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Vector gradients in dyadic notation and geometric algebra.

This is an exploration of the dyadic representation of the gradient acting on a vector in R3, where we
determine a tensor product formulation of a vector differential. Such a tensor product formulation can
be split into symmetric and antisymmetric components. The geometric algebra (GA) equivalents of such
a split are determined.

1.1 GA gradient of a vector.

In GA we are free to express the product of the gradient and a vector field by adjacency. In coordinates
(summation over repeated indexes assumed), such a product has the form

∇v = (ei∂i)
(
vjej

)
=
(
∂ivj

)
eiej.

(1.1)

In this sum, any terms with i = j are scalars since e2
i = 1, and the remaining terms are bivectors. This can

be written compactly as
(1.2)∇v = ∇ · v + ∇ ∧ v,

or for R3

∇v = ∇ · v + I (∇× v) , (1.3)

either of which breaks the gradient into into divergence and curl components. In eq. (1.2) this vector
gradient is expressed using the bivector valued curl operator (∇ ∧ v), whereas eq. (1.3) is expressed
using the vector valued dual form of the curl (∇× v) from convential vector algebra.

It is worth noting that order matters in the GA coordinate expansion of eq. (1.1). It is not correct to
write

∇v =
(
∂ivj

)
ejei, (1.4)

which is only true when the curl, ∇ ∧ v = 0, is zero.
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1.2 Dyadic representation.

Given a vector field v = v(x), the differential of that field can be computed by chain rule

dv =
∂v
∂xi

dxi = (dx ·∇) v, (1.5)

where dx = eidxi. This is a representation invariant form of the differential, where we have a scalar
operator dx ·∇ acting on the vector field v. The matrix representation of this differential can be written
as

dv =
([

dx
]† [∇]) [

v
]

, (1.6)

where we are using the dagger to designate transposition, and each of the terms on the right are the
coordinate matrixes of the vectors with respect to the standard basis

[
dx

]
=

dx1
dx2
dx3

 ,
[
v
]

=

v1
v2
v3

 ,
[
∇

]
=

∂1
∂2
∂3

 . (1.7)

In eq. (1.6) the parens are very important, as the expression is meaningless without them. With the
parens we have a (1 × 3)(3 × 1) matrix (i.e. a scalar) multiplied with a 3 × 1 matrix. That becomes ill-
formed if we drop the parens since we are left with an incompatible product of a (3 × 1)(3 × 1) matrix
on the right. The dyadic notation, which introducing a tensor product into the mix, is a mechanism to
make sense of the possibility of such a product. Can we make sense of an expression like ∇v without
the geometric product in our toolbox?

Stepping towards that question, let’s examine the coordinate expansion of our vector differential
eq. (1.5), which is

dv = dxi
(
∂ivj

)
ej. (1.8)

If we allow a matrix of vectors, this has a block matrix form

dv =
[
dx

]† [∇⊗ v
] e1

e2
e3

 . (1.9)

Here we introduce the tensor product

(1.10)∇ ⊗ v = ∂ivj ei ⊗ ej,

and designate the matrix of coordinates ∂ivj, a second order tensor, by
[
∇⊗ v

]
.

We have succeeded in factoring out a vector gradient. We can introduce dot product between vectors
and a direct product of vectors, by observing that eq. (1.9) has the structure of a quadradic form, and
define

x · (a ⊗ b) ≡
[
x
]† [a ⊗ b

] e1
e2
e3

 , (1.11)
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so that eq. (1.9) takes the form
dv = dx · (∇⊗ v) . (1.12)

Such a dot product gives operational meaning to the gradient-vector tensor product.

1.3 Symmetrization and antisymmetrization of the vector differential in GA.

Using the dyadic notation, it’s possible to split a vector derivative into symmetric and antisymmetric
components with respect to the gradient-vector direct product

dv = dx ·
(

1
2

(
∇⊗ v + (∇⊗ v)†

)
+

1
2

(
∇⊗ v − (∇⊗ v)†

))
= dx · (d + Ω) ,

(1.13)

where Ω is a traceless antisymmetric tensor.
A question of potential interest is “what GA equvivalent of this expression?”. There are two identities

that are helpful for extracting this equivalence, the first of which is the k-blade vector product identities.
Given a k-blade Bk (i.e.: a product of k orthogonal vectors, or the wedge of k vectors), and a vector a, the
dot product of the two is

Bk · a =
1
2

(
Bka + (−1)k+1aBk

)
(1.14)

Specifically, given two vectors a, b, the vector dot product can be written as a symmetric sum

a · b =
1
2
(ab + ba) = b · a, (1.15)

and given a bivector B and a vector a, the bivector-vector dot product can be written as an antisymmetric
sum

B · a =
1
2
(Ba − aB) = −a · B. (1.16)

We may apply these to expressions where one of the vector terms is the gradient, but must allow for
the gradient to act bidirectionally. That is, given multivectors M, N

(1.17)M∇N = ∂i(MeiN)
= (∂i M)eiN + Mei(∂iN),

where parens have been used to indicate the scope of applicibility of the partials. In particular, this
means that we may write the divergence as a GA symmetric sum

∇ · v =
1
2
(∇v + v∇) , (1.18)

which clearly corresponds to the symmetric term d = (1/2)
(
∇⊗ v + (∇⊗ v)†

)
from eq. (1.13).
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Let’s assume that we can write our vector differential in terms of a divergence term isomorphic to the
symmetric sum in eq. (1.13), and a “something else”, X. That is

dv = (dx ·∇) v
= dx(∇ · v) + X,

(1.19)

where
X = (dx ·∇) v − dx(∇ · v), (1.20)

is a vector expression to be reduced to something simpler. That reduction is possible using the distribu-
tion identity

c · (a ∧ b) = (c · a)b − (c · b)a, (1.21)

so we find
X = ∇ · (dx ∧ v) . (1.22)

We find the following GA split of the vector differential into symmetric and antisymmetric terms

dv = (dx ·∇)v = dx(∇ · v) + ∇ · (dx ∧ v) . (1.23)

Such a split avoids the indeterminant nature of the tensor product, which we only give meaning by
introducing the quadratic form based dot product given by eq. (1.11).
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