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1
I N T RO D U C T I O N .

1.1 conventions for maxwell’s equations.

In these course notes, Maxwell’s equations will be written in one of two
forms. The first is the standard bold face vectors, where the fields are
assumed to be real.

• Faraday’s Law

(1.1)∇ × E(r, t) = −
∂B
∂t

(r, t) −Mi,

• Ampere-Maxwell equation

(1.2)∇ ×H(r, t) = Jc(r, t) +
∂D
∂t

(r, t),

• Gauss’s law

(1.3)∇ · D(r, t) = ρev(r, t),

• Gauss’s law for magnetism

(1.4)∇ · B(r, t) = ρmv(r, t).

In chapters where frequency domain analysis is used, Maxwell’s equations
will be written in script

∇ × E = −
∂B

∂t
−M

∇ ×H =
∂D

∂t
+J

∇ ×B = qmv

∇ ×D = qev

(1.5)

with bold face reserved for complex valued field variables. In the fre-
quency domain (called time harmonic form in this class), the frequency
dependence is of the form

(1.6)X = Re
(
Xe jωt

)
.
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In this form, Maxwell’s equations are

∇ ×E = − jωB −M
∇ ×H = jωD + J
∇ ×B = ρmv

∇ ×D = ρev.

(1.7)

Where there is no ambiguity, bold face vectors will be used, even in the
time domain.

1.2 units.

Regardless of the conventions, after unpacking, we have a total of eight
equations, with four vectoral field variables, and 8 sources, all interrelated
by partial derivatives in space and time coordinates. It will be left to
homework to show that without the displacement current ∂D/∂t, these
equations will not satisfy conservation relations. The fields are and sources
are

• E Electric field intensity V/m,

• B Magnetic flux density Vs/m2 (or Tesla),

• H Magnetic field intensity A/m,

• D Electric flux density C/m2,

• ρev Electric charge volume density,

• ρmv Magnetic charge volume density,

• Jc Impressed (source) electric current ,ensity A/m2. This is the
charge passing through a plane in a unit time. Here c is for “conduc-
tion”.

• Mi Impressed (source) magnetic current density V/m2.

In an undergrad context we’ll have seen the electric and magnetic fields in
the Lorentz force law

(1.8)F = qv × B + qE.

In SI there are 7 basic units. These include
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• length m,

• mass kg,

• time s,

• ampere A,

• kelvin K (temperature),

• candela (luminous intensity),

• mole (amount of substance),

Note that the coulomb is not a fundamental unit, but the ampere is. This is
because it is easier to measure.

For homework: show that magnetic field lines must close on themselves
when there are no magnetic sources (zero divergence). This is opposed to
electric fields that spread out from the charge.
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B O U N DA R I E S .

2.1 integral forms .

Given Maxwell’s equations at a point

∇ ×E = −
∂B
∂t

∇ ×H = J +
∂D
∂t

∇ ·D = ρv

∇ ·B = 0,

(2.1)

what happens when we have different fields and currents on two sides of a
boundary? To answer these questions, we want to use the integral forms of
Maxwell’s equations, over the geometries illustrated in fig. 2.1. To do so,

Figure 2.1: Loop and pillbox configurations.

we use Stokes’ and the divergence theorems relating the area and volume
integrals to the surfaces of those geometries. These are"

S
(∇ ×A) · ds =

∮
C

A · dl"
V
(∇ ·A) ds =

∮
A

A · ds.
(2.2)

Application of Stokes’ to Faraday’s law we get

(2.3)
∮

C
E · dl = −

∂

∂t

"
B · ds,
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which has units V = V/m ×m. The quantity

(2.4)
"

B · ds,

is called the magnetic flux of B. Changing of this flux is responsible for
the generation of electromotive force. Similarly∮

H · dl =

"
J · ds +

∂

∂t

"
D · ds∮

D · ds =

$
ρvdV = Qe∮

B · ds = 0.

(2.5)

2.2 constitutive relations.

With 12 unknowns in E,B,D,H and 8 equations in Maxwell’s equations
(or 6 if the divergence equations are considered redundant), things don’t
look too good for solutions. In simple media, the fields may be have
frequency mode relations of the form

D(r, ω) = εE(r, ω)

B(r, ω) = µH(r, ω).
(2.6)

The permeabilities ε and µ are macroscopic beasts, determined either
experimentally, or theoretically using an averaging process involving many
(millions, or billions, or more) particles. However, the theoretical deter-
minations that have been attempted do not work well in practise and
usually end up considerably different than the measured values. We are
referred to [8] for one attempt to model the statistical microscopic effects
non-quantum mechanically to justify the traditional macroscopic form of
Maxwell’s equations. These can be position dependent, as in the grating
sketched in fig. 2.2. The permeabilities can also depend on the strength
of the fields. An example, application of an electric field to gallium ar-
senide or glass can change the behavior in the material. We can also have
non-linear effects, such as the effect on a capacitor when the voltage is
increased. The response near the breakdown point where the capacitor
blows up demonstrates this spectacularly. We can also have materials for
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Figure 2.2: Grating.

which the permeabilities depend on the direction of the field, or the temper-
ature, or the pressure in the environment, the tensile or compression forces
on the material, or many other factors. There are many other possible
complicating factors, for example, the electric response ε can depend on
the magnetic field strength |B|. We could then write

(2.7)ε = ε(r, |E|,E/|E|,T, P,
∣∣∣η∣∣∣, ω, k).

The complex nature of ε further complicates things We can also have
anisotropic situations where the electric and displacement fields are not
(positive) scalar multiples of each other, as sketched in fig. 2.3. which

E

D

E

D

Figure 2.3: Anisotropic field relations.

indicates that the permittivity ε in the relation

(2.8)D = εE,

can be modeled as a matrix or as a second rank tensor. When the off

diagonal entries are zero, and the diagonal values are all equal, we have
the special case where ε is reduced to a function. That function may still
be complex-valued, and dependent on many factors, but it least it is scalar
valued in this situation.
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2.3 polarization and magnetization.

If we have a material (such as glass), we can generally assume that the
induced field can be related to the vacuum field according to

(2.9)E = P + ε0E,

and

(2.10)B = µ0M + µ0H
= µ0 (M + H) .

Here the vacuum permittivity ε0 has the value 8.85 × 10−12F/m. When
we are ignoring (fictional) magnetic sources, we have a constant relation
between the magnetic fields B = µ0H. Assuming P = ε0χeE, then

(2.11)D = ε0E + ε0χeE
= ε0(1 + χe)E,

so with εr = 1 + χe, and ε = ε0εr we have

(2.12)D = εE.

Note that the relative permittivity εr is dimensionless, whereas the vacuum
permittivity has units of F/m. We call ε the (unqualified) permittivity.
The relative permittivity εr is sometimes called the relative permittivity.
Another useful quantity is the index of refraction

(2.13)η =
√
εrµr

≈
√
εr.

Similar to the above we can write M = χmH then

(2.14)
M = µ0H + µ0M

= µ0 (1 + χm) H
= µ0µrH,

so with µr = 1 + χm, and µ = µ0µr we have

(2.15)B = µH.
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2.4 linear and angular momentum in light.

It was pointed out that we have two relations in mechanics that relate
momentum and forces

F =
dP
dt

τ =
dL
dt
,

(2.16)

where P = mv is the linear momentum, and L = r × p is the angular
momentum. In quantum electrodynamics, the photon can be described
using a relationship between wave-vector and momentum

(2.17)

p = h̄k

= h̄
2π
λ

=
h

2π
2π
λ

=
h
λ
,

where h̄ = 6.522 × 10−16ev s. Photons are also governed by

E = h̄ω = hν. (2.18)

(De-Broglie’s relations).

ASIDE: optical fibre at 1550 has the lowest amount of optical attenua-
tion. Since photons have linear momentum, we can move things around
using light. With photons having both linear momentum and energy rela-
tionships, and there is a relation between torque and linear momentum, it
seems that there must be the possibility of light having angular momentum.
Is it possible to utilize the angular momentum to impose patterns on beams
(such as laser beams). For example, what if a beam could have a geometri-
cal pattern along its line of propagation, being off in some regions, on in
others. This is in fact possible, generating beams that are “self healing”.
The question was posed “Is it possible to solve electromagnetic problems
utilizing the force concepts?”, using the Lorentz force equation

(2.19)F = qv × B + qE.

This was not thought to be a productive approach due to the complexity.
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2.5 helmholtz’s theorem.

Suppose that we have a linear material where

∇ ×E = −
∂B
∂t

∇ ×H = J +
∂D
∂t

∇ ·E =
ρv

ε0

∇ ·H = 0.

(2.20)

We have relations between the divergence and curl of E given the sources.
Is that sufficient to determine E itself? The answer is yes, which is due to
the Helmholtz theorem.

Extra homework question (bonus) : can knowledge of the tangential
components of the fields also be used to uniquely determine E?

2.6 problems.

Exercise 2.1 Displacement current and Ampere’s law.

Show that without the displacement current ∂D/∂t, Maxwell’s equations
will not satisfy conservation relations.
Answer for Exercise 2.1

Without the displacement current, Maxwell’s equations are

∇ ×E(r, t) = −
∂B
∂t

(r, t)

∇ ×H(r, t) = J
∇ ·D(r, t) = ρv(r, t)
∇ ·B(r, t) = 0.

(2.21)

Assuming that the continuity equation must hold, we have

(2.22)

0 = ∇ · J +
∂ρv

∂t

= ∇ · (∇ ×H) +
∂

∂t
(∇ · D)

=
∂

∂t
(∇ · D) , 0.
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This shows that the current in Ampere’s law must be transformed to

(2.23)J→ J +
∂D
∂t
,

should we wish the continuity equation to be satisfied. With such an
addition we have

(2.24)

0 = ∇ · J +
∂ρv

∂t

= ∇ ·

(
∇ ×H −

∂D
∂t

)
+
∂

∂t
(∇ · D)

= ∇ · (∇ ×H) − ∇ ·
∂D
∂t

+
∂

∂t
(∇ · D).

The first term is zero (assuming sufficient continuity of H) and the second
two terms cancel when the space and time derivatives of one are commuted.

Exercise 2.2 Electric field due to spherical shell. ([5] pr. 2.7)

Calculate the field due to a spherical shell. The field is

(2.25)E =
σ

4πε0

∫
(r − r′)
|r − r′|3

da′,

where r′ is the position to the area element on the shell. For the test
position, let r = ze3.
Answer for Exercise 2.2

We need to parameterize the area integral. A complex-number like
geometric algebra representation works nicely.

(2.26)
r′ = R (sin θ cos φ, sin θ sin φ, cos θ)

= R (e1 sin θ (cos φ + e1e2 sin φ) + e3 cos θ)
= R

(
e1 sin θeiφ + e3 cos θ

)
.

Here i = e1e2 has been used to represent to horizontal rotation plane. The
difference in position between the test vector and area-element is

(2.27)r − r′ = e3 (z − R cos θ) − Re1 sin θeiφ,

with an absolute squared length of

(2.28)
∣∣∣r − r′

∣∣∣2 = (z − R cos θ)2 + R2 sin2 θ

= z2 + R2 − 2zR cos θ.
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As a side note, this is a kind of fun way to prove the old “cosine-law”
identity. With that done, the field integral can now be expressed explicitly

(2.29)

E =
σ

4πε0

∫ 2π

φ=0

∫ π

θ=0
R2 sin θdθdφ

e3 (z − R cos θ) − Re1 sin θeiφ(
z2 + R2 − 2zR cos θ

)3/2

=
2πR2σe3

4πε0

∫ π

θ=0
sin θdθ

z − R cos θ(
z2 + R2 − 2zR cos θ

)3/2

=
2πR2σe3

4πε0

∫ π

θ=0
sin θdθ

R(z/R − cos θ)

(R2)3/2 (
(z/R)2 + 1 − 2(z/R) cos θ

)3/2

=
σe3

2ε0

∫ 1

u=−1
du

z/R − u(
1 + (z/R)2 − 2(z/R)u

)3/2 .

Observe that all the azimuthal contributions get killed. We expect that due
to the symmetry of the problem. We are left with an integral that submits
to Mathematica, but doesn’t look fun to attempt manually. Specifically

(2.30)
∫ 1

−1

a − u(
1 + a2 − 2au

)3/2 du =

 2
a2 if a > 1

0 if a < 1,

so

E =

 σ(R/z)2e3
ε0

if z > R

0 if z < R.
(2.31)

In the problem, it is pointed out to be careful of the sign when evaluating√
R2 + z2 − 2Rz, however, I don’t see where that is even useful?

Exercise 2.3 Solenoidal fields.

For the electric fields graphically shown below indicate whether the
fields are solenoidal (divergence free) or not. In the case of non-solenoidal
fields indicate the charge generating the field is positive or negative. Justify
your answer.
Answer for Exercise 2.3

(a) The first set of field lines has the appearance of non-solenoidal. To
demonstrate this a graphical-numeric approximation of

∫
∇ · E ∝∑

i n̂ ·Ei is sketched in fig. 2.5. For each field line Ei, passing through
this square integration volume, the length of the projection onto the x
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Figure 2.4: Field lines.

Figure 2.5: Graphical divergence integration.

axis is shorter on the right side of the box than the left. Suppose the
left hand projections of E onto x̂ are 0.9, and 0.8 vs. 0.7, and 0.6 on
the right for the bottom and top red field lines respectively. The flux of
those field lines is proportional to

(2.32)
∑

i

n̂ · E ≈ (0.7 − 0.9) + (0.6 − 0.8)

= −0.4,

so this field appears to be non-solenoidal. As for the charges generating
the field, this field has the look of a small portion of a dipole field as
sketched in fig. 2.6, with the lines in the supplied figure flowing out of
a positive charge to a negative.

(b) This next figure has the appearance of the electric field lines coming
out of a single positive charge

(2.33)E =
q

4πε0

r̂
r2 .
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Figure 2.6: Crude sketch of dipole field.

Such a field is divergence free everywhere but the origin. For r , 0

(2.34)

∇ · E =
q

4πε0
∇ ·

r
r3

=
q

4πε0

(
∇ · r

r3 +

(
∇

1
r3

)
· r

)
=

q
4πε0

(
3
r3 +

(
−

3
2

2
r
r5

)
· r

)
= 0.

Because of the singularity at the origin, this is still a solenoidal field,
as shown by the divergence integral

(2.35)

∫
V
∇ · EdV =

∮
∂V

n̂ · EdA

=
q

4πε0

"
r̂ · n̂r2 sin θdθdφ

=
q

4πε0

"
n̂ ·

r̂
r2 r2 sin θdθdφ

=
q

4πε0
4π

=
q
ε0
.

(c) This last field is solenoidal, since the field lines are all of equal magni-
tude and direction. Suppose that field was

(2.36)E = x̂E,

where E is constant. The divergence is then

(2.37)∇ · E =
∂E
∂x

= 0.
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Exercise 2.4 Electric field lines.

Can either or both of the vector fields shown below represent an electro-
static field E. Justify your answer.

(a) (b)

Figure 2.7: Field lines.

Exercise 2.5 Solenoidal and irrotational fields.

In terms of E or H give an example for each of the following conditions:

a. Field is solenoidal and irrotational.

b. Field is solenoidal and rotational.

c. Field is non-solenoidal and irrotational.

d. Field is non-solenoidal and rotational.

Exercise 2.6 Conducting sheet with hole.

Figure 2.8. shows a flat, positive, non-conducting sheet of charge with
uniform charge density σ [C/m2]. A small circular hole of radius R is cut
in the middle of the surface as shown. Calculate the electric field intensity
E at point P, a distance z from the center of the hole along its axis. Hint 1:
Ignore the field fringe effects around all edges. Hint 2: Calculate the field
due to a disk of radius R and use superposition.

Exercise 2.7 Helmholtz theorem.

Prove the first Helmholtz’s theorem, i.e. if vector M is defined by its
divergence

(2.38)∇ ·M = s

and its curl
(2.39)∇ ×M = C.
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Figure 2.8: Conducting sheet with a hole.

within a region and its normal component Mn over the boundary, then M
is uniquely specified.

Exercise 2.8 Waveguide field.

The instantaneous electric field inside a conducting parallel plate waveg-
uide is given by

(2.40)E(r, t) = e2E0 sin
(
π

a
x
)

cos (ωt − βzz) ,

where βz is the waveguide’s phase constant and a is the waveguide width
(a constant). Assuming there are no sources within the free-space-filled
pipe, determine

a. The corresponding instantaneous magnetic field components inside
the conducting pipe.

b. The phase constant βz.

Exercise 2.9 Infinite line charge.

An infinitely long straight line charge has a constant charge density ρl

[C/m].

a. Using the integral formulation for E discussed in the class calculate
the electric field at an arbitrary point A(ρ, φ, z).

b. Using the Gauss law calculate the same as part a.

c. Now suppose that our uniformly charged (ρl constant) has a finite
extension from z = a to z = b, as sketched in fig. 2.9. Find the
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Figure 2.9: Line charge.

electric field at the arbitrary point A. Note: Express your results in
cylindrical coordinate system.

Exercise 2.10 Gradient in cylindrical coordinates.

If gradient of a scalar function ψ rectangular coordinate system is given
by

(2.41)∇ψ = x̂1
∂ψ

∂x
+ ŷ2

∂ψ

∂y
+ ẑ

∂ψ

∂z
,

using coordinate transformation and chain rule show that the gradient of ψ
in cylindrical coordinates is given by

(2.42)∇ψ = ρ̂
∂ψ

∂ρ
+ φ̂

1
ρ

∂ψ

∂φ
+ ẑ

∂ψ

∂z
.

Exercise 2.11 Point charge.

a. Consider a point charge q. Using Maxwell equations, derive an
expression for the electric field E generated by q at the distance r
from it. Clearly express your assumptions and justify them.

b. Derive an expression for the force experience by the charge q′

located at distance r from the charge q. (This is called Coulomb
force)
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c. Derive an expression for the electrostatic potential V at the distance
r from the charge q with respect to the electrostatic potential at
infinity. For convenience, set the value of electrostatic potential at
infinity to zero.
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E L E C T RO S TAT I C S A N D D I P O L E S .

3.1 polarization.

We will explore the important topic of magnetization here

D = ε0E + P
P = ε0χeE,

(3.1)

where

D = εE
ε = ε0εr

εr = 1 + χe.

(3.2)

3.2 point charge.

(3.3)

E =
q

4πε0

r̂
r2

=
q

4πε0

r
|r|3

=
q

4πε0

r
r3 .

In more complex media the ε0 here can be replaced by ε. Here the vector r
points from the charge to the observation point. Note that the class notes
use âR instead of r̂. When the charge isn’t located at the origin, we must
modify this accordingly

(3.4)
E =

q
4πε0

R
|R|3

=
q

4πε0

R
R3 ,

where R = r − r′ still points from the location of the charge to the point
of observation, as sketched in fig. 3.1. This can be further generalized to
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Figure 3.1: Vector distance from charge to observation point.

collections of point charges by superposition

(3.5)E =
1

4πε0

∑
i

qi
r − r′i∣∣∣r − r′i

∣∣∣3 .
Observe that a potential that satisfies E = −∇V can be defined as

(3.6)V =
1

4πε0

∑
i

qi∣∣∣r − r′i
∣∣∣ .

When we are considering real world scenarios (like touching your hair,
and then the table), how do we deal with the billions of charges involved.
This can be done by considering the charges so small that they can be
approximated as a continuous distribution of charges. This can be done
by introducing the concept of a continuous charge distribution ρv(r′). The
charge that is in a small differential volume element dV ′ is ρ(r′)dV ′, and
the superposition has the form

(3.7)E =
1

4πε0

$
dV ′ρv(r′)

r − r′

|r − r′|3
,

with potential

(3.8)V =
1

4πε0

$
dV ′

ρv(r′)
|r − r′|

.

The surface charge density analogue is

(3.9)E =
1

4πε0

"
dA′ρs(r′)

r − r′

|r − r′|3
,

with potential

(3.10)V =
1

4πε0

"
dA′

ρs(r′)
|r − r′|

.
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The line charge density analogue is

(3.11)E =
1

4πε0

∫
dl′ρl(r′)

r − r′

|r − r′|3
,

with potential

(3.12)V =
1

4πε0

∫
dl′

ρl(r′)
|r − r′|

.

The difficulty with any of these approaches is the charge density is hardly
ever known. When the charge density is known, this sorts of integrals may
not be analytically calculable, but they do yield to numeric calculation. We
may often prefer the potential calculations of the field calculations because
they are much easier, having just one component to deal with.

3.3 electric field of a dipole.

An equal charge dipole configuration is sketched in fig. 3.2.

Figure 3.2: Dipole sign convention.

r1 = r −
d
2
,

r2 = r +
d
2
.

(3.13)

The electric field is

(3.14)
E =

q
4πε0

r1

r3
1

−
r2

r3
2


=

q
4πε0

(
r − d/2
|r − d/2|3

−
r + d/2
|r + d/2|3

)
.



22 electrostatics and dipoles.

For r � |d|, this can be reduced using the normal first order reduction
techniques, left to an exercise. This is essentially requires an expansion of

(3.15)|r ± d/2|−3/2 = ((r ± d/2) · (r ± d/2))−3/2 .

The final result with p = qd (the dipole moment) can be found to be

(3.16)E =
1

4πε0r3

(
3

r · p
r2 r − p

)
With p = qẑ, we have spherical coordinates for the observation point, and
Cartesian for the dipole moment. To convert the moment to spherical we
can use

(3.17)


Ar

Aθ
Aφ

 =


sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0



Ax

Ay

Az

 .
All such rotation matrices can be found in the appendix of [2] for example.
For the dipole vector this gives

(3.18)


pr

pθ
pφ

 =


cos θp

− sin θp

0

 .
or

p = pẑ = p
(
cos θr̂ − sin θθ̂

)
. (3.19)

Plugging in this eventually gives

(3.20)E =
p

4πε0r3

(
2 cos θr̂ + sin θθ̂

)
,

where |r| = r. It will be left to a problem to show that the potential for an
electric dipole is given by

(3.21)V =
p · r̂

4πε0r2 .

Observe that the dipole field drops off faster than the field for a single
electric charge. This is true generally, with quadrupole and higher order
moments dropping off faster as the degree is increased.
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3.4 bound (polarized) surface and volume charge densities .

When an electric field is applied to a volume, bound charges are induced
on the surface of the material, and bound charges induced in the volume.
Both of these are related to the polarization P, and the displacement
current in the material, in a configuration such as the capacitor sketched
in fig. 3.3. Consider, for example, a capacitor using glass as a dielectric.

Figure 3.3: Circuit with displacement current.

The charges are not able to move within the insulating material, but dipole
configurations can be induced on the surface and in the bulk of the material,
as sketched in fig. 3.4. How many materials behave is largely determined

Figure 3.4: Glass dielectric capacitor bound charge dipole configurations.

by electric dipole effects. In particular, the polarization P can be considered
the density of electric dipoles.

(3.22)P = lim
∆v′→0

N∆v′∑
k

pk

∆v′
,

where N is the number density in the volume at that point, and ∆v′ is the
differential volume element. Dimensions:
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• [p] = C m,

• [P] = C/m2.

In particular, when the electron cloud density of a material is not symmetric,
as is the case in the p-orbital roughly sketched in fig. 3.5, then we have
a dipole configuration in each atom. When the atom is symmetric, by
applying an electric field, a dipole configuration can be created. As the

Figure 3.5: A p-orbital dipole like electronic configuration.

volume shrinks to zero, the dipole moment can be expressed as

(3.23)P =
dp
dv
.

For an elemental dipole dp = Pdv′, the contribution to the potential is

(3.24)
dV =

dp · r̂
4πε0R2

=
P · r̂

4πε0R2 dv′

Since

(3.25)∇
′ 1
R

=
r̂

R2 ,

this can be written as

(3.26)

V =
1

4πε0

∫
v′

dv′P · ∇′
1
R

=
1

4πε0

∫
v′

dv′∇′ ·
P
R
−

1
4πε0

∫
v′

dv′
∇′ · P

R

=
1

4πε0

(∮
S ′

ds′n̂ ·
P
R
−

∫
v′

dv′
∇′ · P

R

)
.
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Looking back to the potentials in their volume density eq. (3.8) and surface
charge density eq. (3.9) forms, we see that identifications can be made
with the volume and surface charge densities

ρ′s = P · n̂,
ρ′v = ∇′ · P.

(3.27)

Dropping primes, these are respectively

• Bound or polarized surface charge density: ρsP = P · n̂, in [C/m2]

• Bound or polarized volume charge density: ρvP = ∇ · P, in [C/m3]

Recall that in Maxwell’s equations for the vacuum we have

(3.28)∇ · E =
ρv

ε0
.

Here ρv represents “free” charge density. Adding in potential bound
charges we have

(3.29)
∇ · E =

ρv

ε0
+
ρvP

ε0

=
ρv

ε0
−
∇ · P
ε0

.

Rearranging we can write

(3.30)∇ · (ε0E + P) = ρv.

This finally justifies the Maxwell equation

(3.31)∇ · D = ρv,

where D = ε0E + P. Assuming a relationship between the polarization
vector and the electric field of the form

(3.32)P = ε0χeE,

possibly a tensor relationship. The bound charges in the material are seen
to related the displacement current and the electric field

(3.33)

D = ε0E + P
= ε0E + ε0χeE,
= ε0 (1 + χe) E,
= ε0εrE,
= εE.

Question: Think about why do we ignore the surface charges here?
Answer: we are not considering boundaries... they are at infinity.
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3.5 problems.

Exercise 3.1 Electric Dipole.

An electric dipole is shown in fig. 3.6.

Figure 3.6: Electric dipole configuration.

a. Find the Potential V at an arbitrary point A.

b. Calculate the field E from the above potential. (show that it is the
same result we obtained in the class).

Exercise 3.2 Dipole moment density for disk.

A dielectric circular disk of radius a and thickness d is permanently
polarized with a dipole moment per unit volume P [C/m2], where |P| is
constant and parallel to the disk axis (z-axis here) as shown in fig. 3.7.

a. Calculate the potential along the disk axis for z > 0.

b. Approximate the result obtained in part a for the case of Z � d.

Exercise 3.3 Field for an electric dipole.

An equal charge dipole configuration is sketched in fig. 3.2. Compute
the electric field.
Answer for Exercise 3.3

The vector from the origin to the observation point is

r = R1 + d/2 = R2 − d/2, (3.34)
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Figure 3.7: Circular disk geometry.

or

R1 = r − d/2 ≡ R+

R2 = r + d/2 ≡ R−.
(3.35)

The electric field for this superposition is

(3.36)

E =
1

4πε0

(
qR+

|R+|
3 −

qR−
|R−|3

)
=

q
4πε0

(
r − d/2
|R+|

3 −
r + d/2
|R−|3

)
=

q
4πε0

(
r
(

1

|R+|
3 −

1

|R−|3

)
−

d
2

(
1

|R+|
3 +

1

|R−|3

))
.

The magnitudes can be expanded in Taylor series

|R±|3 = ((r ∓ d/2) · (r ∓ d/2))−3/2

=
((

r2 + (d/2)2 ∓ 2r · d/2
))−3/2

=
((

r2 + (d/2)2 ∓ r · d
))−3/2

= (r2)−3/2

1 +

(
d
2r

)2

∓ r̂ ·
d
r

−1/2

= r−3

1− 3
2

( d
2r

)2

∓ r̂ ·
d
r

+

(
−3
2

) (
−5
2

)
1
2!

( d
2r

)2

∓ r̂ ·
d
r

2

+ · · ·

 .
(3.37)
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Here r = |r|, and the Taylor series was taken in the d/r � 1 limit. The
sums and differences of these magnitudes, are to first order

(3.38)

1

|R+|
3 −

1

|R−|3
= 2

1
r3

(
−3
2

) (
−r̂ ·

d
r

)
≈

3
r4 r̂ · d,

and

(3.39)
1

|R+|
3 +

1

|R−|3
≈

2
r3 .

The r � d limiting expression for the electric field is

(3.40)E ≈
q

4πε0r3

(
3r̂ (r̂ · d) − 2

d
2

)
,

or, with p = qd

E =
1

4πε0r3 (3r̂ (r̂ · p) − p) . (3.41)

Exercise 3.4 Electric dipole potential.

Having shown that

(3.42)E =
1

4πε0r3 (3r̂ (r̂ · p) − p) ,

find the expression for the electric potential for this field.
Answer for Exercise 3.4

With the electric potential defined indirectly by

(3.43)E = −∇V,

we can integrate to find the difference in potential between two points

(3.44)

∫ b

a
E · dl = −

∫ ∫ b

a
∇V · dl

= − (V(b) − V(a)) ,

or

(3.45)V(b) − V(a) = −

∫ b

a
E · dl.
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Since the dipole potential is zero at r = ∞, we have

(3.46)V(r) = −

∫ r

∞

E · dl.

Let’s integrate this on the radial path r(r′) = r′r̂, for r′ ∈ [∞, r]

(3.47)

V(r) = −

∫ r

∞

E · dl

= −

∫ r

∞

E · r̂dr′

= −
1

4πε0

∫ r

∞

dr′

r′3
r̂ · (3r̂ (r̂ · p) − p)

= −
2

4πε0

∫ r

∞

dr′
r̂ · p
r′3

=
r̂ · p
4πε0

1
r′2

∣∣∣∣∣r
∞

,

so

V(r) =
r̂ · p
4πε0

. (3.48)





4
M AG N E T I C M O M E N T.

4.1 magnetic moment.

Using a semi-classical model of an electron, assuming that the electron
circles the nuclei. This is a completely wrong model, but useful. In reality,
electrons are random and probabilistic and do not follow defined paths.
We do however have a magnetic moment associated with the electron, and
one associated with the spin of the electron, and a moment associated with
the spin of the nuclei. All of these concepts can be used to describe a more
accurate model and such a model is discussed in [8] chapters 11,12,13.
Ignoring the details of how the moments really occur physically, we can
take it as a given that they exist, and model them as elemental magnetic
dipole moments of the form

(4.1)dmi = n̂iIidsi [Am2].

Note that dsi is an element of surface area, not arc length! Here the normal
is defined in terms of the right hand rule with respect to the direction of
the current as sketched in fig. 4.1. Such dipole moments are actually what

Figure 4.1: Orientation of current loop.

an MRI measures. The noises that people describe from MRI machines are
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actually when the very powerful magnets are being rotated, allowing for
the magnetic moments in the atoms of the body to be measured in different
directions. The magnetic polarization, or magnetization M, in [A/m]] is
given by

(4.2)

M = lim
∆v→0

(
1

∆v
mi

)
= lim

∆v→0

 1
∆v

Nδv∑
i=1

dmi


= lim

∆v→0

 1
∆v

Nδv∑
i=1

n̂iIidsi

 .
In materials the magnetization within the atoms are usually random, how-
ever, application of a magnetic field can force these to line up, as sketched
in fig. 4.2. This is accomplished because an applied magnetic field acting

Figure 4.2: External magnetic field alignment of magnetic moments.

on the magnetic moment introduces a torque, as also occurred with dipole
moments under applied electric fields

τB = dm ×Ba,

τE = dp ×Ea.
(4.3)

There is an energy associated with this torque

∆UB = −dm ·Ba

∆UE = −dp ·Ea.
(4.4)
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In analogy with the electric dipole moment analysis, it can be assumed
that there is a linear relationship between the magnetic polarization and
the applied magnetic field

(4.5)B = µ0Ha + µ0M
= µ0 (Ha + M) ,

where

(4.6)M = χmHa,

so

B = µ0 (1 + χm)Ha ≡ µHa. (4.7)

Like electric dipoles, in a volume, we can have bound currents on the
surface [A/m], as well as bound volume currents [A/m2]. It can be shown,
as with the electric dipoles related bound charge densities of eq. (3.27),
that magnetic currents can be defined

Jsm = M × n̂,
Jvm = ∇ ×M.

(4.8)

4.2 conductivity.

We have two constitutive relationships so far

D = εE,
B = µH,

(4.9)

but these need to be augmented by Ohm’s law

(4.10)Jc = εE.

There are a couple ways to discuss this. One is to model ε as a com-
plex number. Such a model is not entirely unconstrained. Like with the
Cauchy-Riemann conditions that relate derivatives of the real and imagi-
nary parts of a complex number, there is a relationship (Kramers-Kronig
[10]), an integral relationship that relates the real and imaginary parts of
the permittivity ε.
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4.3 problems.

Exercise 4.1 Magnetic moment for localized current.

Jackson [8] §5.6 derives an expression for the magnetic moment of a
localized current distribution, far from the source. Repeat this derivation,
filling in the details.
Answer for Exercise 4.1

The Biot-Savart expression for the magnetic field can be factored into a
curl expression using the usual tricks

(4.11)

B =
µ0

4π

∫
J(x′) × (x − x′)
|x − x′|3

d3x′

= −
µ0

4π

∫
J(x′) × ∇

1
|x − x′|

d3x′

=
µ0

4π
∇ ×

∫
J(x′)
|x − x′|

d3x′,

so the vector potential, through its curl, defines the magnetic field B =

∇ ×A is given by

(4.12)A(x) =
µ0

4π

∫
J(x′)
|x − x′|

d3x′.

If the current source is localized (zero outside of some finite region), then
there will always be a region for which |x| � |x′|, so the denominator
yields to Taylor expansion

(4.13)

1
|x − x′|

=
1
|x|

(
1 +
|x′|2

|x|2
− 2

x · x′

|x|2

)−1/2

≈
1
|x|

(
1 +

x · x′

|x|2

)
=

1
|x|

+
x · x′

|x|3
.

so the vector potential, far enough away from the current source is

(4.14)A(x) =
µ0

4π

∫
J(x′)
|x|

d3x′ +
µ0

4π

∫
(x · x′)J(x′)
|x|3

d3x′.
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Jackson uses a sneaky trick to show that the first integral is killed for a
localized source. That trick appears to be based on evaluating the following
divergence

(4.15)

∇ · (J(x)xi) = (∇ · J)xi + (∇xi) · J
= (ek∂kxi) · J
= δkiJk

= Ji.

Note that this made use of the fact that ∇ · J = 0 for magnetostatics. This
provides a way to rewrite the current density as a divergence

(4.16)

∫
J(x′)
|x|

d3x′ = ei

∫
∇′ · (x′iJ(x′))

|x|
d3x′

=
ei

|x|

∫
∇
′ · (x′iJ(x′))d3x′

=
1
|x|

∮
x′(da′ · J(x′)).

When J is localized, this is zero provided we pick the integration surface
for the volume outside of that localization region. It is now desired to
rewrite

∫
x · x′J as a triple cross product since the dot product of such a

triple cross product has exactly this term in it

(4.17)
−x ×

∫
x′ × J =

∫
(x · x′)J −

∫
(x · J)x′

=

∫
(x · x′)J − ekxi

∫
Jix′k,

so

(4.18)
∫

(x · x′)J = −x ×
∫

x′ × J + ekxi

∫
Jix′k.
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To get of this second term, the next sneaky trick is to consider the following
divergence

(4.19)

∮
da′ · (J(x′)x′i x

′
j) =

∫
dV ′∇′ · (J(x′)x′i x

′
j)

=

∫
dV ′(∇′ · J) +

∫
dV ′J · ∇′(x′i x

′
j)

=

∫
dV ′Jk ·

(
x′i∂kx′j + x′j∂kx′i

)
=

∫
dV ′

(
Jkx′iδk j + Jkx′jδki

)
=

∫
dV ′

(
J jx′i + Jix′j

)
.

The surface integral is once again zero, which means that we have an
antisymmetric relationship in integrals of the form

(4.20)
∫

J jx′i = −

∫
Jix′j.

Now we can use the tensor algebra trick of writing y = (y + y)/2,

(4.21)

∫
(x · x′)J = −x ×

∫
x′ × J + ekxi

∫
Jix′k

= −x ×
∫

x′ × J +
1
2

ekxi

∫ (
Jix′k + Jix′k

)
= −x ×

∫
x′ × J +

1
2

ekxi

∫ (
Jix′k − Jkx′i

)
= −x ×

∫
x′ × J +

1
2

ekxi

∫
(J × x′) jεik j

= −x ×
∫

x′ × J −
1
2
εki jekxi

∫
(J × x′) j

= −x ×
∫

x′ × J −
1
2

x ×
∫

J × x′

= −x ×
∫

x′ × J +
1
2

x ×
∫

x′ × J

= −
1
2

x ×
∫

x′ × J,

so

(4.22)A(x) ≈
µ0

4π|x|3
(
−

x
2

) ∫
x′ × J(x′)d3x′.
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Letting

m =
1
2

∫
x′ × J(x′)d3x′, (4.23)

the far field approximation of the vector potential is

A(x) =
µ0

4π
m × x
|x|3

. (4.24)

Note that when the current is restricted to an infinitesimally thin loop, the
magnetic moment reduces to

(4.25)m(x) =
I
2

∫
x × dl′.

Referring to [5] (pr. 1.60), this can be seen to be I times the “vector-area”
integral. A side effect of having evaluated this approximation is that we
have shown that

(4.26)
∫ (

x · x′
)

J(x′)d3x′ = m × x.

This will be required again later when evaluating the force due to an
applied magnetic field in terms of the magnetic moment.

Exercise 4.2 Vector Area. ([5] pr. 1.61)

The integral

(4.27)a =

∫
S

da,

is sometimes called the vector area of the surface S .

a. Find the vector area of a hemispherical bowl of radius R.

b. Show that a = 0 for any closed surface.

c. Show that a is the same for all surfaces sharing the same boundary.

d. Show that

a =
1
2

�
r × dl, (4.28)

where the integral is around the boundary line.

e. Show that �
(c · r) dl = a × c. (4.29)

Answer for Exercise 4.2
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Part a.

(4.30)

a =

∫ π/2

0
R2 sin θdθ

∫ 2π

0
dφ (sin θ cos φ, sin θ sin φ, cos θ)

= R2
∫ π/2

0
dθ

∫ 2π

0
dφ

(
sin2 θ cos φ, sin2 θ sin φ, sin θ cos θ

)
= 2πR2

∫ π/2

0
dθe3 sin θ cos θ

= πR2e3

∫ π/2

0
dθ sin(2θ)

= πR2e3

(
− cos(2θ)

2

)∣∣∣∣∣∣π/2
0

= πR2e3 (1 − (−1)) /2
= πR2e3.

Part b. As hinted in the original problem description, this follows from

(4.31)
∫

dV∇T =

∮
Tda,

simply by setting T = 1.

Part c. Suppose that two surfaces sharing a boundary are parameterized
by vectors x(u, v), x(a, b) respectively. The area integral with the first
parameterization is

a =

∫
∂x
∂u
×
∂x
∂v

dudv

= εi jkei

∫
∂x j

∂u
∂xk

∂v
dudv

= εi jkei

∫ (
∂x j

∂a
∂a
∂u

+
∂x j

∂b
∂b
∂u

) (
∂xk

∂a
∂a
∂v

+
∂xk

∂b
∂b
∂v

)
dudv

= εi jkei

∫
dudv

(
∂x j

∂a
∂a
∂u
∂xk

∂a
∂a
∂v

+
∂x j

∂b
∂b
∂u
∂xk

∂b
∂b
∂v

+
∂x j

∂b
∂b
∂u
∂xk

∂a
∂a
∂v

+
∂x j

∂a
∂a
∂u
∂xk

∂b
∂b
∂v

)
= εi jkei

∫
dudv

(
∂x j

∂a
∂xk

∂a
∂a
∂u
∂a
∂v

+
∂x j

∂b
∂xk

∂b
∂b
∂u
∂b
∂v

)
+ εi jkei

∫
dudv

(
∂x j

∂b
∂xk

∂a
∂b
∂u
∂a
∂v
−
∂xk

∂a
∂x j

∂b
∂a
∂u
∂b
∂v

)
.

(4.32)
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In the last step a j, k index swap was performed for the last term of the
second integral. The first integral is zero, since the integrand is symmetric
in j, k. This leaves

(4.33)

a = εi jkei

∫
dudv

(
∂x j

∂b
∂xk

∂a
∂b
∂u
∂a
∂v
−
∂xk

∂a
∂x j

∂b
∂a
∂u
∂b
∂v

)
= εi jkei

∫
∂x j

∂b
∂xk

∂a

(
∂b
∂u
∂a
∂v
−
∂a
∂u
∂b
∂v

)
dudv

= εi jkei

∫
∂x j

∂b
∂xk

∂a
∂(b, a)
∂(u, v)

dudv

= −

∫
∂x
∂b
×
∂x
∂a

dadb

=

∫
∂x
∂a
×
∂x
∂b

dadb.

However, this is the area integral with the second parameterization, proving
that the area-integral for any given boundary is independent of the surface.

Part d. Having proven that the area-integral for a given boundary is
independent of the surface that it is evaluated on, the result follows by
illustration as hinted in the full problem description. Draw a “cone”, tracing
a vector x′ from the origin to the position line element, and divide that
cone up into infinitesimal slices as sketched in fig. 4.3. The area of each of

Figure 4.3: Cone configuration.

these triangular slices is

(4.34)
1
2

x′ × dl′.

Summing those triangles proves the result.
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Part e. As hinted in the problem, this follows from

(4.35)
∫
∇T × da = −

�
Tdl.

Set T = c · r, for which

(4.36)

∇T = ek∂kcmxm

= ekcmδkm

= ekck

= c,

so

(4.37)
(∇T ) × da =

∫
c × da

= c ×
∫

da

= c × a.

so

(4.38)c × a = −

�
(c · r)dl,

or

(4.39)
�

(c · r)dl = a × c. �

Exercise 4.3 Magnetic field from moment.

The vector potential, to first order, for a magnetostatic localized current
distribution was found to be

(4.40)A(x) =
µ0

4π
m × x
|x|3

.

Use this to calculate the magnetic field.
Answer for Exercise 4.3

B =
µ0

4π
∇ ×

(
m ×

x
r3

)
= −

µ0

4π
∇ ·

(
m ∧

x
r3

)
= −

µ0

4π

(
(m · ∇)

x
r3 −m∇ ·

x
r3

)
=
µ0

4π

(
−

(m · ∇)x
r3 −

(
m ·

(
∇

1
r3

))
x + m(∇ · x)

1
r3 + m

(
∇

1
r3

)
· x

)
.

(4.41)
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Here I’ve used a × (b × c) = −a · (b∧ c), and then expanded that with
a · (b∧ c) = (a · b)c − (a · c)b. Since one of these vectors is the gradient,
care must be taken to have it operate on the appropriate terms in such an
expansion. Since we have ∇ · x = 3, (m ·∇)x = m, and ∇1/rn = −nx/rn+2,
this reduces to

(4.42)
B =

µ0

4π

(
−

m
r3 + 3

(m · x)x
r5 + 3m

1
r3 − 3m

x
r5 · x

)
=
µ0

4π
3(m · n̂)n̂ −m

r3 ,

which is the desired result.

Exercise 4.4 Magnetic field for a current loop.

A loop of wire located in x-y plane carrying current I is shown in fig. 4.4.
The loop’s radius is Rl.

Figure 4.4: Current loop.

a. Calculate the magnetic field flux density, B, along the loop axis at
a distance z from its center.

b. Simplify the results in part a for large distances along the z-axis
(z � Rl).

c. Express the results in part b in terms of magnetic dipole moment.
Make sure you write the expression in vector form.

d. In keeping with your understanding of magnetic bar’s north and
south poles, designate the north and south poles for the current
carrying loop shown in the figure.
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Hint: Use Biot-Savart law which states the following: A differ-
ential current element, Idl′, produces a differential magnetic field,
dB, at a distance R from the current element given by

dB =
µ0

4π
Idl′ ×R

R3 , (4.43)

or

B =
µ0

4π

∫
Idl′ ×R

R3 , (4.44)

Note that integration is carried over the source (current) and R
points from the current elements to the point of observation.
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B O U N DA RY VA L U E C O N D I T I O N S .

5.1 boundary conditions.

The boundary conditions are

• n̂× (E2 −E1) = −Ms. This means that the tangential components of
E is continuous across the boundary (those components of E1,E2 are
equal on the boundary), when Ms is zero. Here Ms is the (fictitious)
magnetic current density in [V/m].

• n̂ × (H2 −H1) = Js. This means that the tangential components of
the magnetic fields H are discontinuous when the electric surface
current density Js [A/m] is non-zero, but continuous otherwise. The
latter is sketched in fig. 5.1. Here Js is the movement of the free

Figure 5.1: Equal tangential fields.

current on the surface. The bound charges are incorporated into D.

• n̂ · (D2 −D1) = ρes. Here ρes is the electric surface charge den-
sity [C/m2]. This means that the normal component of the electric
displacement field D is discontinuous across the boundary in the
presence of electric surface charge densities, but continuous when
that is zero.

• n̂ · (B2 −B1) = ρms. Here ρms is the (fictional) magnetic surface
charge density [Weber/m2]. This means that the magnetic fields B
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are continuous in the absence of (fictional) magnetic surface charge
densities.

In the absence of any free charges or currents, these relationships are
considerably simplified

(5.1a)n̂ × (E2 − E1) = 0,

(5.1b)n̂ × (H2 −H1) = 0,

(5.1c)n̂ · (D2 − D1) = 0,

(5.1d)n̂ · (B2 − B1) = 0.

To get an idea where these come from, consider the derivation of eq. (5.1b),
relating the tangential components of H, as sketched in fig. 5.2. Integrating

Figure 5.2: Boundary geometry.

over such a loop, the integral version of the Ampere-Maxwell equation
eq. (1.2), with J = σE is

(5.2)
∮

C
H · dl =

∫
S
σE · ds +

∂

∂t

∫
S

D · ds.

In the limit, with the height ∆y→ 0, this is

(5.3)
∮

C
H · dl ≈ H1 · (∆xx̂) − H2 · (∆xx̂).
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Similarly

(5.4)
∫

S
D · ds ≈ D · ẑ∆x∆y,

and ∫
S

J · ds =

∫
S
σE · ds ≈ σE · ẑ∆x∆y. (5.5)

However, if ∆y approaches zero, both of these terms are killed. This gives

(5.6)x̂ · (H2 −H1) = 0.

If you were to perform the same calculation using a loop in the y-z plane
you’d find

(5.7)ẑ · (H2 −H1) = 0.

Either way, the tangential component of H is continuous on the boundary.
This derivation, using explicit components, follows [2]. Non coordinate
derivations are also possible (reference?). The idea is that

(5.8)n̂ × ((H2 −H2n) − (H1 −H1n)) = n̂ × (H2 −H1)
= 0.

What if there is a surface current?

(5.9)lim
∆y→0

Jic∆y = Js.

When this is the case the J = σE needs to be fixed up a bit, and showing
how is left to a problem. In the notes the other boundary relations are
derived. The normal ones follow by integrating over a pillbox volume.
Variations include the cases when one of the surfaces is made a perfect
conductor. Such a case can be treated by noting that the E field must be
zero.

5.2 conducting media.

It will be left to homework to show, using the continuity equation and
Gauss’s law that inside a conductor, that free charges distribute themselves
exclusively on the surface on the medium. Because of this there is no
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electric field inside the medium (Gauss’s law). What does this imply about
the magnetic field in the same medium. We must have

(5.10)∇ × E = −
∂B
∂t
,

so if E is zero in the medium the magnetic field must be either constant
with respect to time, or zero. In a general electrodynamic configuration,
both the magnetic and electric fields vary with time, which seems to imply
that B must be zero if E is zero in that space. However, this is not consistent
with what we see with an iron core inductor. In such an inductor, the iron is
used to concentrate the magnetic field. Clearly we have magnetic fields in
the iron bar, since that is the purpose of it being there. It turns out that if the
frequencies are low enough (and even some smaller GHz frequencies are),
then we can consider the system to be quasi-electrostatic, with zero electric
fields inside a conductor, yet with finite approximately time independent
magnetic fields. As the frequencies are increased, the magnetic fields are
forced out of the conductor into the surrounding space. The transition point
that defines the boundary between electrostatic and quasi-electrostatic will
depend on the precision desired.

5.3 boundary conditions with zero magnetic fields in a con-
ductor .

For many calculations, we can proceed with the assumption that there are
no appreciable electric nor magnetic fields inside of a conductor. When
that is the case, outside of a conducting medium, we have

(5.11)n̂ × E2 = 0,

so there is no tangential component to an electric field of a conductor. We
also have

(5.12)n̂ · D2 = ρes.

Assuming there is also no magnetic field either in the conductor, we also
have

(5.13)n̂ ×H2 = Js,

and
(5.14)n̂ · B2 = 0.

There is no normal component to the magnetic field at the surface of a
conductor, and the tangential component is determined by the surface
current density.
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5.4 problems.

Exercise 5.1 Tangential magnetic field boundary conditions.

In the class notes we showed that when there were no sources at the
interface between two media and neither of the two media was a perfect
conductor σ1, σ2 , ∞ the boundary condition on the tangential magnetic
field was given by

(5.15)n̂ × (H2 −H1) = 0.

Here, show that when Ji + Jc = Jic , 0, the boundary condition is given
by

(5.16)n̂ × (H2 −H1) = Js,

where
(5.17)Js = lim

∆y→0
Jic∆y.

Note: Use the geometry provided in fig. 5.3 for your proof.

Figure 5.3: Boundary geometry.

Exercise 5.2 Electric field across dielectric boundary.

The plane 3x + 2y + z = 12 [m] describes the interface between a
dielectric and free space. The origin side of the interface has εr1 = 3
and E1 = 2x̂ + 5ẑ [V/m]. What is E2 (the field on the other side of the
interface)?
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Exercise 5.3 Laplacian form of delta function.

Prove that

(5.18)−∇2 1
r

= 4πδ3(r),

where r = |r| is the position vector.

Exercise 5.4 Conductor charge distribution on surface.

We have stated that the boundary condition for a perfect conductor
is such that there is no electric field or charge distribution inside of the
conductor. Here we will study the dynamics of this process. Start with
continuity equation ∇ · J = −∂ρ/∂t, where J is the current density [A/m2]
and ρ is the charge density [C/m3]. Show that a charge (charge density)
placed inside a conductor will decay in an exponential manner.
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The cross product terms of Maxwell’s equation are

∇ ×E = −Mi −
∂B
∂t

= −Mi −Md, (6.1)

where Md is called the magnetic displacement current here. For the mag-
netic curl we have

∇ ×H = Ji + Jc +
∂D
∂t

= Ji + Jc + Jd. (6.2)

It is left as an exercise to show that

(6.3)∇ · (E ×H) + H · (Mi + Md) + E · (Ji + Jc + Jd) = 0,

or ∮
da · (E ×H) +

∫
dV (H · (Mi + Md) + E · (Ji + Jc + Jd))

= 0,
(6.4)

or

0 =

∮
da · (E ×H)

+

∫
dVH ·Mi +

∫
dVE · Ji +

∫
dVE · Jc

+

∫
dV

(
H ·

∂B
∂t

+ E ·
∂D
∂t

)
.

(6.5)

Define a supplied power density ρsupp

(6.6)−ρsupp =

∫
dVH ·Mi +

∫
dVE · Ji.

When the medium is not dispersive or lossy, we have

(6.7)

∫
dVH ·

∂B
∂t

= µ

∫
dVH ·

∂H
∂t

=
∂

∂t

∫
dVµ|H|2.
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The units of [µ|H|2] are W, so one can defined a magnetic energy density
µ|H|2, and

(6.8)Wm =

∫
dVµ|H|2,

for

(6.9)
∫

dVH ·
∂B
∂t

=
∂Wm

∂t
.

This is the rate of change of stored magnetic energy [J/s = W]. Similarly

(6.10)

∫
dVE ·

∂D
∂t

= ε

∫
dVE ·

∂E
∂t

=
∂

∂t

∫
dVε|E|2.

The electric energy density is ε|E|2. Let

(6.11)We =

∫
dVε|E|2,

and

(6.12)
∫

dVE ·
∂D
∂t

=
∂We

∂t
.

We also have a term

(6.13)

∫
dVE · Jc =

∫
dVE · (σE)

=

∫
dVσ|E|2.

This is the rate of change of stored electric energy. The remaining term is

(6.14)
∮

da · (E ×H) .

This is a density of the power that is leaving the volume. The vector E×H
is special, called the Poynting vector, and coincidentally points in the
direction that the energy leaves the bounding surface per unit time. We
write

(6.15)S = E ×H.
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In vacuum the phase velocity vp, group velocity vg and packet(?) velocity
vp all line up. This isn’t the case in the media. It turns out that without
dissipation

(6.16)
∫

H ·
∂B
∂t

=

∫
E ·

∂D
∂t
.

For example in an LC circuit fig. 6.1 half the cycle the energy is stored in
the inductor, and in the other half of the cycle the energy is stored in the
capacitor. Summarizing

Figure 6.1: LC circuit.

(6.17)
∮

(E ×H) · da = Pexit.

6.1 problems.

Exercise 6.1 Index of refraction.

Transmitter T of a time-harmonic wave of frequency ν moves with velocity
U at an angle θ relative to the direct line to a stationary receiver R, as
sketched in fig. 6.2.

a. Derive the expression for the frequency detected by the receiver R,
assuming that the medium between T and R has a positive index of
refraction n. (Apply the appropriate approximations.)

b. How is the expression obtained in part a is modified if the medium
is a metamaterial with negative index of refraction.

c. From the physical point of view, how is the situation in part b
different from part a ?
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Figure 6.2: Field refraction.

Exercise 6.2 Phasor equality.

Prove that if

(6.18)Re
(
A(r)e jωt

)
= Re

(
B(r)e jωt

)
,

then A(r) = B(r). This means that the Re() operator can be removed on
phasors of the same frequency.

Exercise 6.3 Duality theorem.

Prove that if the time-harmonic fields E(r) and H(r) are solutions
to Maxwell’s equations in a simple, source free medium ( Mi = Ji =

Jc = 0, ρmv = ρev = 0 ), characterized by ε, µ ; then E′(r) = ηH(r) and
H′(r) = −

E(r)
η are also solutions of the Maxwell equations. η is the intrinsic

impedance of the medium.

Remark : By showing the above you have proved the validity of the so
called duality theorem.

Exercise 6.4 Poynting theorem.

Using Maxwell’s equations given in the class notes, derive the Poynting
theorem in both differential and integral form for instantaneous fields.
Assume a linear, homogeneous medium with no temporal dispersion.
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T I M E H A R M O N I C F I E L D S .

Recall that we have differential equations to solve for each type of circuit
element in the time domain. For example in fig. 7.1, we have

(7.1)Vi(t) = L
di
dt
,

Figure 7.1: Inductor.

and for the capacitor sketched in fig. 7.2, we have

(7.2)ic(t) = C
dVc

dt
.

Figure 7.2: Capacitor.

When we use Laplace or Fourier techniques to solve circuits with such
differential equation elements. The price that we paid for that was that we
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have to start dealing with complex-valued (phasor) quantities. We can do
this for field equations as well. The goal is to remove the time domain
coupling in Maxwell equations like

(7.3)∇ × E(r, t) = −
∂B
∂t

(r, t),

(7.4)∇ ×H(r, t) = σE +
∂D
∂t

(r, t).

For a single frequency, assume that the time dependency can be written as

(7.5)E(r, t) = Re
(
E∗(r)e jωt

)
.

We may now have to require E(r) to be complex valued. We also have to
be really careful about which convention of the time domain solution we
are going to use, since we could just as easily use

(7.6)E(r, t) = Re
(
E(r)e− jωt

)
.

For example

(7.7)Re
(
eikze−iωt

)
= cos(kz − ωt),

is identical with

(7.8)Re
(
e− jkze jωt

)
= cos(ωt − kz),

showing that a solution or its complex conjugate is equally valid. Engi-
neering books use e jωt whereas most physicists use e−iωt. What if we have
more complex time dependencies, such as that sketched in fig. 7.3? We can

Figure 7.3: Non-sinusoidal time dependence.

do this using Fourier superposition, adding a finite or infinite set of single
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frequency solutions. The first order of business is to solve the system for a
single frequency. Let’s write our Fourier transform pairs as

F(A(r, t)) = A(r, ω) =

∫ ∞

−∞

A(r, t)e− jωtdt, (7.9a)

A(r, t) = F−1(A(r, ω)) =
1

2π

∫ ∞

−∞

A(r, ω)e jωtdω. (7.9b)

In particular

F

(
d f (t)

dt

)
= jωF(ω), (7.10)

so the Fourier transform of the Maxwell equation

(7.11)F (∇ × E(r, t)) = F

(
−
∂B
∂t

(r, t)
)
,

is
(7.12)∇ × E(r, ω) = − jωB(r, ω).

The four Maxwell’s equations can be written as

• Faraday’s Law:

∇ ×E(r, ω) = − jωB(r, ω) −Mi. (7.13)

• Ampere-Maxwell equation:

∇ ×H(r, ω) = Jc(r, ω) + D(r, ω). (7.14)

• Gauss’s law:

∇ ·D(r, ω) = ρev(r, ω). (7.15)

• Gauss’s law for magnetism:

∇ ·B(r, ω) = ρmv(r, ω). (7.16)

Now we can more easily model non-simple media with

B(r, ω) = µ(ω)H(r, ω),

D(r, ω) = ε(ω)E(r, ω).
(7.17)

so Maxwell’s equations are
(7.18)∇ × E(r, ω) = − jωµ(ω)H(r, ω) −Mi,

(7.19)∇ ×H(r, ω) = Jc(r, ω) + ε(ω)E(r, ω),

(7.20)ε(ω)∇ · E(r, ω) = ρev(r, ω),

(7.21)µ(ω)∇ ·H(r, ω) = ρmv(r, ω).



56 time harmonic fields .

7.1 frequency domain poynting.

The frequency domain (time harmonic) equivalent of the instantaneous
Poynting theorem is

(7.22)

1
2

∮
da ·

(
E ×H∗

)
−

1
2

∫
dV

(
H∗ ·Mi + E · J∗i

)
+

1
2

∫
dVσ|E|2 + jω

1
2

∫
dV

(
µ|H|2 − ε|E|2

)
= 0.

Showing this is left as an exercise. Since

(7.23)Re(A) × Re(B) , Re(A × B).

We want to find the instantaneous Poynting vector in terms of the phasor
fields. Following [2], where script is used for the instantaneous quantities
and non-script for the phasors, we find

(7.24)

S(r, t) = E(r, t) ×H(r, t)
= Re(E(r, t)) × Re(H(r, t))

=
Ee jωt + E∗e− jωt

2
×

He jωt + H∗e− jωt

2

=
1
4

(
E ×H∗ + E∗ ×H + E ×He2 jωt + H × Ee−2 jωt

)
=

1
2

Re
(
E ×H∗

)
+

1
2

Re
(
E ×He2 jωt

)
.

Should we time average over a period 〈.〉 = (1/T )
∫ T

0 (.) the second term is
killed, so that

(7.25)〈S〉 =
1
2

Re
(
E ×H∗

)
+

1
2

Re
(
E ×He2 jωt

)
.

The instantaneous Poynting vector is thus

(7.26)S(r, t) = 〈S〉 +
1
2

Re
(
E ×He jωt

)
.

7.2 problems.
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Exercise 7.1 Frequency domain time averaged Poynting theorem.

The time domain Poynting relationship was found to be

0 = ∇ · (E ×H) +
ε

2
E ·

∂E
∂t

+
µ

2
H ·

∂H
∂t

+ H ·Mi + E · Ji +σE ·E.
(7.27)

Derive the equivalent relationship for the time averaged portion of the
time-harmonic Poynting vector.
Answer for Exercise 7.1

The time domain representation of the Poynting vector in terms of the
time-harmonic (phasor) vectors is

(7.28)
E ×H =

1
4

(
Ee jωt + E∗e− jωt

)
×

(
He jωt + H∗e− jωt

)
=

1
2

Re
(
E ×H∗ + E ×He2 jωt

)
,

so if we are looking for the relationships that effect only the time averaged
Poynting vector, over integral multiples of the period, we are interested in
evaluating the divergence of

(7.29)
1
2

E ×H∗.

The time-harmonic Maxwell’s equations are

∇ ×E = − jωµH −Mi,

∇ ×H = jωεE + Ji +σE.
(7.30)

The latter after conjugation is

(7.31)∇ ×H∗ = − jωε∗E∗ + J∗i + σ∗E∗.

For the divergence we have

∇ · (E ×H∗)
= H∗ · (∇ ·E) −E · (∇ ·H∗)
= H∗ · (− jωµH −Mi) −E · (− jωε∗E∗ + J∗i +σ∗E∗) ,

(7.32)

or

0 = ∇ · (E ×H∗)
+ H∗ · ( jωµH + Mi) + E · (− jωε∗E∗ + J∗i +σ∗E∗) ,

(7.33)
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so

0 = ∇ ·
1
2
(E ×H∗) +

1
2
(H∗ ·Mi + E · J∗i )

+
1
2

jω
(
µ|H|2 − ε∗|E|2

)
+

1
2
σ∗|E|2.

(7.34)
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8.1 lorentz-lorenz dispersion.

We will model the medium using a frequency representation of the permit-
tivity

ε(ω) = ε′(ω) − jε′′(ω),

µ(ω) = µ′(ω) − jµ′′(ω).
(8.1)

The real part is the phase, whereas the imaginary part is the loss.

(8.2)

n =
c
v

=

√
εµ

√
ε0µ0

=
√
εrµr.

We can also write
(8.3)n(ω) = n′(ω) − jn′′(ω).

If we are considering an electric dipole

(8.4)Pi = Qixi.

With
(8.5)P = ε0χeE,

and a time harmonic representation for the electric field

(8.6)E = E0e jωt,

the dipole moment is assumed to be

(8.7)

P = lim
∆v→0

∑N∆v
i=1 Pi

∆v

=
N∆vp

∆v
= Np
= NQx.
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We model the oscillating electron and nucleus as a mass and spring. This
electron oscillator model is often called the Lorentz model. It is not really a
model for atoms as such, but the way that an atom responds to pertubation.
At the time when Lorentz formulated the model it was not known that
the nuclei have massive mass as compared to the electrons. The Lorentz
assumption was that in the absence of applied electric fields the centroids
of positive and negative charges coincide, but when a field is applied, the
electrons will experience a Lorentz force and will be displaced from their
equilibrium position. The wrote “the displacement immediately gives rise
to a new force by which the particle is pulled back towards its original
position, and which we may therefore appropriately distinguish by the
name of elastic force.”

The forces of interest are

Ffriction = −D
dx
dt

= −Dv,

Felastic = −S x,

Fexternal = QE = QE0e jωt.

(8.8)

Adding all the forces, the electrical system, in one dimension, can be
assumed to have the form

F = m
d2x
dt2 = −D

dx
dt
− Dv − S x + QE0e jωt, (8.9)

or

(8.10)
d2x
dt2 +

D
m

dx
dt

+
S
m

x =
QE0

m
e jωt.

Let’s define

γ =
D
m
,

ω2
0 =

S
m
,

(8.11)

so that

(8.12)
d2x
dt2 + γ

dx
dt

+ ω2
0x =

QE0

m
e jωt.

8.2 calculating the permittivity and susceptibility.

With x = x0e jωt we have

(8.13)x0
(
−ω2 + jγω + ω2

0

)
=

QE0

m
,



8.2 calculating the permittivity and susceptibility. 61

or (with E = E0e jωt), just

x = x0e jωt =
QE

m
(
−ω2 + jγω +ω2

0

) . (8.14)

I Assume that dipoles are identical.

II Assume no coupling between dipoles.

III There are N dipoles per unit volume. In other words, N is the number
of dipoles per unit volume.

The polarization P(t) is given by

(8.15)P(t) = NQx,

where Q is the charge associate with the unit dipole. This has dimensions
of [ 1

m3 ×C ×m], or [C/m2]. This polarization is

(8.16)P(t) =
Q2NE/m

ω2
0 − ω

2 + jγω
.

In particular, the ratio of the polarization to the electric field magnitude is

(8.17)
P
E

=
Q2N/m

ω2
0 − ω

2 + jγω
.

With P = ε0χeE, we have

(8.18)χe =
Q2N/mε0

ω2
0 − ω

2 + jγω
.

Define

(8.19)ω2
p =

Q2N
mε0

,

which has dimensions [1/s2]. Then

(8.20)χe =
ω2

p

ω2
0 − ω

2 + jγω
.

With εr = 1 + χe we have

εr =
ε

ε0
= 1 +

ω2
p

ω2
0 −ω

2 + jγω
. (8.21)
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It is simple to show that the real and imaginary split of εr = ε′r − jε′′r is
given by

(8.22)ε′r =
ω2

p

(
ω2

0 − ω
2
)

(ω2
0 − ω

2)2 + (ωγ)2
+ 1,

(8.23)ε′′r =
ω2

pωγ

(ω2
0 − ω

2)2 + (ωγ)2
.

8.3 no damping.

With D = 0, or γ = 0 then ε′′r = 0,

(8.24)x =
QE0/m
ω2 − ω2 e jωt,

and

εr = ε′r =
ε

ε0
= 1 +

ω2
p

ω2
0 −ω

2
. (8.25)

This has a curve like fig. 8.1. instead of the normal damped resonance curve

Figure 8.1: Undamped resonance.

like fig. 8.2. As ω→ ω0, then the displacement x→ ∞. The frequency ω0
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Figure 8.2: Damped resonance.

is called the resonance frequency of the system. If the resonance frequency
is zero (free charges), then

(8.26)
εr = ε′r

= 1 −
ω2

p

ω2 ,

which is negative for ωp > ω. When damping is present, the resonance
frequency is the root of the characteristic equation of the homogeneous
part of eq. (8.10).

8.4 multiple resonances.

When there are N molecules per unit volume, and each molecule has Z
electrons per molecule that have a binding frequency ωi and damping
constant γi, then it can be shown that

(8.27)εr = 1 +
QN2

mε0

∑ fi
ω2

0 − ω
2 + jγω

A quantum mechanical derivation of the transition frequencies is used to
derive this multiple resonance result.

8.5 problems.
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Exercise 8.1 Passive medium.

Parameters for AlGaN (a passive medium) are given as

ω0 = 1.921 × 1014rad/s,

ωp = 3.328 × 1014rad/s,

γ = 9.756 × 1012rad/s.

(8.28)

Assuming Lorentz model:

a. Plot the real and imaginary parts of the index of refraction for the
range of ω = 0 to ω = 6 × 1014. On the figure identify the region
of anomalous dispersion.

b. Plot the real and imaginary parts of the relative permittivity for the
same range as in part a.
On the figure identify the region of anomalous dispersion.

Exercise 8.2 Medium with multiple resonances.

Relative permittivity for a medium with multiple resonances is given
by:

εr = 1 + χe = 1 +
∑
k=1

ωp,k

ω2
0,k −ω

2 + jγkω
. (8.29)

Moreover, the case of an active medium (i.e. medium with gain) can be
modeled by allowing ωp,k in above to become purely imaginary. Under
these conditions, plot

(8.30)Re (n(ω)) − 1,

and
(8.31)Im (n(ω)) ,

as a function of detuning frequency,

(8.32)ν =
ω − ωc

2π
,

for ammonia vapour (an active medium) where

ω0,1 = 2.4165825 × 1015rad/s,

ω0,2 = 2.4166175 × 1015rad/s,

ωp,k = ωp = 1010rad/s,

γk = γ = 5 × 109rad/s,

(ω −ωc)/2π ∈ [−7, 7]GHz,

ωc = 2.4166 × 1015rad/s.

(8.33)
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Exercise 8.3 Susceptibility kernel.

a. Assuming that a medium is described by the time harmonic rela-
tionship D(x, ω) = ε(ω)E(x,ω), show that the time domain relation
between the electric flux density D and the electric field E is given
by,

D(x, t) = ε0

(
E(x, t) +

∫ ∞

−∞

G(τ)E(x, t − τ)dτ
)
, (8.34)

where G(τ) is the susceptibility kernel given by

G(τ) =
1

2π

∫ ∞

−∞

(
ε(ω)
ε0
− 1

)
e− jωtdτ. (8.35)

b. Show that

ε(−ω) = ε∗(ω). (8.36)

c. Show that for ε(ω) = ε′(ω) + jε′′(ω), ε′(ω) is even and ε′′(ω) is
odd.
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D RU I D M O D E L .

9.1 druid model.

Additional references: A nice vector based derivation of these Druid
model results can be found in [1]. The Meissner effect is also discussed
in that context. In this section we will investigate the optical properties
of free electrons, or what is commonly called free electron gas. By free
electron gas we mean electrons that do not experience the restoring force
which we considered for bound charges in the case of Lorentz model. In
particular, the resonance frequency ω0 for free electrons is zero. There are
two typical cases of free electron systems

a Metals.

b Doped (n or p type) semiconductors.

For the moment we consider the case of metals. Free electrons are re-
sponsible for high reflectivity and good thermal conductivity of metals
up to optical frequencies. A model that can be used to describe the high
reflectivity of metals is the Drude model.

Plasma: A neutral gas of free electrons and heavy ions is called plasma.
Examples of plasma are metals and doped semiconductors, since these
materials are a combination of free electrons and heavy ions which are, in
sum, electrically neutral.

Drude-Lorentz model, (or Drude model for short): similar to the case of
bound charges we already studied for free electron plasma, we can start
with a harmonic oscillator model. However, in this case, since electrons
are free, there is no restoring force (i.e. ω0 = 0. Recall that in the spring
mass model ω2

0 = S/m where S was the spring tension coefficient. With
such a model the Lorentz model equation

(9.1)
d2x
dt2 + γ

dx
dt

+ ω2
0x =

QE0

m
e jωt,
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is reduced to

(9.2)
d2x
dt2 + γ

dx
dt

=
QE0

m
e jωt,

Again, assuming a solution of the form xp = x0e jωt for the particular
solution and substituting in eq. (9.2), we have

(9.3)x0
(
( jω)2 + γ( jω)

)
=

QE0

m
,

or

(9.4)x =
QE/m
−ω2 + jγω

,

Once more assuming identical particles that are not coupled and a linear
isotropic medium and using the fact that P = Np = NQx, and

(9.5)χe =
|P|
ε0|E|

,

we have

(9.6)χe =
Q2N/mε0

−ω2 + jγω
,

or with ω2
p = Q2N/mε0,

(9.7)
εr = 1 + χe

= 1 +
ω2

p

−ω2 + jγω
.

Plasma frequency, ωp, can be understood as the natural resonance fre-
quency by which the free electron gas (plasma) collectively (not individual
electrons ) oscillates. Note that if we neglect the last term, i.e., let γ = 0
then

(9.8)εr = 1 −
ω2

p

ω2 .

From this it is clear that when ω < ωp, we have εr < 1 and n =
√
εr is

purely imaginary, and the wave attenuates inside the electron plasma. This
means that for ω < ωp electromagnetic waves do not propagate a large
distance inside of metal. However, for ω > ωp the electron plasma (e.g.
metal) is transparent. The latter is called ultraviolet transparency of metal,
because for most metals ωp is in the ultraviolet part of the spectrum. For
example,
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• For Al:
ωp

2π
= 3.82 × 1015Hz =⇒ λp = 79[nm]. (9.9)

• For Au:
ωp

2π
= 5.9 × 1015Hz =⇒ λp = 138[nm]. (9.10)

Using eq. (9.8) one can calculate

(9.11)ñ =
√
εr,

and plot the reflectivity R at normal incidence

(9.12)R =

∣∣∣∣∣ ñ − 1
ñ + 1

∣∣∣∣∣,
which will have a shape similar to that of fig. 9.1. This figure shows

Figure 9.1: Metal reflectivity.

that for ω/ωp � 1 metal reflects most of the incident light, whereas it
becomes transparent (it transmits light) for ω/ωp � 1. This explains the
shiny appearance of the metal at optical wavelengths. The fact that plasma
reflects EM waves below a ωp frequency can be used to transmit AM radio
waves. The ionosphere can be viewed as a plasma gas due to free electrons
generated by cosmic radiation and ultraviolet light from the sun. Theωp for
ionosphere plasma is ωp = O(1MHz). Therefore AM signals modulated
at frequencies below or in the range of a MHz will be reflected from the
ionosphere. But FM signals where the modulation frequency is greater
than MHz will not be reflected, but will travel through the ionosphere and
into space.
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9.2 conductivity

(9.13)

∇ ×H(r, ω) = σE(r, ω) + jωε0E(r, ω)

= jωε0

(
1 +

σ

jωε0

)
E(r, ω)

= jωε0

(
1 −

jσ
ωε0

)
E(r, ω)

This complex factor is the relative permittivity

(9.14)εr = 1 −
jσ
ωε0

,

and is why we write

(9.15)ε(ω) = ε′(ω) − jε′′(ω).

9.3 problems.

Exercise 9.1 Meissner effect.

The constitutive relation for superconductors in weak magnetic fields can
be macroscopically characterized by the first London equation

(9.16)
∂Jsup

∂t
= αE,

and the second London equation

(9.17)∇ × Jsup = −α1B,

where Jsup stands for the superconducting current, α = nsq2/m and α1 ≈ α,
with ns, m, and q denoting, respectively, the number density, the effective
mass, and the charge of the Cooper pairs responsible for the superconduc-
tivity in a charged Boson fluid model.

a. From the first London equation, derive and equation for Ḃ = ∂B/∂t
by using the static Maxwell equation ∇ ×H = Jsup without the
displacement current. Show that

∇
2Ḃ = µ0αḂ. (9.18)
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b. From the second London equation and the Ampere’s law stated
above derive an equation for B.

c. What are the penetration depths in the part a and part b cases?
Justify your answer.

Remark: from above analysis we see that both the current and
magnetic field are confined to a thin layer of the order of the
penetration depth which is very small. The exclusion of static
magnetic field in a superconductor is known as the Meissner effect
experimentally discovered in 1933.
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WAV E E Q UAT I O N .

10.1 wave equation.

Using an expansion of the triple cross product in terms of the Laplacian

(10.1)∇ × (∇ × f) = −∇ · (∇ ∧ f)
= −∇2f + ∇ (∇ · f) ,

we can evaluate the cross products

∇ × (∇ × E) = ∇ ×

(
−
∂B

∂t
−M

)
,

∇ × (∇ ×H) = ∇ ×

(
∂D

∂t
+J

)
,

(10.2)

or

−∇2E +∇ (∇ · E) = −µ
∂

∂t
∇ ×H −∇ ×M,

−∇2H +∇ (∇ ·H) = ε
∂

∂t
(∇ × E) +∇ ×J,

(10.3)

or

−∇2E +
1
ε
∇ρev = −µ

∂

∂t

(
∂D

∂t
+J

)
−∇ ×M,

−∇2H +
1
µ
∇ρmv = ε

∂

∂t

(
−
∂B

∂t
−M

)
+∇ ×J.

(10.4)

This decouples the equations for the electric and the magnetic fields

∇
2E = µε

∂2E

∂t2 +
1
ε
∇ρev + µ

∂J

∂t
+∇ ×M,

∇
2H = εµ

∂2H

∂t2 +
1
µ
∇ρmv + ε

∂M

∂t
−∇ ×J.

(10.5)

Splitting the current between induced and bound (?) currents

J = Ji +Jc = Ji +σE, (10.6)
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these become

∇
2E = µε

∂2E

∂t2 +
1
ε
∇ρev + µσ

∂E

∂t
+∇ ×M + µ

∂Ji

∂t
,

∇
2H = εµ

∂2H

∂t2 +
1
µ
∇ρmv + ε

∂M

∂t
+σµ

∂H

∂t
+σM −∇ ×Ji.

(10.7)

10.2 time harmonic form.

Assuming time harmonic dependence X = Xe jωt, we find

∇
2E =

(
−ω2µε + jωµσ

)
E +

1
ε
∇ρev +∇ ×M + jωµJi,

∇
2H =

(
−ω2εµ + jωσµ

)
H +

1
µ
∇ρmv + ( jωε +σ)M −∇ × Ji.

(10.8)

For a lossy medium where ε = ε′ − jωε′′, the leading term factor is

(10.9)−ω2µε + jωµσ = −ω2µε′ + jωµ
(
σ + ωε′′

)
.

With the definition

γ2 = (α + jβ)2
= −ω2µε′ + jωµ (σ +ωε′′) , (10.10)

the wave equations have the form

∇
2E = γ2E +

1
ε
∇ρev +∇ ×M + jωµJi,

∇
2H = γ2H +

1
µ
∇ρmv + ( jωε +σ)M −∇ × Ji.

(10.11)

Here

• α is the attenuation constant [Np/m],

• β is the phase velocity [rad/m],

• γ is the propagation constant [1/m].

We are usually interested in solutions in regions free of magnetic cur-
rents, induced electric currents, and free of any charge densities, in which
case the wave equations are just

∇
2E = γ2E,
∇

2H = γ2H.
(10.12)
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10.3 tunnelling.

In class, we walked through splitting up the wave equation into compo-
nents, and separation of variables. I didn’t take notes on that.

Winding down that discussion, however, was a mention of phase and
group velocity, and a phenomena called superluminal velocity. This latter
is analogous to quantum electron tunnelling where a wave can make it
through an aperture with a damped solution e−αx in the aperture interval,
and sinusoidal solutions in the incident and transmitted regions as sketched
in fig. 10.1. The time τ to get through the aperture is called the tunnelling
time.

Figure 10.1: Superluminal tunnelling.

10.4 cylindrical coordinates.

Seek a function

(10.13)E = Eρρ̂ + Eφφ̂ + Ezẑ,

solving

(10.14)∇
2E = −β2E.

One way to find the Laplacian in cylindrical coordinates is to use

(10.15)∇
2E = ∇ (∇ · E) − ∇ × (∇ × E) ,
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where

(10.16)∇ = ρ̂
∂

∂ρ
+
φ̂

ρ

∂

∂φ
+ ẑ

∂

∂z
.

It can be shown that:

(10.17)∇ · E =
1
ρ

∂

∂ρ

(
ρEρ

)
+

1
ρ

∂Eφ

∂φ
+
∂Ez

∂z
,

and

∇ × E = ρ̂

(
1
ρ
∂φEz − ∂zEφ

)
+ φ̂

(
∂zEρ − ∂ρEz

)
+ ẑ

(
1
ρ
∂ρ(ρEφ) −

1
ρ
∂φEρ

)
.

(10.18)

This gives

(10.19)∇
2ψ =

∂2ψ

∂ρ2 +
1
ρ

∂ψ

∂ρ
+

1
ρ2

∂2ψ

∂φ2 +
∂2ψ

∂z2 ,

and

∇
2Eρ =

(
−

Eρ

ρ2 −
2
ρ2

∂Eφ

∂φ

)
,

∇
2Eφ =

(
−

Eφ

ρ2 +
2
ρ2

∂Eρ

∂φ

)
,

∇
2Ez = −β2Eφ.

(10.20)

This is explored in appendix F.

TEM: If we want to have a TEM mode it can be shown that we need an
axial distribution mechanism, such as the core of a co-axial cable. These
are messy to solve in general, but we can solve the z-component without
too much pain

(10.21)
∂2Ez

∂ρ2 +
1
ρ

∂Ez

∂ρ
+

1
ρ2

∂2Ez

∂φ2 +
∂2Ez

∂z2 = −β2Ez.

Solving this using separation of variables with

(10.22)Ez = R(ρ)P(φ)Z(z),

(10.23)
1
R

(
R′′ +

1
ρ

R′
)

+
1
ρ2P

P′′ +
Z′′

Z
= −β2.
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Assuming for some constant βz that we have

(10.24)
Z′′

Z
= −β2

z ,

then

(10.25)
1
R

(
ρ2R′′ + ρR′

)
+

1
P

P′′ + ρ2
(
β2 − β2

z

)
= 0.

Now assume that

(10.26)
1
P

P′′ = −m2,

and let β2 − β2
z = β2

ρ, which leaves

(10.27)ρ2R′′ + ρR′ +
(
ρ2β2

ρ − m2
)

R = 0.

This is the Bessel differential equation, with travelling wave solution

(10.28)R(ρ) = AH(1)
m (βρρ) + BH(2)

m (βρρ),

and standing wave solutions

(10.29)R(ρ) = AJm(βρρ) + BYm(βρρ).

Here H(1)
m ,H(2)

m are Hankel functions of the first and second kinds, and
Jm,Ym are the Bessel functions of the first and second kinds. For P(φ)

(10.30)P′′ = −m2P.

10.5 waves.

• The field is a modification of space-time

• Mode is a particular field configuration for a given boundary value
problem. Many field configurations can satisfy Maxwell equations
(wave equation). These usually are referred to as modes. A mode is
a self-consistent field distribution.

• In a TEM mode, E and H are every point in space are constrained in
a local plane, independent of time. This plane is called the equiphase
plane. In general equiphase planes are not parallel at two different
points along the trajectory of the wave.
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10.6 problems.

Exercise 10.1 Lossy waves.

In the case of lossy medium the wave equation was given by

(10.31)∇
2E = γ2E,

where

(10.32)γ2 = (α + jβ)2 .

Now consider a medium for which ε(ω) = ε′(ω) (i.e. ε′′(ω) = 0), σ = σ0

(i.e. ωτ ∼ 0 in the Drude model), and µ is a constant and real. For this case
obtain the expression for α and β in terms of ω, µ, ε′, σ0.

Exercise 10.2 Uniform plane wave.

Note: This seemed like a separate problem, and has been split out from
the problem 2 as specified in the original problem set handout. The uniform
plane wave

(10.33)E(r, t) = E0 (x̂ cos θ − ẑ sin θ) cos (ωt − k sin θx − k cos θz) ,

is propagating in the x− z plane as sketched in fig. 10.2 in a simple medium
with σ = 0. Here, E0 is a real constant and k is the propagation constant.

Figure 10.2: Linear wave front.

Answer the following questions and show all your work.
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a. Determine the associated magnetic field H(r, t).
b. Determine the time averaged Poynting vector, 〈S(r, t)〉.
c. Determine the stored magnetic energy density, Wm(r, t).
d. Determine the components of phase velocity vector vp along x and

z.

Exercise 10.3 Spherical wave solutions. (2016 ps7.)

Suppose under some circumstances (e.g. TEr or TMr modes), the partial
differential equations for the wavefunction ψ can further be simplified to

(10.34)∇
2ψ(r, θ, φ) = −β2ψ(r, θ, φ).

Using separation of variables

(10.35)ψ(r, θ, φ) = R(r)T (θ)P(φ),

find the differential equations governing the behavior of R,T, P. Comment
on the differential equations found and their possible solutions.

Remarks: To have a more uniform answer, making it easier to mark the
questions, use the following conventions (notations) in your answer.

• Use −m2 as the constant of separation for the differential equation
governing P(φ).

• Use −n(n + 1) as the constant of separation for the differential equa-
tion governing T (θ).

• Show that R(r) follows the differential equation associated with
spherical Bessel or Hankel functions.

Exercise 10.4 Orthogonality conditions for the fields.

Consider plane waves

E = E0e− jk·r+ jωt,

H = H0e− jk·r+ jωt,
(10.36)

propagating in a homogeneous, lossless, source free region for which ε > 0,
µ > 0, and where E0,H0 are constant.

a. Show that k ⊥ E and k ⊥ H.

b. Show that k,E,H form a right hand triplet as indicated in fig. 10.3.
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Figure 10.3: Right handed triplet.

Hint: show that k ×E = ωµH and k ×H = −ωεE.

c. Now suppose ε, µ < 0, how does the figure change? Redraw the
figure.



11
Q UA D RU P O L E E X PA N S I O N .

In Jackson [8] , is the following

(11.1)
1

|x − x′|
= 4π

∞∑
l=0

l∑
m=−l

1
2l + 1

(r′)l

rl+1 Y∗l,m(θ′, φ′)Yl,m(θ, φ),

where Yl,m are the spherical harmonics. It appears that this is actually just
an orthogonal function expansion of the inverse distance (for a region
outside of the charge density). The proof of this in is scattered through
chapter 3, dependent on a similar expansion in Legendre polynomials, for
an the azimuthally symmetric configuration. It looks like quite a project
to get comfortable enough with these special functions to fully reproduce
the proof of this identity. We are forced to play engineer, and assume
the mathematics works out. If we do that and plug this inverse distance
formula into the potential we have

φ(x) =
1

4πε0

∫
ρ(x′)d3x′

|x − x′|

=
1

4πε0

∫
ρ(x′)d3x′

4π ∞∑
l=0

l∑
m=−l

1
2l + 1

(r′)l

rl+1 Y∗l,m(θ′, φ′)Yl,m(θ, φ)


=

1
ε0

∞∑
l=0

l∑
m=−l

1
2l + 1

∫
ρ(x′)d3x′

(
(r′)l

rl+1 Y∗l,m(θ′, φ′)Yl,m(θ, φ)
)

=
1
ε0

∞∑
l=0

l∑
m=−l

1
2l + 1

(∫
(r′)lρ(x′)Y∗l,m(θ′, φ′)d3x′

)
Yl,m(θ, φ)

rl+1 .

(11.2)

The integral terms are called the coefficients of the multipole moments,
denoted

(11.3)ql,m =

∫
(r′)lρ(x′)Y∗l,m(θ′, φ′)d3x′,

The l = 0, 1, 2 terms are, respectively, called the monopole, dipole, and
quadrupole terms of the potential

(11.4)ρ(x) =
1

4πε0

∞∑
l=0

l∑
m=−l

4π
2l + 1

ql,m
Yl,m(θ, φ)

rl+1 .
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Note the power of this expansion. Should we wish to compute the electric
field, we have only to compute the gradient of the last (Yl,mr−l−1) portion
(since ql,m is a constant).

(11.5)

q1,1 = −

∫ √
3

8π
sin θ′e−iφ′r′ρ(x′)dV ′

= −

√
3

8π

∫
sin θ′

(
cos φ′ − i sin φ′

)
r′ρ(x′)dV ′

= −

√
3

8π

(∫
x′ρ(x′)dV ′ − i

∫
y′ρ(x′)dV ′

)
= −

√
3

8π

(
px − ipy

)
.

Here we’ve used

x′ = r′ sin θ′ cos φ′

y′ = r′ sin θ′ sin φ′

z′ = r′ cos θ′
(11.6)

and the Y11 representation

Y00 = −

√
1

4π

Y11 = −

√
3

8π
sin θeiφ

Y10 =

√
3

4π
cos θ

Y22 = −
1
4

√
15
2π

sin2 θe2iφ

Y21 =
1
2

√
15
2π

sin θ cos θeiφ

Y20 =
1
4

√
5
π

(
3 cos2 θ − 1

)

(11.7)

With the usual dipole moment expression

(11.8)p =

∫
x′ρ(x′)d3x′,

and a quadrupole moment defined as

(11.9)Qi, j =

∫ (
3x′i x

′
j − δi j(r′)2

)
ρ(x′)d3x′,
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the first order terms of the potential are now fully specified

(11.10)φ(x) =
1

4πε0

q +
p · x
r3 +

1
2

∑
i j

Qi j
xix j

r5

 .
11.1 explicit moment and quadrupole expansion.

We calculated the q1,1 coefficient of the electrostatic moment, as covered
in [8] chapter 4. Let’s verify the rest, as well as the tensor sum formula for
the quadrupole moment, and the spherical harmonic sum that yields the
dipole moment potential. The quadrupole term of the potential was stated
to be

1
4πε0

4π
5r3

2∑
m=−2

∫
(r′)2ρ(x′)Y∗lm(θ′, φ′)Ylm(θ, φ)

=
1
2

∑
i j

Qi j
xix j

r5 ,

(11.11)

where

(11.12)Qi, j =

∫ (
3x′i x

′
j − δi j(r′)2

)
ρ(x′)d3x′.

Let’s verify this. First note that

(11.13)Yl,m =

√
2l + 1

4π
(l − m)!
(l + m)!

Pm
l (cos θ)eimφ,

and

(11.14)P−m
l (x) = (−1)m (l − m)!

(l + m)!
Pm

l (x),

so

(11.15)

Yl,−m =

√
2l + 1

4π
(l + m)!
(l − m)!

P−m
l (cos θ)e−imφ

= (−1)m

√
2l + 1

4π
(l − m)!
(l + m)!

Pm
l (x)e−imφ

= (−1)mY∗l,m.
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That means

(11.16)

ql,−m =

∫
(r′)lρ(x′)Y∗l,−m(θ′, φ′)d3x′

= (−1)m
∫

(r′)lρ(x′)Yl,m(θ′, φ′)d3x′

= (−1)mq∗lm.

In particular, for m , 0

(11.17)
(r′)lY∗l,m(θ′, φ′)rlYl,m(θ, φ) + (r′)lY∗l,−m(θ′, φ′)rlYl,−m(θ, φ)

= (r′)lY∗l,m(θ′, φ′)rlYl,m(θ, φ) + (r′)lYl,m(θ′, φ′)rlY∗l,m(θ, φ),

or

(11.18)
(r′)lY∗l,m(θ′, φ′)rlYl,m(θ, φ) + (r′)lY∗l,−m(θ′, φ′)rlYl,−m(θ, φ)

= 2 Re
(
(r′)lY∗l,m(θ′, φ′)rlYl,m(θ, φ)

)
.

To verify the quadrupole expansion formula in a compact way it is helpful
to compute some intermediate results.

(11.19)
rY1,1 = −r

√
3

8π
sin θeiφ

= −

√
3

8π
(x + iy),

(11.20)
rY1,0 = r

√
3

4π
cos θ

=

√
3

4π
z,

(11.21)
r2Y2,2 = −r2

√
15

32π
sin2 θe2iφ

= −

√
15

32π
(x + iy)2,

(11.22)
r2Y2,1 = r2

√
15
8π

sin θ cos θeiφ

=

√
15
8π

z(x + iy),



11.1 explicit moment and quadrupole expansion. 85

(11.23)
r2Y2,0 = r2

√
5

16π

(
3 cos2 θ − 1

)
=

√
5

16π

(
3z2 − r2

)
.

Given primed coordinates and integrating the conjugate of each of these
with ρ(x′)dV ′, we obtain the qlm moment coefficients. Those are

(11.24)q11 = −

√
3

8π

∫
d3x′ρ(x′)(x − iy),

(11.25)q1,0 =

√
3

4π

∫
d3x′ρ(x′)z′,

(11.26)q2,2 = −

√
15

32π

∫
d3x′ρ(x′)(x′ − iy′)2,

(11.27)q2,1 =

√
15
8π

∫
d3x′ρ(x′)z′(x′ − iy′),

(11.28)q2,0 =

√
5

16π

∫
d3x′ρ(x′)

(
3(z′)2 − (r′)2

)
.

For the potential we are interested in

(11.29)
2 Re q11r2Y11(θ, φ) = 2

3
8π

∫
d3x′ρ(x′) Re

(
(x′ − iy′)(x + iy)

)
=

3
4π

∫
d3x′ρ(x′)

(
xx′ + yy′

)
,

(11.30)q1,0rY1,0(θ, φ) =
3

4π

∫
d3x′ρ(x′)z′z,

2 Re q22r2Y22(θ, φ) = 2
15

32π

∫
d3x′ρ(x′) Re

(
(x′ − iy′)2(x + iy)2

)
=

15
16π

∫
d3x′ρ(x′) Re

(
((x′)2 − 2ix′y′ − (y′)2)(x2

+ 2ixy − y2)
)

=
15

16π

∫
d3x′ρ(x′)

(
((x′)2− (y′)2)(x2−y2)+4xx′yy′

)
,

(11.31)
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(11.32)
2 Re q21r2Y21(θ, φ) = 2

15
8π

∫
d3x′ρ(x′)z Re

(
(x′ − iy′)(x + iy)

)
=

15
4π

∫
d3x′ρ(x′)z

(
xx′ + yy′

)
,

and

(11.33)q2,0r2Y20(θ, φ) =
5

16π

∫
d3x′ρ(x′)

(
3(z′)2 − (r′)2

) (
3z2 − r2

)
.

The dipole term of the potential is

(11.34)

1
4πε0

4π
3r3

(
3

4π

∫
d3x′ρ(x′)

(
xx′ + yy′

)
+

3
4π

∫
d3x′ρ(x′)z′z

)
=

1
4πε0r3 x ·

∫
d3x′ρ(x′)x′

=
x · p

4πε0r3 ,

as obtained directly when a strict dipole approximation was used. Summing
all the terms for the quadrupole gives

1
4πεr5

4π
5
(

15
16π

∫
d3x′ρ(x′)

(
((x′)2 − (y′)2)(x2 − y2) + 4xx′yy′

)
+

15
4π

∫
d3x′ρ(x′)zz′ (xx′ + yy′)

+
5

16π

∫
d3x′ρ(x′)

(
3(z′)2 − (r′)2

) (
3z2 − r2

)
)

=
1

4πεr5

∫
d3x′ρ(x′)

1
4
(3

(
((x′)2 − (y′)2)(x2 − y2) + 4xx′yy′

)
+ 12zz′ (xx′ + yy′)

+
(
3(z′)2 − (r′)2

) (
3z2 − r2

)
).

(11.35)
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The portion in brackets is

3
(
((x′)2 − (y′)2)(x2 − y2) + 4xx′yy′

)
+12zz′ (xx′ + yy′)

+
(
2(z′)2 − (x′)2 − (y′)2

) (
2z2 − x2 − y2

)
= x2

(
3(x′)2 − 3(y′)2 −

(
2(z′)2 − (x′)2 − (y′)2

))
+y2

(
−3(x′)2 + 3(y′)2 −

(
2(z′)2 − (x′)2 − (y′)2

))
+2z2

(
2(z′)2 − (x′)2 − (y′)2

)
+12xx′yy′ + xx′zz′ + yy′zz′

= 2x2
(
2(x′)2 − (y′)2 − (z′)2

)
+2y2

(
2(y′)2 − (x′)2 − (z′)2

)
+2z2

(
2(z′)2 − (x′)2 − (y′)2

)
+12xx′yy′ + xx′zz′ + yy′zz′.

(11.36)

The quadrupole sum can now be written as

(11.37)

1
2

1
4πεr5

∫
d3x′ρ(x′)(x2

(
3(x′)2 − (r′)2

)
+ y2

(
3(y′)2 − (r′)2

)
+ z2

(
3(z′)2 − (r′)2

)
+ 3

(
xyx′y′ + yxy′x′ + xzx′z′ + zxz′x′ + yzy′z′ + zyz′y′

)
),

which is precisely eq. (11.11), the quadrupole potential stated in the text
and class notes.

11.2 problems.

Exercise 11.1 Dipole multipole moment.

Following Jackson [8], derive the electric field contribution from the dipole
terms of the multipole sum, but don’t skip the details.
Answer for Exercise 11.1

The components of the electric field can be obtained directly from the
multipole moments

(11.38)Φ(x) =
1

4πε0

∑ 4π
(2l + 1)rl+1 qlmYlm,
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so for the l,m contribution to this sum the components of the electric field
are

(11.39)Er =
1
ε0

∑ l + 1
(2l + 1)rl+2 qlmYlm,

(11.40)Eθ = −
1
ε0

∑ 1
(2l + 1)rl+2 qlm∂θYlm

(11.41)
Eφ = −

1
ε0

∑ 1
(2l + 1)rl+2 sin θ

qlm∂φYlm

= −
1
ε0

∑ jm
(2l + 1)rl+2 sin θ

qlmYlm.

Here I’ve translated from CGS to SI. Let’s calculate the l = 1 electric
field components directly from these expressions and check against the
previously calculated results.

Er =
1
ε0

2
3r3

2
−√

3
8π

2

Re
(
(px − jpy) sin θe jφ

)
+

√ 3
4π

2

pz cos θ


=

2
4πε0r3

(
px sin θ cos φ + py sin θ sin φ + pz cos θ

)
=

1
4πε0r3 2p · r̂.

(11.42)

Note that

(11.43)∂θY11 = −

√
3

8π
cos θe jφ,

and

(11.44)∂θY1,−1 =

√
3

8π
cos θe− jφ,

so

Eθ = −
1
ε0

1
3r3

2
−√

3
8π

2

Re
(
(px − jpy) cos θe jφ

)
−

√ 3
4π

2

pz sin θ


= −

1
4πε0r3

(
px cos θ cos φ + py cos θ sin φ − pz sin θ

)
= −

1
4πε0r3 p · θ̂.

(11.45)
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For the φ̂ component, the m = 0 term is killed. This leaves

(11.46)

Eφ = −
1
ε0

1
3r3 sin θ

(
jq11Y11 − jq1,−1Y1,−1

)
= −

1
3ε0r3 sin θ

(
jq11Y11 − j(−1)2mq∗11Y∗11

)
=

2
ε0

1
3r3 sin θ

Im q11Y11

=
2

3ε0r3 sin θ
Im


−√

3
8π

2

(px − jpy) sin θe jφ


=

1
4πε0r3 Im

(
(px − jpy)e jφ

)
=

1
4πε0r3

(
px sin φ − py cos φ

)
= −

p · φ̂
4πε0r3 .

That is

Er =
2

4πε0r3 p · r̂

Eθ = −
1

4πε0r3 p · θ̂

Eφ = −
1

4πε0r3 p · φ̂.

(11.47)

These are consistent with equations (4.12) from the text for when p is
aligned with the z-axis. Observe that we can sum each of the projections of
E to construct the total electric field due to this l = 1 term of the multipole
moment sum

(11.48)
E =

1
4πε0r3

(
2r̂(p · r̂) − φ̂(p · φ̂) − θ̂(p · θ̂)

)
=

1
4πε0r3 (3r̂(p · r̂) − p) ,

which recovers the expected dipole moment approximation.





12
F R E S N E L R E L AT I O N S .

12.1 single interface te mode.

The Fresnel reflection geometry for an electric field E parallel to the
interface (TE mode) is sketched in fig. 12.1.

Figure 12.1: Electric field TE mode Fresnel geometry.

(12.1)Ei = e2Eie jωt− jki·x,

with an assumption that this field maintains it’s polarization in both its
reflected and transmitted components, so that

(12.2)Er = e2rEie jωt− jkr ·x,

and

(12.3)Et = e2tEie jωt− jkt ·x,

Measuring the angles θi, θr, θt from the normal, with i = e3e1 the wave
vectors are

ki = e3k1eiθi = k1 (e3 cos θi + e1 sin θi) ,

kr = −e3k1e−iθr = k1 (−e3 cos θr + e1 sin θr) ,

kt = e3k2eiθt = k2 (e3 cos θt + e1 sin θt) .

(12.4)
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So the time harmonic electric fields are

Ei = e2Ei exp (− jk1 (z cos θi + x sin θi)) ,

Er = e2rEi exp (− jk1 (−z cos θr + x sin θr)) ,

Et = e2tEi exp (− jk2 (z cos θt + x sin θt)) .

(12.5)

The magnetic fields follow from Faraday’s law

(12.6)

H =
1
− jωµ

∇ × E

=
1
− jωµ

∇ × e2e− jk·x

=
1

jωµ
e2 × ∇e− jk·x

= −
1
ωµ

e2 × ke− jk·x

=
1
ωµ

k × E.

We have

k̂i × e2 = −e1 cos θi + e3 sin θi

k̂r × e2 = e1 cos θr + e3 sin θr

k̂t × e2 = −e1 cos θt + e3 sin θt,

(12.7)

Note that

(12.8)

k
ωµ

=
k

kvµ

=

√
µε

µ

=

√
ε

µ

=
1
η
,

so

Hi =
Ei

η1
(−e1 cos θi + e3 sin θi) exp (− jk1 (z cos θi + x sin θi))

Hr =
rEi

η1
(e1 cos θr + e3 sin θr) exp (− jk1 (−z cos θr + x sin θr))

Ht =
tEi

η2
(−e1 cos θt + e3 sin θt) exp (− jk2 (z cos θt + x sin θt)) .

(12.9)
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The boundary conditions at z = 0 with n̂ = e3 are

n̂ ×H1 = n̂ ×H2,

n̂ ·B1 = n̂ ·B2,

n̂ ×E1 = n̂ ×E2,

n̂ ·D1 = n̂ ·D2.

(12.10)

At x = 0, this is

−
1
η1

cos θi +
r
η1

cos θr = −
t
η2

cos θt

k1 sin θi + k1r sin θr = k2t sin θt

1 + r = t.

(12.11)

When t = 0 the latter two equations give Shell’s first law

sin θi = sin θr. (12.12)

Assuming this holds for all r, t we have

(12.13)k1 sin θi(1 + r) = k2t sin θt,

which is Snell’s second law in disguise

(12.14)k1 sin θi = k2 sin θt.

With

(12.15)

k =
ω

v
=
ω

c
c
v

=
ω

c
n,

so eq. (12.14) takes the form

n1 sin θi = n2 sin θt. (12.16)

With

k1z = k1 cos θi

k2z = k2 cos θt,
(12.17)
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we can solve for r, t by inverting

(12.18)

µ2k1z µ1k2z

−1 1


rt

 =

µ2k1z

1

 ,
which gives

(12.19)

rt
 =

1 −µ1k2z

1 µ2k1z


µ2k1z

1

 ,
or

r =
µ2k1z − µ1k2z

µ2k1z + µ1k2z
,

t =
2µ2k1z

µ2k1z + µ1k2z
.

(12.20)

There are many ways that this can be written. Dividing both the numerator
and denominator by µ1µ2ω/c, and noting that k = ωn/c, we have

r =

n1
µ1

cos θi −
n2
µ2

cos θt
n1
µ1

cos θi +
n2
µ2

cos θt

t =
2 n1
µ1

cos θi
n1
µ1

cos θi +
n2
µ2

cos θt
,

(12.21)

which checks against (4.32,4.33) in [6].

12.2 single interface tm mode.

For completeness, now consider the TM mode. Faraday’s law also can
provide the electric field from the magnetic

(12.22)

k̂ ×H = ηk̂ ×
(
k̂ × E

)
= −ηk̂ ·

(
k̂ ∧ E

)
= −η

(
E − k̂

(
k̂ · E

))
= −ηE,

so

(12.23)E = ηH × k̂.
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So the magnetic field components are

Hi = e2
Ei

η1
exp (− jk1 (z cos θi + x sin θi))

Hr = e2r
Ei

η1
exp (− jk1 (−z cos θr + x sin θr))

Ht = e2t
Ei

η2
exp (− jk2 (z cos θt + x sin θt)) ,

(12.24a)

and the electric field components are

Ei = −Ei (−e1 cos θi + e3 sin θi) exp (− jk1 (z cos θi + x sin θi))

Er = −rEi (e1 cos θr + e3 sin θr) exp (− jk1 (−z cos θr + x sin θr))

Et = −tEi (−e1 cos θt + e3 sin θt) exp (− jk2 (z cos θt + x sin θt)) .

(12.24b)

Imposing the constraints eq. (12.10), at x = z = 0 we have

1
η1

(1 + r) =
t
η2

cos θi − r cos θr = t cos θt

ε1 (sin θi + r sin θr) = tε2 sin θt.

(12.25)

At t = 0, the first and third of these give θi = θr. Assuming this incident
and reflection angle equality holds for all values of t, we have

sin θi(1 + r) = t
ε2

ε1
sin θt

sin θi
η1

η2
t =

(12.26)

or
(12.27)ε1η1 sin θi = ε2η2 sin θt.

This is also Snell’s second law eq. (12.16) in disguise, which can be seen
by

(12.28)

ε1η1 = ε1

√
µ1

ε1

=
√
ε1µ1

=
1
v

=
n
c
.
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The remaining equations in matrix form are

(12.29)

cos θi cos θt

−1 η1
η2


rt

 =

cos θi

1

 ,
the inverse of which is

(12.30)

rt
 =

1
η1
η2

cos θi + cos θt

 η1
η2
− cos θt

1 cos θi


cos θi

1


=

1
η1
η2

cos θi + cos θt

 η1
η2

cos θi − cos θt

2 cos θi

 ,
or

r =
η1 cos θi − η2 cos θt

η1 cos θi + η2 cos θt

t =
2η2 cos θi

η1 cos θi + η2 cos θt
.

(12.31)

Multiplication of the numerator and denominator by c/η1η2, noting that
c/η = n/µ gives

r =

n2
µ2

cos θi −
n1
µ1

cos θt
n2
µ2

cos θi +
n1
µ1

cos θt
,

t =
2 n1
µ1

cos θi
n2
µ2

cos θi +
n1
µ1

cos θt
,

(12.32)

which checks against (4.38,4.39) in [6].

12.3 normal transmission and reflection through two inter-
faces.

The geometry of a two interface configuration is sketched in fig. 12.2.
Given a normal incident ray with magnitude A, the respective forward and
backwards rays in each the mediums can be written as

I

→ Ae− jk1zz

← Are jk1zz,
(12.33)
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Figure 12.2: Two interface transmission.

II

→ Ce− jk2zz

← De jk2zz,
(12.34)

III

→ Ate− jk3z(z−d). (12.35)

Matching at z = 0 gives

At12 + r21D = C

Ar = Ar12 + Dt21,
(12.36)

whereas matching at z = d gives

At = Ce− jk2zdt23

De jk2zd = Ce− jk2zdr23.
(12.37)

We have four linear equations in four unknowns r, t,C,D, but only care
about solving for r, t. Let’s write γ = e jk2zd,C′ = C/A,D′ = D/A, for

t12 + r21D′ = C′

r = r12 + D′t21

tγ = C′t23

D′γ2 = C′r23.

(12.38)

Solving for C′,D′ we get

D′
(
γ2 − r21r23

)
= t12r23

C′
(
γ2 − r21r23

)
= t12γ

2,
(12.39)
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so

r = r12 +
t12t21r23

γ2 − r21r23

t = t23
t12γ

γ2 − r21r23
.

(12.40)

With φ = − jk2zd, or γ = e− jφ, we have

r = r12 +
t12t21r23e2 jφ

1 − r21r23e2 jφ

t =
t12t23e jφ

1 − r21r23e2 jφ .

(12.41)

A slab. When the materials in region I, and III are equal, then r12 = r32.
For a TE mode, we have

r12 =
µ2k1z − µ1k2z

µ2k1z + µ1k2z
= −r21. (12.42)

so the reflection and transmission coefficients are

rTE = r12

1 − t12t21e2 jφ

1 − r2
21e2 jφ


tTE =

t12t21e jφ

1 − r2
21e2 jφ

.

(12.43)

It’s possible to produce a matched condition for which r12 = r21 = 0, by
selecting

(12.44)

0 = µ2k1z − µ1k2z

= µ1µ2

(
1
µ1

k1z −
1
µ2

k2z

)
= µ1µ2ω

(
1

v1µ1
θ1 −

1
v2µ2

θ2

)
,

or

(12.45)
1
η1

cos θ1 =
1
η2

cos θ2,

so the matching condition for normal incidence is just

(12.46)η1 = η2.
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Given this matched condition, the transmission coefficient for the 1,2
interface is

(12.47)

t12 =
2µ2k1z

µ2k1z + µ1k2z

=
2µ2k1z

2µ2k1z
= 1,

so the matching condition yields

(12.48)
t = t12t21e jφ

= e jφ

= e− jk2zd.

Normal transmission through a matched slab only introduces a phase
delay.

12.4 total internal reflection.

From Snell’s second law we have

(12.49)θt = arcsin
(
ni

nt
sin θi

)
.

This is plotted in fig. 12.3. For the ni > nt case, for example, like shining

Figure 12.3: Transmission angle vs incident angle.
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from glass into air, there is a critical incident angle beyond which there
is no real value of θt. That critical incident angle occurs when θt = π/2,
which is

(12.50)sin θic =
nt

ni
sin(π/2).

With
(12.51)n = nt/ni,

the critical angle is

(12.52)θic = arcsin(n).

Note that Snell’s law can also be expressed in terms of this critical angle,
allowing for the solution of the transmission angle in a convenient way

(12.53)
sin θi =

nt

ni
sin θt

= n sin θt

= sin θic sin θt,

or

(12.54)sin θt =
sin θi

sin θic
.

Still for ni > nt, at angles past θic, the transmitted wave angle becomes
complex as outlined in [8] , namely

(12.55)

cos2 θt = 1 − sin2 θt

= 1 −
sin2 θi

sin2 θic

= −

(
sin2 θi

sin2 θic
− 1

)
,

or

(12.56)cos θt = j

√
sin2 θi

sin2 θic
− 1.

Following the convention that puts the normal propagation direction along
z, and the interface along x, the wave vector direction is

(12.57)k̂t = e3ee31θt

= e3 cos θt + e1 sin θt.
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The phase factor for the transmitted field is

exp ( jωt ± jkt · x) = exp
(

jωt ± jkk̂t · x
)

= exp ( jωt ± jk (z cos θt + x sin θt))

= exp

 jωt ± jk

z j

√
sin2 θi

sin2 θic
− 1 + x

sin θi

sin θic




= exp

 jωt ± k

 jx
sin θi

sin θic
− z

√
sin2 θi

sin2 θic
− 1


 .

(12.58)

The propagation is channelled along the x axis, but the propagation into
the second medium decays exponentially (or unphysically grows exponen-
tially), only getting into the surface a small amount. What is the average
power transmission into the medium? We are interested in the time average
of the normal component of the Poynting vector S · n̂.

(12.59)

S =
1
2

E ×H∗

=
1
2

E ×
(
1
η

k̂t × E∗
)

= −
1
2η

E ·
(
k̂t ∧ E∗

)
= −

1
2η

(
(E · k̂t)E∗ − k̂tE · E∗

)
=

1
2η

k̂t|E|2.

(12.60)

k̂t · n̂ = (e3 cos θt + e1 sin θt) · e3

= cos θt

= j

√
sin2 θi

sin2 θic
− 1.

Note that this is purely imaginary. The time average real power transmis-
sion is

(12.61)〈S · n̂〉 = Re

 j

√
sin2 θi

sin2 θic
− 1

1
2η
|E|2


= 0.
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There is no power transmission into the second medium at or past the
critical angle for total internal reflection.

12.5 brewster’s angle.

Brewster’s angle is the angle for which there the amplitude of the reflected
component of the field is zero. Recall that when the electric field is paral-
lel(perpendicular) to the plane of incidence, the reflection amplitude ([6]
eq. 4.38)

(12.62)r ‖ =

nt
µt

cos θi −
ni
µi

cos θt
nt
µt

cos θi +
ni
µi

cos θt
,

(12.63)r ⊥ =

ni
µi

cos θi −
nt
µt

cos θt
ni
µi

cos θi +
nt
µt

cos θt
.

There are limited conditions for which r⊥ is zero, at least for µi = µt. Using
Snell’s second law ni sin θi = nt sin θt, that zero is found at

(12.64)

ni cos θi = nt cos θt

= nt

√
1 − sin2 θt

= nt

√
1 −

n2
i

n2
t

sin2 θi,

or

(12.65)
n2

i

n2
t

cos2 θi = 1 −
n2

i

n2
t

sin2 θi,

or

(12.66)
n2

i

n2
t

(
cos2 θi + sin2 θi

)
= 1.

This has solutions only when ni = ±nt. The ni = nt case is of no interest,
since that is just propagation, so naturally there is no reflection. The
ni = −nt case is possible with the transmission into a negative index of
refraction material that is matched in absolute magnitude with the index



12.5 brewster’s angle. 103

of refraction in the incident medium. There are richer solutions for the r‖
zero. Again considering µ1 = µ2 those occur when

(12.67)

nt cos θi = ni cos θt

= ni

√
1 −

n2
i

n2
t

sin2 θi

= ni

√
1 −

n2
i

n2
t

sin2 θi.

Let n = nt/ni, and square both sides. This gives

(12.68)
n2 cos2 θi = 1 −

1
n2 sin2 θi

= 1 −
1
n2 (1 − cos2 θi),

or

(12.69)cos2 θi

(
n2 +

1
n2

)
= 1 −

1
n2 ,

or

(12.70)

cos2 θi =
1 − 1

n2

n2 − 1
n2

=
n2 − 1
n4 − 1

=
n2 − 1

(n2 − 1)(n2 + 1)

=
1

n2 + 1
.

We also have

(12.71)
sin2 θi = 1 −

1
n2 + 1

=
n2

n2 + 1
,

so

(12.72)tan2 θi = n2,
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and

(12.73)tan θiB = ±n,

For normal media where ni > 0, nt > 0, only the positive solution is
physically relevant, which is

θiB = arctan
(
nt

ni

)
. (12.74)

12.6 problems.

Exercise 12.1 Fresnel sum and difference formulas. ([6] pr. 4.39)

Given a µ1 = µ2 constraint, show that the Fresnel equations have the form

(12.75a)rTE =
sin(θt − θi)
sin(θt + θi)

(12.75b)rTM =
tan(θi − θt)
tan(θi + θt)

(12.75c)tTE =
2 sin θt cos θi

sin(θi + θt)

(12.75d)tTM = sin(θi + θt) cos(θi − θt).

Answer for Exercise 12.1

We need a couple trig identities to start with.

(12.76)

sin(a + b) = Im
(
e j(a+b)

)
= Im

(
e jae+ jb

)
= Im ((cos a + j sin a)(cos b + j sin b))
= sin a cos b + cos a sin b.

Allowing for both signs we have

sin(a + b) = sin a cos b + cos a sin b

sin(a − b) = sin a cos b − cos a sin b.
(12.77)
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The mixed sine and cosine product can be expressed as a sum of sines

(12.78)2 sin a cos b = sin(a + b) + sin(a − b).

With 2x = a + b, 2y = a − b, or a = x + y, b = x − y, we find

2 sin(x + y) cos(x − y) = sin(2x) + sin(2y)

2 sin(x − y) cos(x + y) = sin(2x) − sin(2y).
(12.79)

Returning to the problem. When µ1 = µ2 the Fresnel equations were found
to be

rTE =
n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt

rTM =
n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt

tTE =
2n1 cos θi

n1 cos θi + n2 cos θt

tTM =
2n1 cos θi

n2 cos θi + n1 cos θt
.

(12.80)

Using Snell’s law, one of n1, n2 can be eliminated, for example

(12.81)n1 = n2
sin θt

sin θi
.

Inserting this and proceeding with the application of the trig identities
above, we have

(12.82a)

rTE =
n2

sin θt
sin θi

cos θi − n2 cos θt

n2
sin θt
sin θi

cos θi + n2 cos θt

=
sin θt cos θi − cos θt sin θi

sin θt cos θi + cos θt sin θi

=
sin(θt − θi)
sin(θt + θi)
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(12.82b)

rTM =
n2 cos θi − n2

sin θt
sin θi

cos θt

n2 cos θi + n2
sin θt
sin θi

cos θt

=
sin θi cos θi − sin θt cos θt

sin θi cos θi + sin θt cos θt

=

1
2 sin(2θi) − 1

2 sin(2θt)
1
2 sin(2θi) + 1

2 sin(2θt)

=
sin(θi − θt) cos(θi + θt)
sin(θi + θt) cos(θi − θt)

=
tan(θi − θt)
tan(θi + θt)

(12.82c)

tTE =
2n2

sin θt
sin θi

cos θi

n2
sin θt
sin θi

cos θi + n2 cos θt

=
2 sin θt cos θi

sin θt cos θi + cos θt sin θi

=
2 sin θt cos θi

sin(θi + θt)

(12.82d)

tTM =
2n2

sin θt
sin θi

cos θi

n2 cos θi + n2
sin θt
sin θi

cos θt

=
2 sin θt cos θi

sin θi cos θi + sin θt cos θt

=
2 sin θt cos θi

1
2 sin(2θi) + 1

2 sin(2θt)

=
2 sin θt cos θi

sin(θi + θt) cos(θi − θt)
.

Exercise 12.2 Fresnel TM equations.

For the geometry shown in fig. 12.4, obtain the TM (E) Fresnel reflec-
tion and transmission coefficients. Express your results in terms of the
propagation constant k1z and k2z, (i.e., the projection of k1 and k2 along
z-direction.) Note that the interface is at z = 0 plane.

Exercise 12.3 Two interfaces.
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Figure 12.4: TM mode geometry.

a. Give the TE transmission function T TE(ω) for a slab of length d
with permittivity and permeability ε2, µ2, surrounded by medium
characterized by ε1 and µ1 as shown in fig. 12.5. Make sure you
provide the expressions for the terms appearing in the transmission
function T TE(ω).

b. Suppose medium (II) is a meta-material with ε2 = −ε1 and µ2 =

−µ1, where ε1 > 0 and µ1 > 0. What is the transmission function
T TE(ω) in this case. Express your results in terms of the propaga-
tion constant in medium (I), i.e. k1z.

c. Now consider a source located at z = 0 generating a uniform plane
wave, and for simplicity suppose a one-dimensional propagation.
What is the field at the second interface z = 2d. What is the meaning
of your results?

Figure 12.5: Slab geometry.

Exercise 12.4 One dimensional photonic crystal.
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Consider an infinitely periodic one dimensional photonic crystal (1DPC)
shown in fig. 12.6 below where ni and n j are the indices of refractions (in
general complex) associated with the regions i and j having thicknesses di

and d j. The one period transfer matrix M relates the fields according to

(12.83a)

E′l,i
E′r,i

 = M

E′l,i+1

E′r,i+1



(12.83b)M = g

a b

b̂ â


(12.83c)g =

1
1 − ρ2

i, j

,

and ρi, j is the Fresnel coefficient. Give the expressions for a, â, b, b̂ in terms
of βi, β j, and ρi, j where the phase constants in regions i and j are

(12.84a)βi =
ω

c
nidi cos θi

(12.84b)β j =
ω

c
n jd j cos θ j,

and θi or θ j are the incident angles.

Figure 12.6: 1DPC photonic crystal.
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Exercise 12.5 Finite length photonic crystal.

Consider a truncated (finite length) one dimensional photonic crystal
shown in fig. 12.7 below, in which there are N dielectric slabs of index
n j and length d j. Find the transmission and reflection functions for this
structure as a function of λ1, λ2, a, b, g and βi, where λ1 and λ2 are the
eigenvalues of the one period matrix M given in problem 3 of last week
and a, b, g, and βi are also defined in the same problem.

Figure 12.7: Finite photonic crystal.

Exercise 12.6 Eccostock example.

Use the expression for transmission function obtained above and the
values and instructions below to plot the following at normal incidence:

a. Transmission magnitude and phase as a function of frequency for
the case N = 3.

b. The group delay as a function of frequency for the cases N =

1, 2, 3, 4.

c. The group velocity as a function of frequency for the cases N =

1, 2, 3.

• ni = 1 (this is air), n j = 3.4 − j0.002 (this is Eccostock).

• di = 1.76 [cm]

• d j = 1.33 [cm]

• LPC = (N − 1)(di + d j) + d j

• Frequency range for all plots: 20 [GHz] to 23 [GHz].

• Use linear scale for transmission magnitude (not dB) and
express the transmission phase in Degrees.

• Plot the group delay in nanosecond.

• Plot the group velocity in units of Vg/c, where c is the speed
of light in vacuum.
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G AU G E F R E E D O M .

13.1 problems.

Exercise 13.1 Potentials under different gauges.

Using the non-existence of magnetic monopole and Faraday’s law

a. Define the vector and scalar vector potentials A(r, t) and V(r, t).
b. Let J = Ji + Jc be the current [A/m] and ρ be the charge [C/m]

densities. Assuming a simple medium and Lorentz gauge, derive
the decoupled non-homogeneous wave equations for A(r, t) and
V(r, t).

c. Replace the Lorentz gauge of part b with the Coulomb gauge, and
obtain the non-homogeneous differential equations for A(r, t) and
V(r, t).

d. What fundamental theorem allows us to use different gauges in
part b and part b ? (Justify your answer.)

Note: From the problem’s statement, it should be clear that I
want the results for the instantaneous fields and not in the form of
time harmonic fields.
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∇
′ 1
R

=
r̂

R2 = −∇
1
R

(A.1)

∇R = r̂ =
R
R

(A.2)

∇ f (R) = r̂
∂ f
∂R

(A.3)

−∇2 1
R

= 4πδ(R) (A.4)

(A.5)∇ × f =

∣∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

∂/∂x ∂/∂y ∂/∂z

fx fy fz

∣∣∣∣∣∣∣∣∣∣∣
∇ × (∇ ×A) = ∇ (∇ ·A) −∇2A (A.6)

Proofs. This result was used in ps1 problem 3,5, and 6.

(A.7)

∇ × (∇ × A) = εabcea∂b (εrster∂sAt)c
= εabcea∂bεcst∂sAt

= δ[st]
ab ea∂b∂sAt

= ea∂b (∂aAb − ∂bAa)
= ∇ (∇ · A) − ∇2A

Cylindrical coordinates.

ρ̂ = e1ee1e2φ

φ̂ = e2ee1e2φ

ẑ = e3

(A.8)
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∂φρ̂ = φ̂

∂φφ̂ = −ρ̂
(A.9)

(A.10)∇ = ρ̂∂ρ +
φ̂

ρ
∂φ + ẑ∂z

(A.11)∇ · A =
1
ρ
∂ρ(ρAρ) +

1
ρ
∂φAφ + ∂zAz

∇ × A = ρ̂

(
1
ρ
∂φAz − ∂zAφ

)
+ φ̂

(
∂zAρ − ∂ρAz

)
+

1
ρ

ẑ
(
∂ρ(ρAφ) − ∂φAρ

)
(A.12)

(A.13)∇
2 =

1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
ρ2

∂2

∂φ2 +
∂2

∂z2

Spherical coordinates.

r̂ = e1eiφ sin θ + e3 cos θ

θ̂ = cos θe1eiφ − sin θe3

φ̂ = e2eiφ

(A.14)

∂θr̂ = θ̂

∂φr̂ = S θφ̂

∂θθ̂ = −r̂
∂φθ̂ = Cθφ̂

∂θφ̂ = 0

∂φφ̂ = −r̂S θ − θ̂Cθ

(A.15)

(A.16)∇ = r̂
∂

∂r
+
θ̂

r
∂

∂θ
+

φ̂

r sin θ
∂

∂φ

(A.17)∇ · A =
1
r2 ∂r(r2Ar) +

1
rS θ

∂θ(S θAθ) +
1

rS θ
∂φAφ
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(A.18)
∇ × A = r̂

(
1

rS θ
∂θ(S θAφ) −

1
rS θ

∂φAθ

)
+ θ̂

(
1

rS θ
∂φAr −

1
r
∂r(rAφ)

)
+ φ̂

(
1
r
∂r(rAθ) −

1
r
∂θAr

)

(A.19)∇
2ψ =

1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2

Vector calculus. Enumerate various vc theorems (divergence, curl, the
cross product version used in the BC problem, ...)

Normal and tangential decomposition. The decomposition of ?? can be
derived easily using geometric algebra

(A.20)A = n̂2A
= n̂(n̂ · A) + n̂(n̂ ∧ A)

The last dot product can be expanded as a grade one (vector) selection

(A.21)

n̂(n̂ ∧ A) = 〈n̂(n̂ ∧ A)〉1
= 〈n̂I(n̂ × A)〉1
= I2n̂ × (n̂ × A)
= −n̂ × (n̂ × A),

so the decomposition of a vector A in terms of its normal and tangential
projections is

(A.22)A = n̂(n̂ · A) − n̂ × (n̂ × A).

I’m not sure how to naturally determine this relationship using traditional
vector algebra. However, it can be verified by expanding the triple cross
product in coordinates using tensor contraction formalism

(A.23)

−n̂ × (n̂ × A) = −εxyzexny (n̂ × A)z
= −εxyzexnyεzrsnrAs

= −δ[rs]
xy exnynrAs

= −exny
(
nxAy − nyAx

)
= −n̂(n̂ · A) + (n̂ · n̂)A
= A − n̂(n̂ · A).
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This last statement illustrates the geometry of this decomposition, showing
that the tangential projection (or normal rejection) of a vector is really just
the vector minus its normal projection.
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Having used geometric algebra in a couple problems, it is justified to
provide an overview. Further details can be found in [4], [3], [9], and [7].
geometric algebra defines a non-commutative, associative vector product

abc = (ab)c = a(bc), (B.1)

where the square of a vector equals the squared vector magnitude

(B.2)a2 = |a|2,

In Euclidean spaces such a squared vector is always positive, but that
is not necessarily the case in the mixed signature spaces used in special
relativity. There are a number of consequences of these two simple vector
multiplication rules.

• Squared unit vectors have a unit magnitude (up to a sign). In a
Euclidean space such a product is always positive

(e1)2 = 1. (B.3)

• Products of perpendicular vectors anticommute.

(B.4)
2 = (e1 + e2)2

= (e1 + e2)(e1 + e2)
= e2

1 + e2e1 + e1e2 + e2
2

= 2 + e2e1 + e1e2.

A product of two perpendicular vectors is called a bivector, and can
be used to represent an oriented plane. The last line above shows
an example of a scalar and bivector sum, called a multivector. In
general geometric algebra allows sums of scalars, vectors, bivectors,
and higher degree analogues (grades) be summed. Comparison of
the RHS and LHS of eq. (B.4) shows that we must have

e2e1 = −e1e2. (B.5)
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It is true in general that the product of two perpendicular vectors
anticommutes. When, as above, such a product is a product of two
orthonormal vectors, it behaves like a non-commutative imaginary
quantity, as it has an imaginary square in Euclidean spaces

(B.6)

(e1e2)2 = (e1e2)(e1e2)
= e1(e2e1)e2

= −e1(e1e2)e2

= −(e1e1)(e2e2)
= −1.

Such “imaginary” (unit bivectors) have important applications de-
scribing rotations in Euclidean spaces, and boosts in Minkowski
spaces.

• The product of three perpendicular vectors, such as

I = e1e2e3, (B.7)

is called a trivector. In R3, the product of three orthonormal vec-
tors is called a pseudoscalar for the space, and can represent an
oriented volume element. The quantity I above is the typical orien-
tation picked for the R3 unit pseudoscalar. This quantity also has
characteristics of an imaginary number

(B.8)

I2 = (e1e2e3)(e1e2e3)
= e1e2(e3e1)e2e3

= −e1e2e1e3e2e3

= −e1(e2e1)(e3e2)e3

= −e1(e1e2)(e2e3)e3

= −e2
1e2

2e2
3

= −1.
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• The product of two vectors in R3 can be expressed as the sum of a
symmetric scalar product and antisymmetric bivector product

(B.9)

ab =

n∑
i, j=1

eie jaib j

=

n∑
i=1

e2
i aibi +

∑
0<i, j≤n

eie jaib j

=

n∑
i=1

aibi +
∑

0<i< j≤n

eie j(aib j − a jbi).

The first (symmetric) term is clearly the dot product. The antisym-
metric term is designated the wedge product. In general these are
written

ab = a · b + a∧ b, (B.10)

where

a · b ≡
1
2
(ab + ba)

a∧ b ≡
1
2
(ab − ba) ,

(B.11)

The coordinate expansion of both can be seen above, but in R3 the
wedge can also be written

a∧ b = e1e2e3(a × b) = I(a × b). (B.12)

This allows for an handy dot plus cross product expansion of the
vector product

ab = a · b + I(a × b). (B.13)

This result should be familiar to the student of quantum spin states
where one writes

(σ · a)(σ · b) = (a · b) + i(a × b) ·σ. (B.14)

This correspondence is because the Pauli spin basis is a specific
matrix representation of a geometric algebra, satisfying the same
commutator and anticommutator relationships. A number of other
algebra structures, such as complex numbers, and quaternions can
also be modeled as geometric algebra elements.
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• It is often useful to utilize the grade selection operator 〈M〉n and
scalar grade selection operator 〈M〉 = 〈M〉0 to select the scalar,
vector, bivector, trivector, or higher grade algebraic elements. For
example, operating on vectors a,b, c, we have

〈ab〉 = a · b
〈abc〉1 = a(b · c) + a · (b∧ c)

= a(b · c) + (a · b)c − (a · c)b
〈ab〉2 = a∧ b
〈abc〉3 = a∧ b∧ c.

(B.15)

Note that the wedge product of any number of vectors such as
a∧b∧ c is associative and can be expressed in terms of the complete
antisymmetrization of the product of those vectors. A consequence
of that is the fact a wedge product that includes any colinear vectors
in the product is zero.

Example B.1: Helmholz equations.

As an example of the power of eq. (B.13), consider the following
Helmholtz equation derivation (wave equations for the electric and
magnetic fields in the frequency domain.) Application of eq. (B.13)
to Maxwell equations in the frequency domain for source free simple
media gives

(B.16a)∇E = − jωIB

(B.16b)∇IB = − jωµεE.

These equations use the engineering (not physics) sign convention
for the phasors where the time domain fields are of the form E(r, t) =

Re(Ee jωt). Operation with the gradient from the left produces the
Helmholtz equation for each of the fields using nothing more than
multiplication and simple substitution

(B.17a)∇
2E = −µεω2E

(B.17b)∇
2IB = −µεω2IB.
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There was no reason to go through the headache of looking up or de-
riving the expansion of ∇× (∇×A) as is required with the traditional
vector algebra demonstration of these identities. Observe that the
usual Helmholtz equation for B doesn’t have a pseudoscalar factor.
That result can be obtained by just cancelling the factors I since the
R3 Euclidean pseudoscalar commutes with all grades (this isn’t the
case in R2 nor in Minkowski spaces.)

Example B.2: Factoring the Laplacian.

There are various ways to demonstrate the identity

(B.18)∇ × (∇ × A) = ∇ (∇ · A) − ∇2A,

such as the use of (somewhat obscure) tensor contraction techniques.
We can also do this with geometric algebra (using a different set of
obscure techniques) by factoring the Laplacian action on a vector

(B.19)

∇
2A = ∇(∇A)

= ∇(∇ · A + ∇ ∧ A)
= ∇(∇ · A) + ∇ · (∇ ∧ A) +(((((

∇ ∧ ∇ ∧ A
= ∇(∇ · A) + ∇ · (∇ ∧ A).

Should we wish to express the last term using cross products, a grade
one selection operation can be used

(B.20)

∇ · (∇ ∧ A) = 〈∇(∇ ∧ A)〉1
= 〈∇I(∇ × A)〉1
= 〈I∇ ∧ (∇ × A)〉1
=

〈
I2
∇ × (∇ × A)

〉
1

= −∇ × (∇ × A).

Here coordinate expansion was not required in any step.





CE L E C T RO S TAT I C S E L F E N E R G Y.

Motivation. I was reading my Jackson [8], which characteristically had
the statement “the [...] integral can easily be shown to have the value 4π”,
in a discussion of electrostatic energy and self energy. After a few attempts
and a couple of pages of calculations, I figured out how this can be easily
shown.

Context. Let me walk through the context that leads to the “easy” in-
tegral, and then the evaluation of that integral. Unlike my older copy of
Jackson, I’ll do this in SI units. The starting point is a statement that the
work done (potential energy) of one charge qi in a set of n charges, where
that charge is brought to its position xi from infinity, is

(C.1)Wi = qiΦ(xi),

where the potential energy due to the rest of the charge configuration is

(C.2)Φ(xi) =
1

4πε

∑
i, j

q j∣∣∣xi − x j
∣∣∣ .

This means that the total potential energy, making sure not to double count,
to move all the charges in from infinity is

(C.3)W =
1

4πε

∑
1≤i< j≤n

qiq j∣∣∣xi − x j
∣∣∣ .

This sum over all unique pairs is somewhat unwieldy, so it can be adjusted
by explicitly double counting with a corresponding divide by two

(C.4)W =
1
2

1
4πε

∑
1≤i, j≤n

qiq j∣∣∣xi − x j
∣∣∣ .

The point that causes the trouble later is the continuum equivalent to this
relationship, which is

(C.5)W =
1

8πε

∫
ρ(x)ρ(x′)
|x − x′|

d3xd3x′,
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or

(C.6)W =
1
2

∫
ρ(x)Φ(x)d3x.

There’s a subtlety here that is often passed over. When the charge densities
represent point charges ρ(x) = qδ3(x − x′) are located at, notice that this
integral equivalent is evaluated over all space, including the spaces that the
charges that the charges are located at. Ignoring that subtlety, this potential
energy can be expressed in terms of the electric field, and then integrated
by parts

(C.7)

W =
1
2

∫
(∇ · (εE))Φ(x)d3x

=
ε

2

∫
(∇ · (EΦ) − (∇Φ) · E) d3x

=
ε

2

∮
dAn̂ · (EΦ) +

ε

2

∫
E · Ed3x.

The presumption is that EΦ falls off as the bounds of the integration
volume tends to infinity. That leaves us with an energy density proportional
to the square of the field

(C.8)w =
ε

2
E2.

Inconsistency. It’s here that Jackson points out the inconsistency be-
tween eq. (C.8) and the original discrete analogue eq. (C.4) that this was
based on. The energy density is positive definite, whereas the discrete
potential energy can be negative if there is a difference in the sign of
the charges. Here Jackson uses a two particle charge distribution to help
resolve this conundrum. For a superposition E = E1 + E2, we have

(C.9)E =
1

4πε
q1(x − x1)

|x − x1|
3 +

1
4πε

q2(x − x2)

|x − x2|
3 ,

so the energy density is

w =
1

32π2ε

q2
1

|x − x1|
4 +

1
32π2ε

q2
2

|x − x2|
4 + 2

q1q2

32π2ε

(x − x1)

|x − x1|
3 ·

(x − x2)

|x − x2|
3 .

(C.10)

The discrete potential had only an interaction energy, whereas the potential
from this squared field has an interaction energy plus two self energy
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terms. Those two strictly positive self energy terms are what forces this
field energy positive, independent of the sign of the interaction energy
density. Jackson makes a change of variables of the form

ρ = (x − x1)/R

R = |x1 − x2|

n̂ = (x1 − x2)/R,

(C.11)

for which we find

(C.12)x = x1 + Rρ,

so

(C.13)x − x2 = x1 − x2 + RρR(n̂ + ρ),

and

(C.14)d3x = R3d3ρ,

so the total interaction energy is

(C.15)

Wint =
q1q2

16π2ε

∫
d3x

(x − x1)

|x − x1|
3 ·

(x − x2)

|x − x2|
3

=
q1q2

16π2ε

∫
R3d3ρ

Rρ

R3|ρ|3
·

R(n̂ + ρ)
R3|n̂ + ρ|3

=
q1q2

16π2εR

∫
d3ρ

ρ

|ρ|3
·

(n̂ + ρ)

|n̂ + ρ|3
.

Evaluating this integral is what Jackson calls easy. The technique required
is to express the integrand in terms of gradients in the ρ coordinate system

(C.16)

∫
d3ρ

ρ

|ρ|3
·

(n̂ + ρ)

|n̂ + ρ|3
=

∫
d3ρ

(
−∇ρ

1
|ρ|

)
·

(
−∇ρ

1
|n̂ + ρ|

)
=

∫
d3ρ

(
∇ρ

1
|ρ|

)
·

(
∇ρ

1
|n̂ + ρ|

)
.

I found it somewhat non-trivial to find the exact form of the chain rule that
is required to simplify this integral, but after some trial and error, figured
it out by working backwards from

(C.17)∇
2
ρ

1
|ρ||n̂ + ρ|

= ∇ρ ·

(
1
|ρ|
∇ρ

1
|n̂ + ρ|

)
+ ∇ρ ·

(
1

|n̂ + ρ|
∇ρ

1
|ρ|

)
.
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In integral form this is∮
dA′n̂′ · ∇ρ

1
|ρ||n̂ + ρ|

=

∫
d3ρ′∇ρ′ ·

(
1

|ρ′ − n̂|
∇ρ′

1
|ρ′|

)
+

∫
d3ρ∇ρ ·

(
1

|n̂ + ρ|
∇ρ

1
|ρ|

)
=

∫
d3ρ′

(
∇ρ′

1
|ρ′ − n̂|

· ∇ρ′
1
|ρ′|

)
+

∫
d3ρ′

1
|ρ′ − n̂|

∇
2
ρ′

1
|ρ′|

+

∫
d3ρ

(
∇ρ

1
|n̂ + ρ|

)
· ∇ρ

1
|ρ|

+

∫
d3ρ

1
|n̂ + ρ|

∇
2
ρ

1
|ρ|

= 2
∫

d3ρ

(
∇ρ

1
|n̂ + ρ|

)
· ∇ρ

1
|ρ|

− 4π
∫

d3ρ′
1

|ρ′ − n̂|
δ3(ρ′)

− 4π
∫

d3ρ
1

|ρ + n̂|
δ3(ρ)

= 2
∫

d3ρ

(
∇ρ

1
|n̂ + ρ|

)
· ∇ρ

1
|ρ|
− 8π.

(C.18)

This used the Laplacian representation of the delta function δ3(x) =

−(1/4π)∇2(1/|x|). Back-substitution gives

(C.19)
∫

d3ρ
ρ

|ρ|3
·

(n̂ + ρ)

|n̂ + ρ|3
= 4π +

∮
dA′n̂′ · ∇ρ

1
|ρ||n̂ + ρ|

.

We can argue that this last integral tends to zero, since∮
dA′n̂′ · ∇ρ

1
|ρ||n̂ + ρ|

=

∮
dA′n̂′ ·

((
∇ρ

1
|ρ|

)
1

|n̂ + ρ|
+

1
|ρ|

(
∇ρ

1
|n̂ + ρ|

))

= −

∮
dA′n̂′ ·

 ρ

1
|ρ|

3

1
|n̂ + ρ|

+
1
|ρ|

(ρ + n̂)

|n̂ + ρ|3


= −

∮
dA′

1
|ρ||ρ + n̂|

(
n̂′ · ρ
|ρ|2

+
n̂′ · (ρ + n̂)

|ρ + n̂|2

)
.

(C.20)
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The integrand in this surface integral is of O(1/ρ3) so tends to zero on
an infinite surface in the ρ coordinate system. This completes the “easy”
integral, leaving

(C.21)
∫

d3ρ
ρ

|ρ|3
·

(n̂ + ρ)

|n̂ + ρ|3
= 4π.

The total field energy can now be expressed as a sum of the self energies
and the interaction energy

W =
1

32π2ε

∫
d3x

q2
1

|x − x1|
4 +

1
32π2ε

∫
d3x

q2
2

|x − x2|
4 +

1
4πε

q1q2

|x1 − x2|
.

(C.22)

The interaction energy is exactly the potential energies for the two
particles, the this total energy in the field is biased in the positive direction
by the pair of self energies. It is interesting that the energy obtained from
integrating the field energy density contains such self energy terms, but I
don’t know exactly what to make of them at this point in time.





DM AG N E T O S TAT I C F O R C E A N D T O R Q U E .

In Jackson [8], the following equations for the vector potential, magneto-
static force and torque are derived

(D.1)m =
1
2

∫
x′ × J(x′)d3x′,

(D.2)F = ∇(m · B),

(D.3)N = m × B,

where B is an applied external magnetic field and m is the magnetic dipole
for the current in question. These results (and a similar one derived earlier
for the vector potential A) all follow from an analysis of localized current
densities J, evaluated far enough away from the current sources. For the
force and torque, the starting point for the force is one that had me puzzled
a bit. Namely

(D.4)F =

∫
J(x) × B(x)d3x.

This is clearly the continuum generalization of the point particle Lorentz
force equation, which for E = 0 is:

(D.5)F = qv × B.

For the point particle, this is the force on the particle when it is in the
external field BB. i.e. this is the force at the position of the particle. My
question is what does it mean to sum all the forces on the charge distribu-
tion over all space. How can a force be applied over all, as opposed to a
force applied at a single point, or against a surface? In the special case of
a localized current density, this makes some sense. Considering the other
half of the force equation F = d

dt

∫
ρmvdV , where ρm here is mass density

of the charged particles making up the continuous current distribution.
The other half of this F = ma equation is also an average phenomena,
so we have an average of sorts on both the field contribution to the force
equation and the mass contribution to the force equation. There is probably
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a center-of-mass and center-of-current density interpretation that would
make a bit more sense of this continuum force description. It’s kind of
funny how you can work through all the detailed mathematical steps in a
book like Jackson, but then go right back to the beginning and say “Hey,
what does that even mean”?

Force. Moving on from the pondering of the meaning of the equation
being manipulated, let’s do the easy part, the derivation of the results that
Jackson comes up with. Writing out eq. (D.4) in coordinates

(D.6)F = εi jkei

∫
J jBkd3x.

To first order, a slowly varying (external) magnetic field can be expanded
around a point of interest

(D.7)B(x) = B(x0) + (x − x0) · ∇B,

where the directional derivative is evaluated at the point x0 after the gradi-
ent operation. Setting the origin at this point x0 gives

(D.8)
F = εi jkei

(∫
J j(x′)Bk(0)d3x′ +

∫
J j(x′)(x′ · ∇)Bk(0)d3x′

)
= εi jkeik0

∫
J j(x′)d3x′ + εi jkei

∫
J j(x′)(x′ · ∇)Bk(0)d3x′.

We found in eq. (4.15) that the first integral can be written as a divergence

(D.9)
∫

J j(x′)d3x′ =

∫
∇
′ ·

(
J(x′)x′j

)
dV ′,

which is zero when the integration surface is outside of the current local-
ization region. We also found in eq. (4.21) that∫

(x · x′)J = −
1
2

x ×
∫

x′ × J = m × x. (D.10)

so

(D.11)

∫
(∇Bk(0) · x′)J j = −

1
2

(
∇Bk(0) ×

∫
x′ × J

)
j

= (m × (∇Bk(0))) j .
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This gives

(D.12)

F = εi jkei (m × (∇Bk(0))) j
= εi jkei (m × ∇) j Bk(0)
= (m × ∇) × B(0)

= −B(0) × (m×
←

∇)

= (B(0) ·m)
←

∇ −(B·
←

∇)m
= ∇(B(0) ·m) −m(∇ · B(0)).

The second term is killed by the magnetic Gauss’s law, leaving to first
order

(D.13)F = ∇ (m · B) .

Torque. For the torque we have a similar quandary at the starting point.
About what point is a continuum torque integral of the following form

(D.14)N =

∫
x′ × (J(x′) × B(x′))d3x′?

Ignoring that detail again, assuming the answer has something to do with
the center of mass and parallel axis theorem, we can proceed with a
constant approximation of the magnetic field

(D.15)

N =

∫
x′ × (J(x′) × B(0))d3x′

= −

∫
(x′ · J(x′))B(0)d3x′ +

∫
(x′ · B(0))J(x′)d3x′

= −B(0)
∫

(x′ · J(x′))d3x′ +
∫

(x′ · B(0))J(x′)d3x′.

Jackson’s trick for killing the first integral is to transform it into a diver-
gence by evaluating

(D.16)

∇ ·
(
J|x|2

)
= (∇ · J)|x|2 + J · ∇|x|2

= J · ei∂ixmxm

= 2J · eiδimxm

= 2J · x,
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so

(D.17)
N = −

1
2

B(0)
∫
∇
′ ·

(
J(x′)

∣∣∣x′∣∣∣2) d3x′ +
∫

(x′ · B(0))J(x′)d3x′

= −
1
2

B(0)
∮

n ·
(
J(x′)

∣∣∣x′∣∣∣2) d3x′ +
∫

(x′ · B(0))J(x′)d3x′.

Again, the localized current density assumption kills the surface integral.
The second integral can be evaluated with eq. (D.10), so to first order we
have

(D.18)N = m × B.



EL I N E C H A R G E F I E L D A N D P OT E N T I A L .

When computing the most general solution of the electrostatic potential in
a plane, Jackson [8] mentions that −2λ0 ln ρ is the well known potential
for an infinite line charge (up to the unit specific factor). Checking that
statement, since I didn’t recall what that potential was offhand, I encoun-
tered some inconsistencies and non-convergent integrals, and thought it
was worthwhile to explore those a bit more carefully. This will be done
here.

Using Gauss’s law. For an infinite length line charge, we can find the
radial field contribution using Gauss’s law, imagining a cylinder of length
∆l of radius ρ surrounding this charge with the midpoint at the origin.
Ignoring any non-radial field contribution, we have

(E.1)
∫ ∆l/2

−∆l/2
n̂ · E(2πρ)dl =

λ0

ε0
∆l,

or

(E.2)E =
λ0

2πε0

ρ̂

ρ
.

Since

(E.3)
ρ̂

ρ
= ∇ ln ρ,

this means that the potential is

(E.4)φ = −
2λ0

4πε0
ln ρ.

Finite line charge potential. Let’s try both these calculations for a finite
charge distribution. Gauss’s law looses its usefulness, but we can evaluate
the integrals directly. For the electric field

(E.5)E =
λ0

4πε0

∫
(x − x′)
|x − x′|3

dl′.
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Using cylindrical coordinates with the field point x = ρρ̂ for convenience,
the charge point x′ = z′ẑ, and a the charge distributed over [a, b] this is

(E.6)E =
λ0

4πε0

∫ b

a

(ρρ̂ − z′ẑ)(
ρ2 + (z′)2)3/2 dz′.

When the charge is uniformly distributed around the origin [a, b] =

b[−1, 1] the ẑ component of this field is killed because the integrand
is odd. This justifies ignoring such contributions in the Gaussian cylinder
analysis above. The general solution to this integral is found to be

(E.7)E =
λ0

4πε0

 z′ρ̂

ρ

√
ρ2 + (z′)2

+
ẑ√

ρ2 + (z′)2


∣∣∣∣∣∣∣∣∣
b

a

,

or

E =
λ0

4πε0

 ρ̂ρ
 b√

ρ2 + b2
−

a√
ρ2 + a2

 + ẑ

 1√
ρ2 + b2

−
1√

ρ2 + a2


 .

(E.8)

When b = −a = ∆l/2, this reduces to

(E.9)E =
λ0

4πε0

ρ̂

ρ

∆l√
ρ2 + (∆l/2)2

,

which further reduces to eq. (E.2) when ∆l � ρ.

Finite line charge potential. Wrong but illuminating. Again, putting the
field point at z′ = 0, we have

(E.10)φ(ρ) =
λ0

4πε0

∫ b

a

dz′(
ρ2 + (z′)2)1/2 ,

which integrates to

(E.11)φ(ρ) =
λ0

4πε0
ln

b +

√
ρ2 + b2

a +

√
ρ2 + a2

.
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With b = −a = ∆l/2, this approaches

(E.12)
φ ≈

λ0

4πε0
ln

(∆l/2)
ρ2/2|∆l/2|

=
−2λ0

4πε0
ln ρ +

λ0

4πε0
ln

(
(∆l)2/2

)
.

Before ∆l is allowed to tend to infinity, this is identical (up to a difference
in the reference potential) to eq. (E.4) found using Gauss’s law. It is, strictly
speaking, singular when ∆l→ ∞, so it does not seem right to infinity as
a reference point for the potential. There’s another weird thing about this
result. Since this has no z dependence, it is not obvious how we would
recover the non-radial portion of the electric field from this potential using
E = −∇φ? Let’s calculate the electric field from eq. (E.10) explicitly

E = −
λ0

4πε0
∇ ln

b +

√
ρ2 + b2

a +

√
ρ2 + a2

= −
λ0ρ̂

4πε0

∂

∂ρ
ln

b +

√
ρ2 + b2

a +

√
ρ2 + a2

= −
λ0ρ̂

4πε0

 1

b +

√
ρ2 + b2

ρ√
ρ2 + b2

−
1

a +

√
ρ2 + a2

ρ√
ρ2 + a2


= −

λ0ρ̂

4πε0ρ

−b +

√
ρ2 + b2√

ρ2 + b2
−
−a +

√
ρ2 + a2√

ρ2 + a2


=

λ0ρ̂

4πε0ρ

 b√
ρ2 + b2

−
a√

ρ2 + a2

 .
(E.13)
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This recovers the radial component of the field from eq. (E.8), but where
did the ẑ component go? The required potential appears to be

φ(ρ, z) =
λ0

4πε0
ln

b +

√
ρ2 + b2

a +

√
ρ2 + a2

−
zλ0

4πε0

 1√
ρ2 + b2

−
1√

ρ2 + a2

 .
(E.14)

When computing the electric field E(ρ, θ, z), it was convenient to pick the
coordinate system so that z = 0. Doing this with the potential gives the
wrong answers. The reason for this appears to be that this kills the potential
term that is linear in z before taking its gradient, and we need that term to
have the ẑ field component that is expected for a charge distribution that is
non-symmetric about the origin on the z-axis!

Finite line charge potential. Take II. Let the point at which the potential
is evaluated be

(E.15)x = ρρ̂ + zẑ,

and the charge point be

(E.16)x′ = z′ẑ.

This gives

(E.17)

φ(ρ, z) =
λ0

4πε0

∫ b

a

dz′∣∣∣ρ2 + (z − z′)2
∣∣∣

=
λ0

4πε0

∫ b−z

a−z

du∣∣∣ρ2 + u2
∣∣∣

=
λ0

4πε0
ln

(
u +

√
ρ2 + u2

)∣∣∣∣∣∣a−z

b−z

=
λ0

4πε0
ln

b − z +

√
ρ2 + (b − z)2

a − z +

√
ρ2 + (a − z)2

.

The limit of this potential a = −∆/2→ −∞, b = ∆/2→ ∞ doesn’t exist
in any strict sense. If we are cavalier about the limits, as in eq. (E.12), this
can be evaluated as

(E.18)φ ≈
λ0

4πε0
(−2 ln ρ + constant) .
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however, the constant (ln ∆2/2) is infinite, so there isn’t really a good
justification for using that constant as the potential reference point directly.
It seems that the “right” way to calculate the potential for the infinite
distribution, is to

• Calculate the field from the potential.

• Take the PV limit of that field with the charge distribution extending
to infinity.

• Compute the corresponding potential from this limiting value of the
field.

Doing that doesn’t blow up. That field calculation, for the finite case,
should include a ẑ component. To verify, let’s take the respective derivatives

−
∂

∂z
φ = −

λ0

4πε0


−1 + z−b√

ρ2 + (b − z)2

b − z +

√
ρ2 + (b − z)2

−

−1 + z−a√
ρ2 + (a − z)2

a − z +

√
ρ2 + (a − z)2


=

λ0

4πε0


1 + b−z√

ρ2 + (b − z)2

b − z +

√
ρ2 + (b − z)2

−

1 + a−z√
ρ2 + (a − z)2

a − z +

√
ρ2 + (a − z)2


=

λ0

4πε0

 1√
ρ2 + (b − z)2

−
1√

ρ2 + (a − z)2

 ,
(E.19)
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and

−
∂

∂ρ
φ = −

λ0

4πε0


ρ√

ρ2 + (b − z)2

b − z +

√
ρ2 + (b − z)2

−

ρ√
ρ2 + (a − z)2

a − z +

√
ρ2 + (a − z)2


= −

λ0

4πε0


ρ

(
−(b − z) +

√
ρ2 + (b − z)2

)
ρ2

√
ρ2 + (b − z)2

−

ρ

(
−(a − z) +

√
ρ2 + (a − z)2

)
ρ2

√
ρ2 + (a − z)2


=

λ0

4πε0ρ

 b − z√
ρ2 + (b − z)2

−
a − z√

ρ2 + (a − z)2

 .
(E.20)

Putting the pieces together, the electric field is

(E.21)

E =
λ0

4πε0

 ρ̂ρ
 b − z√

ρ2 + (b − z)2
−

a − z√
ρ2 + (a − z)2


+ ẑ

 1√
ρ2 + (b − z)2

−
1√

ρ2 + (a − z)2


 .

This has a PV limit of eq. (E.2) at z = 0, and also for the finite case, has
the ẑ field component that was obtained when the field was obtained by
direct integration.

Conclusions.

• We have to evaluate the potential at all points in space, not just on
the axis that we evaluate the field on (should we choose to do so).

• In this case, we found that it was not directly meaningful to take the
limit of a potential distribution. We can, however, compute the field
from a potential for a finite charge distribution, take the limit of that
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field, and then calculate the corresponding potential for the infinite
distribution.

Is there a more robust mechanism that can be used to directly calculate
the potential for an infinite charge distribution, instead of calculating the
potential from the field of such an infinite distribution? I think that were
things go wrong is that the integral of eq. (E.10) does not apply to charge
distributions that are not finite on the infinite range z ∈ [−∞,∞]. That
solution was obtained by utilizing an all-space Green’s function, and the
boundary term in that Green’s analysis was assumed to tend to zero. That
isn’t the case when the charge distribution is λ0δ(z).





FC Y L I N D R I C A L G R A D I E N T O P E R AT O R S .

In class it was suggested that the identity

(F.1)∇
2A = ∇ (∇ · A) − ∇ × (∇ × A) ,

can be used to compute the Laplacian in non-rectangular coordinates. Is
that the easiest way to do this? How about just sequential applications
of the gradient on the vector? Let’s start with the vector product of the
gradient and the vector. First recall that the cylindrical representation of
the gradient is

(F.2)∇ = ρ̂∂ρ +
φ̂

ρ
∂φ + ẑ∂z,

where

ρ̂ = e1ee1e2φ

φ̂ = e2ee1e2φ.
(F.3)

Taking φ derivatives of eq. (F.3), we have

∂φρ̂ = e1e1e2ee1e2φ = e2ee1e2φ = φ̂

∂φφ̂ = e2e1e2ee1e2φ = −e1ee1e2φ = −ρ̂.
(F.4)



142 cylindrical gradient operators .

The gradient of a vector A = ρ̂Aρ + φ̂Aφ + ẑAz is

∇A =

(
ρ̂∂ρ +

φ̂

ρ
∂φ + ẑ∂z

) (
ρ̂Aρ + φ̂Aφ + ẑAz

)
= ρ̂∂ρ

(
ρ̂Aρ + φ̂Aφ + ẑAz

)
+
φ̂

ρ
∂φ

(
ρ̂Aρ + φ̂Aφ + ẑAz

)
+ ẑ∂z

(
ρ̂Aρ + φ̂Aφ + ẑAz

)
= ρ̂

(
ρ̂∂ρAρ + φ̂∂ρAφ + ẑ∂ρAz

)
+
φ̂

ρ

(
∂φ(ρ̂Aρ) + ∂φ(φ̂Aφ) + ẑ∂φAz

)
+ ẑ

(
ρ̂∂zAρ + φ̂∂zAφ + ẑ∂zAz

)
= ∂ρAρ + ρ̂φ̂∂ρAφ + ρ̂ẑ∂ρAz

+
1
ρ

(
Aρ + φ̂ρ̂∂φAρ − φ̂ρ̂Aφ + ∂φAφ + φ̂ẑ∂φAz

)
+ ẑρ̂∂zAρ + ẑφ̂∂zAφ + ∂zAz

= ∂ρAρ +
1
ρ
(Aρ + ∂φAφ) + ∂zAz

+ ẑρ̂ (∂zAρ − ∂ρAz)

+ φ̂ẑ
(
1
ρ
∂φAz − ∂zAφ

)
+ ρ̂φ̂

(
∂ρAφ −

1
ρ
(∂φAρ − Aφ)

)
,

(F.5)

As expected, we see that the gradient splits nicely into a dot and curl

∇A = ∇ ·A +∇∧A = ∇ ·A + ρ̂φ̂ẑ(∇ ×A), (F.6)

where the cylindrical representation of the divergence is seen to be

(F.7)∇ · A =
1
ρ
∂ρ(ρAρ) +

1
ρ
∂φAφ + ∂zAz,

and the cylindrical representation of the curl is

∇ ×A = ρ̂

(
1
ρ
∂φAz − ∂zAφ

)
+ φ̂ (∂zAρ − ∂ρAz)

+
1
ρ

ẑ (∂ρ(ρAφ) − ∂φAρ) .
(F.8)
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Should we want to, it is now possible to evaluate the Laplacian of A using
eq. (F.1) , which will have the following components

(F.9a)

ρ̂ ·
(
∇

2A
)

= ∂ρ

(
1
ρ
∂ρ(ρAρ) +

1
ρ
∂φAφ + ∂zAz

)
−

(
1
ρ
∂φ

(
1
ρ

(
∂ρ(ρAφ) − ∂φAρ

))
− ∂z

(
∂zAρ − ∂ρAz

))
= ∂ρ

(
1
ρ
∂ρ(ρAρ)

)
+ ∂ρ

(
1
ρ
∂φAφ

)
+ ∂ρzAz

−
1
ρ2 ∂φρ(ρAφ) +

1
ρ2 ∂φφAρ + ∂zzAρ − ∂zρAz

= ∂ρ

(
1
ρ
∂ρ(ρAρ)

)
+

1
ρ2 ∂φφAρ + ∂zzAρ

−
1
ρ2 ∂φAφ +

1
ρ
∂ρφAφ −

1
ρ2 ∂φAφ −

1
ρ
∂φρAφ

= ∂ρ

(
1
ρ
∂ρ(ρAρ)

)
+

1
ρ2 ∂φφAρ + ∂zzAρ −

2
ρ2 ∂φAφ

=
1
ρ
∂ρ

(
ρ∂ρAρ

)
+

1
ρ2 ∂φφAρ + ∂zzAρ −

Aρ
ρ2 −

2
ρ2 ∂φAφ,
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(F.9b)

φ̂ ·
(
∇

2A
)

=
1
ρ
∂φ

(
1
ρ
∂ρ(ρAρ) +

1
ρ
∂φAφ + ∂zAz

)
−

((
∂z

(
1
ρ
∂φAz − ∂zAφ

)
− ∂ρ

(
1
ρ

(
∂ρ(ρAφ) − ∂φAρ

))))
=

1
ρ2 ∂φρ(ρAρ) +

1
ρ2 ∂φφAφ +

1
ρ
∂φzAz −

1
ρ
∂zφAz

+ ∂zzAφ + ∂ρ

(
1
ρ
∂ρ(ρAφ)

)
− ∂ρ

(
1
ρ
∂φAρ

)
= ∂ρ

(
1
ρ
∂ρ(ρAφ)

)
+

1
ρ2 ∂φφAφ + ∂zzAφ

+
1
ρ2 ∂φρ(ρAρ) +

1
ρ
∂φzAz −

1
ρ
∂zφAz − ∂ρ

(
1
ρ
∂φAρ

)
= ∂ρ

(
1
ρ
∂ρ(ρAφ)

)
+

1
ρ2 ∂φφAφ + ∂zzAφ

+
1
ρ2 ∂φAρ +

1
ρ
∂φρAρ +

1
ρ2 ∂φAρ −

1
ρ
∂ρφAρ

= ∂ρ

(
1
ρ
∂ρ(ρAφ)

)
+

1
ρ2 ∂φφAφ + ∂zzAφ +

2
ρ2 ∂φAρ

=
1
ρ
∂ρ

(
ρ∂ρAφ

)
+

1
ρ2 ∂φφAφ + ∂zzAφ +

2
ρ2 ∂φAρ −

Aφ
ρ2 ,

(F.9c)

ẑ ·
(
∇

2A
)

= ∂z

(
1
ρ
∂ρ(ρAρ) +

1
ρ
∂φAφ + ∂zAz

)
−

1
ρ

(
∂ρ

(
ρ
(
∂zAρ − ∂ρAz

))
− ∂φ

(
1
ρ
∂φAz − ∂zAφ

))
=

1
ρ
∂zρ(ρAρ) +

1
ρ
∂zφAφ + ∂zzAz −

1
ρ
∂ρ

(
ρ∂zAρ

)
+

1
ρ
∂ρ

(
ρ∂ρAz

)
+

1
ρ2 ∂φφAz −

1
ρ
∂φzAφ

=
1
ρ
∂ρ

(
ρ∂ρAz

)
+

1
ρ2 ∂φφAz + ∂zzAz +

1
ρ
∂zAρ

+ ∂zρAρ +
1
ρ
∂zφAφ −

1
ρ
∂zAρ − ∂ρzAρ −

1
ρ
∂φzAφ

=
1
ρ
∂ρ

(
ρ∂ρAz

)
+

1
ρ2 ∂φφAz + ∂zzAz.

Evaluating these was a fairly tedious and mechanical job, and would have
been better suited to a computer algebra system than by hand as done here.
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Explicit cylindrical Laplacian. Let’s try this a different way. The most
obvious potential strategy is to just apply the Laplacian to the vector itself,
but we need to include the unit vectors in such an operation

(F.10)∇
2A = ∇2

(
ρ̂Aρ + φ̂Aφ + ẑAz

)
.

First we need to know the explicit form of the cylindrical Laplacian. From
the painful expansion, we can guess that it is

(F.11)∇
2ψ =

1
ρ
∂ρ

(
ρ∂ρψ

)
+

1
ρ2 ∂φφψ + ∂zzψ.

Let’s check that explicitly. Here I use the vector product where ρ̂2 = φ̂
2

=

ẑ2 = 1, and these vectors anticommute when different

∇
2ψ =

(
ρ̂∂ρ +

φ̂

ρ
∂φ + ẑ∂z

) (
ρ̂∂ρψ +

φ̂

ρ
∂φψ + ẑ∂zψ

)
= ρ̂∂ρ

(
ρ̂∂ρψ +

φ̂

ρ
∂φψ + ẑ∂zψ

)
+
φ̂

ρ
∂φ

(
ρ̂∂ρψ +

φ̂

ρ
∂φψ + ẑ∂zψ

)
+ ẑ∂z

(
ρ̂∂ρψ +

φ̂

ρ
∂φψ + ẑ∂zψ

)
= ∂ρρψ + ρ̂φ̂∂ρ

(
1
ρ
∂φψ

)
+ ρ̂ẑ∂ρzψ +

φ̂

ρ
∂φ

(
ρ̂∂ρψ

)
+
φ̂

ρ
∂φ

(
φ̂

ρ
∂φψ

)
+
φ̂ẑ
ρ
∂φzψ + ẑρ̂∂zρψ +

ẑφ̂
ρ
∂zφψ + ∂zzψ

= ∂ρρψ +
1
ρ
∂ρψ +

1
ρ2 ∂φφψ + ∂zzψ

+ ρ̂φ̂

(
−

1
ρ2 ∂φψ +

1
ρ
∂ρφψ −

1
ρ
∂φρψ +

1
ρ2 ∂φψ

)
+ ẑρ̂

(
−∂ρzψ + ∂zρψ

)
+ φ̂ẑ

(
1
ρ
∂φzψ −

1
ρ
∂zφψ

)
= ∂ρρψ +

1
ρ
∂ρψ +

1
ρ2 ∂φφψ + ∂zzψ,

(F.12)

so the Laplacian operator is

∇
2 =

1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
ρ2

∂2

∂φ2 +
∂2

∂z2 . (F.13)

All the bivector grades of the Laplacian operator are seen to explicitly
cancel, regardless of the grade of ψ, just as if we had expanded the scalar
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Laplacian as a dot product∇2ψ = ∇ · (∇ψ). Unlike such a scalar expansion,
this derivation is seen to be valid for any grade ψ. We know now that we
can trust this result when ψ is a scalar, a vector, a bivector, a trivector, or
even a multivector.

Vector Laplacian. Now that we trust that the typical scalar form of the
Laplacian applies equally well to multivectors as it does to scalars, that
cylindrical coordinate operator can now be applied to a vector. Consider
the projections onto each of the directions in turn

(F.14)∇
2
(
ρ̂Aρ

)
= ρ̂

1
ρ
∂ρ

(
ρ∂ρAρ

)
+

1
ρ2 ∂φφ

(
ρ̂Aρ

)
+ ρ̂∂zzAρ

(F.15)
∂φφ

(
ρ̂Aρ

)
= ∂φ

(
φ̂Aρ + ρ̂∂φAρ

)
= −ρ̂Aρ + φ̂∂φAρ + φ̂∂φAρ + ρ̂∂φφAρ
= ρ̂

(
∂φφAρ − Aρ

)
+ 2φ̂∂φAρ

so this component of the vector Laplacian is

∇
2
(
ρ̂Aρ

)
= ρ̂

(
1
ρ
∂ρ

(
ρ∂ρAρ

)
+

1
ρ2 ∂φφAρ −

1
ρ2 Aρ + ∂zzAρ

)
+ φ̂

(
2

1
ρ2 ∂φAρ

)
= ρ̂

(
∇

2Aρ −
1
ρ2 Aρ

)
+ φ̂

2
ρ2 ∂φAρ.

(F.16)

The Laplacian for the projection of the vector onto the φ̂ direction is

(F.17)∇
2
(
φ̂Aφ

)
= φ̂

1
ρ
∂ρ

(
ρ∂ρAφ

)
+

1
ρ2 ∂φφ

(
φ̂Aφ

)
+ φ̂∂zzAφ,

Again, since the unit vectors are φ dependent, the φ derivatives have to be
treated carefully

(F.18)
∂φφ

(
φ̂Aφ

)
= ∂φ

(
−ρ̂Aφ + φ̂∂φAφ

)
= −φ̂Aφ − ρ̂∂φAφ − ρ̂∂φAφ + φ̂∂φφAφ
= −2ρ̂∂φAφ + φ̂

(
∂φφAφ − Aφ

)
,

so the Laplacian of this projection is

(F.19)
∇

2
(
φ̂Aφ

)
= φ̂

(
1
ρ
∂ρ

(
ρ∂ρAφ

)
+ φ̂∂zzAφ,

1
ρ2 ∂φφAφ −

Aφ
ρ2

)
− ρ̂

2
ρ2 ∂φAφ

= φ̂

(
∇

2Aφ −
Aφ
ρ2

)
− ρ̂

2
ρ2 ∂φAφ.
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Since ẑ is fixed we have

(F.20)∇
2ẑAz = ẑ∇2Az.

Putting all the pieces together we have

∇
2A = ρ̂

(
∇

2Aρ −
1
ρ2 Aρ −

2
ρ2 ∂φAφ

)
+ φ̂

(
∇

2Aφ −
Aφ
ρ2 +

2
ρ2 ∂φAρ

)
+ ẑ∇2Az.

(F.21)

This matches the result eq. (F.9) from the painful expansion of∇ (∇ ·A)−

∇ × (∇ ×A).





GS P H E R I C A L G R A D I E N T O P E R AT O R S .

Unit vectors. Two of the spherical unit vectors we can immediately
write by inspection.

r̂ = e1 sin θ cos φ + e2 sin θ sin φ + e3 cos θ

φ̂ = −e1 sin θ + e2 cos φ.
(G.1)

We can compute θ̂ by utilizing the right hand triplet property

(G.2)

θ̂ = φ̂ × r̂

=

∣∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

−S φ Cφ 0

S θCφ S θS φ Cθ

∣∣∣∣∣∣∣∣∣∣∣
= e1

(
CθCφ

)
+ e2

(
CθS φ

)
+ e3

(
−S θ

(
S 2
φ + C2

φ

))
= e1 cos θ cos φ + e2 cos θ sin φ − e3 sin θ.

Here I’ve used Cθ = cos θ, S φ = sin φ, · · · as a convenient shorthand.
Observe that with i = e1e2, these unit vectors admit a small factorization
that makes further manipulation easier

r̂ = e1eiφ sin θ + e3 cos θ

θ̂ = cos θe1eiφ − sin θe3

φ̂ = e2eiφ.

(G.3)

It should also be the case that r̂θ̂φ̂ = I, where I = e1e2e3 = e123 is the R3

pseudoscalar, which is straightforward to check

(G.4)

r̂θ̂φ̂ =
(
e1eiφ sin θ + e3 cos θ

) (
cos θe1eiφ − sin θe3

)
e2eiφ

=
(
sin θ cos θ − cos θ sin θ + e31eiφ

(
cos2 θ + sin2 θ

))
e2eiφ

= e31e2e−iφeiφ

= e123.

This property could also have been used to compute θ̂.
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Gradient. To compute the gradient, note that the coordinate vectors for
the spherical parameterization are

(G.5a)

xr =
∂r
∂r

=
∂(rr̂)
∂r

= r̂ + r
∂r̂
∂r

= r̂,

(G.5b)

xθ =
∂(rr̂)
∂θ

= r
∂

∂θ

(
S θe1eiφ + Cθe3

)
= r

∂

∂θ

(
Cθe1eiφ − S θe3

)
= rθ̂,

(G.5c)

xφ =
∂(rr̂)
∂φ

= r
∂

∂φ

(
S θe1eiφ + Cθe3

)
= rS θe2eiφ

= r sin θφ̂.

Since these are all normal, the dual vectors defined by x j · xk = δ
j
k, can be

obtained by inspection

xr = r̂

xθ =
1
r
θ̂

xφ =
1

r sin θ
φ̂.

(G.6)

The gradient follows immediately

(G.7)∇ = xr ∂

∂r
+ xθ

∂

∂θ
+ xφ

∂

∂φ
,
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or

∇ = r̂
∂

∂r
+
θ̂

r
∂

∂θ
+

φ̂

r sin θ
∂

∂φ
. (G.8)

More information on this general dual-vector technique of computing the
gradient in curvilinear coordinate systems can be found in [9].

Partials. To compute the divergence, curl and Laplacian, we’ll need
the partials of each of the unit vectors ∂r̂/∂θ, ∂r̂/∂φ, ∂θ̂/∂θ, ∂θ̂/∂φ, ∂φ̂/∂φ.
The θ̂ partials are

(G.9)

∂θ̂

∂θ
=

∂

∂θ

(
Cθe1eiφ − S θe3

)
= −S θe1eiφ −Cθe3

= −r̂,

(G.10)

∂θ̂

∂φ
=

∂

∂φ

(
Cθe1eiφ − S θe3

)
= Cθe2eiφ

= Cθφ̂.

The φ̂ partials are

(G.11)
∂φ̂

∂θ
=

∂

∂θ
e2eiφ

= 0.

(G.12)

∂φ̂

∂φ
=

∂

∂φ
e2eiφ

= −e1eiφ

= −r̂
〈
r̂e1eiφ

〉
− θ̂

〈
θ̂e1eiφ

〉
− φ̂

〈
φ̂e1eiφ

〉
= −r̂

〈(
e1eiφS θ + e3Cθ

)
e1eiφ

〉
− θ̂

〈(
Cθe1eiφ − S θe3

)
e1eiφ

〉
= −r̂

〈
e−iφS θeiφ

〉
− θ̂

〈
Cθe−iφeiφ

〉
= −r̂S θ − θ̂Cθ.
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The r̂ partials are were computed as a side effect of evaluating xθ, and xφ,
and are

(G.13)
∂r̂
∂θ

= θ̂,

(G.14)
∂r̂
∂φ

= S θφ̂.

In summary

∂θr̂ = θ̂

∂φr̂ = S θφ̂

∂θθ̂ = −r̂
∂φθ̂ = Cθφ̂

∂θφ̂ = 0

∂φφ̂ = −r̂S θ − θ̂Cθ.

(G.15)

Divergence and curl. The divergence and curl can be computed from
the vector product of the spherical coordinate gradient and the spherical
representation of a vector. That is

∇A = ∇ ·A +∇∧A = ∇ ·A + I∇ ×A. (G.16)
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That gradient vector product is

∇A =

(
r̂∂r +

θ̂

r
∂θ +

φ̂

rS θ
∂φ

) (
r̂Ar + θ̂Aθ + φ̂Aφ

)
= r̂∂r

(
r̂Ar + θ̂Aθ + φ̂Aφ

)
+
θ̂

r
∂θ

(
r̂Ar + θ̂Aθ + φ̂Aφ

)
+

φ̂

rS θ
∂φ̂

(
r̂Ar + θ̂Aθ + φ̂Aφ

)
=

(
∂rAr + r̂θ̂∂rAθ + r̂φ̂∂rAφ

)
+

1
r

(
θ̂(∂θr̂)Ar + θ̂(∂θθ̂)Aθ + θ̂(∂θφ̂)Aφ + θ̂r̂∂θAr + ∂θAθ + θ̂φ̂∂θAφ

)
+

1
rS θ

(
φ̂(∂φr̂)Ar + φ̂(∂φθ̂)Aθ + φ̂(∂φφ̂)Aφ + φ̂r̂∂φAr + φ̂θ̂∂φAθ + ∂φAφ

)
=

(
∂rAr + r̂θ̂∂rAθ + r̂φ̂∂rAφ

)
+

1
r

(
θ̂(θ̂)Ar + θ̂(−r̂)Aθ + θ̂(0)Aφ + θ̂r̂∂θAr + ∂θAθ + θ̂φ̂∂θAφ

)
+

1
rS θ

(φ̂(S θφ̂)Ar + φ̂(Cθφ̂)Aθ − φ̂(r̂S θ + θ̂Cθ)Aφ

+ φ̂r̂∂φAr + φ̂θ̂∂φAθ + ∂φAφ).
(G.17)

The scalar component of this is the divergence

(G.18)

∇ · A = ∂rAr +
Ar

r
+

1
r
∂θAθ +

1
rS θ

(
S θAr + CθAθ + ∂φAφ

)
= ∂rAr + 2

Ar

r
+

1
r
∂θAθ +

1
rS θ

CθAθ +
1

rS θ
∂φAφ

= ∂rAr + 2
Ar

r
+

1
r
∂θAθ +

1
rS θ

CθAθ +
1

rS θ
∂φAφ,

which can be factored as

∇ ·A =
1
r2 ∂r(r2Ar) +

1
rS θ

∂θ(S θAθ) +
1

rS θ
∂φAφ. (G.19)
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The bivector grade of ∇A is the bivector curl

∇ ∧ A =
(
r̂θ̂∂rAθ + r̂φ̂∂rAφ

)
+

1
r

(
θ̂(−r̂)Aθ + θ̂r̂∂θAr + θ̂φ̂∂θAφ

)
+

1
rS θ

(
−φ̂(r̂S θ + θ̂Cθ)Aφ + φ̂r̂∂φAr + φ̂θ̂∂φAθ

)
=

(
r̂θ̂∂rAθ − φ̂r̂∂rAφ

)
+

1
r

(
r̂θ̂Aθ − r̂θ̂∂θAr + θ̂φ̂∂θAφ

)
+

1
rS θ

(
−φ̂r̂S θAφ + θ̂φ̂CθAφ + φ̂r̂∂φAr − θ̂φ̂∂φAθ

)
= θ̂φ̂

(
1

rS θ
CθAφ +

1
r
∂θAφ −

1
rS θ

∂φAθ

)
+ φ̂r̂

(
−∂rAφ +

1
rS θ

(
−S θAφ +∂φAr

))
+ r̂θ̂

(
∂rAθ +

1
r

Aθ −
1
r
∂θAr

)
= Ir̂

(
1

rS θ
∂θ(S θAφ) −

1
rS θ

∂φAθ

)
+ Iθ̂

(
1

rS θ
∂φAr −

1
r
∂r(rAφ)

)
+ Iφ̂

(
1
r
∂r(rAθ) −

1
r
∂θAr

)
.

(G.20)

This gives

∇ ×A = r̂
(

1
rS θ

∂θ(S θAφ) −
1

rS θ
∂φAθ

)
+ θ̂

(
1

rS θ
∂φAr −

1
r
∂r(rAφ)

)
+ φ̂

(
1
r
∂r(rAθ) −

1
r
∂θAr

)
.

(G.21)

This and the divergence result above both check against the back cover of
[8].
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Laplacian. Using the divergence and curl it’s possible to compute the
Laplacian from those, but we saw in cylindrical coordinates that it was
much harder to do it that way than to do it directly.

∇
2ψ =

(
r̂∂r +

θ̂

r
∂θ +

φ̂

rS θ
∂φ

) (
r̂∂rψ +

θ̂

r
∂θψ +

φ̂

rS θ
∂φψ

)
= ∂rrψ + r̂θ̂∂r

(
1
r
∂θψ

)
+ r̂φ̂

1
S θ
∂r

(
1
r
∂φψ

)
+
θ̂

r
∂θ (r̂∂rψ) +

θ̂

r2 ∂θ
(
θ̂∂θψ

)
+
θ̂

r2 ∂θ

(
φ̂

S θ
∂φψ

)
+

φ̂

rS θ
∂φ (r̂∂rψ) +

φ̂

r2S θ
∂φ

(
θ̂∂θψ

)
+

φ̂

r2S 2
θ

∂φ
(
φ̂∂φψ

)
= ∂rrψ + r̂θ̂∂r

(
1
r
∂θψ

)
+ r̂φ̂

1
S θ
∂r

(
1
r
∂φψ

)
+
θ̂r̂
r
∂θ (∂rψ) +

1
r2 ∂θθψ +

θ̂φ̂

r2 ∂θ

(
1

S θ
∂φψ

)
+
φ̂r̂
rS θ

∂φrψ +
φ̂θ̂

r2S θ
∂φθψ +

1
r2S 2

θ

∂φφψ

+
θ̂

r
(∂θr̂)∂rψ +

θ̂

r2 (∂θθ̂)∂θψ +
θ̂

r2 (∂θφ̂)
φ̂

S θ
∂φψ

+
φ̂

rS θ
(∂φr̂)∂rψ +

φ̂

r2S θ
(∂φθ̂)∂θψ +

φ̂

r2S 2
θ

(∂φφ̂)∂φψ

= ∂rrψ + r̂θ̂∂r

(
1
r
∂θψ

)
+ r̂φ̂

1
S θ
∂r

(
1
r
∂φψ

)
+
θ̂r̂
r
∂θ (∂rψ) +

1
r2 ∂θθψ +

θ̂φ̂

r2 ∂θ

(
1

S θ
∂φψ

)
+
φ̂r̂
rS θ

∂φrψ +
φ̂θ̂

r2S θ
∂φθψ +

1
r2S 2

θ

∂φφψ

+
θ̂

r
(θ̂)∂rψ +

θ̂

r2 (−r̂)∂θψ +
θ̂

r2 (0)
φ̂

S θ
∂φψ

+
φ̂

rS θ
(S θφ̂)∂rψ +

φ̂

r2S θ
(Cθφ̂)∂θψ +

φ̂

r2S 2
θ

(−r̂S θ − θ̂Cθ)∂φψ.

(G.22)
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All the bivector factors are expected to cancel out, but this should be
checked. Those with an r̂θ̂ factor are

∂r

(
1
r
∂θψ

)
−

1
r
∂θrψ +

1
r2 ∂θψ

= −
1
r2 ∂θψ +

1
r
∂rθψ −

1
r
∂θrψ +

1
r2 ∂θψ

= 0,

(G.23)

and those with a θ̂φ̂ factor are

(G.24)

1
r2 ∂θ

(
1

S θ
∂φψ

)
−

1
r2S θ

∂φθψ +
1

r2S 2
θ

Cθ∂φψ

= −
1
r2

Cθ

S 2
θ

∂φψ +
1

r2S θ
∂θφψ −

1
r2S θ

∂φθψ +
1

r2S 2
θ

Cθ∂φψ

= 0,

and those with a φ̂r̂ factor are

(G.25)

−
1

S θ
∂r

(
1
r
∂φψ

)
+

1
rS θ

∂φrψ −
1

r2S 2
θ

S θ∂φψ

=
1

S θ

1
r2 ∂φψ −

1
rS θ

∂rφψ +
1

rS θ
∂φrψ −

1
r2S θ

∂φψ

= 0.

This leaves

(G.26)∇
2ψ = ∂rrψ +

2
r
∂rψ +

1
r2 ∂θθψ +

1
r2S θ

Cθ∂θψ +
1

r2S 2
θ

∂φφψ.

This factors nicely as

∇
2ψ =

1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2 ,

(G.27)

which checks against the back cover of Jackson. Here it has been demon-
strated explicitly that this operator expression is valid for multivector fields
ψ as well as scalar fields ψ.
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For a vector A in spherical coordinates, let’s compute the Laplacian

(H.1)∇
2A,

to see the form of the wave equation. The spherical vector representation
has a curvilinear basis

(H.2)A = r̂Ar + θ̂Aθ + φ̂Aφ,

and the spherical Laplacian has been found to have the representation

(H.3)∇
2ψ =

1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2 .

Evaluating the Laplacian will require the following curvilinear basis deriva-
tives

∂θr̂ = θ̂

∂θθ̂ = −r̂
∂θφ̂ = 0

∂φr̂ = S θφ̂

∂φθ̂ = Cθφ̂

∂φφ̂ = −r̂S θ − θ̂Cθ.

(H.4)

We’ll need to evaluate a number of derivatives. Starting with the r̂ compo-
nents

(H.5a)∂r
(
r2∂r (r̂ψ)

)
= r̂∂r

(
r2∂rψ

)
∂θ (S θ∂θ (r̂ψ)) = ∂θ

(
S θ(θ̂ψ + r̂∂θψ)

)
= Cθ(θ̂ψ + r̂∂θψ) + S θ∂θ(θ̂ψ + r̂∂θψ)
= Cθ(θ̂ψ + r̂∂θψ) + S θ∂θ((∂θθ̂)ψ + (∂θr̂)∂θψ)

+ S θ∂θ(θ̂∂θψ + r̂∂θθψ)
= Cθ(θ̂ψ+ r̂∂θψ) + S θ((−r̂)ψ+ (θ̂)∂θψ) + S θ(θ̂∂θψ+ r̂∂θθψ)
= r̂ (Cθ∂θψ − S θψ + S θ∂θθψ) + θ̂ (Cθψ + 2S θ∂θψ)

(H.5b)
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(H.5c)

∂φφ (r̂ψ) = ∂φ
(
(∂φr̂)ψ + r̂∂φψ

)
= ∂φ

(
(S θφ̂)ψ + r̂∂φψ

)
= S θ∂φ(φ̂ψ) + ∂φ

(
r̂∂φψ

)
= S θ(∂φφ̂)ψ + S θφ̂∂φψ + (∂φr̂)∂φψ + r̂∂φφψ
= S θ(−S θr̂ −Cθθ̂)ψ + S θφ̂∂φψ + (S θφ̂)∂φψ + r̂∂φφψ
= r̂

(
−S 2

θψ + ∂φφψ
)

+ θ̂ (−S θCθψ) + φ̂
(
2S θφ̂∂φψ

)
This gives

∇
2(r̂Ar) = r̂

 1
r2 ∂r

(
r2∂rAr

)
+

1
r2S θ

(Cθ∂θAr − S θAr + S θ∂θθAr)

+
1

r2S 2
θ

(
−S 2

θAr + ∂φφAr
)

+ θ̂

(
1

r2S θ
(CθAr + 2S θ∂θAr) −

1
r2S θ

S θCθAr

)
+ φ̂

 1
r2S 2

θ

2S θ∂φAr


= r̂

(
∇

2Ar −
2
r2 Ar

)
+
θ̂

r2

(
Cθ

S θ
Ar + 2∂θAr −CθAr

)
+ φ̂

2
r2S θ

∂φAr.

(H.6)

Next, let’s compute the derivatives of the θ̂ projection.

(H.7a)∂r
(
r2∂r

(
θ̂ψ

))
= θ̂∂r

(
r2∂rψ

)
∂θ

(
S θ∂θ

(
θ̂ψ

))
= ∂θ

(
S θ

(
(∂θθ̂)ψ + θ̂∂θψ

))
= ∂θ

(
S θ

(
(−r̂)ψ + θ̂∂θψ

))
= Cθ

(
−r̂ψ+θ̂∂θψ

)
+S θ

(
−(∂θr̂)ψ−r̂∂θψ+(∂θθ̂)∂θψ+θ̂∂θθψ

)
= Cθ

(
−r̂ψ+ θ̂∂θψ

)
+ S θ

(
−(θ̂)ψ− r̂∂θψ+ (−r̂)∂θψ+ θ̂∂θθψ

)
= r̂ (−Cθψ − 2S θ∂θψ) + θ̂ (+Cθ∂θψ − S θψ + S θ∂θθψ)
= r̂ (−Cθψ − 2S θ∂θψ) + θ̂ (+∂θ(S θ∂θψ) − S θψ)

(H.7b)
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(H.7c)

∂φφ
(
θ̂ψ

)
= ∂φ

(
(∂φθ̂)ψ + θ̂∂φψ

)
= ∂φ

(
(Cθφ̂)ψ + θ̂∂φψ

)
= Cθ∂φ(φ̂ψ) + ∂φ(θ̂∂φψ)
= Cθ(∂φφ̂)ψ + Cθφ̂∂φψ + (∂φθ̂)∂φψ + θ̂∂φφψ

= Cθ(−r̂S θ − θ̂Cθ)ψ + Cθφ̂∂φψ + (Cθφ̂)∂φψ + θ̂∂φφψ

= −r̂CθS θψ + θ̂
(
−CθCθψ + ∂φφψ

)
+ 2φ̂Cθ∂φψ,

which gives

∇
2(θ̂Aθ)

= r̂
 1

r2S θ
(−CθAθ − 2S θ∂θAθ) −

1
r2S 2

θ

CθS θAθ


+ θ̂

( 1
r2 ∂r

(
r2∂rAθ

)
+

1
r2S θ

(+∂θ(S θ∂θAθ) − S θAθ)

+
1

r2S 2
θ

(−CθCθAθ + ∂φφAθ)
)

+ φ̂

 1
r2S 2

θ

2Cθ∂φAθ


= −2r̂

1
r2S θ

∂θ(S θAθ) + θ̂

∇2Aθ −
1
r2 Aθ −

1
r2S 2

θ

C2
θAθ


+ 2φ̂

 1
r2S 2

θ

Cθ∂φAθ

 .

(H.8)

Finally, we can compute the derivatives of the φ̂ projection.

(H.9a)∂r
(
r2∂r

(
φ̂ψ

))
= φ̂∂r

(
r2∂rψ

)
(H.9b)∂θ

(
S θ∂θ

(
φ̂ψ

))
= φ̂∂θ (S θ∂θψ)

∂φφ
(
φ̂ψ

)
= ∂φ

(
(∂φφ̂)ψ + φ̂∂φψ

)
= ∂φ

(
(−r̂S θ − θ̂Cθ)ψ + φ̂∂φψ

)
= −((∂φr̂)S θ + (∂φθ̂)Cθ)ψ− (r̂S θ + θ̂Cθ)∂φψ+ (∂φφ̂∂φψ+ φ̂∂φφψ

= −((S θφ̂)S θ + (Cθφ̂)Cθ)ψ− (r̂S θ + θ̂Cθ)∂φψ+ (−r̂S θ − θ̂Cθ)∂φψ
+ φ̂∂φφψ

= −2r̂S θ∂φψ − 2θ̂Cθ∂φψ + φ̂
(
∂φφψ − ψ

)
,

(H.9c)
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which gives

∇
2
(
φ̂Aφ

)
= −2r̂

1
r2S θ

∂φAφ − 2θ̂
1

r2S 2
θ

Cθ∂φAφ

+ φ̂

 1
r2 ∂r

(
r2∂rAφ

)
+

1
r2S θ

∂θ
(
S θ∂θAφ

)
+

1
r2S 2

θ

(
∂φφAφ − Aφ

)
= −2r̂

1
r2S θ

∂φAφ − 2θ̂
1

r2S 2
θ

Cθ∂φAφ + φ̂

(
∇

2Aφ −
1
r2 Aφ

)
.

(H.10)

The vector Laplacian resolves into three augmented scalar wave equations,
all highly coupled

r̂ ·
(
∇

2A
)

= ∇2Ar −
2
r2 Ar −

2
r2S θ

∂θ(S θAθ) −
2

r2S θ
∂φAφ

θ̂ ·
(
∇

2A
)

=
1
r2

Cθ

S θ
Ar +

2
r2 ∂θAr −

1
r2 CθAr

+∇2Aθ −
1
r2 Aθ −

1
r2S 2

θ

C2
θAθ − 2

1
r2S 2

θ

Cθ∂φAφ

φ̂ ·
(
∇

2A
)

=
2

r2S θ
∂φAr +

2
r2S 2

θ

Cθ∂φAθ +∇2Aφ −
1
r2 Aφ.

(H.11)

I’d guess one way to decouple these equations would be to impose a con-
straint that allows all the non-wave equation terms in one of the component
equations to be killed, and then substitute that constraint into the remaining
equations. Let’s try one such constraint

(H.12)Ar = −
1

S θ
∂θ(S θAθ) −

1
S θ
∂φAφ.
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This gives

r̂ ·
(
∇

2A
)

= ∇2Ar

θ̂ ·
(
∇

2A
)

=

(
1
r2

Cθ

S θ
+

2
r2 ∂θ −

1
r2 Cθ

) (
−

1
S θ
∂θ(S θAθ) −

1
S θ
∂φAφ

)
+∇2Aθ −

1
r2 Aθ −

1
r2S 2

θ

C2
θAθ −

2
r2S 2

θ

Cθ∂φAφ

φ̂ ·
(
∇

2A
)

= −
2

r2S θ
∂φ

(
1

S θ
∂θ(S θAθ) +

1
S θ
∂φAφ

)
+

2
r2S 2

θ

Cθ∂φAθ +∇2Aφ −
1
r2 Aφ

= −
2

r2S θ
∂θAθ −

2
r2S 2

θ

∂φφAθ +∇2Aφ −
1
r2 Aφ.

(H.13)

It looks like some additional cancellations may be had in the θ̂ projection
of this constrained vector Laplacian. I’m not inclined to try to take this
reduction any further without a thorough check of all the algebra (using
Mathematica to do so would make sense). I also guessing that such a
solution might be how the TEr and TMr modes were defined, but that
doesn’t appear to be the case according to [2]. There the wave equation is
formulated in terms of the vector potentials (picking one to be zero and
the other to be radial only). The solution obtained from such a potential
wave equation then directly defines the TEr and TMr modes. It would be
interesting to see how the modes derived in that analysis transform with
application of the vector Laplacian derived above.





IT R A N S V E R S E G AU G E .

Jackson [8] has an interesting presentation of the transverse gauge. I’d
like to walk through the details of this, but first want to translate the
preliminaries to SI units (if I had the 3rd edition I’d not have to do this
translation step).

Gauge freedom. The starting point is noting that ∇ ·B = 0 the magnetic
field can be expressed as a curl

(I.1)B = ∇ × A.

Faraday’s law now takes the form

(I.2)

0 = ∇ × E +
∂B
∂t

= ∇ × E +
∂

∂t
(∇ × A)

= ∇ ×

(
E +

∂A
∂t

)
.

Because this curl is zero, the interior sum can be expressed as a gradient

(I.3)E +
∂A
∂t
≡ −∇Φ.

This can now be substituted into the remaining two Maxwell’s equations.

∇ ·D = ρv,

∇ ×H = J +
∂D
∂t
.

(I.4)

For Gauss’s law, in simple media, we have

(I.5)
ρv = ε∇ · E

= ε∇ ·

(
−∇Φ −

∂A
∂t

)
.

For simple media again, the Ampere-Maxwell equation is

(I.6)
1
µ
∇ × (∇ × A) = J + ε

∂

∂t

(
−∇Φ −

∂A
∂t

)
.
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Expanding ∇ × (∇ ×A) = −∇2A +∇ (∇ ·A) gives

(I.7)−∇2A + ∇ (∇ · A) + εµ
∂2A
∂t2 = µJ − εµ∇

∂Φ
∂t
.

Maxwell’s equations are now reduced to

∇
2A −∇

(
∇ ·A + εµ

∂Φ
∂t

)
− εµ

∂2A
∂t2 = −µJ

∇
2Φ +

∂∇ ·A
∂t

= −
ρv

ε
.

(I.8)

There are two obvious constraints that we can impose

∇ ·A − εµ
∂Φ
∂t

= 0, (I.9)

or

∇ ·A = 0. (I.10)

The first constraint is the Lorentz gauge, which I’ve played with previously.
It happens to be really nice in a relativistic context since, in vacuum
with a four-vector potential A = (Φ/c,A), that is a requirement that the
four-divergence of the four-potential vanishes (∂µAµ = 0).

Transverse gauge. Jackson identifies the latter constraint as the trans-
verse gauge, which I’m less familiar with. With this gauge selection, we
have

(I.11a)∇
2A − εµ

∂2A
∂t2 = −µJ + εµ∇

∂Φ
∂t

(I.11b)∇
2Φ = −

ρv

ε
.

What’s not obvious is the fact that the irrotational (zero curl) contribution
due to Φ in eq. (I.11a) cancels the corresponding irrotational term from
the current. Jackson uses a transverse and longitudinal decomposition
of the current, related to the Helmholtz theorem to allude to this. That
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decomposition follows from expanding ∇2J/R in two ways using the delta
function −4πδ(x − x′) = ∇21/R representation, as well as directly

−4πJ(x) =

∫
∇

2 J(x′)
|x − x′|

d3x′

= ∇

∫
∇ ·

J(x′)
|x − x′|

d3x′ + ∇ ·
∫
∇ ∧

J(x′)
|x − x′|

d3x′

= −∇

∫
J(x′) · ∇′

1
|x − x′|

d3x′ + ∇ ·
(
∇ ∧

∫
J(x′)
|x − x′|

d3x′
)

= −∇

∫
∇
′ ·

J(x′)
|x − x′|

d3x′ + ∇
∫
∇′ · J(x′)
|x − x′|

d3x′

− ∇ ×

(
∇ ×

∫
J(x′)
|x − x′|

d3x′
)
.

(I.12)

The first term can be converted to a surface integral

(I.13)−∇

∫
∇
′ ·

J(x′)
|x − x′|

d3x′ = −∇

∫
dA′ ·

J(x′)
|x − x′|

,

so provided the currents are either localized or |J|/R → 0 on an infinite
sphere, we can make the identification

J(x) = ∇
1

4π

∫
∇′ · J(x′)
|x − x′|

d3x′ −∇×∇×
1

4π

∫
J(x′)
|x − x′|

d3x′ ≡ Jl + Jt,

(I.14)

where ∇ × Jl = 0 (irrotational, or longitudinal), whereas ∇ · Jt = 0
(solenoidal or transverse). The irrotational property is clear from inspec-
tion, and the transverse property can be verified readily

(I.15)

∇ · (∇ × (∇ × X)) = −∇ · (∇ · (∇ ∧ X))
= −∇ ·

(
∇

2X − ∇ (∇ · X)
)

= −∇ ·
(
∇

2X
)

+ ∇2 (∇ · X)
= 0.

Since

(I.16)Φ(x, t) =
1

4πε

∫
ρv(x′, t)
|x − x′|

d3x′,
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we have

(I.17)

∇
∂Φ
∂t

=
1

4πε
∇

∫
∂tρv(x′, t)
|x − x′|

d3x′

=
1

4πε
∇

∫
−∇′ · J
|x − x′|

d3x′

=
Jl

ε
.

This means that the Ampere-Maxwell equation takes the form

∇
2A − εµ

∂2A
∂t2 = −µJ + µJl = −µJt. (I.18)

This justifies the “transverse” in the label transverse gauge.



JM AT H E M AT I C A N OT E B O O K S .

These Mathematica notebooks, some just trivial ones used to generate
figures, others more elaborate, and perhaps some even polished, can be
found in

https://github.com/peeterjoot/mathematica/tree/master/ece1228-emt/.
The free Wolfram CDF player, is capable of read-only viewing these

notebooks to some extent.

• Oct 21, 2016 ps5/ps5.nb

Plots of index of refraction and relative permittivity for passive and
active media.

• Nov 4, 2016 ps6alphaPlusBetaSquareFactorization.nb

A verification of the hand calculated result.

• Nov 5, 2016 quadropoleVerificationJacksonChapter4.nb

Quadropole expansion comparison attempt.

• Dec 4, 2016 ps9/ps9p1Eigenvalues.nb

ps9, p1, Slab transfer matrix eigenvalues.

• Dec 4, 2016 ps9/ps9p2Plots.nb

Problem set 9, problem 2. Plots of transmission magnitude and phase
for a one dimensional photonic crystal. Plots assume: µ1 = µ2 = 1,
normal incidence, and use the Fresnel reflection coefficient ρi j for
the TE mode polarization.

• Dec 13, 2016 BrewstersAngle.nb

Total internal reflection critical angle.

https://github.com/peeterjoot/mathematica/tree/master/ece1228-emt/
http://www.wolfram.com/cdf-player/
https://raw.githubusercontent.com/peeterjoot/mathematica/master/ece1228-emt/ps5/ps5.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/ece1228-emt/ps6alphaPlusBetaSquareFactorization.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/ece1228-emt/quadropoleVerificationJacksonChapter4.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/ece1228-emt/ps9/ps9p1Eigenvalues.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/ece1228-emt/ps9/ps9p2Plots.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/ece1228-emt/BrewstersAngle.nb
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anisotropic, 7

Biot-Savart, 34, 41
bivector, 141
bound charge, 23
boundary, 5
boundary conditions, 43

electric field, 47
tangential magnetic field, 47

breakdown voltage, 6

capacitor, 6, 23
conducting sheet, 15
conductivity, 33
conductor

charge dissipation, 48
constitutive relationships, 6, 33
continuity equation, 48
curl, 113, 149

cylindrical coordinates, 141
spherical coordinates, 149

curl of curl, 113
current loop, 41

De-Broglie relation, 9
delta function

Laplacian, 113, 126
dielectric, 23

boundary conditions, 47
dipole

electric, 21, 26
elemental, 24
potential, 28

dipole moment density, 26

divergence, 149
cylindrical coordinates, 141
spherical coordinates, 149

divergence free, 12
divergence theorem, 5
doppler shift, 51
duality theorem, 52

electric energy density, 50
electric field

direction vector, 19
spherical shell, 11

electrostatic energy, 123
electrostatics, 19
energy

torque, 32

Faraday’s law, 5
field lines

electric, 15
force, 129

Gauss’s law
matter, 25

geometric algebra, 11, 115, 141,
149

grade one selection, 115
gradient, 20, 149

cylindrical coordinates, 17,
141

radial functions, 113
spherical coordinates, 149

Green’s function
Laplacian representation, 48



Helmholtz’s theorem, 9, 15

index of refraction, 8, 51
irrotational, 15

Laplacian, 149
cylindrical coordinates, 141
decomposition, 113
Green’s function, 48
spherical coordinates, 149

LC circuit, 51
line charge, 16
Lorentz force, 129

macroscopic, 6
magnetic energy density, 50
magnetic field, 40
magnetic flux, 6
magnetic moment, 31, 37, 40
magnetic polarization, 32
magnetic surface charge density,

43
magnetization, 7, 19, 32
magnetostatics, 129
Mathematica, 167
Maxwell’s equations

point charge, 17
time domain, 1

moment
magnetic, 31

non-solenoidal, 12
normal component, 115
normal field component, 43
number density, 23

Ohm’s law, 33

permeability, 6
permittivity

relative, 8

vacuum, 8
phasor, 52
photon

angular momentum, 9
momentum, 9

point charge, 17, 19
polarization, 7, 19, 23
potential

electric, 20
electric dipole, 26, 28

potential energy, 123
Poynting theorem, 49
Poynting vector, 49

frequency domain, 56
projection, 116
pseudoscalar, 11, 149

rejection, 116

scalar, 141
self energy, 123
solenoidal, 12, 15
spherical coordinates, 149

rotation matrix, 22
Stokes’ theorem, 5
stored electric energy, 50
stored magnetic energy, 50
superposition, 19
supplied power density, 49
surface charge density, 20

tangential component, 115
tangential field component, 43
time harmonics, 53
torque, 32, 129
triple cross product, 40, 115

unit
ampere, 3
candela, 3



coulomb, 3
kelvin, 3
mole, 3

units, 2

vector potential, 37

waveguide, 16
wedge product, 149
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