
Peeter Joot
peeterjoot@pm.me

Square of electrodynamic field.

The electrodynamic Lagrangian (without magnetic sources) has the form

(1.1)L = F · F + αF · J,

where α is a constant that depends on the unit system. My suspicion is that one or both of the bivector
or quadvector grades of F2 are required for Maxwell’s equation with magnetic sources.

Let’s expand out F2 in coordinates, as preparation for computing the Euler-Lagrange equations. The
scalar and pseudoscalar components both simplify easily into compact relationships, but the bivector
term is messier. We start with the coordinate expansion of our field, which we may write in either upper
or lower index form

F =
1
2

γµ ∧ γνFµν =
1
2

γµ ∧ γνFµν. (1.2)

The square is
(1.3)F2 = F · F +

〈
F2〉

2 + F ∧ F.

Let’s compute the scalar term first. We need to make a change of dummy indexes, for one of the F’s.
It will also be convenient to use upper indexes in one factor, and lowers in the other. We find

F · F =
1
4
(
γµ ∧ γν

)
·
(

γα ∧ γβ
)

FµνFαβ

=
1
4

(
δν

αδµ
β − δµ

αδν
β
)

FµνFαβ

=
1
4
(

FµνFνµ − FµνFµν

)
= −1

2
FµνFµν.

(1.4)

Now, let’s compute the pseudoscalar component of F2. This time we uniformly use upper index
components for the tensor, and find

F ∧ F =
1
4
(
γµ ∧ γν

)
∧
(
γα ∧ γβ

)
FµνFαβ

=
I
4

ϵµναβFµνFαβ,
(1.5)
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where ϵµναβ is the completely antisymmetric (Levi-Civita) tensor of rank four. This pseudoscalar com-
ponents picks up all the products of components of F where all indexes are different.

Now, let’s try computing the bivector term of the product. This will require fancier index gymnastics.

〈
F2〉

2 =
1
4

〈(
γµ ∧ γν

) (
γα ∧ γβ

)〉
2
FµνFαβ

=
1
4

〈
γµγν

(
γα ∧ γβ

)〉
2
FµνFαβ −

1
4
(
γµ · γν

) (
γα ∧ γβ

)
FµνFαβ.

(1.6)

The dot product term is killed, since
(
γµ · γν

)
Fµν = gµνFµν is the contraction of a symmetric tensor with

an antisymmetric tensor. We can now proceed to expand the grade two selection〈
γµγν

(
γα ∧ γβ

)〉
2

= γµ ∧
(

γν ·
(

γα ∧ γβ
))

+ γµ ·
(

γν ∧
(

γα ∧ γβ
))

= γµ ∧
(

δν
αγβ − δν

βγα
)

+ gµν

(
γα ∧ γβ

)
− δµ

α
(

γν ∧ γβ
)

+ δµ
β (γν ∧ γα)

= δν
α
(

γµ ∧ γβ
)
− δν

β
(
γµ ∧ γα

)
− δµ

α
(

γν ∧ γβ
)

+ δµ
β (γν ∧ γα) .

(1.7)

Observe that I’ve taken the liberty to drop the gµν term. Strictly speaking, this violated the equality, but
won’t matter since we will contract this with Fµν. We are left with

4
〈

F2〉
2 =

(
δν

α
(

γµ ∧ γβ
)
− δν

β
(
γµ ∧ γα

)
− δµ

α
(

γν ∧ γβ
)

+ δµ
β (γν ∧ γα)

)
FµνFαβ

= Fµν
((

γµ ∧ γα
)

Fνα −
(
γµ ∧ γα

)
Fαν − (γν ∧ γα) Fµα + (γν ∧ γα) Fαµ

)
= 2Fµν

((
γµ ∧ γα

)
Fνα + (γν ∧ γα) Fαµ

)
= 2Fνµ (γν ∧ γα) Fµα + 2Fµν (γν ∧ γα) Fαµ,

(1.8)

which leaves us with 〈
F2〉

2 = (γν ∧ γα) FµνFαµ. (1.9)

I suspect that there must be an easier way to find this result.
We now have the complete coordinate expansion of F2, separated by grade

F2 = −1
2

FµνFµν + (γν ∧ γα) FµνFαµ +
I
4

ϵµναβFµνFαβ. (1.10)

Tomorrow’s task is to start evaluating the Euler-Lagrange equations for this multivector Lagrangian
density, and see what we get.
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