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Angular momentum bivector in cylindrical and spherical bases.

1.1 Motivation

In A discord thread on the bivector group (a geometric algebra group chat), MoneyKills posts about
trouble he has calculating the correct expression for the angular momentum bivector or it’s dual.

This blog post is a more long winded answer than my bivector response and includes this calculation
using both cylindrical and spherical coordinates.

1.2 Cylindrical coordinates.

The position vector for any point on a plane can be expressed as

r = rr̂, (1.1)

where r̂ = r̂(ϕ) encodes all the angular dependence of the position vector, and r is the length along that
direction to our point, as illustrated in fig. 1.1. The radial unit vector has a compact GA representation

r̂ = e1eiϕ, (1.2)

where i = e1e2.
The velocity (or momentum) will have both r̂ and ϕ̂ dependence. By chain rule, that velocity is

v = ṙr̂ + r ˙̂r, (1.3)

where
˙̂r = e1ieiϕϕ̇

= e2eiϕϕ̇

= ϕ̂ϕ̇.

(1.4)

It is left to the reader to show that the vector designated ϕ̂, is a unit vector and perpendicular to r̂ (Hint:
compute the grade-0 selection of the product of the two to show that they are perpendicular.)
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Figure 1.1: Cylindrical coordinates position vector.

We can now compute the momentum, which is

p = mv = m
(
ṙr̂ + rϕ̇ϕ̂

)
, (1.5)

and the angular momentum bivector

L = r ∧ p
= m (rr̂) ∧

(
ṙr̂ + rϕ̇ϕ̂

)
= mr2ϕ̇r̂ϕ̂.

(1.6)

This has the mr2ϕ̇ magnitude that the OP was seeking.

1.3 Spherical coordinates.

In spherical coordinates, our position vector is

r = r (e1 sin θ cos ϕ + e2 sin θ sin ϕ + e3 cos θ) , (1.7)

as sketched in fig. 1.2.
We can factor this into a more compact representation

r = r (sin θe1(cos ϕ + e12 sin ϕ) + e3 cos θ)

= r
(
sin θe1ee12ϕ + e3 cos θ

)
= re3

(
cos θ + sin θe3e1ee12ϕ

)
.

(1.8)

It is useful to name two of the bivector terms above, first, we write i for the azimuthal plane bivector
sketched in fig. 1.3.
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Figure 1.2: Spherical coordinates.

Figure 1.3: Spherical coordinates, azimuthal plane.

3



i = e12, (1.9)

and introduce a bivector j that encodes the e3, r̂ plane as sketched in fig. 1.4.

Figure 1.4: Spherical coordinates, “j-plane”.

j = e31eiϕ. (1.10)

Having done so, we now have a compact representation for our position vector

r = re3 (cos θ + j sin θ)

= re3ejθ .
(1.11)

This provides us with a nice compact representation of the radial unit vector

r̂ = e3ejθ . (1.12)

Just as was the case in cylindrical coordinates, our azimuthal plane unit vector is

ϕ̂ = e2eiϕ. (1.13)

Now we want to compute the velocity vector. As was the case in cylindrical coordinates, we have

v = ṙr̂ + r ˙̂r, (1.14)

but now we need the spherical representation for the r̂ derivative, which is

˙̂r =
∂r̂
∂θ

θ̇ +
∂r̂
∂ϕ

ϕ̇

= e3ejθ jθ̇ + e3 sin θ
∂j
∂ϕ

ϕ̇

= r̂jθ̇ + e3 sin θ jiϕ̇.

(1.15)
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We can reduce the second multivector term without too much work

e3 ji = e3e31eiϕi

= e3e31ieiϕ

= e33112eiϕ

= e2eiϕ

= ϕ̂,

(1.16)

so we have
˙̂r = r̂jθ̇ + sin θϕ̂ϕ̇. (1.17)

The velocity is
v = ṙr̂ + r

(
r̂jθ̇ + sin θϕ̂ϕ̇

)
. (1.18)

Now we can finally compute the angular momentum bivector, which is

L = r ∧ p

= mrr̂ ∧
(
ṙr̂ + r

(
r̂jθ̇ + sin θϕ̂ϕ̇

))
= mr2r̂ ∧

(
r̂jθ̇ + sin θϕ̂ϕ̇

)
= mr2〈r̂

(
r̂jθ̇ + sin θϕ̂ϕ̇

)〉
2,

(1.19)

which is just
L = mr2 (jθ̇ + sin θr̂ϕ̂ϕ̇

)
. (1.20)

I was slightly surprised by this result, as I naively expected the cylindrical coordinate result. We have
a mr2r̂ϕ̂ϕ̇ term, as was the case in cylindrical coordinates, but scaled down with a sin θ factor. However,
this result does make sense. Consider for example, some fixed circular motion with θ = constant, as
sketched in fig. 1.5. The radius of this circle is actually r sin θ, so the total angular momentum for that
motion is scaled down to mr2 sin θϕ̇, smaller than the maximum circular angular momentum of mr2ϕ̇
which occurs in the θ = π/2 azimuthal plane. Similarly, if we have circular motion in the “j-plane”,
sketched in fig. 1.6. where ϕ = constant, then our angular momentum is L = mr2 jθ̇.
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Figure 1.5: Circular motion for constant θ.

Figure 1.6: Circular motion for constant ϕ.
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