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Vector gradients in dyadic notation and geometric algebra.

This is an exploration of the dyadic representation of the gradient acting on a vector in R3, where we
determine a tensor product formulation of a vector differential. Such a tensor product formulation can
be split into symmetric and antisymmetric components. The geometric algebra (GA) equivalents of such
a split are determined.

1.1 GA gradient of a vector.

In GA we are free to express the product of the gradient and a vector field by adjacency. In coordinates
(summation over repeated indexes assumed), such a product has the form

∇v = (ei∂i)
(
vjej

)
=
(
∂ivj

)
eiej.

(1.1)

In this sum, any terms with i = j are scalars since e2
i = 1, and the remaining terms are bivectors. This can

be written compactly as
(1.2)∇v = ∇ · v + ∇ ∧ v,

or for R3

∇v = ∇ · v + I (∇× v) , (1.3)

either of which breaks the gradient into into divergence and curl components. In eq. (1.2) this vector
gradient is expressed using the bivector valued curl operator (∇ ∧ v), whereas eq. (1.3) is expressed
using the vector valued dual form of the curl (∇× v) from convential vector algebra.

It is worth noting that order matters in the GA coordinate expansion of eq. (1.1). It is not correct to
write

∇v =
(
∂ivj

)
ejei, (1.4)

which is only true when the curl, ∇ ∧ v = 0, is zero.
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1.2 Dyadic representation.

Given a vector field v = v(x), the differential of that field can be computed by chain rule

dv =
∂v
∂xi

dxi = (dx ·∇) v, (1.5)

where dx = eidxi. This is a representation invariant form of the differential, where we have a scalar
operator dx ·∇ acting on the vector field v. The matrix representation of this differential can be written
as

dv =
([

dx
]† [∇]) [

v
]

, (1.6)

where we are using the dagger to designate transposition, and each of the terms on the right are the
coordinate matrixes of the vectors with respect to the standard basis

[
dx

]
=

dx1
dx2
dx3

 ,
[
v
]

=

v1
v2
v3

 ,
[
∇

]
=

∂1
∂2
∂3

 . (1.7)

In eq. (1.6) the parens are very important, as the expression is meaningless without them. With the
parens we have a (1 × 3)(3 × 1) matrix (i.e. a scalar) multiplied with a 3 × 1 matrix. That becomes ill-
formed if we drop the parens since we are left with an incompatible product of a (3 × 1)(3 × 1) matrix
on the right. The dyadic notation, which introducing a tensor product into the mix, is a mechanism to
make sense of the possibility of such a product. Can we make sense of an expression like ∇v without
the geometric product in our toolbox?

Stepping towards that question, let’s examine the coordinate expansion of our vector differential
eq. (1.5), which is

dv = dxi
(
∂ivj

)
ej. (1.8)

If we allow a matrix of vectors, this has a block matrix form

dv =
[
dx

]† [∇⊗ v
] e1

e2
e3

 . (1.9)

Here we introduce the tensor product

(1.10)∇ ⊗ v = ∂ivj ei ⊗ ej,

and designate the matrix of coordinates ∂ivj, a second order tensor, by
[
∇⊗ v

]
.

We have succeeded in factoring out a vector gradient. We can introduce dot product between vectors
and a direct product of vectors, by observing that eq. (1.9) has the structure of a quadradic form, and
define

x · (a ⊗ b) ≡
[
x
]† [a ⊗ b

] e1
e2
e3

 , (1.11)
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so that eq. (1.9) takes the form
dv = dx · (∇⊗ v) . (1.12)

Such a dot product gives operational meaning to the gradient-vector tensor product.

1.3 Symmetrization and antisymmetrization of the vector differential in GA.

Using the dyadic notation, it’s possible to split a vector derivative into symmetric and antisymmetric
components with respect to the gradient-vector direct product

dv = dx ·
(

1
2

(
∇⊗ v + (∇⊗ v)†

)
+

1
2

(
∇⊗ v − (∇⊗ v)†

))
= dx · (d + Ω) ,

(1.13)

where Ω is a traceless antisymmetric tensor.
A question of potential interest is “what GA equvivalent of this expression?”. There are two identities

that are helpful for extracting this equivalence, the first of which is the k-blade vector product identities.
Given a k-blade Bk (i.e.: a product of k orthogonal vectors, or the wedge of k vectors), and a vector a, the
dot product of the two is

Bk · a =
1
2

(
Bka + (−1)k+1aBk

)
(1.14)

Specifically, given two vectors a, b, the vector dot product can be written as a symmetric sum

a · b =
1
2
(ab + ba) = b · a, (1.15)

and given a bivector B and a vector a, the bivector-vector dot product can be written as an antisymmetric
sum

B · a =
1
2
(Ba − aB) = −a · B. (1.16)

We may apply these to expressions where one of the vector terms is the gradient, but must allow for
the gradient to act bidirectionally. That is, given multivectors M, N

(1.17)M∇N = ∂i(MeiN)
= (∂i M)eiN + Mei(∂iN),

where parens have been used to indicate the scope of applicibility of the partials. In particular, this
means that we may write the divergence as a GA symmetric sum

∇ · v =
1
2
(∇v + v∇) , (1.18)

which clearly corresponds to the symmetric term d = (1/2)
(
∇⊗ v + (∇⊗ v)†

)
from eq. (1.13).
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Let’s assume that we can write our vector differential in terms of a divergence term isomorphic to the
symmetric sum in eq. (1.13), and a “something else”, X. That is

dv = (dx ·∇) v
= dx(∇ · v) + X,

(1.19)

where
X = (dx ·∇) v − dx(∇ · v), (1.20)

is a vector expression to be reduced to something simpler. That reduction is possible using the distribu-
tion identity

c · (a ∧ b) = (c · a)b − (c · b)a, (1.21)

so we find
X = ∇ · (dx ∧ v) . (1.22)

We find that the vector differential can be split into divergence and non-divergence term as follows

dv = (dx ·∇)v = dx(∇ · v) + ∇ · (dx ∧ v) . (1.23)

There is a problem with this analysis, as pointed out by Brian: For a purely incompressible flow, ∇ ·v = 0,
yet, in general, an incompressible flow can have a non-zero deformation tensor!

Also, given the nature of the matrix expansion of the antisymmetric tensor, we should have had a curl
term in the mix and we do not. The conclusion must be that eq. (1.23) is a split into divergence and
non-divergence terms, but we really wanted a split into curl and non-curl terms.

1.4 Symmetrization and antisymmetrization of the vector differential in GA: Take II.

Identification of 1/2
(
∇⊗ v + (∇⊗ v)†

)
with the divergence was incorrect.

Let’s explicitly expand out our symmetric tensor component fully to see what it really yields, without
guessing.

dx · 1
2

(
∇⊗ v + (∇⊗ v)†

)
= dx · 1

2
([

∂ivj
]

+
[
∂jvi

])
= dxi

1
2
[
∂ivj + ∂jvi

] e1
e2
e3

 .
(1.24)

The symmetric matrix that represents this direct product tensor is

1
2
[
∂ivj + ∂jvi

]
=

1
2

 2∂1v1 ∂1v2 + ∂2v1 ∂1v3 + ∂3v1
∂2v1 + ∂1v2 2∂2v2 ∂2v3 + ∂3v2
∂3v1 + ∂1v3 ∂3v2 + ∂2v3 ∂3v1 + ∂1v3

 . (1.25)
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This certainly isn’t isomorphic to the divergence. Instead, the trace of this matrix is the portion that
is isomorphic to the divergence. The rest is something else. Let’s put the tensors into vector form to
understand what they really represent.

For the symmetric part we have

dx · 1
2

(
∇⊗ v + (∇⊗ v)†

)
= dxi

1
2
[
∂ivj + ∂jvi

] e1
e2
e3


=

1
2
((dx ·∇) v + ∇ (dx · v)) ,

(1.26)

and, similarily, for the antisymmetric tensor component, we have

dx · 1
2

(
∇⊗ v − (∇⊗ v)†

)
= dxi

1
2
[
∂ivj − ∂jvi

] e1
e2
e3


=

1
2
((dx ·∇) v −∇ (dx · v))

=
1
2

dx · (∇ ∧ v) .

(1.27)

We find an isomorphism of the antisymmetric term with the curl, but the symmetric term has a diver-
gence component, plus more.

If we want to we can split the symmetric component into it’s divergence and non-divergence terms,
we get

dx · d =
1
2
((dx ·∇) v + ∇ (dx · v))

=
1
2
(dx (∇ · v) + ∇ · (dx ∧ v) + ∇ (dx · v))

=
1
2
(dx (∇ · v) + ⟨∇ (dx ∧ v) + ∇ (dx · v)⟩1)

=
1
2
(dx (∇ · v) + ⟨∇dx v⟩1) ,

(1.28)

so for incompressible flow, the GA representation is a single grade one selection

dx · d =
1
2
⟨∇dx v⟩1. (1.29)

It is a little unfortunate that we cannot factor out the dx term. We can do that for the GA representation
of the antisymmetric tensor contribution, which is just

Ω =
1
2
∇ ∧ v. (1.30)
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Let’s see what the antisymmetric tensor equivalent looks like in the incompressible case, by subtract-
ing a divergence term

(1.31)
dx · (∇ ∧ v)
− dx (∇ · v) = ⟨dx (∇ ∧ v) − dx (∇ · v)⟩1
= ⟨−dx (v ∧∇) − dx (v ·∇)⟩1
= −⟨dxv∇⟩1,

so we have
dx · (∇ ∧ v) = dx (∇ · v)− ⟨dx v∇⟩1. (1.32)

Both the symmetric and antisymmetric tensors have compressible components.

1.5 Summary.

We found that it was possible to split the vector differential into a divergence and incompressible com-
ponents, as follows

dv = (dx ·∇) v
= dx(∇ · v) + ∇ · (dx ∧ v) .

(1.33)

With

dv = dx ·
(

1
2

(
∇⊗ v + (∇⊗ v)†

)
+

1
2

(
∇⊗ v − (∇⊗ v)†

))
= dx · (d + Ω) ,

(1.34)

we found the following correspondences between the symmetric and antisymmetric tensor product com-
ponents

dx · d =
1
2
((dx ·∇) v + ∇ (dx · v))

=
1
2
(dx (∇ · v) + ⟨∇dx v⟩1)

, (1.35)

and
dx · Ω =

1
2

dx · (∇ ∧ v)

=
1
2
(dx (∇ · v)− ⟨dx v∇⟩1) .

(1.36)

In the incompressible case where ∇ · v = 0, we have

dx · d =
1
2
⟨∇dx v⟩1

dx · Ω = −1
2
⟨dx v∇⟩1,

(1.37)
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and
dv = dx · (d + Ω)

=
1
2
⟨∇dx v − dx v∇⟩1

= ∇ · (dx ∧ v) .

(1.38)
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