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Fundamental theorem of geometric calculus (relativistic.)

1.1 Motivation.

I’ve been slowly working my way towards a statement of the fundamental theorem of integral calculus, where
the functions being integrated are elements of the Dirac algebra (space time multivectors in the geometric algebra
parlance.)

This is interesting because we want to be able to do line, surface, 3-volume and 4-volume space time integrals.
We have many R3 integral theorems ∫ B

A
dl ·∇ f = f (B) − f (A), (1.1a)∫

S
dA n̂ ×∇ f =

�
∂S

dx f , (1.1b)∫
S

dA n̂ · (∇ × f) =

�
∂S

dx · f, (1.1c)∫
S

dxdy
(
∂P
∂y
−
∂Q
∂x

)
=


∂S

Pdx + Qdy, (1.1d)∫
V

dV ∇ f =

∫
∂V

dA n̂ f , (1.1e)∫
V

dV ∇ × f =

∫
∂V

dA n̂ × f, (1.1f)∫
V

dV ∇ · f =

∫
∂V

dA n̂ · f, (1.1g)

and want to know how to generalize these to four dimensions and also make sure that we are handling the relativistic
mixed signature correctly. If our starting point was the mess of equations above, we’d be in trouble, since it is not
obvious how these generalize. All the theorems with unit normals have to be handled completely differently in four
dimensions since we don’t have a unique normal to any given spacetime plane. What comes to our rescue is the
Fundamental Theorem of Geometric Calculus (FTGC), which has the form∫

Fdnx
↔

∂ G =

∫
Fdn−1x G, (1.2)
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where F,G are multivectors functions (i.e. sums of products of vectors.) We’ve seen ([2], [1]) that all the identities
above are special cases of the fundamental theorem.

Do we need any special care to state the FTGC correctly for our relativistic case? It turns out that the answer is
no! Tangent and reciprocal frame vectors do all the heavy lifting, and we can use the fundamental theorem as is,
even in our mixed signature space. The only real change that we need to make is use spacetime gradient and vector
derivative operators instead of their spatial equivalents. We will see how this works below. Note that instead of
starting with eq. (1.2) directly, I will attempt to build up to that point in a progressive fashion that is hopefully does
not require the reader to make too many unjustified mental leaps.

1.2 Multivector line integrals.

We want to define multivector line integrals to start with. Recall that in R3 we would say that for scalar functions
f , the integral ∫

dx f =

∫
f dx,

is a line integral. Also, for vector functions f we call∫
dx · f =

1
2

∫
dx f + fdx.

a line integral. In order to generalize line integrals to multivector functions, we will allow our multivector functions
to be placed on either or both sides of the differential.

Definition 1.1: Line integral.

Given a single variable parameterization x = x(u), we write d1x = xudu, and call∫
Fd1x G,

a line integral, where F,G are arbitrary multivector functions.

We must be careful not to reorder any of the factors in the integrand, since the differential may not commute with
either F or G. Here is a simple example where the integrand has a product of a vector and differential.

Exercise 1.1 Circular parameterization.

Given a circular parameterization x(θ) = γ1e−iθ, where i = γ1γ2, the unit bivector for the x, y plane. Compute the
line integral

(1.3)
∫ π/4

0
F(θ) d1x G(θ),

where F(θ) = xθ + γ3 + γ1γ0 is a multivector valued function, and G(θ) = γ0 is vector valued.
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Answer for Exercise 1.1

The tangent vector for the curve is
xθ = −γ1γ1γ2e−iθ = γ2e−iθ, (1.4)

with reciprocal vector xθ = eiθγ2. The differential element is d1x = γ2e−iθdθ, so the integrand is∫ π/4

0

(
xθ + γ3 + γ1γ0

)
d1x γ0 =

∫ π/4

0

(
eiθγ2 + γ3 + γ1γ0

)
γ2e−iθdθ γ0

=
π

4
γ0 + (γ32 + γ102)

1
−i

(
e−iπ/4 − 1

)
γ0

=
π

4
γ0 +

1
√

2
(γ32 + γ102) γ120 (1 − γ12)

=
π

4
γ0 +

1
√

2
(γ310 + 1) (1 − γ12) .

(1.5)

Observe how care is required not to reorder any terms. This particular end result is a multivector with scalar, vector,
bivector, and trivector grades, but no pseudoscalar component. The grades in the end result depend on both the
function in the integrand and on the path. For example, had we integrated all the way around the circle, the end
result would have been the vector 2πγ0 (i.e. a γ0 weighted unit circle circumference), as all the other grades would
have been killed by the complex exponential integrated over a full period.

Exercise 1.2 Line integral for boosted time direction vector.

Let x = ev̂α/2γ0e−v̂α/2 represent the spacetime curve of all the boosts of γ0 along a specific velocity direction
vector, where v̂ = (v∧ γ0)/‖v∧ γ0‖ is a unit spatial bivector for any constant vector v. Compute the line integral

(1.6)
∫

x d1x.

Answer for Exercise 1.2

Observe that v̂ and γ0 anticommute, so we may write our boost as a one sided exponential

x(α) = γ0e−v̂α = ev̂αγ0 = (coshα + v̂ sinhα) γ0. (1.7)

The tangent vector is just

xα =
∂x
∂α

= ev̂αv̂γ0. (1.8)

Let’s get a bit of intuition about the nature of this vector. It’s square is

(1.9)
x2
α = ev̂αv̂γ0ev̂αv̂γ0

= −ev̂αv̂e−v̂αv̂(γ0)2

= −1,
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so we see that the tangent vector is a spacelike unit vector. As the vector representing points on the curve is
necessarily timelike (due to Lorentz invariance), these two must be orthogonal at all points. Let’s confirm this
algebraically

(1.10)

x · xα =
〈
ev̂αγ0ev̂αv̂γ0

〉
=

〈
e−v̂αev̂αv̂(γ0)2

〉
= 〈v̂〉
= 0.

Here we used ev̂αγ0 = γ0e−v̂α, and 〈AB〉 = 〈BA〉. Geometrically, we have the curious fact that the direction vectors
to points on the curve are perpendicular (with respect to our relativistic dot product) to the tangent vectors on the
curve, as illustrated in fig. 1.1.

Figure 1.1: Tangent perpendicularity in mixed metric.

1.2.1 Perfect differentials.

Having seen a couple examples of multivector line integrals, let’s now move on to figure out the structure of a line
integral that has a “perfect” differential integrand. We can take a hint from the R3 vector result that we already
know, namely

(1.11)
∫ B

A
dl · ∇ f = f (B) − f (A).

It seems reasonable to guess that the relativistic generalization of this is

(1.12)
∫ B

A
dx · ∇ f = f (B) − f (A).
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Let’s check that, by expanding in coordinates

(1.13)

∫ B

A
dx · ∇ f =

∫ B

A
dτ

dxµ

dτ
∂µ f

=

∫ B

A
dτ

dxµ

dτ
∂ f
∂xµ

=

∫ B

A
dτ

d f
dτ

= f (B) − f (A).

If we drop the dot product, will we have such a nice result? Let’s see:

(1.14)

∫ B

A
dx∇ f =

∫ B

A
dτ

dxµ

dτ
γµγ

ν∂ν f

=

∫ B

A
dτ

dxµ

dτ
∂ f
∂xµ

+

∫ B

A
dτ

∑
µ,ν

γµγ
ν dxµ

dτ
∂ f
∂xν

.

This scalar component of this integrand is a perfect differential, but the bivector part of the integrand is a complete
mess, that we have no hope of generally integrating. It happens that if we consider one of the simplest param-
eterization examples, we can get a strong hint of how to generalize the differential operator to one that ends up
providing a perfect differential. In particular, let’s integrate over a linear constant path, such as x(τ) = τγ0. For this
path, we have

(1.15)

∫ B

A
dx∇ f =

∫ B

A
γ0dτ

(
γ0∂0 + γ1∂1 + γ2∂2 + γ3∂3

)
f

=

∫ B

A
dτ

(
∂ f
∂τ

+ γ0γ
1 ∂ f
∂x1 + γ0γ

2 ∂ f
∂x2 + γ0γ

3 ∂ f
∂x3

)
.

Just because the path does not have any x1, x2, x3 component dependencies does not mean that these last three
partials are neccessarily zero. For example f = f (x(τ)) =

(
x0

)2
γ0 + x1γ1 will have a non-zero contribution from

the ∂1 operator. In that particular case, we can easily integrate f , but we have to know the specifics of the function
to do the integral. However, if we had a differential operator that did not include any component off the integration
path, we would ahve a perfect differential. That is, if we were to replace the gradient with the projection of the
gradient onto the tangent space, we would have a perfect differential. We see that the function of the dot product
in eq. (1.12) has the same effect, as it rejects any component of the gradient that does not lie on the tangent space.

Definition 1.2: Vector derivative.

Given a spacetime manifold parameterized by x = x(u0, · · · uN−1), with tangent vectors xµ = ∂x/∂uµ, and
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reciprocal vectors xµ ∈ span {xν}, such that xµ · xν = δµν, the vector derivative is defined as

∂ =

N−1∑
µ=0

xµ
∂

∂uµ
.

Observe that if this is a full parameterization of the space (N = 4), then the vector derivative is identical
to the gradient. The vector derivative is the projection of the gradient onto the tangent space at the point of
evaluation.

Furthermore, we designate
↔

∂ as the vector derivative allowed to act bidirectionally, as follows

R
↔

∂ S = Rxµ
∂S
∂uµ

+
∂R
∂uµ

xµS ,

where R, S are multivectors, and summation convention is implied. In this bidirectional action, the vector
factors of the vector derivative must stay in place (as they do not neccessarily commute with R, S ), but the
derivative operators apply in a chain rule like fashion to both functions.

Noting that xu · ∇ = xu · ∂, we may rewrite the scalar line integral identity eq. (1.12) as

(1.16)
∫ B

A
dx · ∂ f = f (B) − f (A).

However, as our example hinted at, the fundamental theorem for line integrals has a multivector generalization that
does not rely on a dot product to do the tangent space filtering, and is more powerful. That generalization has the
following form.

Theorem 1.1: Fundamental theorem for line integrals.

Given multivector functions F,G, and a single parameter curve x(u) with line element d1x = xudu, then∫ B

A
Fd1x

↔

∂ G = F(B)G(B) − F(A)G(A).

Proof. Writing out the integrand explicitly, we find

(1.17)
∫ B

A
Fd1x

↔

∂ G =

∫ B

A
Fdα xαxα

↔

∂

∂α
G

However for a single parameter curve, we have xα = 1/xα, so we are left with

(1.18)

∫ B

A
Fd1x

↔

∂ G =

∫ B

A
dα

∂(FG)
∂α

= FG|B − FG|A.

�
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1.3 More to come.

In the next installment we will explore surface integrals in spacetime, and the generalization of the fundamental
theorem to multivector space time integrals.
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