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A multivector Lagrangian for Maxwell’s equation.

1.1 STA form of Maxwell’s equation.

Maxwell’s equations, with electric and fictional magnetic sources (useful for antenna theory and other
engineering applications), are

∇ · E =
ρ

ϵ

∇× E = −M− µ
∂H
∂t

∇ ·H =
ρm

µ

∇×H = J + ϵ
∂E
∂t

.

(1.1)

We can assemble these into a single geometric algebra equation,(
∇ +

1
c

∂

∂t

)
F = η (cρ− J) + I (cρm −M) , (1.2)

where F = E + η IH = E + IcB, c = 1/
√

µϵ, η =
√

(µ/ϵ).
By multiplying through by γ0, making the identification ek = γkγ0, and

J0 =
ρ

ϵ
, Jk = η (J · ek) , J = Jµγµ

M0 = cρm, Mk = M · ek, M = Mµγµ

∇ = γµ∂µ,

(1.3)

we find the STA form of Maxwell’s equation, including magnetic sources

∇F = J − IM. (1.4)
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1.2 Decoupling the electric and magnetic fields and sources.

We can utilize two separate four-vector potential fields to split Maxwell’s equation into two parts. Let

F = Fe + IFm, (1.5)

where
Fe = ∇∧ A

Fm = ∇∧ K,
(1.6)

and A, K are independent four-vector potential fields. Plugging this into Maxwell’s equation, and em-
ploying a duality transformation, gives us two coupled vector grade equations

∇ · Fe − I (∇∧ Fm) = J
∇ · Fm + I (∇∧ Fe) = M.

(1.7)

However, since ∇ ∧ Fm = ∇ ∧ Fe = 0, by construction, the curls above are killed. We may also add in
∇∧ Fe = 0 and ∇∧ Fm = 0 respectively, yielding two independent gradient equations

∇Fe = J
∇Fm = M,

(1.8)

one for each of the electric and magnetic sources and their associated fields.

1.3 Tensor formulation.

The electromagnetic field F, is a vector-bivector multivector in the multivector representation of Maxwell’s
equation, but is a bivector in the STA representation. The split of F into it’s electric and magnetic field
components is observer dependent, but we may write it without reference to a specific observer frame
as

F =
1
2

γµ ∧ γνFµν, (1.9)

where Fµν is an arbitrary antisymmetric 2nd rank tensor. Maxwell’s equation has a vector and trivector
component, which may be split out explicitly using grade selection, to find

∇ · F = J
∇∧ F = −IM.

(1.10)

Further dotting and wedging these equations with γµ allows for extraction of scalar relations

∂νFνµ = Jµ, ∂νGνµ = Mµ, (1.11)

where Gµν = −(1/2)ϵµναβFαβ is also an antisymmetric 2nd rank tensor.
If we treat Fµν and Gµν as independent fields, this pair of equations is the coordinate equivalent to

eq. (1.6), also decoupling the electric and magnetic source contributions to Maxwell’s equation.
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1.4 Coordinate representation of the Lagrangian.

As observed above, we may choose to express the decoupled fields as curls Fe = ∇∧ A or Fm = ∇∧ K.
The coordinate expansion of either field component, given such a representation, is straight forward.
For example

Fe =
(
γµ∂µ

)
∧ (γν Aν)

=
1
2
(
γµ ∧ γν

)
(∂µ Aν − ∂ν Aµ) .

(1.12)

We make the identification Fµν = ∂µ Aν − ∂ν Aµ, the usual definition of Fµν in the tensor formalism. In
that tensor formalism, the Maxwell Lagrangian is

L = −1
4

FµνFµν − Aµ Jµ. (1.13)

We may show this though application of the Euler-Lagrange equations

∂L
∂Aµ

= ∂ν
∂L

∂(∂ν Aµ)
. (1.14)

∂L
∂(∂ν Aµ)

= −1
4

(2)
(

∂Fαβ

∂(∂ν Aµ)

)
Fαβ

= −1
2

δ
[νµ]
αβ Fαβ

= −1
2
(Fνµ − Fµν)

= Fµν.

(1.15)

So ∂νFνµ = Jµ, the equivalent of ∇ · F = J, as expected.

1.5 Coordinate-free representation and variation of the Lagrangian.

Because
F2 = −1

2
FµνFµν +

(
γα ∧ γβ

)
FαµFβµ +

I
4

ϵµναβFµνFαβ, (1.16)

we may express the Lagrangian eq. (1.13) in a coordinate free representation

L =
1
2

F · F− A · J, (1.17)

where F = ∇∧ A.
We will now show that it is also possible to apply the variational principle to the following multivector

Lagrangian

L =
1
2

F2 − A · J, (1.18)
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and recover the geometric algebra form ∇F = J of Maxwell’s equation in it’s entirety, including both
vector and trivector components in one shot.

We will need a few geometric algebra tools to do this.
The first such tool is the notational freedom to let the gradient act bidirectionally on multivectors to

the left and right. We will designate such action with over-arrows, sometimes also using braces to limit
the scope of the action in question. If Q, R are multivectors, then the bidirectional action of the gradient
in a Q, R sandwich is

Q
↔
∇ R = Q

←
∇ R + Q

→
∇ R

=
(

Qγµ
←
∂ µ

)
R + Q

(
γµ
→
∂ µ R

)
=
(
∂µQ

)
γµR + Qγµ

(
∂µR

)
.

(1.19)

In the final statement, the partials are acting exclusively on Q and R respectively, but the γµ factors must
remain in place, as they do not necessarily commute with any of the multivector factors.

This bidirectional action is a critical aspect of the Fundamental Theorem of Geometric calculus, an-
other tool that we will require. The specific form of that theorem that we will utilize here is∫

V
Qd4x

↔
∇ R =

∫
∂V

Qd3xR, (1.20)

where d4x = Id4x is the pseudoscalar four-volume element associated with a parameterization of space
time. For our purposes, we may assume that parameterization are standard basis coordinates associated
with the basis {γ0, γ1, γ2, γ3}. The surface differential form d3x can be given specific meaning, but we
do not actually care what that form is here, as all our surface integrals will be zero due to the boundary
constraints of the variational principle.

Finally, we will utilize the fact that bivector products can be split into grade 0, 4 and 2 components
using anticommutator and commutator products, namely, given two bivectors F, G, we have

⟨FG⟩0,4 =
1
2
(FG + GF)

⟨FG⟩2 =
1
2
(FG− GF) .

(1.21)

We may now proceed to evaluate the variation of the action for our presumed Lagrangian

S =
∫

d4x
(

1
2

F2 − A · J
)

. (1.22)

We seek solutions of the variational equation δS = 0, that are satisfied for all variations δA, where the
four-potential variations δA are zero on the boundaries of this action volume (i.e. an infinite spherical
surface.)
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We may start our variation in terms of F and A

δS =
∫

d4x
(

1
2
(δF) F + F (δF)

)
− (δA) · J

=
∫

d4x⟨(δF) F− (δA) J⟩0,4

=
∫

d4x⟨(∇∧ (δA)) F− (δA) J⟩0,4

= −
∫

d4x
〈(

(δA)
←
∇
)

F−
(
(δA) ·

←
∇
)

F + (δA) J
〉

0,4

= −
∫

d4x
〈(

(δA)
←
∇
)

F + (δA) J
〉

0,4

= −
∫

d4x
〈
(δA)

↔
∇ F− (δA)

→
∇ F + (δA) J

〉
0,4

,

(1.23)

where we have used arrows, when required, to indicate the directional action of the gradient.
Writing d4x = −Id4x, we have

δS = −
∫

V
d4x

〈
(δA)

↔
∇ F− (δA)

→
∇ F + (δA) J

〉
0,4

= −
∫

V

〈
− (δA) Id4x

↔
∇ F− d4x (δA)

→
∇ F + d4x (δA) J

〉
0,4

=
∫

∂V

〈
(δA) Id3xF

〉
0,4 +

∫
V

d4x
〈
(δA)

(→
∇ F− J

)〉
0,4

.

(1.24)

The first integral is killed since δA = 0 on the boundary. The remaining integrand can be simplified to〈
(δA)

(→
∇ F− J

)〉
0,4

= ⟨(δA) (∇F− J)⟩0, (1.25)

where the grade-4 filter has also been discarded since∇F = ∇ · F +∇∧ F = ∇ · F since∇∧ F = ∇∧∇∧
A = 0 by construction, which implies that the only non-zero grades in the multivector∇F− J are vector
grades. Also, the directional indicator on the gradient has been dropped, since there is no longer any
ambiguity. We seek solutions of ⟨(δA) (∇F− J)⟩0 = 0 for all variations δA, namely

∇F = J. (1.26)

This is Maxwell’s equation in it’s coordinate free STA form, found using the variational principle from a
coordinate free multivector Maxwell Lagrangian, without having to resort to a coordinate expansion of
that Lagrangian.
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1.6 Lagrangian for fictitious magnetic sources.

The generalization of the Lagrangian to include magnetic charge and current densities can be as simple
as utilizing two independent four-potential fields

L =
1
2
(∇∧ A)2 − A · J + α

(
1
2
(∇∧ K)2 − K ·M

)
, (1.27)

where α is an arbitrary multivector constant.
Variation of this Lagrangian provides two independent equations

∇ (∇∧ A) = J
∇ (∇∧ K) = M.

(1.28)

We may add these, scaling the second by −I (recall that I,∇ anticommute), to find

∇ (Fe + IFm) = J − IM, (1.29)

which is ∇F = J − IM, as desired.
It would be interesting to explore whether it is possible find Lagrangian that is dependent on a mul-

tivector potential, that would yield ∇F = J − IM directly, instead of requiring a superposition op-
eration from the two independent solutions. One such possible potential is Ã = A − IK, for which
F =

〈
∇Ã

〉
2 = ∇∧ A + I (∇∧ K). The author was not successful constructing such a Lagrangian.
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