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Lorentz transformations in Space Time Algebra (STA)

1.1 Motivation.

One of the remarkable features of geometric algebra are the complex exponential sandwiches that can
be used to encode rotations in any dimension, or rotation like operations like Lorentz transformations
in Minkowski spaces. In this post, we show some examples that unpack the geometric algebra expres-
sions for Lorentz transformations operations of this sort. In particular, we will look at the exponential
sandwich operations for spatial rotations and Lorentz boosts in the Dirac algebra, known as Space Time
Algebra (STA) in geometric algebra circles, and demonstrate that these sandwiches do have the desired
effects.

1.2 Lorentz transformations.

Theorem 1.1: Lorentz transformation.

The transformation
x → eBxe−B = x′,

where B = a ∧ b, is an STA 2-blade for any two linearly independent four-vectors a, b, is a norm
preserving, that is

x2 = x′2.

Proof. The proof is disturbingly trivial in this geometric algebra form

(1.1)
x′2 = eBxe−BeBxe−B

= eBxxe−B

= x2eBe−B

= x2.
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In particular, observe that we did not need to construct the usual infinitesimal representations of rotation
and boost transformation matrices or tensors in order to demonstrate that we have spacetime invariance
for the transformations. The rough idea of such a transformation is that the exponential commutes with
components of the four-vector that lie off the spacetime plane specified by the bivector B, and anticom-
mutes with components of the four-vector that lie in the plane. The end result is that the sandwich
operation simplifies to

(1.2)x′ = x‖e
−B + x⊥,

where x = x⊥ + x‖ and x⊥ · B = 0, and x‖ ∧ B = 0. In particular, using x = xBB−1 = (x · B + x ∧ B) B−1, we
find that

(1.3)
x‖ = (x · B) B−1

x⊥ = (x ∧ B) B−1.

When B is a spacetime plane B = b ∧ γ0, then this exponential has a hyperbolic nature, and we end
up with a Lorentz boost. When B is a spatial bivector, we end up with a single complex exponential,
encoding our plane old 3D rotation. More general B’s that encode composite boosts and rotations are
also possible, but B must be invertible (it should have no lightlike factors.) The rough geometry of these
projections is illustrated in fig. 1.1, where the spacetime plane is represented by B.

Figure 1.1: Projection and rejection geometry.

What is not so obvious is how to pick B’s that correspond to specific rotation axes or boost directions.
Let’s consider each of those cases in turn.

Theorem 1.2: Boost.

The boost along a direction vector v̂ and rapidity α is given by

x′ = e−v̂α/2xev̂α/2,
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where v̂ = γk0 cos θk is an STA bivector representing a spatial direction with direction cosines cos θk.

Proof. We want to demonstrate that this is equivalent to the usual boost formulation. We can start with
decomposition of the four-vector x into components that lie in and off of the spacetime plane v̂.

(1.4)
x =

(
x0 + x

)
γ0

=
(

x0 + xv̂2) γ0

=
(

x0 + (x · v̂) v̂ + (x ∧ v̂) v̂
)

γ0,

where x = x ∧ γ0. The first two components lie in the boost plane, whereas the last is the spatial compo-
nent of the vector that lies perpendicular to the boost plane. Observe that v̂ anticommutes with the dot
product term and commutes with he wedge product term, so we have

(1.5)x′ =
(
x0 + (x · v̂) v̂

)
γ0ev̂α/2ev̂α/2 + (x ∧ v̂) v̂γ0e−v̂α/2ev̂α/2

=
(
x0 + (x · v̂) v̂

)
γ0ev̂α + (x ∧ v̂) v̂γ0.

Noting that v̂2 = 1, we may expand the exponential in hyperbolic functions, and find that the boosted
portion of the vector expands as

(1.6)

(
x0 + (x · v̂) v̂

)
γ0ev̂α =

(
x0 + (x · v̂) v̂

)
γ0 (cosh α + v̂ sinh α)

=
(
x0 + (x · v̂) v̂

)
(cosh α − v̂ sinh α) γ0

=
(
x0 cosh α − (x · v̂) sinh α

)
γ0 +

(
−x0 sinh α + (x · v̂) cosh α

)
v̂γ0.

We are left with

(1.7)
x′ =

(
x0 cosh α − (x · v̂) sinh α

)
γ0 +

(
(x · v̂) cosh α − x0 sinh α

)
v̂γ0 + (x ∧ v̂) v̂γ0

=
[
γ0 v̂γ0

] [ cosh α − sinh α
− sinh α cosh α

] [
x0

x · v̂

]
+ (x ∧ v̂) v̂γ0,

which has the desired Lorentz boost structure. Of course, this is usually seen with v̂ = γ10 so that the
components in the coordinate column vector are (ct, x).

Theorem 1.3: Spatial rotation.

Given two linearly independent spatial bivectors a = akγk0, b = bkγk0, a rotation of θ radians in the
plane of a, b from a towards b, is given by

x′ = e−iθxeiθ ,

where i = (a ∧ b)/|a ∧ b|, is a unit (spatial) bivector.
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Proof. Without loss of generality, we may pick i = âb̂, where â2 = b̂2 = 1, and â · b̂ = 0. With such an
orthonormal basis for the plane, we can decompose our four vector into portions that lie in and off the
plane

(1.8)

x =
(

x0 + x
)

γ0

=
(

x0 + xii−1
)

γ0

=
(

x0 + (x · i) i−1 + (x ∧ i) i−1
)

γ0.

The projective term lies in the plane of rotation, whereas the timelike and spatial rejection term are
perpendicular. That is

(1.9)
x‖ = (x · i) i−1γ0

x⊥ =
(

x0 + (x ∧ i) i−1
)

γ0,

where x‖ ∧ i = 0, and x⊥ · i = 0. The plane pseudoscalar i anticommutes with x‖, and commutes with x⊥,
so

(1.10)x′ = e−iθ/2 (x‖ + x⊥
)

eiθ/2

= x‖e
iθ + x⊥.

However

(1.11)

(x · i) i−1 =
(

x ·
(

â ∧ b̂
))

b̂â

= (x · â) b̂b̂â −
(

x · b̂
)

âb̂â

= (x · â) â +
(

x · b̂
)

b̂,

so

(1.12)
x ‖e

iθ =
(

(x · â) â +
(

x · b̂
)

b̂
)

γ0

(
cos θ + âb̂ sin θ

)
= â

(
(x · â) cos θ −

(
x · b̂

)
sin θ

)
γ0 + b̂

(
(x · â) sin θ +

(
x · b̂

)
cos θ

)
γ0,

so

(1.13)x′ =
[
â b̂

] [cos θ − sin θ
sin θ cos θ

] [
x · â
x · b̂

]
γ0 + (x ∧ i) i−1γ0.

Observe that this rejection term can be explicitly expanded to

(1.14)(x ∧ i) i−1γ0 = x − (x · â) âγ0 − (x · â) âγ0.

This is the timelike component of the vector, plus the spatial component that is normal to the plane. This
exponential sandwich transformation rotates only the portion of the vector that lies in the plane, and
leaves the rest (timelike and normal) untouched.
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1.3 Problems.

Exercise 1.1 Verify components relative to boost direction.

In eq. (1.4) the vector x was expanded in terms of the spacetime split. An alternate approach, is to expand
as

(1.15)
x = xv̂2

= (x · v̂ + x ∧ v̂) v̂
= (x · v̂) v̂ + (x ∧ v̂) v̂.

Show that
(1.16)(x · v̂) v̂ =

(
x0 + (x · v̂) v̂

)
γ0,

and
(1.17)(x ∧ v̂) v̂ = (x ∧ v̂) v̂γ0.

Answer for Exercise 1.1
Let x = xµγµ, so that

(1.18)
x · v̂ =

〈
xµγµ cos θbγb0

〉
1

= xµ cos θb〈γµγb0
〉

1.

The µ = 0 component of this grade selection is

(1.19)〈γ0γb0〉1 = −γb,

and for µ = a 6= 0, we have
(1.20)〈γaγb0〉1 = −δabγ0,

so we have

(1.21)
x · v̂ = x0 cos θb(−γb) + xa cos θb(−δabγ0)

= −x0v̂γ0 − xb cos θbγ0

= −
(
x0v̂ + x · v̂

)
γ0,

where x = x∧ γ0 is the spatial portion of the four vector x relative to the stationary observer frame. Since
v̂ anticommutes with γ0, the component of x in the spacetime plane v̂ is

(1.22)(x · v̂) v̂ =
(
x0 + (x · v̂) v̂

)
γ0,

as expected.
For the rejection term, we have

(1.23)x ∧ v̂ = xµ cos θs〈γµγs0
〉

3.
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The µ = 0 term clearly contributes nothing, leaving us with:

(1.24)

(x ∧ v̂) v̂ = (x ∧ v̂) · v̂
= xr cos θs cos θt ((γr ∧ γs) γ0) · (γt0)
= xr cos θs cos θt〈(γr ∧ γs) γ0γt0〉1
= −xr cos θs cos θt (γr ∧ γs) · γt

= −xr cos θs cos θt (−γrδst + γsδrt)
= xr cos θt cos θtγr − xt cos θs cos θtγs
= xγ0 − (x · v̂)v̂γ0

= (x ∧ v̂) v̂γ0,

as expected. Is there a clever way to demonstrate this without resorting to coordinates?

Exercise 1.2 Rotation transformation components.

Given a unit spatial bivector i = âb̂, where â · b̂ = 0 and i2 = −1, show that

(1.25)
(x · i) i−1 = (x · i) i−1γ0

= (x · â) âγ0 +
(

x · b̂
)

b̂γ0,

and

(1.26)
(x ∧ i) i−1 = (x ∧ i) i−1γ0

= x − (x · â) âγ0 −
(

x · b̂
)

b̂γ0.

Also show that i anticommutes with (x · i) i−1 and commutes with (x ∧ i) i−1.

Answer for Exercise 1.2
This problem is left for the reader, as I don’t feel like typing out my solution.
The first part of this problem can be done in the tedious coordinate approach used above, but hopefully

there is a better way.
For the last (commutation) part of the problem, here is a hint. Let x ∧ i = ni, where n · i = 0. The result

then follows easily.
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