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Lagrangian for the Lorentz force equation.

1.1 Motivation.

In my old classical mechanics notes it appears that I did covariant derivations of the Lorentz force equa-
tions a number of times, using different trial Lagrangians (relativistic and non-relativistic), and using
both geometric algebra and tensor methods. However, none of these appear to have been done con-
cisely, and a number not even coherently.

The following document has been drafted as replacement text for those incoherent classical mechanics
notes. I'll attempt to cover

e a lighting review of the geometric algebra STA (Space Time Algebra),
e relations between Dirac matrix algebra and STA,

e derivation of the relativistic form of the Euler-Lagrange equations from the covariant form of the
action,

e relationship of the STA form of the Euler-Lagrange equations to their tensor equivalents,
e derivation of the Lorentz force equation from the STA Lorentz force Lagrangian,

e relationship of the STA Lorentz force equation to its equivalent in the tensor formalism,
e relationship of the STA Lorentz force equation to the traditional vector form.

Note that some of the prerequisite ideas and auxiliary details are presented as problems with solutions.
If the reader has sufficient background to attempt those problems themselves, they are encouraged to do
SO.

The STA and geometric algebra ideas used here are not complete to learn from in isolation. The reader
is referred to [1] for a more complete exposition of both STA and geometric algebra.



1.2 Conventions.

— Definition 1.1: Index conventions.

Latin indexes 7, ], k,7,s,t, - - are used to designate values in the range {1,2,3}. Greek indexes are
«,B,u,v,--- are used for indexes of spacetime quantities {0,1,2,3}. The Einstein convention of
implied summation for mixed upper and lower Greek indexes will be used, for example

3
Xxy =) x"x,.
a=0

1.3 Space Time Algebra (STA.)

In the geometric algebra literature, the Dirac algebra of quantum field theory has been rebranded Space
Time Algebra (STA). The differences between STA and the Dirac theory that uses matrices (y,) are as
follows

e STA completely omits any representation of the Dirac basis vectors 7,. In particular, any possible
matrix representation is irrelevant.

e STA provides a rich set of fundamental operations (grade selection, generalized dot and wedge
products for multivector elements, rotation and reflection operations, ...)

e Matrix trace, and commutator and anticommutator operations are nowhere to be found in STA, as
geometrically grounded equivalents are available instead.

e The “slashed” quantities from Dirac theory, such as y = -, p" are nothing more than vectors in
their entirety in STA (where the basis is no longer implicit, as is the case for coordinates.)

Our basis vectors have the following properties.

— Definition 1.2: Standard basis.

Let the four-vector standard basis be designated {7o, ¥1, 72,73}, where the basis vectors satisfy
vo=—v?=1and v, v =0Va #B.

Exercise 1.1 Commutator properties of the STA basis.

In Dirac theory, the commutator properties of the Dirac matrices is considered fundamental, namely

{7} =210



Show that this follows from the axiomatic assumptions of geometric algebra, and describe how the dot
and wedge products are related to the anticommutator and commutator products of Dirac theory.

Definition 1.3: Pseudoscalar.

The pseudoscalar for the space is denoted I = yoy17273.

Exercise 1.2 Pseudoscalar.
Show that the STA pseudoscalar I defined by definition 1.2 satisfies
I=1,

where the tilde operator designates reversion. Also show that I has the properties of an imaginary
number
I =-1.

Finally, show that, unlike the spatial pseudoscalar that commutes with all grades, I anticommutes with
any vector or trivector, and commutes with any bivector.

Definition 1.4: Reciprocal basis.

The reciprocal basis {7°, 7!, 7?7} is defined , such that the property 7* - vp = 6% holds.

Observe that, 7° = 7 and ' = —7;.

— Theorem 1.1: Coordinates.

Coordinates are defined in terms of dot products with the standard basis, or reciprocal basis

Xt =x-y"

Xo =X+ Ya,

Proof. Suppose that a coordinate representation of the following form is assumed
x=x%y, = xﬁ;’yﬁ. (1.12)
We wish to determine the representation of the x* or x4 coordinates in terms of x and the basis elements.

Taking the dot product with any standard basis element, we find

x = (xp7P) v

=xl’l'



as claimed. Similarly, dotting with a reciprocal frame vector, we find

Xyt = (xﬁ'Yﬁ) ot
= xﬁ(Sﬁ"
=xt.

(1.14)

O]

Observe that raising or lowering the index of a spatial index toggles the sign of a coordinate, but timelike

indexes are left unchanged.

x0=x0

1. (1.15)
X = —X;

—| Definition 1.5: Spacetime gradient.

The spacetime gradient operator is

where 3
O = G’
and
g 9
dxy

This definition of gradient is consistent with the Dirac gradient (sometimes denoted d).

— Definition 1.6: Timelike and spacelike components of a four-vector.

Given a four vector x = 7, x*, that would be designated x# = {xo, x} in conventional special relativ-
ity, we write

O=x- Yo,
and

X =xA Y0,

or
x = (2% + x)70.

The spacetime split of a four-vector x is relative to the frame. In the relativistic lingo, one would say
that it is “observer dependent”, as the same operations with ¢/, the timelike basis vector for a different
frame, would yield a different set of coordinates.



While the dot and wedge products above provide an effective mechanism to split a four vector into a
set of timelike and spacelike quantities, the spatial component of a vector has a bivector representation
in STA. Consider the following coordinate expansion of a spatial vector

X=xA\%Y0
= (xy')’y> A Yo

}3 : k
= X YKY0-
k=1

(1.16)

Definition 1.7: Spatial basis.

We designate e; = ;70 as the standard basis vectors for R3.

In the literature, this bivector representation of the spatial basis may be designated o; = 7,70, as these
bivectors have the properties of the Pauli matrices ;. Because I intend to expand these notes to include
purely non-relativistic applications, I won’t use the Pauli notation here.

Exercise 1.3 Orthonormality of the spatial basis.

Show that the spatial basis {ej, ey, e3}, defined by definition 1.7, is orthonormal.

Exercise 1.4 Spatial pseudoscalar.

Show that the STA pseudoscalar I = yyy17273 equals the spatial pseudoscalar I = e;ezes.

Exercise 1.5 Characteristics of the Pauli matrices.

The Pauli matrices obey the following anticommutation relations:
{O'a, O'b} = 25ab/ (1.19)

and commutation relations:
[0'11/ Ub] = 2i€abc Oc, (1-20)

Show how these relate to the geometric algebra dot and wedge products, and determine the geometric
algebra representation of the imaginary i above.

1.3.1 Solutions.



Answer for Exercise 1.1
The anticommutator is defined as symmetric sum of products

{’yﬂ' IYV} =TuYv 1Y, (1.1)

but this is just twice the dot product in its geometric algebra form ab = (ab + ba)/2. Observe that the
properties of the basis vectors defined in definition 1.2 may be summarized as

Yu " Yv = Huv, (1.2)
10 0 0
where 77, = diag(+, —, —, —) = 8 _01 91 8 is the conventional metric tensor. This means
00 0 —1
Yu - Yv =Ny = 2{')’;4/ 'Yv}/ (1.3)

as claimed.
Similarly, observe that the commutator, defined as the antisymmetric sum of products

(i ] = 16 — 1 (1.4)

is twice the wedge product a A b = (ab — ba) /2. This provides geometric identifications for the respective
anti-commutator and commutator products respectively

{vwr} =27 m

1.5
[’)’;u 'Yv] = 2’)’;{ N Yy, (1.5)

Answer for Exercise 1.2

Since vaYp = —7p7« for any & # B, any permutation of the factors of I changes the sign once. In
particular
I'=y717273
= —Mr27370
= =72737170
= 73727170

(1.6)

Using this, we have
=11
= (Y0r17273)(Y3727170)
= (70)> (1) (12)* (73)? (1.7)
= (+D(=D(=1)(-1)
= —1.



To illustrate the anticommutation property with any vector basis element, consider the following two
examples:
Iv0 = Y071727370
= —7070717273 (1.8)
= =70l

Iyv2 = v071727372
= =7071727273 (1.9)
= —Y2Y07Y17Y27Y3
= —’)/21.

A total of three sign swaps is required to “percolate” any given v, through the factors of I, resulting in
an overall sign change of —1.
For any bivector basis element a #
Ivayg = —valvp (1.10)
= +’y,,/yﬁ1 .

Similarly for any trivector basis element a # B # o

Ivaygye = —YalVpYeo

=+,),“,),ﬁ1,),a (1.11)
= —YaYp Yol
Answer for Exercise 1.3
ei-ej = (7i707j70)
= _<7ir),].> (1.17)
==%i" %

This is zero for all i # j, and unity for any i = j.

Answer for Exercise 1.4
The spatial pseudoscalar, expanded in terms of the STA basis vectors, is

I= ejeres
= (7170) (72770) (71370)
(r170) 72 (Y0r3) Y0 (1.18)
= (—7071) Y2 (—7370) Y0
= 707172773 (Y070)
= 70717273,



as claimed.
1.4 Euler-Lagrange equations.

I'll start at ground zero, with the derivation of the relativistic form of the Euler-Lagrange equations from
the action. A relativistic action for a single particle system has the form

S = / dtL(x, %), (1.21)

where x is the spacetime coordinate, ¥ = dx/d is the four-velocity, and 7 is proper time.

—| Theorem 1.2: Relativistic Euler-Lagrange equations.

Let x — x + Jx be any variation of the Lagrangian four-vector coordinates, where dx = 0 at the
boundaries of the action integral. The variation of the action is

5 = / dtéx - L(x, %),

where p
0L=VL— E(VUL)’

where V = "9, (per definition 1.5), and where we construct a similar velocity-gradient with respect
to the proper-time derivatives of the coordinates V, = "9 /0x".

The action is extremized when S = 0, or when éL = 0. This latter condition is called the Euler-
Lagrange equations.

Proof. Let € = x, and expand the Lagrangian in Taylor series to first order

S—=S+4S
= /dTL(X+€,5C+é) (122)

= /dr(L(x,fc)+e -VL+¢€-V,L).
Subtracting off S and integrating by parts, leaves
05 = [ drte- VL—dVL + [ d d(VL)- (1.23)

The boundary integral
/ dT;lT(VUL) 6= (Vol) €|y, =0, (1.24)



is zero since the variation € is required to vanish on the boundaries. So, if §S = 0, we must have

d
0= /dre- (VL _ dTva) , (1.25)
for all variations e. Clearly, this requires that
d
= - = 1.2
oL=VL dT(VUL) 0, (1.26)
or p
L=—(V,L 1.27
VL= —(Vol), (1.27)
which is the coordinate free statement of the Euler-Lagrange equations. O
Exercise 1.6 Coordinate form of the Euler-Lagrange equations.

Working in coordinates, use the action argument show that the Euler-Lagrange equations have the form
oL d dL
oxt  dt oxH

Observe that this is identical to the statement of theorem 1.2 after contraction with 7*.

1.4.1 Solutions.

Answer for Exercise 1.6
In terms of coordinates, the first order Taylor expansion of the action is

S—S5+4S
= /dTL(x“ + €%, X% + &%)

oL oL
- Oy Lo 1
_/dr (L(x X)) + € 3o € ax?‘) .
As before, we integrate by parts to separate out a pure boundary term
oL d JL d oL
= I —_ H__
) /dre (&)xV It 83&#) + /deT <e axu) . (1.29)

The boundary term is killed since €/ = 0 at the end points of the action integral. We conclude that
extremization of the action (6S = 0, for all €/) requires

(1.28)

il (130

1.5 Lorentz force equation.



— Theorem 1.3: Lorentz force.

The relativistic Lagrangian for a charged particle is
L 2
L= P +qA-v/c.

Application of the Euler-Lagrange equations to this Lagrangian yields the Lorentz-force equation

Z:i =gF-v/c,
where p = mv is the proper momentum, F is the Faraday bivector F = V A A, and c is the speed of
light.

Proof. To make life easier, let’s take advantage of the linearity of the Lagrangian, and break it into the
free particle Lagrangian Ly = (1/2)mv? and a potential term L; = gA - v/c. For the free particle case we
have

d
0Lop=VLy— E(VULO)

=~ ) (1.31)

For the potential contribution we have
d
(SL] = VLl - E(V{;Ll)
_1 oy 4 . 132
=1 (VA0 - (Vo) 132

_q Ly 44
—C<V(A v) dT).

The proper time derivative can be evaluated using the chain rule

dA  oxt
e gayA =(v-V)A. (1.33)
Putting all the pieces back together we have
0=4L
d

-, g (V(A-0) — (0 V)A) (1.34)

dt
__dp _q
= dT+C(V/\A) 0.

10



Exercise 1.7 Gradient of a squared position vector.
Show that
Via-x)=a,
and
V2 = 2x.

It should be clear that the same ideas can be used for the velocity gradient, where we obtain Vo(v?) =20,
and V(A -v) = A, as used in the derivation above.

It is desirable to put this relativistic Lorentz force equation into the usual vector and tensor forms for
comparison.

—| Theorem 1.4: Tensor form of the Lorentz force equation.

The tensor form of the Lorentz force equation is

dp* 4
dr cF Ovr

where the antisymmetric Faraday tensor is defined as F/*V = o AV — 9V A¥.

Proof. We have only to dot both sides with ¢#. On the left we have

d dpt
" ﬁ _ %_ (1.37)
On the right, we have
A <ﬂp.v> =i((V/\A)-U)-'y”
c c
q
=-(V(A-v)—(v-V)A) -y
10— @ V)4) )
- g((a"A")vV — 0,8V A
= ﬂF”"vv.
c
O
Exercise 1.8 Tensor expansion of F.

An alternate way to demonstrate theorem 1.4 is to first expand F = V A A in terms of coordinates, an
expansion that can be expressed in terms of a second rank tensor antisymmetric tensor F*'. Find that
expansion, and re-evaluate the dot products of eq. (1.38) using that.

11



Exercise 1.9 Lorentz force direct tensor derivation.

Instead of using the geometric algebra form of the Lorentz force equation as a stepping stone, we may
derive the tensor form from the Lagrangian directly, provided the Lagrangian is put into tensor form

1
L= Emv”vy +gAfv, /c.

Evaluate the Euler-Lagrange equations in coordinate form and compare to theorem 1.4.

—| Theorem 1.5: Vector Lorentz force equation.

Relative to a fixed observer’s frame, the Lorentz force equation of theorem 1.3 splits into a spatial
rate of change of momentum, and (timelike component) rate of change of energy, as follows

d(ymv)

prk (E+v xB)
d(ymc?)
g - E

where F=E+ IcB, vy =1/4/1—v%/c2.

Proof. The first step is to eliminate the proper time dependencies in the Lorentz force equation. Consider
tirst the coordinate representation of an arbitrary position four-vector x

x = cty + XK. (1.47)
The corresponding four-vector velocity is

_dx  dt dt dxk

0= di’[ = CE’)’O + Eﬁvk (148)

2 2

By construction, v° = ¢~ is a Lorentz invariant quantity (this is one of the relativistic postulates), so the
LHS of eq. (1.48) must have the same square. That is

dt\?
2 2 _ 2
¢t = <dT> (" —v7), (1.49)
where v = v A 7. This shows that we may make the identification
dt 1

Y= LTI ve ey (1.50)

nd d _dtd d
— = Y (1.51)

At drdt  dt

12



We may now factor the four-velocity v into its spacetime split

v="(c+V)7y0. (1.52)
In particular the LHS of the Lorentz force equation can be rewritten as
dp d
g = T (v, (1.53)

and the RHS of the Lorentz force equation can be rewritten as
gF o= %F (¢ +v)70) - (1.54)
Equating timelike and spacelike components leaves us

d(myc) _q

T - (F-((c+v)Y0)) - Y0, (1.55a)
) 9 (F- (e +v)30)) A0 (1.55b)

Evaluating these products requires some care, but is an essentially manual process. The reader is encour-
aged to do so once, but the end result may also be obtained easily using software (see lorentzForce.nb in
[2]). One finds

F=E+IcB = E'yig + +E?y20 + +E3y30 + —cB'y23 + —cB?y31 + —cB3 712, (1.56a)
TE-(+vro)-1=1Ev, (1.56b)
T(F-(e+v)70) A0 =4 (E+v x B). (1.560)
O
Exercise 1.10 Algebraic spacetime split of the Lorentz force equation.

Derive the results of eq. (1.56) algebraically.

Exercise 1.11 Spacetime split of the Lorentz force tensor equation.

Show that theorem 1.5 also follows from the tensor form of the Lorentz force equation (theorem 1.4)
provided we identify
FX0 = EF, (1.57a)

and
Fs = —¢"!Bt, (1.57b)

Also verify that the identification eq. (1.57) is consistent with the geometric algebra Faraday bivector
F = E + IcB, and the associated coordinate expansion of the field F = (1/2)(7y, A v,)F*.

13



1.5.1 Solutions.

Answer for Exercise 1.7
The first identity follows easily by expansion in coordinates

V(a-x)="0,a,x"
= 7"aqdy
= 9"a,
=a.

The second identity follows by linearity of the gradient

Vx?=V(x-x)
= (V(x-a))] ey + (Vb - X))oy
= a|a=x + b|b:x
= 2x.

Answer for Exercise 1.8

F=VAA
= (’)’yay) A (1 AY)
= (vu Ayw) OMAY.

(1.35)

(1.36)

(1.39)

To this we can use the usual tensor trick (add self to self, change indexes, and divide by two), to give

F =

NI—DN| -~

(7u A yv) (QFA” — 0V AF),

which is just
1
F= 5 (vu A yo) F*Y.

Now, let’s expand (F - v) - v* to compare to the earlier expansion in terms of V and A.

E-0)- 7 = 2P (e A - (P05 ) - "

1
- EFtwvﬁ (5Vﬁ,)/all _ (51;(5%”)

14

((ru Ayw) A" + (70 A ) 0" AF)

(1.40)

(1.41)

(1.42)



This alternate expansion illustrates some of the connectivity between the geometric algebra approach
and the traditional tensor formalism.

Answer for Exercise 1.9
Let 6,L = 7, - 6L, so that we can write the Euler-Lagrange equations as

=0,L=-— — ———. 1.4
0=oul =50 ~ dr 9w (1.43)
Operating on the kinetic term of the Lagrangian, we have

d

For the potential term

q dA”  d
Oulr =" (”wxu e
q 0AY  dx, A,
c dxH At Jdx, (1.45)
= 1o (9,40 - 3,4,)
= %UVFW
Putting the pieces together gives
d
E(mvy) = gvVFW, (1.46)

which is identical’ to the tensor form that we found by expanding the geometric algebra form of Maxwell’s
equation in coordinates.

1Some minor index raising and lowering gymnastics are required.
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