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Unpacking the fundamental theorem in two dimensions.

Given a two dimensional generating vector space, there are two instances of the fundamental theorem for multivec-
tor integration ∫

S
Fdx

↔

∂ G = FG|∆S , (1.1)

and ∫
S

Fd2x
↔

∂ G =


∂S

FdxG. (1.2)

The first case is trivial. Given a parameterizated curve x = x(u), it just states∫ u(1)

u(0)
du

∂

∂u
(FG) = F(u(1))G(u(1)) − F(u(0))G(u(0)), (1.3)

for all multivectors F,G, regardless of the signature of the underlying space.
The surface integral is more interesting. Let’s first look at the area element for this surface integral, which is

d2x = dxu ∧ dxv. (1.4)

Geometrically, this has the area of the parallelogram spanned by dxu and dxv, but weighted by the pseudoscalar of
the space. This is explored algebraically in exercise 1.1 and illustrated in fig. 1.1.

Exercise 1.1 Expansion of 2D area bivector.

Let {e1, e2} be an orthonormal basis for a two dimensional space, with reciprocal frame
{
e1, e2

}
. Expand the area

bivector d2x in coordinates relating the bivector to the Jacobian and the pseudoscalar.
Answer for Exercise 1.1

With parameterization x = x(u, v) = xαeα = xαeα, we have

xu ∧ xv =

(
∂xα

∂u
eα

)
∧

(
∂xβ

∂v
eβ

)
=
∂xα

∂u
∂xβ

∂v
eαeβ

=
∂(x1, x2)
∂(u, v)

e1e2,

(1.5)
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Figure 1.1: 2D vector space and area element.

or

xu ∧ xv =

(
∂xα
∂u

eα
)
∧

(
∂xβ
∂v

eβ
)

=
∂xα
∂u

∂xβ
∂v

eαeβ

=
∂(x1, x2)
∂(u, v)

e1e2.

(1.6)

The upper and lower index pseudoscalars are related by

e1e2e1e2 = −e1e2e2e1 = −1, (1.7)

so with I = e1e2,
e1e2 = −I−1, (1.8)

leaving us with

d2x =
∂(x1, x2)
∂(u, v)

dudv I = −
∂(x1, x2)
∂(u, v)

dudv I−1. (1.9)

We see that the area bivector is proportional to either the upper or lower index Jacobian and to the pseudoscalar for
the space.

We may write the fundamental theorem for a 2D space as∫
S

dudv
∂(x1, x2)
∂(u, v)

FI
↔

∇ G =


∂S

FdxG, (1.10)

where we have dispensed with the vector derivative and use the gradient instead, since they are identical in a two
parameter two dimensional space. Of course, unless we are using x1, x2 as our parameterization, we still want the
curvilinear representation of the gradient ∇ = xu∂/∂u + xv∂/∂v.
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Exercise 1.2 Standard basis expansion of fundamental surface relation.

For a parameterization x = x1e1 + x2e2, where {e1, e2} is a standard (orthogonal) basis, expand the fundamental
theorem for surface integrals for the single sided F = 1 case. Consider functions G of each grade (scalar, vector,
bivector.)
Answer for Exercise 1.2

From exercise 1.1 we see that the fundamental theorem takes the form∫
S

dx1dx2 FI
↔

∇ G =


∂S

FdxG. (1.11)

In a Euclidean space, the operator I
↔

∇, is a π/2 rotation of the gradient, but has a rotated like structure in all metrics:

I∇ = e1e2
(
e1∂1 + e2∂2

)
= −e2∂1 + e1∂2. (1.12)

• F = 1 and G ∈
∧0 or G ∈

∧2. For F = 1 and scalar or bivector G we have∫
S

dx1dx2 (−e2∂1 + e1∂2)G =


∂S

dxG, (1.13)

where, for x1 ∈ [x1(0), x1(1)] and x2 ∈ [x2(0), x2(1)], the RHS written explicitly is
∂S

dxG =

∫
dx1e1

(
G(x1, x2(1)) −G(x1, x2(0))

)
− dx2e2

(
G(x1(1), x2) −G(x1(0), x2)

)
. (1.14)

This is sketched in fig. 1.2. Since a 2D bivector G can be written as G = Ig, where g is a scalar, we may
write the pseudoscalar case as ∫

S
dx1dx2 (−e2∂1 + e1∂2) g =


∂S

dxg, (1.15)

after right multiplying both sides with I−1. Algebraically the scalar and pseudoscalar cases can be thought of
as identical scalar relationships.

• F = 1,G ∈
∧1. For F = 1 and vector G the 2D fundamental theorem for surfaces can be split into scalar∫

S
dx1dx2 (−e2∂1 + e1∂2) ·G =


∂S

dx ·G, (1.16)

and bivector relations ∫
S

dx1dx2 (−e2∂1 + e1∂2) ∧G =


∂S

dx∧G. (1.17)

To expand eq. (1.16), let
G = g1e1 + g2e2, (1.18)
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for which
(−e2∂1 + e1∂2) ·G = (−e2∂1 + e1∂2) ·

(
g1e1 + g2e2

)
= ∂2g1 − ∂1g2,

(1.19)

and
dx ·G =

(
dx1e1 − dx2e2

)
·
(
g1e1 + g2e2

)
= dx1g1 − dx2g2,

(1.20)

so eq. (1.16) expands to ∫
S

dx1dx2 (∂2g1 − ∂1g2) =

∫
dx1g1

∣∣∣
∆x2 − dx2g2

∣∣∣
∆x1 . (1.21)

This coordinate expansion illustrates how the pseudoscalar nature of the area element results in a duality
transformation, as we end up with a curl like operation on the LHS, despite the dot product nature of the
decomposition that we used. That can also be seen directly for vector G, since

dA(I∇) ·G = dA〈I∇G〉

= dAI (∇∧G) ,
(1.22)

since the scalar selection of I (∇ ·G) is zero.

In the grade-2 relation eq. (1.17), we expect a pseudoscalar cancellation on both sides, leaving a scalar
(divergence-like) relationship. This time, we use upper index coordinates for the vector G, letting

G = g1e1 + g2e2, (1.23)

so
(−e2∂1 + e1∂2) ∧G = (−e2∂1 + e1∂2) ∧G

(
g1e1 + g2e2

)
= e1e2

(
∂1g1 + ∂2g2

)
,

(1.24)

and
dx∧G =

(
dx1e1 − dx2e2

)
∧

(
g1e1 + g2e2

)
= e1e2

(
dx1g2 + dx2g1

)
.

(1.25)

So eq. (1.17), after multiplication of both sides by I−1, is∫
S

dx1dx2
(
∂1g1 + ∂2g2

)
=

∫
dx1g2

∣∣∣
∆x2 + dx2g1

∣∣∣
∆x1 . (1.26)

As before, we’ve implicitly performed a duality transformation, and end up with a divergence operation. That can
be seen directly without coordinate expansion, by rewriting the wedge as a grade two selection, and expanding the
gradient action on the vector G, as follows

dA(I∇)∧G = dA〈I∇G〉2
= dAI (∇ ·G) ,

(1.27)

since I (∇∧G) has only a scalar component.
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Figure 1.2: Line integral around rectangular boundary.

Theorem 1.1: Green’s theorem [1].

Let S be a Jordan region with a piecewise-smooth boundary C. If P,Q are continuously differentiable on an
open set that contains S , then ∫

dxdy
(
∂P
∂y
−
∂Q
∂x

)
=


Pdx + Qdy.

Exercise 1.3 Relationship to Green’s theorem.

If the space is Euclidean, show that eq. (1.21) and eq. (1.26) are both instances of Green’s theorem with suitable
choices of P and Q.
Answer for Exercise 1.3
I will omit the subtleties related to general regions and consider just the case of an infinitesimal square region.

Let’s start with eq. (1.21), with g1 = P and g2 = Q, and x1 = x, x2 = y, the RHS is∫
dxdy

(
∂P
∂y
−
∂Q
∂x

)
. (1.28)

On the RHS we have∫
dxP|∆y − dyQ|∆x =

∫
dx (P(x, y1) − P(x, y0)) −

∫
dy (Q(x1, y) − Q(x0, y)) . (1.29)

This pair of integrals is plotted in fig. 1.3, from which we see that eq. (1.29) can be expressed as the line integral,
leaving us with ∫

dxdy
(
∂P
∂y
−
∂Q
∂x

)
=


dxP + dyQ, (1.30)
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which is Green’s theorem over the infinitesimal square integration region.
For the equivalence of eq. (1.26) to Green’s theorem, let g2 = P, and g1 = −Q. Plugging into the LHS, we find

the Green’s theorem integrand. On the RHS, the integrand expands to

dxg2
∣∣∣
∆y + dyg1

∣∣∣
∆x = dx (P(x, y1) − P(x, y0)) + dy (−Q(x1, y) + Q(x0, y)) , (1.31)

which is exactly what we found in eq. (1.29).

Figure 1.3: Path for Green’s theorem.

We may also relate multivector gradient integrals in 2D to the normal integral around the boundary of the bound-
ing curve. That relationship is as follows.

Theorem 1.2: 2D gradient integrals.

∫
Jdudv

→

∇ G =


I−1dxG =

∫
J (xvdu + xudv)G∫

JdudvF
←

∇ =


FI−1dx =

∫
JF (xvdu + xudv) ,

where J = ∂(x1, x2)/∂(u, v) is the Jacobian of the parameterization x = x(u, v). In terms of the coordinates
x1, x2, this reduces to ∫

dx1dx2 →
∇ G =


I−1dxG =

∫ (
e2dx1 + e1dx2

)
G∫

dx1dx2F
←

∇ =


GI−1dx =

∫
F

(
e2dx1 + e1dx2

)
.

The vector I−1dx is orthogonal to the tangent vector along the boundary, and for Euclidean spaces it can be
identified as the outwards normal.
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Proof. Respectively setting F = 1, and G = 1 in eq. (1.10), we have∫
I−1d2x

→

∇ G =


I−1dxG, (1.32)

and ∫
Fd2x

←

∇ I−1 =


FdxI−1. (1.33)

Starting with eq. (1.32) we find ∫
I−1JdudvI

→

∇ G =


dxG, (1.34)

to find
∫

dx1dx2 →
∇ G =

�
I−1dxG, as desireed. In terms of a parameterization x = x(u, v), the pseudoscalar for the

space is

I =
xu ∧ xv

J
, (1.35)

so
I−1 =

J
xu ∧ xv

. (1.36)

Also note that (xu ∧ xv)
−1

= xv ∧ xu, so
I−1 = J (xv ∧ xu) , (1.37)

and
I−1dx = I−1 · dx

= J (xv ∧ xu) · (xudu − xvdv)

= J (xvdu + xudv) ,

(1.38)

so the right acting gradient integral is∫
Jdudv∇G =

∫
JxvG

∣∣∣
∆vdu + JxuGdv

∣∣∣
∆u, (1.39)

which we write in abbreviated form as
∫

J (xvdu + xudv)G.
For the G = 1 case, from eq. (1.33) we find∫

JdudvFI
←

∇ I−1 =


FdxI−1. (1.40)

However, in a 2D space, regardless of metric, we have Ia = −aI for any vector a (i.e. ∇ or dx), so we may commute
the outer pseudoscalars in ∫

JdudvFI
←

∇ I−1 =


FdxI−1, (1.41)

so
−

∫
JdudvFII−1 ←

∇= −


FI−1dx. (1.42)
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After cancelling the negative sign on both sides, we have the claimed result.
To see that Ia, for any vector a is normal to a, we can compute the dot product

(Ia) · a = 〈Iaa〉 = a2〈I〉 = 0, (1.43)

since the scalar selection of a bivector is zero. Since I−1 = ±I, the same argument shows that I−1dx must be
orthogonal to dx. �

Let’s look at the geometry of the normal I−1x in a couple 2D vector spaces. We use an integration volume of a unit
square to simplify the boundary term expressions.

• Euclidean: With a parameterization x(u, v) = ue1 + ve2, and Euclidean basis vectors (e1)2 = (e2)2 = 1, the
fundamental theorem integrated over the rectangle [x0, x1] × [y0, y1] is∫

dxdy∇G =

∫
e2 (G(x, y1) −G(x, y0)) dx + e1 (G(x1, y) −G(x0, y)) dy, (1.44)

Each of the terms in the integrand above are illustrated in fig. 1.4, and we see that this is a path integral
weighted by the outwards normal.

Figure 1.4: Outwards oriented normal for Euclidean space.

• Spacetime: Let x(u, v) = uγ0 + vγ1, where (γ0)2 = −(γ1)2 = 1. With u = t, v = x, the gradient integral over a
[t0, t1] × [x0, x1] of spacetime is∫

dtdx∇G =

∫
γ1dt (G(t, x1) −G(t, x0)) + γ0dx (G(t1, x) −G(t1, x))

=

∫
γ1dt (−G(t, x1) + G(t, x0)) + γ0dx (G(t1, x) −G(t1, x)) .

(1.45)

With t plotted along the horizontal axis, and x along the vertical, each of the terms of this integrand is
illustrated graphically in fig. 1.5. For this mixed signature space, there is no longer any good geometrical
characterization of the normal.
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Figure 1.5: Orientation of the boundary normal for a spacetime basis.

• Spacelike: Let x(u, v) = uγ1 + vγ2, where (γ1)2 = (γ2)2 = −1. With u = x, v = y, the gradient integral over a
[x0, x1] × [y0, y1] of this space is∫

dxdy∇G =

∫
γ2dx (G(x, y1) −G(x, y0)) + γ1dy (G(x1, y) −G(x1, y))

=

∫
γ2dx (−G(x, y1) + G(x, y0)) + γ1dy (−G(x1, y) + G(x1, y)) .

(1.46)

Referring to fig. 1.6. where the elements of the integrand are illustrated, we see that the normal I−1dx for the
boundary of this region can be characterized as inwards.

Figure 1.6: Inwards oriented normal for a Dirac spacelike basis.
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