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Square of electrodynamic field.

1.1 Motivation.

The electrodynamic Lagrangian (without magnetic sources) has the form

(1.1)L = F · F + aA · J,

where a is a constant that depends on the unit system, A, J are a four-vectors, and F = ∇∧ A. My sus-
picion is that one or both of the bivector or quadvector grades of F2 are required for Maxwell’s equation
with magnetic sources.

1.1.1 Square of the field.

Let’s expand out F2 in coordinates, as preparation for computing the Euler-Lagrange equations. The
scalar and pseudoscalar components both simplify easily into compact relationships, but the bivector
term is messier. We start with the coordinate expansion of our field, which we may write in either upper
or lower index form

F =
1
2

γµ ∧ γνFµν =
1
2

γµ ∧ γνFµν. (1.2)

The square is
(1.3)F2 = F · F +

〈
F2〉

2 + F ∧ F.

Let’s compute the scalar term first. We need to make a change of dummy indexes, for one of the F’s.
It will also be convenient to use upper indexes in one factor, and lowers in the other. We find

F · F =
1
4
(
γµ ∧ γν

)
·
(

γα ∧ γβ
)

FµνFαβ

=
1
4

(
δν

αδµ
β − δµ

αδν
β
)

FµνFαβ

=
1
4
(

FµνFνµ − FµνFµν

)
= −1

2
FµνFµν.

(1.4)
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Now, let’s compute the pseudoscalar component of F2. This time we uniformly use upper index
components for the tensor, and find

F ∧ F =
1
4
(
γµ ∧ γν

)
∧
(
γα ∧ γβ

)
FµνFαβ

=
I
4

ϵµναβFµνFαβ,
(1.5)

where ϵµναβ is the completely antisymmetric (Levi-Civita) tensor of rank four. This pseudoscalar com-
ponents picks up all the products of components of F where all indexes are different.

Now, let’s try computing the bivector term of the product. This will require fancier index gymnastics.〈
F2〉

2 =
1
4

〈(
γµ ∧ γν

) (
γα ∧ γβ

)〉
2
FµνFαβ

=
1
4

〈
γµγν

(
γα ∧ γβ

)〉
2
FµνFαβ −

1
4
(
γµ · γν

) (
γα ∧ γβ

)
FµνFαβ.

(1.6)

The dot product term is killed, since
(
γµ · γν

)
Fµν = gµνFµν is the contraction of a symmetric tensor with

an antisymmetric tensor. We can now proceed to expand the grade two selection〈
γµγν

(
γα ∧ γβ

)〉
2

= γµ ∧
(

γν ·
(

γα ∧ γβ
))

+ γµ ·
(

γν ∧
(

γα ∧ γβ
))

= γµ ∧
(

δν
αγβ − δν

βγα
)

+ gµν

(
γα ∧ γβ

)
− δµ

α
(

γν ∧ γβ
)

+ δµ
β (γν ∧ γα)

= δν
α
(

γµ ∧ γβ
)
− δν

β
(
γµ ∧ γα

)
− δµ

α
(

γν ∧ γβ
)

+ δµ
β (γν ∧ γα) .

(1.7)

Observe that I’ve taken the liberty to drop the gµν term. Strictly speaking, this violated the equality, but
won’t matter since we will contract this with Fµν. We are left with

4
〈

F2〉
2 =

(
δν

α
(

γµ ∧ γβ
)
− δν

β
(
γµ ∧ γα

)
− δµ

α
(

γν ∧ γβ
)

+ δµ
β (γν ∧ γα)

)
FµνFαβ

= Fµν
((

γµ ∧ γα
)

Fνα −
(
γµ ∧ γα

)
Fαν − (γν ∧ γα) Fµα + (γν ∧ γα) Fαµ

)
= 2Fµν

((
γµ ∧ γα

)
Fνα + (γν ∧ γα) Fαµ

)
= 2Fνµ (γν ∧ γα) Fµα + 2Fµν (γν ∧ γα) Fαµ,

(1.8)

which leaves us with 〈
F2〉

2 = (γν ∧ γα) FµνFαµ. (1.9)

I suspect that there must be an easier way to find this result.
We now have the complete coordinate expansion of F2, separated by grade

F2 = −1
2

FµνFµν + (γν ∧ γα) FµνFαµ +
I
4

ϵµναβFµνFαβ. (1.10)

The next task is to start evaluating the Euler-Lagrange equations for this multivector Lagrangian density,
and see what we get. Before doing so, let’s figure out what value we want for the constant a.
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1.1.2 Maxwell’s equations in STA and Tensor forms.

We are going to use the coordinate expansion of the Lagrangian, so we need the tensor form of Maxwell’s
equation for comparison.

Maxwell’s equations, with electric and fictional magnetic sources (useful for antenna theory and other
engineering applications), are

∇ · E =
ρ

ϵ

∇× E = −M − µ
∂H
∂t

∇ · H =
ρm

µ

∇× H = J + ϵ
∂E
∂t

.

(1.11)

We can assemble these into a single geometric algebra equation,(
∇ +

1
c

∂

∂t

)
F = η (cρ − J) + I (cρm − M) , (1.12)

where F = E + η IH = E + IcB.
We can put this into STA form by multiplying through by γ0, making the identification ek = γkγ0. For

the space time derivatives, we have

γ0

(
∇ +

1
c

∂

∂t

)
= γ0

(
γkγ0

∂

∂xk
+

∂

∂x0

)
= −γk∂k + γ0∂0

= γk∂k + γ0∂0

= γµ∂µ

≡ ∇.

(1.13)

For our 0,2 multivectors on the right hand side, we find, for example

γ0η (cρ − J) = γ0ηcρ − γ0γkγ0η(J · ek)
= γ0ηcρ + γkη(J · ek)

= γ0
ρ

ϵ
+ γkη(J · ek).

(1.14)

So, if we make the identifications
J0 =

ρ

ϵ

Jk = η (J · ek)

M0 = cρm

Mk = M · ek,

(1.15)
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and J = Jµγµ, M = Mµγµ, and ∇ = γµ∂µ we find the STA form of Maxwell’s equation, including magnetic
sources

∇F = J − IM. (1.16)

The electromagnetic field, in it’s STA representation is a bivector, which we can write without reference
to observer specific electric and magnetic fields, as

F =
1
2

γµ ∧ γνFµν, (1.17)

where Fµν is an arbitrary antisymmetric 2nd rank tensor. Maxwell’s equation has a vector and trivector
component, which may be split out explicitly using grade selection, to find

∇ · F = J
∇∧ F = −IM.

(1.18)

Dotting the vector equation with γµ, we have

Jµ =
1
2

γµ · (γα · (γσ ∧ γπ) ∂αFσπ)

=
1
2
(δµ

πδα
σ − δµ

σδα
π) ∂αFσπ

=
1
2
(∂σFσµ − ∂π Fµπ)

= ∂σFσµ.

(1.19)

We can find the tensor form of the trivector equation by wedging it with γµ. On the left we have

γµ ∧ (∇∧ F) =
1
2

γµ ∧ γν ∧ γα ∧ γβ∂νFαβ

=
1
2

Iϵµναβ∂νFαβ.
(1.20)

On the right, we have
γµ ∧ (−IM) = −⟨γµ IM⟩4

= ⟨Iγµ M⟩4

= I (γµ · M)

= IMµ,

(1.21)

so we have

∂ν

(
1
2

ϵµναβFαβ

)
= Mµ. (1.22)

Note that, should we want to, we can define a dual tensor Gµν = −(1/2)ϵµναβFαβ, so that the electric and
magnetic components of Maxwell’s equation have the same structure

∂νFνµ = Jµ, ∂νGνµ = Mµ. (1.23)
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Now that we have the tensor form of Maxwell’s equation, we can proceed to try to find the Lagrangian.
We will assume that the Lagrangian density for Maxwell’s equation has the multivector structure

L =
〈

F2〉
0,4 + a (A · J) + bI (A · M) , (1.24)

where F = ∇∧ A. My hunch, since the multivector current has the form J − IM, is that we don’t actually
need the grade two component of F2, despite having spent the time computing it, thinking that it might
be required.

Next time, we’ll remind ourselves what the field Euler-Lagrange equations look like, and evaluate
them to see if we can find the constants a, b.

1.1.3 Maxwell’s equations for electric sources.

Given the Lagrangian
L = F · F + a (A · J) , (1.25)

we may derive Maxwell’s equations from it, fixing the constant a by doing so. We can do this three
different ways, with direct variation with respect to the field components Aµ, using the Euler-Lagrange
equations, or with direct variation with respect to A = γµ Aµ, as a single four-vector field variable.

Let’s try this first with direct variation using the coordinate expansion of A. The action is

S =
∫

d4x
(
−1

2
FµνFµν + aJµ Aµ

)
. (1.26)

The variational principle requires the action variation to be zero for all δAµ, where δAµ = 0 on the
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boundaries of the space. That is

0 = δS

=
∫

d4x
(
−1

2
(
δFµν

)
Fµν − 1

2
FµνδFµν + aJµδAµ

)
=
∫

d4x
(
−

(
δFµν

)
Fµν + aJµδAµ

)
=
∫

d4x
(
−

(
δ
(
∂µ Aν − ∂ν Aµ

))
Fµν + aJµδAµ

)
=
∫

d4x
(
−

(
∂µδAν − ∂νδAµ

)
Fµν + aJµδAµ

)
=
∫

d4x
(
−

((
∂µδAν

)
Fµν −

(
∂µδAν

)
Fνµ

)
+ aJµδAµ

)
=
∫

d4x
(
−2

(
∂µδAν

)
Fµν + aJµδAµ

)
=
∫

d4x
(
−2∂µ (δAνFµν) + 2δAν∂µFµν + aJµδAµ

)
=
∫

d4x
(
2δAν∂µFµν + aJνδAν

)
=
∫

d4x
(
2∂µFµν + aJν

)
δAν.

(1.27)

We have all the usual types of index gymnastics above, and dropped the complete derivative term since
δAν is zero on the boundary by definition. Since the end result must be zero for all variations, we must
have

0 = 2∂µFµν + aJν. (1.28)

We also determine our constant a = −2.
Now, let’s do the same calculation using the Euler-Lagrange equations. We derive those by varying a

general Lagrangian density, just as above

0 = δS

=
∫

d4xδL(Aµ, ∂ν Aµ)

=
∫

d4x
(

∂L
∂Aµ

δAµ +
∂L

∂(∂ν Aµ)
δ∂ν Aµ

)
=
∫

d4x
(

∂L
∂Aµ

δAµ +
∂L

∂(∂ν Aµ)
∂νδAµ

)
=
∫

d4x
(

∂L
∂Aµ

δAµ + ∂ν

(
∂L

∂(∂ν Aµ)
δAµ

)
−

(
∂ν

∂L
∂(∂ν Aµ)

)
δAµ

)
=
∫

d4x
(

∂L
∂Aµ

−
(

∂ν
∂L

∂(∂ν Aµ)

))
δAµ.

(1.29)
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Since this is zero for all variations δAµ, we find the field Euler-Lagrange equations are

∂L
∂Aµ

= ∂ν
∂L

∂(∂ν Aµ)
. (1.30)

We should be able to re-derive Maxwell’s equations from the Lagrangian using these field Euler-
Lagrange equations, with a bit less work, since we’ve pre-calculated some of the variation. Let’s try
that. Since we now know the value of the constant a, our Lagrangian is

L = −1
2

FµνFµν − 2Jµ Aµ. (1.31)

On the LHS we have
∂L

∂Aµ
=

∂

∂Aµ
(−2Jν Aν)

= −2Jµ.
(1.32)

For the RHS, let’s first calculate

∂L
∂(∂ν Aµ)

=
∂

∂(∂ν Aµ)

(
−1

2
FαβFαβ

)
= −

(
∂

∂(∂ν Aµ)
Fαβ

)
Fαβ

= −
(

∂

∂(∂ν Aµ)
(
∂α Aβ − ∂β Aα

))
Fαβ

= −Fνµ + Fµν

= −2Fνµ.

(1.33)

We are left with
− 2∂νFνµ = −2Jµ. (1.34)

This is the source portion of Maxwell’s equation (after canceling −2′s), as expected.
Now let’s perform a (mostly) coordinate free evaluation of the variation. We should be able to vary A

directly without first expanding it in coordinates.
We write the field as a curl

F = ∇∧ A. (1.35)

For completeness sake, before continuing, since we’ve not already done so, we should verify that this is
equivalent to the tensor expansion of F that we have been using. We find that by expanding the gradient
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and the field in coordinates

F = ∇∧ A
=
(
γµ∂µ

)
∧ (γν Aν)

= (γµ ∧ γν) ∂µ Aν

=
1
2
(
(γµ ∧ γν) ∂µ Aν + (γµ ∧ γν) ∂µ Aν

)
=

1
2
(
(γµ ∧ γν) ∂µ Aν + (γν ∧ γµ) ∂ν Aµ

)
=

1
2
(γµ ∧ γν)

(
∂µ Aν − ∂ν Aµ

)
=

1
2
(γµ ∧ γν) Fµν,

(1.36)

as claimed.
We want to expand the gradient portion of ∇∧ A, but leave the field as is. That is

∇∧ A = γµ ∧ ∂µ A. (1.37)

The scalar part of F2 is therefore

F · F =
(
γµ ∧ ∂µ A

)
· (γν ∧ ∂ν A)

= γµ ·
(
∂µ A · (γν ∧ ∂ν A)

)
=
(
γν · ∂µ A

)
(γµ · ∂ν A)− (γµ · γν)

(
(∂µ A) · (∂ν A)

)
.

(1.38)

Our Lagrangian is now fully specified in terms of A and it’s derivatives.

L =
(
γν · ∂µ A

)
(γµ · ∂ν A)− (γµ · γν)

(
(∂µ A) · (∂ν A)

)
− 2J · A. (1.39)

Observe the symmetry, with respect to index swap, in the first two terms. This means that the variation
is just

δL = 2
(
γν · ∂µ A

)
(γµ · δ∂ν A)− 2 (γµ · γν)

(
(∂µ A) · (δ∂ν A)

)
− 2J · δA

= 2
(
γν · ∂µ A

)
(γµ · ∂νδA)− 2 (γµ · γν)

(
(∂µ A) · (∂νδA)

)
− 2J · δA

= 2∂ν

((
γν · ∂µ A

)
(γµ · δA)

)
− 2∂ν

(
(γµ · γν)

(
(∂µ A) · δA

))
− 2

(
∂νγν · ∂µ A

)
(γµ · δA) + 2 (γµ · ∂νγν)

(
(∂µ A) · δA

)
− 2J · δA

= 2(δA) ·
(
−

(
∇ · ∂µ A

)
γµ + (γµ · ∇) ∂µ A − J

)
= 2(δA) ·

(
∇ ·

(
γµ ∧ ∂µ A

)
− J

)
= 2(δA) · (∇ · F − J) .

(1.40)

The complete derivative term above was dropped, leaving us with the source part of Maxwell’s equation

∇ · F = J. (1.41)
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It makes sense that we should not have to resort to coordinates, and sure enough, we are able to avoid
doing so.

There’s more to do that we will tackle in subsequent posts. Questions include, how do we express the
Euler-Lagrange equations without resorting to coordinates? We also want to tackle the Lagrangian with
magnetic source contributions.
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