Peeter Joot
 peeterjoot@pm.me

Vector gradients in dyadic notation and geometric algebra.

This is an exploration of the dyadic representation of the gradient acting on a vector in \mathbb{R}^{3}, where we determine a tensor product formulation of a vector differential. Such a tensor product formulation can be split into symmetric and antisymmetric components. The geometric algebra (GA) equivalents of such a split are determined.

1.1 GA gradient of a vector.

In GA we are free to express the product of the gradient and a vector field by adjacency. In coordinates (summation over repeated indexes assumed), such a product has the form

$$
\begin{align*}
\boldsymbol{\nabla} \mathbf{v} & =\left(\mathbf{e}_{i} \partial_{i}\right)\left(v_{j} \mathbf{e}_{j}\right) \\
& =\left(\partial_{i} v_{j}\right) \mathbf{e}_{i} \mathbf{e}_{j} . \tag{1.1}
\end{align*}
$$

In this sum, any terms with $i=j$ are scalars since $\mathbf{e}_{i}^{2}=1$, and the remaining terms are bivectors. This can be written compactly as

$$
\begin{equation*}
\nabla \mathbf{v}=\nabla \cdot \mathbf{v}+\nabla \wedge \mathbf{v}, \tag{1.2}
\end{equation*}
$$

or for \mathbb{R}^{3}

$$
\begin{equation*}
\boldsymbol{\nabla} \mathbf{v}=\boldsymbol{\nabla} \cdot \mathbf{v}+I(\boldsymbol{\nabla} \times \mathbf{v}), \tag{1.3}
\end{equation*}
$$

either of which breaks the gradient into into divergence and curl components. In eq. (1.2) this vector gradient is expressed using the bivector valued curl operator ($\boldsymbol{\nabla} \wedge \mathbf{v}$), whereas eq. (1.3) is expressed using the vector valued dual form of the curl $(\boldsymbol{\nabla} \times \mathbf{v})$ from convential vector algebra.

It is worth noting that order matters in the GA coordinate expansion of eq. (1.1). It is not correct to write

$$
\begin{equation*}
\nabla \mathbf{v}=\left(\partial_{i} v_{j}\right) \mathbf{e}_{j} \mathbf{e}_{i} \tag{1.4}
\end{equation*}
$$

which is only true when the curl, $\boldsymbol{\nabla} \wedge \mathbf{v}=0$, is zero.

1.2 Dyadic representation.

Given a vector field $\mathbf{v}=\mathbf{v}(\mathbf{x})$, the differential of that field can be computed by chain rule

$$
\begin{equation*}
d \mathbf{v}=\frac{\partial \mathbf{v}}{\partial x_{i}} d x_{i}=(d \mathbf{x} \cdot \nabla) \mathbf{v} \tag{1.5}
\end{equation*}
$$

where $d \mathbf{x}=\mathbf{e}_{i} d x_{i}$. This is a representation invariant form of the differential, where we have a scalar operator $d \mathbf{x} \cdot \nabla$ acting on the vector field \mathbf{v}. The matrix representation of this differential can be written as

$$
\begin{equation*}
d \mathbf{v}=\left([d \mathbf{x}]^{\dagger}[\boldsymbol{\nabla}]\right)[\mathbf{v}], \tag{1.6}
\end{equation*}
$$

where we are using the dagger to designate transposition, and each of the terms on the right are the coordinate matrixes of the vectors with respect to the standard basis

$$
[d \mathbf{x}]=\left[\begin{array}{l}
d x_{1} \tag{1.7}\\
d x_{2} \\
d x_{3}
\end{array}\right], \quad[\mathbf{v}]=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right], \quad[\boldsymbol{\nabla}]=\left[\begin{array}{l}
\partial_{1} \\
\partial_{2} \\
\partial_{3}
\end{array}\right] .
$$

In eq. (1.6) the parens are very important, as the expression is meaningless without them. With the parens we have a $(1 \times 3)(3 \times 1)$ matrix (i.e. a scalar) multiplied with a 3×1 matrix. That becomes illformed if we drop the parens since we are left with an incompatible product of a $(3 \times 1)(3 \times 1)$ matrix on the right. The dyadic notation, which introducing a tensor product into the mix, is a mechanism to make sense of the possibility of such a product. Can we make sense of an expression like $\boldsymbol{\nabla} \mathbf{v}$ without the geometric product in our toolbox?

Stepping towards that question, let's examine the coordinate expansion of our vector differential eq. (1.5), which is

$$
\begin{equation*}
d \mathbf{v}=d x_{i}\left(\partial_{i} v_{j}\right) \mathbf{e}_{j} \tag{1.8}
\end{equation*}
$$

If we allow a matrix of vectors, this has a block matrix form

$$
d \mathbf{v}=[d \mathbf{x}]^{\dagger}[\boldsymbol{\nabla} \otimes \mathbf{v}]\left[\begin{array}{l}
\mathbf{e}_{1} \tag{1.9}\\
\mathbf{e}_{2} \\
\mathbf{e}_{3}
\end{array}\right] .
$$

Here we introduce the tensor product

$$
\begin{equation*}
\nabla \otimes \mathbf{v}=\partial_{i} v_{j} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \tag{1.10}
\end{equation*}
$$

and designate the matrix of coordinates $\partial_{i} v_{j}$, a second order tensor, by $[\boldsymbol{\nabla} \otimes \mathbf{v}]$.
We have succeeded in factoring out a vector gradient. We can introduce dot product between vectors and a direct product of vectors, by observing that eq. (1.9) has the structure of a quadradic form, and define

$$
\mathbf{x} \cdot(\mathbf{a} \otimes \mathbf{b}) \equiv[\mathbf{x}]^{\dagger}[\mathbf{a} \otimes \mathbf{b}]\left[\begin{array}{l}
\mathbf{e}_{1} \tag{1.11}\\
\mathbf{e}_{2} \\
\mathbf{e}_{3}
\end{array}\right],
$$

so that eq. (1.9) takes the form

$$
\begin{equation*}
d \mathbf{v}=d \mathbf{x} \cdot(\boldsymbol{\nabla} \otimes \mathbf{v}) . \tag{1.12}
\end{equation*}
$$

Such a dot product gives operational meaning to the gradient-vector tensor product.

1.3 Symmetrization and antisymmetrization of the vector differential in GA.

Using the dyadic notation, it's possible to split a vector derivative into symmetric and antisymmetric components with respect to the gradient-vector direct product

$$
\begin{align*}
d \mathbf{v} & =d \mathbf{x} \cdot\left(\frac{1}{2}\left(\boldsymbol{\nabla} \otimes \mathbf{v}+(\boldsymbol{\nabla} \otimes \mathbf{v})^{\dagger}\right)+\frac{1}{2}\left(\boldsymbol{\nabla} \otimes \mathbf{v}-(\boldsymbol{\nabla} \otimes \mathbf{v})^{\dagger}\right)\right) \tag{1.13}\\
& =d \mathbf{x} \cdot(\mathbf{d}+\boldsymbol{\Omega})
\end{align*}
$$

where Ω is a traceless antisymmetric tensor.
A question of potential interest is "what GA equvivalent of this expression?". There are two identities that are helpful for extracting this equivalence, the first of which is the k-blade vector product identities. Given a k-blade B_{k} (i.e.: a product of k orthogonal vectors, or the wedge of k vectors), and a vector a, the dot product of the two is

$$
\begin{equation*}
B_{k} \cdot \mathbf{a}=\frac{1}{2}\left(B_{k} \mathbf{a}+(-1)^{k+1} \mathbf{a} B_{k}\right) \tag{1.14}
\end{equation*}
$$

Specifically, given two vectors \mathbf{a}, \mathbf{b}, the vector dot product can be written as a symmetric sum

$$
\begin{equation*}
\mathbf{a} \cdot \mathbf{b}=\frac{1}{2}(\mathbf{a b}+\mathbf{b} \mathbf{a})=\mathbf{b} \cdot \mathbf{a}, \tag{1.15}
\end{equation*}
$$

and given a bivector B and a vector a, the bivector-vector dot product can be written as an antisymmetric sum

$$
\begin{equation*}
B \cdot \mathbf{a}=\frac{1}{2}(B \mathbf{a}-\mathbf{a} B)=-\mathbf{a} \cdot B . \tag{1.16}
\end{equation*}
$$

We may apply these to expressions where one of the vector terms is the gradient, but must allow for the gradient to act bidirectionally. That is, given multivectors M, N

$$
\begin{align*}
M \nabla N & =\partial_{i}\left(M \mathbf{e}_{i} N\right) \tag{1.17}\\
& =\left(\partial_{i} M\right) \mathbf{e}_{i} N+M \mathbf{e}_{i}\left(\partial_{i} N\right),
\end{align*}
$$

where parens have been used to indicate the scope of applicibility of the partials. In particular, this means that we may write the divergence as a GA symmetric sum

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{v}=\frac{1}{2}(\boldsymbol{\nabla} \mathbf{v}+\mathbf{v} \boldsymbol{\nabla}) \tag{1.18}
\end{equation*}
$$

which clearly corresponds to the symmetric term $\mathbf{d}=(1 / 2)\left(\boldsymbol{\nabla} \otimes \mathbf{v}+(\boldsymbol{\nabla} \otimes \mathbf{v})^{\dagger}\right)$ from eq. (1.13).

Let's assume that we can write our vector differential in terms of a divergence term isomorphic to the symmetric sum in eq. (1.13), and a "something else", \boldsymbol{X}. That is

$$
\begin{align*}
d \mathbf{v} & =(d \mathbf{x} \cdot \boldsymbol{\nabla}) \mathbf{v} \tag{1.19}\\
& =d \mathbf{x}(\boldsymbol{\nabla} \cdot \mathbf{v})+\mathbf{X},
\end{align*}
$$

where

$$
\begin{equation*}
\mathbf{X}=(d \mathbf{x} \cdot \boldsymbol{\nabla}) \mathbf{v}-d \mathbf{x}(\boldsymbol{\nabla} \cdot \mathbf{v}) \tag{1.20}
\end{equation*}
$$

is a vector expression to be reduced to something simpler. That reduction is possible using the distribution identity

$$
\begin{equation*}
\mathbf{c} \cdot(\mathbf{a} \wedge \mathbf{b})=(\mathbf{c} \cdot \mathbf{a}) \mathbf{b}-(\mathbf{c} \cdot \mathbf{b}) \mathbf{a}, \tag{1.21}
\end{equation*}
$$

so we find

$$
\begin{equation*}
\mathbf{X}=\boldsymbol{\nabla} \cdot(d \mathbf{x} \wedge \mathbf{v}) . \tag{1.22}
\end{equation*}
$$

We find the following GA split of the vector differential into symmetric and antisymmetric terms

$$
\begin{equation*}
d \mathbf{v}=(d \mathbf{x} \cdot \boldsymbol{\nabla}) \mathbf{v}=d \mathbf{x}(\boldsymbol{\nabla} \cdot \mathbf{v})+\boldsymbol{\nabla} \cdot(d \mathbf{x} \wedge \mathbf{v}) \tag{1.23}
\end{equation*}
$$

Such a split avoids the indeterminant nature of the tensor product, which we only give meaning by introducing the quadratic form based dot product given by eq. (1.11).

