
Peeter Joot
peeterjoot@pm.me

Relativistic multivector surface integrals.

We’ve now covered line integrals and the fundamental theorem for line integrals, so it’s now time to
move on to surface integrals.

Definition 1.1: Surface integral.

Given a two variable parameterization x = x(u, v), we write d2x = xu ∧ xvdudv, and call∫
Fd2x G,

a surface integral, where F, G are arbitrary multivector functions.

Like our multivector line integral, this is intrinsically multivector valued, with a product of F with arbi-
trary grades, a bivector d2x, and G, also potentially with arbitrary grades. Let’s consider an example.

Exercise 1.1 Surface area integral example.

Given the hyperbolic surface parameterization x(ρ, α) = ργ0e−v̂α, where v̂ = γ20 evaluate the indefinite
integral

(1.1)
∫

γ1eγ21αd2x γ2.

Answer for Exercise 1.1
We have xρ = γ0e−v̂α and xα = ργ2e−v̂α, so

(1.2)
d2x = (xρ ∧ xα)dρdα

=
〈
γ0e−v̂αργ2e−v̂α

〉
2dρdα

= ργ02dρdα,
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so the integral is

(1.3)

∫
ργ1eγ21αγ022dρdα = −1

2
ρ2
∫

γ1eγ21αγ0dα

=
γ01

2
ρ2
∫

eγ21αdα

=
γ01

2
ρ2γ12eγ21α

=
ρ2γ20

2
eγ21α.

Because F and G were both vectors, the resulting integral could only have been a multivector with grades
0,2,4. As it happens, there were no scalar nor pseudoscalar grades in the end result, and we ended up
with the spacetime plane between γ0, and γ2eγ21α, which are rotations of γ2 in the x,y plane. This is
illustrated in fig. 1.1 (omitting scale and sign factors.)

Figure 1.1: Spacetime plane.

1.1 Fundamental theorem for surfaces.

For line integrals we saw that dx · ∇ = 〈dx∂〉, and obtained the fundamental theorem for multivector
line integrals by omitting the grade selection and using the multivector operator dx∂ in the integrand
directly. We have the same situation for surface integrals. In particular, we know that the R3 Stokes
theorem can be expressed in terms of d2x ·∇

Exercise 1.2 GA form of 3D Stokes’ theorem integrand.

Given an R3 vector field f, show that

(1.4)
∫

dAn̂ · (∇ × f) = −
∫ (

d2x ·∇
)
· f.
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Answer for Exercise 1.2
Let d2x = In̂dA, implicitly fixing the relative orientation of the bivector area element compared to the

chosen surface normal direction.

(1.5)

∫ (
d2x ·∇

)
· f =

∫
dA〈In̂∇〉1 · f

=
∫

dA (I (n̂ ∧∇)) · f

=
∫

dA
〈

I2 (n̂ ×∇) f
〉

= −
∫

dA (n̂ ×∇) · f

= −
∫

dAn̂ · (∇ × f) .

The moral of the story is that the conventional dual form of the R3 Stokes’ theorem can be written
directly by projecting the gradient onto the surface area element. Geometrically, this projection operation
has a rotational effect as well, since for bivector B, and vector x, the bivector-vector dot product B · x is
the component of x that lies in the plane B ∧ x = 0, but also rotated 90 degrees.

For multivector integration, we do not want an integral operator that includes such dot products. In
the line integral case, we were able to achieve the same projective operation by using vector derivative
instead of a dot product, and can do the same for the surface integral case. In particular

Theorem 1.1: Projection of gradient onto the tangent space.

Given a curvilinear representation of the gradient with respect to parameters u0, u1, u2, u3

∇ = ∑
µ

xµ ∂

∂uµ
,

the surface projection onto the tangent space associated with any two of those parameters, satisfies

d2x · ∇ =
〈
d2x∂

〉
1.

Proof. Without loss of generality, we may pick u0, u1 as the parameters associated with the tangent space.
The area element for the surface is

(1.6)d2x = x0 ∧ x1 du0du1.
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Dotting this with the gradient gives

(1.7)

d2x · ∇ = du0du1 (x0 ∧ x1) · xµ ∂

∂uµ

= du0du1 (x0 (x1 · xµ)− x1 (x0 · xµ))
∂

∂uµ

= du0du1
(

x0
∂

∂u1 − x0
∂

∂u1

)
.

On the other hand, the vector derivative for this surface is

(1.8)∂ = x0 ∂

∂u0 + x1 ∂

∂u1 ,

so

(1.9)

〈
d2x∂

〉
1 = du0du1 (x0 ∧ x1) ·

(
x0 ∂

∂u0 + x1 ∂

∂u1

)
= du0du1

(
x0

∂

∂u1 − x1
∂

∂u0

)
.

We now want to formulate the geometric algebra form of the fundamental theorem for surface integrals.

Theorem 1.2: Fundamental theorem for surface integrals.

Given multivector functions F, G, and surface area element d2x = (xu ∧ xv) dudv, associated with a
two parameter curve x(u, v), then ∫

S
Fd2x

↔
∂ G =

∫
∂S

Fd1xG,

where S is the integration surface, and ∂S designates its boundary, and the line integral on the RHS
is really short hand for ∫

(F(−dxv)G)|∆u +
∫

(F(dxu)G)|∆v,

which is a line integral that traverses the boundary of the surface with the opposite orientation to
the circulation of the area element.

Proof. The vector derivative for this surface is

(1.10)∂ = xu ∂

∂u
+ xv ∂

∂v
,
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so
(1.11)Fd2x

↔
∂ G =

∂

∂u
(

Fd2x xuG
)

+
∂

∂v
(

Fd2x xvG
)

,

where d2x xu is held constant with respect to u, and d2x xv is held constant with respect to v (since the
partials of the vector derivative act on F, G, but not on the area element, nor on the reciprocal vectors of
↔
∂ itself.) Note that

d2x ∧ xu = dudv (xu ∧ xv) ∧ xu = 0, (1.12)

since xu ∈ span {xu xv}, so

(1.13)

d2x xu = d2x · xu + d2x ∧ xu

= d2x · xu

= dudv (xu ∧ xv) · xu

= −dudv xv.

Similarly

(1.14)
d2x xv = d2x · xv

= dudv (xu ∧ xv) · xv

= dudv xu.

This leaves us with
(1.15)Fd2x

↔
∂ G = −dudv

∂

∂u
(FxvG) + dudv

∂

∂v
(FxuG) ,

where xv, xu are held constant with respect to u, v respectively. Fortuitously, this constant condition can
be dropped, since the antisymmetry of the wedge in the area element results in perfect cancellation. If
these line elements are not held constant then

(1.16)
∂

∂u
(FxvG)− ∂

∂v
(FxuG) = F

(
∂xu

∂v
− ∂xv

∂u

)
G +

(
∂F
∂u

xvG + Fxv
∂G
∂u

)
+
(

∂F
∂v

xuG + Fxu
∂G
∂v

)
,

but the mixed partial contribution is zero

∂xu

∂v
− ∂xv

∂u
=

∂

∂v
∂x
∂u
− ∂

∂u
∂x
∂v

= 0, (1.17)

by equality of mixed partials. We have two perfect differentials, and can evaluate each of these integrals

(1.18)

∫
Fd2x

↔
∂ G = −

∫
dudv

∂

∂u
(FxvG) +

∫
dudv

∂

∂v
(FxuG)

= −
∫

dv (FxvG)|∆u +
∫

du (FxuG)|∆v

=
∫

(F(−dxv)G)|∆u +
∫

(F(dxu)G)|∆v.
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We use the shorthand d1x = dxu − dxv to write

(1.19)
∫

S
Fd2x

↔
∂ G =

∫
∂S

Fd1xG,

with the understanding that this is really instructions to evaluate the line integrals in the last step of
eq. (1.18).

Exercise 1.3 Integration in the t,y plane.

Let x(t, y) = ctγ0 + yγ2. Write out both sides of the fundamental theorem explicitly.

Answer for Exercise 1.3
Let’s designate the tangent basis vectors as

x0 =
∂x
∂t

= cγ0, (1.20)

and
x2 =

∂x
∂y

= γ2, (1.21)

so the vector derivative is
(1.22)∂ =

1
c

γ0 ∂

∂t
+ γ2 ∂

∂y
,

and the area element is
(1.23)d2x = cγ0γ2.

The fundamental theorem of surface integrals is just a statement that

(1.24)
∫ t1

t0

cdt
∫ y1

y0

dyFγ0γ2

(
1
c

γ0 ∂

∂t
+ γ2 ∂

∂y

)
G =

∫
F
(
cγ0dt − γ2dy

)
G,

where the RHS, when stated explicitly, really means

(1.25)

∫
F
(
cγ0dt − γ2dy

)
G =

∫ t1

t0

cdt
(

F(t, y1)γ0G(t, y1)− F(t, y0)γ0G(t, y0)
)

−
∫ y1

y0

dy
(

F(t1, y)γ2G(t1, y)− F(t0, y)γ0G(t0, y)
)

.

In this particular case, since x0 = cγ0, x2 = γ2 are both constant functions that depend on neither t nor y,
it is easy to derive the full expansion of eq. (1.25) directly from the LHS of eq. (1.24).
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Exercise 1.4 A cylindrical hyperbolic surface.

Generalizing the example surface integral from exercise 1.1, let

(1.26)x(ρ, α) = ρe−v̂α/2x(0, 1)ev̂α/2,

where ρ is a scalar, and v̂ = cos θkγk0 is a unit spatial bivector, and cos θk are direction cosines of that
vector. This is a composite transformation, where the α variation boosts the x(0, 1) four-vector, and the
ρ parameter contracts or increases the magnitude of this vector, resulting in x spanning a hyperbolic
region of spacetime.

Compute the tangent and reciprocal basis, the area element for the surface, and explicitly state both
sides of the fundamental theorem.
Answer for Exercise 1.4
For the tangent basis vectors we have

xρ =
∂x
∂ρ

= e−v̂α/2x(0, 1)ev̂α/2 =
x
ρ

, (1.27)

and
xα =

∂x
∂α

= (−v̂/2) x + x (v̂/2) = x · v̂. (1.28)

These vectors xρ, xα are orthogonal, as x · v̂ is the projection of x onto the spacetime plane x ∧ v̂ = 0, but
rotated so that x · (x · v̂) = 0. Because of this orthogonality, the vector derivative for this tangent space is

(1.29)∂ =
1

x · v̂
∂

∂α
+

ρ

x
∂

∂ρ
.

The area element is

(1.30)
d2x = dρdα

x
ρ
∧ (x · v̂)

=
1
ρ

dρdα x (x · v̂) .

The full statement of the fundamental theorem for this surface is

(1.31)
∫

S
dρdα F

(
1
ρ

x (x · v̂)
)(

1
x · v̂

∂

∂α
+

ρ

x
∂

∂ρ

)
G =

∫
∂S

F
(

dρ
x
ρ
− dα (x · v̂)

)
G.

As in the previous example, due to the orthogonality of the tangent basis vectors, it’s easy to show find
the RHS directly from the LHS.

Exercise 1.5 Simple example with non-orthogonal tangent space basis vectors.

Let x(u, v) = ua + vb, where u, v are scalar parameters, and a, b are non-null and non-colinear constant
four-vectors. Write out the fundamental theorem for surfaces with respect to this parameterization.
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Answer for Exercise 1.5
The tangent basis vectors are just xu = a, xv = b, with reciprocals

xu = xv ·
1

xu ∧ xv
= b · 1

a ∧ b
, (1.32)

and
xv = −xu ·

1
xu ∧ xv

= −a · 1
a ∧ b

. (1.33)

The fundamental theorem, with respect to this surface, when written out explicitly takes the form

(1.34)
∫

F dudv (a ∧ b)
1

a ∧ b
·
(

a
∂

∂u
− b

∂

∂v

)
G =

∫
F (adu − bdv) G.

This is a good example to illustrate the geometry of the line integral circulation. Suppose that we are
integrating over u ∈ [0, 1], v ∈ [0, 1]. In this case, the line integral really means

(1.35)

∫
F (adu − bdv) G = +

∫
F(u, 1)(+adu)G(u, 1) +

∫
F(u, 0)(−adu)G(u, 0)

+
∫

F(1, v)(−bdv)G(1, v) +
∫

F(0, v)(+bdv)G(0, v),

which is a path around the spacetime parallelogram spanned by u, v, as illustrated in fig. 1.2, which
illustrates the orientation of the bivector area element with the arrows around the exterior of the paral-
lelogram: 0→ a→ a + b→ b→ 0.
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Figure 1.2: Line integral orientation.
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