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Maxwell’s equation using geometric algebra Lagrangian.

1.1 Motivation.

In my classical mechanics notes, I’ve got computations of Maxwell’s equation (singular in it’s geometric
algebra form) from a Lagrangian in various ways (using a tensor, scalar and multivector Lagrangians),
but all of these seem more convoluted than they should be. Here we do this from scratch, starting with
the action principle for field variables, covering:

• Derivation of the relativistic form of the Euler-Lagrange field equations from the covariant form of
the action,

• Derivation of Maxwell’s equation (in it’s Space Time Algebra (STA) form) from the Maxwell La-
grangian,

• Relationship of the STA Maxwell Lagrangian to the tensor equivalent,

• Relationship of the STA form of Maxwell’s equation to it’s tensor equivalents,

• Relationship of the STA Maxwell’s equation to it’s conventional Gibbs form.

• Show that we may use a multivector valued Lagrangian with all of F2, not just the scalar part.

It is assumed that the reader is thoroughly familiar with the STA formalism, and if that is not the case,
there is no better reference than [1].

1.2 Field action.

Theorem 1.1: Relativistic Euler-Lagrange field equations.

Let φ→ φ + δφ be any variation of the field, such that the variation δφ = 0 vanishes at the boundaries
of the action integral

S =
∫

d4xL(φ, ∂νφ).
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The extreme value of the action is found when the Euler-Lagrange equations

0 =
∂L
∂φ
− ∂ν

∂L
∂(∂νφ)

,

are satisfied. For a Lagrangian with multiple field variables, there will be one such equation for each
field.

Proof. To ease the visual burden, designate the variation of the field by δφ = ε, and perform a first order
expansion of the varied Lagrangian

(1.1)
L → L(φ + ε, ∂ν(φ + ε))

= L(φ, ∂νφ) +
∂L
∂φ

ε +
∂L

∂(∂νφ)
∂νε.

The variation of the Lagrangian is

(1.2)
δL =

∂L
∂φ

ε +
∂L

∂(∂νφ)
∂νε

=
∂L
∂φ

ε + ∂ν

(
∂L

∂(∂νφ)
ε

)
− ε∂ν

∂L
∂(∂νφ)

,

which we may plug into the action integral to find

(1.3)δS =
∫

d4xε

(
∂L
∂φ
− ∂ν

∂L
∂(∂νφ)

)
+
∫

d4x∂ν

(
∂L

∂(∂νφ)
ε

)
.

The last integral can be evaluated along the dxν direction, leaving

(1.4)
∫

d3x
∂L

∂(∂νφ)
ε

∣∣∣∣
∆xν

,

where d3x = dxαdxβdxγ is the product of differentials that does not include dxν. By construction, ε
vanishes on the boundary of the action integral so eq. (1.4) is zero. The action takes its extreme value
when

(1.5)
0 = δS

=
∫

d4xε

(
∂L
∂φ
− ∂ν

∂L
∂(∂νφ)

)
.

The proof is complete after noting that this must hold for all variations of the field ε, which means that
we must have

(1.6)0 =
∂L
∂φ
− ∂ν

∂L
∂(∂νφ)

.

Armed with the Euler-Lagrange equations, we can apply them to the Maxwell’s equation Lagrangian,
which we will claim has the following form.
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Theorem 1.2: Maxwell’s equation Lagrangian.

Application of the Euler-Lagrange equations to the Lagrangian

L = −ε0c
2

F · F + J · A,

where F = ∇∧ A, yields the vector portion of Maxwell’s equation

∇ · F =
1

ε0c
J,

which implies

∇F =
1

ε0c
J.

This is Maxwell’s equation.

Proof. We wish to apply all of the Euler-Lagrange equations simultaneously (i.e. once for each of the
four Aµ components of the potential), and cast it into four-vector form

(1.7)0 = γν

(
∂

∂Aν
− ∂µ

∂

∂(∂µ Aν)

)
L.

Since our Lagrangian splits nicely into kinetic and interaction terms, this gives us

(1.8)0 = γν

(
∂(A · J)

∂Aν
+

ε0c
2

∂µ
∂(F · F)
∂(∂µ Aν)

)
.

The interaction term above is just

γν
∂(A · J)

∂Aν
= γν

∂(Aµ Jµ)
∂Aν

= γν Jν = J, (1.9)

but the kinetic term takes a bit more work. Let’s start with evaluating

(1.10)

∂(F · F)
∂(∂µ Aν)

=
∂F

∂(∂µ Aν)
· F + F · ∂F

∂(∂µ Aν)

= 2
∂F

∂(∂µ Aν)
· F

= 2
∂(∂α Aβ)
∂(∂µ Aν)

(
γα ∧ γβ

)
· F

= 2 (γµ ∧ γν) · F.
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We hit this with the µ-partial and expand as a scalar selection to find

(1.11)

∂µ
∂(F · F)
∂(∂µ Aν)

= 2
(
∂µγµ ∧ γν

)
· F

= −2(γν ∧ ∇) · F
= −2〈(γν ∧ ∇)F〉
= −2〈γν∇F −����γν · ∇F〉
= −2γν · (∇ · F) .

Putting all the pieces together yields

0 = J − ε0cγν (γ
ν · (∇ · F)) = J − ε0c (∇ · F) , (1.12)

but

(1.13)
∇ · F = ∇F −∇ ∧ F

= ∇F −∇ ∧ (∇ ∧ A)
= ∇F,

so the multivector field equations for this Lagrangian are

(1.14)∇F =
1

ε0c
J,

as claimed.

Exercise 1.1 Correspondence with tensor formalism.

Cast the Lagrangian of theorem 1.2 into the conventional tensor form

(1.15)L =
ε0c
4

FµνFµν + Aµ Jµ.

Also show that the four-vector component of Maxwell’s equation ∇ · F = J/(ε0c) is equivalent to the
conventional tensor form of the Gauss-Ampere law

(1.16)∂µFµν =
1

ε0c
Jν,

where Fµν = ∂µ Aν − ∂ν Aµ as usual. Also show that the trivector component of Maxwell’s equation
∇∧ F = 0 is equivalent to the tensor form of the Gauss-Faraday law

(1.17)∂α

(
εαβµνFµν

)
= 0.
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Exercise 1.2 Correspondence of tensor and Gibbs forms of Maxwell’s equations.

Given the identifications
Fk0 = Ek, (1.26a)

and
Frs = −εrstBt, (1.26b)

and
(1.27)Jµ =

(
cρ, J

)
,

the reader should satisfy themselves that the traditional Gibbs form of Maxwell’s equations can be re-
covered from eq. (1.16).

Exercise 1.3 Correspondence with grad and curl form of Maxwell’s equations.

With J = cργ0 + Jkγk and F = E + IcB show that Maxwell’s equation, as stated in theorem 1.2 expand to
the conventional div and curl expressions for Maxwell’s equations.

Exercise 1.4 Alternative multivector Lagrangian.

Show that a scalar+pseudoscalar Lagrangian of the following form

L = −ε0c
2

F2 + J · A,

which omits the scalar selection of the Lagrangian in theorem 1.2, also represents Maxwell’s equation.
Discuss the scalar and pseudoscalar components of F2, and show why the pseudoscalar inclusion is
irrelevant.

1.2.1 Solutions.

Answer for Exercise 1.1
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To show the Lagrangian correspondence we must expand F · F in coordinates

(1.18)

F · F = (∇ ∧ A) · (∇ ∧ A)

=
(
(γµ∂µ) ∧ (γν Aν)

)
·
(

(γα∂α) ∧ (γβ Aβ)
)

= (γµ ∧ γν) ·
(
γα ∧ γβ

)
(∂µ Aν)(∂α Aβ)

=
(
δµ

βδν
α − δµ

αδν
β

)
(∂µ Aν)(∂α Aβ)

= −∂µ Aν (∂µ Aν − ∂ν Aµ)
= −∂µ AνFµν

= −1
2
(
∂µ AνFµν + ∂ν AµFνµ

)
= −1

2
(
∂µ Aν − ∂ν Aµ

)
Fµν

= −1
2

FµνFµν.

With a substitution of this and A · J = Aµ Jµ back into the Lagrangian, we recover the tensor form of the
Lagrangian.

To recover the tensor form of Maxwell’s equation, we first split it into vector and trivector parts

(1.19)∇ · F +∇ ∧ F =
1

ε0c
J.

Now the vector component may be expanded in coordinates by dotting both sides with γν to find

(1.20)
1

ε0c
γν · J = Jν,

and

(1.21)

γν · (∇ · F) = ∂µγν ·
(

γµ ·
(
γα ∧ γβ

)
∂α Aβ

)
=
(
δµ

αδν
β − δν

αδµ
β

)
∂µ∂α Aβ

= ∂µ (∂µ Aν − ∂ν Aµ)
= ∂µFµν.

Equating eq. (1.20) and eq. (1.21) finishes the first part of the job. For the trivector component, we have

(1.22)

0 = ∇ ∧ F
= (γµ∂µ) ∧

(
γα ∧ γβ

)
∂α Aβ

=
1
2

(γµ∂µ) ∧
(

γα ∧ γβ
)

Fαβ.
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Wedging with γτ and then multiplying by −2I we find

(1.23)0 = −
(

γµ ∧ γα ∧ γβ ∧ γτ
)

I∂µFαβ,

but
(1.24)γµ ∧ γα ∧ γβ ∧ γτ = −Iεµαβτ ,

which leaves us with
(1.25)εµαβτ∂µFαβ = 0,

as expected.

Answer for Exercise 1.2
The reader is referred to Exercise 3.4 “Electrodynamics, variational principle.” from [2].

Answer for Exercise 1.3
To obtain Maxwell’s equations in their traditional vector forms, we pre-multiply both sides with γ0

(1.28)γ0∇F =
1

ε0c
γ0 J,

and then select each grade separately. First observe that the RHS above has scalar and bivector compo-
nents, as

(1.29)γ0 J = cρ + Jkγ0γk.

In terms of the spatial bivector basis ek = γkγ0, the RHS of eq. (1.28) is

(1.30)γ0
J

ε0c
=

ρ

ε0
− µ0cJ.

For the LHS, first note that

(1.31)

γ0∇ = γ0

(
γ0∂0 + γk∂k

)
= ∂0 − γ0γk∂k

=
1
c

∂

∂t
+ ∇.

We can express all the the LHS of eq. (1.28) in the bivector spatial basis, so that Maxwell’s equation in
multivector form is

(1.32)
(

1
c

∂

∂t
+ ∇

)
(E + IcB) =

ρ

ε0
− µ0cJ.

Selecting the scalar, vector, bivector, and trivector grades of both sides (in the spatial basis) gives the
following set of respective equations

(1.33a)∇ · E =
ρ

ε0
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(1.33b)
1
c

∂tE + Ic∇ ∧ B = −µ0cJ

(1.33c)∇ ∧ E + I∂tB = 0

(1.33d)Ic∇ · B = 0,

which we can rewrite after some duality transformations (and noting that µ0ε0c2 = 1), we have

(1.34a)∇ · E =
ρ

ε0

(1.34b)∇ × B − µ0ε0
∂E
∂t

= µ0J

(1.34c)∇ × E +
∂B
∂t

= 0

(1.34d)∇ · B = 0,

which are Maxwell’s equations in their traditional form.

Answer for Exercise 1.4
The quantity F2 = F · F + F ∧ F has both scalar and pseudoscalar 1 components, which can be seen if we
expand it in terms of the electric and magnetic fields

(1.35)
F2 = (E + IcB)2

= E2 − c2B2 + Ic (EB + BE)
= E2 − c2B2 + 2IcE · B.

Both the scalar and pseudoscalar parts of F2 are Lorentz invariant, a requirement of our Lagrangian, but
most Maxwell equation Lagrangians only include the scalar E2 − c2B2 component of the field square.
If we allow the Lagrangian to be multivector valued, and evaluate the Euler-Lagrange equations, we
quickly find the same results

(1.36)
0 = γν

(
∂

∂Aν
− ∂µ

∂

∂(∂µ Aν)

)
L

= γν

(
Jν +

ε0c
2

∂µ ((γµ ∧ γν)F + F(γµ ∧ γν))
)

.

1Unlike vectors, a bivector wedge in 4D with itself need not be zero (example: γ0γ1 + γ2γ3 wedged with itself).
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Here some steps are skipped, building on our previous scalar Euler-Lagrange evaluation experience. We
have a symmetric product of two bivectors, which we can express as a 0,4 grade selection, since

(1.37)〈XF〉0,4 =
1
2

(XF + FX) ,

for any two bivectors X, F. This leaves

(1.38)
0 = J + ε0cγν〈(∇ ∧ γν)F〉0,4

= J + ε0cγν〈−γν∇F +�����(γν · ∇)F〉0,4

= J − ε0cγν (γν · (∇ · F) + γν ∧ ∇ ∧ F) .

However, since∇∧ F = ∇∧∇∧ A = 0, we see that there is no contribution from the F ∧ F pseudoscalar
component of the Lagrangian, and we are left with

(1.39)0 = J − ε0c(∇ · F)
= J − ε0c∇F,

which is Maxwell’s equation, as before.
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