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P R E FA C E

This book contains course notes from the Spring 2015 session
of the University of Toronto Advanced Antenna Theory course
(ECE1229H), taught by Professor G. V. Eleftheriades.

Official course description: “This course deals with the analysis and
design of a range of antennas. Topics addressed include: definitions
of antenna parameters; vector potentials; solutions to the inhomo-
geneous wave equation; principles of duality and reciprocity; wire
antennas; antenna arrays; phased arrays; synthesis techniques for
discrete and continuous line sources; integral equations and solu-
tions using the method of moments; field equivalence principle;
aperture antennas; antenna measurement techniques; diffraction;
horn antennas; reflector antennas; microstrip antennas; reflectar-
rays; electrically small antennas; and broadband antennas.”

Synopsis

1. Fundamental Antenna Parameters (patterns, directivity, effec-
tive aperture, input impedance, Friis transmission equation,
radar range equations, RCS)

2. Review of Maxwell’s Equations

3. Radiation from arbitrary current distributions

4. Wire and Mobile Communication Antennas: Dipoles, loops,
ground effects

5. Reciprocity; Equivalence of transmit and receive radiation
patterns

6. Phased Arrays

7. Self Impedance: Integral equations and method of moments
(MoM)

8. Mutual Impedance : Induced EMF method



xii

9. Aperture Antennas I : Equivalent current method, rectangular
apertures, horn antennas

10. Apertures Antennas II : Plane-wave expansion, slots

11. Printed and IC Antennas : Microstrip patch antennas, minia-
turized antennas

12. Metamaterial Antennas

13. Broadband Antennas : Self complementarity, spirals, log pe-
riodic, Yagi Uda

References include

• (Main Text) [5] C.A. Balanis, “Antenna Theory,” Wiley, 3rd
Edition

• (Recommended) [23] W.L. Stutzman and G. A. Thiele, “An-
tenna Theory and Design” 2nd Edition, Wiley.

• (Recommended) [9] G.V. Eleftheriades and K.G. Balmain
(Edt.) “Negative-Refraction Metamaterials”, Wiley and IEEE
Press.

This document contains:

• Personal notes exploring details that were not clear to me
from the lectures, or from the texts associated with the lecture
material.

• Assigned problems. Like anything else take these as is. I have
attempted to either correct errors or mark them as such.

This set of notes is significantly different from my notes for many
other classes. With the class taught on slides (and some of those
slides mirroring the text closely), I did not take live notes in class.
These notes fill in details that I felt deserved clarification, contain
problem sets solutions, as well as a number of loosely related mus-
ings on Geometric Algebra equivalents to some of the generalized
concepts of electromagnetic theory encountered in this class (i.e.
magnetic sources). My thanks go to Professor Eleftheriades for
teaching this course.

Peeter Joot peeterjoot@pm.me
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1
F U N D A M E N TA L PA R A M E T E R S O F A N T E N N A S .

1.1 poynting vector.

The Poynting vector was written in an unfamiliar form

(1.1)W = E ×H.

I can roll with the use of a different symbol (i.e. not S) for the
Poynting vector, but I’m used to seeing a c/4π factor ([21] and
[16]). I remembered something like that in SI units too, so was
slightly confused not to see it here.

Per [11] that something is a µ0, as in

(1.2)W =
1
µ0

E × B.

Note that the use of H instead of B is what wipes out the require-
ment for the 1/µ0 term since H = B/µ0, assuming linear media,
and no magnetization.

1.2 typical far-field radiation intensity.

It was mentioned that

(1.3)
U(θ, φ) =

r2

2η0
|E(r, θ, φ)|2

=
1

2η0

(
|Eθ(θ, φ)|2 +

∣∣Eφ(θ, φ)
∣∣2) ,

where the intrinsic impedance of free space is

(1.4)η0 =
√

µ0

ε0
= 377Ω.

(this is also eq. 2-19 in the text.) To get an understanding where this
comes from, consider the far field radial solutions to the electric
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and magnetic dipole problems, which have the respective forms
(from [11]) of

(1.5a)
E = −µ0 p0ω2

4π

sin θ

r
cos (wt − kr) θ̂

B = −µ0 p0ω2

4πc
sin θ

r
cos (wt − kr) φ̂

(1.5b)
E =

µ0m0ω2

4πc
sin θ

r
cos (wt − kr) φ̂

B = −µ0m0ω2

4πc2
sin θ

r
cos (wt − kr) θ̂.

In neither case is there a component in the direction of propagation,
and in both cases (using µ0ε0 = 1/c2)

(1.6)

|H| =
|E|
µ0c

= |E|
√

ε0

µ0

=
1
η0
|E|.

Note that the signs of E vs. B in eq. (1.5a) and eq. (1.5b) and are
determined by the far field relation E = cB× r̂ (see: eq. 9.19,9.39

[16]). The effect of dependency is that the Poynting vector will be
radial, which will be seen below. A superposition of the phasors
for such dipole fields, in the far field, will have the form

(1.7)
E =

1
r
(
Eθ(θ, φ)θ̂ + Eφ(θ, φ)φ̂

)
B =

1
rc
(
Eθ(θ, φ)θ̂− Eφ(θ, φ)φ̂

)
,

with a corresponding time averaged Poynting vector

(1.8)

Wav =
1

2µ0
E × B∗

=
1

2µ0cr2

(
Eθ θ̂ + Eφφ̂

)
×
(

E∗θ θ̂− E∗φφ̂
)

=
θ̂× φ̂

2µ0cr2

(
|Eθ |2 +

∣∣Eφ

∣∣2)
=

r̂
2η0r2

(
|Eθ |2 +

∣∣Eφ

∣∣2) ,



1.3 field plots. 3

Figure 1.1: Plot methods for fields and intensities.

rcap = {Cos[#], Sin[#]} & ;
scap = {Sin[#1] Cos[#2], Sin[#1] Sin[#2], Cos[#1]} & ;
ParametricPlot[ f[r0, θ, 0] rcap, {θ, 0, Pi}]
ParametricPlot3D[ f[r0, θ, φ] scap, {θ, 0, Pi}, {φ, 0, 2 Pi}] �

verifying eq. (1.3) for a superposition of electric and magnetic
dipole fields. This can likely be shown for more general fields too.

1.3 field plots.

We can plot the fields, or intensity (or log plots in dB of these). It
is pointed out in [11] that when there is r dependence these plots
are done by considering the values of at fixed r. The field plots are
conceptually the simplest, since that vector parameterizes a surface.
Any such radial field with magnitude f (r, θ, φ) can be plotted in
Mathematica in the φ = 0 plane at r = r0, or in 3D (respectively,
but also at r = r0) with code like fig. 1.1 Intensity plots can use
the same code, with the only difference being the interpretation.
The surface doesn’t represent the value of a vector valued radial
function, but is the magnitude of a scalar valued function evaluated
at f (r0, θ, φ).

The surfaces for U = cos θ, cos2 θ and for U = sin θ, sin2 θ in the
plane are parametrically plotted in fig. 1.2, and for cosines in ?? to
compare with textbook figures. Three dimensional visualizations

cos(�)

cos
2(�)

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0

y

(a)

sin(�)

sin
2(�)

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0

y

(b)

Figure 1.2: Cosinusoidal and sinusoidal radiation intensities.
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Table 1.1:
´ π/2.

0 sinn θdθ =
´ π/2

0 cosn θdθ

n 1 2 3 4 5 6 7

1 π/4 2/3 3π/16 8/15 5π/32 16/35

Table 1.2:
´ π.

0 sinn θdθ

n 1 2 3 4 5 6 7

2 π/2 4/3 3π/8 16/15 5π/16 32/35

of U = sin2 θ and U = cos2 θ can be found in fig. 1.3 Even for such
simple functions these look pretty cool.

(a) (b)

Figure 1.3: Square sinusoidal and cosinusoidal radiation intensity.

1.4 db vs dbi.

Note that dBi is used to indicate that the gain is with respect to an
“isotropic” radiator. This is detailed more in [7].

1.5 trig integrals.

1.6 polarization vectors.

The text introduces polarization vectors ρ̂ , but doesn’t spell out
their form. Consider a plane wave field of the form

(1.9)E = Exejφx ej(ωt−kz)x̂ + Eyejφy ej(ωt−kz)ŷ.
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Table 1.3:
´ π.

0 cosn θdθ

n 1 2 3 4 5 6 7

0 π/2 0 3π/8 0 5π/16 0

The x, y plane directionality of this phasor can be written

(1.10)ρ = Exejφx x̂ + Eyejφy ŷ,

so that

(1.11)E = ρej(ωt−kz).

Separating this direction and magnitude into factors

(1.12)ρ = |E|ρ̂,

allows the phasor to be expressed as

(1.13)E = ρ̂|E|ej(ωt−kz).

As an example, suppose that Ex = Ey, and set φx = 0. Then

(1.14)ρ̂ = x̂ + ŷejφy .

Demonstrating the geometry. It seems worthwhile to review how a
generally polarized field phasor leads to linear, circular, and elliptic
geometries.

The most general field polarized in the x, y plane has the form

(1.15)
E =

(
x̂aejα + ŷbejβ

)
ej(ωt−kz)

=
(

x̂aej(α−β)/2 + ŷbej(β−α)/2
)

ej(ωt−kz+(α+β)/2).

Knowing to factor out the average phase angle above is only
because I tried initially without that and things got ugly and
messy. I guessed this would help (it does). Let E = Re E = x̂x + ŷy,
θ = ωt + (α + β)/2, and φ = (α− β)/2, so that

(1.16)E =
(

x̂aejφ + ŷbe−jφ
)

ejθ .
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The coordinates can now be read off

(1.17a)
x
a

= cos φ cos θ − sin φ sin θ

(1.17b)
y
b

= cos φ cos θ + sin φ sin θ,

or in matrix form

(1.18)

[
x/a

y/b

]
=

[
cos φ − sin φ

cos φ sin φ

] [
cos θ

sin θ

]
.

The goal is to eliminate all the θ (i.e. time dependence), converting
the parametric relationship into a conic form. Assuming that nei-
ther cos θ, nor sin θ are zero for now (those are special cases and
lead to linear polarization), inverting the matrix will allow the θ

dependence to be eliminated

(1.19)
1

sin
(
2φ
) [ sin φ sin φ

− cos φ cos φ

] [
x/a

y/b

]
=

[
cos θ

sin θ

]
.

Squaring and summing both rows of these equation gives

(1.20)

1 =
1

sin2 (2φ
) (sin2 φ

( x
a

+
y
b

)2
+ cos2 φ

(
− x

a
+

y
b

)2
)

=
1

sin2 (2φ
) ( x2

a2 +
y2

b2 + 2
xy
ab
(
sin2 φ − cos2 φ

))
=

1
sin2 (2φ

) ( x2

a2 +
y2

b2 − 2
xy
ab

cos
(
2φ
))

.

Time to summarize and handle the special cases.

1. To have cos φ = 0, the phase angles must satisfy α − β =
(1 + 2k)π, k ∈ Z. For this case eq. (1.17) reduces to

(1.21)− x
a

=
y
b

,

which is just a line.
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Example 1.1: Linear polarization.

Let α = 0, β = −π, so that the phasor has the value

(1.22)E = (x̂a − ŷb) ejωt.

For have sin φ = 0, the phase angles must satisfy α− β =
2πk, k ∈ Z. For this case eq. (1.17) reduces to

(1.23)
x
a

=
y
b

,

also just a line.

Example 1.2: Elliptical polarization.

Let α = β = 0, so that the phasor has the value

(1.24)E = (x̂a + ŷb) ejωt.

Last is the circular and elliptically polarized case. The
system is clearly elliptically polarized if cos(2φ) = 0, or
α− β = (π/2)(1 + 2k), k ∈ Z. When that is the case and
a = b also holds, the ellipse is a circle. When the cos(2φ) =
0 condition does not hold, a rotation of coordinates

(1.25)

[
x

y

]
=

[
cos µ sin µ

− sin µ cos µ

] [
u

v

]
,

where

(1.26)µ =
1
2

tan−1
(

2 cos(α − β)
b − a

)
,
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puts the trajectory into a standard (but messy) conic
form

1 =
u2

ab

(
b
a

cos2 µ +
a
b

sin2 µ +
1
2

sin
(
2µ + α − β

))
+

v2

ab

(
b
a

sin2 µ +
a
b

cos2 µ − 1
2

sin
(
2µ + α − β

))
.

(1.27)

It isn’t obvious to me that the factors of the u2, v2 terms
are necessarily positive, which is required for the conic
to be an ellipse and not a hyperbola.

Example 1.3: Circular polarization.

With a = b = E0, α = 0, β = ±π/2, all the circular
polarization conditions are met, leaving the phasor with
values

(1.28)E = E0
(
x̂ ± jŷ

)
ejωt.

1.7 phasor power.

In §2.13 the phasor power is written as

(1.29)I2R/2,

where I, R are the magnitudes of phasors in the circuit.
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I vaguely recall this relation, but had to refer back to [15] for
the details. This relation expresses average power over a period
associated with the frequency of the phasor

(1.30)

P =
1
T

ˆ t0+T

t0

p(t)dt

=
1
T

ˆ t0+T

t0

|V| cos
(
ωt + φV

)
|I| cos

(
ωt + φI

)
dt

=
1
T

ˆ t0+T

t0

|V||I|
(
cos

(
φV − φI

)
+ cos

(
2ωt + φV + φI

))
dt

=
1
2
|V||I| cos

(
φV − φI

)
.

Introducing the impedance for this circuit element

(1.31)
Z =
|V|ejφV

|I|ejφI

=
|V|
|I| ej(φV−φI),

this average power can be written in phasor form

(1.32)P =
1
2
|I|2Z,

with

(1.33)P = Re P.

Observe that we have to be careful to use the absolute value of the
current phasor I, since I2 differs in phase from |I|2. This explains
the conjugation in the [15] definition of complex power, which had
the form

(1.34)S = VrmsI∗rms.

1.8 radar cross section examples.

Flat plate.

(1.35)σmax =
4π (LW)2

λ2 .
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Figure 1.4: Square geometry for RCS example.

Figure 1.5: Sphere geometry for RCS example.

Sphere. In the optical limit the radar cross section for a sphere

(1.36)σmax = πr2.

Note that this is smaller than the physical area 4πr2.

Figure 1.6: Cylinder geometry for RCS example.

Cylinder.

(1.37)σmax =
2πrh2

λ
.

Tridedral corner reflector.

(1.38)σmax =
4πL4

3λ2 .

1.9 scattering from a sphere vs frequency.

Frequency dependence of spherical scattering is sketched in fig. 1.8.
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Figure 1.7: Trihedral corner reflector geometry for RCS example.

• Low frequency (or small particles): Rayleigh

σ =
(
πr2) 7.11 (κr)4 , κ = 2π/λ.. (1.39)

• Mie scattering (resonance),

σmax(A) = 4πr2 (1.40)

σmax(B) = 0.26πr2. (1.41)

• optical limit ( r � λ )

σ = πr2. (1.42)

Figure 1.8: Scattering from a sphere vs frequency (from Prof. Eleftheri-
ades’ class notes).

FIXME: Do I have a derivation of this in my optics notes?

1.10 eirp.

Prof. Eleftheriades introduces the term EIRP, the Effective Isotropic
Receiving Power, the product of power and gain PtGt, measured in
W.
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1.11 free space impedance.

In class we’ve seen

(1.43)η =
√

µ0

ε0
.

expressed as 120π ≈ 377. It seemed curious to me that this was an
exact value. With

• ε0 = 8.85× 10−12 C2/Nm2 (number from [11])

• µ0 = 4π × 10−7N/A2 (exact),

the numeric value of η/π is 119.945 (eta.jl), which is close to 120.
It’s pointed out in [25] that this is just the consequence of using
c = 3× 108m/s.

This can be seen by writing η in an alternate form

(1.44)

η =
1

cε0
= µ0c
= (4π × 10−7N/A2)(3× 108m/s)
= 120πNm/A2s
= 120πΩ.

1.12 notation.

• Time average. Both Prof. Eleftheriades and the text [5] use
square brackets [· · ·] for time averages, not 〈· · ·〉. Was that an
engineering convention?

• Bold vectors are usually phasors, with (bold) calligraphic
script used for the time domain fields. Example: E(x, y, z, t) =
êE(x, y)ej(ωt−kz),E(x, y, z, t) = Re E.

1.13 problems.
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Exercise 1.1 Max power density and directivity. (2015 ps1, p1)

The power radiated by a lossless antenna is 10 W. The correspond-
ing radiation intensity is given by,

U = B0 cos3 θ, 0 ≤ θ < π/2, 0 ≤ φ < 2π. (1.45)

Calculate

a. the maximum power density at a distance of 1 km.

b. the directivity of the antenna (dimensionless and dB).

Answer for Exercise 1.1

Part a. The radiated power density is

Wr(r, θ) =
U
r2 =

B0 cos3 θ

r2 , W/m2, (1.46)

with the maximum at θ = 0 of

(1.47)Wr(r)|max =
B0

r2 , W/m2.

Since the average power density is

(1.48)

Pav =
‹

UdΩ

= 2πB0

ˆ π/2

0
cos3 θ sin θdθ

= −2πB0

ˆ π/2

0
cos3 θd cos θ

= 2πB0
cos4 θ

4

∣∣∣∣0
π/2

=
πB0

2
= 10 (W),

the constant B0 = 20/π ≈ 6.37W, so the maximum power density
at 1 km is

Wr(1 km)|max =
20
π
× 10−6 ≈ 6.37× 10−6 (W/m2). (1.49)
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Part b. The maximum directivity of the antenna is

(1.50)

D0 = 4π
Umax

Prad

= 4π
Umax

Pav

=
4���πB0

�
��πB0/2

= 8,

so the directivity is

D = 8 cos3 θ. (1.51)

In dB the maximum directivity is

D0 = 10 log10 8 = 9 dB. (1.52)

Exercise 1.2 Directivity and free space loss. (2015 ps1, p2)

A satellite dish has a diameter d = 1.5m and an aperture effi-
ciency of 70%. Calculate the directivity of the dish at 12 GHz. If
the distance from a geostationary satellite is 37,000 km calculate
the corresponding free-space loss in dB.
Answer for Exercise 1.2

Ignoring any concavity in the dish (which is probably parabolic,
with physical area somewhere between πr2, and 2π2), the maxi-
mum effective area is

(1.53)

Aem = εemAp

= 0.7π0.752

= 0.39π

= 1.24 (m2).

The maximum directivity is

(1.54)

D0 =
4πAem

λ2

=
4πAemν2

c2

= 4π × 1.24 m2 ×
(

12× 109 s−1
)2

/
(
3× 108 m/s

)2

= 2.5× 104.
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The free-space loss factor at R = 37× 106 m is

(1.55)

(
λ

4πR

)2

=
( c

4πRν

)2

=

 3× 108 m/s

4π
(
37× 106 m

) (
12× 109 s−1

)
2

= 2.9× 10−21

= −205 dB.

Exercise 1.3 Approximating directivity. (2015 ps1, p3)

A beam antenna has half-power beamwidths of 30◦ and 35◦ in
orthogonal planes intersecting at the maximum of the mainbeam.
Determine the approximate maximum directivity

Answer for Exercise 1.3

(1.56)

D0 ≈
4π

Θ1rΘ2r

=
4× 1802

π(30)(35)
= 39.3.

Exercise 1.4 Polarization power loss. (2015 ps1, p4)

Transmitting and receiving antennas operating at 1 GHz have
gains of 20 and 15 dB respectively and are separated by a distance
of 1 km. Find the power delivered to a matched load when the
input power is 150 W and when

a. both antennas are polarization matched.

b. One antenna is linearly polarized and the other is circularly
polarized.

Answer for Exercise 1.4

Part a. Answering this requires an application of the Friis trans-
mission equation. First note that the gains in non-dB units are

(1.57a)G1 = 1020/10,
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(1.57b)G2 = 1015/10.

The wavelength is

(1.58)

λ =
c
ν

=
3× 108 m/s

109 s−1

= 0.3 m.

From the Friis equation, the receiving antenna has power

(1.59)

Pr = Pt

(
λ

4πR

)2

G1G2

= 150 W
(

0.3 m
4π(103 m)

)2

103.5

= 0.27 mW.

Part b. Suppose that the linear polarization vector is
(1.60)ρ̂1 = x̂,

and the circular polarization vector is

(1.61)ρ̂2 =
1√
2

(
x̂ + jŷ

)
.

The polarization factor is

(1.62)|ρ̂1 · ρ̂2|
2 =

1
2

,

so the power found in eq. (1.59) must be reduced by 50 % when
there is a linear vs. circular polarization mismatch. Rotating one of
these polarization vectors, say the linear polarization vector, does
not change the result. For example, let

(1.63)ρ̂1 =
1√

a2 + b2
(ax̂ + bŷ) .

The polarization factor is now

(1.64)

|ρ̂1 · ρ̂2|
2 =

∣∣∣∣∣ a√
2(a2 + b2)

+
jb√

2(a2 + b2)

∣∣∣∣∣
2

=
1

2(a2 + b2)
(
a2 + b2)

=
1
2

,
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yielding the same factor of two reduction in power.

Exercise 1.5 Transmission power determination. (2015 ps1, p5)

A repeater link consists of a transmitter and a receiver at 10 GHz
in a line-of-sight arrangement of distance 10km. The transmitting
and receiving antennas are identical horns with gain over isotropic
equal to 15 dB. For acceptable signal-to-noise ratio, the power
received must be greater than 10 nW. Loss due to polarization
mismatch is not expected to exceed 3 dB. Determine the minimum
transmitted power that should be used.

Answer for Exercise 1.5

This is another Friis equation application. Each of the respective
gains (converted from dB) are

(1.65)G = 1015/10 W.

The polarization loss factor is

(1.66)|ρ̂r · ρ̂t|
2 ≤ 10−3/10.

The wavelength is

(1.67)λ =
3× 108 m/s

1010 s−1

= 3× 10−2 m.

Put together we are looking for a value of Pt at least that of

(1.68)

Pr

Pt
=

10−8 W
Pt

=
(

0.03 m
4π104 m

)2 (
103/2

)2
10−0.3

= 2.9× 10−11,

or

(1.69)Pt ≥ 350 W.



18 fundamental parameters of antennas .

Exercise 1.6 Radar cross section. (2015 ps1, p6)

A rectangular X-band horn, with aperture dimensions 5.5cm×
7.4cm and a gain of 16.3 dB at 10 GHz, transmits and receives
power scattered by the objects specified below. In each case,
determine the maximum scattered power delivered to the load
when the distance between the horn and scattering object is nλ,
where n is

1. 200

2. 500.

The scattering objects to consider are a perfectly conducting

a. sphere of radius a = 5λ,

b. plate of dimensions 10λ× 10λ.

Answer for Exercise 1.6

This is an application of the Radar Cross Section equation

(1.70)

Pr

Pt
= σ

G2

4π

(
λ

4πn2λ2

)2

= σ
G2

4π

(
1

4πn2λ

)2

.

The same gain is used for transmission and reception, since both
are for the same horn. That gain (not in dB) is

(1.71)G = 1016.3/10

= 43.

The wavelength is

(1.72)λ =
3× 108 m/s

1010 m
= 0.03 m.

Part a. For the sphere the scattering area is

(1.73)
σ = πr2

= π(5λ)2

= 25πλ2,
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so the ratio of delivered power to the transmitted power is

(1.74)

Pr

Pt
= 25πλ2 G2

4π

(
1

4πn2λ

)2

=
25(43)2

64π2n4

=
73
n4 .

For the n = 200, 500 cases respectively, the delivered power ratio is

1. n = 200

(1.75)
Pr

Pt
=

73
2004

= 4.6× 10−8.

2. R = 500λ

(1.76)
Pr

Pt
=

73
5004

= 1.2× 10−9.

Part b. For the plate the scattering area is

(1.77)

σ = 4π
(LW)2

λ2

= 4π

(
100λ2)2

λ2

= 4πλ2 × 104,

so the ratio of delivered power to the transmitted power is

(1.78)

Pr

Pt
= 4πλ2 × 104 G2

4π

(
1

4πn2λ

)2

=
(43)2 × 104

16π2n4

=
1.2× 105

n4 .

For the n = 200, 500 cases respectively, the delivered power ratio is
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1. n = 200

(1.79)Pr

Pt
=

1.2× 105

2004

= 7.3× 10−5.

2. R = 500λ

(1.80)Pr

Pt
=

1.2× 105

5004

= 1.9× 10−6.

Exercise 1.7 Directivities for a short horizontal electrical dipole.

In [24] a field for which directivities can be calculated exactly
was used in comparisons of some directivity approximations

(1.81)E = E0
(
cos θ cos φθ̂− sin φφ̂

)
.

(Observe that an inverse radial dependence in E0 must be implied
here for this to be a valid far-field representation of the field.)

Show that Tai & Pereira’s formula gives D1 = 3, and D2 = 1
respectively for this field.

Calculate the exact directivity for this field.

Answer for Exercise 1.7

The field components are

(1.82a)Eθ = E0 cos θ cos φ,

(1.82b)Eφ = −E0 sin φ.

Using eq. (1.91) from the paper, the directivities are

(1.83)

D1 =
2´ π

0 cos2 θ sin θdθ

=
2

− 1
3 cos3 θ

∣∣π
0

= 3,
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and

(1.84)

D2 =
2´ π

0 sin θdθ

=
2

− cos θ|π0
= 1.

To find the exact directivity, first the Poynting vector is required.
That is

P =
|E0|2

2cµ0

(
cos θ cos φθ̂− sin φφ̂

)
×
(
r̂ ×

(
cos θ cos φθ̂− sin φφ̂

))
=
|E0|2

2cµ0

(
cos θ cos φθ̂− sin φφ̂

)
×
(
cos θ cos φφ̂ + sin φθ̂

)
=
|E0|2r̂
2cµ0

(
cos2 θ cos2 φ + sin2 φ

)
,

(1.85)

so the radiation intensity is

(1.86)U(θ, φ) ∝ cos2 θ cos2 φ + sin2 φ.

The θ̂, and φ̂ contributions to this intensity, and the total intensity
are all plotted in fig. 1.9

FIXME: did I save these under the right paths? Recall thetacap
and phicap reversed.

(a) (b) (c)

Figure 1.9: Radiation intensity.
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Given this the total radiated power is

(1.87)
Prad =

ˆ 2π

0

ˆ π

0

(
cos2 θ cos2 φ + sin2 φ

)
sin θdθdφ

=
8π

3
.

Observe that the radiation intensity U can also be decomposed
into two components, one for each component of the original E
phasor.

(1.88a)Uθ = cos2 θ cos2 φ,

(1.88b)Uφ = sin2 φ.

This decomposition allows for expression of the partial directivities
in these respective (orthogonal) directions

Dθ =
4πUθ

Prad
=

3
2

cos2 θ cos2 φ, (1.89a)

Dφ =
4πUφ

Prad
=

3
2

sin2 φ. (1.89b)

The maximum of each of these partial directivities is both 3/2,
giving a maximum directivity of

D0 = Dθ |max + Dφ

∣∣
max = 3, (1.90)

the exact value from the paper.

Exercise 1.8 E and H plane directivities.

In [24] directivities associated with the half power beamwidths
are given as

(1.91a)D1 =
|Eθ |2max

1
2

´ π
0 |Eθ(θ, 0)|2 sin θdθ

,

(1.91b)D2 =

∣∣Eφ

∣∣2
max

1
2

´ π
0

∣∣Eφ(θ, π/2)
∣∣2 sin θdθ

,
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whereas [5] lists these as

(1.92a)
1

D1
=

1
2 ln 2

ˆ Θ1r/2

0
sin θdθ,

(1.92b)
1

D2
=

1
2 ln 2

ˆ Θ2r/2

0
sin θdθ.

Reconcile these pairs of relations.

Answer for Exercise 1.8

TODO.

Exercise 1.9 Radar cross section. (2015 ps2, p1)

Consider a flat rectangular metallic plate of physical area Ap

(m2). The incident normal power density is Wi (W/m2). Now con-
sider the plate as a receiving and re-transmitting antenna having
an effective aperture equal to its physical area (the plate is electri-
cally large). Based on this idea, show that approximately the radar
scattering cross section (RCS) of the plate is given by

(1.93)σ =
4πA2

p

λ2 ,

as we have seen in class.
Answer for Exercise 1.9

A few simplifying assumptions are required to show this result:

1. All the power received is re-radiated as if from a point source.

2. The plate is a perfectly efficient re-radiator.

3. The effective aperture Aeff is also the maximum effective aper-
ture, so it (and the directivity) has no directional dependence.

The scattering geometry for this problem is sketched in fig. 1.10.
First note that the definition of the radar cross section σ is

σ ≡ lim
R→∞

4πR2 Ws

Wi
, (1.94)

where Ws is the scattered power density, Wi is the incident power
density, and R is the distance from the scattering object to the
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Figure 1.10: Scattering off of plane surface.

measurement point. Without the point source approximation for
the re-radiation of the incident power, this quantity would depend
on the orientation of the plate with respect to the observation.

With constant normal incident power density, the captured
power is

Pc = Wi Ap, (1.95)

where Ap is the area of the plate. Treating all the power as radiated
as if from a point source, measured at distance R from the plate,
and assuming a perfect radiator (i.e. G = D0), the scattered power
density at this point of observation is

Ws =
PcG

4πR2 =
PcD0

4πR2 . (1.96)

The directivity follows from the assumption that the effective area
equals the physical area, since that means

Aeff ≡
λ2D0

4π
= Ap, (1.97)

so

D0 =
4πAp

λ2 . (1.98)

The scattered power density at the receiver is

(1.99)
Ws =

Pc

4πR2 D0

=
Wi Ap

4πR2

4πAp

λ2 .
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Plugging this into eq. (1.94), and dropping the limit that becomes
irrelevant, gives

(1.100)
σ =���4πR2��Wi Ap

���4πR2
4πAp

λ2
1

��Wi

=
4πA2

p

λ2 ,

as desired.

Exercise 1.10 Testing antenna gain. (2015 ps2, p2)

One way to measure the absolute gain of an antenna under test
(AUT) is to use a “standard-gain” antenna (usually a horn) which
has a known gain Gsg. Consider a two antenna setup, where port
#1 is connected to a transmitting antenna Gx. First, the second
antenna connected to port #2 is the standard-gain one. Then at port
#2 we connect the unknown antenna under test GAUT. Show that,

(1.101)
PAUT

2

Psg
2

=
GAUT

Gsg
,

where the left-hand side of the above equation represents the ratio
of the powers received by the antenna under test and the standard-
gain antenna.
Answer for Exercise 1.10

The Friis equation can be used for this measurement task. For the
respective set of antenna configurations, and for fixed transmission
power, there are two such equations

(1.102a)
PAUT

2
Pt

=
(

λ

4πR

)2

GAUTGt,

(1.102b)
Psg

2
Pt

=
(

λ

4πR

)2

GsgGt,

where the transmission power is Pt and transmission antenna
gain is Gt. That transmit antenna power and gain need not be
known, since dividing these equations cancels the common factors,
including those, leaving

(1.103)
PAUT

2

Psg
2

=
GAUT

Gsg
,
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as desired.
This procedure assumes that the standard gain antenna and the

antenna under test have identical polarization, and that neither is
orthogonally polarized with respect to the antenna at port #1.



2
M A X W E L L’ S E Q U AT I O N S .

2.1 review.

For reasons that are yet to be seen (and justified), we work with
a generalization of Maxwell’s equations to include electric AND
magnetic charge densities.

(2.1a)∇ × E = −M− ∂B

∂t

(2.1b)∇ ×H = J +
∂D

∂t

(2.1c)∇ ·D = qe

(2.1d)∇ · B = qm.

Assuming a phasor relationships of the form E = Re
(
E(r)ejωt)

for the fields and the currents, these reduce to

(2.2a)∇ × E = −M − jωB

(2.2b)∇ ×H = J + jωD

(2.2c)∇ ·D = ρ

(2.2d)∇ · B = ρm.

In engineering the fields

• E(x, t) : Electric field intensity [V/m] (Volts/meter)

• H(x, t) : Magnetic field intensity [A/m] (Amperes/meter)

are designated the primary fields, whereas
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• D(x, t) : Electric flux density (or displacement vector) [C/m]
(Coulombs/meter)

• B(x, t) : Magnetic flux density [W/m2] (Webers/square me-
ter)

are designated the induced fields. The currents and charges are

• J(x, t) : Electric current density [A/m2] (Amperes/square
meter)

• M(x, t) : Magnetic current density [V/m2] (Volts/square me-
ter)

• qe(x, t) : Electric charge density [C/m3] (Coulombs/cubic
meter)

• qm(x, t) : Magnetic charge density [W/m3] (Webers/cubic
meter)

Because ∇ · (∇× f) = 0 for any (sufficiently continuous) vector f,
divergence relations between the currents and the charges follow
from eq. (2.2)

(2.3)0 = −∇ ·M − jω∇ · B
= −∇ ·M − jωρm,

and

(2.4)0 = ∇ · J + jω∇ ·D
= ∇ · J + jωρ,

These are the phasor forms of the continuity equations

(2.5a)∇ ·M = −jωρm

(2.5b)∇ · J = −jωρ.
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Integral forms. The integral forms of Maxwell’s equations follow
from Stokes’ theorem and the divergence theorems. Stokes’ theo-
rem is a relation between the integral of the curl and the outwards
normal differential area element of a surface, to the boundary of
that surface, and applies to any surface with that boundary

(2.6)
¨

dA · (∇ × f) =
‰

f · dl.

The divergence theorem, a special case of the general Stokes’ theo-
rem is

(2.7)
˚

V
∇ · f dV =

¨
∂V

f · dA,

where the integral is over the surface of the volume, and the
area element of the bounding integral has an outwards normal
orientation.

See [20] for a derivation of this and various generalizations.
Applying these to eq. (2.2) gives

(2.8a)
‰

dl · E = −
¨

dA ·
(
M + jωB

)

(2.8b)
‰

dl ·H =
¨

dA ·
(
J + jωD

)

(2.8c)
¨

∂V
dA ·D =

˚
ρ dV

(2.8d)
¨

∂V
dA · B =

˚
ρm dV.

2.2 constitutive relations.

For linear isotropic homogeneous materials, the following constitu-
tive relations apply

• D = εE

• B = µH
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• J = σE, Ohm’s law.

where

• ε = εrε0, is the permittivity (F/m, Farads/meter ).

• µ = µrµ0, is the permeability (H/m, Henries/meter), µ0 =
4π × 10−7.

• σ, is the conductivity ( 1
Ωm, where 1/Ω is a Siemens.)

In AM radio, will see ferrite cores with the inductors, which intro-
duces non-unit µr. This is to increase the radiation resistance.

2.3 boundary conditions.

For good electric conductor E = 0. For good magnetic conductor
B = 0.

(more on class slides)

2.4 linear time invariant.

Linear time invariant meant that the impulse response h(t, t′) was
a function of just the difference in times h(t, t′) = h(t− t′).

2.5 green’s functions.

For electromagnetic problems the impulse function sources δ(r− r′)
also has a direction, and can yield any of Ex, Ey, Ez. A tensor
impulse response is required. Some overview of an approach that
uses such tensor Green’s functions is outlined on the slides. It
gets really messy since we require four tensor Green’s functions
to handle electric and magnetic current and charges. Because of
this complexity, we don’t go down this path, and use potentials
instead.

In §3.5 [5] and the class notes, a verification of the spherical
wave form for the Helmholtz Green’s function was developed. This
was much simpler than the same verification I did in [19]. Part
of the reason for that was that I worked in Cartesian coordinates,
which made things much messier. The other part of the reason,



2.6 tangential and normal field components . 31

for treating a neighbourhood of |r− r′| ∼ 0, I verified the convo-
lution, whereas Prof. Eleftheriades argues that a verification that´ (

∇2 + k2
)

G(r, r′)dV ′ = 1 is sufficient. Balanis, on the other hand,
argues that knowing the solution for k 6= 0 must just be the solution
for k = 0 (i.e. the Poisson solution) provided it is multiplied by the
e−jkr factor. Note that back when I did that derivation, I used a
different sign convention for the Green’s function, and in QM we
used a positive sign instead of the negative in e−jkr.

2.6 tangential and normal field components.

The integral forms of Maxwell’s equations can be used to derive
relations for the tangential and normal field components to the
sources. These relations were mentioned in class, but it is use-
ful to go over the derivation. This isn’t all review from first year
electromagnetism since we are now using a magnetic source modi-
fications of Maxwell’s equations. The derivation below follows that
of [3] closely, but I am trying it myself to ensure that I understand
the assumptions.

The two infinitesimally thin pillboxes of fig. 2.1 are used in the
argument. Maxwell’s equations with both magnetic and electric

(a) (b)

Figure 2.1: Pillboxes for tangential and normal field relations

sources are

∇× E = −∂B

∂t
−M (2.9a)

∇×H = J +
∂D

∂t
(2.9b)
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∇ ·D = ρe (2.9c)

∇ ·B = ρm. (2.9d)

After application of Stokes’ and the divergence theorems Maxwell’s
equations have the integral form

‰
E · dl = −

ˆ
dA ·

(
∂B

∂t
+ M

)
(2.10a)

‰
H · dl =

ˆ
dA ·

(
∂D

∂t
+ J

)
(2.10b)

ˆ
∂V

D · dA =
ˆ

V
ρe dV (2.10c)

ˆ
∂V

B · dA =
ˆ

V
ρm dV. (2.10d)

Maxwell-Faraday equation. First consider one of the loop integrals,
like eq. (2.10a). For an infinitesimal loop, that integral is
‰

E · dl ≈ E
(1)
x ∆x + E(1) ∆y

2
+ E(2) ∆y

2
− E

(2)
x ∆x − E(2) ∆y

2
− E(1) ∆y

2

≈
(
E

(1)
x − E

(2)
x

)
∆x +

1
2

∂E(2)

∂x
∆x∆y +

1
2

∂E(1)

∂x
∆x∆y.

(2.11)

We let ∆y→ 0 which kills off all but the first difference term.
The RHS of eq. (2.11) is approximately

(2.12)−
ˆ

dA ·
(

∂B

∂t
+ M

)
≈ −∆x∆y

(
∂Bz

∂t
+ Mz

)
.
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If the magnetic field contribution is assumed to be small in com-
parison to the magnetic current (i.e. infinite magnetic conductance),
and if a linear magnetic current source of the form is also assumed

(2.13)Ms = lim
∆y→0

(M · ẑ) ẑ∆y,

then the Maxwell-Faraday equation takes the form

(2.14)
(
E

(1)
x − E

(2)
x

)
∆x ≈ −∆xMs · ẑ.

While M may have components that are not normal to the interface,
the surface current need only have a normal component, since only
that component contributes to the surface integral.

The coordinate expression of eq. (2.14) can be written as

(2.15)
−Ms · ẑ =

(
E(1) − E(2)

)
· (ŷ × ẑ)

=
((

E(1) − E(2)
)
× ŷ

)
· ẑ.

This is satisfied when

(
E(1) − E(2)

)
× n̂ = −Ms, (2.16)

where n̂ is the normal between the interfaces. I’d failed to under-
stand when reading this derivation initially, how the B contribution
was killed off. i.e. If the vanishing area in the surface integral kills
off the B contribution, why do we have a M contribution left. The
key to this is understanding that this magnetic current is consid-
ered to be confined very closely to the surface getting larger as ∆y
gets smaller.

Also note that the units of Ms are volts/meter like the electric
field (not volts/squared-meter like M.)

Ampere’s law. As above, assume a linear electric surface current
density of the form

(2.17)Js = lim
∆y→0

(J · n̂) n̂∆y,

in units of amperes/meter (not amperes/meter-squared like J.)
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To apply the arguments above to Ampere’s law, only the sign
needs to be adjusted

(
H(1) −H(2)

)
× n̂ = Js. (2.18)

Gauss’s law. Using the cylindrical pillbox surface with radius ∆r,
height ∆y, and top and bottom surface areas ∆A = π (∆r)2, the
LHS of Gauss’s law eq. (2.10c) expands to
ˆ

∂V
D · dA ≈ D

(2)
y ∆A + D

(2)
ρ 2π∆r

∆y
2

+ D
(1)
ρ 2π∆r

∆y
2
−D

(1)
y ∆A

≈
(
D

(2)
y −D

(1)
y

)
∆A.

(2.19)

As with the Stokes integrals above it is assumed that the height
is infinitesimal with respect to the radial dimension. Letting that
height ∆y → 0 kills off the radially directed contributions of the
flux through the sidewalls.

The RHS expands to approximately

(2.20)
ˆ

V
ρe dV ≈ ∆A∆yρe.

Define a highly localized surface current density (coulombs/meter-
squared) as

(2.21)σe = lim
∆y→0

∆yρe.

Equating eq. (2.20) with eq. (2.19) gives

(2.22)
(
D

(2)
y −D

(1)
y

)
∆A = ∆Aσe,

or

(
D(2) −D(1)

)
· n̂ = σe. (2.23)
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Gauss’s law for magnetism. The same argument can be applied
to the magnetic flux. Define a highly localized magnetic surface
current density (webers/meter-squared) as

(2.24)σm = lim
∆y→0

∆yρm,

yielding the boundary relation

(
B(2) −B(1)

)
· n̂ = σm. (2.25)

2.7 energy momentum conservation.

Maxwell’s equations with magnetic sources. In this section, the form
of Maxwell’s equations to be used are expressed in terms of E and
H, assume linear media, and do not assume a phasor representa-
tion

(2.26a)∇ × E = −M− µ0
∂H

∂t

(2.26b)∇ ×H = J + ε0
∂E

∂t

(2.26c)∇ · E = ρ/ε0

(2.26d)∇ ·H = ρm/µ0.

Energy momentum conservation. With magnetic sources the Poynt-
ing and energy conservation relationship has to be adjusted slightly.
Let’s derive that result, starting with the divergence of the Poynting
vector

(2.27)
∇ · (E ×H) = H · (∇ × E)− E · (∇ ×H)

= −H ·
(
µ0∂tH + M

)
− E · (J + ε0∂tE)

= −µ0H · ∂tH−H ·M− ε0E · ∂tE − E · J,

or

1
2

∂

∂t
(
ε0E

2 + µ0H
2) + ∇ · (E×H) = −H ·M− E ·J. (2.28)
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Momentum conservation. The usual relationship is only modified
by one additional term. Recall from electrodynamics [18] that
eq. (2.28) (when the magnetic current density M is omitted) is just
one of four components of the energy momentum conservation
equation

∂µTµν = −1
c

Fνλ jλ. (2.29)

Note that eq. (2.29) was likely not in SI units. The next task is to
generalize this classical relationship to incorporate the magnetic
sources used in antenna theory. With an eye towards the relativistic
nature of the energy momentum tensor, it is natural to assume
that the remainder of the energy momentum tensor conservation
relation can be found by taking the time derivatives of the Poynting
vector.

(2.30)

∂

∂t
(E ×H) =

∂E

∂t
×H + E × ∂H

∂t

=
1
ε0

(∇×H− J)×H +
1
µ0

E × (−∇× E −M) ,

or

(2.31)

1
c2

∂

∂t
(E ×H) + µ0J ×H + ε0E ×M

= −µ0H× (∇ ×H)

− ε0E × (∇ × E) .

The µ0J×H = J× B is a portion of the Lorentz force equation
in its density form. To put eq. (2.31) into the desired form, the
remainder of the Lorentz force force equation ρE = ε0E∇ · E must
be added to both sides. To extend the magnetic current term to its
full dual (magnetic) Lorentz force structure, the quantity to add to
both sides is ρmH = µ0H∇ ·H. Performing these manipulations
gives

(2.32)
1
c2

∂

∂t
(E ×H) + ρE + µ0J ×H + ρmH + ε0E ×M

= µ0 (H∇ ·H−H× (∇×H)) + ε0 (E∇ · E− E× (∇× E)) .

It seems slightly surprising the sign of the magnetic equivalent
of the Lorentz force terms have an alternation of sign. This is,
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however, consistent with the duality transformations outlined in
([5] table 3.2)

(2.33a)ρ→ ρm

(2.33b)J→M

(2.33c)µ0 → ε0

(2.33d)E→ H

(2.33e)H→ −E,

for

ρE + µ0J×H→ ρmH + ε0M× (−E) = ρmH + ε0E×M. (2.34)

Comfortable that the LHS has the desired structure, the RHS can
expressed as a divergence. Just expanding one of the differences of
vector products on the RHS does not obviously show that this is
possible, for example

(2.35)

ea · (E∇ · E − E × (∇ × E)) = Ea∂bEb − εabcEbεcrs∂rEs

= Ea∂bEb − δ[rs]
ab Eb∂rEs

= Ea∂bEb − Eb (∂aEb − ∂bEa)
= Ea∂bEb − Eb∂aEb + Eb∂bEa.

This happens to equal

∇ ·
((

EaEb −
1
2

δabE
2
)

eb

)
= ∂b

(
EaEb −

1
2

δabE
2
)

= Eb∂bEa + Ea∂bEb −
1
2

δab2Ec∂bEc

= Eb∂bEa + Ea∂bEb − Eb∂aEb.
(2.36)

This allows a final formulation of the remaining energy momentum
conservation equation in its divergence form. Let

(2.37)Tab = ε0

(
EaEb −

1
2

δabE
2
)

+ µ0

(
HaHb −

1
2

δabH
2
)

,
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so that the remaining energy momentum conservation equation,
extended to both electric and magnetic sources , is

1
c2

∂

∂t
(E×H) + (ρE + µ0J×H)

+ (ρmH + ε0E×M) = ea∇ ·
(

Tabeb

)
.

(2.38)

On the LHS we have the rate of change of momentum density, the
electric Lorentz force density terms, the dual (magnetic) Lorentz
force density terms, and on the RHS the the momentum flux terms.

In the frequency domain. With frequency domain fields E = Re Eejωt

and H = Re Hejωt. Using the electric field dot product as an exam-
ple, note that we can write

(2.39)E =
1
2

(
Eejωt + E∗e−jωt

)
,

so

(2.40)

E2 =
1
2

(
Eejωt + E∗e−jωt

)
· 1

2

(
Eejωt + E∗e−jωt

)
=

1
4

(
E2e2jωt + E · E∗ + E∗ · E + (E∗)2 e−2jωt

)
=

1
2

Re
(

E · E∗ + E2e2jωt
)

.

Similarly, for the cross product

E×H =
1
4

(
E×He2jωt + E×H∗ + E∗ ×H + (E∗ ×H∗) e−2jωt

)
=

1
2

Re
(

E×H∗ + E×He2jωt
)

.

(2.41)

Given phasor representations of the sources M = Mejωt,J = Jejωt,
eq. (2.28) can be recast into (a messy) phasor form

(2.42)

1
2

Re
1
2

∂

∂t

(
ε0E · E∗ + µ0H ·H∗ + ε0E2e2jωt + µ0H2e2jωt

)
+

1
2

Re∇ ·
(

E ×H∗ + E ×He2jωt
)

=
1
2

Re
(
−H ·M∗ − E · J∗ −H ·Me2jωt − E · Je2jωt

)
.
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All the time dependence has been moved into the exponential
factors, so the ε0E · E∗ + µ0H · H∗ terms are killed by the time
derivative operator. Averaging over one period kills the rest of the
oscillatory terms, leaving just

0 = ∇ · (E×H∗) + H ·M∗ + E · J∗. (2.43)

Comparison to the reciprocity theorem result. The reciprocity the-
orem had a striking similarity to the Poynting theorem above,
which isn’t suprising since both were derived by calculating the
divergence of a Poynting like quantity. Here’s a repetition of the
reciprocity divergence calculation without the single frequency
(phasor) assumption

∇·
(
E(a) ×H(b) − E(b) ×H(a)

)
= H(b) ·

(
∇× E(a)

)
− E(a) ·

(
∇×H(b)

)
−H(a) ·

(
∇× E(b)

)
+ E(b) ·

(
∇×H(a)

)
= −H(b) ·

(
µ0∂tH

(a) + M(a)
)
− E(a) ·

(
J(b) + ε0∂tE

(b)
)

+ H(a) ·
(

µ0∂tH
(b) + M(b)

)
+ E(b) ·

(
J(a) + ε0∂tE

(a)
)

= ε0

(
E(b) · ∂tE

(a) − E(a) · ∂tE
(b)
)

+ µ0

(
H(a) · ∂tH

(b) −H(b) · ∂tH
(a)
)

+ H(a) ·M(b) −H(b) ·M(a) + E(b) ·J(a) − E(a) ·J(b).
(2.44)

What do these time derivative terms look like in the frequency
domain?

E(b) · ∂tE
(a) =

1
4

(
E(b)ejωt + E(b)∗e−jωt

)
· ∂t

(
E(a)ejωt + E(a)∗e−jωt

)
=

jω
4

(
E(b)ejωt + E(b)∗e−jωt

)
·
(

E(a)ejωt − E(a)∗e−jωt
)

=
ω

4

(
jE(a) · E(b)∗ − jE(b) · E(a)∗ + jE(a) · E(b)e2jωt − jE(a)∗

· E(b)∗e−2jωt
)

=
1
2

Re
(

jωE(a) · E(b)∗ + jωE(a) · E(b)e2jωt
)

.

(2.45)
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Permuting indexes and taking the difference kills all the time
dependentent terms, even without averaging

E(b) · ∂tE
(a) − E(a) · ∂tE

(b)

=
1
2

Re
(

jω
(

E(a) · E(b)∗ − E(b) · E(a)∗ + E(a) · E(b)e2jωt − E(b) · E(a)e2jωt
))

= −ω Im
(

E(a) · E(b)∗
)

,

(2.46)

so we have

0 = ∇ · Re
(

E(a) ×H(b)∗ − E(b) ×H(a)∗
)

+ ω Im
(

ε0E(a) · E(b)∗ + µ0H(a) ·H(b)∗
)

+ Re
(
−H(a) ·M(b)∗ + H(b) ·M(a)∗ − E(b) · J(a)∗ + E(a) · J(b)∗

)
.

(2.47)

Followup Questions. FIXME: TODO.

1. What do the energy momentum conservation equations look
like in geometric algebra form with magnetic sources?

2. What do the energy momentum conservation equations look
like in tensor form with magnetic sources?

2.8 duality transformation.

In a discussion of Dirac’s monopoles, [16] §6.12 introduces a duality
transformation, forming electric and magnetic fields by forming
a rotation that combines a different pair of electric and magnetic
fields. In SI units that transformation becomes

(2.48a)

[
E

ηH

]
=

[
cos θ sin θ

− sin θ cos θ

] [
E′

ηH′

]

(2.48b)

[
D

B/η

]
=

[
cos θ sin θ

− sin θ cos θ

] [
D′

B′/η

]
,
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where η =
√

µ0/ε0. It is left as an exercise to the reader to show
that application of these to Maxwell’s equations

∇ · E = ρe/ε0 (2.49a)

∇ ·H = ρm/µ0 (2.49b)

−∇× E− ∂tB = Jm (2.49c)

∇×H− ∂tD = Je, (2.49d)

determine a similar relation between the sources. That transforma-
tion of Maxwell’s equation is

∇ ·
(
cos θE′ + sin θηH′

)
= ρe/ε0 (2.50a)

∇ ·
(
− sin θE′/η + cos θH′

)
= ρm/µ0 (2.50b)

−∇×
(
cos θE′ + sin θηH′

)
− ∂t

(
− sin θηD′ + cos θB′

)
= Jm

(2.50c)

∇×
(
− sin θE′/η + cos θH′

)
− ∂t

(
cos θD′ + sin θB′/η

)
= Je.

(2.50d)

A bit of rearranging gives[
ηρe

ρm

]
=

[
cos θ sin θ

− sin θ cos θ

] [
ηρ′e

ρ′m

]
(2.51a)

[
ηJe

Jm

]
=

[
cos θ sin θ

− sin θ cos θ

] [
ηJ′e

J′m

]
. (2.51b)
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For example, with ρm = Jm = 0, and θ = π/2, the transformation
of sources is

ρ′e = 0

J′e = 0

ρ′m = ηρe

J′m = ηJe,

(2.52)

and Maxwell’s equations then have only magnetic sources

∇ · E′ = 0 (2.53a)

∇ ·H′ = ρ′m/µ0 (2.53b)

−∇× E′ − ∂tB
′ = J′m (2.53c)

∇×H′ − ∂tD
′ = 0. (2.53d)

Of this relation Jackson points out that “The invariance of the
equations of electrodynamics under duality transformations shows
that it is a matter of convention to speak of a particle possessing
an electric charge, but not magnetic charge.” This is an interesting
comment, and worth some additional thought.

2.9 reciprocity theorem.

The class slides presented a derivation of the reciprocity theorem,
a theorem that contained the integral of

ˆ (
E(a) ×H(b) − E(b) ×H(a)

)
· dS = · · · (2.54)

over a surface, where the RHS was a volume integral involving
the fields and (electric and magnetic) current sources. The idea
was to consider two different source loading configurations of the
same system, and to show that the fields and sources in the two
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configurations can be related. To derive the result in question, a
simple way to start is to look at the divergence of the difference of
cross products above. This will require the phasor form of the two
cross product Maxwell’s equations

(2.55a)∇ × E = −(M + jωµ0H)

(2.55b)∇ ×H = J + jωε0E,

so the divergence is

(2.56)

∇ ·
(

E(a) ×H(b) − E(b) ×H(a)
)

= H(b) ·
(
∇ × E(a)

)
− E(a) ·

(
∇ ×H(b)

)
−H(a) ·

(
∇ × E(b)

)
+ E(b) ·

(
∇ ×H(a)

)
= −H(b) ·

(
M(a) + jωµ0H(a)

)
− E(a) ·

(
J(b) + jωε0E(b)

)
+ H(a) ·

(
M(b) + jωµ0H(b)

)
+ E(b) ·

(
J(a) + jωε0E(a)

)
.

The non-source terms cancel, leaving

∇ ·
(

E(a) ×H(b) − E(b) ×H(a)
)

= −H(b) ·M(a) − E(a) · J(b) + H(a) ·M(b) + E(b) · J(a).
(2.57)

Should we be surprised to have a relation of this form? Probably
not, given that the energy momentum relationship between the
fields and currents of a single source has the form

∂

∂t
ε0

2
(
E2 + c2B2) + ∇ · 1

µ0
(E×B) = −E ·J. (2.58)

(this is without magnetic sources ). This initially suggests that
the reciprocity theorem can be expressed more generally in terms
of the energy-momentum tensor. However, there are some subtle
differences since the time domain products lead to averages in
terms of the real parts of conjugate pairs such as E×B→ E× B∗,
and E ·J→ E · J∗.
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Far field integral form. Employing the divergence theorem over a
sphere the identity above takes the form

(2.59)

ˆ
S

(
E(a) ×H(b) − E(b) ×H(a)

)
· r̂dS

=
ˆ

V

(
−H(b) ·M(a) − E(a) · J(b) + H(a) ·M(b) + E(b) · J(a)

)
dV

In the far field, the cross products are strictly radial. That surface
integral can be written as

(2.60)

ˆ
S

(
E(a) ×H(b) − E(b) ×H(a)

)
· r̂dS

=
1
µ0

ˆ
S

(
E(a) ×

(
r̂ × E(b)

)
− E(b) ×

(
r̂ × E(a)

))
· r̂dS

=
1
µ0

ˆ
S

(
E(a) · E(b) − E(b) · E(a)

)
dS

= 0.

The above expansions used eq. (2.64) to expand the terms of the
form

(2.61)(A × (r̂ × C)) · r̂ = A · C − (A · r̂) (C · r̂) ,

in which only the first dot product survives due to the transverse
nature of the fields. So in the far field we have a direct relation
between the fields and sources of two source configurations of the
same system of the form

ˆ
V

(
H(a) ·M(b) + E(b) · J(a)

)
dV =

ˆ
V

(
H(b) ·M(a) + E(a) · J(b)

)
dV.

(2.62)

Application to antenna theory. This is the underlying reason that
we are able to pose the problem of what an antenna can receive,
in terms of what the antenna can transmit. Prof. Eleftheriades
explained the the send-receive equivalence using the concepts of
a two-port network ([15], [22]). An alternate, and very intuitive,
explanation can be found in appendix A.1 [6], that directly related
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the current density sources and scalar current to the voltages in
those regions using an integral representation of the reciprocity
theorem.

Identities.

Lemma 2.1: Divergence of a cross product

∇ · (A× B) = B (∇×A)−A (∇× B) .

Proof.

(2.63)
∇ · (A × B) = ∂aεabc AbBc

= εabc(∂a Ab)Bc − εbac Ab(∂aBc)
= B · (∇ × A)− B · (∇ × A).

Lemma 2.2: Triple cross product dotted

(A× (B× C)) ·D = (A · C) (B ·D)− (A · B) (C ·D) .

Proof.

(2.64)

(A × (B × C)) ·D = εabc AbεrscBrCsDa
= δrs

[ab] AbBrCsDa

= AsBrCsDr − ArBrCsDs
= (A · C) (B ·D)− (A · B) (C ·D) .

2.10 notation.

Some notes on notation for this chapter and the coverage of this
material in class:

• Phasor frequency terms are written as ejωt, not e−jωt, as done
in physics. I didn’t recall that this was always the case in
physics, and wouldn’t have assumed it. This is the case in
both [17] and [12]. The latter however, also uses cos(ωt− kr)
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for spherical waves possibly implying an alternate phasor
sign convention in that content, so I’d be wary about trust-
ing any absolute “engineering” vs. physics sign convention
without checking carefully.

• In Green’s functions G(r, r′), r is the point of observation, and
r′ is the point in the convolution integration space.

• Both M and Jm are used for magnetic current sources in the
class notes.

2.11 problems.

Exercise 2.1 Far field electric field. (2015 ps2, p3)

Show that in a region of space where there are no sources, the
electric field derived from the magnetic vector potential is given
by the expression:

(2.65)E =
1

jωε0µ0
∇ × (∇ × A) .

Answer for Exercise 2.1
First consider the expansion of the curls

(2.66)
∇ × (∇ × A) = εrster∂sεtbc∂b Ac

= δ[bc]
rs er∂s∂b Ac

= er∂s (∂r As − ∂s Ar) ,

so

(2.67)∇ × (∇ × A) = ∇ (∇ · A)−∇2A.

This supplies a strong hint of how to proceed. The electric field can
be expanded utilizing this relation and the Helmholtz equation
relating A and J

(2.68)

E = −jωA − j
1

ωε0µ0
∇ (∇ · A)

= −jωA − j
1

ωε0µ0

(
∇ × (∇ × A) + ∇2A

)
= −jωA − j

1
ωε0µ0

(
∇ × (∇ × A)−

(
k2A + µ0J

))
.
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However,

k2

ωε0µ0
=

ω2/c2

ω(1/c2)
= ω, (2.69)

leaving

(2.70)E = −j
1

ωε0µ0
∇ × (∇ × A) + j

1
ωε0

J.

Since J = 0 in a region of space where there are no sources, the
electric field in such a region is given by eq. (2.65) as stated.





3
L I N E A R W I R E A N T E N N A S .

3.1 magnetic vector potential.

The symbol A has been referred to as the Magnetic Vector Potential
in class and in the problem set. My recollection was that we called
this the Vector Potential. Prefixing this with magnetic seemed
counter intuitive to me since it is generated by electric sources
(charges and currents). This terminology can be justified due to
the fact that A generates the magnetic field by its curl. Some
mention of this can be found in [26], which also points out that the
Electric Potential refers to the scalar φ. Prof. Eleftheriades points
out that Electric Vector Potential refers to the vector potential F
generated by magnetic sources (because in that case the electric
field is generated by the curl of F.)

3.2 plots of infinitesimal dipole radial dependence .

In §4.2 of [5] are some discussions of the kr < 1, kr = 1, and
kr > 1 radial dependence of the fields and power of a solution
to an infinitesimal dipole system. Here are some plots of those kr
dependence, along with the kr = 1 contour as a reference. All the θ

dependence and any scaling is left out.
The CDF notebook visualizeDipoleFields.cdf is available to inter-

actively plot these, rotate the plots and change the ranges of what
is plotted.

Plots of the real and imaginary parts of

Hφ =
jk
r

e−jkr
(

1− j
kr

)
Er =

1
r2

(
1− j

kr

)
e−jkr

Eθ =
jk
r

(
1− j

kr
− 1

k2r2

)
e−jkr,

(3.1)

can be found in fig. 3.1, fig. 3.2, and fig. 3.3 respectively.
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(a) (b)

Figure 3.1: Radial dependence of Re Hφ and Im Hφ.

(a) (b)

Figure 3.2: Radial dependence of Re Er and Im Er.

(a) (b)

Figure 3.3: Radial dependence of Re Eθ and Im Eθ .
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3.3 electric far field for a spherical potential.

It is interesting to look at the far electric field associated with an
arbitrary spherical magnetic vector potential, assuming all of the
radial dependence is in the spherical envelope. That is

(3.2)A =
e−jkr

r
(
r̂ar
(
θ, φ
)

+ θ̂aθ

(
θ, φ
)

+ φ̂aφ

(
θ, φ
))

.

The electric field is

(3.3)E = −jωA − j
1

ωµ0ε0
∇ (∇ · A) .

The divergence and gradient in spherical coordinates are

(3.4a)∇ · A =
1
r2

∂

∂r
(
r2Ar

)
+

1
r sin θ

∂

∂θ
(Aθ sin θ) +

1
r sin θ

∂Aφ

∂φ

(3.4b)∇ψ = r̂
∂ψ

∂r
+

θ̂

r
∂ψ

∂θ
+

φ̂

r sin θ

∂ψ

∂φ
.

For the assumed potential, the divergence is

∇ · A =
ar

r2
∂

∂r

(
r2 e−jkr

r

)
+

1
r sin θ

e−jkr

r
∂

∂θ
(sin θaθ) +

1
r sin θ

e−jkr

r
∂aφ

∂φ

= are−jkr
(

1
r2 − jk

1
r

)
+

1
r2 sin θ

e−jkr ∂

∂θ
(sin θaθ)

+
1

r2 sin θ
e−jkr ∂aφ

∂φ

≈ −jk
ar

r
e−jkr.

(3.5)

The last approximation dropped all the 1/r2 terms that will be
small compared to 1/r contribution that dominates when r → ∞,
the far field.
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The gradient can now be computed

∇ (∇ · A) ≈ −jk∇
( ar

r
e−jkr

)
= −jk

(
r̂

∂

∂r
+

θ̂

r
∂

∂θ
+

φ̂

r sin θ

∂

∂φ

)
ar

r
e−jkr

= −jk
(

r̂ar
∂

∂r

(
1
r

e−jkr
)

+
θ̂

r2 e−jkr ∂ar

∂θ
+ e−jkr φ̂

r2 sin θ

∂ar

∂φ

)
= −jk

(
−r̂

ar

r2

(
1 + jkr

)
+

θ̂

r2
∂ar

∂θ
+

φ̂

r2 sin θ

∂ar

∂φ

)
e−jkr

≈ −k2r̂
ar

r
e−jkr.

(3.6)

Again, a far field approximation has been used to kill all the 1/r2

terms. The far field approximation of the electric field is now
possible

E = −jωA− j
1

ωµ0ε0
∇ (∇ ·A)

= −jω
e−jkr

r
(
r̂ar (θ, φ) + θ̂aθ (θ, φ) + φ̂aφ (θ, φ)

)
+ j

1
ωµ0ε0

k2r̂
ar

r
e−jkr

= −jω
e−jkr

r
(
��

���r̂ar (θ, φ) + θ̂aθ (θ, φ) + φ̂aφ (θ, φ)
)

+
��

���
���

�

j
c2

ω

(ω

c

)2
r̂

ar

r
e−jkr

= −jω
e−jkr

r
(
θ̂aθ (θ, φ) + φ̂aφ (θ, φ)

)
.

(3.7)

Observe the perfect, somewhat miraculous seeming, cancellation
of all the radial components of the field. If AT is the non-radial
projection of A, the electric far field is just

Eff = −jωAT. (3.8)
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3.4 magnetic far field for a spherical potential.

Application of the same assumed representation for the magnetic
field gives

B = ∇ × A

=
r̂

r sin θ
∂θ

(
Aφ sin θ

)
+

θ̂

r

(
1

sin θ
∂φ Ar − ∂r

(
rAφ

))
+

φ̂

r
(∂r (rAθ)− ∂θ Ar)

=
r̂

r sin θ
∂θ

(
e−jkr

r
aφ sin θ

)
+

θ̂

r

(
1

sin θ
∂φ

(
e−jkr

r
ar

)
− ∂r

(
r

e−jkr

r
aφ

))
+

φ̂

r

(
∂r

(
r

e−jkr

r
aθ

)
− ∂θ

(
e−jkr

r
ar

))
=

r̂
r sin θ

e−jkr

r
∂θ

(
aφ sin θ

)
+

θ̂

r

(
1

sin θ

e−jkr

r
∂φar − ∂r

(
e−jkr

)
aφ

)
+

φ̂

r

(
∂r

(
e−jkr

)
aθ −

e−jkr

r
∂θar

)
≈ jk

(
θ̂aφ − φ̂aθ

) e−jkr

r

= −jkr̂ ×
(
θ̂aθ + φ̂aφ

) e−jkr

r

=
1
c

Eff.

(3.9)

The approximation above drops the 1/r2 terms. Since

1
µ0c

=
1
µ0

√
µ0ε0 =

√
ε0

µ0
=

1
η

, (3.10)

the magnetic far field can be expressed in terms of the electric far
field as

H =
1
η

r̂× E. (3.11)
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3.5 plane wave relations between electric and mag-
netic fields.

I recalled an identity of the form eq. (3.11) in [16], but didn’t think
that it required a far field approximation. The reason for this was
because the Jackson identity assumed a plane wave representation
of the field, something that the far field assumptions also locally
require.

Assuming a plane wave representation for both fields

E(x, t) = Eej(ωt−k·x) (3.12a)

B(x, t) = Bej(ωt−k·x). (3.12b)

The cross product relation between the fields follows from the
Maxwell-Faraday law of induction

0 = ∇× E +
∂B

∂t
, (3.13)

or

(3.14)
0 = er × E∂rej(ωt−k·x) + jωBej(ωt−k·x)

= −jerkr × Eej(ωt−k·x) + jωBej(ωt−k·x)

= (−k × E + ωB) jej(ωt−k·x),

or

(3.15)
H =

k
kcµ0

k̂ × E

=
1
η

k̂ × E,

which also finds eq. (3.11), but with much less work and less mess.

3.6 transverse only nature of the far-field fields.

Also observe that its possible to tell that the far field fields have
only transverse components using the same argument that they are
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locally plane waves at that distance. The plane waves must satisfy
the zero divergence Maxwell’s equations

(3.16a)∇ · E = 0

(3.16b)∇ · B = 0,

so by the same logic

(3.17a)k · E = 0

(3.17b)k · B = 0.

In the far field the electric field must equal its transverse projection

(3.18)E = ProjT

(
−jωA − j

1
ωµ0ε0

∇ (∇ · A)
)

.

Since by eq. (3.6) the scalar potential term has only a radial compo-
nent, that leaves

(3.19)E = −jω ProjT A,

which provides eq. (3.8) with slightly less work.

3.7 duality transformation of the far field fields.

We’ve seen that the far field electric and magnetic fields associated
with a magnetic vector potential were

(3.20a)E = −jω ProjT A,

(3.20b)H =
1
η

k̂ × E.

What does H look like in terms of A? Expanding the rejection of
the radial component answers that

(3.21)H = − jω
η

k̂ ×
(

A −
(

A · k̂
)

k̂
)

.
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The k̂ crossed terms are killed, leaving

(3.22)H = − jω
η

k̂ × A.

It’s worth a quick note that the duality transformation for this,
referring to [5] tab. 3.2, is

(3.23a)H = −jω ProjT F

E = ηk̂×H = jωηk̂× F. (3.23b)

These show explicitly that neither the electric or magnetic far field
have any radial component, matching with intuition for transverse
propagation of the fields.

3.8 vertical dipole reflection coefficient.

In class a ground reflection scenario was covered for a horizontal
dipole. Reading the text I was surprised to see what looked like the
same sort of treatment §4.7.2, but ending up with a quite different
result. It turns out the difference is because the text was treating
the vertical dipole configuration, whereas Prof. Eleftheriades was
treating a horizontal dipole configuration, which have different
reflection coefficients. These differing reflection coefficients are due
to differences in the polarization of the field.

To understand these differences in reflection coefficients, con-
sider first the field due to a vertical dipole as sketched in fig. 3.4,
with a wave vector directed from the transmission point down-
wards in the z-y plane. The wave vector has direction

Figure 3.4: Vertical dipole configuration.
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k̂ = ẑeẑx̂θ = ẑ cos θ + ŷ sin θ. (3.24)

Suppose that the (magnetic) vector potential is that of an infinitesi-
mal dipole

A = ẑ
µ0 I0l
4πr

e−jkr. (3.25)

The electric field, in the far field, can be computed by computing
the normal projection to the wave vector direction

(3.26)

E = −jω
(

A ∧ k̂
)
· k̂

= −jω
µ0 I0l
4πr

(ẑ ∧ (ẑ cos θ + ŷ sin θ)) (ẑ cos θ + ŷ sin θ)

= −jω
µ0 I0l
4πr

(ẑŷ sin θ) (ẑ cos θ + ŷ sin θ)

= −jω
µ0 I0l
4πr

sin θ (−ŷ cos θ + ẑ sin θ)

= jω
µ0 I0l
4πr

sin θŷeẑŷθ .

This is directed in the z-y plane rotated an additional π/2 past k̂.
The magnetic field must then be directed into the page, along the
x axis. This is sketched in fig. 3.5. Referring to [13] (eq. 4.40) for the

Figure 3.5: Electric and magnetic field directions.

coefficient of reflection component

(3.27)R =
nt cos θi − ni cos θt

ni cos θi + nt cos θt
.
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This is the Fresnel equation for the case when that corresponds to E
lies in the plane of incidence, and the magnetic field is completely
parallel to the plane of reflection). For the no transmission case,
allowing vt → 0, the index of refraction is nt = c/vt → ∞, and the
reflection coefficient is 1 as claimed in §4.7.2 of [5]. Because of the
symmetry of this dipole configuration, the azimuthal angle that
the wave vector is directed along does not matter.

3.9 horizontal dipole reflection coefficient.

In the class notes, a horizontal dipole coming out of the page
is indicated. With the page representing the z-y plane, this is a
magnetic vector potential directed along the x-axis direction

A = x̂
µ0 I0l
4πr

e−jkr. (3.28)

For a wave vector directed in the z-y plane as in eq. (3.24), the
electric far field is directed along

(3.29)

(
x̂ ∧ k̂

)
· k̂ = x̂ −

(
x̂ · k̂

)
k̂

= x̂ −
(
(((

((((
(((x̂ · (ẑ cos θ + ŷ sin θ)

)
k̂

= x̂.

The electric far field lies completely in the plane of reflection. From
[13] (eq. 4.34), the Fresnel reflection coefficients is

(3.30)R =
ni cos θi − nt cos θt

ni cos θi + nt cos θt
,

which approaches −1 when nt → ∞. This is consistent with the
image theorem summation that Prof. Eleftheriades used in class.

Azimuthal angle dependency of the reflection coefficient. Now con-
sider a horizontal dipole directed along the y-axis. For the same
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wave vector direction as above, the electric far field is now directed
along

(3.31)

(
ŷ ∧ k̂

)
· k̂ = ŷ −

(
ŷ · k̂

)
k̂

= ŷ − (ŷ · (ẑ cos θ + ŷ sin θ)) k̂
= ŷ − k̂ sin θ

= ŷ − sin θ (ẑ cos θ + ŷ sin θ)
= ŷ cos2 θ − sin θ cos θẑ
= cos θ (ŷ cos θ − sin θẑ)
= cos θŷeẑŷθ .

That is

(3.32)E = −jω
µ0 I0l
4πr

e−jkr cos θŷeẑŷθ .

This far field electric field lies in the plane of incidence (a direction
of θ̂ rotated by π/2), not in the plane of reflection. The correspond-
ing magnetic field should be directed along the plane of reflection,
which is easily confirmed by calculation

k̂ × (ŷ cos θ − sin θẑ) = (ẑ cos θ + ŷ sin θ)× (ŷ cos θ − sin θẑ)
= −x̂ cos2 θ − x̂ sin2 θ

= −x̂.
(3.33)

The far field magnetic field is seen to be

(3.34)H = jω
I0l

4πr
e−jkr cos θx̂,

so a reflection coefficient of 1 is required to calculate the power
loss after a single ground reflection signal bounce for this relative
orientation of antenna to the target. I fail to see how the horizontal
dipole treatment in §4.7.5 can use a single reflection coefficient
without taking into account the azimuthal dependency of that
reflection coefficient.

Reflecting on this (no pun intended), made me realize that the
no transmission case has some interesting aspects. One of these
is that radiation momentum must be transferred to the reflecting
surface in some fashion since the direction of the incident radiation
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changes. Perhaps this is why the use of Image theory seems to
be careful to state that the reflecting plane is a perfect electrical
conductor. Study of reflection off of conducting surfaces is clearly
in order to understand how this differs from normal reflection in
transmitting media.

3.10 field resolution w.r .t the reflecting plane.

In order to apply the Fresnel equations, the field components have
to be resolved into components where either the electric field or the
magnetic field is parallel to the plane of reflection. The geometry of
this, with the wave vector direction k̂ and the electric and magnetic
field phasors perpendicular to that direction is sketched in fig. 3.6.
If the incident wave is a plane wave, or equivalently a far field

Figure 3.6: Field components relative to reflecting plane.

spherical wave, it will have the form

H =
1
µ0

k̂× E, (3.35)

with the field directions and wave vector directions satisfying

Ê× Ĥ = k̂ (3.36a)

Ê · k̂ = 0 (3.36b)
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Ĥ · k̂ = 0. (3.36c)

The key to resolving the fields into components parallel to the
plane of reflection lies in the observation that the cross product of
the plane normal n̂ and the incident wave vector direction k̂ lies in
that plane. With

p̂ =
k̂× n̂∣∣∣k̂× n̂

∣∣∣ (3.37a)

q̂ = k̂× p̂, (3.37b)

the field directions can be resolved into components

E = (E · p̂) p̂ + (E · q̂) q̂ = E‖p̂ + E⊥q̂ (3.38a)

H = (H · p̂) p̂ + (H · q̂) q̂ = H‖p̂ + H⊥q̂. (3.38b)

This subdivides the fields into two pairs, one with the electric field
parallel to the reflection plane

E1 = (E · p̂) p̂ = E‖p̂

H1 = (H · q̂) q̂ = H⊥q̂,
(3.39)

and one with the magnetic field parallel to the reflection plane

H2 = (H · p̂) p̂ = H‖p̂

E2 = (E · q̂) q̂ = E⊥q̂.
(3.40)

This is most of what we need to proceed with the reflection and
transmission analysis. The only task remaining is to determine the
reflection angle. Using a pencil with the tip on the table I was able
to convince myself by observation that there is always a normal
plane of incidence regardless of any oblique angle that the ray hits
the reflecting surface. This was, for some reason, not intuitively
obvious to me. Having done that, the geometry must be reduced to
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Figure 3.7: Angle of incidence determination.

what is sketched in fig. 3.7. Once a p̂′ = p̂× n̂ has been determined,
regardless of it’s orientation in the reflection plane, the component
of k̂ that is normal, directed towards, the plane of reflection is

k̂−
(

k̂ · p̂′
)

p̂′, (3.41)

with (squared) length

(3.42)

(
k̂ −

(
k̂ · p̂′

)
p̂′
)2

= 1 +
(

k̂ · p̂′
)2
− 2

(
k̂ · p̂′

)2

= 1−
(

k̂ · p̂′
)2

.

The angle of incidence, relative to the normal to the reflection
plane, follows from

(3.43)
cos θ = k̂ ·

k̂ −
(

k̂ · p̂′
)

p̂′√
1−

(
k̂ · p̂′

)2

=

√
1−

(
k̂ · p̂′

)2
.

Expanding the dot product above gives

(3.44)
k̂ · p̂′ = k̂ · (p̂ × n̂)

=
1∣∣∣k̂ × n̂
∣∣∣ k̂ ·

((
k̂ × n̂

)
× n̂

)
,
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where

(3.45)

k̂ ·
((

k̂ × n̂
)
× n̂

)
= krεrst

(
k̂ × n̂

)
s

nt

= krεrstεsabkanbnt

= −krδ[ab]
rt kanbnt

= −krnt (krnt − ktnr)

= −1 +
(

k̂ · n̂
)2

.

That gives

(3.46)
k̂ · p̂′ =

−1 +
(

k̂ · n̂
)2

√
1−

(
k̂ · n̂

)2

= −
√

1−
(

k̂ · n̂
)2

,

or

(3.47)
cos θ =

√√√√1−
(
−
√

1−
(

k̂ · n̂
)2
)2

=

√(
k̂ · n̂

)2

= k̂ · n̂.

This surprisingly simple result makes so much sense, it is an awful
admission of stupidity that I went through all the vector algebra to
get it instead of just writing it down directly.

The end result is the reflection angle is given by

θ = cos−1 k̂ · n̂, (3.48)

where the reflection plane normal should off the back surface to
get the sign right. The only detail left is the vector direction of
the reflected ray (as well as the direction for the transmitted ray if
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that is of interest). The reflected ray direction flips the sign of the
normal component of the ray

(3.49)

k̂′ = −
(

k̂ · n̂
)

n̂ +
(

k̂ ∧ n̂
)

n̂

= −
(

k̂ · n̂
)

n̂ + k̂ −
(

n̂k̂
)
· n̂

= k̂ − 2
(

k̂ · n̂
)

n̂.

Here the sign of the normal doesn’t matter since it only occurs
quadratically. This now supplies everything needed for the ap-
plication of the Fresnel equations to determine the reflected ray
characteristics of an arbitrarily polarized incident field.

3.11 image theorem.

In the last problem set we examined the array factor for a corner
cube configuration, shown in fig. 3.8.

Figure 3.8: A corner-cube antenna.

Motivation. This is a horizontal dipole antenna placed next to a
metallic corner. The radiation at points in the interior of the cube
have contributions due to the line of sight field from the antenna
as well as reflections. We looked at an approximation of ground
reflections using the Image Theorem, modeling the ground as a
perfectly conducting surface. I completely misunderstood that the-
orem and how it should be applied. As presented it seemed like
a simple way to figure out the reflection characteristics. This con-
fused me since it did not seem consistent with Fresnel reflection
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theory. I did try to reconcile to the two, but that reconciliation only
appeared to work for certain dipole orientations, and that orienta-
tion dependence remained an open question. It turns out that the
idea of the Image Theorem is to find a source configuration that
contains the specified source, but contains enough other sources
that the tangential component of the electric field superposition
is zero on the conducting surface, as required by Maxwell’s equa-
tions. This allows the boundary to be completely removed from the
problem. Thinking of the corner cube configuration as a reflection
problem, I positioned sources as in fig. 3.9. Because of the horizon-

Figure 3.9: Incorrect Image Theorem source placement for corner cube.

tal orientation of the dipole, I argued that the reflection coefficient
should be -1. The reflection point is a bit messy to calculate, and it
turns out to zeroth order in h/r the sin θ magnitude scaling of the
reflected (far-field) field is present for both reflected rays. I though
that this was probably because the observation point lays at the
same altitude for both the line of sight ray and the reflected ray.
Attempting this problem as a reflection problem makes it much
more difficult than it needs to be. It turns out that the correct image
source placement for this problem is that of fig. 3.10. This wasn’t
at all obvious to me. The key is understanding that the goal of the
image source placement isn’t to figure out how the reflection will
occur, but to manufacture a source configuration for which the
tangential component of the electric field is zero on the conducting
surface.

Image placement for infinite conducting plane. Before thinking about
the corner cube configuration, consider a horizontal dipole next to
an infinite conducting plane. This, and the correct image source
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Figure 3.10: Correct image source placement for the corner cube.

placement is illustrated in fig. 3.11. I’ll now verify that this is

Figure 3.11: Image source placement for horizontal dipole.

the correct image source. This is basically a calculation that the
tangential components of the electric fields from both sources sum
to zero.

Let,

r = |s− r0|, (3.50)

so that the magnetic vector potential for the first quadrant dipole
has the form

A =
A0

4πr
e−jkrẑ. (3.51)

With

k̂ =
s− r0

s
Ẽ = ẑ−

(
ẑ · k̂

)
k̂,

(3.52)
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the far-field electric field at the point s on the plane is

E = −jω
A0

4πr
e−jkrẼ. (3.53)

If the normal to the plane is n̂ the tangential component of this
field is the projection of E on the direction

p̂ =
k̂× n̂∣∣∣k̂× n̂

∣∣∣ . (3.54)

That tangential component is directed along

(
Ẽ · p̂

)
p̂ =

((
ẑ−

(
ẑ · k̂

)
k̂
)
·
(

k̂× n̂
)) k̂× n̂∣∣∣k̂× n̂

∣∣∣2 . (3.55)

Because the triple product k̂ ·
(

k̂× n̂
)

= 0, the tangential compo-

nent of the electric field, provided k̂ · n̂ 6= 0, is

E‖ = −jω
A0

4πr
e−jkrẑ ·

(
k̂× n̂

) k̂× n̂

1−
(

n̂ · k̂
)2 . (3.56)

Now the wave vector direction for the second quadrant ray on the
plane is required. Both k̂′ and s′ are reflections across the plane.
Any such reflection has the value

(3.57)
x′ = (x ∧ n̂) n̂ − (x · n̂) n̂

= − (n̂ ∧ x + n̂ · x) n̂
= −n̂xn̂.

This multivector product nicely encapsulates the reflection opera-
tion. Consider a reflection against the y-z plane with normal e1 to
verify that this works

(3.58)

−e1xe1 = −e1
(

xe1 + ye2 + ze3
)

e1

= −
(
x − ye2e1 + ze3e1

)
e1

= −
(
xe1 − ye2 + ze3

)
= −xe1 + ye2 + ze3.

This has the x component flipped in sign and the rest left un-
touched as desired for a reflection in the y-z plane.
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The second quadrant field will have k̂′ × n̂ terms in place of
all the k̂× n̂ terms of eq. (3.56). We want to know how the two
compare. This calculation is simply done using the dual form of
the cross product temporarily

(3.59)

k̂′ × n̂ = −I
(

k̂′ ∧ n̂
)

= −I
〈

k̂′n̂
〉

2

= −I
〈
−n̂k̂n̂n̂

〉
2

= I
〈

n̂k̂
〉

2

= In̂ ∧ k̂
= −n̂ × k̂
= k̂ × n̂.

So, provided the image source in the second quadrant is oppositely
oriented (sign inversion), the tangential components of the two
will sum to zero on that surface.

Thinking back to the corner cube, it is clear that an image source
opposite to the source across from one of the walls will result in
a zero tangential electric field along this boundary as is the case
here (say the y-z plane). A second pair of sources opposite from
each other anywhere else also about the y-z plane will not change
that zero tangential electric field on this surface, but if the signs
of the sources is alternated as in fig. 3.10 it will also result in zero
tangential electric field on the z-x plane, which has the desired
boundary value effects for both surfaces of the corner cube. Once
the image sources are placed, the problem can be tackled with the
boundary removed.

3.12 problems.

Exercise 3.1 Infinitesimal electric dipole. (2015 ps2, p4)

Show that in the near field kr → 0, the electric field of an in-
finitesimal electrical dipole of length l and current I = Iẑ can be
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derived from the field of an electric dipole moment p = qlẑ. The
electrostatic field of a dipole moment is given by,

(3.60)E =
3 (p · r̂) r̂ − p

4πε0r3 .

Answer for Exercise 3.1

To write the electrostatic field in spherical coordinates, first note
that

(3.61)p · r̂ = qlẑ ·
(
cos φ sin θ, sin φ sin θ, cos θ

)
= ql cos θ,

so the electrostatic dipole field is

(3.62)E = ql
3 cos θr̂ − ẑ

4πε0r3 .

To calculate the radial component of this field, note that

(3.63)(3 cos θr̂ − ẑ) · r̂ = 3 cos θ − ẑ · r̂
= 2 cos θ,

so

(3.64)Er = ql
cos θ

2πε0r3 .

For the θ component, noting that θ̂ = (cos θ cos φ, cos θ sin φ,− sin θ),

(3.65)(3 cos θr̂ − ẑ) · θ̂ = −ẑ · θ̂
= sin θ,

so

(3.66)Eθ = ql
sin θ

4πε0r3 .

Finally the Eφ component of this electrostatic field is zero since

(3.67)(3 cos θr̂ − ẑ) · φ̂ = 0,

because r̂ and φ̂ are orthonormal, and φ̂ lies in the x-y plane,
always perpendicular to ẑ.
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Current for the dipole configuration. A set of equal magnitude
oscillating charges ±q(t) separated by distance l, have the phasor
representation

(3.68)q(t) = qejωt.

The dipole moment associated with such a charge distribution is

(3.69)p(t) =
(

+q
l
2

+ (−q)
(
−l
2

))
ejωtẑ

= qlejωtẑ.

This has the desired dipole moment magnitude p = qlẑ. The current
for this dipole configuration is

(3.70)I(t) =
dq(t)

dt
= jωqejωt,

allowing a phasor identification for the current magnitude

(3.71)I0 = jωq.

Near field equivalence. The near field electric field equations de-
rived from the magnetic vector potential are expressed in terms of
I0, not q. Since the ratio of charge to permittivity is

(3.72)

q
ε0

=
I0

jωε0

= −jI0
1

kcε0

= −jI0

√
µ0ε0

kε0

= −jI0
η

k
,

the electric field components eq. (3.64) and eq. (3.66) calculated
from the dipole moment take the form

(3.73a)Er = −jη I0l
cos θ

2πkr3
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(3.73b)Eθ = −jη I0l
sin θ

4πkr3

(3.73c)Eφ = 0.

This reproduces the near field electric field equations for a vertical
infinitesimal dipole (4.20a,b) from the text [5] in the limit kr → 0.

Exercise 3.2 Mobile power reception. (2015 ps2, p5)

A mobile is located 5 km from a base station and uses a vertical
wire antenna of gain 2.55 dB to receive cellular radio signals. The
carrier frequency used is 900 MHz and the EIRP of the base station
is 30 mW. If the base station and mobile are located 50 m and 1.5
m above ground respectively, calculate the power level received at
the mobile.
Answer for Exercise 3.2

The mobile in a transmitting geometry is sketched in fig. 3.12.
For a vertical dipole the magnetic vector potential has the form

Figure 3.12: Vertical dipole reflection geometry.

(3.74)A = ẑ
A0

r
e−jkr,

where A0 = µ0 I0l/4π. The far field electric field is

(3.75)
E = −jωAT

= −jω
A0

r
e−jkr

(
ẑ −

(
ẑ · k̂

)
k̂
)

,

where all the radial (non-transverse) components of the magnetic
vector potential have been subtracted out.
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Reflection coefficient. To determine the sign of the reflection coef-
ficient for a vertical dipole configuration, consider a wave vector
directed in the z-y plane at an angle θ from the pole

k̂ = ẑeẑŷθ = ẑ cos θ + ŷ sin θ. (3.76)

The far field electric field that propagates along this direction, has
direction

(3.77)

ẑ −
(

ẑ · k̂
)

k̂ = ẑ − (ẑ · (ẑ cos θ + ŷ sin θ)) k̂

= ẑ − cos θk̂
= ẑ − cos θ (ẑ cos θ + ŷ sin θ)
= ẑ sin2 θ − sin θ cos θŷ
= − sin θ (cos θŷ − sin θẑ) .

When there is reflection, the electric (far) field is directed entirely
in the plane of incidence (with the magnetic field entirely parallel
to the reflecting interface). The Fresnel reflection coefficient ([13]
eq. 4.40) for such a polarization is

(3.78)R =
nt cos θi − ni cos θt

ni cos θi + nt cos θt
.

For no transmission the transmitted speed of the radiation vt → 0,
and the the index of refraction of the ground approaches nt =
c/vt → ∞. This shows that the reflection coefficient for the vertical
dipole configuration is +1. Because of the symmetry of this dipole’s
orientation the sign of the reflection coefficient has no azimuthal
dependency.

Effects of ground reflection. Let

(3.79a)αref = arctan 55/5000

(3.79b)αlos = arctan 45/5000

(3.79c)rref =
√

552 + 50002

(3.79d)rlos =
√

452 + 50002
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(3.79e)k̂ref = ŷ cos αref + ẑ sin αref

(3.79f)k̂los = ŷ cos αlos + ẑ sin αlos.

Summing the line of sight and reflected (image source contribution)
gives

(3.80)

E = jωA0 ∑
i∈{los,ref}

1
ri

e−jkri cos αi (sin αiŷ − cos αiẑ)

≈ jωA0 cos θA (sin θAŷ − cos θAẑ)
1
r ∑

i∈{los,ref}
e−jkri ,

where an average distance r =
√

h2
t + d2 =

√
502 + 50002, the dis-

tance from the origin to the base station has been factored out in
the denominator.

The sum of the phase terms is

e−jk
√

r2+2hthr+h2
r + e−jk

√
r2−2hthr+h2

r ≈ e−jk
√

r2+2hthr + e−jk
√

r2−2hthr

= e−jkr
√

1+2hthr/r2
+e−jkr

√
1−2hthr/r2

≈ e−jkr
(

e−jkhthr/r + ejkhthr/r
)

= 2e−jkr cos
(

khthr

r

)
,

(3.81)

so after reflection the far field electric field has the form

E = jωA0 cos θA (sin θAŷ− cos θAẑ)
1
r

2e−jkr cos
(

khthr

r

)
. (3.82)

This differs from the line of sight field by a factor of 2 cos (khthr/r).

Numerical results. The wavelength is

λ = c/ν =
3× 108m/s

900× 106s−1 = 0.33m, (3.83)

so the cosine argument is

(3.84)khthr/r =
2π × 50× 1.5
0.33× 5000.25

= 0.28,



74 linear wire antennas .

and the cosine adjustment to the field strength is

(3.85)2 cos 0.28 = 1.92.

The mobile gain is

G = 102.55dB/10 = 1.8. (3.86)

Noting that EIRP = PtGt, the Friis transmission equation, after
adjusting for the reflection effects, provides the power at the mobile

(3.87)

Pr =
(

λ

4πr

)2

(PtGt) Gr(1.92)2

=
(

0.33
4π 5000.25

)2 (
30× 10−3) × 1.8× (1.92)2W

= 5.6× 10−12 W.

The total power received is just 5.6 pW, assuming no polarization
losses (we know the polarization at the mobile, but not for the base
station.) In an attempt to avoid calculator errors for this problem I
scripted the numerical calculations in ps2p5.jl. That wasn’t entirely
successful on submission, since I used 5 m instead of 1.5 m!

Exercise 3.3 Dipole superposition. (2015 ps3, p1)

An infinitesimal electric dipole of electric current strength Ieo is
oriented along the x-axis. With this there is also an infinitesimal
magnetic dipole of magnetic current strength Imo but oriented
along the y-axis.

a. Write down an expression for the total electric field radiated
in the far zone.

b. Assume now that Ieo/Imo = ηo = 120πΩ. Simplify the elec-
tric field expression found part a.

c. Plot in polar co-ordinates the normalized magnitude of the
electric field in the zy plane and for 0 < θ ≤ 2π (far zone).

Answer for Exercise 3.3
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Part a. The far field electric field induced by the electric current
can be calculated with the transverse projection

(3.88)
Ee = −jω ProjT A

= −jω
(

A − (A · k̂)k̂
)

,

where

(3.89)A = x̂
µ0 Ieol
4πr

e−jkr.

To simplify this, note that the Cartesian to spherical coordinates
mapping is

(3.90a)x̂ = sin θ cos φk̂ + cos θ cos φθ̂− sin φφ̂

(3.90b)ŷ = sin θ sin φk̂ + cos θ sin φθ̂ + cos φφ̂

(3.90c)ẑ = cos θk̂ − sin θθ̂,

so

(3.91)Ee = −jω
(
cos θ cos φθ̂− sin φφ̂

) µ0 Ieol
4πr

e−jkr.

For the magnetic current, first note that the far field magnetic
field for an electric current can also be expressed in terms of the
magnetic vector potential

(3.92)

H =
1
η

k̂ × E

= −j
ω

η
k̂ ×

(
A − (A · k̂)k̂

)
= −j

ω

η
k̂ × A.

Duality provides the far field electric field given an electric vector
potential

(3.93)Em = jωηk̂ × F.

For the y-axis oriented magnetic current, the vector potential is

(3.94)F = ŷ
ε0 Imol

4πr
e−jkr.
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The electric field will be directed along

(3.95)k̂ × ŷ = k̂ ×
(

sin θ sin φk̂ + cos θ sin φθ̂ + cos φφ̂
)

= cos θ sin φφ̂ − cos φθ̂,

so

(3.96)Em = jωη
(
cos θ sin φφ̂ − cos φθ̂

) ε0 Imol
4πr

e−jkr.

Summing eq. (3.91), and eq. (3.96) gives

(3.97)E = jω
l

4πr
e−jkrηε0

((
− cos θ cos φθ̂ + sin φφ̂

)
η Ieo

+
(
cos θ sin φφ̂ − cos φθ̂

)
Imo
)

.

Part b. When η Ieo = Imo, this reduces to

(3.98)E = jω
µ0 Ieol
4πr

e−jkr (1 + cos θ)
(
− cos φθ̂ + sin φφ̂

)
.

A view of this vector function are plotted in fig. 3.13 showing the
electric and magnetic far field vector directions on the surface of
the electric field magnitude. See electricAndMagneticDipoleSuper-
positionStandalone.cdf for an interactive view of these plots, with
θ, φ controls available for the wave vector position.

Part c. In the zy plane, φ = π/2, and the electric field has only a
φ̂ component

(3.99)E = jω
µ0 Ieol
4πr

e−jkr (1 + cos θ) φ̂.

The magnitude of the θ variation in the [0, 2π] interval is plotted
in fig. 3.14.

Exercise 3.4 Long thin wire dipoles. (2015 ps3, p2)

a. On a single diagram, plot the polar patterns for l = 0.5λ, l =
1.0λ, l = 1.25λ and l = 2.0λ long thin wire dipole antennas.

b. Use numerical integration to calculate the maximum direc-
tivity for each dipole. Make a table with your results. Which
length corresponds to the highest directivity?
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Figure 3.13: Electric and magnetic infinitesimal dipole superposition,
view from above.

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

θ

Figure 3.14: Electric and magnetic infinitesimal dipole superposition,
polar plot in ZY plane.
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c. Use numerical integration to calculate the radiation resisis-
tance of the l = 1.25λ dipole. Do you expect this dipole to
be capacitive or inductive?

Answer for Exercise 3.4

Part a. Assuming a ẑ oriented dipole, in the far field, the electric
field is

(3.100)Eθ ≈ jη
I0e−jkr

2πr

cos
(

kl
2 cos θ

)
− cos

(
kl
2

)
sin θ

 .

Writing l = αλ, and noting that the magnetic field is Hφ ≈ Eθ/η,
the radiation intensity U = r2Wav is

(3.101)U = η
|I0|2

8π2

(
cos (πα cos θ)− cos (πα)

sin θ

)2

.

In fig. 3.15 F(θ) = 8π2U/η|I0|2 is plotted for α ∈ {0.5, 1, 1.25, 2.0}.
For α = 1.25 some very small side lobes are just barely visible.
For α = 2 the single lobe directivity is lost, and a significant split
of the radiation field along two different directions can be ob-
served. These individual features can be explored more easily
in longDipolesWithLengthControl.cdf which provides a Manipu-
late based interactive control for varying the l/λ ratio. It is much
more satisfactory to view these in a three dimensional plot as in
ps3:longDipoleInteractiveLength.nb, and fig. 3.16, but such a visu-
alization does not work well for overlaid intensity patterns. The
side lobes for the α = 1.25 case do not show up very well in the
plot above. The log polar plot of fig. 3.17 shows this detail better.

Part b. The directivity is given by

(3.102)D0 =
4π F(θ)|max

2π
´ π

0 F(θ) sin θdθ
.

These values, calculated in ps3:directivityLongDipole.nb using the
Mathematica functions NMaximize and NIntegrate, are The largest
directivity for these specific values of l is found at l = 1.25λ.
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Figure 3.15: Polar plot of radiation intensities for some electric z-axis
oriented dipoles.

D0 = 3.02959

Figure 3.16: Double wavelength radiation intensity.

Table 3.1: Directivities.

α 0.5 1 1.25 2

D0 1.64092 2.411 3.28248 2.52856
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Figure 3.17: Log polar plot of radiation intensities for some electric z-axis
oriented dipoles.

Part c. The radiation resistance is implicitly defined by

Prad =
ˆ

UdΩ =
1
2
|I0|2Rr, (3.103)

or, with η = 120πΩ,

Rr =
2

|I0|2
ˆ

UdΩ

= 120π
1

4π2

ˆ 2π

0
dφ

ˆ π

0

(
cos (πα cos θ)− cos (πα)

sin θ

)2

sin θdθ

= 60
ˆ π

0

(cos (πα cos θ)− cos (πα))2

sin θ
dθ.

(3.104)

See ps3:longDipolesSelectedLengths.nb for the numerical integra-
tion using the the lengths in this problem. The half-wavelength
number calculated matches the value quoted in [5] eq. 4-93.

For the reactance, without calculating, I don’t know an intuitive
way to determine whether it would be positive or negative for any
given length. The graph of [5] fig. 8.17 appears to show that the
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Table 3.2: Radiation resistances.

α 0.5 1 1.25 2

Rr 73.1296 199.088 106.537 259.634

reactance is roughly positive (inductive) in the [0.5, 1]λ interval
and negative (capacitive) in the [1, 1.5]λ interval.





4
A N T E N N A A R R AY S .

4.1 chebyscheff polynomials.

In ancient times (i.e. 2nd year undergrad) I recall being very im-
pressed with Chebyscheff polynomials for designing lowpass filters.
I’d used Chebyscheff filters for the hardware we used for a speech
recognition system our group built in the design lab. One of the
benefits of these polynomials is that the oscillation in the |x| < 1
interval is strictly bounded. This same property, as well as the
unbounded nature outside of the [−1, 1] interval turns out to have
applications to antenna array design.

The Chebyscheff polynomials are defined by

Tm(x) = cos
(

m cos−1 x
)

, |x| < 1 (4.1a)

Tm(x) = cosh
(

m cosh−1 x
)

, |x| > 1. (4.1b)

Range restrictions and hyperbolic form. Prof. Eleftheriades’s notes
made a point to point out the definition in the |x| > 1 interval, but
that can also be viewed as a consequence instead of a definition if
the range restriction is removed. For example, suppose x = 7, and
let

cos−1 7 = θ, (4.2)

so

(4.3)

7 = cos θ

=
ejθ + e−jθ

2
= cosh(±jθ),

or

∓j cosh−1 7 = θ. (4.4)
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(4.5)Tm(7) = cos(∓mj cosh−1 7)
= cosh(m cosh−1 7).

The same argument clearly applies to any other value outside of
the |x| < 1 range, so without any restrictions, these polynomials
can be defined as just

Tm(x) = cos
(

m cos−1 x
)

. (4.6)

Polynomial nature. Equation (4.6) does not obviously look like a
polynomial. Let’s proceed to verify the polynomial nature for the
first couple values of m.

• m = 0.

(4.7)T0(x) = cos(0 cos−1 x)
= cos(0)
= 1.

• m = 1.

(4.8)T1(x) = cos(1 cos−1 x)
= x.

• m = 2.

(4.9)T2(x) = cos(2 cos−1 x)
= 2 cos2 cos−1(x)− 1
= 2x2 − 1.
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To examine the general case

Tm(x) = cos(m cos−1 x)

= Re ejm cos−1 x

= Re
(

ej cos−1 x
)m

= Re
(

cos cos−1 x + j sin cos−1 x
)m

= Re
(

x + j
√

1− x2
)m

= Re
(

xm +
(

m
1

)
jxm−1 (1− x2)1/2 −

(
m
2

)
xm−2 (1− x2)2/2

−
(

m
3

)
jxm−3 (1− x2)3/2

+
(

m
4

)
xm−4 (1− x2)4/2

+ · · ·
)

= xm −
(

m
2

)
xm−2 (1− x2) +

(
m
4

)
xm−4 (1− x2)2 − · · ·

(4.10)

This expansion was a bit cavalier with the signs of the sin cos−1 x =√
1− x2 terms, since the negative sign should be picked for the

root when x ∈ [−1, 0]. However, that doesn’t matter in the end
since the real part operation selects only powers of two of this root.

The final result of the expansion above can be written

Tm(x) =
bm/2c

∑
k=0

(
m
2k

)
(−1)kxm−2k (1− x2)k

. (4.11)

This clearly shows the polynomial nature of these functions, and is
also perfectly well defined for any value of x. The even and odd
alternation with m is also clear in this explicit expansion.

Some plots. The first couple polynomials are plotted in fig. 4.1.

Properties. In [1] a few properties can be found for these polyno-
mials

Tm(x) = 2xTm−1 − Tm−2, (4.12a)

(4.12b)0 =
(
1− x2) dTm(x)

dx
+ mxTm(x)− mTm−1(x),
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T1(x)

T2(x)

T3(x)

T4(x)
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x
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4

Tn(x)

Figure 4.1: A couple Cheybshev plots.

(4.12c)0 =
(
1− x2) d2Tm(x)

dx2 − x
dTm(x)

dx
+ m2Tm(x),

(4.12d)
ˆ 1

−1

1√
1− x2

Tm(x)Tn(x)dx =


0 if m 6= n

π if m = n = 0

π/2 if m = n, m 6= 0.

Example 4.1: Cheybshev antenna design.

In our text [5] is a design procedure that applies Cheybshev
polynomials to the selection of current magnitudes for an
evenly spaced array of identical antennas placed along the
z-axis.

For an even number 2M of identical antennas placed at
positions rm = (d/2) (2m− 1) e3, the array factor is

(4.13)AF =
N

∑
m=−N

Imejkr̂·rm .
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Assuming the currents are symmetric I−m = Im, with r̂ =
(sin θ cos φ, sin θ sin φ, cos θ), and u = πd

λ cos θ, this is

(4.14)

AF =
N

∑
m=−N

Imejk(d/2)(2m−1) cos θ

= 2
N

∑
m=1

Im cos
(
k(d/2)(2m − 1) cos θ

)
= 2

N

∑
m=1

Im cos ((2m − 1)u) .

This is a sum of only odd cosines, and can be expanded as
a sum that includes all the odd powers of cos u. Suppose for
example that this is a four element array with N = 2. In this
case the array factor has the form

(4.15)AF = 2
(

I1 cos u + I2
(
4 cos3 u − 3 cos u

))
= 2
(
(I1 − 3I2) cos u + 4I2 cos3 u

)
.

The design procedure in the text sets cos u = z/z0, and then
equates this to T3(z) = 4z3 − 3z to determine the current am-
plitudes Im. That is

(4.16)
2I1 − 6I2

z0
z +

8I2

z3
0

z3 = −3z + 4z3,

or

(4.17)

[
I1

I2

]
=

[
2/z0 −6/z0

0 8/z3
0

]−1 [
−3

4

]

=
z0

2

[
3(z2

0 − 1)

z2
0

]
.

The currents in the array factor are fully determined up to a
scale factor, reducing the array factor to

(4.18)AF = 4z3
0 cos3 u − 3z0 cos u.
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The zeros of this array factor are located at the zeros of

(4.19)T3(z0 cos u) = cos(3 cos−1 (z0 cos u)),

which are at 3 cos−1 (z0 cos u) = π/2 + mπ = π
(
m + 1

2

)

(4.20)
cos u =

1
z0

cos
(

π

3

(
m +

1
2

))
=

{
0,±
√

3
2z0

}
.

showing that the scaling factor z0 effects the locations of the
zeros. It also allows the values at the extremes cos u = ±1, to
increase past the ±1 non-scaled limit values. These effects can
be explored in http://goo.gl/KPqcjX, but can also be seen in
fig. 4.2.

T3(1 x)

T3(1.1 x)

T3(1.2 x)

-1.0 -0.5 0.5 1.0
x

-4

-2

2

4

Figure 4.2: T3(z0x) for a few different scale factors z0.

The scale factor can be fixed for a desired maximum power
gain. For RdB, that will be when

(4.21)20 log10 cosh(3 cosh−1 z0) = RdB,

or

(4.22)z0 = cosh
(

1
3

cosh−1
(

10
R
20

))
.

http://goo.gl/KPqcjX
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For R = 30 dB (say), we have z0 = 2.1, and

(4.23)AF = 40 cos3
(

πd
λ

cos θ

)
− 6.4 cos

(
πd
λ

cos θ

)
.

These are plotted in fig. 4.3 for a couple values of d/λ.
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Figure 4.3: T3 fitting of N = 4 array in linear and dB scales.

A Manipulate for exploring the d/λ dependence is available
in http://goo.gl/8FhUwC.

Dolph-Cheybshev design procedure from class notes. Prof. Eleftheri-
ades described a Cheybshev antenna array design method that
looks different than the one of the text [5]. Portions of that proce-

http://goo.gl/8FhUwC
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dure are like that of the text. For example, if a side lobe level of
20 log10 R is desired, a scaling factor

(4.24)x0 = cosh
(

1
m

cosh−1 R
)

,

is used. Given N elements in the array, a Cheybshev polynomial of
degree m = N − 1 is used. That is

(4.25)Tm(x) = cos
(

m cos−1 x
)

.

Observe that the roots x′n of this polynomial lie where

(4.26)m cos−1 x′n =
π

2
± πn,

or

(4.27)x′n = cos
( π

2m
(2n ± 1)

)
.

The class notes use the negative sign, and number n = 1, 2, · · · , m.
It is noted that the roots are symmetric with x′1 = −x′m, which can
be seen by direct expansion

(4.28)

x′m−r = cos
( π

2m
(2(m − r)− 1)

)
= cos

(
π − π

2m
(2r + 1)

)
= − cos

( π

2m
(2r + 1)

)
= − cos

( π

2m
(2(r + 1)− 1)

)
= −x′r+1. �

The next step in the procedure is the identification

(4.29)
u′n = 2 cos−1

(
x′n
x0

)
zn = eju′n .

This has a factor of two that does not appear in the Balanis design
method. It seems plausible that this factor of two was introduced
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so that the roots of the array factor zn are conjugate pairs. Since
cos−1(−z) = π − cos−1 z, this choice leads to such conjugate pairs

(4.30)

exp
(

ju′m−r
)

= exp
(

j2 cos−1
(

x′m−r

x0

))
= exp

(
j2 cos−1

(
− x′r+1

x0

))
= exp

(
j2
(

π − cos−1
(

x′r+1
x0

)))
= exp

(
−jur+1

)
.

Because of this, the array factor can be written

AF = (z− z1)(z− z2) · · · (z− zm−1)(z− zm)

= (z− z1)(z− z∗1)(z− z2)(z− z∗2) · · ·
=
(
z2 − z(z1 + z∗1) + 1

) (
z2 − z(z2 + z∗2) + 1

)
· · ·

=
(

z2 − 2z cos
(

2 cos−1
(

x′1
x0

))
+ 1
)
×(

z2 − 2z cos
(

2 cos−1
(

x′2
x0

))
+ 1
)
· · ·

=

(
z2 − 2z

(
2
(

x′1
x0

)2

− 1

)
+ 1

)
(

z2 − 2z

(
2
(

x′2
x0

)2

− 1

)
+ 1

)
· · ·

(4.31)

When m is even, there will only be such conjugate pairs of roots.
When m is odd, the remaining factor will be

(4.32)z − e2j cos−1(0/x0) = z − e2jπ/2 = z − ejπ = z + 1.

However, with this factor of two included, the connection between
the final array factor polynomial eq. (4.31), and the Cheybshev
polynomial Tm is not clear to me. How does this scaling impact the
roots?

Example 4.2: Expand AF for N = 4.
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The roots of T3(x) are

(4.33)x′n ∈
{

0,±
√

3
2

}
,

so the array factor is

(4.34)
AF =

(
z2 + z

(
2− 3

x2
0

)
+ 1
)

(z + 1)

= z3 + 3z2
(

1− 1
x2

0

)
+ 3z

(
1− 1

x2
0

)
+ 1.

With 20 log10 R = 30dB, x0 = 2.1, so this is

(4.35)AF = z3 + 2.33089z2 + 2.33089z + 1.

With

(4.36)z = ej(u+u0)

= ejkd cos θ+jku0 ,

the array factor takes the form

(4.37)AF = ej3kd cos θ+j3ku0 + 2.33089ej2kd cos θ+j2ku0

+ 2.33089ejkd cos θ+jku0 + 1.

This array function is highly phase dependent, plotted for
u0 = 0 in fig. 4.4.

Figure 4.4: Plot with u0 = 0, d = λ/4.
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This can be directed along a single direction (z-axis) with
higher phase choices as illustrated in fig. 4.5.

Figure 4.5: Plot with u0 = 3.5, d = 0.4λ.

See ChebychevSecondMethod.nb for an interactive exploration
of the parameters.

4.2 problems.

Exercise 4.1 Corner cube antenna. (2015 ps3, p3)

Consider the symmetrically placed horizontal dipole antenna of
fig. 3.80.2 , next to a metallic corner cube.

a. Calculate the array factor of the antenna in fig. 3.8.

b. Estimate the directivity enhancement of the antenna in
fig. 3.8 compared to the isolated antenna.

c. Estimate the radiation resistance of the antenna in fig. 3.8
compared to the isolated antenna.

d. Plot the array-factor directivity pattern in the x-y plane for
0 < φ ≤ 2π.

e. By using numerical integration calculate the directivity of
the array factor for h = (1/8)λ, h = (1/4)λ and h = (1/2)λ.

Answer for Exercise 4.1
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Part a. This problem can be tackled with the image theorem,
which requires placement of sources as in fig. 3.10. The sources are
located one in each quadrant

s1 = h (1, 1, 0)

s2 = h (−1, 1, 0)

s3 = h (−1,−1, 0)

s4 = h (1,−1, 0) ,

(4.38)

and the point of measurement at r = rr̂ = r(sin θ cos φ, sin θ sin φ, cos θ).
If rm = r− sm is the distance from the mth source to the observation
point, then the squared distance is

(4.39)

rm = |r − sm|
=
(
r2 + s2

m − 2r · sm
)1/2

= r
(

1 +
s2

m
r2 − 2

r̂
r
· sm

)1/2

≈ r
(

1 +
1
2

s2
m

r2 −
r̂
r
· sm

)
= r +

1
2

s2
m
r
− r̂ · sm

≈ r − r̂ · sm.

Those distances are

r̂ · s1 = h sin θ (cos φ + sin φ) =
√

2h sin θ cos (φ− π/4) (4.40a)

r̂ · s2 = h sin θ (− cos φ + sin φ) = −
√

2h sin θ cos (φ + π/4) (4.40b)

r̂ · s3 = −h sin θ (cos φ + sin φ) = −
√

2h sin θ cos (φ− π/4) (4.40c)

r̂ · s4 = h sin θ (cos φ− sin φ) =
√

2h sin θ cos (φ + π/4) . (4.40d)

Suppose the magnetic vector potential has the structure of an
infinitesimal dipole

Am =
µ0 I0

4πrm
e−jkrm ẑ. (4.41)
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In the far field, the direction vectors for all the fields will be
approximately

(4.42)ẑ − (ẑ · r̂) r̂ = cos θr̂ − sin θθ̂− cos θr̂
= − sin θθ̂.

The far field electric field for each image source is approximately

(4.43)

Em = −jωAT

= jω
µ0 I0

4πr
e−jkrm sin θθ̂

= jηk
I0

4πr
e−jkrm sin θθ̂.

Writing s =
√

2h for the distance from the origin to each of the
image sources, the superposition of all the image sources is

E = jηk
I0

4πr
e−jkr sin θ

(
ejks sin θ cos(φ−π/4) − e−jks sin θ cos(φ+π/4)

+ e−jks sin θ cos(φ−π/4) − ejks sin θ cos(φ+π/4)

)
θ̂,

(4.44)

or

(4.45)E = 2jηk
I0

4πr
e−jkr sin θ

(
cos

(
ks sin θ cos

(
φ − π/4

))
− cos

(
ks sin θ cos

(
φ + π/4

)))
.

The array factor can be picked off by inspection

AF = 2I0
(
cos

(
ks sin θ cos

(
φ−π/4

))
−cos

(
ks sin θ cos

(
φ+π/4

)))
.

(4.46)

Part b. The radiation intensity is

U =
1
2

η

(
kI0

4π

)2

sin2 θ|AF|2 = B0 sin2 θ|AF|2. (4.47)

This holds for both isolated antenna with AF = 1, and the corner
cube with |AF|2 given by eq. (4.46).



96 antenna arrays.

For the isolated antenna, the radiation intensity is maximized at
θ = π/2, so

(4.48)

D0,iso =
4π × 1

2π
´ π

0 sin3 θdθ

=
2

4/3

=
3
2

.

For the corner cube the maximization problem is trickier. As a first
approximation, if ks is assumed to be small, then all the cosines in
eq. (4.46) are close to unity, and the array factor is zero. The next
order in ks expansion of the cosines is required

AF = 2I0

(
1− (ks sin θ)2

2
cos2(φ−π/4)−1+

(ks sin θ)2

2
cos2(φ+π/4)

)
= 2I0

(ks sin θ)2

2
(
− cos2(φ − π/4) + cos2(φ + π/4)

)
= −I0(ks sin θ)2 sin(2φ),

(4.49)

so for small ks

(4.50)U = B0(ks)4 sin6 θ sin2(2φ).

The radiation intensity is clearly maximized at φ = π/4, θ = π/2,
so

(4.51)U0 = B0(ks)4.

The radiated power, again for small ks, is

(4.52)

Prad = B0

ˆ π/2

0
dφ

ˆ π

0
dθ sin θU(θ, φ)

≈ B0(ks)4
ˆ π/2

0
dφ sin2(2φ)

ˆ π

0
dθ sin7 θ

= B0(ks)4
(π

4

)
×
(

32
35

)
= B0(ks)44π

2
35

.
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The approximate directivity of the corner cube is

D0,ccube ≈
4π × B0(ks)4

B0(ks)44π 2
35

=
35
2
≈ 17.5. (4.53)

almost 12 times greater than the directivity of the isolated radiator.
The posted solution omits the sin2 θ contribution from the ele-

ment factor. That results in

(4.54)

Prad ≈ B0(ks)4
ˆ π/2

0
dφ sin2(2φ)

ˆ π

0
dθ sin5 θ

= B0(ks)4
(π

4

)
×
(

16
15

)
= B0(ks)44π

1
15

,

and

D0,ccube ≈
4π × B0(ks)4

B0(ks)44π 1
15

= 15. (4.55)

Note that the baseline directivity without the sin2 θ element factor
is unity, since

4π/2π

ˆ π

0
sin θdθ = 1, (4.56)

so such a relative approximation is still correct for the dipole up to
an order of magnitude.

Part c. The radiation resistance was defined implicitly by the
relation

Prad =
1
2
|I0|2Rr, (4.57)

so the ratio of radiation resistance will just be the ratio of the
radiated powers

Rr,ccube

Rr,iso
=

Prad,ccube

Prad,iso
=

8π(ks)4/35
8π/3

=
3(ks)4

35
. (4.58)
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Part d. The x-y plane is found at θ = π/2 where the array factor
is

AF = 2
(

cos
(

2π
s
λ

cos
(
φ − π/4

))
− cos

(
2π

s
λ

cos
(
φ + π/4

)))
.

(4.59)

This is plotted against both α = s/λ =
√

2h/λ, and φ in fig. 4.6,
which shows that there are generally four lobes for any value of
s, except for the smallest values where the pattern is near zero.
This is also plotted in fig. 4.7 for a few selected values of α. To

Figure 4.6: Plot of |AF|2 in XY plane with α = h/λ.

plot the squared array factor, the physically significant range φ ∈
[0, π/2] can be used, because all of the negative sign contributions
from quadrant III will be flipped into quadrant I. It’s more fun to
visualize this in 3D as in, and a manipulate control for visualizing
|AF|2 is available at cornerCubeArrayFactorSq.cdf . This is plotted
in fig. 4.9 for α = 0.69.

Part e. The code for the numerical calculations can be found in
ps3:ps3Q3plotsCorrected.nb. The results are

D0[h = λ/8] = 17.1

D0[h = λ/4] = 15.9

D0[h = λ/2] = 14.3.

(4.60)



4.2 problems. 99

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

0.2

0.4

0.6

0.8

1.0

0.25
0.325
0.595
0.82
1.055

(a)

0°

30°

60°

90°

120°

150°

180°

210°

240°

270°

300°

330°

-20dB

-15dB

-10dB

-5dB

0dB

0.25
0.325
0.595
0.82
1.055

(b)

Figure 4.7: Polar plot of AF in XY plane for various values of α = s/λ.
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Figure 4.8: Polar plot of |AF|2 for θ = 0.

Figure 4.9: Spherical plot of |AF|2 for α = 0.69.
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If the sin2 θ contribution of the element factor is omitted (as the
posted solution does in the directivity approximation), the direc-
tivities are all slightly less

D0[h = λ/8] = 14.6

D0[h = λ/4] = 13.2

D0[h = λ/2] = 15.1.

(4.61)

Exercise 4.2 Chebyscheff Recurrence relation.

Prove eq. (4.12a).
Answer for Exercise 4.2

To show this, let

x = cos θ, (4.62)

(4.63)2xTm−1 − Tm−2 = 2 cos θ cos((m − 1)θ)− cos((m − 2)θ).

Recall the cosine addition formulas

(4.64)

cos(a + b) = Re ej(a+b)

= Re ejaejb

= Re
(
cos a + j sin a

) (
cos b + j sin b

)
= cos a cos b − sin a sin b.

Applying this gives

2xTm−1 − Tm−2 = 2 cos θ

(
cos(mθ) cos θ + sin(mθ) sin θ

)

−
(

cos(mθ) cos(2θ) + sin(mθ) sin(2θ)

)

= 2 cos θ

(
cos(mθ) cos θ + sin(mθ) sin θ)

)

−
(

cos(mθ)(cos2 θ − sin2 θ)

+ 2 sin(mθ) sin θ cos θ

)
= cos(mθ)

(
cos2 θ + sin2 θ

)
= Tm(x). �

(4.65)
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Exercise 4.3 Chebyscheff first order LDE relation.

Prove eq. (4.12b).

Answer for Exercise 4.3

To show this, again, let

x = cos θ. (4.66)

Observe that

1 = − sin θ
dθ

dx
, (4.67)

so

(4.68)

d
dx

=
dθ

dx
d
dθ

= − 1
sin θ

d
dθ

.

Plugging this in gives

(
1− x2) d

dx
Tm(x) + mxTm(x)−mTm−1(x)

= sin2 θ

(
− 1

sin θ

d
dθ

)
(

cos(mθ) + m cos θ cos(mθ)−m cos((m− 1)θ)

)
= − sin θ(−m sin(mθ)) + m cos θ cos(mθ)−m cos((m− 1)θ).

(4.69)

Applying the cosine addition formula eq. (4.64) gives

m (sin θ sin(mθ) + cos θ cos(mθ))

−m (cos(mθ) cos θ + sin(mθ) sin θ) = 0. �
(4.70)

Exercise 4.4 Chebyscheff second order LDE relation.

Prove eq. (4.12c).
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Answer for Exercise 4.4

This follows the same way. The first derivative was

(4.71)

dTm(x)
dx

= − 1
sin θ

d
dθ

cos(mθ)

= − 1
sin θ

(−m) sin(mθ)

= m
1

sin θ
sin(mθ),

so the second derivative is

(4.72)

d2Tm(x)
dx2 = −m

1
sin θ

d
dθ

1
sin θ

sin(mθ)

= −m
1

sin θ

(
− cos θ

sin2 θ
sin(mθ) +

1
sin θ

m cos(mθ)
)

.

Putting all the pieces together gives

(
1− x2)d2Tm(x)

dx2 − x
dTm(x)

dx
+ m2Tm(x)

= m
(

cos θ

sin θ
sin(mθ)−m cos(mθ)

)
− cos θm

1
sin θ

sin(mθ) + m2 cos(mθ)

= 0. �

(4.73)

Exercise 4.5 Chebyscheff orthogonality relation.

Prove eq. (4.12d).
Answer for Exercise 4.5

First consider the 0,0 inner product, making an x = cos θ, so that
dx = − sin θdθ, and

(4.74)

〈T0, T0〉 =
ˆ 1

−1

1(
1− x2

)1/2
dx

=
ˆ 0

−π

(
− 1

sin θ

)
− sin θdθ

= 0− (−π)
= π.
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Note that since the [−π, 0] interval was chosen, the negative root
of sin2 θ = 1− x2 was chosen, since sin θ is negative in that interval.

The m,m inner product with m 6= 0 is

(4.75)

〈Tm, Tm〉 =
ˆ 1

−1

1(
1− x2

)1/2
(Tm(x))2 dx

=
ˆ 0

−π

(
− 1

sin θ

)
cos2(mθ)− sin θdθ

=
ˆ 0

−π
cos2(mθ)dθ

=
1
2

ˆ 0

−π
(cos(2mθ) + 1) dθ

=
π

2
.

So far so good. For m 6= n the inner product is

〈Tm, Tm〉 =
ˆ 0

−π
cos(mθ) cos(nθ)dθ

=
1
4

ˆ 0

−π

(
ejmθ + e−jmθ

) (
ejnθ + e−jnθ

)
dθ

=
1
4

ˆ 0

−π

(
ej(m+n)θ + e−j(m+n)θ + ej(m−n)θ + ej(−m+n)θ

)
dθ

=
1
2

ˆ 0

−π
(cos((m + n)θ) + cos((m − n)θ)) dθ

=
1
2

(
sin((m + n)θ)

m + n
+

sin((m − n)θ)
m − n

)∣∣∣∣0
−π

= 0. �
(4.76)

Exercise 4.6 Schelkunoff z-axis array, binary array. (2015 ps4, p1)

A three-element array is placed along the z-axis. Assume that the
spacing between the elements is d = λ/2 and the relative amplitude
excitations are I1 = I3 = 1 and I2 = 2

Use the Schelkunoff method to

a. Determine the angles of the nulls when the corresponding
progressive phase shifts ad are 0, π/2, π, 3π/2. Do this for
each case.
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b. For each case plot the corresponding array factor

Answer for Exercise 4.6

Part a. With the array elements placed at rm = mdẑ, m ∈ [0, 2],
the array factor is

AF = 1×
(

ej(kd cos θ+ad)
)0

+ 2×
(

ej(kd cos θ+ad)
)1

+ 1×
(

ej(kd cos θ+ad)
)2

.

(4.77)

With z = ej(kd cos θ+ad), this is

AF = 1 + 2z + z2 = (1 + z)2 . (4.78)

This is a binary array with nulls located at z = −1. The angles
where that is the case are

kd cos θ + ad = (2N + 1)π, (4.79)

which is, for the separation of this problem,

2π

λ

λ

2
cos θ + ad = (2N + 1)π, (4.80)

or

θ = cos−1
(

2N + 1− ad
π

)
. (4.81)

1. Case I: ad = 0. Here

θ = cos−1 (2N + 1) , (4.82)

which has solutions at N = 0,−1 of

θ = cos−1 1 = 0

θ = cos−1(−1) = π = 180◦.
(4.83)

2. Case II: ad = π/2. Here

θ = cos−1
(

2N + 1− 1
2

)
, (4.84)

which has solutions at N = 0 of

θ = cos−1(1/2) = π/3 = 60◦. (4.85)
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3. Case III: ad = π. Here

θ = cos−1 (2N) , (4.86)

which has solutions at N = 0 of

θ = cos−1 0 = π/2 = 90◦. (4.87)

4. Case IV: ad = 3π/2. Here

θ = cos−1
(

2N − 1
2

)
, (4.88)

which has solutions at N = 0 of

θ = cos−1(−1/2) = 2π/3 = 120◦. (4.89)

Part b. These are plotted in fig. 4.10.

Exercise 4.7 Schelkunoff z-axis, zero phase shifts. (2015 ps4, p2)

Use the Schelkunoff method to design a linear array of isotropic
elements placed along the z-axis such that the zeros of the array
factor are located at θ = 0◦, 60◦, 120◦. The inter-element spacing is
d = λ/2 and the progressive phase shift is zero degrees.

a. What is the required number of the elements?

b. Determine the corresponding current excitation coefficients

c. Find the array factor

d. Plot the corresponding array factor

Answer for Exercise 4.7

Part a. With d = λ/2, we write z = ejπ cos θ . The zeros of the array
factor occur at

π cos 0 = π

π cos(π/3) = π/2

π cos(2π/3) = −π/2,

(4.90)

so the array factor is

(4.91)

AF =
(

z − ejπ
) (

z − ejπ/2
) (

z − e−jπ/2
)

= (z + 1)
(
z − j

) (
z + j

)
= (z + 1)

(
z2 − j2

)
= z2 + 1 + z3 + z.
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Figure 4.10: Plot |AF| for ad = 0, π/2, π, 3π/2.
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Normalized this is

(4.92)AF(z) =
1
4
(
1 + z + z2 + z3) .

Four elements are required.

Part b. The currents at positions rm = mdẑ, m ∈ {0, 1, 2, 3} are

I0 =
1
4

I1 =
1
4

I2 =
1
4

I3 =
1
4

.

(4.93)

Part c. A phase term may be factored out of the array factor to
put it in real form

(4.94)AF =
z3/2

4

(
z−3/2 + z−1/2 + z1/2 + z3/2

)
.

Substituting z = ejπ cos θ , and discarding the leading z3/2 term, the
array factor is

(4.95)
AF =

1
2

(
cos

(π

2
cos θ

)
+ cos

(
3π

2
cos θ

))
=

1
4

sin (2π cos θ)
sin
(

π
2 cos θ

) .

Part d. This is plotted in fig. 4.11, which also clearly shows the
zeros at θ = 0, 60◦, 120◦ as desired.
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Figure 4.11: Array factor for specified zeros.

Exercise 4.8 Binomial array. (2015 ps4, p3)

Five antenna elements are placed symmetrically along the z-axis.
The distance between the elements is kd = 5π/4. For a binomial
array, find

a. the excitation coefficients (currents)

b. an expression for the array factor

c. the normalized power pattern (for the array factor)

d. the angles in degrees where the nulls (if any) occur.
Plot the power array factor with a tool like Matlab to verify
your predictions.

Answer for Exercise 4.8

Part a. The array geometry assuming is illustrated in fig. 4.12.
With rm = mdẑ, m ∈ [−2, 2], the array factor is

(4.96)
AF =

2

∑
m=−2

Imejkrm·r̂

=
2

∑
m=−2

Imejkdm cos θ .

Recall that the binomial expansion for N = 4 is

(4.97)(z + 1)4 = 1 + 4z + 6z2 + 4z3 + z4,
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Figure 4.12: Five element array on z-axis.

so the currents are

(4.98)

I−2 = 1

I−1 = 4

I0 = 6

I1 = 4

I2 = 1.

Part b. With z = ejkd cos θ , we can assume a binomial representation
of the form

(4.99)

AF =
2

∑
m=−2

(
4

m + 2

)
ejkdm cos θ

=
(

4
2

)
+ 2

2

∑
m=1

(
4

m + 2

)
cos (kdm cos θ)

= 6 + 2 (4 cos (kd cos θ) + cos (2kd cos θ)) .

Part c. Normalizing so that AF = 1 at Ω = kd cos θ → 0, gives

(4.100)AF =
1
8

(3 + 4 cos u + cos 2u)

= cos4(u/2),

where u = 5π cos θ/4. The substitution u = −j ln z, puts the array
factor in explicit polynomial form

(4.101)AF(z) =
1

16z2 (1 + z)4 .
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The leading 1/z2 factor, which introduces negative power polyno-
mial terms but does not change the roots, is because the expansion
eq. (4.99) effectively factored out a pure phase term. This does not
impact the power array factor |AF|2. Had the array elements not
been placed symmetrically about the origin, instead being located
at rm = mdẑ, m ∈ {0, 1, 2, 3, 5}, this factor would have been elimi-
nated. A leading zN factor in AF(z) is seen to be associated with
the location of the origin of the coordinate system.

Part d. Solutions for the nulls are found for integer N solutions
of

(4.102)
5π

4
cos θ = π(1 + 2N),

Two solutions in the visible range can be found

(4.103)θ = cos−1 (±4/5
)

,

or

(4.104)θ ∈ {143.1◦, 36.9◦} .

The power array factor is plotted in fig. 4.13, and fig. 4.14.
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Figure 4.13: Polar plot of 5 element binomial power array factor.

Exercise 4.9 Dolph-Chebyshev. (2015 ps4, p4)
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Figure 4.14: Spherical polar plot of 5 element binomial power array factor.

Design a five-element, −40dB sidelobe level Dolph-Chebyshev
array of isotropic elements. The elements are placed along the
x-axis with an inter-element spacing d = λ/2. Determine,

a. the normalized amplitude coefficients

b. the array factor

c. Use numerical integration to calculate the directivity

d. and the null-to-null beamwidth

e. Repeat part a-c for a uniform broadside array of the same
spacing

f. Plot the power array-factor patterns for the two arrays on
the same plot.

Answer for Exercise 4.9

Part a. The 40dB level is equivalent to

(4.105)20 log10 R = 40,

or

R = 102 = 100. (4.106)

The Chebyshev scaling factor for a five element array is

x0 = cosh
(

1
4

cosh−1 R
)

= 2.01. (4.107)
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With x = x0 cos(u/2), the unnormalized array factor is

(4.108)
AF(u) = T4(x)

= T4(x0 cos(u/2))
= 8x4

0 cos4(u/2)− 8x2
0 cos2(u/2) + 1.

Since

cos2(u/2) =
1
2
(cos(u) + 1)

cos4(u/2) =
1
8
(cos(2u) + 4 cos(u) + 3) ,

(4.109)

the array factor can be expanded in cos(mu), as

(4.110)
AF(u) = x4

0 (cos(2u) + 4 cos(u) + 3)− 4x2
0 (cos(u) + 1) + 1

= x4
0 cos(2u) +

(
4x4

0 − 4x2
0

)
cos(u) + 3x4

0 − 4x2
0 + 1.

After normalization this is

AF(u) = α cos(2u) + β cos(u) + γ

α =
x4

0

8x4
0 − 8x2

0 + 1

β =
4x4

0 − 4x2
0

8x4
0 − 8x2

0 + 1

γ =
3x4

0 − 4x2
0 + 1

8x4
0 − 8x2

0 + 1
.

(4.111)

The array coefficients are found to have the values

I−2 =
α

2
= 0.082

I−1 =
β

2
= 0.25

I0 = γ = 0.34

I1 =
β

2
= 0.25

I2 =
α

2
= 0.082.

(4.112)

Part b. The array factor is defined by eq. (4.111), eq. (4.112), where
u = π sin θ cos φ.
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Part c. The directivity is found to be 3.97 (5.98 dB ).

Part d. The zeros of the array factor occur where the argument of

(4.113)Tm(x0 cos(u/2)) = cos(m cos−1 (x0 cos(u/2)
)
),

equals −π/2 + nπ, or

(4.114)u = 2 cos−1
(

1
x0

cos
( π

2m
(2n − 1)

))
.

Compare this to the zeros of the uniform array factor, which was

AF(z) =
N−1

∑
n=0

zn =
1− zN

1− z
= z(N−1)/2 zN/2 − z−N/2

z1/2 − z−1/2
, (4.115)

so with z = eju, the absolute array factor is

(4.116)|AF(u)| =
1
N

∣∣sin
(

Nu/2
)∣∣∣∣sin

(
u/2

)∣∣ .

This has zeros where

u =
2nπ

N
, n 6= 0 ∈ Z. (4.117)

These two sets of zeros are plotted on the unit circle in the z-
domain in fig. 4.15. The Chebyshev and uniform array factors are
plotted the z-x plane for u = kd sin θ cos(0) in dB in fig. 4.16. For the
Chebyshev array the zeros are found to be at {44◦, 61◦, 119◦, 136◦},
so the null to null beamwidth is 88◦. The 3 dB beamwidth for the
main lobe is found to be 28◦.

For the uniform array the zeros are found at {24◦, 53◦, 127◦, 156◦}
so that arrays’ null to null beamwidth is 48◦.

Part e. The normalized uniform array amplitude coefficients are
1/5. The array factor is given by eq. (4.116). The directivity for the
linear array is found numerically to be 5.0 (6.99 dB ).

Part f. This array configuration has a donut shaped power pat-
tern, as shown in fig. 4.17. The two array factor power patterns
(normalized) are plotted in fig. 4.18.
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Figure 4.15: Zeros of five element Chebyshev and uniform array elements
on z-domain unit circle.
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Figure 4.16: Chebyshev and uniform power array factor in z-x plane (dB).
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Figure 4.17: 5 element Chebyshev array power pattern in 3D.
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Figure 4.18: Plots of 5 element Chebyshev and uniform array power
patterns for u = kd sin θ cos 0.
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A P E R AT U R E A N T E N N A S .

5.1 problems.

Exercise 5.1 Aperture antenna. (2015 ps5, p1)

A rectangular aperture lies along the x-y plane and has dimensions
a× b. Let the electric field aperture distribution be given by,

(5.1)Eap = ŷ cos
(π

a
x
)

.

The aperture is cut out of an infinite perfectly electric conductor.
The origin of the coordinate system is at the center of the aperture.

Using the theory of radiation from apertures based on the equiv-
alence principle, calculate:

1. An expression for Eθ(θ, φ).

2. An expression for Eφ(θ, φ).

3. Consider an aperture of dimensions a = b = 10cm at f =
9.8GHz.

a. Plot the E-plane and H-plane patterns (power).

b. Calculate the positions of the first nulls in the E and H
planes.

c. From the plot determine the levels of the first sidelobe in
the E and H planes.

d. From the plot determine the 3dB beamwidth of the main
lobe in the E and H planes.

Answer for Exercise 5.1

Following the transformation procedure of [5] fig. 12.5, the equiv-
alent source for this electric field is a magnetic current

Ms = −2ẑ× ŷ cos
(π

a
x
)

= 2x̂ cos
(π

a
x
)

. (5.2)
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producing an electric vector potential that is approximately

F =
ε

4πr

ˆ a/2

−a/2
dx′
ˆ b/2

−b/2
dy′Mse−jk(r−r̂·r′)

=
ε

2πr
e−jkrx̂

ˆ a/2

−a/2
dx′
ˆ b/2

−b/2
dy′ cos

(π

a
x′
)

ejkr̂·r′

=
ε

2πr
e−jkrx̂

ˆ a/2

−a/2
dx′
ˆ b/2

−b/2
dy′ cos

(π

a
x′
)

ejk sin θ(cos φx′+sin φy′)

=
ε

4πr
e−jkrx̂

ˆ a/2

−a/2
dx′
(

ejk sin θ cos φx′+jπx′/a + ejk sin θ cos φx′−jπx′/a
)
×

ˆ b/2

−b/2
dy′ejk sin θ sin φy′ .

(5.3)

A symmetric interval around the origin has been chosen to avoid
the introduction of complex phases. Each of these integrals is of
the form

(5.4)
ˆ c/2

−c/2
dz′ejαz′ =

ejαz′

jα

∣∣∣∣∣
c/2

−c/2

=
ejαc/2 − e−jαc/2

jα
=

sin
(
αc/2

)
α/2

.

With

(5.5a)X = k sin θ cos φ

(5.5b)Y = k sin θ sin φ,

the electric vector potential is

F =
ε

4πr
e−jkrx̂

sin (Yb/2)
Y/2

×(
sin ((X + π/a)a/2)

(X + π/a)/2
+

sin ((X− π/a)a/2)
(X− π/a)/2

)
=

ε

2πr
e−jkrx̂

sin (Yb/2)
Y/2

×

(X− π/a) sin (Xa/2 + π/2) + (X + π/a) sin (Xa/2− π/2)
X2 − (π/a)2 .

(5.6)
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Since

(5.7a)sin(z + π/2) + sin(z − π/2) = 0

(5.7b)sin(z + π/2)− sin(z − π/2) = 2 cos z,

this reduces to

(5.8)F = −εab
4r

e−jkrx̂
cos

(
Xa/2

)
(Xa/2)2 − (π/2)2

sin
(
Yb/2

)
Yb/2

.

The far field magnetic field is

(5.9)

H = −jωFT

= jkc
εab
4r

e−jkr (x̂ − (x̂ · r̂) r̂)
cos

(
Xa/2

)
a2X2/4− (π/2)2

sin
(
Yb/2

)
Yb/2

=
jkab
4rη

e−jkr (x̂ − (x̂ · r̂) r̂)
cos

(
Xa/2

)
(Xa/2)2 − (π/2)2

sin
(
Yb/2

)
Yb/2

.

Since

(5.10)x̂ = sin θ cos φr̂ + cos θ cos φθ̂− sin φφ̂,

the far field magnetic field is

H =
jkab
4rη

e−jkr (cos θ cos φθ̂− sin φφ̂
) cos

(
Xa/2

)
(Xa/2)2 − (π/2)2

sin
(
Yb/2

)
Yb/2

.

(5.11)

This can be related to the electric field noting that that the dual of
the far field relationship

(5.12)HA =
1
η

r̂ × EA,

is

(5.13)−EF = ηr̂ ×HF,

so the far field electric field is

(5.14)
E = −ηr̂ ×H

= − jkab
4r

e−jkr r̂ × x̂
cos

(
Xa/2

)
(Xa/2)2 − (π/2)2

sin
(
Yb/2

)
Yb/2

.
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That electric field direction is

(5.15)r̂ × x̂ = cos θ cos φr̂ × θ̂− sin φr̂ × φ̂

= cos θ cos φφ̂ + sin φθ̂,

so the electric field is

E =− jkab
4r

e−jkr (cos θ cos φφ̂+sin φθ̂
) cos

(
Xa/2

)
(Xa/2)2 − (π/2)2

sin
(
Yb/2

)
Yb/2

.

(5.16)

Note that the electric and magnetic fields are perpendicular, as
expected.

1. The polar coordinate of the electric field is

Eθ = − jkab
4r

e−jkr sin φ
cos (Xa/2)

(Xa/2)2 − (π/2)2
sin (Yb/2)

Yb/2
. (5.17)

2. The azimuthal coordinate of the electric field is

Eφ = − jkab
4r

e−jkr cos θ cos φ
cos (Xa/2)

(Xa/2)2 − (π/2)2
sin (Yb/2)

Yb/2
.

(5.18)

3. Now for the plots and numeric values requested for the given
aperture size and source frequency.

The electric field power pattern for an aperture of dimensions
a = b = 10cm at f = 9.8GHz is plotted in dB scale from 0 dB
down to 40 dB in fig. 5.1.

Part a. The maximum field is found at θ = 0. The value of φ is
inconsequential, so we have an infinite number of E-plane surfaces,
and can pick the θ = φ = 0 wave vector direction for simplicity. For
such a wave vector direction Ê = ŷ, Ĥ = x̂, and the corresponding
E-plane and H-plane power fields are plotted in fig. 5.2. These
fields are also plotted on a log scale in fig. 5.3 , from 0 dB down to
-50 dB.
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Figure 5.1: Electric field power pattern, 0 dB to -40 dB.
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Figure 5.2: E-H-plane (power) for φ = 0.
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Figure 5.3: E,H-plane (power) for φ = 0, dB scale.

Part b. For the E-plane the zeros are found at 27◦, 50◦, 90◦, 130◦,
and 153◦.

For the H-plane the zeros are found at 18◦, 38◦, 67◦, 113◦, 142◦,
162◦.

These were determined numerically, but these can also be visu-
ally verified against the dB power plots above, which are marked
in degrees.

Part c. For the E-plane the sidelobe peaks are found at 35◦, 60◦,
120◦, 145◦, with respective levels (dB) of -25, -37, -37, -25.

For the H-plane the sidelobe peaks are found at 26◦, 49◦, 90◦,
131◦, 154◦, with respective levels (dB) of -13.2666, -17.8436, -22.8361,
-17.8436, -13.2666.

These were also calculated numerically, but can also be visually
verified against the dB power plots above.

Part d. The -3 dB point of the main lobe is found where |E| =
10−3/20. For the E-plane this is at 10◦, and for the H-plane this is
found at 8◦.
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6.1 problems.

Exercise 6.1 Patch antenna. (2015 ps5, p2)

A microstrip patch antenna is printed on a substrate with h =
0.1588cm, εr = 2.2 at f0 = 10GHz. Give your length answers in cm.
Using the transmission-line model :

a. Calculate the width W.

b. Calculate the effective relative permittivity εeff.

c. Calculate the length of the patch L0 if no fringing-field
effects are accounted for.

d. Calculate the corrected length L = L0 −m∆L where m = 2
and ∆L is the correction due to the fringing fields.

e. Estimate the admittance of each radiating slot Ys = G + jB.

f. Now transform Ys of the second slot (right) to the plane of
the first slot (left) using the impedance transformation,

Zin2 = Z0
Zs + jZ0 tan(βL)
Z0 + jZs tan(βL)

, (6.1)

where β = k0
√

εeff is the effective propagation constant,
and use Z0 = 26Ω as the characteristic impedance of the
microstrip line. What is the value of Zin2 and Yin2 = 1/Zin2.

g. Based on the above, calculate the total input impedance of
the patch antenna Zin at the terminals of the first slot.

h. If the imaginary part of Zin is not zero, adjust the length
parameter m (in part d) between 0 < 3 < m to make the
patch resonant (i.e. make the imaginary part of Zin vanish).
What is the new input impedance in this case?

Answer for Exercise 6.1
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Part a.

(6.2)

W =
1

2 f0
√

µ0ε0

√
2

εr + 1

=
c

2 f0

√
2

2.2 + 1

=
3× 108m/s× 100cm/m

(2)10× 109s−1

√
2

2.2 + 1
= 1.186cm.

Part b.

(6.3)εeff =
εr + 1

2
+

εr − 1
2

(
1 +

12h
W

)−1/2

= 1.9716.

Part c.

(6.4)
L0 =

λ0

2
=

c
2 f0
√

εeff

= 1.068cm.

Part d.

(6.5)
∆L
h

= 0.412
εeff + 0.3

εeff − 0.258

W
h + 0.264
W
h + 0.8

= 0.5108,

(6.6)∆L = 0.5108h
= 0.081cm,

(6.7)L = L0 − 2∆L
= 0.9061cm.
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Part e.

(6.8)λ0 = c/ f0

= 3cm,

(6.9)k0 =
2π

λ0

= 2.0944cm−1.

The constraint for the calculation of G requires

h
λ0

= 0.053 <
1
10

, (6.10)

which is satisfied, so

(6.11)G =
W

120λ0

(
1− 1

24
(k0h)2

)
= 0.0033f,

(6.12)B =
W

120λ0
(1− 0.636 ln (k0h))

= 0.0056f,

(6.13)
Ys = G + jB

=
(
0.0033 + 0.0056j

)
f

= 0.00649 60◦f,

(6.14)Zs =
(
78− 133j

)
Ω

= 154 −59◦Ω.

Part f.

(6.15)Zin2 =
(
19 + 71j

)
Ω

= 73 75◦Ω,

(6.16)Yin2 =
(
0.0036− 0.0131j

)
f

= 0.0136 −75◦f.
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Part g.

(6.17)
Zin =

1
Ys + Yin2

=
(
66 + 73j

)
Ω

= 98 48◦Ω.

Part h. The imaginary part of Zin is plotted in fig. 6.1. The zero
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Figure 6.1: Im Zin variation with m.

is found at

(6.18)m = 1.22097,

at which point the new impedance is

(6.19)Zin = 152.3Ω.
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7.1 coupled wave equation in cylindrical coordinates .

In [2], for a sourceless configuration, it is noted that the electric
field equations ∇2E = −β2E have the form

(7.1a)∇2Eρ −
Eρ

ρ2 −
2
ρ2

∂Eφ

∂φ
= −β2Eρ

(7.1b)∇2Eφ −
Eφ

ρ2 +
2
ρ2

∂Eρ

∂φ
= −β2Eφ

(7.1c)∇2Ez = −β2Ez,

where

(7.2)∇2ψ =
1
ρ

∂

∂ρ

(
ρ

∂ψ

∂ρ

)
+

1
ρ2

∂2ψ

∂φ2 +
∂2ψ

∂z2 .

He applies separation of variables to the last equation, ending up
with the usual Bessel function solution, but the first two coupled
equations are dismissed as coupled and difficult. It looks like
separation of variables works for this too, but we have to prep the
system slightly by writing ψ = Eρ + jEφ, which gives

(7.3)∇2ψ − ψ

ρ2 +
2j
ρ2

∂ψ

∂φ
= −β2ψ,

or

(7.4)
1
ρ

∂

∂ρ

(
ρ

∂ψ

∂ρ

)
+

1
ρ2

∂2ψ

∂φ2 +
∂2ψ

∂z2 −
ψ

ρ2 +
2j
ρ2

∂ψ

∂φ
= −β2ψ.

With a separation of variables substitution ψ = f (ρ)g(φ)h(z) this
gives

(7.5)
1

ρ f
∂

∂ρ

(
ρ

∂ f
∂ρ

)
+

1
ρ2g

∂2g
∂φ2 +

1
z

∂2h
∂z2 −

1
ρ2 +

2j
ρ2g

∂g
∂φ

= −β2.
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Assuming a solution for the function h of

(7.6)
1
z

∂2h
∂z2 = −α2,

the PDE is reduced to an equation in two functions

(7.7)
1

ρ f
∂

∂ρ

(
ρ

∂ f
∂ρ

)
+

1
ρ2g

∂

∂φ

(
g + 2jg

)
+ β2 − α2 − 1

ρ2 = 0,

or

(7.8)
ρ

f
∂

∂ρ

(
ρ

∂ f
∂ρ

)
+

1
g

∂

∂φ

(
g + 2jg

)
+
(

β2 − α2) ρ2 = 1.

With the term in g having only φ dependence, we can assume

(7.9)
1
g

∂

∂φ

(
g + 2jg

)
= 1− γ2,

for

(7.10)
ρ

f
∂

∂ρ

(
ρ

∂ f
∂ρ

)
− γ2 +

(
β2 − α2) ρ2 = 0.

I’m not sure off hand if these can be solved in known special
functions, especially since the constants in the mix are complex.

7.2 impedance transformation.

In our final problem set we used the impedance transformation
for calculations related to a microslot antenna. This transformation
wasn’t familiar to me, and is apparently covered in the third year
ECE fields class. I found a derivation of this in [4], but the idea is
really simple and follows from the reflection coefficient calculation
for a normal reflection configuration. Consider a normal field
reflection between two interfaces, as sketched in fig. 7.1. The fields
are

(7.11a)Ei = x̂E0e−jk1z

(7.11b)Hi = ŷ
E0

η1
e−jk1z
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Figure 7.1: Normal reflection and transmission between two media.

(7.11c)Er = x̂ΓE0ejk1z

(7.11d)Hr = −ŷΓ
E0

η1
ejk1z

(7.11e)Et = x̂E0Te−jk2z

(7.11f)Ht = ŷ
E0

η1
Te−jk2z.

The field orientations have been picked so that the tangential
component of the electric field is x̂ oriented for all of the incident,
reflected, and transmitted components. Requiring equality of the
tangential field components at the interface gives

(7.12a)1 + Γ = T

(7.12b)
1
η1
− Γ

η1
=

T
η2

.

Solving for the transmission coefficient gives

(7.13)
T =

2
1 + η1

η2

=
2η2

η2 + η1
,
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and for the reflection coefficient

(7.14)

Γ = T − 1

=
2η2 − η1 − η2

η2 + η1

=
η2 − η1

η2 + η1
.

The total fields in medium 1 at the point z = −l are

(7.15a)Ei + Er = x̂E0

(
e−jk1(−l) + Γejk1(−l)

)

(7.15b)Hi + Hr = ŷ
E0

η1

(
e−jk1(−l) − Γejk1(−l)

)
.

The ratio of the electric field strength to the magnetic field strength
is defined as the input impedance

Zin ≡
Ei + Er

Hi + Hr

∣∣∣∣
z=−l

. (7.16)

That is

(7.17)

Zin = η1
ejk1l + Γe−jk1l

ejk1l − Γe−jk1l

= η1

(
η1 + η2

)
ejk1l +

(
η2 − η1

)
e−jk1l(

η1 + η2
)

ejk1l −
(
η2 − η1

)
e−jk1l

= η1
η2 cos(k1l) + η1 j sin(k1l)
η2 j sin(k1l) + η1 cos(k1l)

,

or

Zin = η1
η2 + jη1 tan(k1l)
η1 + jη2 tan(k1l)

. (7.18)

7.3 problems.
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Exercise 7.1 x̂ oriented plane wave electric field. ([2] ex. 4.1)

A uniform plane wave having only an x component of the electric
field is traveling in the +z direction in an unbounded lossless,
source-0free region. Using Maxwell’s equations write expressions
for the electric and corresponding magnetic field intensities.
Answer for Exercise 7.1

The phasor form of Maxwell’s equations for a source free region
are

∇× E = −jωB (7.19a)

∇×H = jωD (7.19b)

∇ ·D = 0 (7.19c)

∇ · B = 0. (7.19d)

Since E = x̂E(z), the magnetic field follows from eq. (7.19a)

(7.20)

−jωB = ∇ × E

=

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

E 0 0

∣∣∣∣∣∣∣∣
= ŷ∂zE(z)− ẑ����∂yE(z),

or

(7.21)B = − 1
jω

∂zE.

This is constrained by eq. (7.19b)

(7.22)

jωεx̂E =
1
µ
∇ × B

= − 1
µjω

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

0 ∂zE 0

∣∣∣∣∣∣∣∣
= − 1

µjω
(−x̂∂zzE + ẑ∂x∂zE) .
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Since ∂x∂zE = ∂z (∂xE) = ∂z
1
ε∇ ·D = ∂z0, this means

∂zzE = −ω2εµE = −k2E. (7.23)

This is the usual starting place that we use to show that the plane
wave has an exponential form

E(z) = x̂
(

E+e−jkz + E−ejkz
)

. (7.24)

The magnetic field from eq. (7.21) is

(7.25)
B =

j
ω

(
−jkE+e−jkz + jkE−ejkz

)
=

1
c

(
E+e−jkz − E−ejkz

)
,

or

(7.26)
H =

1
µc

(
E+e−jkz − E−ejkz

)
=

1
η

(
E+e−jkz − E−ejkz

)
.

A solution requires zero divergence for the magnetic field, but that
can be seen to be the case by inspection.



AP R O F. E L E F T H E R I A D E S ’ H A N D W R I T I N G
D E C O D E R R I N G .

I found Prof. Eleftheriades’ handwriting tricky to decode in a
number of cases. Here’s a handy dandy codex should anybody
else have the same troubles

(a) Greek letter Ω is written as a circle floating above a face up
square bracket.

(b) Greek letter σ is written like a number 6, slightly tipped.

(c) J looks like pi with a tail.

(d) Greek letter λ looks like a mirror image of his ’h’.

(e) Greek letter µ can look like an M.

(a) (b) (c) (d) (e)

Figure A.1: Prof. Eleftheriades’ handwriting decoder ring.





BE L E C T R I C S O U R C E S ( G A ) .

In [5] §3.2 is a demonstration of the required (curl) form for the
magnetic field, and potential form for the electric field.

I was wondering how this derivation would proceed using the
Geometric Algebra (GA) formalism.

b.1 maxwell’s equation in ga phasor form.

Maxwell’s equations, omitting magnetic charges and currents, are

(B.1a)∇ × E = −∂B

∂t

(B.1b)∇ ×H = J +
∂D

∂t

(B.1c)∇ ·D = ρ

(B.1d)∇ · B = 0.

Assuming linear media B = µ0H, D = ε0E, and phasor relation-
ships of the form E = Re

(
E(r)ejωt) for the fields and the currents,

these reduce to

(B.2a)∇ × E = −jωB

(B.2b)∇ × B = µ0J + jωε0µ0E

(B.2c)∇ · E = ρ/ε0

(B.2d)∇ · B = 0.

These four equations can be assembled into a single equation form
using the GA identities

fg = f · g + f ∧ g = f · g + If× g. (B.3a)
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(B.3b)I = x̂ŷẑ.

The electric and magnetic field equations, respectively, are

∇E = ρ/ε0 − jkcBI (B.4a)

∇cB =
I

ε0c
J + jkEI, (B.4b)

where ω = kc, and 1 = c2ε0µ0 have also been used to eliminate some
of the mess of constants. Summing these (first scaling eq. (B.4b) by
I), gives Maxwell’s equation in its GA phasor form

(∇ + jk) (E + cBI) =
1

ε0c
(cρ− J) . (B.5)

b.2 preliminaries. dual magnetic form of maxwell’s
equations .

The arguments of the text showing that a potential representation
for the electric and magnetic fields is possible easily translates into
GA. To perform this translation, some duality lemmas are required

First consider the cross product of two vectors x, y and the
right handed dual −yI of y, a bivector, of one of these vectors.
Noting that the Euclidean pseudoscalar I commutes with all grade
multivectors in a Euclidean geometric algebra space, the cross
product can be written

(B.6)

(x × y) = −I (x ∧ y)

= −I
1
2

(xy − yx)

=
1
2

(x(−yI)− (−yI)x)

= x · (−yI) .

The last step makes use of the fact that the wedge product of a
vector and vector is antisymmetric, whereas the dot product (vector
grade selection) of a vector and bivector is antisymmetric. Details
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on grade selection operators and how to characterize symmetric
and antisymmetric products of vectors with blades as either dot or
wedge products can be found in [14], [8].

Similarly, the dual of the dot product can be written as

(B.7)
−I (x · y) = −I

1
2

(xy + yx)

=
1
2

(x(−yI) + (−yI)x)

= x ∧ (−yI) .

These duality transformations are motivated by the observation
that in the GA form of Maxwell’s equation the magnetic field
shows up in its dual form, a bivector. Spelled out in terms of the
dual magnetic field, those equations are

(B.8a)∇ ∧ E = −jωBI

(B.8b)∇ · (−BI) = µ0J + jωε0µ0E

(B.8c)∇ · E = ρ/ε0

(B.8d)∇ ∧ (−BI) = 0.

b.3 constructing a potential representation.

The starting point of the argument in the text was the observa-
tion that the triple product ∇ · (∇× x) = 0 for any (sufficiently
continuous) vector x. This triple product is a completely antisym-
metric sum, and the equivalent statement in GA is ∇ ∧∇ ∧ x = 0
for any vector x. This follows from a ∧ a = 0, true for any vector
a, including the gradient operator ∇, provided those gradients
are acting on a sufficiently continuous blade. In the absence of
magnetic charges, eq. (B.8d) shows that the divergence of the dual
magnetic field is zero. It it therefore possible to find a potential A
such that

(B.9)BI = ∇ ∧ A.

Substituting this into Maxwell-Faraday eq. (B.8a) gives

(B.10)∇ ∧
(
E + jωA

)
= 0.
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This relation is a bivector identity with zero, so will be satisfied if

(B.11)E + jωA = −∇φ,

for some scalar φ. Unlike the BI = ∇ ∧ A solution to eq. (B.8d),
the grade of φ is fixed by the requirement that E + jωA is unity (a
vector), so a E + jωA = ∇ ∧ ψ, for a higher grade blade ψ would
not work, despite satisfying the condition ∇ ∧∇ ∧ ψ = 0.

Substitution of eq. (B.11) and eq. (B.9) into Ampere’s law eq. (B.8b)
gives

−∇ · (∇ ∧A) = µ0J + jωε0µ0 (−∇φ− jωA)

−∇2A−∇ (∇ ·A) =
(B.12)

Rearranging gives

(B.13)∇2A + k2A = −µ0J −∇
(
∇ · A + j

k
c

φ

)
.

The fields A and φ are assumed to be phasors, say A = Re Aejkct

and ϕ = Re φejkct. Grouping the scalar and vector potentials into
the standard four vector form Aµ = (φ/c, A), and expanding the
Lorentz gauge condition

(B.14)

0 = ∂µ

(
Aµejkct

)
= ∂a

(
Aaejkct

)
+

1
c

∂

∂t

(
φ

c
ejkct

)
= ∇ · Aejkct +

1
c

jkφejkct

=
(
∇ · A + jkφ/c

)
ejkct,

shows that in eq. (B.13) the quantity in braces is in fact the Lorentz
gauge condition, so in the Lorentz gauge, the vector potential
satisfies a non-homogeneous Helmholtz equation.

∇2A + k2A = −µ0J. (B.15)
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b.4 maxwell’s equation in four vector form.

The four vector form of Maxwell’s equation follows from eq. (B.5)
after pre-multiplying by γ0. With

A = Aµγµ = (φ/c, A) (B.16a)

F = ∇∧ A =
1
c
(E + cBI) (B.16b)

∇ = γµ∂µ = γ0 (∇ + jk) (B.16c)

J = Jµγµ = (cρ, J) , (B.16d)

Maxwell’s equation is

∇F = µ0 J. (B.17)

Here
{

γµ

}
is used as the basis of the four vector Minkowski

space, with γ2
0 = −γ2

k = 1 (i.e. γµ · γν = δµ
ν), and γaγ0 = σa where

{σa} is the Pauli basic (i.e. standard basis vectors for R3). Let’s
demonstrate this, one piece at a time. Observe that the action of the
spacetime gradient on a phasor, assuming that all time dependence
is in the exponential, is

(B.18)

γµ∂µ

(
ψejkct

)
= (γa∂a + γ0∂ct)

(
ψejkct

)
= γ0

(
γ0γa∂a + jk

) (
ψejkct

)
= γ0

(
σa∂a + jk

)
ψejkct

= γ0
(
∇ + jk

)
ψejkct.

This allows the operator identification of eq. (B.16c). The four
current portion of the equation comes from

(B.19)

cρ − J = γ0
(
γ0cρ − γ0γaγ0 Ja)

= γ0
(
γ0cρ + γa Ja)

= γ0
(
γµ Jµ

)
= γ0 J.
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Taking the curl of the four potential gives

(B.20)

∇ ∧ A =
(
γa∂a + γ0 jk

)
∧
(

γ0φ/c + γb Ab
)

= −σa∂aφ/c + γa ∧ γb∂a Ab − jkσb Ab

= −σa∂aφ/c + σa ∧ σb∂a Ab − jkσb Ab

=
1
c
(
−∇φ − jωA + c∇ ∧ A

)
=

1
c

(E + cBI) .

Substituting all of these into Maxwell’s eq. (B.5) gives

(B.21)γ0∇cF =
1

ε0c
γ0 J,

which recovers eq. (B.17) as desired.

b.5 helmholtz equation directly from the ga form.

It is easier to find eq. (B.15) from the GA form of Maxwell’s
eq. (B.17) than the traditional curl and divergence equations. Note
that

(B.22)
∇F = ∇ (∇ ∧ A)

= ∇ · (∇ ∧ A) +(((((
((∇ ∧ (∇ ∧ A)

= ∇2A −∇ (∇ · A) ,

however, the Lorentz gauge condition ∂µ Aµ = ∇ · A = 0 kills the
latter term above. This leaves

(B.23)

∇F = ∇2A
= γ0

(
∇ + jk

)
γ0
(
∇ + jk

)
A

= γ2
0
(
−∇ + jk

) (
∇ + jk

)
A

= −
(
∇2 + k2

)
A

= µ0 J.

The timelike component of this gives

(B.24)
(
∇2 + k2

)
φ = −ρ/ε0,
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and the spacelike components give

(B.25)
(
∇2 + k2

)
A = −µ0J,

recovering eq. (B.15) as desired.
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In [5] §3.3, treating magnetic charges and currents, and no electric
charges and currents, is a demonstration of the required (curl) form
for the electric field, and potential form for the electric field. Not
knowing what to name this, I’ll call the associated equations the
dual-Maxwell’s equations. I was wondering how this derivation
would proceed using the Geometric Algebra (GA) formalism.

c.1 dual-maxwell’s equation in ga phasor form.

The dual-Maxwell’s equations, omitting electric charges and cur-
rents, are

(C.1a)∇ × E = −∂B

∂t
−M

(C.1b)∇ ×H =
∂D

∂t

(C.1c)∇ ·D = 0

(C.1d)∇ · B = ρm.

Assuming linear media B = µ0H, D = ε0E, and phasor relation-
ships of the form E = Re

(
E(r)ejωt) for the fields and the currents,

these reduce to

(C.2a)∇ × E = −jωB −M

(C.2b)∇ × B = jωε0µ0E

(C.2c)∇ · E = 0

(C.2d)∇ · B = ρm.
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These four equations can be assembled into a single equation form
using the GA identities

fg = f · g + f ∧ g = f · g + If× g. (C.3a)

(C.3b)I = x̂ŷẑ.

The electric and magnetic field equations, respectively, are

∇E = − (M + jkcB) I (C.4a)

∇cB = cρm + jkEI, (C.4b)

where ω = kc, and 1 = c2ε0µ0 have also been used to eliminate some
of the mess of constants. Summing these (first scaling eq. (C.4b) by
I), gives Maxwell’s equation in its GA phasor form

(∇ + jk) (E + cBI) = (cρm −M) I. (C.5)

c.2 preliminaries. dual magnetic form of maxwell’s
equations.

The arguments of the text showing that a potential representation
for the electric and magnetic fields is possible easily translates into
GA. To perform this translation, some duality lemmas are required

First consider the cross product of two vectors x, y and the
right handed dual −yI of y, a bivector, of one of these vectors.
Noting that the Euclidean pseudoscalar I commutes with all grade
multivectors in a Euclidean geometric algebra space, the cross
product can be written

(C.6)

(x × y) = −I (x ∧ y)

= −I
1
2

(xy − yx)

=
1
2

(x(−yI)− (−yI)x)

= x · (−yI) .

The last step makes use of the fact that the wedge product of a
vector and vector is antisymmetric, whereas the dot product (vector
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grade selection) of a vector and bivector is antisymmetric. Details
on grade selection operators and how to characterize symmetric
and antisymmetric products of vectors with blades as either dot or
wedge products can be found in [14], [8].

Similarly, the dual of the dot product can be written as

(C.7)
−I (x · y) = −I

1
2

(xy + yx)

=
1
2

(x(−yI) + (−yI)x)

= x ∧ (−yI) .

These duality transformations are motivated by the observation
that in the GA form of Maxwell’s equation the magnetic field
shows up in its dual form, a bivector. Spelled out in terms of the
dual magnetic field, those equations are

(C.8a)∇ · (−EI) = −jωB −M

(C.8b)∇ ∧H = jωε0EI

(C.8c)∇ ∧ (−EI) = 0

(C.8d)∇ · B = ρm.

c.3 constructing a potential representation.

The starting point of the argument in the text was the observation
that the triple product ∇ · (∇× x) = 0 for any (sufficiently contin-
uous) vector x. This triple product is a completely antisymmetric
sum, and the equivalent statement in GA is ∇ ∧∇ ∧ x = 0 for
any vector x. This follows from a ∧ a = 0, true for any vector a,
including the gradient operator ∇, provided those gradients are
acting on a sufficiently continuous blade.

In the absence of electric charges, eq. (C.8c) shows that the
divergence of the dual electric field is zero. It it therefore possible
to find a potential F such that

(C.9)−ε0EI = ∇ ∧ F.
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Substituting this eq. (C.8b) gives

(C.10)∇ ∧
(
H + jωF

)
= 0.

This relation is a bivector identity with zero, so will be satisfied if

(C.11)H + jωF = −∇φm,

for some scalar φm. Unlike the −ε0EI = ∇∧ F solution to eq. (C.8c),
the grade of φm is fixed by the requirement that E + jωF is unity
(a vector), so a E + jωF = ∇ ∧ ψ, for a higher grade blade ψ would
not work, despite satisfying the condition ∇ ∧∇ ∧ ψ = 0.

Substitution of eq. (C.11) and eq. (C.9) into eq. (C.8b) gives

∇ · (∇ ∧ F) = −ε0M− jωε0µ0 (−∇φm − jωF)

∇2F−∇ (∇ · F) =
(C.12)

Rearranging gives

(C.13)∇2F + k2F = −ε0M + ∇
(
∇ · F + j

k
c

φm

)
.

The fields F and φm are assumed to be phasors, say A = Re Fejkct

and ϕ = Re φmejkct. Grouping the scalar and vector potentials into
the standard four vector form Fµ = (φm/c, F), and expanding the
Lorentz gauge condition

(C.14)

0 = ∂µ

(
Fµejkct

)
= ∂a

(
Faejkct

)
+

1
c

∂

∂t

(
φm

c
ejkct

)
= ∇ · Fejkct +

1
c

jkφmejkct

=
(
∇ · F + jkφm/c

)
ejkct,

shows that in eq. (C.13) the quantity in braces is in fact the Lorentz
gauge condition, so in the Lorentz gauge, the vector potential
satisfies a non-homogeneous Helmholtz equation.

∇2F + k2F = −ε0M. (C.15)
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c.4 maxwell’s equation in four vector form.

The four vector form of Maxwell’s equation follows from eq. (C.5)
after pre-multiplying by γ0. With

F = Fµγµ = (φm/c, F) (C.16a)

G = ∇∧ F = −ε0 (E + cBI) I (C.16b)

∇ = γµ∂µ = γ0 (∇ + jk) (C.16c)

M = Mµγµ = (cρm, M) , (C.16d)

Maxwell’s equation is

∇G = −ε0M. (C.17)

Here
{

γµ

}
is used as the basis of the four vector Minkowski space,

with γ2
0 = −γ2

k = 1 (i.e. γµ · γν = δµ
ν), and γaγ0 = σa where {σa} is

the Pauli basic (i.e. standard basis vectors for R3).
Let’s demonstrate this, one piece at a time. Observe that the

action of the spacetime gradient on a phasor, assuming that all
time dependence is in the exponential, is

(C.18)

γµ∂µ

(
ψejkct

)
= (γa∂a + γ0∂ct)

(
ψejkct

)
= γ0

(
γ0γa∂a + jk

) (
ψejkct

)
= γ0

(
σa∂a + jk

)
ψejkct

= γ0
(
∇ + jk

)
ψejkct.

This allows the operator identification of eq. (C.16c). The four
current portion of the equation comes from

(C.19)

cρm −M = γ0
(
γ0cρm − γ0γaγ0Ma)

= γ0
(
γ0cρm + γa Ma)

= γ0
(
γµ Mµ

)
= γ0M.
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Taking the curl of the four potential gives

(C.20)

∇ ∧ F =
(
γa∂a + γ0 jk

)
∧
(

γ0φm/c + γbFb
)

= −σa∂aφm/c + γa ∧ γb∂aFb − jkσbFb

= −σa∂aφm/c + σa ∧ σb∂aFb − jkσbFb

=
1
c
(
−∇φm − jωF + c∇ ∧ F

)
= ε0 (cB − EI)
= −ε0 (E + cBI) I.

Substituting all of these into Maxwell’s eq. (C.5) gives

(C.21)−γ0

ε0
∇G = γ0M,

which recovers eq. (C.17) as desired.

c.5 helmholtz equation directly from the ga form.

It is easier to find eq. (C.15) from the GA form of Maxwell’s
eq. (C.17) than the traditional curl and divergence equations. Note
that

(C.22)
∇G = ∇ (∇ ∧ F)

= ∇ · (∇ ∧ F) +(((((
((∇ ∧ (∇ ∧ F)

= ∇2F −∇ (∇ · F) ,

however, the Lorentz gauge condition ∂µFµ = ∇ · F = 0 kills the
latter term above. This leaves

(C.23)

∇G = ∇2F
= γ0

(
∇ + jk

)
γ0
(
∇ + jk

)
F

= γ2
0
(
−∇ + jk

) (
∇ + jk

)
F

= −
(
∇2 + k2

)
F

= −ε0M.

The timelike component of this gives

(C.24)
(
∇2 + k2

)
φm = −ε0cρm,
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and the spacelike components give

(C.25)
(
∇2 + k2

)
F = −ε0M,

recovering eq. (C.15) as desired.





DE L E C T R I C A N D M A G N E T I C S O U R C E S ( G A ) .

Separate examinations of the phasor form of Maxwell’s equa-
tion (with electric charges and current densities), and the Dual
Maxwell’s equation (i.e. allowing magnetic charges and currents)
were just performed. Here the structure of these equations with
both electric and magnetic charges and currents will be examined.

d.1 space time split.

The vector curl and divergence form of Maxwell’s equations are

(D.1a)∇ × E = −∂B

∂t
−M

(D.1b)∇ ×H = J +
∂D

∂t

(D.1c)∇ ·D = ρ

(D.1d)∇ · B = ρm.

In phasor form these are

(D.2a)∇ × E = −jkcB −M

(D.2b)∇ ×H = J + jkcD

(D.2c)∇ ·D = ρ

(D.2d)∇ · B = ρm.

Switching to E = D/ε0, B = µ0H fields (even though these aren’t
the primary fields in engineering), gives

(D.3a)∇ × E = −jk(cB)−M
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(D.3b)∇ × (cB) =
J

ε0c
+ jkE

(D.3c)∇ · E = ρ/ε0

(D.3d)∇ · (cB) = cρm.

Finally, using
(D.4)fg = f · g + If × g,

the divergence and curl contributions of each of the fields can be
grouped

(D.5a)∇E = ρ/ε0 −
(

jk(cB) + M
)

I

(D.5b)∇(cBI) = cρm I −
(

J
ε0c

+ jkE
)

,

or

∇ (E + cBI) = ρ/ε0− (jk(cB) + M) I + cρm I−
(

J
ε0c

+ jkE
)

. (D.6)

Regrouping gives Maxwell’s equation including both electric and
magnetic sources

(∇ + jk) (E + cBI) =
1

ε0c
(cρ− J) + (cρm −M) I. (D.7)

d.2 covariant form.

It was observed that these can be put into a tidy four vector form
by premultiplying by γ0, where

J = γµ Jµ = (cρ, J) (D.8a)

M = γµ Mµ = (cρm, M) (D.8b)

∇ = γ0 (∇ + jk) = γk∂k + jkγ0, (D.8c)

That gives

∇ (E + cBI) =
J

ε0c
+ MI. (D.9)
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d.3 trial potential solution.

When there were only electric sources, it was observed that poten-
tial solutions were of the form E + cBI ∝ ∇ ∧ A, whereas when
there was only magnetic sources it was observed that potential
solutions were of the form E + cBI ∝ (∇∧ F)I. It seems reasonable
to attempt a trial solution that contains both such contributions,
say

E + cBI = ∇∧ Ae + (∇∧ Am) I. (D.10)

Without any loss of generality Lorentz gauge conditions can be
imposed on the four-vector fields Ae, Am. Those conditions are

∇ · Ae = ∇ · Am = 0. (D.11)

Since ∇X = ∇ · X +∇∧ X, for any four vector X, the trial solution
eq. (D.10) is reduced to

E + cBI = ∇Ae +∇Am I. (D.12)

Maxwell’s equation is now

(D.13)

J
ε0c

+ MI = ∇2 (Ae + Am I)

= γ0
(
∇ + jk

)
γ0
(
∇ + jk

)
(Ae + Am I)

=
(
−∇ + jk

) (
∇ + jk

)
(Ae + Am I)

= −
(
∇2 + k2

)
(Ae + Am I) .

Notice how tidily this separates into vector and trivector compo-
nents. Those are

(D.14a)−
(
∇2 + k2

)
Ae =

J
ε0c

(D.14b)−
(
∇2 + k2

)
Am = M.

The result is a single Helmholtz equation for each of the electric
and magnetic four-potentials, and both can be solved completely
independently. This was claimed in class, but now the underlying
reason is clear.
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d.4 lorentz gauge application to helmholtz.

Because a single frequency phasor relationship was implied the
scalar components of each of these four potentials is determined
by the Lorentz gauge condition. For example

(D.15)

0 = ∇ ·
(

Aeejkct
)

=
(

γ0 1
c

∂

∂t
+ γk ∂

∂xk

)
·
(

γ0A0
eejkct + γm Am

e ejkct
)

=
(

γ0 jk + γr ∂

∂xr

)
·
(
γ0A0

e + γs As
e
)

ejkct

=
(

jkA0
e + ∇ · Ae

)
ejkct,

so

(D.16)A0
e =

j
k
∇ · Ae.

The same sort of relationship will apply to the magnetic potential
too. This means that the Helmholtz equations can be solved in the
three vector space as

(D.17a)
(
∇2 + k2

)
Ae = − J

ε0c

(D.17b)
(
∇2 + k2

)
Am = −M.

d.5 recovering the fields.

Relative to the observer frame implicitly specified by γ0, here’s an
expansion of the curl of the electric four potential

∇ ∧ Ae =
1
2

(∇Ae − Ae∇)

=
1
2
(
γ0
(
∇ + jk

)
γ0
(

A0
e −Ae

)
− γ0

(
A0

e −Ae
)

γ0
(
∇ + jk

))
=

1
2
((
−∇ + jk

) (
A0

e − Ae
)
−
(

A0
e + Ae

) (
∇ + jk

))
=

1
2
(
−2∇A0

e +��
�jkA0

e −���jkA0
e + ∇Ae − Ae∇ − 2jkAe

)
= −

(
∇A0

e + jkAe
)

+ ∇ ∧ Ae.
(D.18)
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In the above expansion when the gradients appeared on the right of
the field components, they are acting from the right (i.e. implicitly
using the Hestenes dot convention.)

The electric and magnetic fields can be picked off directly from
above, and in the units implied by this choice of four-potential are

Ee = −
(
∇A0

e + jkAe
)

= −j
(

1
k
∇∇ ·Ae + kAe

)
(D.19a)

cBe = ∇×Ae. (D.19b)

For the fields due to the magnetic potentials

(D.20)(∇ ∧ Ae) I = −
(
∇A0

e + jkAe
)

I −∇ × Ae,

so the fields are

cBm = −
(
∇A0

m + jkAm
)

= −j
(

1
k
∇∇ ·Am + kAm

)
(D.21a)

Em = −∇×Am. (D.21b)

Including both electric and magnetic sources the fields are

E = −∇×Am − j
(

1
k
∇∇ ·Ae + kAe

)
(D.22a)

cB = ∇×Ae − j
(

1
k
∇∇ ·Am + kAm

)
. (D.22b)

Observe that the alternation of signs is exactly that of a superposi-
tion of electric dipole and magnetic dipole fields. This is consistent
with the fact that the dual form of Maxwell’s equations has been
designed explicitly to model infinitesimal current loops as sources.





ER E C I P R O C I T Y T H E O R E M ( G A ) .

The reciprocity theorem involves a Poynting like antisymmetric
difference of the following form

E(a) ×H(b) − E(b) ×H(a). (E.1)

This smells like something that can probably be related to a com-
bined electromagnetic field multivectors in some sort of structured
fashion. Guessing that this is related to the antisymmetric sum of
two electromagnetic field multivectors turns out to be correct. Let

(E.2a)F(a) = E(a) + cB(a) I

(E.2b)F(b) = E(b) + cB(b) I.

Now form the antisymmetric sum

(E.3)

1
2

(
F(a)F(b) − F(b)F(a)

)
=

1
2

(
E(a) + cB(a) I

) (
E(b) + cB(b) I

)
− 1

2

(
E(b) + cB(b) I

) (
E(a) + cB(a) I

)
=

1
2

(
E(a)E(b) − E(b)E(a)

)
+

Ic
2

(
E(a)B(b) − B(b)E(a)

)
+

Ic
2

(
B(a)E(b) − E(b)B(a)

)
+

c2

2

(
B(b)B(a) − B(a)B(b)

)
= E(a) ∧ E(b) + c2

(
B(b) ∧ B(a)

)
+ Ic

(
E(a) ∧ B(b) + B(a) ∧ E(b)

)
= IE(a) × E(b) + c2 I

(
B(b) × B(a)

)
− c

(
E(a) × B(b) + B(a) × E(b)

)
.
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This has two components, the first is a bivector (pseudoscalar times
vector) that includes all the non-mixed products, and the second
is a vector that includes all the mixed terms. We can therefore
write the antisymmetric difference of the reciprocity theorem by
extracting just the grade one terms of the antisymmetric sum of
the combined electromagnetic field

E(a)×H(b)− E(b)×H(a) = − 1
2cµ0

〈(
F(a)F(b) − F(b)F(a)

)〉
1
. (E.4)

Observing that the antisymmetrization used in the reciprocity
theorem is only one portion of the larger electromagnetic field
antisymmetrization, introduces two new questions

1. How would the reciprocity theorem be derived directly in
terms of F(a)F(b) − F(b)F(a)?

2. What is the significance of the other portion of this antisym-
metrization E(a) × E(b) − c2µ2

0
(
H(a) ×H(b)) ?



FR E L AT I O N T O T E N S O R F O R M ( G A ) .

Following the principle that one should always relate new for-
malisms to things previously learned, I’d like to know what Maxwell’s
equations look like in tensor form when magnetic sources are in-
cluded. As a verification that the previous Geometric Algebra form
of Maxwell’s equation that includes magnetic sources is correct,
I’ll start with the GA form of Maxwell’s equation, find the tensor
form, and then verify that the vector form of Maxwell’s equations
can be recovered from the tensor form.

Tensor form. With four-vector potential A, and bivector electro-
magnetic field F = ∇ ∧ A, the GA form of Maxwell’s equation
is

(F.1)∇F =
J

ε0c
+ MI.

The left hand side can be unpacked into vector and trivector terms
∇F = ∇ · F +∇∧ F , which happens to also separate the sources
nicely as a side effect

(F.2a)∇ · F =
J

ε0c

(F.2b)∇ ∧ F = MI.
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The electric source equation can be unpacked into tensor form by
dotting with the four vector basis vectors. With the usual definition
Fαβ = ∂α Aβ − ∂β Aα, that is

(F.3)

γµ · (∇ · F) = γµ · (∇ · (∇ ∧ A))

= γµ ·
(

γν∂ν ·
(

γα∂α ∧ γβ Aβ
))

= γµ ·
(
γν ·

(
γα ∧ γβ

))
∂ν∂α Aβ

=
1
2

γµ ·
(
γν ·

(
γα ∧ γβ

))
∂νFαβ

=
1
2

δ
νµ
[αβ]∂νFαβ

=
1
2

∂νFνµ − 1
2

∂νFµν

= ∂νFνµ.

So the first tensor equation is

∂νFνµ =
1

cε0
Jµ. (F.4)

To unpack the magnetic source portion of Maxwell’s equation, put
it first into dual form, so that it has four vectors on each side

(F.5)

M = − (∇ ∧ F) I

= −1
2

(∇F + F∇) I

= −1
2

(∇FI − FI∇)

= −∇ · (FI) .

Dotting with γµ gives

(F.6)

Mµ = γµ · (∇ · (−FI))

= γµ ·
(

γν∂ν ·
(
−1

2
γα ∧ γβ IFαβ

))
= −1

2

〈
γµ ·

(
γν ·

(
γα ∧ γβ I

))〉
∂νFαβ.
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This scalar grade selection is a complete antisymmetrization of the
indexes

(F.7)

〈
γµ ·

(
γν ·

(
γα ∧ γβ I

))〉
=
〈

γµ ·
(

γν ·
(

γαγβγ0γ1γ2γ3

))〉
=
〈

γ0γ1γ2γ3γµγνγαγβ
〉

= δ
µναβ
3210

= εµναβ,

so the magnetic source portion of Maxwell’s equation, in tensor
form, is

1
2

εναβµ∂νFαβ = Mµ. (F.8)

Relating the tensor to the fields. The electromagnetic field has been
identified with the electric and magnetic fields by

(F.9)F = E + cµ0HI,

or in coordinates

(F.10)
1
2

γµ ∧ γνFµν = Eaγaγ0 + cµ0Haγaγ0 I.

By forming the dot product sequence Fαβ = γβ · (γα · F), the elec-
tric and magnetic field components can be related to the tensor
components. The electric field components follow by inspection
and are

(F.11)Eb = γ0 ·
(

γb · F
)

= Fb0.

The magnetic field relation to the tensor components follow from

(F.12)

Frs = Frs
= γs ·

(
γr ·

(
cµ0Haγaγ0 I

))
= cµ0Ha〈γsγrγaγ0 I〉
= cµ0Ha

〈
−��γ

0γ1γ2γ3γsγrγa��γ0

〉
= −cµ0Haδ[321]

sra
= cµ0Haεsra.
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Expanding this for each pair of spacelike coordinates gives

F12 = cµ0H3ε213 = −cµ0H3 (F.13a)

F23 = cµ0H1ε321 = −cµ0H1 (F.13b)

F31 = cµ0H2ε132 = −cµ0H2, (F.13c)

or

E1 = F10

E2 = F20

E3 = F30

H1 = − 1
cµ0

F23

H2 = − 1
cµ0

F31

H3 = − 1
cµ0

F12.

(F.14)

Recover the vector equations from the tensor equations. Starting with
the non-dual Maxwell tensor equation, expanding the timelike
index gives

(F.15)

1
cε0

J0 =
1
ε0

ρ

= ∂νFν0

= ∂1F10 + ∂2F20 + ∂3F30.

This is Gauss’s law

∇ · E = ρ/ε0. (F.16)



relation to tensor form (ga). 163

For a spacelike index, any one is representative. Expanding index
1 gives

(F.17)

1
cε0

J1 = ∂νFν1

=
1
c

∂tF01 + ∂2F21 + ∂3F31

= −1
c

E1 + ∂2(cµ0H3) + ∂3(−cµ0H2)

=
(
−1

c
∂E

∂t
+ cµ0∇ ×H

)
· e1.

Extending this to the other indexes and multiplying through by ε0c
recovers the Ampere-Maxwell equation (assuming linear media)

∇×H = J +
∂D

∂t
. (F.18)

The expansion of the 0th free (timelike) index of the dual Maxwell
tensor equation is

(F.19)

M0 =
1
2

εναβ0∂νFαβ

= −1
2

ε0ναβ∂νFαβ

= −1
2

(∂1(F23 − F32) + ∂2(F31 − F13) + ∂3(F12 − F21))

= − (∂1F23 + ∂2F31 + ∂3F12)

= −
(

∂1(−cµ0H1) + ∂2(−cµ0H2) + ∂3(−cµ0H3)
)

,

but M0 = cρm, giving us Gauss’s law for magnetism (with magnetic
charge density included)

∇ ·H = ρm/µ0. (F.20)



164 relation to tensor form (ga).

For the spacelike indexes of the dual Maxwell equation, only one
need be computed (say 1), and cyclic permutation will provide the
rest. That is

M1 =
1
2

εναβ1∂νFαβ

=
1
2

(∂2 (F30 − F03)) +
1
2

(∂3 (F02 − F02)) +
1
2

(∂0 (F23 − F32))

= −∂2F30 + ∂3F20 + ∂0F23

= −∂2E3 + ∂3E2 +
1
c

∂

∂t

(
−cµ0H1

)
= −

(
∇ × E + µ0

∂H

∂t

)
· e1.

(F.21)

Extending this to the rest of the coordinates gives the Maxwell-
Faraday equation (as extended to include magnetic current density
sources)

∇× E = −M− µ0
∂H

∂t
. (F.22)

This takes things full circle, going from the vector differential
Maxwell’s equations, to the Geometric Algebra form of Maxwell’s
equation, to Maxwell’s equations in tensor form, and back to the
vector form. Not only is the tensor form of Maxwell’s equations
with magnetic sources now known, the translation from the tensor
and vector formalism has also been verified, and miraculously no
signs or factors of 2 were lost or gained in the process.



GPA R A L L E L P R O J E C T I O N O F
E L E C T R O M A G N E T I C F I E L D S ( G A ) .

When computing the components of a polarized reflecting ray that
were parallel or not-parallel to the reflecting surface, it was found
that the electric and magnetic fields could be written as

E = (E · p̂) p̂ + (E · q̂) q̂ = E‖p̂ + E⊥q̂ (G.1a)

H = (H · p̂) p̂ + (H · q̂) q̂ = H‖p̂ + H⊥q̂. (G.1b)

where a unit vector p̂ that lies both in the reflecting plane and in
the electromagnetic plane (tangential to the wave vector direction)
was

p̂ =
k̂× n̂∣∣∣k̂× n̂

∣∣∣ (G.2a)

q̂ = k̂× p̂. (G.2b)

Here q̂ is perpendicular to p̂ but lies in the electromagnetic plane.
This logically subdivides the fields into two pairs, one with the
electric field parallel to the reflection plane

E1 = (E · p̂) p̂ = E‖p̂

H1 = (H · q̂) q̂ = H⊥q̂,
(G.3)

and one with the magnetic field parallel to the reflection plane

H2 = (H · p̂) p̂ = H‖p̂

E2 = (E · q̂) q̂ = E⊥q̂.
(G.4)

Expressed in Geometric Algebra form, each of these pairs of
fields should be thought of as components of a single multivector
field. That is

F1 = E1 + cµ0H1 I (G.5a)
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F2 = E2 + cµ0H2 I, (G.5b)

where the original total field is

F = E + cµ0HI. (G.6)

In eq. (G.5a) we have a composite projection operation, finding
the portion of the electric field that lies in the reflection plane, and
simultaneously finding the component of the magnetic field that
lies perpendicular to that (while still lying in the tangential plane
of the electromagnetic field). In eq. (G.5b) the magnetic field is
projected onto the reflection plane and a component of the electric
field that lies in the tangential (to the wave vector direction) plane
is computed.

If we operate only on the complete multivector field, can we find
these composite projection field components in a single operation,
instead of working with the individual electric and magnetic fields?

Working towards this goal, it is worthwhile to point out con-
sequences of the assumption that the fields are plane wave (or
equivalently far field spherical waves). For such a wave we have

(G.7)

H =
1
µ0

k̂ × E

=
1
µ0

(−I)
(

k̂ ∧ E
)

=
1
µ0

(−I)
(

k̂E − k̂ · E
)

= − I
µ0

k̂E,

or

(G.8)µ0HI = k̂E.

This made use of the identity a ∧ b = I (a× b), and the fact that
the electric field is perpendicular to the wave vector direction. The
total multivector field is

(G.9)
F = E + cµ0HI

=
(

1 + ck̂
)

E.
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Expansion of magnetic field component that is perpendicular to
the reflection plane gives

(G.10)

µ0H ⊥ = µ0H · q̂
=
〈(
−k̂EI

)
q̂
〉

= −
〈

k̂EI
(

k̂ × p̂
)〉

=
〈

k̂EI I
(

k̂ ∧ p̂
)〉

= −
〈

k̂Ek̂p̂
〉

=
〈

k̂k̂Ep̂
〉

= E · p̂,

so

(G.11)F1 = (p̂ + cIq̂)E · p̂.

Since q̂k̂p̂ = I, the component of the complete multivector field in
the p̂ direction is

(G.12)
F1 = (p̂ − cp̂k̂)E · p̂

= p̂(1− ck̂)E · p̂
= (1 + ck̂)p̂E · p̂.

It is reasonable to expect that F2 has a similar form, but with p̂→ q̂.
This is verified by expansion

(G.13)

F2 = E⊥q̂ + c
(
µ0H‖

)
p̂I

= (E · q̂) q̂ + c
〈
−k̂EIk̂q̂I

〉 (
k̂q̂I

)
I

= (E · q̂) q̂ + c
〈

k̂Ek̂q̂
〉

k̂q̂(−1)

= (E · q̂) q̂ + c
〈

k̂E(−q̂k̂)
〉

k̂q̂(−1)

= (E · q̂) q̂ + c
〈

k̂k̂Eq̂
〉

k̂q̂

=
(

1 + ck̂
)

q̂ (E · q̂)

This and eq. (G.12) before that makes a lot of sense. The original
field can be written

(G.14)F =
(

Ê + c
(

k̂ × Ê
)

I
)

E · Ê,
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where the leading multivector term contains all the directional
dependence of the electric and magnetic field components, and the
trailing scalar has the magnitude of the field with respect to the
reference direction Ê.

We have the same structure after projecting E onto either the p̂,
or q̂ directions respectively

(G.15a)F1 =
(

p̂ + c
(

k̂ × p̂
)

I
)

E · p̂

(G.15b)F2 =
(

q̂ + c
(

k̂ × q̂
)

I
)

E · q̂.

The next question is how to achieve this projection operation di-
rectly in terms of F and p̂, q̂, without resorting to expression of
F in terms of E, and B. I’ve not yet been able to determine the
structure of that operation.



HM AT H E M AT I C A N O T E B O O K S .

These Mathematica notebooks, some just trivial ones used to gener-
ate figures, others more elaborate, and perhaps some even polished,
can be found in

https://github.com/peeterjoot/mathematica/tree/master/ece1229/.
The free Wolfram CDF player, is capable of read-only viewing

these notebooks to some extent.
Files saved explicitly as CDF have interactive content that can be

explored with the CDF player.

• Jan 18, 2015 tableOfTrigIntegrals.nb

Integrals of some powers of sine and cosine products

• Jan 19, 2015 sphericalPlot3d.nb

Antenna intensity plots for sine and cosine powers 1,2.

• Jan 28, 2015 sphericalManipulate.cdf

An interactive graphical visualization of a couple of radiation
intensity functions.

• Feb 8, 2015 visualizeDipoleFields.cdf

In chapter 4 of Balanis’ "Antenna Theory: Analysis and De-
sign", are some discussions of the kr < 1, kr = 1, and kr > 1

radial dependence of the fields and power of a solution to
an infinitesimal dipole system. This discussion severely lacks
some plots. Here’s a Mathematica Manipulate that allows for
inspection of the real and imaginary parts of these functions,
plotted against both k and r, with a kr == constant contour
overlaid on it. The value of that constant can be altered using
one of the sliders, as can the maximum range of k and r, and
upper and lower bounds of the value of the functions being
plotted.

• Feb 8, 2015 selectedInfinitesimalDipolePlots.nb

think this was plots to generate figures for ps2

https://github.com/peeterjoot/mathematica/tree/master/ece1229/
http://www.wolfram.com/cdf-player/
https://raw.github.com/peeterjoot/mathematica/master/ece1229/tableOfTrigIntegrals.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/sphericalPlot3d.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/sphericalManipulate.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/visualizeDipoleFields.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/selectedInfinitesimalDipolePlots.nb
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• Feb 28, 2015 ps3/eAndMdipoleSuperposition.nb

ps3 p1 3d plot Manipulator and figures generation for a
superposition of electric and magnetic dipoles.

• Feb 28, 2015 eAndMdipoleSuperposition.cdf

This is a Manipulator to show the far fields of a superposition
of electric and magnetic infinestismal dipoles on the x and y
axes respectively. The fields at one point on the surface can
be controlled using the theta and phi sliders.

• Feb 28, 2015 ps3/longDipolesSelectedLengths.nb

Polar plots of the radiation intensity for long z-axis elec-
tric current dipoles. This also does the radiation resistance
numerical integrals.

• Feb 28, 2015 ps3/longDipolesSavedLabeledPlot.nb

Saved labeled plot for ps3 p2a.

• Feb 28, 2015 ps3/longDipoleInteractiveLength.nb

A manipulate for visualizing the polar pattern for a long
electric dipole, and showing the directivity. A version without
the 3D checkbox option and without the directivity display
is deployed as cdf in longDipolesWithLengthControl.cdf

• Feb 28, 2015 longDipolesWithLengthControl.cdf

A manipulate for visualizing the polar pattern for a long
electric dipole.

• Mar 1, 2015 ps3/directivityLongDipole.nb

Numerical directivity calculations for ps3 p2 b, long dipole.

• Mar 10, 2015 ps3/ps3Q3plotsAndMiscIntegrals.nb

Trig integrals and plots for ps3, p3. Numerical calculations
of the directivity for part e.

• Mar 13, 2015 chebychevPlots.nb

A couple Cheybshev T plots.

https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/eAndMdipoleSuperposition.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/eAndMdipoleSuperposition.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/longDipolesSelectedLengths.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/longDipolesSavedLabeledPlot.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/longDipoleInteractiveLength.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/longDipolesWithLengthControl.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/directivityLongDipole.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/ps3Q3plotsAndMiscIntegrals.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/chebychevPlots.nb
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• Mar 15, 2015 cornerCubeArrayFactorSq.cdf

A manipulate to show the radiation intensity of the array
factor in 3D for the corner cube configuration. This doesn’t
include any contribution from the field itself (i.e. no sine
squared term.)

• Mar 15, 2015 ps3/ps3Q3plotsCorrected.nb

Redo the plots and the numerical calculations for the corner
cube configuration problem, ps3, q3.

• Mar 16, 2015 cornerCubeArrayFactorSqIn.cdf

Standalone generator for cornerCubeArrayFactorSq.cdf

• Mar 17, 2015 simpleTrigIntegrals.nb

Some simple trig integrals

• Mar 21, 2015 chebychevPlotsII.nb

A Manipulate for Cheybshev plot exploration. A plot of the
first few, and a plot with a scale factor.

• Mar 21, 2015 chebychevPlotsManipulate.cdf

Deployed CDF manipulator for Cheybshev polynomial ex-
ploration.

• Mar 22, 2015 chebychevN4ArrayFitManipulate.cdf

Manipulate to visualize the variation with d for an N = 4

Cheybshev fitting.

• Mar 22, 2015 polarPlot.nb

This uses the Cheybshev design technique from the text to fit
a 4 element array to a T3 function, and visualize it with po-
lar plots. This includes a Manipulate to visualize the variation
with d, saved separately as chebychevN4ArrayFitManipulate.cdf.

• Mar 23, 2015 ChebychevSecondMethod.nb

Exploring Dolph-Cheybshev method from the class notes.
Plots and a Manipulator

• Mar 23, 2015 ChebychevSecondMethodManipulate.cdf

Just the manipulator from ChebychevSecondMethod.nb

https://raw.github.com/peeterjoot/mathematica/master/ece1229/cornerCubeArrayFactorSq.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps3/ps3Q3plotsCorrected.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/cornerCubeArrayFactorSqIn.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/simpleTrigIntegrals.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/chebychevPlotsII.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/chebychevPlotsManipulate.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/chebychevN4ArrayFitManipulate.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/polarPlot.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ChebychevSecondMethod.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ChebychevSecondMethodManipulate.cdf
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• Mar 23, 2015 ChebychevSecondMethodManipulate.nb

Deployed version of the manipulator from ChebychevSec-
ondMethod.nb

• Mar 24, 2015 ps4/problem3BinomialArray.nb

Verify the paper calculations for this problem, and generate
the plots and the numerical values of the angles for the nulls.

• Mar 25, 2015 BinomialArray5WithPhaseAndKDControls.cdf

Add interactive controls to 2D PolarPlot of problem 3 note-
book, deployed version.

• Mar 25, 2015 ps4/BinomialArray5WithPhaseAndKDControls.nb

Add interactive controls to 2D PolarPlot of problem 3 note-
book.

• Mar 28, 2015 ps4/ps4p4Chebychev.nb

Plots and numerical integration results for p4.

• Mar 29, 2015 sphericalReflectedUnitVector.nb

Calculate spherical coordinates for a reflected unit vector.
Doesn’t simplify nicely.

• Mar 31, 2015 ps4/checkAlgebra.nb

Check some of the trig algebra done by hand.

• Apr 9, 2015 ps5/problem1plot.nb

Plot the calculated electric field for the aperature problem.
Here I did the 2D polar plots using a dB scale plot, which I
hadn’t done before, but makes a lot of sense to see the details
of the lobes. Also did a similar log scale plot for the 3D view.

• Apr 11, 2015 testPlaneIntersectionMethods.nb

Some experimentation on how to plot a 3D surface with an
arbitrary plane cut through it.

• Apr 21, 2015 balanisProblem8_8.nb

balanisProblem8_8

https://raw.github.com/peeterjoot/mathematica/master/ece1229/ChebychevSecondMethodManipulate.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps4/problem3BinomialArray.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/BinomialArray5WithPhaseAndKDControls.cdf
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps4/BinomialArray5WithPhaseAndKDControls.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps4/ps4p4Chebychev.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/sphericalReflectedUnitVector.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps4/checkAlgebra.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/ps5/problem1plot.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/testPlaneIntersectionMethods.nb
https://raw.github.com/peeterjoot/mathematica/master/ece1229/balanisProblem8_8.nb


IJ U L I A N O T E B O O K S .

These Julia notebooks, can be found in
https://github.com/peeterjoot/julia.
These notebooks are text files. The julia program, available freely

at www.julialang.org, is required to execute them. Some Julia code
can also be evaluated with Matlab.

• Feb 17, 2015 ece1229/ps2/ps2p5.jl

Numerical calculations for ps2 p5 (simple).

• Feb 22, 2015 ece1229/misc/eta.jl

Numerically compute the free space impedance to compare
to 120 pi.

• Mar 25, 2015 ece1229/misc/mycrappypolar.jl

A brute force polar plot before figuring out how to do it in
PyPlot directly.

• Mar 25, 2015 ece1229/ps4/p2.jl

A reimplementation of matlab/ece1229/ps4/p2.m in Julia.
Figure out how to do a polar plot and save it to a file.

• Mar 25, 2015 ece1229/misc/pyplotPolarExample.jl

A variation of [10] pyplot_windrose.jl to try a Julia imple-
mentation of ps4/p2.

• Mar 26, 2015 ece1229/ps4/p4.jl

Calculation of the numeric values of the Chebyshev array
coeffients, directivites, and plots.

• Apr 28, 2015 ece1229/ps3/p2.jl

Log polar plot of finite length dipole power, to zoom in on
the side lobes for the 1.25 case.

https://github.com/peeterjoot/julia
www.julialang.org
https://raw.github.com/peeterjoot/julia/master/ece1229/ps2/ps2p5.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/misc/eta.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/misc/mycrappypolar.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/ps4/p2.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/misc/pyplotPolarExample.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/ps4/p4.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/ps3/p2.jl
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• Apr 29, 2015 ece1229/ps3/p3.jl

Replot corner cube array factor in log scale. Original po-
lar and 3D plots were done in the ps3Q3plotsCorrected.nb
Mathematica notebook.

• Apr 30, 2015 ece1229/ps4/p2x.jl

Replot ps4 p2 function in linear and log scales, based on code
from ps3/p3.jl

• May 1, 2015 ece1229/ps4/p3.jl

Call polarPlot() to generate plot in both linear and log scales

• May 1, 2015 ece1229/ps4/polarPlot.jl

Turn p2x.jl into a generic polar plotting function.

• May 1, 2015 ece1229/cheb/c.jl

Replot chebychevDesign.tex figures with linear and log scale
plots, avoiding infinities that I had in the Mathematica po-
larPlot.nb plots of the same.

https://raw.github.com/peeterjoot/julia/master/ece1229/ps3/p3.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/ps4/p2x.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/ps4/p3.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/ps4/polarPlot.jl
https://raw.github.com/peeterjoot/julia/master/ece1229/cheb/c.jl


JM AT L A B N O T E B O O K S .

These Matlab notebooks, some just trivial ones used to generate
figures, others more elaborate, and perhaps some even polished,
can be found in

https://github.com/peeterjoot/matlab.
These notebooks are text files, but a matlab product is required

to execute them.

• Mar 25, 2015 ece1229/ps4/p1plot.m

Plot the ps4 p1 AF for one value of ad.

• Mar 25, 2015 ece1229/ps4/p1plots.m

Generate all the plots for p1 and save the plots to files for the
report.

• Mar 25, 2015 ece1229/ps4/p2.m

Problem 2. Code to confirm the zeros numerically, and to
plot the absolute array factor.

• Apr 13, 2015 ece1229/ps5/phicap.m

spherical polar phicap function

• Apr 13, 2015 ece1229/ps5/rcap.m

spherical polar rcap function

• Apr 13, 2015 ece1229/ps5/thetacap.m

spherical polar thetacap function

• Apr 13, 2015 ece1229/ps5/vecE.m

ps5 p1 compuation and plots

• Apr 13, 2015 ece1229/ps5/logscale.m

db values for an input array rescaled to fit in the 0,1 interval.

https://github.com/peeterjoot/matlab
https://raw.github.com/peeterjoot/matlab/master/ece1229/ps4/p1plot.m
https://raw.github.com/peeterjoot/matlab/master/ece1229/ps4/p1plots.m
https://raw.github.com/peeterjoot/matlab/master/ece1229/ps4/p2.m
https://raw.github.com/peeterjoot/matlab/master/ece1229/ps5/phicap.m
https://raw.github.com/peeterjoot/matlab/master/ece1229/ps5/rcap.m
https://raw.github.com/peeterjoot/matlab/master/ece1229/ps5/thetacap.m
https://raw.github.com/peeterjoot/matlab/master/ece1229/ps5/vecE.m
https://raw.github.com/peeterjoot/matlab/master/ece1229/ps5/logscale.m
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• Apr 14, 2015 ece1229/ps5/pII.m

Display the numeric substitutions, and compute the value of
m for part h that has zero imaginary input impedance.

• Apr 14, 2015 ece1229/ps5/calculateZinAndStuff.m

Calculate Zin given a single value of m. Returns all the
intermediate calculations in a structure for display purposes.

https://raw.github.com/peeterjoot/matlab/master/ece1229/ps5/pII.m
https://raw.github.com/peeterjoot/matlab/master/ece1229/ps5/calculateZinAndStuff.m
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Ampere’s law, 138

differential form, 32

integral form, 32

Ampere-Maxwell equation, 163

angle of incidence, 62

antenna array, 83

antenna gain, 25

antenna under test, 25

antisymmetric, 157

antisymmetrization, 161
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aperture efficiency, 14

array antenna
Cheybshev, 89

array factor, 93

AUT, 25

average power density, 13

binary array, 103

binomial array, 108

bivector, 137, 159

boundary conditions, 30

captured power, 24

Chebyscheff
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orthogonality, 102

recurrence relation, 100

second order LDE, 101

Chebyscheff polynomial, 83
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Cheybshev polynomials
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circular polarization, 16

constitutive relations, 29

continuity equation, 28

corner cube, 93
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coupled PDE, 127

covariant form, 152

cross product, 144

duality, 136

curl, 42, 49

four vector, 140

current density, 45

dB, 3

dBi, 4

dipole
long, 76

near field, 70

superposition, 74

dipole moment, 69

directivity, 13–15, 20

approximation, 15

E-plane, 22

H-plane, 22

divergence, 35, 43, 137

cross product, 45

spherical coordinates, 51

divergence theorem, 29, 32, 44

Dolph-Chebyshev, 110

Dolph-Cheybshev, 89

dot product, 161

dual, 137

dual-Maxwell’s equation
covariant, 147

Geometric Algebra, 143



dual-Maxwell’s equations, 143

duality, 37

duality transformation, 40, 55

effective area, 14
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Power, 11

EIRP, 11

electic field
in terms of potentials, 155

electric charge density, 27, 135

electric current density, 27, 135

electric dipole, 20

electric far field, 46

electric field, 161

tangential, 32

transverse projection, 55

vector wave equation, 127

electric four potential, 153

electric potential, 49

electric source, 38

electric surface current den-
sity, 32, 33

electric vector potential, 49

electrical dipole
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electromagnetic field, 159

energy conservation, 35

energy momentum conserva-
tion, 35

energy momentum tensor, 36

far field, 1, 44, 51, 55

electric field, 46

magnetic, 53

four current, 139

four potential
electric, 153

magnetic, 153

four vector, 139, 147, 152

free space impedance, 12

free space loss, 14

free-space loss, 14

frequency domain, 38, 39

Fresnel equations, 58, 60

Friis equation, 17, 25, 74

Friis transmission equation, 15

gain, 15, 17

Gauss’s law, 162

differential form, 32

differential form, magnetic,
32

integral form, 32

integral form, magnetic,
32

magnetism, 163

Geometric Algebra, 135, 143,
151, 157, 164

geometric product, 136, 144

grade selection, 158

gradient
spherical coordinates, 51

Green’s function, 30

ground reflection, 59, 72, 73

half power beamwidth, 20

half-power beamwidth, 15

Helmholtz equation, 140, 148,
153

electric current density, 154

Green’s function, 31

magnetic current density,
154

non-homogeneous, 138

homogeneous media, 29

horizontal dipole, 58

IERP, 74



image theorem, 64

impedance, 9

impedance transformation, 128

impulse response, 30

incident plane, 61

index of refraction, 58

infinite conducting plane, 65

infinitesimal dipole, 49

infinitesimal electric dipole, 68,
69

intrinsic impedance, 1

isotropic radiator, 4

Julia, 74

Laplacian, 127

line of sight, 17, 73

linear antenna, 49

linear media, 1, 29, 35, 135,
143, 163

linear polarization, 16

linear time invariant, 30

Lorentz force
dual, 36

Lorentz force equation, 36

Lorentz gauge, 138, 140, 146,
148, 153, 154

magnetic charge, 143

magnetic charge density, 27,
163

magnetic current, 143

magnetic current density, 27,
164

magnetic current source, 46

magnetic field, 49, 161

in terms of potentials, 155

tangential, 33

magnetic four potential, 153

magnetic source, 35, 38, 43,
159

magnetic vector potential, 49

magnetization, 1

matched load, 15

Mathematica, 3, 169

Matlab, 74

max power density, 13

maximum directivity, 14

Maxwell equation, 135

phasor, 135

Maxwell’s equation, 135, 151,
164

covariant, 152

Geometric Algebra, 152

integral forms, 29

magnetic and electric po-
tential separation, 153

non-covariant GA form,
136

Maxwell’s equations, 27, 151

differential, 31

tensor, 159

Maxwell-Faraday equation, 164

differential form, 32

integral form, 32

microstrip patch, 123

Mie scattering, 11

Minkowski space, 139

mobile reception, 71

momentum conservation, 36

momentum flux, 38

multivector, 157

normal reflection, 128

notation
bold vectors, 12

caligraphic vectors, 12

phasor sign, 46



time average, 12

optical limit, 10

parallel projection, 165

ParametricPlot, 3

ParametricPlot3D, 3

patch antenna, 123

permittivity, 30, 70

phasor, 5, 35, 43, 138, 143, 151

dipole current, 70

plane of incidence, 58

plane of reflection, 58, 61

plane wave, 54, 60

PLF, 17

polarization, 5, 26

power loss, 15

polarization loss factor, 17

polarization mismatch, 17

polarization power loss, 15

polarization vector, 4

potential
curl of curl, 46

potential representation, 145

power
average, 9

complex, 9

phasor, 8

power density, 13, 23

Poynting theorem, 39

Poynting vector, 1, 21, 35

time average, 2

pseudoscalar, 136

radar cross section, 9, 10, 18,
23

radiated power density, 13

radiation intensity, 1, 4

RCS, 18, 23

corner reflector, 10

cylinder, 10

flat plate, 9

sphere, 10

reciprocity theorem, 39, 42, 157

rectangular aperture, 117

reflection coefficient, 56, 58,
72, 130

reflection plane, 61

scalar potential, 55

scattered power, 18

scattered power density, 24

scattering, 10

Schelkunoff
z-axis, 105

Schelkunoff array, 103

separation of variables, 127

signal to noise, 17

space time split, 151

spacetime gradient, 139, 153

spherical potential, 51

spherical scattering, 10

standard gain, 25

Stokes’ theorem, 29, 32

superposition, 2, 3

tangential field components,
129

tensor, 157

tensor form, 159, 164

transmission coefficient, 129

transmission power, 17

transmitted power, 17

transverse field, 44

transverse nature, 54

triple product, 137

trivector, 159

vector potential, 49

vertical dipole, 56



polarization, 74

wave equation, 127

wave vector, 56

wavelength, 16

wedge product, 136, 144, 159

relation to cross product,
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zero phase, 105
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