, which however have a different, ~ a~/, de-
pendence on the distance.

g. To get some idea of what experimentalists have to go through,
estimate the force acting on plates of area 1cm? a micron apart...
Compare with the magnitude of forces whose measurements you
are familiar with. Note that the 1990’s Lamoreaux measurements
are accurate within 5%.

h. A final bonus question: what if the scalar field had a mass, m?
Would you expect an effect if m > 1/a? What if m < 1/a?

You justsaw the first example of extracting a finite and physically
meaningful result from seemingly infinite expressions. Infinities
result from assuming that quantum field theory makes sense at
arbitrarily short distances, or large momenta k in eq. (4.151). The
possibility of extracting finite results (e.g., the Casimir force) from
quantum field theory simply means that in many cases (most cases,
in fact: the so-called “renormalizable" ones—and even in “non-
renormalizable" if one is happy with finite precision—see QFT2)
the long-distance physics is independent of the details of the short-
distance, most often not understood, physics, when expressed only
through quantities observed at long distances.’

5 This is already familiar from classical electrodynamics although may not be always
stressed. The electrostatic energy of a point charge diverges, as is well known, hence it
gives an infinite contribution to the charge’s rest energy. However, in the non relativistic
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In this example, this was seen by the independence of the final
answer on the cutoff function f(k). This independence really means
that field modes with wave vectors > 1/L do not contribute to the
Casimir effect, i.e., it is an IR (infrared) effect.

Answer for Exercise 4.4

Part a.  Our scalar massless field satisfies the Klein-Gordon equation
((900 - V2) ¢ = 0, which has a plane wave superposition solution

¢(X, t) — a,eia)t—ikx + ﬁe—iwtﬂ'k-x, (4 156)

where w? = k2¢2. At the boundaries

$0,0)=a+p=0

#(a,0) = a,e—ikxa +ﬁeik"a =0, (4.157)
SO

e tkea _ ikea (4.158)
We must have ¢2%@ = 1 or

2k.a = 2nn, (4.159)
which provides the

k= 2 (4.160)

a

quantization constraint.

limit (to order vZ/c2, in fact) the equations describing the motion of charged particles do
not depend at all on whatever structure one might ascribe to the electron (it could be a
ball, a hollow sphere, or a tiny string). The relative motion of particles in this limit (and, of
course, at relative distances larger than the “classical radius of the electron") is determined
by two “relevant”" parameters: their mass m and charge e. These are quantities determined
by experiment, not calculated from first principles. These experiments are made at the long
distance/time scales, where classical electromagnetic theory applies. There is no way to
calculate m and e from first principles.

The situation in QFT is not that different—its calculational tools are a way to relate
measurable quantities to measurable quantities. It usefulness is in that there are more
measurable quantities than the number of measurements required to fix the relevant
parameters in the Lagrangian (e.g., the same m and e for QED), so it has predictive power.
When QFT is used to relate observables to observables, no infinities appear.

There we go. QFT in a nutshell.
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Part b.  Making the discrete substitution for k,, the vacuum energy per
unit area is

E 1 Aa hic ||K||

—=— &k

A AQn)p f 2
__a hc 2,12 12
= 273 fa’kydkz(fdkx) K2+ K2+ 2

0

_ ahc 212,12
== 3fdkdk[ ZJ./k + K2 + K2 @.161)
he mr
= & " ki
» Z\/
_ e (Chak k+22\/ ””
_871' k=0

so the energy per unit area (A) between the plates is

E he mr
- == 2 \/ 4.162
=% kokdk(k+ Z ] (4.162)

As f k*dk = k/3 is unbounded for large k, this expression still diverges.

Part c.  The presence of the plates was accounted for by summing over
ky = nn/a for discrete n. The absence of the boundaries may be accounted
for by performing the integral over all values of n, as in

E
Z = Qn )—f kdkfdk K2 + K2
A Q@Qn )3 k=0
ahc
= kdk K2 k2
Ea fk‘o f:—oo "
:“hc”f kdkf dn\/kz —”
872 k=0 n=-oco a
hic mr
= — kdk dn k2+ —.
A Ji=o n=0 a

(4.163)

The difference of eq. (4.162) and eq. (4.163) yields eq. (4.151) as desired.
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Partd.  Introducing the cutoff function f(k) into the integrand of eq. (4.151),
and making a change of variables k = 7x/a, we have

AEy,(a) = L [ (k) ) Z \/k2 + _f( k2 +(ﬁ_564)
2.2
- —f dn\/k2+ —f( K2 + %)J

2 00
_ fem f dxx(%f((n/a)x)
0

443
+Z Va2 +n2f((m]a) Vx* + nz)—‘foo dnNx% + n?f((n/a) Vx* + n2)].
n=1 0

Now let u = x2

AEy,c(a)
_ hen? Vu
=23 fo du(Tf«n/a) Vi)

+Z Vu+n2f((7r/a)\/u+n2)—foodn\/u+n2f((7r/a)\/u+n2))
0
- 203 ( F(0)+ZF(n)— f an(n)),

(4.165)

which recovers eq. (4.152) as desired.

Part e.  To calculate the derivatives of eq. (4.153) we make av = u + n?
change of variables

F(n) = foo dv AV f((r/a) V), (4.166)
and utilize

d v dv du

Efu f(ndt = f(V)E —f(u)E, (4.167)
so the first derivative is

d 2
F'(n) = —nf((ﬂ/a)n)% (4.168)

= —2n* f((n/a)n),
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the second is

F”(n) = —4nf((n/a)n) — 2n*(x/a) f' ((z/a)n), (4.169)
the third is
F/I/(n)
= —4f((x/a)n)
—4n(r/a)f ((z/a)n) - dn(x/a) f (x]a)n), —2n*(x]a)* f" ((x]a)n).
(4.170)

Any higher order derivatives are dependent on f®(nn/a),k > 1, so are
zero at n = 0 by construction. Summarizing the values at n = 0 we have

F'(0)=0
F0)=0 4.171)
F"(0) = —4

F®0) =0, k> 3.

Partf.  The original problem statement included the following statement
of the Euler-Maclaurin formula:

1 - « 1 ’ 1 1444
EF(O)+;F(n)—£ dnF(n) = =2 BaF'(0) = - BaF"(0) + -+,

(4.172)
)
Lroy+ 3 Fon [ anFon = 35559
= n) — nF(n) = ——(—
2 =l 0 4130 (4.173)
1
180
Inserting eq. (4.173) into eq. (4.165) gives
hen? 1
AE =- —
vac(@) 83 180 (4.174)
B hen?
1440a3°

which is the desired result.
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Part g.  Numeric calculations were performed in a Mathematica work-
sheet (attached).

Summary:  The Casimir force between 1 (cm)2 plates with a 1 micron
separation is —2 x 1078 N. As a comparison, the force between “plates” of
a 1uF capacitor charged with 1 Volt and plate separation of 1 micron is

F=CV?*/a=1N. (4.175)

I’m not actually sure if that capacitance is a physically realizable in a
capacitor with effective plate area of 1 (cm)>. Regardless, this gives an idea
of the smallness of the Casimir force, since

F capacitor

= 0(10"). (4.176)
FCasimir

Part h.  Given a field has a mass, the wave functions for the field obey

2.2
(aoo vy mhg )¢(x, £ =0, 4.177)
which has plane wave solutions of the form
P(x, 1) = KX, (4.178)
provided
2 2.2
W~ ., mc
< =K+ = (4.179)

We may proceed as before, provided we set

F(n) = f A\ FCE D). (4.180)
n2+(mca/n h)? a
The first derivative of this modified F is
dF T
—-=-2n 2 + (mea/n )2 f(= \n? + (mca/n h)?). (4.181)
n a

Quick and rough hand calculation of the rest of the derivatives of F as
defined above seems shows that the odd derivatives are all zero atn = 0
(they are odd functions of n, whereas the even powered derivatives are all
even functions of n). This was confirmed with Mathematica (worksheet
attached), so it seems that, regardless of the value of m with respect to 1/a
the Casimir effect is obliterated by a massive field.
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Exercise 4.5 Playing with the non-relativistic limit. (2018 Hw2.1V)

Consider a real scalar relativistic field theory of mass m with A¢* inter-
action. Let there be N particles of momenta labeled by py, - - -, py, whose
energies are such that they are insufficient to create any new particles.
Nevertheless, the particles can scatter and exchange momenta. In what
follows you will study this N-particle nonrelativistic limit in some detail.

a. Write down the Hamiltonian of the field theory, including the
interaction term, restricted to the N-particle sector of Hilbert space.
(Use the creation and annihilation operator representation, i.e. write
the result as sums of products of creation and annihilation operators
of particles of various momenta.)

b. Does the resulting Hamiltonian preserve particle number? Is there
an associated symmetry? What is the operator that generates it?

c. Consider now the interaction term in your reduced (to the N-particle
sector of Hilbert space) Hamiltonian. How does a typical inter-
action term (for given configurations of momenta) act on an N-
particle state? What kinds of scattering processes does it describe?

d. What do you think is the potential, in x-space, that allows the
various particles to scatter and exchange momentum? How would
you describe the resulting nonrelativistic quantum system to friends
who never took QFT but are well-versed in quantum mechanics?
Hint: For ?? d, consider N = 2 first. Start with a two particle nonrela-
tivistic quantum mechanics with Hamiltonian:

2 2
Hzp—l+&+V(xl—xz), (4.182)
2m  2m
where p;, x; are the operators of momentum and position of the i — th
particle (three vectors, arrows omitted for brevity). Use as a basis the
eigenstates of the free Hamiltonian, i.e. plane waves, |J}, p2), symmetric
with respect to interchange of the momenta (even better, use the corre-
sponding wavefunctions ¢, »,(x1,x2) = {x1, x2|p1, p2)). Compute the
matrix elements

{q1,q2|H|p1, p2) (4.183)

in this basis. To compare to the nonrelativistic limit of the scalar field
theory, compute the same matrix elements of the Hamiltonian you found
in (1.) above, in the basis of states of the restricted (N = 2) Hilbert
space |p1, p2). Are they similar to the matrix elements you found in the
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quantum mechanics problem for some choice of V(x; — x)? Explain the
difference (if any). Then go on to answer (4.) for any N.

Answer for Exercise 4.5

Part a.  The Lagrangian density of a massive scalar field with a 1¢*
interaction has the form

L= % PO — %m2¢2 - 9™, (4.184)

The corresponding Hamiltonian is

2
=1 f dsx(7r2 R\ m2¢2) +2 f dxgt. (4185

In terms of creation and annihilation operators, we know the form of the
non-interaction portion of the Hamiltonian, which in normal order is

d3
wpaTap, (4.186)
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but the interaction contribution is much messier

AP pd’kdqd’ s , _
Hiy = ﬂfd3x )4 q (ape—tp-x + ape,p.x) %
4(2m)'? VwpwKwews
(ake—ik-x +akeik-x) (aqe—iq-x + aqeiq.x) (ase—is-x +aseis-x>
3 13193 43
— /lfd?)x d pd kd CId S a e_l'wp[+ip.x +a eiwpt—ip-x) %
4020 g P

(ake—zwktﬂkx + aketwkt—th) (aqe—zwqtﬂqx + aqetwqt—th) x

—iwst+isX iwst—is-x)

(ase + age

_/lf & pd*kd®qd’s (
- 4(21)° \Jwpwiwqws

apaxaqase” Tt eatodsG(p L K + q + 5)

+ apakaqa;re—i(wp+wk+wq—ws)t5(3)(p +Kk+q—s)+--
+ apayagale s (—p —k - q - s))
) f d*pd’kd’q (
B 4(2m)°

apagdqd-p-k—q€

VWpWkWqW-p-k—q

i(wp+wk+wqtw-p-k-g)t
+

—i(wp+wWk+Wq—Wprk+q)t

s
Apaxdqay, i . @

VWpWkWqWp+k+q
Tort T —i(~Wp—Wk—Wq—W-p-k—q)t
apakaqa_p_k_qe P q p-k-q

VWpWkWqW-p-k-q

+ -4

(4.187)
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Assuming we can normal order these terms as in Hy, we can rewrite the
interaction as

&’ pdkd®
Hi = 1 f o
4(2rm)
(4 Apaxdqd—p-k—q€
0 VWpWkWqW—-p-k-q

—i(wp+wk+wq+w_p-k-q)t

4 a akaqap ke qe —i(—wptwk+wqtwp-k—q)t

|
(1 VOpWkWqWp—k-q
|
|

(i
4) a akaqap+k qe —i(—wp—wk+wq+Wp+k—q)t (4 1 88)

+

3]

VWpWkWqWp+k-q

4 apakaqap+k+q€ —i(—wp—wWk—Wq+Wp+k+q)t

3

+

\OpWKkWqWp ik,
ToT T —i(~Wp—Wk—Wq—W_p_k_q)t
(4)apakaq kg€ P q~W-p-k—q

4 VWpWkWqW-p-k-q

If we restrict the allowed momenta to the discrete set p € {p1, P2, - Pn}>
the total Hamiltonian including the interaction term takes the form

N

ZN: apsz(

Jjm,n=1
(4)“p,apmapna—p k—q€

0 \/Wp;Wp,,Wp,W—p,—p,—p,

~i(~Wp ;+Wpy +Wp, +Wp —pyy-pn )

l(ij +Wp,, TWp, +w*Pj*llm*Pn )

4 a; P 4P P, Ap;—pn—pn€

1 \/Wp;Wp,,Wp, Wp;—p,,—p,

_’(_“’pj ~Wpyy +Wpy FWp py—pn )t

+

(4.189)

+

2 \/ Wp,; Wy, Wp, Wp ;+p,,—p,

4 ap ap ap ap/+pm +pn l(_ij o +wp.j+pm +pn 4
m~ Pn

+
3

(4) al’] apm apn aPﬂ'Pm pn

\/ Wy Wp,, Wp, Wp j+p,,—p,

(4) ap/al')m a:;ﬂ ip]_pm_pn e_i(_ij _wpm _wpn _wipjipmipn )t

4 \/ Wy, Wy, Wp, W—p;—p,,—p,

When we did the same sort of calculation for (V¢)* + m*¢?* all the time
dependent terms cancelled nicely, but that isn’t obviously the case here.
However, we haven’t used the non-relativistic (low energy) constraint. That
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2

constraint can be expressed as p> < m?2, in which case wp = /P> +m? ~

m, the mass of each of the particles. Incorporating that into our N-particle
Hamiltonian, we have

N 1 N 4
cH: = Wy d ay + —— ay Ay dp d e~ Himt
A= P T o 0] Pi“Pn P -p-k—q

i=1

Jjimn=1

4\ (A

—3imt (]
+ (1 apjapmapnapj—pm—l)ne + 2 apjapmapnapj'*'pm_pn

Np b i me , (4 i ~
3imt LR A 4imt

+ (3 Clpjapmapnap.f_{_prn_;_pne + 4 apjapmapna_pj_pm_pne .
(4.190)

Presuming there’s a good argument to kill off the time dependent terms,
the N-sector Hamiltonian is reduced to just

N 31 N

CH = i ToT

tH = E Wp, Ay, dp; + ) E ap Gy, Ap,Ap +p,-p,- (4.191)
i=1 Jmn=1

The only annoying aspect to this Hamiltonian is the ap, +p,,—p, Operator in
the interaction term, which is not clear to me how to interpret. That seems
to imply that it is possible to create particles with linear combinations
of momentum that may not be in the original set of N particle momenta.
I think that this can be further fudged by invoking the non-relativisitic
constraint again, and decreeing that each of the uniquely indexed creation
and annihilation operators are distinguishable only by index, so we can
write the N-particle non-relativisitic sector Hamiltonian as

N 31 N
cH:= priajai + w Z aiaia,au. (4192)
i=1 r,s,tu=1

Part b.  Yes, with the number of creation and annihilation operators
matched, this Hamiltonian preserves particle number (one particle is cre-
ated for each particle destroyed). The symmetry appears to be one associ-
ated with a permutation operation in the interaction.

Part c.  Continued freehand, time allowing.

Part d.  Also continued freehand, time allowing.
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5.1 SWITCHING GEARS: SYMMETRIES.

The question is how to apply the CCR results to moving frames, which is
done using Lorentz transformations. Just like we know that the exponen-
tial of the Hamiltonian (times time) represents time translations, we will
examine symmetries that relate results in different frames.

Examples.  For scalar field(s) with action
S = f dxL(¢",0,9). (5.1)

For example, we’ve been using our massive (boson) real scalar field with
Lagrangian density

1 m*
L = 55/4(1’3”(1’ -5 - V(@) (5.2)
Internal symmetry example
H=1J) S, Sy, (5.3)
(n,n’)

where the sum means the sum over neighbouring indexes n, n” as sketched
in fig. 5.1.

P

N

/
n "

Figure 5.1: Neighbouring spin cells.
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Such a Hamiltonian is left invariant by the transformation S, — -S,
since the Hamiltonian is quadratic.

Suppose that ¢ — —¢ is a symmetry (it leaves the Lagrangian un-
changed). Example

!
e
=1 (5.4)
¢n
the Lagrangian
1o 1 m g T
L= 20,8"9~ =¢"6 - V(@'9). (5.5)
If O is any n X n orthogonal matrix, then it is symmetry since
¢’ — ¢ 0" 0¢ (5.6)
=¢'¢.
O(2) model (exercise 4.3). Example for complex ¢
¢ — e, (5.7)
Y1+ iy
¢ = (5.8)
V2
U IR cosa sinc ||y (5.9)
Vg —sina cosa||y,

5.2  SYMMETRIES.
Given the complexities of the non-linear systems we want to investigate,
examination of symmetries gives us simpler problems that we can solve.

e “internal” symmetries. This means that the symmetries do not act
on space time (X, ). An example is

141

o =" (5.10)

YN
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If we map ¢/ — Oj.qu where OTO = 1, then we call this an in-
ternal symmetry. The corresponding Lagrangian density might be
something like

1 m?
L=304 3P~ =9 ¢- Ve $) (5.11)
spacetime symmetries: Translations, rotations, boosts, dilatations.
We will consider continuous symmetries, which can be defined as a

succession of infinitesimal transformations. An example from O(2)
is a rotation

o' | cosa sina | |¢! (5.12)
@ —sina cosal|¢? ’ .
orifa~0
I 1€
| |-a 1]|¢ (5.13)
¢! ¢
) —¢1]

=1, +a
¢
In index notation we write

¢ — ¢+ aely, (5.14)

where €!? = +1,€?! = —1 is the completely antisymmetric tensor.

This can be written in more general form as
¢ — ¢ + 64/, (5.15)

where ¢’ is considered to be an infinitesimal transformation.

Definition 5.1: Symmetry

A symmetry means that there is some transformation

o' — ¢ +5¢',
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where ¢’ is an infinitesimal transformation, and the equations of
motion are invariant under this transformation.

— Theorem 5.1: Noether’s theorem (1st).

If the equations of motion re invariant under ¢* — ¢* + 5¢*, then
there exists a conserved current j* such that 9, j* = 0.

Noether’s first theorem applies to global symmetries, where the parameters
are the same for all (x,#). Gauge symmetries are not examples of such
global symmetries.

Proof. Given a Lagrangian density £ '(¢(x), ¢ ,(x)), where ¢, = 9,¢. The
action is

S:\f}ﬂmf. (5.16)

The equations of motion are invariant if under ¢(x) — ¢’'(x) = ¢(x) +
O0ep(x), we have

= L(¢) + 0, JE(p) + O(€).

Then there exists a conserved current. In QFT we say that the E.O.M’s
are “on shell”. Note that eq. (5.17) is a symmetry since we have added a
total derivative to the Lagrangian which leaves the equations of motion of
unchanged.

In general, the change of action under arbitrary variation of ¢ of the
fields is

SzfﬂmﬂQQ@
oL
— | atn[%Esp + 2 s
f ( 6" " 36,9 ”¢)
oL oL
= | d%x|o 5 + ———0,6
f x( (a@lqﬁ)) "t 56 ¢)

_ | oL
- [ @', (5@4@‘”)'

(5.18)




However from eq. (5.17)
Secl’ = 0, e (h, ),

so after equating these variations we fine that

5S = f d?xs.L

= f d'x0,J,

(o Lo
O_fd xay(—é(aﬂ¢)5¢ JE),

or

or d,,j* = 0 provided

oL

= 2= -
50,9’

j/l

Integrating the divergence of the current over a space time volume,

perhaps that of fig. 3.1, is also zero. That is

0= fd“xaﬂjﬂ

= f dxdt 0, j*

:fd3xdt6,j0—fd3 v -j,

5.2 SYMMETRIES.

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

where the spatial divergence is zero assuming there’s no current leaving
the volume on the infinite boundary (no j at spatial infinity.)

We write

0= [@af.

(5.24)

and call this the on-shell charge associated with the symmetry. O
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5.3 SPACETIME TRANSLATION.

A spacetime translation has the form

==+ ad, (5.25)
where the fields transform as

P(x) = ¢'(x') = P(x). (5.26)

Contrast this to a Lorentz transformation that had the form x* — x'* =
AP XY,
If ¢’ (x + @) = ¢(x), then

¢ (x) + a'uaqu/(x) =¢'(x) + aﬂap(/l’(x) (5.27)
= ¢(x),
SO
¢’ (x) = p(x) — a9, (x) (5.28)
= ¢(x) + 649(x),
or
0a(x) = —a" 0, (). (5.29)
Under ¢ — ¢ — ad,,¢, we have
L(p) = L(¢p) —d'd,L. (5.30)

Let’s calculate this with our scalar theory Lagrangian
1 2
L= 50,099 - m?¢2 — V(). (5.31)
The Lagrangian variation! is

ov
0Ly Sp460.58=—ard,e = (OuP)o(D'P) — m> ¢S — %&p

= Ou-0050) + 90,0 + a0

1 2
= ~a"0, (30,099 - m7¢2 — V(9)

=-a’d,L,
(5.32)

1 Using: 0a((1/2)8,0"¢) = 2(1/2)0,$(0ad" ).
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so the current is

J =@ ¢$)(-a"0,$) + ad'L

= 0 (#00,0 — L), 53

We really have a current for each v direction and can make that explicit
writing

OyL = —0,L
= -8, (8",L) (5.34)
= ,ujﬂv
we write
, d¢ [ 0¢
uo— 2 H 3
7y axﬂ( axv)+5 yL's (5.35)

where v are labels which coordinates are translated:

av¢ = _av¢

(5.36)
OyL = —=0,L.

We call the conserved quantities elements of the energy-momentum tensor,
and write it as

00 0%,

T’uv = _(978)(:" 0 VOE. (537)
u

Incidentally, we picked a non-standard sign convention for the tensor,
as an explicit expansion of 7%, the energy density component, shows

o _ 080 10609 1 .o o Mmoo

o= 5t 0t 201 ot 2(V¢) (2V¢) 2 ¢ -V (5.38)
__L1080% 1 gu. v~ " -
=35 3 2(V¢>) (Vo) R4 V(¢).

Had we translated by —a* we’d have a positive definite tensor instead.
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5.4 1ST NOETHER THEOREM.

Recall that, given a transformation
P(x) = $(x) + 64(x), (5.39)

such that the transformation of the Lagrangian is only changed by a total
derivative

L, 0up) — L($,0,8) + 8, J%, (5.40)

then there is a conserved current

= bep — Je. (5.41)

Here € is an x-independent quantity (i.e. a global symmetry). This is in con-
trast to “gauge symmetries”, which can be more accurately be categorized
as a redundancy in the description.

As an example, for L' = (0,¢0"¢ — m*¢?)/2, let

$(x) = Pp(x) — d"Ou¢. (5.42)

The Lagrangian density transforms as

L($,0up) = L($,0u¢) — a'Ip L

= L(}, 0up) + 0, (~,a’ L). o4
Here J¥ = J¥ |E:ay, and the current is
JH = (") (—a"d,9) + & a" L. (5.44)
In particular, we have one such current for each v, and we write
TH, = —(0"¢)(0,0) + L. (5.45)

By Noether’s theorem, we must have

8,T", =0, Yv. (5.46)



5.4 1ST NOETHER THEOREM.

Check:

T, = =0, 00,0 ~ @'00,0.0)+ 80, S000 - =
=~ D)0,) ~ (' $0,0,9)
b 3O00NPD) + SO 0) ~m Do
= — (0,00 + m¢) (,0) — (3,)("0,9)
+ 3OO + 50,)0,79)

=0.
(5.47)
Example: our potential Lagrangian
1 m?> , A,
= — _—*-C A48
L= 90,0 ¢ = 70 (5.48)
Written with upper indexes
T = —(0"$)(0"¢) + gL
(5.49)

— 4 v 1 @ m2 2 A 4
= (") 0" p) + &" (53 $0op — 7¢ - Z¢

There are 4 conserved currents JX) = TH”_ Observe that this is symmet-
ric (TH = T).
We have four associated charges

Q:ffﬂW (5.50)
We call
@:ffﬂ% (5.51)

the energy density, and call
P:ffﬂ% (5.52)

(i = 1,2,3) the momentum density.
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writing this out explicitly the energy density is

00 _ 32 1'2_ 2_’"_2 2_ A
T —¢+2(¢ (Vo) 2¢ 4¢)

| | , . (5.53)
N Y 2 Mmoo, Ay
= (2¢ + 5 (Vo) + —-¢ +4¢),
and
7% = %90, (5.54)
Pl=- f d*x0°¢' 9. (5.55)

Since the energy density is negative definite (due to an arbitrary choice of
translation sign), let’s redefine 7+ to have a positive sign

1., 1 m? Pl
00 _ L. 1 2 Mmoo Ay
T _2¢ +2(V¢) + 2q§ +4¢, (5.56)

and
P = f Bx pdp (5.57)

As an operator the charge is

szd3xf"00
(5.58)
1 1 _. m? ., A
= | Bl s Zovor + g2 4 2ot
f x(zﬂ +2( ¢+ 2¢ +4¢> ,
and the momenta are
P = f dxpd'¢. (5.59)
We showed that
dO [ A
< =ilno]. (5.60)

This implied that ¢, 7 obey the classical equations of motion

L ilag)=2 (5.61)



5.5 UNITARY OPERATORS.

fl’: i[A.4] = .. (5.62)

In terms of creation and annihilation operators (for the A = 0 free field),
up to a constant

H:ffﬁm
(5.63)

AT A
apap.

ap
2m)3 P

It can be shown (appendix B) that the operator form of the field momentum
is
P:ffm%
(5.64)

f@ﬁpﬂ}

Now we see the energy and momentum as conserved quantities associated
with spacetime translation.

5.5 UNITARY OPERATORS.

In QM we say that P “generates translations”. With P = —i 2V that transla-
tion is

U(a) = P = g7, (5.65)

In particular

<mmmwwiffpm0mm»mm
3ffmﬂﬂﬂmmw

o 5 5.66
=fﬁ%ﬂpmmwm .00
d’p Jiapix
= f N Pe* P (p)

=Y (x + a).
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Implicitly, this shows that the action of the translation operator on just a
bra is

(x|U(a) = (x +al, (5.67)
or
U(-a)Ix) = U'(a) x) (5.68)
=|x+a).

This is a different sign convention for the translation operator than is found
in some other texts?.
In one dimension, we can compute

U(@X0%(a) = éPRe ™ = R + al, (5.69)

which is a consequence of the Baker-Campbell-Hausdorff theorem.

— Theorem 5.2: Baker-Campbell-Hausdorff.

(o)

B 1
eBAe™B = ZO — B [BA], (5.70)

where the n-th commutator is denoted above
en=0:A
e n=1:[B,A]

e n=2:[B,[B A]]

e n=3:[B,[B,[B,A]]|

Proof.

(@) = eBAe™™®

2 n (5.71)
= O+ 17O+ 5170 + -+ = f00)

f(0)=A (5.72)

2 In particular [5] uses D(a) = e~ P/7 defined by the property D(a) x) = [x + a).
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(1) = ¢®BAe™™8 + ¢BA(-B)e™B
— etB [B,A] e—tB

(1) = ¢BB[B,Ale™"® + ¢/ [B,A] (-B)e™'B
=B [B,[B,A]]e 5.
From

1 1
f() = f(0)+ £(0) + Ef"(O) +---—=f"(0)

n!

we have

1
eBAe B =A+[B,Al + 3 [B,[B,A]] +---

Example (as claimed above) :

e Ro-iaP — % [iaf’, X] +---

+
=X +ia(-di
=X +al.
Application:
eiHermitian — unitary

etHermluan X e—zHermltlan =1

So

U(a) = P’

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

(5.79)

(5.80)

is a unitary operator representing finite translations in a Hilbert space.

In particular, we can apply the BCH theorem to a field operator

O@dx)0 (@) = P jx)e ™™
= ¢(x) + ia’ [P/, §(x)] +

—a

2 [ dn].

(5.81)
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where the first order commutator is

[P.300] = [ @[amare. deo)

_ f Py [#(9). () 973y (5.82)
- f d*y(=i)sP(y - x)/¢(y)
= —id/P(x),

and any higher order commutator is zero
[Pk, [Pj’ ¢(x)” = fd3y [n(y)6k¢(y), —iaj¢(x)] =0. (5.83)
This gives

U@)p(x)U0'(a) = $(x) + ia’ (D)3 $(x) + - --
= $(xX) + ! (x) + - -

A S0 .
P(x) + a]a—xj¢(x) e (5.84)

R c 0 .
BX) = /2= h(x) + - -

ox/
(x — a).

I
ASS

5.6 CONTINUOUS SYMMETRIES.

For all infinitesimal transformations, continuous symmetries lead to con-
served charges Q. In QFT we map these charges to Hermitian operators
Q — Q. We say that these charges are “generators of the corresponding
symmetry” through unitary operators

U — eiparameterQ‘ ( 5.8 5)
These represent the action of the symmetry in the Hilbert space.

Example: spatial translation

U(a) = P (5.86)
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Example: time translation

@) = ™. (5.87)
5.7 CLASSICAL SCALAR THEORY.

For d > 2 let’s look at

a1 m? 2 -2
S :fd X §a~¢aﬂ¢—7¢ — AP (5.88)

Take m*, 1 — 0, the free massless scalar field. ~ We have a shift symmetry
in this case since ¢(x) — ¢(x) + constant. The current is just

, 0¢

"o S5b —

P 500 (5.89)
= constant X ¢
= o,

where the constant factor has been set to one. This current is clearly
conserved since d,J* = 9,0"¢ = 0 (the equation of motion). These are
called “Goldstone bosons”, or “Nambu-Goldstone bosons”.

Withm = A1 =0,d =4 we have NOTE: We did this in class differently
withd # 4,m, A # 0, and then switched tom = 1 = 0,d = 4, which was
confusing. I'’ve reworked my notes to d = 4 like the supplemental handout
that did the same.

1
S = f d“x(ia”(paﬂ(p) (5.90)
Here we have a scale or dilatation invariance
x— ¥ =e'x, (5.91)
d(x) > ¢'(x) = g, (5.92)

d*x - d*x = eMd*x. (5.93)
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The partials transform as

_ 0% 0 (5.94)

so the partial of the field transforms as
') _
xl

U

FP(x) — e (), (5.95)

and finally

@49 = e (3,9(0). (5.96)

With a —44 power in the transformed quadratic term, and 44 in the
volume element, we see that the action is invariant. To find Noether current,
we need to vary the field and it’s derivatives

029 = ¢'(x) — $(x)
=¢'(e'2) — 4(x)
2 ¢ (= AX') - ¢(x) (5.97)
2 ¢ () = A Y00’ () — ¢(x)
2 (1= D(x) = A0 ¢ (x) = (x)
= —A(1 + x70,)0,

where the last step assumes that X’ — x, ¢’ — ¢, effectively weeding out
any terms that are quadratic or higher in A.
Now we need the variation of the derivatives of ¢

50,$(x) = 8,0’ (x) = Bu(), (5.98)
By eq. (5.95)
9,9’ (x') = € *19,(x)
— e—2lay¢(e—/lx/)
~ 9, ($() — a9 (1))
~ (1 =200, ($(x) = W T0ep(x)),

(5.99)
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SO
50, = —Ax 000,p(x) — 220, 4(x) + O(1%)
= —A(x"0q +2) 0,¢(x).
0L = (8" $)5(0,u9)
= (20,0 + x"020,0) &"¢,
or
6L
o =AL (0a0,0) 39
= 4L + X%y (L)

= 4L+ 0y (X7 L) — LIgx™.
The variation in the Lagrangian density is thus
6L = 8, = 0, (A L),
and the current is
=L
The Noether current is

AL
A0
=-0"p(1+x"0,) ¢ + %x"avqﬁ@”(b,

j/~‘ 6¢ — J/J

or after flipping signs

1
Ji = 9 (14 20,) ¢ — 5x'0,60"¢

1 1
= x, (6“¢0V¢ - Eg”ma%) + §a~(¢2>,

1
Jag = x0T+ 53”@52)-

T = 3¢0"¢ — gL

(5.100)

(5.101)

(5.102)

(5.103)

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)
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The current and T#” can both be redefined j* = j* + 9,C"* adding an
antisymmetric C*” = —-C"

] _ Vi
Jgil conformal — _xVTconformal (5]09)
a:“ Idil conformal — _Tconformalyﬂ (5.110)

consequence: 0 = 700 — 711 — 722 _ 733 'which is essentially

0=p-3p=0. (5.111)

5.8 LAST TIME.

We followed a sequence of operations
1. Noether’s theorem
2. — conserved currents
3. — charges (classical)
4. — “correspondence principle”
5. -0
e Hermitian operators

e “generators of symmetry"
O(a) = &2 (5.112)
We found

0(@p0' (@) = p+iar [0, ]+ (5.113)



5.8 LAST TIME.

Example: internal symmetries:  (non-spacetime), such as O(N) or U(1).

In QFT internal symmetries can have different “modes of realization”.

I “Wigner mode”. These are also called “unbroken symmetries”.
010y =0 (5.114)
i.e. U()|0) = 0. Ground state invariant. Formally : O : annihilates

|0). [Q, Fl] = 0 implies that all eigenstates are eigenstates of 0 in
U(1). Example from Hw 1

Q = “charge” under U(1). (5.115)
All states have definite charge, just live in QU.

II “Nambu-Goldstone mode” (Landau-Ginsburg). This is also called a

“spontaneously broken symmetry”>

try, but ground state is not.

. H or L is invariant under symme-

Example:
L = 8,0"3"¢ - V(gl), (5.116)
where
A
V(g =m¢"¢ + 7 X% (5.117)

When m? > 0 we have a Wigner mode, but when m? < 0 we have an issue:
¢ = 01is not a minimum of potential. When m? < 0 we write

A
V(g) = -n’d’p+ 7 (4°9)"

A2 4o
_4((¢ ) /lm) (5.118)
Y O S R
=i\ e
or simply
V() = % (670 - vz)2 + const. (5.119)

The potential (called the Mexican hat potential) is illustrated in fig. 5.2 for
non-zero v, and in fig. 5.3 for v = 0. The following is a Mathematica code
listing that can be used to play with this shape

3 First encounter example (HwIIL, SU(2) x SU(2) — SU(2)). Here a U(1) spontaneous
broken symmetry.
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In[1]:=

ClearAll[potential]
potential[x_, y_, v_] := (xA2 + yA2 - vA2)A2

Manipulate[

Plot3D[ potential[x, y, v]l, {x, -5, 5}, {v, -5,
5}, PlotRange
—Full],

{{v,4}, 0, 16}

]

Figure 5.3: Degenerate Mexican hat potential v = 0.
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We choose to expand around some point on the minimum ring (it doesn’t
matter which one). When there is no potential, we call the field massless
(i.e. if we are in the minimum ring). We expand as

d(x) =v (1 + @) e (5.120)
v
SO
A N2 |2 P\, ’
Z(¢¢—V)—V 1+T -V
2
_ iv4((1+@) _1) (5.121)
4 v
A 420 P\
_ZAlZE
-3 (v - v2) ’
and
a,,¢=(v( (vx))vaﬂ +aﬂp) (5.122)
The Lagrangian takes the form
A *2_ 2 2
~3 (=)
= #pa"p+(9,,a6”a(l+fj) /1: 4’ +0(p%) (5.123)

= 0,p0"p — W% + oadta (l + —).
v

We have two fields, p : a massive scalar field, the “Higgs”, and a massless
field « (the Goldstone boson).

U(1) symmetry acts on ¢(x) — €“¢(x) i.t.o a(x) = a(x) +vw. U(1)
global symmetry (broken) acts on the Goldstone field a(x) by a constant
shift. (U(1) is still a symmetry of the Lagrangian.)

The current of the U(1) symmetry is:

Ju = 0y (1 + higher dimensional p terms) . (5.124)

When we quantize

3 3
a(x) :f d 14 eiwpt—ip-X&:') +f d p e_iwl’t+i'€§3125)
(2n)

V2 @ 2,
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J(x) = alx)

iwpt—ip-X fl;

f @p (iwp — ip) e
— B (iw, -
Q23 2w, (5.126)

& . N iwy+ip
+ f—p (—iwp + ip) e PPy,

@0 (2w,

F(x)[0)y #0, (5.127)

instead it creates a single particle state.

5.9 EXAMPLES OF SYMMETRIES.

In particle physics, examples of Wigner vs Nambu-Goldstone, ignoring
gravity the only exact internal symmetry in the standard module is (B# —
L#), believed to be a U(1) symmetry in Wigner mode.

Here B# is the Baryon number, and L# is the Lepton number. Examples:

e B(p) =1, proton.

B(g) = 1/3, quark

B(e) = 1, electron

B(n) = 1, neutron.

L(p) = 1, proton.

L(g) = 0, quark.
e L(e) =0, electron.

The major use of global internal symmetries in the standard model is
as “approximate” ones. They become symmetries when one neglects some
effect( “terms in .L™). There are other approximate symmetries (use of
group theory to find the Balmer series).

Example from exercise 5.4 (Hw2):  QCD in limit
my, =mg = 0. (5.128)

mymg < m,, (the products of the up-quark mass and the down-quark mass
are much less than a composite one (name?)). SU2), X SUR2)g — SUQ2)y



5.10 SCALE INVARIANCE.

EWSB (Electro-Weak-Symmetry-Breaking) sector ~ When the couplings
82,81 =0.(82 € SU(2), 81 € U(1)).

5.10 SCALE INVARIANCE.

x—>e’1x

»— et . (5.129)

A, — e A,

Any unitary theory which is scale invariant is also conformal invariant.
Conformal invariance means that angles are preserved. The point here is
that there is more than scale invariance.

We have classical internal global continuous symmetries. These can be
either

1. “unbroken” (Wigner mode)
010y = 0. (5.130)

2. “spontaneously broken”

F @10y £0 (5.131)

(creates Goldstone modes).

3. “anomalous”. Classical symmetries are not a symmetry of QFT.
Examples:

e Scale symmetry (to be studied in QFT II), although this is not
truly internal.

e In QCD again when wq = 0, a U(1 symmetry (chiral symme-
try) becomes exact, and cannot be preserved in QFT.

o In the standard model (E.W sector), the Baryon number and
Lepton numbers are not symmetries, but their difference B# —
L# is a symmetry.
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5.11 LORENTZ INVARIANCE.

We’d like to study the action of Lorentz symmetries on quantum states.
We are going to “go by the book”, finding symmetries, currents, quantize,
find generators, and so forth.

Under a Lorentz transformation

- M= AFY, (5.132)
We are going to consider infinitesimal Lorentz transformations
Ay =+ oy, (5.133)

where w*, is small. A Lorentz transformation A must satisfy ATGA = G,
or

8ur = A ugapN, (5.134)
into which we insert the infinitesimal transformation representation
0=—gu+ (6% + w“,l) 8op (6ﬁv + wﬁy)

= g+ (g5 + ) (P + ) (5.135)
= —gu + Guv + Wy + Wy + WP
The quadratic term can be ignored, leaving just
0 = wy + wyy, (5.136)

or
Wy, = —Wyy- (5.137)

Note that w is a completely antisymmetric tensor, and like F,, this has
only 6 elements. This means that the infinitesimal transformation of the
coordinates is

= =+ x,, (5.138)
the field transforms as
$(x) — ¢'(x') = p(x) (5.139)

or

¢/(x# +w'x,) = ¢/(x) + w}wxva;ﬂ&(x)

(5.140)
= ¢(),
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SO
o¢ = ¢/(x)_¢(x) (5.141)
= —w"x,0,¢.

Since L is a scalar

0L = - x,0,L
= =0, (" x,L) + (0, x,)W L (5.142)
=0, (- x,L),
since 0,x, = gy, is symmetric, and w is antisymmetric. Our current is
Jh = " xu L. (5.143)

FIXME: index mismatch above!
Our Noether current is

Y
Jope = a¢’v5¢ - «]lal)
=0"¢ (—w”pxp('iﬂqb) + WP xyL (5.144)

= W (0"¢ (~xp0,u0) + 8" uxpL)
= W x, (~0"$0u + 6L

We identify

T, = =0"p0up + 6" L, (5.145)
so the current is

Juyy = =P T" = —wp T, (5.146)
Define

o — %(xpTV# _ T (5.147)

which retains the antisymmetry in pp yet still drops the parameter w**. To
check that this makes sense, we can contract j"* with w,

1
jvﬂpwpﬂ — _E (XPTVH _ x/JTVP) Wyp

1 1

= _ExpTqup - EX”Tprpﬂ (5.148)
1 1

= —ExpTV“wﬂp - ExpTV"wﬂp

= T wy,,

which matches eq. (5.146) as desired.

121



122

SYMMETRIES.
Example. Rotations up = ij

. 1, . o i 0i
]Oljfijk = E (x’TOJ — xJTOI) €ijk (5.149)
= xiTOj €ijk-

Observe that this has the structure of (x X p)x, where p is the momentum
density of the field. Let

Ly = O = fd3x-10ij€ijk~ (5.150)

We can now quantize and build a generator

U(a) = &
. (5.151)
= exp (ia/kfd3xx’Toj€ijk)

From eq. (5.145) we can quantize with T% = 8°3/¢ — 7 (V$) ;, or

U(a) = exp (iozk f d*xx'7#(V$) jfijk)

= exp (ia/ . fd%cfrV& X x)

(up to a sign in the exponent which doesn’t matter)

(5.152)

d(y) = U(@)py)0' (@)
B(y) + ice- [ f PAAVHX) X %, (¥

X

(5.153)
= d(y) + ia - f Ex(-)6P(x — y)VI(x) x x

= d(y) +a- (Vd(y) xy).
Explicitly, in coordinates, this is
$(y) = d(y) + o' (Fdy)*eni)

= d(y) — enja'y"d'p
= 3y — eigiyk),

(5.154)
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This is a rotation. To illustrate, pick & = (0,0, @), so y/ — y/ — eXiayks;3 =
y/ — eXiayk, or
y oyl @k =yl 4 2
V2 =y = eRayk =2 — ay! (5.155)
P o3P = gyk = B,

or in matrix form

y! 1 a Ofly
V= l-a 1 0|[y?] (5.156)
3 0 0 1fpy?

5.12 PROBLEMS.

Exercise 5.1 Energy-momentum tensor for a scalar field

It is claimed in [13] (3.2.1) that the momentum components of the energy-
momentum tensor was found to be

e, f PPxT" = f d*kka; a. (5.157)

a. Calculate this.

b. Calculate the other energy-momentum tensor components for the
spacelike components.

c. Calculate the other energy-momentum tensor components for the
Hamiltonian component.

Answer for Exercise 5.1

First, from the Noether current for the scalar field Lagrangian in question,
what is the energy-momentum tensor explicitly?

W=ty — gL
1
=199 - ¢ (0000 - 1°0°)
, 1 e 2.2 (5.158)
= nt'n” — gt E(ﬂa” —p ¢ )

1
=n'n" — Eg“"gaﬁﬂﬁﬂ + g“" 242,
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Consider some special cases for the indexes. For u = v = 0, the result is

the Hamiltonian density

700 _ ;0.0 _ %goomm" 4 %gooﬂz(bz
1 1
= 2070 _ Eﬂana + E#2(152
1 1 1
_ Eﬂoﬂo _ 5ﬂnﬂn " 5qujz
1, 1 2,120
=-n"+=(Vo)" + =
ST+ 5 (Vo) + St

(5.159)

where 72 = (0p$)* # 0°¢. For any u # v the off diagonal metric elements

are zero, leaving just

T" = n'n”.

Finally, when n # 0, the remaining diagonal terms are

1 1
A L _gnnﬂ_an_a + _gnnn2¢2

2 2
1 1
=7n'n" + Enana - E,uz¢2
1 1 1
= 571'2 + n'n" — iﬂ'mﬂ'm - §ﬂ2¢2
— %71'2 + %71'"7[" _ l Z il ’u2¢2
m#n,0
1 1
— E Z atam - — Z P §#2¢2
m=n,0 m#n,0

The canonical momenta are
&k , 4
= o'Wf— ai e *x +al ek ,
Q32 2wy ( ")
but

e = 9 exp (ik%xy)
= ikH exp (ik - x),

(5.160)

(5.161)

(5.162)

(5.163)
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SO
A kkH ) .
at = lf— _ake—lk'X_’_a:;elk-x)
(2132 2w
3
= lfﬂ _ake—iwka'X +alteiwkt—ik-x) (5.164)
(2m)3/2 \ 2wy,
= ifﬂ(_ak lwkt_i_a'f lwkt) oKX
(271’)3/2 \/ZQ)k
This gives
31,73
fd3x7r”7r” _ 1 fd3xd kd’p Kp” ( okt
2 (2n)3  \wrw, wkwp

+ a et(ukt)( tu)pt + aipeiwpt) ei(p+k)~x
1 37 13 kﬂpv —iwyt T lwgt —iwpt
= _Efd kd pm (—ake +ale )(—ape »
+al ) 6% (p + k)
1 kHp¥ . .
= ) dekd3p—p (aka_kefz"""t - akaT - cﬂ_ a_x
Wk

+a’ al'(eQ““"t) sPp + k).
(5.165)

Further reduction of the leading k* p” term has a sign that depends on
the values of the indices.

Part a.  First consider the momentum case where one of y, or v is zero

fd3x7r”7r0 = fd3x7r07r“

1 . .
=-3 fd3kk“ (aka_ke_z"”’" aka;; - altak + al f 2"”’").
(5.166)
For u # 0 this can be written as a vector operator
1 .
e, dexTO" == fd3kk (aka_ke_z’“’"’ + a;r(aTkeZ’“’”)
(5.167)

V(5 P
+ 3 fd kk (akak + akak)
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To get the desired result the time dependent terms have to be made to go
away somehow. Consider a spherical parameterization of the momentum
space

k = k(sinfcos ¢, sin 6 sin ¢, cos 6) , (5.168)

Note that the volume element is

&’k = k* sin0dk A dO A d, (5.169)
where k € [0,00], 8 € [0,n], and ¢ € [0, 2n]. If we map k — -k, the
volume element becomes

&’k = (—k)? sin 0d(—k) A dO A dg, (5.170)

over the same angular intervals, but k € [—o0, 0]. Flipping the sign of the
time dependent operator products gives

aka_ke—Zzwkt + alav_kehwkt N a_kake—Zzwkt + Cl a;r(ethkt 5.171)
- aka_ke—thkt + aTaT eZzwkt

which shows that this is an even function in k. The even characteristics of
the volume element and time dependent terms and the odd character of
the momentum vector k can be used to show that these terms integrate out
to zero. Let’s compute the integral by averaging the momentum operator
using both parameterization sign options. First write

al, et (5.172)

—2iwyt
f(K) = aga_ge +aa,

¥
k
SO
f Frkf (k) = % f d3kkf(k)+1 f PRK f(K)
2
- f K*dk f sin 6d0 f kk(6, ¢) f (k)
2
.1 f (k) f Sin 00 f (~k (@, ¢)f(—K)
2
- f sin 6d0 f d¢k( f Kk f(K) + f k3dkf(—k))
27 )
== f sin 6d6 f d¢f<( f IS dk f (k) — f k3dkf(k))
2 Jo 0 0 0

(5.173)
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so the momentum is reduced to

enfd3xTO" = %fcﬁkk (akalt +a£ak)
=;ffw@d%+hbdb (5.174)

_
:ff&@@ﬁiﬁm»

An argument like that of [19] can be used to dismiss the unphysical
infinity associated with the ground state energy level, leaving just

%ffﬂwszwdw (5.175)

Partb. Foru=m+#0,and v =n # 0, we have

Kk oy
fd3x7r " fd3k ” (aka_ke 2wyt akaT—aTka k+a kalt 2""”)
k

(5.176)
Can the time dependent terms be killed in this case?
Part c.  TODO: some stuff is wrong here.
Forv #0
Ktk : . PR
dexﬂ’“Jr" =-3 dek o ( aka_ke_z"""t—akal —all(ak —ala'_kez"""t)
1 Kk . ,
=3 fd3k " (aka_ke_zlwk’ + ak a + a K + altaikezm’k’).
(5.177)

Here’s a summary of these products

1 N
f & xn’n° = ) dkawy (aka_ke 2wt aka;fI - altak + al 'kez"“"t)

(5.178a)
fd3x7r"7ro = dexﬂoﬂ”

1 Y
=— | &Pk (aka,ke 2wyt akak - aliak + alaTkeZ"“kt)

2
(5.178b)
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1 Knkn .
fd3x7rm7r” 3 &k (aka_ke 2wt 4 akal + akak + alt 'kez"”"t).

Wk
(5.178¢)
For the mass term it was previously found that
1 > ‘
3 fd3x,u ¢* = T fd3k— (a kake 2"""t+al aJreZ"””+akaI +akak)
Wi
(5.179)

The Hamiltonian component has been previously calculated, and re-
solves to

1
fd3xTOO = 5 fd3ka)k (akalt + alak). (5.180)

The other diagonal components, for r # s # t are

1
3 rro_ 3 m__m 242
fd xT —fd x{— E atn" — = E ' ——2,u¢

m=r,0 m—s,t
1 k" 2 _ kS 2 _ kt 2,2 ) .
=— fd3k( k) k) —p (aka_ke_zu"” + akar
4 Wy
+ altak + altaTkez”“"t)

1 .
_ 2 3 —2iwyt T_ T T thkt)
1 d’kwy, (aka_ke —aga, — ayag + aa’ e

k" 2 kS 2 _ K 2 _ _ U_) )
_ fd3 (k") = (k%) (k") ﬂ % (aka_ke_z"”“
4 Wy,
+ali T Ziwkt)
1 3 (kr)Z _ (k5)2 _ (kt)Z _Iu2 + (1)]% . :
+ 1 f ad’k o (akak + akak)

1 3 (k")* — “’% 2iw j
— - il ToT 2iwyt
=3 fd k—wk (aka_ke +aya e )

kr2
2fd3 (wi (aka£+alak).
(5.181)
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This doesn’t have the nice cancellation that killed the time dependent
terms in the Hamiltonian. Such cancellation also doesn’t appear in the off
diagonal energy-momentum tensor components, which are

fd3xT"0 = fd3xT"0

1 3 2iw, i
- __ —2iwgt _ T F T o 2iwgt
== fd kK" (aka_ke agay, — ayax +aa’ e ),

(5.182)
andform#n#0
& xT™ = 1 d3kkmkn (aka_ke_Zi“’"’ +aga +alag+aa eZiwk’)
) kT Y% K%k :

Wi
(5.183)

The eq. (5.182) result has time dependence that the stated result does
not (but is linear in k as desired)? Did I miss something?

Exercise 5.2 Field Lagrangian with a divergence. (2015 ps1.5)
Show that replacing the Lagrange density L = L(¢,, 0q¢,) by

L' =L+3d, N (x), (5.184)

where A#(x),u = 0,---,3, are arbitrary functions of the fields ¢,(x), does
not alter the equations of motion. Thus, when constructing the most general
Lagrange density for a field, we do not have to include terms which are
total derivatives. This will simplify life.

Answer for Exercise 5.2

Consider first just two fields, say ¢ and ¢, and consider

P 8 (0N B AN By
05| =2, | = g, (2 (L2200 L O W
s (&w g ) ’ (%m( 96 v " oy axﬂ))
zaﬁﬁ (5.185)
0
_ (‘)(’)ﬁ/\/’
-

We see that the divergence d,A* also satisfies the field Euler-Lagrange

equations for the field ¢. This will clearly be the case for multiple fields.

Making that explicit, we can generalize the above slightly
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P o OntOg,
p dunt) = 8 e
P (53/3% nh ) P (83/3% by 5)6”)

= 05— 64, (5.186)
P ogy " H
68[;/\'3
9¢a
Exercise 5.3 Scale invariance and conserved charge. (2018 Hw1.1V)

Consider classical electrodynamics with the Lagrangian

1
S = f d4x(—ZF,WF’”). (5.187)

Consider the following “dilatation” (or “scale”) transformation:

r _ d
xﬂ—>xﬂ—exﬂ

(5.188)
Au(x) = AL () = e AL (),

where d is a constant, called the dilatation parameter.

Dilatation invariance in QED (and QCD) is perhaps the simplest exam-
ple of a symmetry, where the classical action is invariant, but the quantum
theory is not (as you will learn later, in the spring class). Broken scale
invariance arises because one has to introduce a short-distance cutoff (a UV
“regulator”) to define the quantum theory. (We already saw an indication
of the need for a regulator when we considered the divergent zero point
energy of the free quantum scalar field.)

a. Show that the action is invariant under dilatations.
b. Find the corresponding Noether current.

c. Show that — perhaps, after a redefinition of j, ; notice that any
conserved current j, can be redefined by adding to it 8”C,,, where
Cyy 1s antisymmetric, without spoiling its conservation (in this
case C can depend on x*,0" and A*, of course) the dilatation
current is simply related to the energy-momentum tensor: j;," f—

%,T",%"", where the symbol con f indicates that these are the

conformal energy-momentum tensor and dilatation current. Notice

that this problem, secretly, requires you to also derive T#” for the

electromagnetic field.



d. Show, then, that conservation of

5.12 PROBLEMS.

implies that the energy-

momentum tensor of classical electrodynamics is traceless (the

trace of the tensor is defined as usual to be g,,, TH").

e. Finally, open your classical electrodynamics books and recall the
interpretation of the 7%, T°*, T etc., components of the energy
momentum tensor as energy density and pressure. Show that the

tracelessness of TH” is equivalent to the familiar relation

p=p/3

between the energy density and pressure of isotropic radiation —

the equation of state of blackbody radiation.*

Answer for Exercise 5.3

Part a.  With x’* = e x*, the volume element transforms as

d*x’

The components of the four-gradient transform as

0
Ox,,

SO

F/

The action

SI

pv =

- Mty

3 ox, 0
B 0x;, 0x,
— e_di

0xy

’

is therefore invariant

1 4 1t ey
_ZdeFﬂVF

1
- f oA g4 o F, o2 v

1
- f d*xF, F*

S.

4 In class, I promised you some finite-temperature problem, but this homework got long.

(5.190)

(5.191)

(5.192)

(5.193)

For now, this will remain the only connection. I'll try to keep my promise... may be in the

final?
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Part b.  We need the variation of the potential

SA, = AL(x) — A,(x)
=Al(e™ ) — A (x)
~ AL((1 = d)x') = Ay(x)
= ¢ A, (1 - d)x') - A (x) (5.194)
(1 - d) (A, — dx®8,A,) — A,
—dx®9,A, — d (A, — dx®9,A,)
—d(1 + x%8,)A,,

X

Q

and the variation of the field

6F,, = F/'W(x) — Fu(x)
= F,(e7'x) = Fu(x)
~ F (1 = d)x') = Fiu(x)
= e 2 F, (1 = d)x') — Fju (%) (5.195)
(1= 2d) (Fuy = dx"0oFuy) = Fuy
= —dx" 0o Fyy — 2d (Fpuy — dx" 0o Fuy)
~ =d(2 + x70,)F ),

X

so the variation of the Lagrangian is

1
6L = =5 (OF ) F*”
1
=~ (CDF" Q2+ x"00)Fy

v d V.,a
= (d)F* F/,lv + EF'H X a(lF/,lV (5.196)

(d)FM F, + gx“aa (FuP™)
~A(d)oL — (d)x DL

_4(d)<=f - (d) (8(1()(&,5) - GCa(txa)
—(d)Bo (x" L),

so the variational current (what is this called?) is

Jh = —(d)x'L. (5.197)
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Finally, we need

oL 1 o
= ——F° O0Ag — 05A,
0,A,) 2 a(aﬂAv)( Bk )
; (5.198)
— __(FM _ pvH
5 (F* = F™)
=—F".

Combining eq. (5.198), eq. (5.197), and eq. (5.194) we can calculate the
conserved current, which is (ford = 1) is

. oL }
Jin = Faauan o ~ i (5.199)
= F* (A, + x%00A,) + L.

This can be put into a slightly nicer form

Jiy = FA, + FYxF oy + FX90,A0 + XL

= EYA+ FR X F oy + 0, (FP XY Ay) — A X2 8P — A B0, XT + ¥ L
= FXF,, + 8, (F*x"A,) + XL,
(5.200)

or

= X (FYFy + 0 0 L) + 0y (F™x"Ay) (5.201)

It was hinted that the complete derivative of an antisymmetric tensor may
be dropped from the current, that’s because

O (J* +0,C") = 0, J" + 0,0,C*

(5.202)
_ o]
=0uj s

since the derivative operator d,,d, is symmetric, and the sum of the contrac-
tion of symmetric and antisymmetric tensors is zero. Since the complete
derivative term F*x*A, is antisymmetric in uv so we may drop it from
the current, leaving only dependence on the electromagnetic field F.

133



134 SYMMETRIES.

Part c.  Having been given the secret that we have to calculate the energy
momentum tensor, let’s start with calculation of the conserved current
associated with a spacetime translation

Xy = Xy, = Xy +ay. (5.203a)

Ay(x) > AL(X) = Ay(x) + a“0,A,. (5.203b)

The gradient d,, and volume element d*x are unchanged by a translation
transformation. The potential transforms as

6A, = Al(x) — Ay(x)

= A0 —a) = A, (5.204)
~ Ay(x) —a"0,A, — A, (x)
= —a“0,A,.

The field transforms as

6F,, = F/'W(x) — Fu(x)

= Fiu (& = a) = Fiu (1) (5.205)
~ /w(x) - aaaaF/lv - F,uv(x)
= —a"0oFpy.

Finally the Lagrangian density transforms as

1
0L = = (OF ) F*”

1 a v
= 50" (aFyw) F* (5.206)
1 (02 v
= 74"0 (FuF™)
= 04 (aL).
That is
Jh=—-ad"L. (5.207)

The conserved current associated with spacetime translation is

oL y
@ = By T a (5.208)

= —F"(=a%0,A,) + a"' L.
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As was the case in eq. (5.201) we are able to put group all the explicit
potential dependence in a discardable package

=a"F"F,, +a"F*"0,A, + d"L

" F0Aq + & L (5.200)
=a"F"F4y +a%0, (FAy) — a" 0, Ay + d'L

or

Ja=a® (FFFoy + 8 3L) + 0, (Fa%A,) (5.210)

The factor F*Ya“A, is completely antisymmetric in uv so we may drop it
from the current. From eq. (5.201), eq. (5.210) we can introduce (confor-
mal) dilatation jg;; and translation conservation j, currents

Tan = —Jan + O (F"xAq)
Jo=—Ju+0, (F"a"A,),

effectively dropping the complete derivative terms (also changing signs to
match the literature [11]). That is

(5.211)

jﬁil = x'04,
7h=ae, (5.212)
O4, = FF9F,, —6",.L.

Here we’ve factored out the common (conformal) energy momentum
tensor ®*,, which may also be written with upper indexes

O = FFIF ;8" — g L, (5.213)
which is symmetric with respect to index interchange

O™ = FVO'FO_wga,u _ gv,uef

= " Fpo F7" = gL (5.214)
= F'F g — gL
="

Partd. We require the divergence of a Noether current to be zero, so for
the dilatation current

0= 6lljgil
= (9,x") @, + x'9,0", (5.215)
=0, +x"0,0/,.
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In particular for x = 0 we must have ©®¥, = 0. Incidentally, given @, = 0,
then for non-zero x we must also have 9,0, = 0. That can be demon-
strated directly utilizing the zero divergence of the Noether current for a
spacetime translation

0= dufa (5.216)
=a"0,0",.

As this is zero for all @ we must have 6,0, = 0.

Part e.  The trace written out explicitly is
0=0",=0%+0"+0%+0=0"-0"-0"-0%, (5217)

Since @ = J(E?+B?) = p,and -@Y = T(}) = E,E; + BB - }5,;(E* +
B?), where T/gy) is the electromagnetic stress tensor (borrowing notation
from [11] again), we have

3
o= —ZT}{,{M). (5.218)
k=1

In [8] Tl.(;w) is described as “the force (per unit area) in the ith direction
action on an element of surface oriented in the jth direction — diagonal
elements represent pressures, and off-diagonal elements are shears”. Inte-
gration of the stress tensor over a cube, as sketched in fig. 5.4, serves to
illustrate this nicely, as only the diagonal elements contribute to such an
integral. If the total cubic face area is A = 6AA, the total force of on the
surface is

FZf% -a
o [ou(rit], - i)
+ e f52k(T1E§/[) - T,Eg’l) _) +e3 f63k(T;£éu) - Tgﬁ) %)9)
= AAe (T,EIIV” Ty _) + Adey (T/EQW) T _)

+ AAes (Tg“ Ty _)
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L
ﬁ,m
:a’l')

Figure 5.4: Cubic surface and outwards normals.

Assuming isotropic fields, the total pressure of the fields on the surface is

ML T

P= 6AA

(5.220)

which recovers eq. (5.189).

Exercise 5.4 A SUR), xSUQ2)g model. (2018 Hw2.1I)

This problem introduces a model to describe the symmetry realization of
the nonabelian chiral symmetry in QCD (quantum chromodynamics). The
word ‘“chiral” should become clear later in this class, but the “nonabelian”
part will be clear below. SU(2);, X SU(2)g is an exact symmetry of QCD
in the limit when the “current masses” of the u and d quark, m,, and my,
are taken to vanish. In the real world, it is an approximate symmetry, in
the sense that m,, and m, are small compared to the intrinsic scale of QCD,
given, say, by the proton mass (m, 4 ~ MeV < 1GeV). This is, thus, an
example of an “approximate symmetry”.

Closer to the theory you will study below, the scalar model with SU(2), X
SU(2)g symmetry, is really the same as the Higgs sector in the Standard
Model, in the limit when the electromagnetic and weak interactions are
turned off. SU(2)r X SU(2)g becomes a symmetry in this limit. It is only an
approximate symmetry, as the electromagnetic and weak couplings (which
explicitly break it) are dimensionless numbers smaller then unity.

Finally, to end the preaching preamble, the notion of approximate sym-
metries is not new and you have, for sure, been exposed to its usefulness
when studying the hydrogen atom spectrum in quantum mechanics.
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a. The Lagrangian you will study is that of two complex scalar fields,

assembled into a column ® = (¢, ¢2)T (the T is here so I do not
have to go through the trouble to write a column instead of a row).
It is given by:

£=08,00,0-mdid-A(dd). (5221

Show that eq. (5.221) is invariant under an SU(2), global symmetry
transformation ® — U;®P, where UzU . = lis a2 X2 unitary
matrix of unit determinant. In addition, the Lagrangian has a U(1)
symmetry, not part of SU(2)., acting as ® — ¢®. Find the
currents and conserved charges under these symmetries.

Hint: recall that an infinitesimal SU(2); transformation can be
written as Uy ~ o + iwa%“, where ¢ is the unit 2 x 2 matrix,
0% a =1,2,3 are the Pauli matrices, and w, are the three parame-
ters of infinitesimal SU(2); transformations.

. Show that the charge operators, O%,a = 1,2,3, conserved due

to SU(2); invariance, obey the angular momentum algebra, i.e.,
[ Af, Qé] =i Qé (plus cyclic permutations).

. The Lagrangian eq. (5.221) has, however, a larger symmetry than

simply the above SU(2).. To begin seeing this, instead of using ® =
(@', )T introduce the real and imaginary parts of ¢'?. Use ¢' =
Yl +iy?, ¢* = 3 +iy*, and introducing ¥ = (¢!, y?, ¢, yHT,
show that eq. (5.221) can be written as:

L = ad, ¥ Y - bm*¥TY — cAYTY)  (5.222)

on the way determining the (pure numbers) a, b, c. The Lagrangian
eq. (5.222) has, clearly, an O(4) symmetry, i.e., is invariant under
Y — OY, where O is a 4 x 4 orthogonal matrix, 070 = 1.1Is there
a continuous U(1) allowed in this case?

Comment: I will spare you finding the currents for SO(4) (SO(4)
matrices are the restriction of O(4) matrices to the ones with unit
determinant). What you will do next, instead, is to use the equiva-
lence of Lie algebras SO(4) =~ SU(2)r X SU(2)g, which will come
about by another change of variables (see below). Notice also that,
as it comes, SO(4) happens to be the Euclidean version of SO(1, 3).

. To expose the SU(2)p X SU2)g symmetry of eq. (5.221), now

use the following change of variables. Consider, instead of ® in
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eq. (5.221) the 2 X 2 matrix H made up by components of P as
follows:

I, 1 | ¢ ¢
—(i0? ", ) = — | "2
V2 ‘/5[—¢1‘ "

Show that under SU(2) transformations,

H= } (5.223)

H— %(iaz(ULCD)*, UL P)
(5.224)

1
6(ULiazcb*, U D)
= U, H.

Hint: the tricky part is to show that io?(U; ®)* = io? U,d* =
Upio*®*. What you need to show, then, is that c?Upo? = U;
(this fact will be very useful in our future studies of spinors, so
make sure you understand it).

. Using the change of variables eq. (5.223), show that

_ L{igil? + 1o 0

H'H , s
2 0 p11* + Il

(5.225)

and, hence, that eq. (5.221) can be written as
2
L =tr(3,H'#"H) - m* tr(H'H) - A tr H"HY.226)

where tr denotes the matrix trace. Show that now eq. (5.226) has
SU(2)L x SU(2)g symmetry, acting on H as

H— U HU, (5.227)

where the action of U; on the right is pure convention (we could
have taken Uy instead). Uy and Uy are two sets of independent
SU(2) transformations. The L and R (left and right) names are
self-evident in the way eq. (5.227) is written. Show that under
SUR)L x SUR)g
a b

H = iwaL%H - iwfﬂ%.
Hint: clearly, the only thing you need to show is SU(2)g invariance,
as SU(2);, was already shown.

(5.228)
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f. Show that the left and right SU(2) conserved currents can be written
as

o =
b
]*Ié =

tr ((‘WHTO'“H —H'co'H
_ (5.229)
tr (aﬂH(r”HT - Ha”a#HT)

|~

|~

and that the corresponding generators QaL’R obey the commutation
relations of two commuting angular momentum algebras.

Hint: notice that both currents are Hermitian and that the left is
obtained from the right by interchanging H with H'.

Answer for Exercise 5.4

Part a.  Let’s consider the SU(2),, case first. Noting that (09" = 0%, the
transformed fields are
@l — elO’w/2¢

' = pieicw2 (5.230)

s0 7@’ = &P, and 50 9, HP’ = 3,DTH*P. This shows that the
Lagrangian density is invariant under this transformation.
The variation of the field is

§P=P —P
z(}+ia-w/2)¢—¢ (5.231)
= %0’ - wP,
SO
ST P) = (6ONHD + dT6D
= % (' 0 + @l wd) (5.232)
=0,
and

50, D7 ®) = 9,(6D")H D + 9,DTF(5P)
= 5 (0,970 P + 5,070 - WD) (5.233)
=0,
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s0 0.L" = 0. To calculate the conserved current, we have to be slightly care-
ful with the order of operations so that the matrix products are compatible

_ oL 5D + 67 ‘u‘;
(0,P) 0(0,P") (5.234)

- % (00" (0 )@ - O (0 - ) D),

#

or
= 5 (@ olote - o o), (5.235)

where 7, = w, j*.
For the U(1) case we clearly have .L” = L. The variation is

b= -
~ (1 +ia)® - @ (5.236)
= iad,
SO
(DT D) = (6OTD + DT (6D)
- ia (_q)T(D + q)Tq)) (5.237)
=0,
and

58,0 ®) = 9,(6DNF D + 9,DT¢(5D)
= ia (-0, "9 D + 9,0 ) (5.238)
=0,

so 0.L = 0. The conserved current, again being careful of the order, is

Y R
= 50,9 0 a,00 (5.239)
= ia (" ®"HP - D'(9'D)).

Jo
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Part b.  The conserved charge is

0=~ f Px (" P - O o0 D)
2 (5.240)

_ ! 3 t a t _a

—zfdx(ncr(l)—(l)o-fl),

which can be expressed in terms of the individual fields so the commutators
can be computed more easily. Expanding out the matrices, we have

=3 f &x (nlotg, - plotmy). (5.241)

To simplify the commutator expansion, assume that r, s indexed functions
are functions of x and m, n indexed functions are functions of y, for

0. 0" =~ f Pyt oh, [1ids — dine il bn - ol
f Pxdyotob, (|7l dhma] + 85 mhta])
Pxdyotob,, (wldhbsmy — Sl mid, + ol mn
— 7,61 dus)

fd XdSyo-rs O imn ((¢mﬂr + [ s ¢jn])¢sﬂn - ¢Lﬂjﬂn¢s

4>|~4>|~

4>|~

+ (ﬂM + ¢85, 7]) s - 7l pury)

Xd3y0-rs mn( m r ¢S’7rn [ﬂr"pm] ¢S7Tﬂ

4>|~

+ 70,07 75, ¢l + [ 0] 70 | 7580 -
(5.242)
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Each of these commutators has a 6®(x — y) term, leaving
i
[Q“, Qb] =7 fd3x0'f50'fnn( T Sgn = SrmsTn — T bl B g + 6rm7rs¢n)
i P
=2 fd3x0'fs (a'f’ns( Tl - 7r,’,l¢;) + 0 (e — ¢S7Tn))
i
-1 [ @x(haion - @bt + @hrh e
— (04 ps) (b))
fd3x (@TO'bO'aH ~IT'o?0*® + [T 0D — (I)TO'aO'bH)
f x(IT [0, o?| @ - @ [0, 0| 1)
[ (i oo | @ - ' [0 1)
1
2

d° xebe (n"‘a%p - @"'acn)

(5.243)

as desired.

Part c.  Let’s consider the mass term first, which becomes

DD = ¢lg) + oo
= ' - iAW + iy + @ - ighH? + iyt
=W+ WD+ @)+ @ + it -l + it - uted).
(5.244)

Since ®'® is a real scalar in the original representation, the imaginary
parts of this representation must also be zero (i.e. ', ? and ¢>, y* each
respectively commute). This leaves

O'P =9y, (5.245)
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so b, c = 1. For the derivative term, we have
3, DD = 9,0 p1 + 3L 92
= 0,(" — i W' + iy + 0,07 — iwH W + iy
= O Y + Ot + P + 0t oy
+ i y* = 0P + i 0wt - 0t yd).
=9, Y'Y + i "y? - Yo
+ i@yt — o),

(5.246)

where a matched raising and lowering operation has been performed on half
the terms. Because of the ¢! and y>* commutation properties observed

previously, the imaginary terms are killed, leaving

9,07 ® = 9,¥"0"Y, (5.247)

soa=1.

For the question of the U(1) symmetry, suppose that ¥ — @Y. We

then have
6L = 2L - 2iaed (")’

(5.248)

which does not have the required four-divergence form required for a

conserved current, so there is no U(1) symmetry.

Part d.  We want to examine the transformation of o>(U;®)*, which, to

first order in w is
2 * 27Tk ANk
o (ULP) - o°U; P
~ " - %O'zwa(oﬂ)*cb*

1 1
Because 0! = [O } Lo = { 0 } are real, and o is purely imaginary,

1 0 0 -1
we have ()" = 0!, ()" = 03, and

(U%*:HO 4” :{0 i}z—a? (5.250)
i 0 -i 0

(5.249)
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Utilizing these conjugation relations, and the commutation identities
ool = —olo for i # J, we have

(UL D) - O - é (a)10'2(0'1)* + W () + w30'2(0'3)*)d>

i
=P - - (wlo'(r — o +w30'0')<I>*

i
=P - - ( w0’ — wyo 0'2—w30'0')<l>*

=P + (a)la' + W + wio )O'ZCD*

= U,o? CD .
(5.251)

%(z’a‘zcb*, ®d), we have

Plugging into H =

1
H - —(iocX(U D), U D)
V2

1 (5.252)
—(ULic?®", U D)
V2

=ULH,

proving eq. (5.224) as desired.
Incidentally, eq. (5.251) shows that

o*U; = Upo?, (5.253)

the identity that was claimed to be important for future spinor theory work.

Part e.

. [ ¢ ¢1} [qﬁz —m]
2

Rl 4 (5.254)
_ l¢§¢2 + o8, dadr - mm] |
P15 — D59] P11 + dr
Assuming [¢1, ¢2] = 0, we have
2 2
= L4F el 0 2], 5055,
2 0 1l + 12|
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and

tr H'H = §(|¢1|2 + 1¢ol?) (5.256)
=D,
For the derivative terms
050 ¢2 + 0,10V 'P] 020/ 'P1 — 010 2
0,910 d; — 0,950V p] 0,910 P1 + 0,450/ D2

Applying matched raising and lowering operations on one half of each of
the cross terms kills them, leaving

0,H 0"H = l %5.257)

. H " H = laﬂ%a% * 196 0 15.258)
0 0u 0" P1 + 0,950 P2
SO
tro,H'0"H = 6,0 " P, (5.259)

proving eq. (5.226).
We can see that the transformation eq. (5.227) leaves the Lagrangian
density unchanged by direct substitution. Let’s do this term by term

3 H' 9 H — 8,(UrH' U (WTHUY)
= Ur(8,H'#" H)U},
= (8,H'3"H)URU,
= 0,H 9"H,

(5.260)

since 0, H TOMH is a scalar. Similarly

H'H — (UpH' UD(WTHUY)
= Ur(H'H)U}, (5.261)
= (H'H)URU};
=H'H.

Finally, the variation of H is given by

5H=H'—H .
~ (1 + éwﬁ;o-“)H(l - éwfab) -H

i (5.262)

(wéo-“H - wao-b) + O(w)

Y

1

(wﬁo-“H - wﬁHc’”) ,

[\
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which recovers eq. (5.228) as desired.

Fart f.  To proceed, we clearly want a trace based expression for the
conserved current. To determine the structure of that current, we can vary
the action using a Lagrangian density of the following form

L =tr(0,H'&"H + V(H'H)). (5.263)

That is

68 =6 f d*xtr (6,H'"H + V(H'H))

= f d*xtr (3,1(6HT)6“H + 3, H'O"(6H) + ((6H"H + H*((SH)))

OH'H
= f d4xtr(a,,(5HTaﬂH) - 6H"8,0"H + 0"(0,H"6H) - ("9, H")6H

+

T ((6H"H + H*((SH)))

- f d4x(a,, tr (6H 0" H + 0" H'5H)

+r ((SHT (—aﬂaﬂH Y H) + (—af‘a,,HT + 6—VHT) 6H)).
OH'H OH'H
(5.264)

The second trace must be the equivalent of the Euler-Lagrange equations.
It’s not obvious how to pretty that up, but we can mandate that it must be
zero for all variations 6H, H', which leaves us with

5S = f d*xd), tr (5HWH+ aﬂHT(SH). (5.265)

A Noether conserved current requires 65 = f d4x(9ﬂJ“, or

Outr(SH'O"H + 0" H'6H) = 0,,J*, (5.266)
so defining a Noether current as

F =t (6H'3"H + ¢"H'6H) - J*, (5.267)

we have d,,j* = 0 as desired.
In case the hand waving portion of the argument above (mandating that
the second trace is zero as it must be equivalent to the Euler-Lagrange
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equations) is not convincing, then we guess that eq. (5.267) is the desired
form of the Noether current, and justify that guess for our specific case by
direct expansion using

H = % i o]

, 5.268
V2| ot

which gives

tr(6H'0"H + 0" H'H
1 (|- | . —ir @Yo\
=50l |ic2rar o] e lio260* 5]

= % (6<I>T<I>* + 6D HD + HDToD* + aﬂqf(scp)
= 5¢18’J¢T + 6¢*{6“¢1 + (5¢28’u¢; + 6¢36W¢2
(5.269)

This is precisely the Noether current in terms of the original fields ¢ 5, ¢’f72,
given that we have J# = 0 for our Lagrangian.

To prove eq. (5 229) we can now substitute eq (5.228) into eq. (5.267).
Let (0H); = zw H and (0H)gr = —zwbH" and compute the L,R
currents separately

i = ((6H")0"H + 8" H'(5H),)

(( iwkHT )aﬂH+aﬂH*(a} 7H)) (5.270)

= c; tr(—HTO'HG“H+6“H%O'“H),

With ]’Z = Wy fI" , we’ve proven eq. (5.229) for the left current. For the
right current

Ji =t (GH)R0"H + " H' (5H)g)

O_b b
tr ((iw{f 7HT) OH+HH' (—lwbHT))
R (5.271)
=t (c*H'0"H - " H Ho*)

iwk N
- 7“ tr (G”HO'“H' - Ha“a“HT),
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where tr (ABC) = tr (BCA) = tr (CAB) was used coerce this result into the
desired form. An assignment ji, = w, " completes the proof.

Charges.  'To help show that the charges obey the angular momentum
relations we can prepare by evaluating the trace operators. For j‘i’“ this
reduction submits nicely to block matrix form using eq. (5.268).

F = étr (0*H'o"H ~ H' 50" H) (5.272)
i -i®Te?| —itPT?|
= Ztr ] o [io-zaﬂcb* (’)ﬂcI)] - o [iazq)* q)]
o D'

« —i®T25ig? M P — it DT o2 oo P .
MO P
= i (CIDT(rz(T“O'Z(?“CD* + DD - H D PP D — (9”CI>T0'“<I>)

qﬁaaaﬂqj B

—OTr®* + DI D + H PP — ' PToD a2
i { P P + DT YD + TP HP - FPTPP a=2

i x{ DT P* + DT ?H P — HPT 2 D" — DT 2D a=2

4 | —tdT D + DTIHD + PTTIHD — F DD a2

= (@0 d'd — ' T D).
2
The conserved charge has the structure
Q¢ = % f x (T TI - IT' D), (5.273)

which differs only by a sign from the conserved charge that we found in
eq. (5.240), which we already demonstrated has the commutator properties
of angular momentum operators.

A eq. (5.272) reduction is possible for j‘;e’” too, but needs to be setup
differently. Let

Y =

¢2] , (5.274)
¢
which allows us to put H, H' in an appropriate block matrix form
1| ¥
H=—
V2 [¥Tio?

H = % ¥ —ic?¥].

(5.275)
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=%

Plugging this in for f, we find

a

tr (a"hhrf’HT - Ha“aﬂHT)

N~

_! [ o ]0“ ki —io—z‘if*]_[ ‘TP-T z}m ¥ —io?omy]

IS

b 1o

Yiio

tr
6‘“{” Y + 'Y 2Py - YooY — ‘I’TO'O'O'ZB”‘I’*)

Bl

I

MY oY + YT - YT oY — YT o204y a=2
{ MY oY - YT -~ YT oMY + YT oo Y™ a#?2
i | Y oY - YTo20"Y - YT o204y + “Y T o?Y a=2
4 { MY oY - YT oOtY - YooY + 0HY oY a#?2
% (%1 ¥ — ¥io9y).

(5.276)

The conserved charge is therefore

Q% = % f Ix(Vo"¥ - ¥o"¥). (5.277)

This clearly also satisfies the angular momentum commutation relations.

Charge commutation: partial: ~ The charges Q%, Q’Z should commute by
virtue of originating from two independent symmetries, but to show this
seems ugly.

Here is a partial attempt. In terms of the matrix elements

SO

i
QL’a = Efd% (Hjso-stHfr Hrsa-slHl‘r)
(5.278)
oRb = 3 f &y (H,s0, H}. — Hys0b,H] )

L.a R.b
|0, 0%
1 . .
= f d*xd®y [H]\Hy — Hf\Hiy, HynH},, — HynH,, | 04,00,

st

(5.279)

= f d*xd®y [H},Hyy — HyHiy, HynHyyy = HynHo | 04,07,
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For this to be zero, each of these 16 X 3 X 3 commutators must be zero.
Presumably, we could plug in the ¢ 2, 71 2, ¢} 2 i 2 values, and find that
this is the case (perhaps only when the o-‘jtam) elements are non-zero.)
On paper, I did write out H;.H,, — H;, H;, in terms of (¢, 7)’s, and it was
interesting that all of the operator factors in each of those sum of pairs
commuted. That expansion was fairly tedious, and probably not completely
correct, and I did not attempt to do the same for H,, H};,, — HynH},, and
show that those two sets of four operators (each with four pairs) commuted.
There has got to be an easier way! If there is not, such a proof is a job for

a computer program, and not a person.

Exercise 5.5 Wigner and Nambu-Goldstone modes. (2018 Hw2.11I)

Consider now our Lagrangian eq. (5.226) and imagine that m? < 0, for
whatever reason (nobody knows, really), while A is still positive. This now
becomes the Higgs Lagrangian of the Standard Model. We explore the
SU(2) x SU(2)g symmetries in this model.

a. Show that the classical potential in eq. (5.226) now becomes:

V=—|m?|eHH + A(trH*H)2
| 2| (5.280)
(I¢1|2 + |¢ol? - ] + const.

b. Clearly, there are extrema of the potential when |¢1|2 + |¢)2|2

and when |¢>1|2 + |¢2|2 = I | The second one has, clearly, smaller
energy density. To quantlze the theory, we now have to choose
which classical minimum to expand around. Show that, if we ex-
pand around |¢; |2 + |¢52|2 = 0, we will find that the ¢, excitations
are tachyons, even classically. This signals an instability, rather
than a faster-than-light propagation and shows that we have chosen
the wrong value of @ to build our quantum theory.

c. Thus, consider the |¢1|2 + ol = | | minimum of V. This is really
a set of minima. In fact the set parameterlzed by o1 + |po)* =
const is also known as a three sphere (3, embedded in a four-
dimensional space parameterized by '~* - not the spacetime!).
To build the quantum theory, we will choose a point on this three
sphere (a.k.a. the “vacuum manifold” - the set of field values that
minimize the potential). We will now study the small fluctuations
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around the chosen point and the spectrum of the theory in this
vacuum. There is an infinite number of parameterizations that can
be used to do this, but I will suggest one that makes the symmetries
the clearest. Thus, use the H-representation and take
HE) = (1 4 e o (5.281)
2V2
The logic here is as follows. When /(x) and ¢“(x) vanish (i.e. there
are no excitations), the parameterization eq. (5.281) is equivalent,
by eq. (5.225) , to taking a specific point on the vacuum manifold,
i.e. the one where ¢; = 0 and ¢, = |m|/ V2. The fields h(x) and
¢“(x) parameterize the fluctuations around this ground state (for
sure, they can be mapped - the map is nonlinear - to the fluctuations
of the fields ¢ » around the chosen vacuum value for ¢2.5 What
you will do now is take the form eq. (5.281) , plug it into the
Lagrangian eq. (5.226) with m? = —’mzﬂ, and expand what you find
to second order in the fields A(x) and ¢“(x). Show that the field A(x)
has a mass and find an expression for it. Show that the fields ¢“(x)
remain massless and that their Lagrangian (not just to quadratic
order) only contains derivatives.
The latter point can be seen pretty simply by noting that H(x) from
eq. (5.281) can be written as
Hixp) = ™
(x) = —=Qx)( + h(x)), (5.282)
2Va
with Q') = 1 and det(Q)(x)) = 1. In this parameterization ()(x)
fluctuations correspond to going around the vacuum manifold S,
while the /(x) fluctuations are along the “radial” directions away
from the minimum. The latter cost energy, hence / is massive (the
Higgs field!), while the ()(x) only cost energy if the x-dependence
is nontrivial. The ¢“(x) (or {)(x)) are equivalent parameterizations

5 As in classical mechanics, which variables one uses to describe physics is a matter of
choice and convenience. The Euler-Lagrange equations have the property that they are
invariant under changes of variables, so long as no singularity occurs in the process. In
fact, one of the main motivations of using Lagrangians in classical mechanics is that the
change of variables is much easier to do. In other words, it is much easier to first transform
the Lagrangian to spherical coordinates and then find the Euler-Lagrange equations then
to transform the equations found in Cartesian coordinates to spherical coordinates (in
the latter case you need to differentiate twice...). Invariance of physics under nonsingular
changes of variables in the Lagrangian is, of course, inherited in field theory.
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of the Goldstone fields. What you found here is an example of
a general story: if a theory has a continuous symmetry, which is
not a symmetry of the ground state, there is a number of massless
Goldstone (or Nambu-Goldstone) modes. For internal symmetries
like the ones we are considering here, their number is equal to the
number of broken generators.

In the Standard Model, A(x) is indeed the Higgs field. The fields
¢“(x) actually become the longitudinal components of the W and
Z-bosons (one usually says that they are “eaten”, a manifestation
of the Landau-Anderson-Higgs-Brout-Englert-Guralnik-Hagen-...
mechanism).

. One question that was not discussed and remained a bit obscure is
that of the unbroken part of the symmetry. The original Lagrangian
has SU(2)p X SU(2)g symmetry. The value of H(x) in the vacuum,
denoted by (H), is given by eq. (5.281) with h = ¢* = 0 and is
(H) ~ unit matrix. Show that, while (H) is not invariant under
SU(2)L X SU(2)g for arbitrary SU(2); and SU(2)g transformations,
it is invariant under eq. (5.227) with Uy = Ug. Such SU(2)p X
SU(2)g transformations with Uy = Uy are called “diagonal” or
“vector” SU(2)y transformations. These remain unbroken in the
vacuum. In the electroweak theory, the third component of SU(2)y
is identified with electromagnetic U(1). Show that the current
associated with SU(2)y transformations has the form:

j%“ = étr ([)‘,lHT [c“ H] +0,H [o-”,HT]) (5.283)

Show also that the other “linear” combination of SU(2); and
SUQ2)g, eq. (5.227) with Ug = Uz corresponds to the current
(not conserved!) usually called the “axial current”

jhe = étra#HT{a“,H} —duH{o" H'), (5284

where {A, B} = AB + BA denotes the anticommutator.

. Show that to linear order in the fields A(x), ¢“(x), the a-th axial
current is simply

J~ (H)Y 9,9, (5.285)

and find the constant in front. Thus, when the quantum operator cor-
responding to eq. (5.285) acts on the vacuum, it creates a quantum
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of the Goldstone boson (times the momentum and the “Goldstone
boson decay constant” which is really equal to (H)).

Show also that, to leading nontrivial order in the fields, the con-
served vector current j%¢ is quadratic in the fields ¢

In QCD, the relation eq. (5.285) and the algebra of the currents
j¥4 constitute the basis of an approach to soft-pion physics (soft
means low energy) known as “current algebra”.

Here, we studied the Nambu-Goldstone mode. In the Wigner mode,
when m? > 0, there are no massless particles, as is easy to convince
yourselves.

Answer for Exercise 5.5

Part a.  To expand the potential note that

(I)T
= % (o7 + ') (5.286)

w(H'H) = % tr[[_iq)fgz} i @]]

1 * % * % 22
= 5 (9101 + 6205 + 0161 + 430°)
= |¢1* + Igal”,

so we have

V=—mPu(H H) + A(r (H?H))z

= —mP (161 + I62P) + 21011 + I2P)” (5.287)
= (61 + 1022 = (2 + 10a)
= ol b2 1 b1 #17)].
Completing the square gives
2 2
V—A(|¢1| + 1 M) a(u), (5.288)
]

which proves the result and shows that the constant is — 7.
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Part b.  From eq. (5.287) the first order expansion, ignoring constant
terms, around |¢; I+ |¢)2|2 =0is

V = —[m?|(1g11” + |p2l?) = =|m*| @7 . (5.289)
The Lagrangian density, to first order, may be written in the compact form
L =0,070D + |m* P . (5.290)
The equations of motion are
3,0"® = [m*®
9t (5.291)
3,0/ D" = |m|*®"

2
or, 9,0"y = |m|"y for any Y € ¢1, ¢2, ¢, &5.
Suppose that one of these wave functions has a Fourier transform repre-
sentation

d*p .
W(x) = f #e””w- (5.292)

Such a solution must satisfy the equations of motion

0= ((’)n -V |m2|)1,0

2 2 d*p iwt—ipX 7
= (0 - V2 = |m?)) e (5.293)
d4 : : iwt—ip-X 7
= [ 58 (w0 - v = R) g,
SO
0=-w”+p*—|mP (5.294)
or

w = +p? - ImP. (5.295)

Any ||pl| < |m| results in an imaginary angular frequency. For example, at
p = 0, we have
w = =xim|. (5.296)

In particular

pox’ = wt
= +ilm|t (5.297)
= +|m|(ir).
We see that the angular momentum constraint on the system eq. (5.294)
results in the imaginary time that is characteristic of tachonic solutions.
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Part c. It seems reasonable that we can assume that i(x) and ¢%(x) in
eq. (5.281) are all real valued scalar (non-matrix) functions. That is i(x)
has the role of radial extension or compression of the field magnitude, and
the exponential is of the form ¢/ a matrix valued rotation operator,
where ¢ = (¢', ¢°, ¢°). Given that assumption, H"H can be computed with
relative ease, and has only radial dependence

2
|m|

tr (HTH) =+ h(x))? tr (e—f"'¢ei"'¢)

2
= u(1 + h(x)*trl (5.298)

2
'm' Rt Y.

For the derivative quadratlc form, it is expedient to use the form eq. (5.282),
which gives

d,H & H = ' " (a hQT + (1 + 13, QF) (#*hQ + (1 + h)FO)

2
'ml (a WO RO + (1 + b (0,hQ1 (@ Q) + #h(@,0N)Q)

+ (1 +h)*3,079'Q)

(5.299)

where we have made the usual assumptions that the independent fields
(h, Q) commute. Because Q'Q = 1, we have

0uh QY (3 Q) + & W3, 0NN = 9,k (AT Q) + (*QNHNO)
= 0,h (0"(QY'Q) - ("N + (3*QNH)O)
= 94(1)
=0.
(5.300)

All the cross terms with both /z and Q) derivatives are zero (to all orders,
not just quadratic).

Taking traces (and using cyclic permutation of the matrices in the trace
operations), the Lagrangian density is now determined to quadratic order

= 0,hd"h + —— tr(9,Q7"Q) S0

2 2
L - (";" ) (1+h)*.



5.12 PROBLEMS.

Observe that the Lagrangian density can be split into two independent parts,
one for the radial field &, and another for the rotation field (). Rescaling to
drop the common constant factor |m|?/2.4, the radial Lagrangian is

2
Ly = 3,hdh + m> (1 + h)? — '";' (1 + h)*

o, =" (1wt - 21+ 1)

=9 hﬁ”h—u((l +h? 1) +const: (5.302)
=9 haﬂh—l(zmzﬁ)

= 0,hd"h — |m|2 -H (2 + h)?

= 0,hd"h — 2|m|2h2 +O0(h).

This shows that the mass of the £ field is \/Elml.

The only remaining task is to express the Lagrangian density for ¢“ in
terms of those field instead of (). To evaluate those derivatives, we can
utilize a first order Taylor expansion

8,0 =8, (1 +io - §)

5.303
=i - 0,9, ( )

so the rotation Lagrangian density is

1
Ly = 5 (o dup)io - &'9))
= (0u9) - (0"9)
= (0909,

where we use the fact that tr ((o- x)(07 - y)) = 2x - y.
The full Lagrangian density, to quadratic order, is

(5.304)

L =Ly + Ly = 0,hd"h = 2lm*h* + 8,¢° " (5.305)

Part d.

Problem statement inconsistency. In the problem statement (H) is de-
fined as a 2 X 2 unit matrix scaled by |m|/2 \/1 but later when used in the
statement of the axial current, it appears as a number (since the current
is a number, and not a matrix). In this solution I've used (H) as just the
numeric factor, and dropped the identity matrix factor.
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Setup.  This problem is easiest if we can work directly with in matrix
notation, but first need to know how to express the current. Given matrix
elements Hyp, sz, that current is

oL oL
0@ Hip) 7 AGuH) Y

i+
The trace of a matrix product in terms of the respective matrix elements is

tr (AB) = AikBkj(Sij = AijBﬁ, (5.307)
so the Kinetic portion of the Lagrangian density expands as

tr (8, H'0"H) = 8,(H") ;0" Hi; = 0,H;,0" Hyj. (5.308)

We can now put the current eq. (5.306) into matrix form

jﬂ = a’qu*j(SH,, + 6H;}8“H,'j
= O*(H") ;;0H;; + 6(H") 0" H;; (5.309)
= tr(3"H'6H + 6H'9"H).

Vector current. With H - U HU T, the H variation is

SH=H -H

i i 5 (5.310)
= 30 WH - SH(o - ) + 0(w?)
= Slo-w. Hl,
and its conjugate is

f e g role o o H

SH' = 2[H 00| = 2[0 w,H'|. (5.311)

Putting the pieces together gives
Vo _ | t t
j¢==-tr(0,H [0 -w,H + |0 -w,H"|0,H

= % tr(0,H" [, H] + 8,H |0, HT]),

so setting jX"” =w! jX’” to factor out the w?’s, provides the desired result.
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Axial current.  This is only cosmetically different from the Vector cur-
rent.
With H —» U HU,, the H variation is

SH=H -H .
i i
~(1+z0-w|H|(l+-0 w|-H
( + 2o w) ( + 2o w)
i i ) (5.313)
= 5(0’-0))H+ 5H(0'-(u)+0(w )
i
== : ’H B
JU w, H}
and its conjugate is
LY PR
SH' = 2{0’ w,H'}. (5.314)
Putting the pieces together gives
Aw _ 1 t t
¢ ==ztr(0,H {0 -w,H} - {0 -w,H"|0,H
HeT 2 (9 { JouH) (5.315)

- % tr (aﬂHT{Ga, H} - 5;4H{‘7a’ HT})

so setting j,‘:"“’ =’ jﬁ’“ to factor out the w®’s, provides the desired result.
Part e.

Axial current to first order.  To first order the H partial is

uH = (H) (3,h (1 + i - §) + (1 + h)ior - 3,up) (5.316)
= (H) (0,h + io - ,8) + OQ2).

Because this has no zero order terms, we need only the zeroth order parts
of the anticommutators

(o, HY 