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PREFACE

Why you want to read this book. ~ When you first learned vector algebra
you learned how to add and subtract vectors, and probably asked your in-
structor if it was possible to multiply vectors. Had you done so, you would
have been told either “No”, or a qualified “No, but we can do multiplica-
tion like operations, the dot and cross products.” This book is based on a
different answer, “Yes.” A set of rules that define a coherent multiplication
operation are provided.

Were you ever bothered by the fact that the cross product was only
defined in three dimensions, or had a nagging intuition that the dot and
cross products were related somehow? The dot product and cross product
seem to be complimentary, with the dot product encoding a projection
operation (how much of a vector lies in the direction of another), and the
magnitude of the cross product providing a rejection operation (how much
of a vector is perpendicular to the direction of another). These projection
and rejection operations should be perfectly well defined in 2, 4, or N
dimensions, not just 3. In this book you will see how to generalize the
cross product to N dimensions, and how this more general product (the
wedge product) is useful even in the two and three dimensional problems
that are of interest for physical problems (like electromagnetism.) You
will also see how the dot, cross (and wedge) products are all related to the
vector multiplication operation of geometric algebra.

When you studied vector calculus, did the collection of Stokes’s, Green’s
and Divergence theorems available seem too random, like there ought to
be a higher level structure that described all these similar operations? It
turns out that such structure is available in the both the language of differ-
ential forms, and that of tensor calculus. We’d like a toolbox that doesn’t
require expressing vectors as differentials, or resorting to coordinates. Not
only does geometric calculus provides such a toolbox, it also provides the
tools required to operate on functions of vector products, which has pro-
found applications for electromagnetism.

Were you offended by the crazy mix of signs, dots and cross products in
Maxwell’s equations? The geometric algebra form of Maxwell’s equation
resolves that crazy mix, expressing Maxwell’s equations as a single equa-
tion. The formalism of tensor algebra and differential forms also provide
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simpler ways of expressing Maxwell’s equations, but are arguably harder
to relate to the vector algebra formalism so familiar to electric engineers
and physics practitioners. In this book, you will see how to work with the
geometric algebra form of Maxwell’s equation, and how to relate these
new techniques to familiar methods.

Overview.  Geometric algebra generalizes vectors, providing algebraic
representations of not just directed line segments, but also points, plane
segments, volumes, and higher degree geometric objects (hypervolumes.).
The geometric algebra representation of planes, volumes and hypervol-
umes requires a vector dot product, a vector multiplication operation, and
a generalized addition operation. The dot product provides the length of
a vector and a test for whether or not any two vectors are perpendicular.
The vector multiplication operation is used to construct directed plane
segments (bivectors), and directed volumes (trivectors), which are built
from the respective products of two or three mutually perpendicular vec-
tors. The addition operation allows for sums of scalars, vectors, or any
products of vectors. Such a sum is called a multivector.

The power to add scalars, vectors, and products of vectors can be ex-
ploited to simplify much of electromagnetism. In particular, Maxwell’s
equations for isotropic media can be merged into a single multivector
equation

10
V+-——|F=J 0.1
( +C(3t) ©.1)

where
e V is the gradient,

e ¢ = 1/+/ue is the group velocity for waves in the media (i.e. the
speed of light),

F = E + IcB is the multivector electromagnetic field that combines
the electric (E) and magnetic field (B) into a single entity,

J = n(cp—1J) is the multivector current, combining the charge
density (o) and the current density (J) into a single entity,

I = ejeyes is the ordered product of the three R3 basis vectors, and

n = /u/€ is the impedance of the media.
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Encountering Maxwell’s equation in its geometric algebra form leaves the
student with more questions than answers. Yes, it is a compact representa-
tion, but so are the tensor and differential forms (or even the quaternionic)
representations of Maxwell’s equations. The student needs to know how
to work with the representation if it is to be useful. It should also be clear
how to use the existing conventional mathematical tools of applied electro-
magnetism, or how to generalize those appropriately. Individually, there
are answers available to many of the questions that are generated attempt-
ing to apply the theory, but they are scattered and in many cases not easily
accessible.

Much of the geometric algebra literature for electrodynamics is pre-
sented with a relativistic bias, or assumes high levels of mathematical or
physics sophistication. The aim of this work was an attempt to make the
study of electromagnetism using geometric algebra more accessible, es-
pecially to other dumb engineers! like myself.

What’s in this book.  This book introduces the fundamentals of geomet-
ric algebra and calculus, and applies those tools to the study of electro-
magnetism. Geometric algebra extends vector algebra by introducing a
vector multiplication operation, the vector product, incorporating aspects
of both the dot and cross products. Products or sums of products of vec-
tors are called multivectors, and are capable of representing oriented point,
line, plane, and volume segments.
This book is divided into three parts.

Chapter-1. An introduction to geometric algebra (GA).  Topics covered
include vectors, vector spaces, vector multiplication, bivectors, trivectors,
multivectors, multivector spaces, dot and wedge products, multivector rep-
resentation of complex numbers, rotation, reflection, projection and rejec-
tion, and linear system solution.

The focus of this book are geometric algebras generated from 2 or 3
dimensional Euclidean vector spaces. In some cases higher dimensional
spaces will be used in examples and theorems. Some, but not all, of the
places requiring generalizations for mixed signature (relativistic) spaces
will be pointed out.

Sheldon: “Engineering. Where the noble semiskilled labourers execute the vision of those
who think and dream. Hello, Oompa-Loompas of science.”

xiii
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Chapter-2. Geometric calculus, Green’s function solutions of differential
equations, and multivector Green'’s functions. A multivector general-
ization of vector calculus, the fundamental theorem of geometric calculus,
is required to apply geometric algebra to electromagnetism. Special cases
of the fundamental theorem of geometric calculus include the fundamen-
tal theorem of calculus, Green’s (area) theorem, the divergence theorem,
and Stokes’ theorems. Multivector calculus also provides the opportunity
to define a few unique and powerful (multivector) Green’s functions of
particular relevance to electromagnetism.

Chapter-3. Application of Geometric Algebra to electromagnetism. In-
stead of working separately with electric and magnetic fields, we will
work with a hybrid multivector field, F, that includes both electric and
magnetic field contributions, and with a multivector current, J, that in-
cludes both charge and current densities.

Starting with the conventional form of Maxwell’s equation, the multi-
vector Maxwell’s equation (singular) is derived. This is a single multivec-
tor equation that is easier to solve and manipulate than the conventional
mess of divergence and curl equations that are familiar to the reader. The
multivector Maxwell’s equation is the starting point for the remainder
of the analysis of the book, and from it the wave equation, plane wave
solutions, and static and dynamic solutions are derived. The multivector
form of energy density, Poynting force, and the Maxwell stress tensor, and
all the associated conservation relationships are derived. The transverse
and propagation relationships for waveguide solutions are derived in their
multivector form. Polarization is discussed in a multivector context, and
multivector potentials and gauge transformations are introduced.

No attempt to motivate Maxwell’s equations, nor most of the results
derived from them is made in this book.

Prerequisites:  The target audience for this book is advanced undergrad-
uate or graduate students of electrical engineering or physics. Such an
audience is assumed to be intimately familiar with vectors, vector alge-
bra, dot and cross products, determinants, coordinate representation, lin-
ear system solution, complex numbers, matrix algebra, and linear trans-
formations. It is also assumed that the reader understands and can apply
conventional vector calculus concepts including the divergence and curl
operators, the divergence and Stokes’ theorems, line, area and volume
integrals, Greens’ functions, and the Dirac delta function. Finally, it is



assumed that the reader is intimately familiar with conventional electro-
magnetism, including Maxwell’s and the Lorentz force equations, scalar
and vector potentials, plane wave solutions, energy density and Poynting
vectors, and more.

Thanks:  Portions of this book were reviewed or corrected by Steven De
Keninck, Dr. Wolfgang Lindner, Prof. Mo Mojahedi, Prof. Alan Macdon-
ald, Prof. Quirino Sugon Jr., Miroslav Josipovi¢, Bruce Gould, Tim Put,
David Bond, Bill Ignatiuk, Sigmundur, Zhengbang Zhou, Jack Paladin,
Nicky, D, Foreest, Peter Eriksen, Christopher, Wrenn Wooten, Prof. Nor-
man Derby, prlwl (on github), Ryan Mohseni, and Nicholas Dwork. I'd
like to thank everybody who provided me with any feedback (or merge-
requests!) This feedback has significantly improved the quality of the text.
Peeter Joot  peeterjoot@pm.me
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GEOMETRIC ALGEBRA.

1. PREREQUISITES.

Geometric algebra (GA for short), generalizes and extends vector algebra.
The following section contains a lightning review of some foundational
concepts, including scalar, vector, vector space, basis, orthonormality, and
metric.

1.1.1 Vector.

A vector is a directed line segment, with a length, direction, and an orien-
tation. A number of different representations of vectors are possible.

Graphical representation. A vector may be represented graphically as
an arrow, with the head indicating the direction of the vector. Multipli-
cation of vectors by positive numbers changes the length of the vector,
whereas multiplication by negative numbers changes the direction of the
vector and the length, as illustrated in fig. 1.1. Addition of vectors is per-
formed by connecting the arrows heads to tails as illustrated in fig. 1.2.
In this book a scalar is a number, usually real, but occasionally complex
valued. The set of real numbers will be designated IR.

Figure 1.1: Scalar multiples of vectors.
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Figure 1.2: Addition of vectors.

Coordinate representation.  The length and orientation of a vector, rela-
tive to a chosen fixed point (the origin) may be specified algebraically as
the coordinates of the head of the vector, as illustrated in fig. 1.3.

(1.2)

(=1-1

Figure 1.3: Coordinate representation of vectors.

Two dimensional vectors may be represented as pairs of coordinates
(x,y), three dimensional vectors as triples of coordinates (x,y,z), and
more generally, N dimensional vectors may be represented as coordinate
tuples (x1,x2,- -+, xy). Given two vectors, say x = (x,y),y = (a,b), the
sum of the vectors is just the sum of the coordinates x +y = (x+a,y +b).



1.1 PREREQUISITES.

Numeric multiplication of a vector rescales each of the coordinates, for
example with x = (x,y,7), ax = (ax, ay, az).

It is often convienient to assemble such lists of coordinates in matrix
form as rows or columns, providing a few equivalent vector representa-
tions as shown in table 1.1.

Table 1.1: Equivalent vector coordinate representations. ]

Tuple Row Column
X1
X2
<-x1’-x2"“’xN) X1 X2 ... XN
| XN |

In this book, the length one (unit) vector in the i’th direction will be
given the symbol e;. For example, in three dimensional space with a col-
umn vector representation, the respective unit vectors along each of the x,
v, and z directions are designated

1 0 0
e =10, e=|1|, e3=]0|. (1.1)
0 0 1

Such symbolic designation allows any vector to be encoded in a repre-
sentation agnostic fashion. For example a vector x with coordinates x, y, z
is

X = xe; +ye, + zes, (1.2)

independent of a tuple, row, column, or any other representation.

1.1.2 Vector space.

Two representation specific methods of vector addition and multiplication
have been described. Addition can be performed graphically, connecting
vectors heads to tails, or by adding the respective coordinates. Multiplica-
tion can be performed by changing the length of a vector represented by
an arrow, or by multiplying each coordinate algebraically. These rules can
be formalized and abstracted by introducing the concept of vector space,

3



GEOMETRIC ALGEBRA.

which describes both vector addition and multiplication in a representa-
tion agnostic fashion.

— Definition 1.1: Vector space.
A vector space is a set V = {X,y,z,- -}, the elements of which are
called vectors, which has an addition operation designated + and a
scalar multiplication operation designated by juxtaposition, where
the following axioms are satisfied for all vectors X,y,z € V and
scalars a, b € R.
V is closed under addition x+yeV
V is closed under scalar multi- axeV
plication
Addition is associative xX+y)+z=x+(y+2)
Addition is commutative Yy+HX=X+Yy
There exists a zero element 0 € x+0=x
Vv
For any x € V there exists a Xx+(—x)=0
negative additive inverse —x €
Vv
Scalar multiplication is dis- a(x +y) = ax + ay,
tributive (a+b)x = ax + bx
Scalar multiplication is asso- (ab)x = a(bx)
ciative
There exists a multiplicative Ix=x
identity

One may define finite or infinite dimensional vector spaces with ma-
trix, polynomial, complex tuple, or many other types of elements. Some
examples of general vector spaces are given in the problems below, and
many more can be found in any introductory book on linear algebra. The
applications of geometric algebra to electromagnetism found in this book
require only real vector spaces with dimension no greater than three. Defi-
nition 1.1 serves as a reminder, as the concept of vector space will be built
upon and generalized shortly.
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Exercise 1.1 RN

Define RY as the set of tuples {(x1, x2,---) | x; € R}. Show that RY is
a vector space when the addition operation is defined as x+y = (x; +
Y1, X2+ Y2, ), and scalar multiplication is defined as ax = (ax;, axy, - -)
for any x = (x1,x2,--+) € ]RN,y =0O1,y2," 7)€ RY,and a € R.

Exercise 1.2 Polynomial vector space.

Show that the set of N’th degree polynomials V = {Zszo axk | ay € ]R}
is a vector space.

Exercise 1.3 Pauli matrices.

The Pauli matrices are defined as

0'1=l0 1‘, 0_2:[0 _1, a'3={1 0‘. (1.3)
1 0 i 0 0 -1

Given any scalars a, b, ¢ € R, show that the set V = {ao"| + bo, + co3}
is a vector space with respect to matrix addition. Determine the form of
the zero and identity elements. Given a vector X = x10| + X207 + X303,
show that the coordinates x; can be extracted by evaluating the matrix
trace of the matrix product o;x.

1.1.3  Basis, span and dimension.

— Definition 1.2: Linear combination

Let S = {x1,X3,---,Xx} be a subset of a vector space V. A linear
combination of vectors in § is any sum

a1X) +axXp + -+ apXg.

For example, if x; = €| + €3, X, = €] — €, then 2x; + 3x; = S5e; —e; is
a linear combination.

Definition 1.3: Linear dependence.

5
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LetS = {x1,Xxo, -, X;} be a subset of a vector space V. This set S is
linearly dependent if one can construct any equation

0= a1X) +axXp + - -+ apXg,

for which not all of the coefficients a;, 1 < i < k are zero.

For example, the vectors x; = e} +e),X; = e; —€),X3 = e + 3¢
are linearly dependent since 2x; — X, — x3 = 0, and the vectors y; =
e; +e+e3,y) = e +e3,y3 = 3e| +ep+ 3e;3 are linearly dependent since
yi+2y2-y3=0.

—1 Definition 1.4: Linear independence.

Let S = {xy,xp,---,X;} be a subset of a vector space V. This set is
linearly independent if there are no equations witha; # 0, 1 <i <k
such that

0= a1X) +axXp + -+ apXg.

For example, the vectors X; = e; +e>,Xo = e; —e),X3 = 2e + e3,
are linearly independent, as are the vectors y; = e; +e; +e3,y2 = e; +
€3,y3 = €2 +€3.

—1 Definition 1.5: Span.

LetS = {x1,xp,- -, Xt} be a subset of a vector space V. The span of
this set is the set of all linear combinations of these vectors, denoted

span(S) = {a1x1 +a)Xy +---+ aka} .

For example, the span of {e;, e} consists of all the points in the x-y
plane. The span of the spherical basis vectors {f', 0, (;5} is R.

Definition 1.6: Subspace.

A vector space S that is a subset of V is a subspace of V.
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— Definition 1.7: Basis and dimension

Let S = {x1,Xp,---,X,} be a linearly independent subset of V. This
set is a basis if span(S) = V. The number of vectors # in this set is
called the dimension of the space.

1.1.4  Standard basis, length and normality.

—1 Definition 1.8: Dot product.

Let x,y be vectors from a vector space V. A dot product X -y is a
mapping V x V — R with the following properties.

Symmetric X'y=y-X
Bilinear (ax + by) -z =
ax-z+by-z, Xx-(ay+bz)=

ax-y+bx-z

Positive length x-x>0,x#0

—| Definition 1.9: Length

The length of a vector x € V is defined as

x| = Vx-x.

For example, x = e + e, has length [|x]| = V2, and x = xe| +yep + ze3
has length |x|| = \/(xz +y2 + Zz).

Definition 1.10: Unit vector

A vector x is called a unit vector if the dot product with itself is unity
x-x=1).

Examples of unit vectors include eq, (e; + e3)/ V3,(2e; —ex —e3)/ e,
and any vector X = ae; + e, + yes, where a, 5,y are direction cosines
satisfying a” + 82 +y% = 1.
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Definition 1.11: Orthogonal

Two vectors X,y € V are orthogonal if their dot product is zero,
x-y=0.

Examples of orthogonal vectors include X,y where

XxX=e +e
e (1.5)
y=¢ -6€,
and x, y, Z where
X=e;+et+es
y=2e —e—e3 (1.6)

Z=¢e3—¢€).

—1 Definition 1.12: Orthonormal

Two vectors X,y € V are orthonormal if they are both unit vectors
and orthogonal to each other. A set of vectors {X,y,---,z} is an or-
thonormal set if all pairs of vectors in that set are orthonormal.

Examples of orthonormal vectors include x, y where

! (e1 +e2)
X=—(ete

\{5 (L.7)
y=— (e —e),

V2

and X, y, Z where
X = (e1+e2+e3)
(281 — € — e3) (1.8)

(63 — ez) .



1.2 MULTIVECTORS.

Definition 1.13: Standard basis.

A basis {eq,ep, -+, ey} is called a standard basis if that set is or-
thonormal.

Any number of possible standard bases are possible, each differing by
combinations of rotations and reflections. For example, given a standard
basis {e}, ey, e3}, the set {X, y, z} from eq. (1.8) is also a standard basis.

Definition 1.14: Metric.

Given a basis B = {X1, Xy, - - - Xy}, the metric of the space with respect
to B is the (symmetric) matrix G with elements g;; = x; - X;.

For example, with a basis B = {x;,xp} where x| = e] + e,x; = 2e| —
e,, the metric is

2 1}. (1.9)
1 5

G =

The metric with respect to a standard basis is just the identity matrix.

In relativisitic geometric algebra, the positive definite property of defi-
nition 1.8 is considered optional. In this case, the definition of length must
be modified, and one would say the length of a vector x is V|x - x|, and
that x is a unit vector if Xx-x = +1. Such relativisitic dot products will
not be used in this book, but they are ubiquitous in the geometric alge-
bra literature, so it is worth knowing that the geometric algebra literature
may use a weaker defition of dot product than typical. The metric for a
relativistic vector space is not a positive definite matrix. In particular, the
metric with respect to a relativistic standard basis is zero off diagonal, and
has diagonals valued (1,-1,-1,—-1) or (-1, 1,1, 1). A space is called Eu-
clidean, when the metric with respect to a standard basis is the identity
matrix, that is e; - €; = ¢;; for all standard basis elements e;, €;, and called
non-Euclidean if e; - ¢; = —1 for at least one standard basis vector e;.

1.2 MULTIVECTORS.

Geometric algebra builds upon a vector space by adding two additional
operations, a vector multiplication operation, and a generalized addition

9
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operation that extends vector addition to include addition of scalars and
products of vectors. Multiplication of vectors is indicated by juxtaposi-
tion, for example, if X, y, e[, e», e3, - - - are vectors, then some vector prod-
ucts are

Xy, XyX, XyXy,
€1€2,€2€],€2€3,€3€,€3€1,€/€3, (1.10)
€1€2€3,€3€1€, €2€3€, €3€2€1,€2€(€3,€1€3€),

€1€2€3€1, €1€2€3€1€3€2, - - -

Products of vectors may be scalars, vectors, or other entities that rep-
resent higher dimensional oriented objects such as planes and volumes.
Vector multiplication is constrained by a rule, called the contraction ax-
iom, that gives a meaning to the square of a vector (a scalar equal to the
squared length of the vector), and indirectly imposes an anti-commutative
relationship between orthogonal vector products. The product of two vec-
tors is not a vector, and may include a scalar component as well as an
irreducible product of two orthogonal vectors called a bivector. With vec-
tors and their products living in different spaces, geometric algebra allows
scalars, vectors, or any products of vectors to be added, forming a larger
closed space of more general objects. Such a sum is called a multivector,
an example of which is

1 +2e; +3e1e; +4ejezes. (1.11)
In this example, we have added a
e scalar (or O-vector) 1, to a
e vector (or 1-vector) 2eq, to a
e bivector (or 2-vector) 3e;e,, to a
e trivector (or 3-vector) 4e;ees.

Geometric algebra uses vector multiplication to build up a hierarchy of
geometrical objects, representing points, lines, planes, volumes and hy-
pervolumes (in higher dimensional spaces.) Those objects are enumerated
below to give an idea where we are headed before stating the formal defi-
nition of a multivector space.

Scalar. A scalar, also called a 0-vector, is a zero-dimensional object
with sign, and a magnitude.
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Vector. A vector, also called a 1-vector, is a one-dimensional object
with a sign, a magnitude, and a rotational attitude within the space it is
embedded.

Bivector. A bivector, also called a 2-vector, is a 2 dimensional object
representing a signed plane segment with magnitude and orientation. As-
suming a vector product (with properties to be specified shortly), a bivec-
tor has the following algebraic description.

— Definition 1.15: Bivector.

A bivector, or 2-vector, is a sum of products of pairs of orthogonal
vectors. Given an N dimensional vector space V with an orthogonal
basis {X, X2, -+, Xy}, a general bivector can be expressed as

Z B,‘jX,'Xj,

i#]

where B;; is a scalar.

Given orthogonal vectors X, y, z and standard basis elements e, e, - - -,
examples of bivectors are Xy, yz, 3Xy — yz, e; e;, and eje; + ere3 + ese;.

The reader can check that bivectors specified by definition 1.15 form a
vector space according to definition 1.1.

If a bivector is formed from the product of just two orthogonal vectors!,
that bivector is said to represent the plane containing those two vectors.
Bivectors that represent the same plane can be summed by simply adding
the respective (signed) areas, as illustrated in fig. 1.4. Note that the shape
of a bivector’s area is not significant, only the magnitude of the area and
the sign of the bivector, which is represented as an oriented arc in the
plane.

Addition of arbitrarily oriented bivectors in IR3 or other higher dimen-
sional spaces, requires decomposition of the bivector into a set of orthog-
onal planes, an operation best performed algebraically. The sum of a set
of bivectors may not represent the same plane as any of the summands,
as is crudely illustrated in fig. 1.5, where red + blue = green, where all
bivectors have a different rotational attitude in space.

Bivectors generated from IR?, and R3 vectors can always be factored into a single product
of orthogonal vectors, and therefore represent a plane. Such a factorization may not be
possible in higher dimensional spaces.

11
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\'~ @ I

3e e -2ejey Seie 6e; e,

Figure 1.4: Graphical representation of bivector addition in the plane.

——— ]

T

Figure 1.5: Bivector addition.

The bivector provides a structure that can encode plane oriented quan-
tities such as torque, angular momentum, or a general plane of rotation. A
quantity like angular momentum can be represented as a magnitude times
a quantity that represents the orientation of the plane of rotation. In con-
ventional vector algebra we use the normal of the plane to describe this
orientation, but that is problematic in higher dimensional spaces where
there is no unique normal. Use of the normal to represent a plane is unsat-
isfactory in two dimensional spaces, which have to be extended to three di-
mensions to use normal centric constructs like the cross product. A bivec-
tor representation of a plane can eliminate the requirement to utilize a
third (normal) dimension, which may not be relevant in the problem, and
can allow some concepts (like the cross product) to be generalized to di-
mensions other than three when desirable.

Later we will see that permutations of the orders of orthogonal vector
products are not independent. In particular given a pair of orthogonal vec-
tors X, Y, that dependence is Xy + yx = 0, or yx = —xy. This means that
{e,e, e2e;} is not a basis for the IR? bivector space (those bivectors are
not linearly independent), but that either {e;e,} or {e;e;} is an IR? bivector
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basis. Similarly, for IR, we may pick a set such as R = {eje;, ese3, e3e;}
for the bivector basis2. If x, y are orthonormal vectors, the bivector prod-
uct Xy or yx will be called a unit bivector. The basis R is illustrated in
fig. 1.6 with two different shaped representations of the “unit” bivector el-
ements of this basis. In both cases, the sign of the bivector is represented
graphically with an oriented arc.

(a) (b)

Figure 1.6: Unit bivectors for R?

Trivector. A trivector, also called a 3-vector, is a 3 dimensional object
representing a signed volume segment with magnitude and orientation.
Assuming a vector product (with properties to be specified shortly), a
trivector has the following algebraic description.

—1 Definition 1.16: Trivector.

A trivector, or 3-vector, is a sum of products of triplets of mutually
orthogonal vectors. Given an N dimensional vector space V with an
orthogonal basis {x1, X, - - -, Xy}, a trivector is any value

Z T jk XX X,

i#j#k

where T;j is a scalar.

R is a “right handed” choice of basis, as it is related to the right handed vector basis
{e1, €z, e3} in a fundamental way. Observe that the indexes i, j of each bivector e;e; in R
are cyclical permutations of i, j = 1,2. Examples of other bivector basis choices include
{erez, eze3, eje3}, the set of all pairs of bivectors e;e; where i < j, or a “left handed”
bivector basis {e)e], e3e;, eje3}.

13
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For example e;e,es, 3e,e €3, Sejere4, —2e eses are all trivectors. How-
ever, in IR?, it turns out that all trivectors are scalar multiples of ejeses.
Like scalars, there is no direction to such a quantity, and like scalars trivec-
tors may be signed. The magnitude of a trivector may be interpreted as a
volume. A geometric interpretation of the sign of a trivector will be de-
ferred until integration theory is tackled.

K-vector.  Scalars, vectors, bivectors, trivectors, or any higher dimen-
sional analogues are all examples of a single algebraic structure composed
of zero, one, two, three, or “k” products of orthogonal vectors. These are
generally called k-vectors and defined as follows.

—1 Definition 1.17: K-vector and grade.

A k-vector is a sum of products of k£ mutually orthogonal vectors.
Given an N dimensional vector space with an orthonormal basis

{X1,X2, -+, XN},

a general k-vector can be expressed as

Z KystXpXs -+ Xy,

rsE et
where K,;..; is a scalar, indexed by k indexes r, s, - - -, .

The number k of orthogonal vector factors of a k-vector is called
the grade.

A 0-vector is a scalar.

Illustrating with some examples
e 1 is a O-vector with grade 0
e e is a 1-vector with grade 1
e ejey, ere3, and ese; are 2-vectors with grade 2, and
e ejeyes is a 3-vector with grade 3.
The highest grade for a k-vector in an N dimensional vector space is N.

Multivector.
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—1 Definition 1.18: Multivector.

Given an N dimensional (generating) vector space V and a vector
multiplication operation represented by juxtaposition, a multivector
is a sum of scalars, vectors, or products of vectors.

Any k-vector or sum of k-vectors is also a multivector. Examples:

e eje4,ejer + eres. These are bivectors, and also multivectors with
only grade 2 components.

e ejees, exezey. These are trivectors, and also multivectors with only
grade 3 components.

e 1 +eje; This is not a k-vector as there is no single grade, but is
a multivector. In this case, it is a sum of a scalar (0-vector) and a
bivector (2-vector).

e 0,7,-3. These are scalars (0O-vectors), and also multivectors.

A k-vector was a sum of orthogonal products, but a multivector may also
include arbitrary sums of any vector products, not all of which have to be
orthogonal. Examples include

® €1€1,€1€2€1€2,

® €1€2€1,€1€2€3€1€),

® €1€2€1€3,€1€2€1€3€ €,

® €1eree3e,ere1eperesze e).

Once the definition of vector multiplication has been made more precise,
we will be able to see that these multivectors are scalars, vectors, bivec-
tors, and trivectors respectively.

Multivector space.  Bivectors, trivectors, k-vectors, and multivectors all
assumed that suitable multiplication and addition operations for vectors
and vector products had been defined. The definition of a multivector
space makes this more precise.

15
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— Definition 1.19: Multivector space.

Given an N dimensional (generating) vector space V, a multivector
space generated by V is a set M = {x,y, z,- - -} of multivectors (sums
of scalars, vectors, or products of vectors), where the following ax-
ioms are satisfied

Contraction x2=x-x,¥YxeV
M is closed under addition x+yeM
M is closed under multiplica- xXyeM
tion
Addition is associative x+y)+z=x+Q+2)
Addition is commutative y+x=x+Yy
There exists a zero element 0 € x+0=x
M
For all x € M there exists a neg- x+(=x)=0
ative additive inverse —x € M
Multiplication is distributive x(y+2) = xy+xz,
(x+y)z=2xz+yz
Multiplication is associative (xy)z = x(yz2)
There exists a multiplicative lx=x
identity 1 € M

The contraction axiom is arguably the most important of the multivec-
tor space axioms, as it allows for multiplicative closure. Another implica-
tion of the contraction axiom is that vector multiplication is not generally
commutative (order matters). The multiplicative closure property and the
commutative and non-commutative conditions for vector multiplication
will be examined next.

Observe that the axioms of a multivector space are almost that of a
field (i.e. real numbers, complex numbers, ...). However, a field also re-
quires a multiplicative inverse element for all elements of the space. Such
a multiplicative inverse exists for some multivector subspaces, but not in
general.
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The reader should compare definition 1.19 with definition 1.1 the spec-
ification of a vector space, and observe the similarities and differences.

1.3 COLINEAR VECTORS.

It was pointed out that the vector multiplication operation was not as-
sumed to be commutative (order matters). The only condition for which
the product of two vectors is order independent, is when those vectors are
colinear.

— Theorem 1.1: Vector commutation.

Given two vectors X,y, if y = ax for some scalar «, then x and y
commute

Xy = yX.
Proof.
yX = axx
Xy = XaX = @XX. O

The contraction axiom ensures that the product of two colinear vectors
is a scalar. In particular, the square of a unit vector, say u is unity. This
should be highlighted explicitly, because this property will be used again
and again

w=1. (1.12)

For example, the squares of any orthonormal basis vectors are unity
(e1)* = (e2)”> = (e3)* = 1.
A corollary of eq. (1.12) is

1 =uu, (1.13)

for any unit vector u. Such a factorization trick will be used repeatedly in
this book.

1.4 ORTHOGONAL VECTORS.
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Theorem 1.2: Anticommutation of orthogonal vectors

Let u, and v be two orthogonal vectors, the product of which uv is
a bivector. Changing the order of these products toggles the sign of
the bivector.

uyv = —vu.

This sign change on interchange is called anticommutation.

Proof. Let u, v be a pair of orthogonal vectors, such as those of fig. 1.7.
The squared length of the sum u + v can be expressed in using the con-
traction axiom, or by explicit expansion (taking care to maintain the order
of products)

(u+v)* = (u+v) (u+v) = v’ +uv+vu+v>

(u+v)2 = lu+v|? = u®+ v

Comparing the two expansions and rearranging completes the proof>. [

Figure 1.7: Sum of orthogonal vectors.

3 We will see later (theorem 1.3) that the converse of this theorem is also true: If the product

of two vectors is a bivector, those vectors are orthogonal.



1.5 SOME NOMENCLATURE. 19

Some examples of anticommuting pairs include, e;e; = —eje;, eze; =
—ejes3, and eje; = —eze;. This theorem can also be applied to any pairs of
orthogonal vectors in a arbitrary k-vector, for example

ezere; = (eser)e;
= —(eze3)e;
= —ex(eze)
(1.14)
= +ex(ere3)
= +(ezep)e3
= —ejezes,
showing that reversal of all the factors in a trivector such as ejee3 toggles
the sign.

1.5 SOME NOMENCLATURE.

The workhorse operator of geometric algebra is called grade selection,
defined as

— Definition 1.20: Grade selection operator

Given a set of k-vectors My, k € [0, N], and any multivector of their
sum

M:ZMi,

N

i=0

the grade selection operator is defined as
(M) = M.

Due to its importance, selection of the (scalar) zero grade is given
the shorthand

(M) = (M)y = M.

The grade selection operator will be used to define a generalized dot
product between multivectors, and the wedge product, which generalizes
the cross product (and is related to the cross product in R?).
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To illustrate grade selection by example, given a multivector M = 3 —
e; + 2eje) + 7ejerey, then

(M)y=(M) =3
(M), = —e3 (115)
(M), = 2e;e; .

(M); = Te1ezeq.

— Definition 1.21: Orthonormal product shorthand.

Given an orthonormal basis {ey, e;, - - -}, a multiple indexed quantity
e;;..k should be interpreted as the product (in the same order) of the
basis elements with those indexes

€ij.k = €€ €.

For example,
€12 = €1€
e|3 = ejeqe; (1.16)

€23121 = €2€3€1€2€].

— Definition 1.22: Pseudoscalar.

If {x1, X, - - -, X} is an orthogonal basis for a k-dimensional (sub)space,
then the product x;x; - - - X, is called a pseudoscalar for that (sub)space.
A pseudoscalar that squares to +1 is called a unit pseudoscalar.

A pseudoscalar is the highest grade k-vector in the algebra, so in IR?
any bivector is a pseudoscalar, and in R? any trivector is a pseudoscalar.
In R2, eje; is a pseudoscalar, as is 3eye;, both of which are related by a
constant factor. In R3 the trivector ese;e; is a pseudoscalar, as is —7eze;e;,
and both of these can also be related by a constant factor. For the subspace
spanej, e; + e3, one pseudoscalar is e;(e; + e3).

If all the vector factors of a pseudoscalar are not just orthogonal but
orthonormal, then it is a unit pseudoscalar. It is conventional to refer to

\ e;p = eey, \ (1.17)
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as “the pseudoscalar” for IR?, and to

| en3=eexe; | (1.18)

as “the pseudoscalar” for a three dimensional space.
We will see that geometric algebra allows for many quantities that have
a complex imaginary nature, and that the pseudoscalars of eq. (1.17) and
eq. (1.18) both square to —1.
For this reason, it is often convenient to use an imaginary notation for
the IR? and IR? pseudoscalars
i= €12

(1.19)
I = €123.

For three dimensional problems in this book, i will often be used as the
unit pseudoscalar for whatever planar subspace is relevant to the problem,
which may not be the x-y plane. The meaning of i in any such cases will
always be defined explicitly.

Exercise 1.4 Permutations of the R pseudoscalar

Show that all the cyclic permutations of the IR pseudoscalar are equal

I = eyeze; = ezejer = ejezes.

1.6 TWO DIMENSIONS.

The multiplication table for the IR? geometric algebra can be computed
with relative ease. Many of the interesting products involve i = eje,
the unit pseudoscalar. The imaginary nature of the pseudoscalar can be
demonstrated using theorem 1.2

(3162)2 = (e1ez)(erep)
= —(e1ez)(ezey)
= —ej(e3)e; (1.22)
- e

=-1.

21
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Like the (scalar) complex imaginary, the bivector e;e; also squares to
—1. The only non-trivial products left to fill in the IR* multiplication table
are those of the unit vectors with i, products that are order dependent

eli

ie;

e =

ie2

e (ejey)
(ereq) e
€2

(elez) €1
(—ezel) €l
—€ (8191)
—e

e (erey)
e (—eze;)
— (e2e2) €
—e

(elez) €
e (exey)

€r.

(1.23)

The multiplication table for the IR? multivector basis can now be tabu-

lated

Table 1.2: 2D Multiplication table. |

1 e € ere
1 1 e (%) €€
e e 1 e e €2
e () —eje) 1 —€
€€ €€ —€) e -1

It is important to point out that the pseudoscalar i does not commute

with either basis vector, but anticommutes with both, since ie; = —eji,
and ie, = —eyi. By superposition i anticommutes with any vector in the
x-y plane.

More generally, if u and v are orthonormal, and x € span {u, v} then the
bivector uv anticommutes with X, or any other vector in this plane.
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1.7 PLANE ROTATIONS.

Plotting eq. (1.23), as in fig. 1.8, shows that multiplication by i rotates the
IR? basis vectors by +m/2 radians, with the rotation direction dependent
on the order of multiplication.

e

ie; e L iey

(a) (b)

Figure 1.8: Multiplication by eje;.

Multiplying a polar vector representation
x =p (ejcosf+epsinf), (1.24)

by i shows that a /2 rotation is induced.
Multiplying the vector from the right by i gives

Xi = Xejey
=p(e;cosf+eysind)eje; (1.25)

=p(eycosf—e;sinf),

a counterclockwise rotation of /2 radians, and multiplying the vector by
i from the left gives

X = ejerXx
= peje; (e cos O+ ey sind) eje; (1.26)
=p(—eycosf+e;sind),
a clockwise rotation by xr/2 radians (exercise 1.5).

The transformed vector X’ = xeje; = —eje;X (= Xi = —ix) has been
rotated in the direction that takes e; to e, as illustrated in fig. 1.9.
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Xi

X

Figure 1.9: /2 rotation in the plane using pseudoscalar multiplication.

In complex number theory the complex exponential ¢ can be used as
a rotation operator. Geometric algebra puts this rotation operator into the
vector algebra toolbox, by utilizing Euler’s formula

e = cosf+isinb, (1.27)

valid for this pseudoscalar imaginary representation too (exercise 1.6). By
writing e, = ejejep, a complex exponential can be factored directly out
of the polar vector representation eq. (1.24)

x = p (e;cosf+epsinf)
=p(e;cosd+ (eje)ey sinb)
= pe; (cos O+ ejey sinf) (1.28)
= pe; (cos 8 +isinf)

= pee”.

We end up with a complex exponential multivector factor on the right.
Alternatively, since e, = eeje;, a complex exponential can be factored
out on the left

x =p(ejcosf+e;sinb)
=p(ejcosd+ex(ere;)sinb)
=p(cosf—eje;sinf) e (1.29)
=p(cos@—isinf)e;

=pe eel.
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Left and right exponential expressions have now been found for the
polar representation

p (e cos@+eysind) = pe Ve; = peje®. (1.30)

This is essentially a recipe for rotation of a vector in the x-y plane. Such
rotations are illustrated in fig. 1.10.

X 610

€%

Figure 1.10: Rotation in a plane.

This generalizes to rotations of R" vectors constrained to a plane. Given
orthonormal vectors u, v and any vector in the plane of these two vectors
(x € span {u, v}), this vector is rotated 8 radians in the direction of rotation
that takes u to v by

x' = xe""? = ¢V, (1.31)

The sense of rotation for the rotation ¢**? is opposite that of ¢", which

provides a first hint that bivectors can be characterized as having an ori-
entation, somewhat akin to thinking of a vector as having a head and a
tail.

{Example 1.1: Velocity and acceleration in polar coordinates.J;

Complex exponential representations of rotations work very nicely
for describing vectors in polar coordinates. A radial vector can be
written as

r = rf, (1.32)




26

GEOMETRIC ALGEBRA.

as illustrated in fig. 1.11. The polar representation of the radial and
azimuthal unit vector are simply

Figure 1.11: Radial vector in polar coordinates.

g

e’ =ej (cosf+eje;sinf) = e cosf + ey sinf
i (1.33)
e

8 = ese” = e (cos 0+ ejeysinf) = e, cosf —e; sin 6,

where i = ey, is the unit bivector for the x-y plane. We can easily
show that these unit vectors are orthogonal

£0 = (eleie) (e_iaez)
= eleﬁe”ﬁez (1'34)

= eje).

By theorem 1.2, since the product of #8 is a bivector, # is orthogonal
to 6.
We can find the velocity and acceleration by taking time deriva-
tives
v=rt+rt

72N 2N N (135)
a=r"t+2r't’ + ",
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but to make these more meaningful want to evaluate the &, # deriva-
tives explicitly. Those are

ej(ejer) = (erer)er

. !/ . . A
= (81619) = 6190/ = 326199/ =0w (l 36)
AL . ’ N . . N
6 = (ezele) =[eyi 0 = —e;0 = —fw,
eeje; = (—ejey)e;

where w = d6/dt, and primes denote time derivatives. The velocity
and acceleration vectors can now be written explicitly in terms of
radial and azimuthal components. The velocity is

v =r't+rw, (1.37)

and the acceleration is

a=r"t+2rwd+ r(wh)
’” ’ Q) 7 2 (]38)
=r't+2rwl + rw'é — ro-t,
or
1. ’
Ny 2 2
= - +—0 . 1.39
a r(r ra)) p (r a)) ( )

Using eq. (1.33), we also have the option of factoring out the rota-

tion operation from the position vector or any of its derivatives
(rep) e

r =
v =(re; +rwey) e

a= ((r" - rwz) e + ; (rzw)l e2) e,

(1.40)

In particular, for uniform circular motion, each of the position,
velocity and acceleration vectors can be represented by a vector that
is fixed in space, subsequently rotated by an angle 6.

Exercise 1.5 IR? rotations.

27
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Using familiar methods, such as rotation matrices, show that the counter-
clockwise and clockwise rotations of eq. (1.24) are given by eq. (1.25)
and eq. (1.206) respectively.

Exercise 1.6 Multivector Euler’s formula and trig relations.

For a multivector x assume an infinite series representation of the expo-
nential, sine and cosine functions and their hyperbolic analogues

© ‘ )C2k © v x2k+l
= 3=k =— inx=Y (-1)f——
cosx ;ﬁ( T ;( TS

a. Show that for scalar 6, and any multivectors J that satisfies J? =
—1, and K? = 1, then hold for multivectors J, K satisfying J2=-1
and K? = 1 respectively.

cosh(JO) = cosf, cosh(K6) = cosh@
sinh(J#) = Jsin6, sinh(K#) = K sinh 6.

b. Show that the trigonometric and hyperbolic Euler formulas

e’? = cosO+ Jsin®

eX? = cosh @ + K sinh 6,

hold for multivectors J, K satisfying J> = —1 and K> = 1 respec-
tively.

X+Y _

c. Given multivectors X, Y, show that e eXe¥ if X, Y commute.

That is XY = YX.

1.8 DUALITY.

Pseudoscalar multiplication maps a subspace to its orthogonal comple-
ment, called the dual.



1.8 puALITY.

Definition 1.23: Dual

Given a multivector M and a unit pseudoscalar / for the space, the
dual is designated M*, and has the value M* = MI.

For example, in R? with i = e}, the dual of a vector x = xe| + yep is

xi = (xe; + yey)i (1.54)
= Xxey — yey, -

which is perpendicular to x. This was also observed in eq. (1.25) and
eq. (1.26) which showed that multiplying a vector in a plane by a unit
pseudoscalar for that plane, maps a vector (say X) to a vector xi that is
orthogonal to x. The direction that xi points depends on the orientation of
the chosen pseudoscalar.

In three dimensions, a bivector can be factored into two orthogonal
vector factors, say B = ab, and pseudoscalar multiplication of Bl = ¢
produces a vector c¢ that is orthogonal to the factors a, b. For example, the
unit vectors and bivectors are related in the following fashion

€re3 = eII 62931 = —€]
€3e] = el 6361] = —€ (].55)

ejer = ezl ejer] = —es.
For example, with r = ae;| + be;, the dual is

rl = (ae1 +be2) €123
= aeys + be31 (1.56)

=e3 (—aez + bel) .

Here e3; was factored out of the resulting bivector, leaving two factors
both perpendicular to the original vector. Every vector that lies in the span
of the plane represented by this bivector is perpendicular to the original
vector. This is illustrated in fig. 1.12.

Some notes on duality

e The dual of any scalar is a pseudoscalar, whereas the dual of a pseu-
doscalar is a scalar.
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1.9

X = ae; + be,

Figure 1.12: R? duality illustration.

o The dual of a k-vector in a N-dimensional space is an (N — k)-vector.

For example, eq. (1.55) showed that the dual of a 1-vector in R was
a (3 — 1)-vector, and the dual of a 2-vector is a (3 — 2)-vector. In R’,
say, the dual of a 2-vector is a 5-vector, the dual of a 3-vector is a
4-vector, and so forth.

All factors of the dual (N — k)-vector are orthogonal to all the factors
of the k-vector. Looking to eq. (1.55) for examples, we see that the
dual of the bivector e;es is e, and both factors of the bivector e, e3
are orthogonal to the dual of that bivector e;.

Some authors use different sign conventions for duality, in particu-
lar, designating the dual as MI~!, which can have a different sign.
As one may choose pseudoscalars that differ in sign anyways, the
duality convention doesn’t matter too much, provided one is consis-
tent.

VECTOR PRODUCT, DOT PRODUCT AND WEDGE PRODUCT.

The product of two colinear vectors is a scalar, and the product of two
orthogonal vectors is a bivector. The product of two general vectors is a
multivector with structure to be determined. In the process of exploring
this structures we will prove the following theorems.

Theorem 1.3: Dot product as a scalar selection.
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The dot product of two vectors a, b can be computed by scalar grade
selection

a-b = (ab).

Proving theorem 1.3 will be deferred slightly. Computation of dot prod-
ucts using scalar grade selection will be used extensively in this book, as
scalar grade selection of vector products will often be the easiest way to
compute a dot product.

— Theorem 1.4: Grades of a vector product.

The product of two vectors is a multivector that has only grades 0
and 2. That is

ab = (ab) + (ab),.

We’ve seen special cases of both theorem 1.3 and theorem 1.4 consid-
ering colinear and orthogonal vectors. The more general cases will be
proven in two ways, first using a polar representation of two vectors in a
plane, and then using a coordinate expansion of the vectors. This will also
provide some insight about the bivector component of the product of two
vectors.

Proof. Let {u, v} be an orthonormal basis for the plane containing two
vectors a and b, where the rotational sense of u — v is in the same di-
rection as the shortest rotation that takes a/||a]| — b/||b||, as illustrated in
fig. 1.13.

Let iyy = uv designate the unit pseudoscalar for the plane, so that a
polar representation of a, b is

a = |laf|ue™" = [jalj "% u
uy6) —iuyf (1.57)
b = [[bllue™™ = [[bl][ e~ u,
The vector product of these two vectors is
ab = ([lalle™u) (IIb]| ue~")
= |lal| |Ib]| e"wvb (uu)e'w?
llall [[bl| (uu) (1.58)

= [l b} "4,

= llalllIbll (cos(6 — 6a) + tuy sin(B) — 64)) -
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Figure 1.13: Two vectors in a plane.

This completes the proof of theorem 1.4, as we see that the product
of two vectors is a multivector with only grades 0 and 2. It is also clear
that the scalar grade of the end result of eq. (1.58) is the R" dot product,
completing the proof of theorem 1.3. O

The grade 2 component of the vector product is something new that
requires a name, which we call the wedge product.

—1 Definition 1.24: Wedge product of two vectors.

Given two vectors a, b, the wedge product of the vectors is defined
as a grade-2 selection operation of their vector product and written

anb= <ab>2.
Given this notation, the product of two vectors can be written

ab=a-b+aAb.

The split of a vector product into dot and wedge product components is
also important. However, to utilize it, the properties of the wedge product
have to be determined.

Summarizing eq. (1.58) with our new operators, where iyy = uv, and
u, v are orthonormal vectors in the plane of a,b with the same sense of
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the smallest rotation that takes a to b, the vector, dot and wedge products
are

ab = [lall Ibll exp (iuy(0s — 6a))
a-b = [[al|[[bl| cos(6p - 0.) (1.59)
aAb = iyy |l [Ibl| sin(6 — 64).

A[Example 1.2: Products of two unit Vectors.}

To develop some intuition about the vector product, let’s consider
product of two unit vectors a, b in the equilateral triangle of fig. 1.14,
where
1
a=—(e3+e) =esexp(e3n/4)
\{5 (1.60)

b= (e3 +€) = esexp (exnn/4).

ﬂt\

V2

/

€
€

Figure 1.14: Equilateral triangle in IR>.
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The product of these vectors is

ab=—(es+e;)(e3+e)

(l+exn+e;z+en) (1.61)

o ‘/3632 +e3+en

2 V3

Let the bivector factor be designated

N = N =] =

. € +e3+epn
V3

The reader can check (exercise 1.10) that j is a unit bivector (i.e.
it squares to —1), allowing us to write

l + ﬁ 7

272

= cos(r/3) + jsin(m/3)
= exp (jn/3).

(1.62)

ab =
(1.63)

Since both vector factors were unit length, this “complex” expo-
nential has no leading scalar factor contribution from |a|| ||b||.

Now, let’s calculate the vector product using the polar form, which
gives

ab

(exp (—6317'(/4) 63) (63 exp (63271'/4))

1.64
exp (—es1/4) exp (e3n/4). (1.64)

The product of two unit vectors, each with a component in the z-axis
direction, results in a product of complex exponential rotation opera-
tors, each a grade (0, 2)-multivectors. The product of these complex
exponentials is another grade (0, 2)-multivector. This is a specific ex-
ample of the product of two rotation operators producing a rotation
operator for the composition of rotations, as follows

exp (e13m/4) exp (esn/4) = exp (jr/3) . (1.65)
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The rotation operator that describes the composition of rotations has
a different rotational plane, and rotates through a different rotation
angle.

We are left with a geometric interpretation for the vector prod-
uct. The product of two vectors can be interpreted as a rotation and
scaling operator. The product of two unit length vectors can be inter-
preted as a pure rotation operator.

Two wedge product properties can be immediately deduced from the
polar representation of eq. (1.59)

1. bAa=-aAb.

2. aNn(@a) =0, VYaelR.

We have now had a few hints that the wedge product might be related
to the cross product. Given two vectors a, b both the wedge and the cross
product contain a |[a]| ||b]| sin A@ factor, and both the wedge and cross prod-
uct are antisymmetric operators. The cross product is a bilinear operator
(a+b)x(c+d)=axc+axd+bxc+bxd. To see whether this is the
case for the wedge product, let’s examine the coordinate expansion of the
wedge product. Let

a= Zaiei
i

b Z b (1.66)
i
The product of these vectors is
ab = (Z a,-e,-) Z bje;
- -
= aibjeie; J (1.67)
ij

= Z aibjeiej + Z aibje,-ej.
i=j

i#]

35



36

GEOMETRIC ALGEBRA.

Since e;e; = 1, we see again that the scalar component of the product is
the dot product }’; a;b;. The remaining grade 2 components are the wedge
product, for which the coordinate expansion can be simplified further

anb= Zaibje,-ej

i#]

= Z aibje,-e.,- + Z a,-bjel-ej

i<j J<i

= Z aibje,-ej + Z ajb,-eje,-

i<j i<j

= Z((l,‘bj - ajb,-)eiej.

i<j

(1.68)

The scalar factors can be written as 2x2 determinants

a/\b=Z

i<j

G e, (1.69)
b b,

It is now straightforward to show that the wedge product is distributive
and bilinear (exercise 1.9). It is also simple to use eq. (1.69) to show that
bAa=-aAbandana=0.

For IR? there is only one term in eq. (1.69)

a Dl e (1.70)

by b

aAb=

We are used to writing the cross product as a 3x3 determinant, which
can also be done with the coordinate expansion of the R? wedge product

€€3 €361 €1€;
€€ =| a ap as |- (1.71)

by by b3

a aj

bi b,

aAnb=
ije(12,13,23}

Let’s summarize the wedge product properties and relations we have
found so far, comparing the IR® wedge product to the cross product
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[ Table 1.3: Cross product and R? wedge product comparison. ]

Property

Cross product

Wedge product

Same vectors

axa=0

ana=0

Antisymmetry bxa=-axb bArna=-aAb
Linear ax (ab) = a(axb) aA(ab) =a(anb)
Distributive ax(b+c)= an(b+c)=
axb+axc aAb+aAc
€ € €3

Determinant expan- | axb=|4, 4, a3 aAnb=
sion by by bs ee; eze; ejep

ai a as

by b, b3
Coordinate  expan- axb= aAb=
sion S, a; aj s T a, aj 6,

b; b; b, b;j

Polar form n[[a]| [[bl| sin(6 — 6,) | i|lall |bl| sin(6), — 6,)

All the wedge properties except the determinant expansion above are
valid in any dimension. Comparing eq. (1.71) to the determinant represen-
tation of the cross product, and referring to eq. (1.55), shows that the R?
wedge product is related to the cross product by a duality transformation

i = 1IN, or

aAb=1I(axbh). \

The direction of the cross product a X b is orthogonal to the plane rep-
resented by the bivector a A b. The magnitude of both (up to a sign) is the

(1.72)

area of the parallelogram spanned by the two vectors.

Example 1.3: Wedge and cross product relationship.
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To take some of the abstraction from eq. (1.72) let’s consider a spe-
cific example. Let

a=e +2e +3e;3
(1.73)
b = 4e; + Se; + 6es.

The reader should check that the cross product of these two vectors
is

axb = -3e; + 6e, — 3e;. (1.74)

By direct computation, we find that the wedge and the cross products
are related by a IR® pseudoscalar factor

aAb = (e +2e,+3e3) A (4e] + 5e; + 6e3)
= e  AtAE]) + (2e2)A(5€;) + (3e3)-A(6€3)
+ 5e1p + 6eq3 + 8ex; + 12ep3 + 12e37 + 15e3;
=(5-8)ep+(6-12)e13 + (12 —15)ex3
= —3612 - 6613 - 3623
= e123(—3e3) + e132(—6e2) + ex31(—3e;)
= e123(—3e3 + 6e; — 3ey)
= I(axDb).

(1.75)

The relationship between the wedge and cross products allows us to
express the IR vector product as a multivector combination of the dot
and cross products

ab=a-b+1Iaxbh). \ (1.76)

This is a very important relationship.

In particular, for electromagnetism, eq. (1.76) can be used with a = V
to combine pairs of Maxwell’s equations to form pairs of multivector gra-
dient equations, which can be merged further. The resulting multivector
equation will be called Maxwell equation (singular), and will be the start-
ing point of all our electromagnetic analysis.

We are used to expressing the dot and cross product components of
eq. (1.76) separately, for example, as

a-b = |la]||[b]| cos (AB)

_ (1.77)
axb = lal bl sin (A0),
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Introducing a unit bivector i,; normal to the unit normal f (i.e. izpph =
e123), we can assemble eq. (1.77) into a cos +i sin form using eq. (1.76)

ab = ||a|| ||b]| (cos (A8) + Ifisin (A6))

. (1.78)
= |lalllIbll exp (iasA0) .

Exercise 1.7 Wedge product of colinear vectors.

Given b = «a, use eq. (1.69) to show that the wedge product of any
pair of colinear vectors is zero.

Exercise 1.8 Wedge product antisymmetry.

Prove that the wedge product is antisymmetric using using eq. (1.69).

Exercise 1.9 Wedge product distributivity and bilinearity.

For vectors a, b, ¢ and d, and scalars «, 8 use eq. (1.69) to show that

a. the wedge product is distributive

(@a+b)A(c+d)=aAc+aAd+bAc+bAd,

b. and show that the wedge product is bilinear

(aa) A (Bb) = (aB)(@Ab).

Note that these imply the wedge product also has the cross product
filtering property a A (b +aa) =aAb.

Exercise 1.10 Unit bivector.

Verify by explicit multiplication that the bivector of eq. (1.62) squares
to —1.

1.10 REVERSE.

Definition 1.25: Reverse
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Let A be a multivector with j multivector factors, A = B1B;--- B,
not necessarily orthogonal. The reverse A", or reversion, of this mul-
tivector A is

iTi-1 1
Scalars and vectors are their own reverse, and the reverse of a sum
of multivectors is the sum of the reversions of its summands.

Examples:

(1+2e12+3e321)" = 1+ 22 + 3enns (1.88)

((1+ep)(ex — e12))T = (ex2 +e)(1 +eyp).

A useful relation for k-vectors that are composed entirely of products
of orthogonal vectors exists. We call such k-vectors blades

—1 Definition 1.26: Blade.

A product of k orthogonal vectors is called a k-blade, or a blade of
grade k. A grade zero blade is a scalar.

The notation F € A is used in the literature to indicate that F is
a blade of grade k.

Any k-blade is also a k-vector, but not all k-vectors are k-blades. For
example in R* the bivector e}, + e34 is not a 2-blade, since it cannot be
factored into orthogonal products, whereas any IR? bivector, such as e» +
e)3 + e31 is a blade (exercise 1.18). This will be relevant when formulating
rotations since bivectors that are blades can be used to simply describe
rotations or Lorentz boosts * whereas it is not easily possible to compute
an exponential of a non-blade bivector argument.

Theorem 1.5: Reverse of k-blade.

The reverse of a k-blade Ay = aja; - - - a; is given by

A}t = (=1)E=DI24,

4 A rotation in spacetime.
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Proof. We prove by successive interchange of factors.

T

Ak = aia;_---a;
k-1

=(=D"ajaiapy - ap

= D=1 ajaaiar - - a;

= D EDT D agay e ay
= (=DM DPaja, - a

= (=DKED24; a

A special, but important case, is the reverse of the R pseudoscalar,
which is negated by reversion

I'=-1I (1.89)

1.11 COMPLEX REPRESENTATIONS.

We’ve seen that bivectors like e}, square to minus one. Geometric alge-
bra has infinitely many such imaginary numbers, which can be utilized
to introduce problem specific “complex planes” as desired. In three di-
mensional and higher spaces, imaginary representations (such as the R?
pseudoscalar) with grades higher than two are also possible.

Using the reversion relationship of eq. (1.89), we can see that the /
behaves as an imaginary

P =1-1"
—(ejexe3)(ezere;) = —ejerere)

= —€1€
=-1.

(1.90)

Given many possible imaginary representations, complex and complex-

like numbers can be represented in GA for any k-vector i that satisfies

i2 = —1 since the multivector

z=x+iy, (1.91)

will have all the required properties of a complex number.
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For example, in Euclidean spaces we could use either of

UAv

—(uAv)?

UAVAW
I= ,

—(uAvAW)?

(1.92)

provided u, v, w are linearly independent vectors. Given a set of orthonor-
mal vectors u, v, w, then
i=uv
(1.93)
I = uvw,
are also suitable as imaginaries. Note that in eq. (1.93), the bivector i
differs from the unit IR? pseudoscalar only by a sign (i = +ej»), and the
trivector 1, also differs from the IR? unit pseudoscalar only by a sign (I =
+e23).
Other complex number like representations are also possible with GA.
Quaternions, which are often used in computer graphics to represent rota-
tions, are the set g € {a + xi + yj + zk | a4, x,y, z € IR} where

P=j=Kk"=-1

ij =k = —ji
) ! (1.94)
jk =i=—kj
ki = j = —ik.

Like complex numbers, quaternions can be represented in GA as grade
(0, 2)-multivectors, but require three imaginaries instead of one.
Exercise 1.11 Quaternions.

Show that the relations eq. (1.94) are satisfied by the unit bivectors
i = e3,j = e;3,k = ey, demonstrating that quaternions, like complex
numbers, may be represented as multivector subspaces.

1.12  MULTIVECTOR DOT PRODUCT.

In general the product of two k-vectors is a multivector, with a selection
of different grades. For example, the product of two bivectors may have
grades 0, 2, or 4

€ (821 +ex; + e34) =1+e3+e34. (1.98)
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Similarly, the product of a vector and bivector generally has grades 1
and 3

€] (612 + 623) =€)+ eq3. (1.99)

The dot product was identified with scalar grade selection, which picks
out the lowest grade of their product. This motivates the definition of a
general multivector dot product

— Definition 1.27: Multivector dot product

The dot (or inner) product of two multivectors A = Y,V 0 (A, B =
SN (B); is defined as

If A, B are k-vectors with equal grade, then the dot product is just the
scalar selection of their product

A-B=(AB), (1.100)

and if A, B are a k-vectors with grades r # s respectively, then their dot
product is a single grade selection

A-B=(AB),_y. (1.101)

—[Example 1.4: Multivector dot products.}

The most common and useful multivector dot products are for pairs
of multivectors that are each entirely a specific grade, such as a
vector-bivector dot product

(e1 ar 292) . (612 ar 623> = ((e1 ar 262) (812 A 823)>1

(1.102)
=e —2e; + 263,

or a vector-trivector dot product

(e1 +2e2)-er3 = ((e1 +2e2) e123),

(1.103)
= ep3 + 2€3].
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Should the products be of mixed grade, then we sum all the indi-
vidual dot products

(1+e;+2ex)-(ex—es)
= (leg); +(e1€2) + 2(ex3€z);
—(lesp)y —(ere31); — 2(exze3;)
=e) —2e3 +e3 +e3.

(1.104)

Unfortunately, the notation for the multivector dot product is not stan-
dardized. In particular, some authors [8] prefer left and right contraction
operations that omit the absolute value in the grade selections. A dot prod-
uct like operator for scalar selection is also common.

— Definition 1.28: Alternate dot products.

The left and right contraction operations are respectively defined as

N

=3 ()

i,j=0
N

AlB = Z (Al-Bj)l,_j,

i,j=0

where any selection of a negative grade is taken to be zero. The scalar
product is defined as

AxB = ZN: (4:B))

i,j=0

In an attempt to avoid inundating the reader with too many new opera-
tors, this book will stick to the dot, wedge and grade selection operators.
However, these alternates are common enough that they deserve mention-
ing.

1.12.1 Dot product of a vector and bivector
An important example of the generalized dot product is the dot product

of a vector and bivector. Unlike the dot product of two vectors, a vector-
bivector dot product is order dependent.
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The vector dot product is zero when the two vectors are orthogonal.

This is also true if the vector and bivector are orthogonal, that is, having
no common factor, as in

er-ex =(ep3); =0. (1.105)

On the other hand, a non-zero vector-bivector dot product requires the
vector to have some overlap with the bivector. A bivector formed from the
product of two orthogonal vectors B = ab, where a-b = 0, will have a
non-zero dot product with any vector that lies in span {a, b}

(aa+fb) - (ab) = a|lal|* b - B|Ib|/* a. (1.106)

It is often useful to be able to expand a vector-bivector dot product. A
useful identity for such an expansion is

— Theorem 1.6: Dot product of vector and wedge product.

The dot product of a vector a with the wedge product of two vectors
b, ¢ distributes as

a-(bAc)=(cAb)-a=(a-b)c—(a-c)b.

Before proving this theorem, let’s take a look at what it implies. This
shows that only vectors with some component in the span of the plane
represented by the bivector will result in a non-zero vector-bivector dot
product. We also know that when a vector that lies entirely in the span
of a bivector is multiplied by that bivector, the result is rotated by +m/2.
This means that a vector-bivector dot product is orthogonal to the vector
that is dotted with the bivector. This can also be seen algebraically since

a-(a-(bac))=a-((a-bec—(a-c)b)

=(a-c¢)(a-b)—(a-¢)(a-b) (1.107)

A vector-bivector dot product selects only the component of the vector
that lies in the plane of the bivector, and rotates that component by +mr/2
in that plane.
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Proof. There are (somewhat tricky) coordinate free ways to prove theo-
rem 1.6, but a straightforward expansion in coordinates also does the job.

a- (b A c) = Z aibjckei . (ej Aeg) = Z aibjck<eiejek>l

i,k i,j#k (l 108)
(C AN b) -a= Z a,-bjck(ek A ej) - = Z aibjck<ekeje,~>l.
i,jk i, j#k

If all of i, j, k are unique then <e,-e jek> L= 0, so the vector selection is
non-zero only when i equals one of j, k. For example

(ejejer); = €

(ejexeq); = —es.

(1.109)

Given j # k,and i = jori = k, then it is simple to show (exercise 1.12)
that

<eiejek>l = <ekeje,->l, (1.110)
soa-(bAc)=(cAb)-a. Additionally, again if j # k (exercise 1.13)
<e,-ejek>1 =ec(ej-e)—ej(ec-e). (1.111)

Plugging eq. (1.111) back into eq. (1.108) proves the theorem

a- (b/\c) = Zaibjck (ek (ej -e,-) —€; (ek -ei))
ik (1.112)

=(a-b)c—(a-c)b.
O

The RHS of eq. (1.112) shows that the vector-bivector dot product has
the following relation to the IR? vector triple product

— Theorem 1.7: Triple cross product.

For vectors in IR3, the dot product of a vector and vector wedge prod-
uct can be expressed as a vector triple product

a-(bAc)=(bxc)xa.
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Proof. The lazy proof, not related to geometric algebra at all, would be to
invoke the well known distribution identity for the vector triple product

([1e]
ax(bxc)=(a-¢c)b—(a-b)c. (1.113)

We can prove this result directly by applying the identity a A b = I(a X
b) to the vector-bivector product, and then selecting the vector grade

a(bAac)=al(bxc)
=I(a-(bxc))+I(aA(bxc))
=I(a-(bxc))+*ax(bxc)
=1(a-(bxc))+(bxc)xa.

(1.114)

This multivector has a pseudoscalar (grade 3) component, and a vec-
tor component. Selecting the grade one component, and invoking defini-
tion 1.27 to express this grade selection as a dot product, completes the
proof

(a(bAc)), =a-(bAc)=(bxc)xa. (1.115)
O

1.12.2  Bivector dot product.
Being able to compute the generalized dot product of two bivectors will

also have a number of applications. When those bivectors are wedge prod-
ucts, there is a useful distribution identity for this dot product.

— Theorem 1.8: Dot product distribution over wedge products.

Given two sets of wedge products a A b, and ¢ A d, their dot product
is

@Ab)-(cAd)=(@Ab)-c)-d=(b-c)a-d)—(a-c)(b-d).

Proof. To prove this, select the scalar grade of the product (a A b)(c A d)

(aAb)cAnd)=(aAb)(cd—c-d)

(1.116)
=(aAb)ed-(aAb)c-d).
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The second term, a bivector, is not of interest since it will be killed by
the scalar selection operation. The remainder can be expanded in grades,
first making use of the fact that a bivector-vector product has only grade
1 and 3 components

(anb)c=(aAb)-c+{(anb)c)s. (1.117)

Multiplication of the trivector term by d produces only grades 2,4,
which will be discarded when we apply a scalar grade selection, so we
ignore those. The product of (a A b) - ¢, a vector, with d is a grade (0, 2)-
multivector, of which only the scalar grade is of interest. That is

(aAb)-(cAd) = ((aAb)cAd)

1.118
=(@aAb)-c)-d. ( )
To complete the proof, we apply theorem 1.6
((@aAb)-¢c)-d=(a(b-c)—b(a-¢))-d (1119)
=(@-d)(b-¢c)—(b-d)a-c).
O

Identity eq. (1.119) has the following R? cross product equivalent.

— Theorem 1.9: Dot products of wedges as cross products.

The dot product of two IR? wedge products can be expressed as cross
products

(aAb)-(cAd)=—(axb)-(cxd).

Proof. This follows by scalar grade selection
(aAb)-(cAnd)={(aAb)(cAd))

= ({(axb)I(cxd)) (1.120)
=—(axb) (cxd).
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Table 1.4: Comparison of distribution identities. ]

Geometric algebra

Vector algebra

vector-bivector dot
product (scalar triple
cross product)

a-(bAc)

(bxc)xa

bivector dot product
(dot product of cross
products)

(aAnb)-(cnd)

—(axb) - (cxd)

1.12.3  Problems.

Exercise 1.12

Index permutation in vector selection.

Prove eq. (1.110). That is, given j # k, and i = j or i = k, show that

(o), = (o),

Exercise 1.13

Prove eq. (1.111). That is, given j # k, show that

eejer) =ec(ej-e)—ej(ec-e).
1

1.13 PERMUTATION WITHIN SCALAR SELECTION.

As scalar selection is at the heart of the generalized dot product, it is
worth knowing some of the ways that such a selection operation can be

manipulated.

(1.121)

Dot product of unit vector with unit bivector.

(1.124)

— Theorem 1.10: Permutation within scalar selection.

(AB) = (BA)
(AB---YZ) = (ZAB---Y).

The factors within a scalar grade selection of a pair of multivector
products may be permuted or may be cyclically permuted
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Proof. 1t is sufficient to prove just the two multivector permutation case.
One simple, but inelegant method, is to first expand the pair of multivec-
tors in coordinates. Let

A:a0+Za,~e,~+Za,~jeij+~--
i

i<j
(1.129)
B=b0+Zbiei+Zb,~je,~j+--~
i i<j
Only the products of equal unit k-vectors €;;,€;jx, -+ can contribute

scalar components to the sum, so the scalar selection of the products must
have the form

(AB) = agbo + » | aibie} + ) ayjbije};+ - (1.130)
i i<j
This sum is also clearly equal to (BA). O

1.14 MULTIVECTOR WEDGE PRODUCT.

We’ve identified the vector wedge product of two vectors with the selec-
tion of the highest grade of their product. Looking back to the multivector
products of eq. (1.98), and eq. (1.99) as motivation, a generalized wedge
product can be defined that selects the highest grade terms of a given mul-
tivector product

—1 Definition 1.29: Multivector wedge product.

For the multivectors A, B defined in definition 1.27, the wedge (or
outer) product is defined as

N
AANB= Z <AiBj>i+j'

i,j=0

If A, B are a k-vectors with grades r, s respectively, then their wedge
product is a single grade selection

ANAB=(AB),.,. (1.131)

The most important example of the generalized wedge is the wedge
product of a vector with wedge of two vectors
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— Theorem 1.11: Wedge of three vectors.

The wedge product of three vectors is associative
(aAb)Ac=aAn(bAc),

so can be written simply asa A b A c.

Proof. The proof follows directly from the definition

(anb)Ac={(aAb)c);
={((ab-a-b)c);
= (abc); — (a-b){c)3
= (abc)s,

(1.132)

where the grade-3 selection of a vector is zero by definition. Similarly

aAn(bAac)=(a(bAc)),
= (a(be —b - ©))3
= (abc); — (b - c)(a);
= (abc);.

(1.133)

O]

It is simple to show that the wedge of three vectors is completely anti-
symmetric (any interchange of vectors changes the sign), and that cyclic
permutation a — b — ¢ — a of the vectors leaves it unchanged (exer-
cise 1.14). These properties are also common to the scalar triple product
of IR? vector algebra, because both the scalar triple product and the wedge
of three vectors has a determinant structure, which can be shown by direct
expansion in coordinates

bne= (aboeesd)
aAbAc a,b,ckelejek3

= Z a;bjcre;e ey

ik
(1.134)
a; aj ay
= Db by bifein
i<j<k

¢ Cj Ck
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In IR3 this sum has only one term

ay ay as
aAbAc=|p, by bsll, (1.135)
c1 €y C3

in which the determinant is recognizable as the scalar triple product. This
shows that the IR? wedge of three vectors is the scalar triple product times
the pseudoscalar

aAbAac=(a-(bxce))l (1.136)

Note that the wedge of n vectors is also associative. A full proof is
possible by induction, which won’t be done here. Instead, as a hint of
how to proceed if desired, consider the coordinate expansion of a trivector
wedged with a vector

(aAbAc)Ad = Z <a,~bjcke,~ejekd1el>4
i# 2kl

= Z a,-bjckdleiejekel.

i# jk#l

(1.137)

This can be rewritten with any desired grouping (aAb)Ac)Ad =
(@anb)A(eAnd)=aA(bAcAd)=---. Observe that this can also be put
into a determinant form like that of eq. (1.134). Whenever the number of
vectors matches the dimension of the underlying vector space, this will
be a single determinant of all the coordinates of the vectors multiplied by
the unit pseudoscalar for the vector space.

1.14.1 Problems.

Exercise 1.14 Properties of the wedge of three vectors.

Show that the wedge product of three vectors is completely antisymmetric,
and show that the wedge product of three vectors is invariant with respect
to cyclic permutation.

Exercise 1.15 R* wedge of a non-blade with itself.



1.15 PROJECTION AND REJECTION.

While the wedge product of a blade with itself is always zero, this is not
generally true of the wedge products of arbitrary k-vectors in higher di-
mensional spaces. To demonstrate this, show that the wedge of the bivec-
tor B = eje; + e3eq4 with itself is non-zero. Why is this bivector not a
blade?

1.5 PROJECTION AND REJECTION.
Let’s now look at how the dot plus wedge product decomposition of the

vector product can be applied to compute vector projection and rejection,
which are defined as

—1 Definition 1.30: Vector projection and rejection.

Given a vector x and vector u the projection of x onto the direction
of u is defined as

Proj,(x) = (x- 00,

where @ = u/||u||. The rejection of x by u is defined as the component
of x that is orthogonal to u

Rej, (x) = x — Proj,(x).

An example of projection and rejection with respect to a direction vec-
tor u is illustrated in fig. 1.15.

Computation of the projective and rejective components of a vector
x relative to a direction G requires little more than a multiplication by
1 = @id, and some rearrangement

Il
4
=
=>

X

(1.143)

The vector x is split nicely into its projection and rejective components
in a complementary fashion

Proj,(x) = (x-@) @ (1.144a)
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X
[ ]

A\

Rejy (X)
u
Proj, (x)
Figure 1.15: Projection and rejection illustrated.
Rej, (x) = (x A ) G (1.144b)

By construction, (x A @) @ must be a vector, despite any appearance of
a multivector nature.

The utility of this multivector rejection formula is not for hand or com-
puter algebra calculations, where it will generally be faster and simpler to
compute X — (X - )0, than to use eq. (1.144b). Instead this will come in
handy as a new abstract algebraic tool.

When it is desirable to perform this calculation explicitly, it can be done
more efficiently using a no-op grade selection operation. In particular, a
vector can be written as its own grade-1 selection

x = (X)), (1.145)

so the rejection can be re-expressed using definition 1.27 as a generalized
bivector-vector dot product

Rej, (x) = ((xAd)a), = (xA Q) -a. (1.146)

In IR3, using theorem 1.7, the rejection operation can also be expressed
as a vector triple product

Rej, (x) =ax (xx1d). (1.147)

To help establish some confidence with these new additions to our
toolbox, here are a pair of illustrative examples using eq. (1.144b), and
eq. (1.146) respectively.
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—(Example 1.5: An R? rejection.}

Let x = ae; + be; and u = e; for which the wedge is x A @t = bee;.
Using eq. (1.144b) the rejection of x by u is

Rej, (x) = (xAd) @
= (bezei)e (1.148)
= bes(eje;) '

= b62,

as expected.

This example provides some guidance about what is happening geo-
metrically in eq. (1.144b). The wedge operation produces a pseudoscalar
for the plane spanned by {x, u} that is scaled as sin # where 6 is the angle
between x and u. When that pseudoscalar is multiplied by , 1 is rotated
in the plane by /2 radians towards x, yielding the normal component of
the vector Xx.

Here’s a slightly less trivial R? example

{Example 1.6: An R3 rejection.}

Letx = ae; + bes and @t = (e; + €;)/ V2 for which the wedge product
18

€3 €31 €12

1
A= —
XAu ¥ 0 a b
1 1 0
1 (1.149)
= 6 (e23(=b) — e31(=b) + e12(—a))
1

= — (b(e32 + 631) + ae21) .

S

Using eq. (1.146) the rejection of X by u is

1
(X/\ﬁ) -4 = 5 (b(e32 +e31) +ae21) o (e1 ar ez). (1.150)
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Each of these bivector-vector dot products has the form e, - e, =
(e,sty1 Which is zero whenever the indexes r, s, ¢ are unique, and is a
vector whenever one of indexes are repeated (r = ¢, or s = ). This
leaves

1
xAQ)-0 == (be3 +aez+be3—ae1)
2 (1.151)
a
= bez + E(ez—el).

A[Example 1.7: Velocity and acceleration in polar coordinates.];

In eq. (1.37), and eq. (1.38) we found the polar representation of the
velocity and acceleration vectors associated with the radial parame-
terization r(r, ) = ri(0).

We can alternatively compute the radial and azimuthal compo-
nents of these vectors in terms of their projective and rejective com-
ponents

v=vif = (v-f £)f
N ) (1.152)
a=aff=(a-f £,
)
v-t=7r
VAR =rwdAf=whAr
a-f= r//_er (1153)

anf = l(rza))’@?/\f‘.
r

We see that it is natural to introduce angular velocity and acceler-
ation bivectors. These both lie in the & A £ plane. Of course, it is also
possible to substitute the cross product for the wedge product, but
doing so requires the introduction of a normal direction that may not
intrinsically be part of the problem (i.e. two dimensional problems).

In the GA literature the projection and rejection operations are usually
written using the vector inverse.
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—1 Definition 1.31: Vector inverse.

Define the inverse of a vector x, when it exists, as
-1 _ X
=—.
(1]

1

This inverse satisfies x 'x = xx~! = 1.

The vector inverse may not exist in a non-Euclidean vector space where
x? can be zero for non-zero vectors X.

In terms of the vector inverse, the projection and rejection operations
with respect to u can be written without any reference to the unit vector
0 = u/||u|| that lies along that vector

Proj, (x) = (x-u) L s

:(x/\u)-%.

1=

Rej, (x) = (xAu)

It was claimed in the definition of rejection that the rejection is orthog-
onal to the projection. This can be shown trivially without any use of GA
(exercise 1.16). This also follows naturally using the grade selection oper-
ator representation of the dot product

Rej, (x) - Proj,(x) = (Rej, (x) Proj,(x))
=((xAfd)b(x-a)d)
= (x-1) ((x A1) @?) (1.155)

= (x-0) (XA )

This is zero because the scalar grade of a wedge product, a bivector, is
zero by definition.

Exercise 1.16 Rejection orthogonality.

Prove, without any use of GA, that x — Proj,(x) is orthogonal to u, as
claimed in definition 1.30.

Exercise 1.17 Rejection example.

57



58

GEOMETRIC ALGEBRA.

a. Repeat example 1.6 by calculating (x A @)@ and show that all the
grade three components of this multivector product vanish.

b. Compute x — (x - @)t and show that this matches eq. (1.151).

1.16 NORMAL FACTORIZATION OF THE WEDGE PRODUCT.

A general bivector has the form
B=)" ajey, (1.161)
i#j
which is not necessarily a blade. On the other hand, a wedge product is
always a blade >

— Theorem 1.12: Wedge product normal factorization

The wedge product of any two non-colinear vectors a, b always has
a orthogonal (2-blade) factorization

aAb=uv, u-v=0.

This can be proven by construction. Pick u = a and v = Rej, (b), then

aRej, (b) = a-Rej; (b) +a ARej, (b)

—an(b_ 22, (1.162)
|la]|?

=aAb,

since a A (aa) = 0 for any scalar a.
The significance of theorem 1.12 is that the square of any wedge prod-
uct is negative

(uv)? = (uv)(-vu)
= —u(v®)u (1.163)
= —[ul|v?,

which in turn means that exponentials with wedge product arguments can
be used as rotation operators.

Exercise 1.18 IR3 bivector factorization.

Find some orthogonal factorizations for the IR3 bivector e}3 + €3 + €3].

5 nR3 any bivector is also a blade [1]
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1.17 THE WEDGE PRODUCT AS AN ORIENTED AREA.

The coordinate representation of the IR> wedge product (eq. (1.70)) had
a single e, bivector factor, whereas the expansion in coordinates for the
general RV wedge product was considerably messier (eq. (1.69)). This
difference can be eliminated by judicious choice of basis.

A simpler coordinate representation for the RN wedge product follows
by choosing an orthonormal basis for the planar subspace spanned by the
wedge vectors. Given vectors a, b, let {@i, ¥} be an orthonormal basis for
the plane subspace P = span {a, b}. The coordinate representations of a, b
in this basis are

a=(a-0)a+(a-v)v
(1.170)
b=(-0)i+ (- V)V
The wedge of these vectors is
aAb:((a-ﬁ)ﬁ+(a-@)@)A((b-ﬁ)ﬁHb-V)V)
=((a-ﬁ)(b-0)—(a-©)(b-ﬁ))ﬁ° (1.171)
a-a a-v| .
= av.
b-d b-v

We see that this basis allows for the most compact (single term) coor-
dinate representation of the wedge product.

If a counterclockwise rotation by /2 takes @ to ¥ the determinant will
equal the area of the parallelogram spanned by a and b. Let that area be
designated

=
<>

a-
b

A= (1.172)

=>
=2}
<>
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A given wedge product may have any number of other wedge or or-
thogonal product representations
anb=(@+pgb)Ab
=aA(b+aa)
= (A AV
=UA(AV) (1.173)

= (@A) A —

S

i\,/
= (BAG') A —
B
These equivalencies can be thought of as different geometrical repre-
sentations of the same object. Since the spanned area and relative order-
ing of the wedged vectors remains constant. Some different parallelogram
representations of a wedge products are illustrated in fig. 1.16.

/

Y

-

Figure 1.16: Parallelogram representations of wedge products.

As there are many possible orthogonal factorizations for a given wedge
product, and also many possible wedge products that produce the same
value bivector, we can say that a wedge product represents an area with
a specific cyclic orientation, but any such area is a valid representation.
This is illustrated in fig. 1.17.

Exercise 1.19 Parallelogram area.
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mfd oo

Figure 1.17: Different shape representations of a wedge product.
Show that the area A of the parallelogram spanned by vectors a, b as
illustrated in fig. 1.18,

a=ae; +arer

b= b1e1 + bzez,

is

A 7
1
b (b Aa)—
a
o =
Figure 1.18: Parallelogram area.
Aot b2 ,
ay ap

where we adjust the sign to make the end result come out positive.

1.18 GENERAL ROTATION.

Equation (1.23) showed that the R? pseudoscalar anticommutes with any
vector x € R?,

Xi = —IX, (1.179)
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and that the sign of the bivector exponential argument must be negated to
maintain the value of the vector x € R? on interchange

xe'? = ¢7i0x. (1.180)

The higher dimensional generalization of these results are

— Theorem 1.13: Bivector exponential properties.

Given two non-colinear vectors a, b, let the planar subspace formed
by their span be designated S = span {a, b}.

(a) Any vector p € § anticommutes with the wedge producta A b

p(aAb)=—(aAb)p.

(b) Any vector n orthogonal to this plane (n-a = n-b = 0) com-
mutes with this wedge product

n(aAb)=(aAb)n.

(c) Reversing the order of multiplication of a vector p € § with an
exponential €', requires the sign of the exponential argument

to be negated

aAb —-anb

pe*® = e *p.

This sign change on interchange will be called conjugation.

(d) Any orthogonal vectors n commute with a such a complex expo-
nential

nea/\b — ea/\bn.

Proof. The proof relies on the fact that a orthogonal factorization of the
wedge product is possible. If p is one of those factors, then the other is
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uniquely determined by the multivector equation a A b = pq, for which
we must have q = i(a/\b) €eSandp-q=09.Then

p(aAb) =p(pq)
= p(—qp)
= —(pq)p
=—(aAb)p.

(1.181)

Any orthogonal vectors n must also be perpendicular to the factors p, q,
withn-p=n-q=0,so
n(a Ab) = n(pq)
= (-pm)q
= —p(—qn) (1.182)
= (pg)n
=(aAb)n.

For the complex exponentials, introduce a unit pseudoscalar for the
plane i = p§ satisfying i> = —1 and a scalar rotation angle 6 = (a A b)/i,
then for vectors p € S

peP = pef?
=p (cosf+isinh)
(cosf—isin®)p (1.183)
— ¢ ~p
= by,

and for vectors n orthogonal to S

aAb 0

ne?”’ = né'

=n (cosO+isinf)

= (cosf+isinf)n (1.184)
=¢"n
— ea/\bn.

O

The point of this somewhat abstract seeming theorem is to prepare for
the statement of a general R” rotation, which is

6 The identities required to show that q above has no trivector grades, and to evaluate it
explicitly in terms of a, b, x, will be derived later.
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— Definition 1.32: General rotation

Let B = {P, q} be an orthonormal basis for a planar subspace with
unit pseudoscalar i = p{ where i = —1. The rotation of a vector x
through an angle 6 with respect to this plane is

Ro(x) = e ¥ x¢"/?,

Here the rotation sense is that of the /2 rotation from p to §q in
the subspace S = span B.

This statement did not make any mention of an orthogonal direction.
Such an orthogonal direction is not unique for dimensions higher than 3,
nor defined for two dimensions. Instead the rotational sense is defined by
the ordering of the factors in the bivector i.

To check that this operation has the desired semantics, let X = X + X,
where x; € S andx, -p=0VYp € S. Then

Ro(x) = e /2xi0/2
=702 (x+x1)

— X||619 + Xle—19/2619/2

ei9/2
(1.185)

= X||€l€ +X;.

As desired, this rotation operation rotates components of the vector that
lies in the planar subspace S by 6, while leaving the components of the
vector orthogonal to the plane unchanged, as illustrated in fig. 1.19. This
is what we can call rotation around a normal in IR3.

1.19 SYMMETRIC AND ANTISYMMETRIC VECTOR SUMS.

—| Theorem 1.14: Symmetric and antisymmetric vector products. [

1. The dot product of vectors X,y can be written as

1

x-y:E(xy+yx).
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Figure 1.19: Rotation with respect to the plane of a pseudoscalar.
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This sum, including all permutations of the products of x and
y is called a completely symmetric sum. A useful variation of
this relationship is

yX = 2(x-y) — Xy.
2. The wedge product of vectors X,y can be written as
1
XAy =5 (xy - yx).
This sum, including all permutations of the products x and y,

with a sign change for any interchange, is called a completely
antisymmetric sum.

Proof. These identities highlight the symmetric and antisymmetric nature
of the respective dot and wedge products in a coordinate free form, and
will be useful in the manipulation of various identities. The proof follows
by direct computation after first noting that the respect vector products
are

Xy=X'Yy+XAY (1.186a)

X=y-X+yYAX
=y y (1.186b)
=X-y—-XAY.
In eq. (1.186b) the interchange utilized the respective symmetric and
antisymmetric nature of the dot and wedge products.
Adding and subtracting eq. (1.186) proves the result. O

1.20 REFLECTION.

Geometrically the reflection of a vector x across a line directed along u is
the difference of the projection and rejection

x = (X-u)é—(x/\u)%

1
=(x-u—xAu)—.
(x-u—-xAu) .

(1.187)
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Using the symmetric and antisymmetric sum representations of the dot
and wedge products from theorem 1.14 the reflection can be expressed as
vector products

1 1
X'=5(xﬂ+ux—xtr+ux)—, (1.188)
u
yielding a remarkably simple form in terms of vector products
, 1
x = ux—. (1.189)
u

As an illustration, here is a sample CliffordBasic reflection computation

In[1]:= ClearAll[u, x, uu, invu, i, o, proj, rej, ux,
uxu]
u=4e[l] + 2 e[2];
x =3 e[1] + 3 e[2];
uu = InnerProduct[u, u]l;
invu = u / uu;
i = InnerProduct[x, u];
o = OuterProduct[x, ul;
proj = i invu // N // Simplify
rej = GeometricProduct[o, invu] // N // Simplify
ux = GeometricProduct[u, x]

Out[1]= 3.6 e[1] + 1.8 e[2]
Out[2]= -0.6 e[1] + 1.2 e[2]
Out[3]= 18 + 6 e[1,2]

Out[4]= 4.2 e[1] + 0.6 e[2]

the results of which are plotted in fig. 1.20.
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Figure 1.20: Reflection.

Table 1.5: Comparision of geometric identities. ]

Geometric algebra

Traditional algebra

Projection (x-a)a (x-a)a
Rejection x A (Axx)xa
) : cosd sind||x
2D rotation xe?, i=ep
—sinf cosé||y

3D rotation in the
plane of @, Vv, where
a-v=0

o~ 196/2 ,096/2

(x-@)(Gcosb+
Vsinf) + (x -
V)(Vcos 6 —asin ) +
(aAxx)xa

Reflection

(x-0)0+ 0 x (0 xx)

1.21

LINEAR SYSTEMS.

— Theorem 1.15: Best fit solution of linear system.

by=i"'(i-b),

Given k linearly independent vectors aj, ay, - - - a;, and the projection
b of a vector b onto the hypervolume spanned by {a, - - -, a;}
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where i = a; Aay A--- A a, is a pseudoscalar for that hypervolume,
then the system

aix; t+axxy---+agxg = b||,
is solved by

xlzi_l-(b/\az/\---/\ak)
xy=i - (aj AbA---Aay)

X, =i '-(ajAayA---Ab).

If b € spanf{ay,---,a}, so that by = b, then the dot products
between the k-blades above may be dropped.

This is equivalent to a Moore-Penrose or SVD pseudoinverse solution for
the system

X1
lay - a)]|:|=D (1.190)
xn
Furthermore, also when the system is exact, if the dimension of the vec-
tors a; is k, then this solution is equivalent to Cramer’s rule.

Rather than formally trying to prove this theorem, we can tackle it in-
formally, starting with some examples.

1.21.0.1  Example: two variable system.

The simplest example is that of a two variable system
ax+by=c. (1.191)

Let’s proceed to solve this using the wedge product, assuming to start with
that the system has an exact solution (i.e.: that ¢ is a linear combination
ofa,b.)

To solve for x simply wedge with b, and to solve for y wedge with a

(ax+By) Ab=cAb

1.192
an(dx+by)=aAc, ( )
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so, the solution, if it exists, is given by

1
X = bc/\b
A (1.193)
= A C.
Y a/\ba ¢

1.21.0.2  Example: exact k variable system.

This idea generalizes trivially to higher order systems can be solved, sim-
ply requiring wedging more times to eliminate all terms other than the
one of interest.

For example, if the k variable system

ajx; +axxy---+agx; = b, (1.194)

has a solution, we can solve for any of the x;’s by wedging repeatedly. For
example, we can find x; by wedging with all ay, - - - a, to find

x1(al/\az/\---/\ak)=b/\a2A---/\ak, (1.195)

or

1
x| = bAaA---Aa 1.196
! al/\az/\---/\ak( 2 k) ( )
If this system has no solution, then these k-vector ratios will not be scalars.
It’s fairly easy to see that to solve for x;, we start switch the numerator

to the pseudoscalar i, with b taking the place of a;.

1.21.0.3  Example: R® Cramer’s rule.

If this sounds like Cramer’s rule, that is because the two are equivalent
when the dimension of the vector equals the number of variables in the
linear system. For example, consider the solution for x; of eq. (1.194) for
an R3 system, witha; =uw,a, =v,a3 =w

by vi wi
by vy wp|€1es€7

_bAvAaw b3 vz ows
T UAVAW

X1 , (1.197)

up vy wi
Uy vy wpl€reses

uz vy wj
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which is exactly the ratio of determinants found in the Cramer’s rule solu-
tion of this problem. We get Cramer’s rule for free due to the antisymmet-
ric structure of the wedge product.

Cramer’s rule doesn’t apply to cases where the dimension of the space
exceeds the number of variables, but a wedge product solution does not
have that restriction.

1.21.04  Example: Some R* vectors.

As an example, consider the two variable system eq. (1.191) for vectors
in R* as follows

1

1
a= b:O, c= 2 . (1.198)
0 0
1

1
1
0 b
0 -1

Here’s a (Mathematica) computation of the wedge products for the so-
lution

In[5]:= ClearAll[a, b, c, iab, aWedgeB, cWedgeB, aWedgeC,

X, yl
a = e[1] + e[2];
b = e[1] + e[4];
c =e[1] + 2 e[2] - e[4];
aWedgeB = OuterProduct[a, b];
cWedgeB = OuterProduct[c, b];
aWedgeC = OuterProduct[a, c];

iab = aWedgeB / GeometricProduct[aWedgeB,
aWedgeB] ;

X = GeometricProduct[iab, cWedgeB];

y = GeometricProduct[iab, aWedgeC];

{{a A b =, aWedgeB},{c A b = , cWedgeB},

{fa A c =, aWedgeC},{" = " x},{y = ~ y}
Out[5]= aAb-= -e[1,2] + e[1,4] + e[2,4]
c Ab= -2 e[1,2] + 2 e[1,4] + 2 e[2,4]

7 Using the CliffordBasic.m geometric algebra module from [2].
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aAC= e[1,2] - e[1,4] - e[2,4]

which shows that 2a —b = c.

1.21.0.5 Example: intersection of two lines.

As a concrete example, let’s solve the intersection of two lines problem
illustrated in fig. 1.21.

Figure 1.21: Intersection of two lines.

In parametric form, the lines in this problem are

ri(s) = ap+ s(a; —ap)

(1.199)
ra(r) = bo +t(by — bo),

so the solution, if it exists, is found at the point satisfying the equality

ag + s(a; —ag) = by + t(b; —by). (1.200)
With
u =a;—Q
ll2=b1—b0 (].201)
d = aj — by,

the desired equation to solve is
d + su; = ruy. (1.202)

As with any linear system, we can solve for s or ¢ by wedging both
sides with one of u; or up
dAu; = Aug

(1.203)
dAuy +su; Aup =0.
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In R? these equations have a solution if u; Auy # 0, and in RY these
have solutions if the bivectors on each sides of the equations describe the
same plane (i.e. the bivectors on each side of eq. (1.203) are related by
a scalar factor). Put another way, these have solutions when s and ¢ are
scalars with the values

wmAd
u Au
u Ad
ll1/\ll2.

(1.204)

Exercise 1.20 Intersection of a line and plane.

Let a line be parameterized by
r(a) = p+aa,
and a plane be parameterized by

r(b,c) = q+p£b+yc.

a. For the intersection of the two, state the vector equation to be
solved, and its solution for a in terms of a ratio of wedge prod-
ucts.

b. State the conditions for which the solution exist in R*> and RV,

c. Interms of coordinates in IR? write out the ratio of wedge products
as determinants and compare to the Cramer’s rule solution.

1.21.0.6  Example: Best fit solution for two variable system.

Now, let’s consider the case where the system cannot be solved exactly.
It’s sufficient to illustrate the ideas using just two variables.

Geometrically, the best we can do is to try to solve the related “least
squares” problem

xa+yb =g, (1.213)
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where ¢ is the projection of ¢ onto the plane spanned by a, b. Regard-
less of the value of ¢, we can always find a solution to this problem. For
example, solving for x, we have

1
= Ab
o a/\bcII

=aib«qAb) (1.214)

1
aAb

The zero above follows because ¢, is perpendicular to both a and b by
construction. Geometrically, we are trying to dot two perpendicular bivec-
tors, where b is a common factor of those two bivectors, as illustrated in
fig. 1.22.

¢, Ab

c, c=a+b+e_

a anb b

Figure 1.22: Perpendicular bivectors.

We see that the solution to this two variable linear system problem, is

1

x=——-(enb). (1.215a)
1

y= (anc). (1.215b)
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Exercise 1.21 Perpendicular blades.

Show algebraically, that the second term from eq. (1.214)

1
aAb

(e AD),
is zero.

Exercise 1.22 Two variable least squares problem.

We called the projection solution, a least-squares solution, without full
justification. Justify this by finding the best fit solution to the two variable
system

xa+yb =c,
by minimizing the squared error function
e=(c—xa—yb)’. (1.218)

Show that the resulting solution is identical to eq. (1.215).

1.22  PROBLEM SOLUTIONS.

Answer for Exercise 1.3

The reader can check that with zero element 0 = [O 0], and a scalar

00
multiplicative identity 1, all the vector space properties are satisified.
. c a—ib
For the coordinates observe that x = , and
a+ib —c

tr (o1x) = tr atib - —c ‘zZa

c a—ib
E—ia +b ic
tr (oox) = tr =2b (1.4)
ic ia+b

tr (o3x) = tr ¢ a=ib_ 2c,
la+ib ¢

soa=tr(ox)/2,b=tr(02x) /2, ¢ = tr (03X) /2.
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Answer for Exercise 1.4

To verify, swap repeatedly, changing the sign with each swap. Any
cyclic permutation requires exactly two swaps

erese; = e (eze)
=—€ (0163)
- (6261)63

= +ejezes,

(1.20)

€3€1€ = (6361) €
- (9193) €
=—-€ (6362)

= +ejeres.

(1.21)

Answer for Exercise 1.5

The 2D rotation matrix is

Rg = (1.41)

cosf —sin ﬂ

sinf cosf

so to rotate coordinates by +r/2, we multiply by

Rigpp =+ [O _1]. (1.42)

In particular

pcos0 pcosf

Rinp

psinf 1 O ][psiné cos 6

/2{0 -1

- ipl_ Sine], (1.43)

consistent with the results observed from left and right multiplication with
the plane pseudoscalar e;e;.

Answer for Exercise 1.6

Solution Part a. Let y be a multivector that squares to +1. Series ex-
pansion of cosh(y8), for scalar theta yields
(x6) 2k X g2k

1 .
@2t 2k

cosh(y6) = Z (1.44)
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In particular, for y = J, K respectively, we have

Ll (_l)kQZk
cosh (J6) Z TV cos 6
= G (1.45)
h (K6) i D' s
cos = —~—— =cosh@.
= (2k)!
Similarly,
(v )2k+1 0 X2k92k+1
h(y6) = = . 1.46
sinh(xf) = Z @k+ DI Y L@k 1) (1.46)
So, for y = J, K respectively, we have
o 92k+1
sinh (J0) JZ (2k+1)' = Jsiné
(1.47)
‘ B 0 (+1) g2k+1 o
sinh (K@) = K; W = K sinh 6.

Solution Part b. Series expanding again, we may split the exponential
into even and odd parts, for any multivector x

k=0
2k o9 2k+1 1.48
_ Z R . s (1.48)
£ (2! L2k + 1!

cosh(x) + sinh(x).

There is nothing in such a series expansion that cares about the type of
x, only that we can take repeated powers. The remainder of the problem
follows from our results above after substitution of x = J@ and x = K6
respectively.

Solution Part c. The exponential of a sum, such as X + Y, regardless of
the types or characteristics of X and Y is

i (x+ 1) (1.49)

k=0

Let’s look at the powers of such a sum. For the square and cube we have

(X+Y) =X>+ XY +YX+ Y2, (1.50)
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(X+Y) =X+ X2V + XYX + YX2+ Y2X + YXY + XY2 + Y3, (151)

Observe that the conventional binomial series form for these powers is
only possible if X and ¥ commute. If we have such commutation, then
the exponential takes the form

ok K\ X/ Yk
RPN

o & iyhi (1.52)
=§ZO k- )l

This is a sum over all points in a trianglular region of the first quadrant
of indexes on the k, j axes. We can, however, sum over all the diagonals
s = k— j = constant, and index our position on each of those diagonals
by u = j, to find

o o XY
XY — SZ:(; ; ]
2 XS Y (1.53)
=22
u=0 s=0
=X,

We see that commutation of variables is required for an exponential of a
sum to equal the product of the exponentials. This is worth understanding
since it shows us that we can factor exponentials of sums such as Z = 1 +
ejer,Z = eje; +e3eq, Z = €] + ejeres, into the product of the exponentials
of the summands of those multivectors, but cannot do so with multivectors
likeZ =e;+e,,Z=¢e; +eje,0orZ =eje; + eres3.

Answer for Exercise 1.7

a ai
anA (aa) = ! e, (1.79)
i<j ada; CL’(IJ
but
a aj a aj
' T=al|"' V|=0, (1.80)
aa; ozaj a; aj
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for all i, j, so a A (ea) = 0.

Answer for Exercise 1.8

Substitution gives

b; b;
bAaa= b e, (1.81)
i<j |4i aj
but
b,‘ bj __ a aj (1.82)
a; aj b,’ bj

foralli, j,sobAa=—-aAb.

Answer for Exercise 1.9

Solution Part a. Substitution gives

(a,-+b,-) (aj+bj)

ee;, (1.83)
(Ci+dl'> (Cj'i'dj) /

(a+b)/\(c+d):a/\b:z

i<j

but that determinant expands as
(di+bi) (aj+bj)
(Ci+di> (Cj-l-dj)

= (a,- +bi) (Cj + d]) - (aj +bj) (Ci +d,')

(1.84)
=ac;—a;c; +b,'Cj—bjC,' +aidj—ajdl~ +bidj—bjdi
:a,- aj a; aj+bl~ bj+b,' bj.
¢ Cj di dj ¢ Cj dl‘ dj
Backsubstitution and comparison proves the result.
Solution Part b. Substitution gives
(aa) A (Bb) = » [* e, (1.85)
i<j |Bbi PBb;

but
aa; aaj _ a; aj (] 86)
Bbi  pb; bi b;
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proving the result.

Answer for Exercise 1.10

. 1
12 = § (e32 tep;3+ elz) (632 t+ep;3+ 612)
| 2 2
= 3 (632 + €3 t €], +€3213 +€3212 +€1332 + €312 + €232 + 61213)
1
= 3 (-3+e3n —e3m +epp—e3112 — €3 — e1123)
1
=3 (-3+ey —e3 +ep—e3n—ej3—€x3)
_ -3
3
=-1.
(1.87)
Answer for Exercise 1.11
Here are the basic quaternionic relations
ij = e3ne;3 = (—ex)(—e31) = ey =k (1.95)
Jk =ep3ey = (—e3)(—epp) =ep =i (1.96)
ki = ex1e3 = (—ej2)(—ex3) = €13 = j. (1.97)

All these bivectors obviously square to —1, which incidentally shows that
ijk = k> = —1, a well known quaternion identity.

Answer for Exercise 1.12
Since j # k, eje; = —exej, sofori =k
<e,-ejek>l = —<e,~ekej>l = —<eke,~ej>l = <ekeje,->l, (1.122)
and fori = j

<e,-ejek>l = <eje,~ek>l = —<ejeke,->1 = <ekeje,->l. (1.123)



1.22 PROBLEM SOLUTIONS.

Answer for Exercise 1.13

We can tackle this first looking at the i = j case, where

<e,~e‘,~ek>l = <(e,~oej) ek>l = (e -ej) e (1.125)
For the i = k case, we have

<eiejek>1 = —<e,-ekej>l = —<(e,- -€) ej>1 =—(e;-ex)ej.  (1.120)
Combining both possibilities we have

<e,-ejek>1 = (ei-ej) ex— (e -ex)e;. (1.127)
Incidentally, note that this only holds when j # k. More generally

<eiejek>l = (ei-ej)ex—(ei-ex)e;+ (ej-ex)e, (1.128)

(since there is a term for each permutation of i, j, k and a sign change
when that permutuation is not even.)

Answer for Exercise 1.14

Writing the wedge of three vectors as a grade three selection
aAbAc=(abc)s, (1.138)
and applying the vector product identity Xy = —yX + 2x -y, we have

aAbAc=(abc);
=((-ba+2a-b)c),

(e (1.139)
=-bAaAc
Similarly
aAbAc=(abc);
=(a(-cb+2b-c)), (1.140)

= —(ach);
=-aAcAb.
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We see that any two adjactent wedge products in the wedge of three vec-
tors may be interchanged with a corresponding sign change, a process that
can be repeated until all combinations are formed. This includes

aAbAc=-bAaAc

=+bAcAa

=-cAbAa (1.141)
cAhaAnb

=-aAcADb.

Answer for Exercise 1.15

(e12+e34) A (€2 +e€34) = €234 + €3412 = 2€1234. (1.142)

A blade is the wedge product of two vectors, or the geometric product of
two orthogonal vectors. The grade-2 multivector e, + es4 is not a blade,
since there is no common factor between e}, and es4. It is not possible to
factor this multivector into two orthogonal products.

Answer for Exercise 1.16

(x —Projg(x)) -ti=x-a-((x-0)a)-a
=x-0-(x-8)(@-9) (1.156)
=X-u—Xx-u
=0.

Answer for Exercise 1.17

Solution Part a. Given X = ae, + bey and @i = (e +€p)/ \/5, we found
that

A

XAl =—(b(ex+e31)+aey). (1.157)

1
V2
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Multiplying once more by i on the right, we have

2
>
=
=
Il

(b (e32 + 631) +anl) (e1 + e2)

(b (e +e311) +aeyr; +b (e +e312) +aezn)
(1.158)

N === =

(b (6321 + 63) +aer + b (63 + 6312) —ael)
= — (2[993 +a (e2 —el)) .

We are left with (x A @) @ = (x A @) - @, since all the trivector components
cancel perfectly.
Solution Part b. Now we can compare the above to X — (x - @) 6. First
. 1 a
X-u= (an+bE3) . (e1 +e2) _— = —

, (1.159)
2 V2

SO

X— (X'ﬁ)ﬁ = ae) + bey — C—l (e1 +e2)
. 2 (1.160)
= be3 + 5 (—61 +62) ,

as calculated from (x A @) @.

Answer for Exercise 1.18

In general, given a bivector B = ajey3 + aes; + azey, if we pick the
coeflicient g; that has the largest absolute magnitude (to avoid numerical
instability in case the bivector is ill-conditioned and has a small non-zero
component in one direction), and then select one of the two vector factors
of the unit blade that is associated with that component, calling this e,
then we can utilize this vector e to find one vector that lies in the plane
of B. For example, if the largest absolute magnitude coefficient is a3 then
pick either e = e; or e = e;. Now, compute

a=2>bB-e.

This vector lies in the plane that B represents. Specifically, it is the pro-
jection of e onto B, but rotated 90 degrees, since (B-e) e would be the
projection itself. If we dot a with B then we find another vector that lies
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in the plane represented by B, but is rotated 90 degrees in the plane, away
from a. That is:

b=B-a

We’ve now found two perpendicular vectors that lie in the plane that B
represents, so we have

Boxab=aAb.

Let’s try these ideas with the bivector of this problem B = e>3 + e3; + €.
All components are equally weighted, so let’s compute the B - e; to start
with to find a first factor of B.

B-e = (623 + €31 +e12) - €1

(1.164)
= €3 —€).
Dotting this into B once again will find a second factor
B-(e3—ey) = (ex3+e3 +e2) - (e3—ep)
=e —e +e3—e] (1.165)

= —2e| + € +e;3.
Adjusting the scaling appropriately, gives us two orthogonal factors of B

€3 — €

€1 + €3 +e31 = (261—62—63). (].166)

Let’s see what factors we find by dotting B with e3 instead. This gives
us

B'eg = (e12+e23+e31) - e3

(1.167)
=€) —e].
Dotting this into B a second time yields
B-(ex—e;) = (ep+ex+e31)-(ex—e;) (1.168)
=€ —e3+e —es.
After rescaling, we find
e—e
e +ey3+es = (61+e2—263) 2 ! (1.169)

2

Each of the sets of factors of eq. (1.166), eq. (1.169) can be interpreted
as the edges of two different rectangular representations of the bivector,
for which the total area is fixed. The span of either set of factors describes
the plane that the bivector represents.



1.22 PROBLEM SOLUTIONS.

Answer for Exercise 1.19

The parallelogram area is base times height, that is

A=all|(bra)al|=]|/(bra)al, (1.174)
but
b bo| .
bAa= e =Ai (1.175)
ay ap
by by . . .
where A = ,and i = ejp. Our expression for the area is reduced
ay ap
to
A = |A] ||ia]] . (1.176)
Note that
llzall = [lall = 1, (1.177)

since the multiplicative action of i is to rotate by 90 degrees, not changing
the (unit) length at all. That leaves

by b

ay ap

A=+ , (1.178)

as expected.

Answer for Exercise 1.20
Solution Part a. We are looking for solutions «, 8, y such that the equal-
ity
p+aa=q+pb+yc, (1.205)
is satisfied. We have only to wedge with b A ¢, to find

pAbAc+a(anbAc)=qAbAc, (1.206)

or

— AbAc
@ = % (1.207)
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Solution Part b. For IR3, a solution exists provided a Ab A ¢ # 0, but
for RV a solution also requires
(q—p)AbAcxaAbAc. (1.208)

For instance, there is no solution if (q —p) AbAc =ej4, butarbAc=

€234.
Solution Part c. To solve this equation using coordinates, we seek so-
lutions to

p—q=-aa+pb+yc, (1.209)
or
(P—q) e = (—ea+pb+yc) e, (1.210)

Yk € [1, N]. In matrix form, this is

P1—q1 -ar by ¢
b, ¢ ¢
- —a
P2 . q2 _ 2 .2 2 (1211)
PN — 4N —ay by cy

The Cramer’s rule solution only applies to the R? system, and has the
form

pi—q1 bi ¢ q1—p1 b1 c
P2—q2 by 2| |g@2—-p2 b2
P3—q3 by 3 G —-p3 by c3

Bl= = . (1.212)
—a; by ar by
—-ar by a by
—a3 by c3 a3 by c3

This is obviously equivalent to the GA solution, where the ratio of de-
terminants is found immediately from the coordinate representation of
a triple wedge product. We can’t solve this system of equations using
Cramer’s rule for RY when N > 3 since the system is overspecified in that
case. That overspecification is why we require the additional (q —p) Ab A
¢ < a A b A ¢ constraint for the GA solution using wedge products. Note
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that this wedge product solution method is unlikely to be numerically sta-
ble for N > 3, and we are probably better off solving with SVD, so that
we have some estimation of the numerical errors that either rule out or
validate the solution.

Answer for Exercise 1.21
We can reduce that second term, first expanding the bivector inverse
explicitly
anb
(aAb)?

“(eLAb)=-

— -(eL AD). (1.216)

We can ignore the scalar —1/(a A b)2 factor, and expand the bivector dot
product, to find

(aanb)-(c.Ab)=((anb)-c.)-b
( (b-c;)—b(a-c.)) b (1.217)

Answer for Exercise 1.22

We follow the usual procedure, by equating all partials to zero

Oe

0= F =2(c—xa—yb)-(-a)
Oe

= 6—y :2(c—xa—yb)-(—b).

(1.219)

This is a two equation, two unknown system, which can be expressed in
matrix form as

a? a-b

a-b b?

X

ar c} . (1.220)

This has solution
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(1.221)

All of these differences can be expressed as wedge dot products, using
the following expansions in reverse

(aAb)-(cAd)=a-(b-(cAd))
((b-c)d—(b-d)c) (1.222)

(a-d)(b-c)-(a-c)(b-d).

a-
a-

We find
_ b*(a-¢)-(a-b)(b-c)
—(aAb)?
(anb)-(bAc) (1.223)
—(aAb)?

and

. a>(b-c)-(a-b)(a-c)
—(anb)?
—(aAb)-(aAc) (1.224)
—(aAb)?

a/\b-(a/\c).

Sure enough, we find what was dubbed the least squares solution, which
we now know can be written out as a ratio of (dotted) wedge products.



MULTIVECTOR CALCULUS.

2.1 RECIPROCAL FRAMES.
2.1.1 Motivation and definition.

The end goal of this chapter is to be able to integrate multivector func-
tions along curves and surfaces, known collectively as manifolds. For our
purposes, a manifold is defined by a parameterization, such as the vector
valued function x(a, b) where a, b are scalar parameters. With one param-
eter the vector traces out a curve, with two a surface, three a volume, and
so forth. The respective partial derivatives of such a parameterized vector
define a local basis for the surface at the point at which the partials are
evaluated. The span of such a basis is called the tangent space, and the
partials that constitute it are not necessarily orthonormal, or even orthog-
onal.

Unfortunately, in order to work with the curvilinear non-orthonormal
bases that will be encountered in general integration theory, some addi-
tional tools are required.

e We introduce a reciprocal frame (basis) which partially generalizes
the notion of orthogonality to non-orthonormal bases.

o We will borrow the upper and lower index (tensor) notation from
relativistic physics that is useful for the intrinsically non-orthonormal
spaces encountered in that study, as this notation works well to de-
fine the reciprocal frame.

—1 Definition 2.1: Reciprocal frame

Given a subspace basis 8 = {X{, X2, - - - X,,}, not necessarily orthonor-
mal, the reciprocal frame is the set {xl, X2, -X”’} € span S satisfying

X; - x/ =6/,
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where the vector x/ is not the j-th power of x, but is a superscript
index, the conventional way of denoting a reciprocal frame vector,
and 6;/ is the Kronecker delta.

If a basis {x;} is orthogonal, then the reciprocal frame vectors are, lit-
erally, the reciprocals x' = 1/x; (exercise 2.1). Any orthonormal basis,
where every basis vector is its own inverse, is also its reciprocal basis.

In general, if the original basis is not-orthogonal, every reciprocal basis
vector is orthogonal to all but one of the original basis vectors, but may not
be orthogonal to any other reciprocal basis vector. Techniques for compu-
tation of reciprocal bases will be developed for the non-orthogonal case.

Mixed index variables have been introduced above for the first time in
this text, which may be unfamiliar. These are most often used in tensor
algebra, where any expression that has pairs of upper and lower indexes
implies a sum, and is called the summation (or Einstein) convention. For

example:
dibi = Z aibi

l
A'BCT = " ATBC.
¥

(2.1)

Summation convention will not be used explicitly in this text, as it de-
viates from normal practises in electrical engineering!.

2.1.1.1 Vector coordinates.

The most important application of a reciprocal frame is for the compu-
tation of the coordinates of a vector with respect to a non-orthonormal
frame. Let a vector a have coordinates a' with respect to a basis {x;}

a=> dx, (2.2)
7

where j in a/ is an index not a power?.

Generally, when summation convention is used, explicit summation is only used explicitly
when upper and lower indexes are not perfectly matched, but summation is still implied.
Readers of texts that use summation convention can check for proper matching of upper
and lower indexes to ensure that the expressions make sense. Such matching is the reason
a mixed index Kronecker delta has been used in the definition of the reciprocal frame.

In tensor algebra, any index that is found in matched upper and lower index pairs, is
known as a dummy summation index, whereas an index that is unmatched is known as a
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Dotting with the reciprocal frame vectors X' provides these coordinates

a-x Za’xj - X

J

Z ajd,-" (2.3)
J
= ai.

Alternatively, coordinates can be computed with respect to the recipro-
cal frame. Let those coordinates be a;, so that

a= Z ax'. (2.4)

Dotting with the basis vectors x; provides the reciprocal frame relative
coordinates a;

ZanJ * X

J

Z aj(sji (2.5)

J

a-X;

a;.

We can summarize eq. (2.3) and eq. (2.5) by stating that a vector can
be expressed in terms of coordinates relative to either the original or re-
ciprocal basis as follows

a:Z(a-xj)xj:Z(a-xj)xj. (2.6)

J

In tensor algebra the basis is generally implied?.

free index. For example, in afbij (summation implied) j is a summation index, and i is a
free index. We are free to make a change of variables of any summation index, so for the
same example we can write a¥bj.. These index tracking conventions are obvious when
summation symbols are included explicitly, as we will do.

In tensor algebra, a vector, identified by the coordinates ' is called a contravariant vector.
When that vector is identified by the coordinates ¢; it is called a covariant vector. These
labels relate to how the coordinates transform with respect to norm preserving transfor-
mations. We have no need of this nomenclature, since we never transform coordinates
in isolation, but will always transform the coordinates along with their associated basis
vectors.
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An example of a 2D oblique Euclidean basis and a corresponding recip-
rocal basis is plotted in fig. 2.1. Also plotted are the superposition of the
projections required to arrive at point (4,2) along the X1, X, directions or
the x', x? directions. In this plot, neither of the reciprocal frame vectors
x' are orthogonal to the corresponding basis vectors x;. When one of x;
is increased(decreased) in magnitude, there will be a corresponding de-
crease(increase) in the magnitude of X', but if the orientation is remained
fixed, the corresponding direction of the reciprocal frame vector stays the
same.

X2

(a-xH)x, X3
X1

(a- xl)xl/ x*
Ao

o,
X X!
Xl
\ (a-x)x
@ \

Figure 2.1: Oblique and reciprocal bases.

XZ

2.1.1.2  Bivector coordinates.

Higher grade multivector objects may also be represented in curvilinear
coordinates. Illustrating by example, we will calculate the coordinates of a
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bivector constrained to a three parameter manifold span {x;, X, X3} which
can be represented as

1 . iy
BZE%:BUXI-/\Xj:ZBUXi/\Xj. (2.7)

i<j

The coordinates B/ can be determined by dotting B with x/ A x/, where
i # j, yielding

B-(Xj /\xi) = %ZB” (X, A Xy) -(Xj Axi)
r,s

= %ZB”((X,/\XS) -xj)-xi
7,8

= % DB (%6, = x6,7) - X' (2.8)
r,s

- % B (86,0 - 6'6,7)
1,8

= % (B7-B").

We see that the coordinates of a bivector, even with respect to a non-
orthonormal basis, are antisymmetric, so eq. (2.8) is just B/ as claimed.
That is

B/ =B. (xf A xi). (2.9)

Just as the reciprocal frame was instrumental for computation of the co-
ordinates of a vector with respect to an arbitrary (i.e. non-orthonormal
frame), we use the reciprocal frame to calculate the coordinates of a bivec-
tor, and could do the same for higher grade k-vectors as well.

2.1.2  R? reciprocal frame.

How are the reciprocal frame vectors computed? While these vectors have
a natural GA representation, this is not intrinsically a GA problem, and
can be solved with standard linear algebra, using a matrix inversion. For
example, given a 2D basis {X;, X»}, the reciprocal basis can be assumed to
have a coordinate representation in the original basis

x = axy + bxp

2

(2.10)
X = X + dXp.
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Imposing the constraints of definition 2.1 leads to a pair of 2x2 linear
systems that are easily solved to find

x' = 5 ((X2)2X1 - (x1-%2) Xz)

P02 - (X1 -X2)
2 _ 1 )
= (X1)2(X2)2 _ (Xl 'X2)2 ((Xl) X2 — (Xl 'XZ) Xl).

2.11)

The reader may notice that for IR® the denominator is related to the
norm of the cross product x; X x,. More generally, this can be expressed
as the square of the bivector x; A Xp

- (X] A X2)2

— (X] /\XQ) . (X] /\Xz)
—((x1 AX2) " X1) - X2 (2.12)

x1)2(x2) = (x1 - %)

Additionally, the numerators are each dot products of x;, X, with that
same bivector

. A
O (xiA%)

(1 Axa)” 2.13)
Xz_Xl-(Xz/\Xl) o

(x1 AXy) ’

or
1 1

X X AKX
Xll 2 (2.14)

X2=X1- .

X7 A X1

Recall that dotting with the unit bivector of a plane (or its inverse) ro-
tates a vector in that plane by 7/2. In a plane subspace, such a rotation is
exactly the transformation to ensure that x; - x? = X, - x! = 0. This shows
that the reciprocal frame for the basis of a two dimensional subspace is
found by a duality transformation of each of the curvilinear coordinates,
plus a subsequent scaling operation. As X; A Xp, the pseudoscalar for the
subspace spanned by {X;, X»}, is not generally a unit bivector, the dot prod-
uct with its inverse also has a scaling effect.



2.1 RECIPROCAL FRAMES.

Numerical example:  Here is a Mathematica calculation of the recipro-
cal frame depicted in fig. 2.1

In[6]:=

out[6]=

Out[7]=

out[8]=

ClearAll[x1l, x2, inverse]

x1 = e[1] + e[2]; x2 = e[1] + 2 e[2];

x12 = OQuterProduct[x1l, x2];

inversel[a_] := a / GeometricProduct[a, a] ;

x12inverse = inverse[x12];

sl = InnerProduct[x2, xl2inverse];

s2 = InnerProduct[xl, -xl2inverse];

sl

s2

dots[a_,b_] := {a, ™", b, " =",

InnerProduct[a // ReleaseHold,

b // ReleaseHold]};

MapThread[dots, {{x1 // HoldForm, x2 // HoldForm,

x1 // HoldForm, x2 //

HoldForm},
{s1 // HoldForm, sl // HoldForm,
2 e[l1] - e[2]
-e[1] + e[2]
x1 . sl = 1
X2 . sl = 0
x1 . s2 = 0

This shows the reciprocal vector calculations using eq. (2.14) and that
the defining property x; - x/ = 6,/ of the reciprocal frame vectors is satis-

fied.

Example: R?:

Given a pair of arbitrary oriented vectors in R?, x; =

aie; +aser, Xy = bie; + bye,, the pseudoscalar associated with the basis

{x1,x2} is

X AXy = (alel +a2e2) AN (b1e1 +b262)

2.15
= (a1by — azby) ey2. 1)

The inverse of this pseudoscalar is

1

B 1

X] AXp

= . 2.16
a1bs _a2b1921 (2.16)
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So for this fixed oblique IR? basis, the reciprocal frame is just

x| = X> €21
ayby — axby 2.17)
2 €12 ’
X =x—.
a1b2 —a2b1

The vector x! is obtained by rotating x, by —x/2, and rescaling it by
the area of the parallelogram spanned by X1, X,. The vector x” is obtained
with the same scaling plus a rotation of x; by /2.

2.1.3 3 reciprocal frame.

In this section we generalize eq. (2.14) to IR? vectors, which will illustrate
the general case by example.

Given a subspace spanned by a three vector basis {X1, X2, X3} the recip-
rocal frame vectors can be written as dot products

x! = (x0 A X3) -(X3 /\xz/\xl)

X2=(X3 /\Xl)-(Xl/\X3/\X2) (2.18)
X = (X] AXo) -(Xz/\Xl /\X3).

Each of those trivector terms equals —x! A x> A x> and can be related to
the (known) pseudoscalar x; A X, A X3 by observing that

(Xl/\X2/\X3)-(X3 AX2 AX) :xl-(xz-(x3-(X3 /\xz/\xl)))

=x! -(xz-(xz /\Xl))

=X1~X1

=1,

(2.19)

which means that

1
X3 A Xy A Xy
B 1
B X1/\X2/\X3’

~x'AXPAX = -
(2.20)
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and

1

I _

X _<X2/\X3).X1/\X2/\X3
1

2

X :(X3/\X1)'m (221)
1

3 _

X _(Xl/\xz)‘xl/\XZ/\X3

Geometrically, dotting with this trivector is a duality transformation
within the subspace spanned by the three vectors X1, Xp, X3, also scaling
the result so that the x; - x/ = §;/ condition is satisfied. The scaling factor
is the volume of the parallelepiped spanned by X, Xo, X3.

2.1.4 Problems.

Exercise 2.1 Orthogonal reciprocals.

Given an orthogonal basis {x;}, show that

Xzt
X
Exercise 2.2 Reciprocal frame for two dimensional subspace.

Prove eq. (2.11).

Hint: Take dot products of eq. (2.10) with xi,X;, group the resulting
equations into matrix form (you’ll find the same matrix for both sets of
unknowns), and then invert the matrix to find the solution.

Exercise 2.3 Two vector reciprocal frame

Calculate the reciprocal frame for the IR subspace spanned by {x;, x>}
where
X| =€ + 262

(2.27)
Xy = € —e3.
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2.2 CURVILINEAR BASES.
2.2.1  Two parameters.

Curvilinear coordinates can be defined for any subspace spanned by a pa-
rameterized vector into that space. As an example, consider a two param-
eter planar subspace parameterized by the following continuous vector
function

1
x(uy, ur) = uy (el cos uy + Eez sin uz) s (2.33)

where u; € [0, 1] and uy € [0, /2]. This parameterization spans the first
quadrant of the ellipse with semi-major axis length 1, and semi-minor axis
length 1/2. A parameterization of an elliptic area may or may not be of
much use in electrodynamics, but it happens to provide a non-trivial, yet
simple, example of a non-orthonormal parameterization. Contours for this
parameterization are plotted in fig. 2.2. The radial contours are for fixed
values of uy and the elliptical contours fix the value of u;, and depict a set
of elliptic curves with a semi-major/major axis ratio of 1/2.

Figure 2.2: Contours for an elliptical region.

We define a curvilinear basis associated with each point in the region
by the partials

X ox
1 = —_—
ouy
ox (2.34)
X2 = —

- 8u2'
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For eq. (2.33) our curvilinear basis elements are

|
X| = e cosuy + iez sin uy

1 (2.35)
Xo = uy | —e; sinup + 532 Ccos uz) ,
We form vector valued differentials for each parameter
dx) = xidu
P (2.36)
dX2 = deuz.

For eq. (2.33), the values of these differentials dx;,dx, with du; =
duy = 0.1 are plotted in fig. 2.3 for the points

(u1,u2) = (0.7,57/20), (0.9, 37/20), (1.0, 57/20) (2.37)

in (dark-thick) red, blue and purple respectively.

0.5

> N
ety

0.4 0.5 0.6 0.7 0.8 0.9

0.1

Figure 2.3: Differentials for an elliptical parameterization.

In this case and in general there is no reason to presume that there is any
orthonormality constraint on the basis {X;, Xy} for a given two parameter
subspace.

Should we wish to calculate the reciprocal frame for eq. (2.33), we
would find (exercise 2.4) that

x = €] COS Uy + 2€5 sin uy
, 1, (238)
X~ = — (—e; sinuy + 2, cos uy)
uj
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These are plotted (scaled by da = 0.1 so they fit in the image nicely) in
fig. 2.3 using thin light arrows.

When evaluating surface integrals, we will form oriented (bivector)
area elements from the wedge product of the differentials

d*x = dx; A dxo. (2.39)

This absolute value of this area element /—(d2x)? is the area of the par-
allelogram spanned by dxi, dx;. In this example, all such area elements
lie in the x — y plane, but that need not be the case.

Also note that we will only perform integrals for those parametrizations
for which the area element d°x is non-zero.

Exercise 2.4 Elliptic parameterization.
An elliptical area can be parameterized as
X(ul, M2) = Uuj (e1 COoS Uy +ﬂe2 sin Mz) , (2.40)

where 8 = V1 — €2, and € is the eccentricity of the ellipse.

a. Compute the curvilinear vectors

X1 = 0x/0u;
(2.41)
Xy = 8X/ 3142.
b. Compute the reciprocal frame vectors
1 1
X =Xp- Ax
X1 . (2.42)
X2 = —X1 - .
X1 AXp
c. Verify that x; - x/ = 6;/.
Exercise 2.5 Hyperbolic identities.
Show that
2 cosh (u — i6) sinh (u + i0) = sinh(2u) + i sin(26). (2.51)

2 cosh (u) sinh (u) = sinh(2u). (2.52)
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cosh (¢ + i0) = cosh u cos 6 + i sinh u sin 6. (2.53)

Exercise 2.6 Elliptic curvilinear and reciprocal basis.
a. Show that an ellipse can be parameterized by
x = uey cosh (i + iua) , (2.56)

where i = e, and find the values of the semi-major and semi-
minor axes.

b. Determine how u and the eccentricity € = /1 — b2/a? are related.

c. Compute the curvilinear and reciprocal frame vectors for the pa-
rameterization x(u, uy) above.

d. Check that x’ X = 6‘}

At the point of evaluation, the span of these differentials is called the
tangent space. In this particular case the tangent space at all points in the
region is the entire x-y plane. These partials locally span the tangent space
at a given point on the surface.

2.2.1.1  Curved two parameter surfaces.

Continuing to illustrate by example, let’s now consider a non-planar two
parameter surface

X(ui, 1) = (u = w)’e; + (1 = (2)”)es + ujuses. (2.70)
The curvilinear basis elements, and the area element, are
x| = 2(u; —up)ey + uze3
Xy = 2(uz —ur)er — 2uzer + uje3 (2.71)
X] AXy = —duy (U —up) ep + 2u§e23 +2 (u% - u%) ers.

Two examples of these vectors and the associated area element (rescaled
to fit) is plotted in fig. 2.4. This plane is called the tangent space at the

point in question, and has been evaluated at (u, ) = (0.5, 0.5), (0.35,0.75).

The results of eq. (2.71) can be calculated easily by hand for this partic-
ular parameterization, but also submit to symbolic calculation software.
Here’s a complete example using CliffordBasic

101



102 MULTIVECTOR CALCULUS.

Figure 2.4: Two parameter manifold.

In9]:= << CliffordBasic‘;

In[10]:= ClearAll[xp, x, x1, x2]

(* Use dummy parameter values for the

derivatives,
and then switch them to function parameter

values. *)

xp := (@ -Db)*2 e[l] + (1 - b*2) e[2] + b a e
[31;

x[u_, v.] :=xp /. {a = u, b-ov};

x1[u_, v_.] := D[xp, a] /. {a = u, b-ov};

x2[u_, v_] := D[xp, b] /. {a —» u, b-ov};

x1[u,v]
x2[u,v]

Out[10]= 2 (u-v) e[1] + v e[3]

Out[11]= -2 (u-v) e[l] - 2 ve[2] + u e[3]

outze (-4 u v + 4 v%) e[l,2] + (2 u® - 2 v%) e[1,3] +
2 v2 e[2,3]

2.2.2  Three (or more) parameters.

We can extend the previous two parameter subspace ideas to higher dimen-
sional (or one dimensional) subspaces associated with a parameterization
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— Definition 2.2: Curvilinear bases and volume element

Given a parameterization x(uy, up, - - - , ) with k degrees of freedom,
we define the curvilinear basis elements x; by the partials

_Ox

X; = —.
6u,~

The span of {x;} at the point of evaluation is called the tangent space.
A subspace associated with a parameterization of this sort is also
called a manifold. The volume element for the subspace is

de=du1dM2“'dukX1 AX) A AXg.

Such a volume element is a k-vector. The volume of the (hyper-)

parallelepiped bounded by {x;} is 4 /|(d"x)2|.

We will assume that the parameterization is non-generate. This means
that the volume element d*x is non-zero in the region of interest. Note
that a zero volume element implies a linear dependency in the curvilinear
basis elements X;.

Given a parameterization X = x(u, v, - - - , W), We may write X, X,,, - - - , X,
for the curvilinear basis elements, and x“,x",---,x" for the reciprocal
frame elements. When doing so, sums over numeric indexes like Y; X'x;
should be interpreted as a sum over all the parameter labels, i.e. x“x,, +
X'X, + -

2.2.3  Gradient.

With the introduction of the ideas of reciprocal frame and curvilinear coor-
dinates, we are getting closer to be able to formulate the geometric algebra
generalizations of vector calculus.

The next step in the required mathematical preliminaries for geometric
calculus is to determine the form of the gradient with respect to curvilinear
coordinates and the parameters associated with those coordinates.

Suppose we have a vector parameterization of RV

X = X(uy, uz, - - -, uy). (2.72)
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We can employ the chain rule to express the gradient in terms of deriva-
tives with respect to u;

] (2.73)

It turns out that the gradients of the parameters are in fact the reciprocal
frame vectors

— Theorem 2.1: Reciprocal frame vectors

Given a curvilinear basis with elements x; = 9x/du;, the reciprocal
Jframe vectors are given by

x' = Vl/t,'.

Proof. This can be proven by direct computation

; ox
X -x; = (Vu)- %

= (o) e

r,s=1
ou; 0x;
—me”x

‘Z du; O, (2.74)
B = rsax, 6uj
_ c’)ui 6xr

— 0x, Ou;
_ 81/[]'
B 6ul~
=0
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This shows that x' = Vu; has the properties required of the reciprocal
frame, proving the theorem. O

We are now able to define the gradient with respect to an arbitrary set
of parameters

—| Theorem 2.2: Curvilinear representation of the gradient

Given an N-parameter vector parameterization X = X(uy, Uy, -, Uy)
of RV, with curvilinear basis elements x; = 9x/du;, the gradient is

It is convenient to define d; = 0/du;, so that the gradient can be
expressed in mixed index representation

V= Z xia,-.

2.2.4  Vector derivative.

Given curvilinear coordinates defined on a subspace definition 2.2, we
don’t have enough parameters to define the gradient. For calculus on the
k-dimensional subspace, we define the vector derivative

— Definition 2.3: Vector derivative

Given a k-parameter vector parameterization X = X(u1, up, - - -, ug) of
RY with k < N, and curvilinear basis elements X; = 0x/du;, the
vector derivative 0 is defined as

When the dimension of the subspace (number of parameters) equals the
dimension of the underlying vector space, the vector derivative equals the
gradient. Otherwise we can write

V=0+V,, (2.75)
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and can think of the vector derivative as the projection of the gradient onto
the tangent space at the point of evaluation.

Please see [20] for an excellent introduction of the reciprocal frame, the
gradient, and the vector derivative, and for details about the connectivity
of the manifold ignored here.

2.2.5 Examples.

We’ve just blasted through a few abstract ideas:
e The curvilinear representation of the gradient.
e The gradient representation of the reciprocal frame.
e The vector derivative.

This completes the mathematical preliminaries required to formulate
geometric calculus, the multivector generalization of line, surface, and
volume integrals. Before diving into the calculus let’s consider some ex-
ample parameterizations to illustrate how some of the new ideas above fit
together.

2.2.5.1 Example parameterization: Polar coordinates.

We will now consider a simple concrete example of a vector parameteri-
zation, that of polar coordinates in R?

x(p, ¢) = pe; exp (e29) , (2.76)

as illustrated in fig. 2.5.

Figure 2.5: Polar coordinates.

Using this example we will
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e Compute the curvilinear coordinates. We will refer to these as x,,, X4,
instead of X1, X».

e Find the squared length of x,,, X4, and show that they are perpendic-
ular (but not orthonormal.)

e Perform a first bivector valued integral.
e Compute the reciprocal frame vectors with geometric arguments.

o Compute the reciprocal frame explicitly from the gradients of the
coordinates.

o Find the polar form of the gradient with respect to this parameteri-
zation.

Curvilinear coordinates.  The curvilinear coordinate basis can be com-
puted directly

0
X, = % (pei exp (e129)) (2.772)

= €1 €xXp (612¢>

0
%= 35 (0er exp (e12¢))

2.77b
= pejejz exp (e129) ( )

= pey exp (e12¢) .
For plane configurations, it is often handy to represent the plane pseu-
doscalar with an imaginary symbol. Here we will use i = e, allowing
for the compact representations x, = e;e’® and Xy = pexe®. This also
highlights the geometric interpretation of the basis vectors, as we see that
the {Xp, x¢} basis vectors are constructed by rotating {e, pe;} by ¢ radians
in the direction from e; to e;.

Normality.  To show that these vectors are perpendicular, we first com-
pute their product, which we will find has no scalar part. From theo-
rem 1.13, property (c), observe that xe’# = ¢~*x for any vector x in the
plane, so

XpXp = (elei¢) (pegei¢)
= peleze_i¢ei¢ (2.78)

= pe€i2.
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Since this has no scalar part x,, - X4 = <pr¢,> =0.

Length of basis elements. ~ We can use scalar selection to find the (squared)
length of the vectors, finding

Xﬁ = <elei¢e1ei¢>

= (et 279)
- ()
=1,
and
xj = ((pea¢) (pe2e™))
) p2<e26i¢e_i¢e2> (2.80)
= p2<e%> .
= pz‘

A bivector integral. ~ One of our goals is to understand the multivector
generalization of Stokes’ theorem and the divergence theorem, but even
before that, we can evaluate some simple multivector integrals. In par-
ticular, we can calculate the (oriented) area of a circle, given a bivector
representation of the area element.

r 27 r 21
f f dx, N dxy = f f dpde X, N Xy
p=0 J¢=0 p=0 J¢=0
r 21
= f f pdpdd err = nriey,.
p=0 J¢=0

Integrating the bivector area over a circular region gives us the area of
that region, but weighted by the IR? pseudoscalar. This is an oriented area.

(2.81)

Reciprocal basis.  Because X,, X4 are mutually perpendicular, we have
only to rescale them to determine the reciprocal basis, and can do so by

inspection
x° = e|e?
1 . (2.82)
X¢7 = —eze’¢.

Je
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According to theorem 2.1 we should be able to find eq. (2.82) by com-
puting the gradients of p and ¢ respectively. If we do so using the R?
standard basis representation of the gradient, we must first solve for p =

p(x,y), ¢ = ¢(x,y), inverting

X = pcos
p ) ¢ (2.83)
y = psing.
An implicit solution to this inversion problem is
2_ 2,2
=x"+
p Y (2.84)
tan¢g = y/x,

which we can implicitly differentiate to evaluate the components of the
desired gradients

20— =2x

(2.85)

So the gradients are
Vo = (dp/dx,dp/dy)
= (x/p.y/p)

= (cos ¢,sin¢) (2.86a)
— elee12¢

= x°

V¢ = cosz¢(—l l)

X2 x

= 1(— sin ¢, cos ¢)
0

= %z(cos ¢ + e sin @) (2.86b)

— e_zeeu(f)
0
=x?,

which is consistent with eq. (2.82), as expected.
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Gradient.  The polar form of the R? gradient is

0 0
V=x"—+x"—
op o¢
9 1.0 (2.87)
AN
where
g | (2.88)
A Xy _ 1 _ )
_m_;xqj_eze = px’.

Should we extend this vector space to IR?, the parameterization of
eq. (2.76) covers the subspace of the x-y plane, and for that subspace,
the vector derivative is

+
op 09 (2.89)

2.2.5.2  Example parameterization: Spherical coordinates.

The spherical vector parameterization admits a compact GA representa-
tion. From the coordinate representation, some factoring gives

x =r(e;sinfcos ¢ + ey sinfsin g + €3 cos )

= r (sin fe;(cos ¢ + e, sin @) + e3 cos 0)

=r (sin e 2% + 5 cos 9) (2.90)
= res3 (cos 0 + sin fese; eelz‘f’) .
With
; ; Zze’”’, (2.91)
this is
X = rese’’. (2.92)

The curvilinear basis can be easily be computed in software.
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In[13]:= ClearAll[i, j, ej, x, xr, xt, xp]
i=-e[1l, 2];
jIphi_] = GeometricProduct[e[3, 1], Cos[phi] + i
Sin[phil];
ejlt_, p_] = Cos[t] + j[p] Sin[t];
x[r_, t_, p_] = r GeometricProduct[e[3], ej[t, p
11;

xr[r_, theta_, phi_]
a—r;

xt[r_, theta_, phi_]
—theta;

xp[r_, theta_, phi_]
—phi;

{x[r, 6, ¢1,

xr[r, 6, ¢1,
Xt[r! 0! ¢]’

D[x[a, theta, phi], a] /.

D[x[r, t, phi], t] /. t

D[x[r, theta, p], p]l /. p

Out[13]= r (Cos[f] e[3] + Cos[¢] e[l] Sin[fA] + e[2] Sin[#]

Sin[¢])
Cos[0] e[3] + Cos[¢] e[1] Sin[f#] + e[2] Sin[ 6]

Sin[¢]
r (Cos[fA] Cos[¢] e[1] - e[3] Sin[#] + Cos[f8] e[2]

Sin[¢1)

Unfortunately the compact representation is lost doing so. Computing the
basis elements manually, we find

X, = e3¢/’ (2.93a)

xp = res je’

b2 (2.93b)

= rezel(

0 .
Xy = % (re3 sin 96316”5)

= rsin 961612€i¢ (2'930)

= rsinfeye.

These are all mutually orthogonal, which can be verified by computing
dot products.
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In[14]:= ClearAll[x1, x2, x3]
x1 = xr[r, 6, ¢];
X2 xt[r, 6, ¢1;
x3 = xplr, 0, 4]1;

Out[14]= {0,0,0}

An algebraic computation of these dot products is left as a problem for
the student (exercise 2.7). Orthonormalization of the curvilinear basis is

now possible by inspection

r= X, = E3€J0
1

0= —xy = e3e/ 72 = ¢
r
¢ = ! Xg = eye’?
rsing ? ’
)
x" = = ese/!
x’ = Lo = Leyeiem)
r r
1 . 1 )
¢ — i¢
x¥ = — = ——ee?.
rsm0¢ rsiné 2

18

e 0 Lo ] é&%

r r 00 rsind

(2.94)

(2.95)

(2.96)

The spherical (oriented) volume element can also be computed in a

compact fashion

d*x Axo A
=X, AXgAX
drdodg ~ "0
= <X’X9X¢’>3
aa s )
= <rrr]r sin feze >3

? sin 0<e31 ei¢e2ei¢> 3

= r2 sin0e123.

(2.97)
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The scalar factor is the Jacobian with respect to the spherical parame-
terization
dv. . 0(x1, x2, x3)
drdfde — (r,0,¢)

sin @ cos ¢ sin @sin ¢ cos @

=|rcosfcos¢ rcos@sing —rsinf (2.98)
—rsinfsin¢g rsinécos ¢ 0
= sin6.

The final reduction of eq. (2.97), and the expansion of the Jacobian
eq. (2.98), are both easily verified with software.

In[15:=  OuterProduct[ xr[r, 6, ¢],
xt[r, 6, ¢]1,
xp[r, 6, ¢]1]

{el,e2,e3} = IdentityMatrix[3];
jacobian = {xr[r, 6, ¢],

xt[r, 6, 41,
xplr, 6, ¢1} /. {e[l1l] — el, e[2] — e2, e[3]—e3
};

oufise % e[1,2,3] Sin[6]

oufie=  r® Sin[6]

Performing these calculations manually are left as problems for the stu-
dent (exercise 2.9, exercise 2.8).

2.2.5.3 Example parameterization: Toroidal coordinates.

Here is a 3D example of a parameterization with a non-orthogonal curvi-
linear basis, that of a toroidal subspace specified by two angles and a
radial distance to the center of the toroid, as illustrated in fig. 2.6.

The position vector on the surface of a toroid of radius p within the
torus can be stated directly

x(p,0,9) = e /% (pej e + Res) e (2.99a)
i=ees (2.99b)
J=e3e; (2.99¢)

113



114 MULTIVECTOR CALCULUS.

N7
W<
g

Figure 2.6: Toroidal parameterization.

It happens that the unit bivectors i and j used in this construction hap-
pen to have the quaternion-ic properties ij = —ji, and i> = j> = —1 which
can be verified easily.

The curvilinear basis is found (exercise 2.10) to be

0 . o

X, = £ = ¢ 192¢, ¢ 012 (2.100a)
d . i

Xg = a—z = ¢ 2 (R + psin¢) e,e”? (2.100b)
0 . o

Xp = £ = 92 pesei® it/ (2.100c)

The oriented volume element can be computed using a trivector selec-
tion operation, which conveniently wipes out a number of the interior

exponentials
Ox 0x Ox . . L
2N AN ; —j0/24 ¢ i¢ ,j6/2
% A % A 96 =p(R+psing) <e ee'’ereze’e >3. (2.101)
Note that e; commutes with j = ezes, so also with e /%/2, Also eye; =

— j anticommutes with i, so there is a conjugate commutation effect ¢/ j =
je™*. This gives

(e_j9/2e1ei¢e2egei¢ej9/2>3 = —<e1 e_jg/zje_i¢ei¢ej0/2>3

_ —jo/2 ; ,jo/2
= ~(ereje "), 2.102)

= —(e1));
=1.
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Together the trivector grade selection reduces almost magically to just

ox oOx Ox

— A=A =p(R+psing) 1. 2.103
5" 90" 99 p(R+psing) ( )

Thus the (scalar) volume element is
dV =p (R +psin¢) dpdfd. (2.104)

As a check, it should be the case that the volume of the complete torus
using this volume element has the expected V = (27R)(nr?) value.
That volume is

r 2 21
V= f f f p (R + psing) dpdbdg. (2.105)
p=0 JO=0 J¢=0

The sine term conveniently vanishes over the 2r interval, leaving just
1,
V= ir RQ2m)(2n), (2.106)

as expected.

2.2.6 Problems.

Exercise 2.7 Spherical coordinate basis orthogonality.

Using scalar selection, show that the spherical curvilinear basis of eq. (2.93)
are all mutually orthogonal.

Exercise 2.8 Spherical volume element pseudoscalar.

Using geometric algebra, perform the reduction of the grade three se-
lection made in the final step of eq. (2.97).

Exercise 2.9 Spherical volume Jacobian.

Without software, expand and simplify the determinant of eq. (2.98).

Exercise 2.10 Curvilinear basis for toroidal parameterization.

Prove eq. (2.100).
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2.3 INTEGRATION THEORY.
2.3.1 Line integral.

In geometric algebra, the integrand of a multivector line integral contains
a product of multivector(s) and a single parameter differential.

—1 Definition 2.4: Multivector line integral.

Given a continuous and differentiable curve described by a vector
function x(a), parameterized by single value a with differential

0
d'x = dx, = —Xda = X,da,
oa

and multivector functions F, G, the integral

f Fd'xG

is called a multivector line integral.

An illustration of a single parameter curve and its differential with re-
spect to that parameter, is given in fig. 2.7. Observe that the differential
is tangent to the curve at all points. Possible physical realizations of the
parameter describing the curve include time, arclength, or angle.

Figure 2.7: One parameter manifold.

Suppose that f(x(a)) is a vector valued function defined along the curve.
The conventional line integral from vector calculus, a dot product of a dif-
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ferential and the function f may be obtained by the sum of two multivector
line integrals one with F, G = f/2, 1, and the other with F,G = 1,f/2

f f
fdx§+f§dx—fdx-f. (2.116)

Unlike the conventional dot product line integral, the multivector line in-
tegral of a vector function such as f dxf is generally multivector valued,
with both a scalar and a bivector component. Let’s consider some exam-
ples of multivector line integrals.

Example: Circular path.  Let f(t) = at + bt?, where a, b are constant
vectors, ¢ is a scalar parameter, and the integration path is circular x(¢) =
e ¢, where i = eje,. The line integral of f dx is

f £(7) dx = ae, f te''dt + be, f eldr

(aey (1 if) + bey (2 + 21 - ir?)) " (2.117)

= (a+2bt) exe” + (at — 2b + br*) e,

and the line integral of dxf is

f dxf = e, f te''dra + e, f e drb
= exe (1 - it)a+(2i+ 21— ir*)b) (2.118)
= ex¢ (a+2br) +e1¢” (ar - 2b + br?).

Unless the vector constants a, b have only components along the z-axis,
eq. (2.117) and eq. (2.118) are not generally equal.

Example: Circular bivector. ~ Given a bivector valued function F(¢) =
e A (e3ei’), where i = ese;, and a curve x(f) = es + e»f + e;7%/2, we can
compute the line integral with the differential on the right

deX = €23 feit (ez + elt) dt
- _e3fei’dt+e123fte‘i’dt (2.119)

= ele” + €123 (1 + it) e_it

= ele” - ezte_” + 61236’_”,
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or the line integral with the differential on the left

fdxF: f(e2+e1t) 623€itdl‘
=e3 f edt +ejn3 f te' (2.120)

= —ele” + €123 (1 - it) eit

= —ele” + 01236” + ezte”.

In both eq. (2.119) and eq. (2.120) the end result has both vector and
trivector grades. While both integrals are equal (zero) when the angular
velocity parameter ¢ is a multiple of 27, this shows that the order of the
products in the integrand makes a difference once again.

Example: Function with only scalar and pseudoscalar grades.  In R3,
given any function with only scalar and pseudoscalar grades, say F(t) =
f(®) + Ig(t), where f, g are both scalar functions, then the order of the
products in a line integrand do not matter. For any such function we have

dex=fdxF, (2.121)

since both the scalar and pseudoscalar grades commute with any vector
differential.

2.3.2  Surface integral.

—1 Definition 2.5: Multivector surface integral.

Given a continuous and differentiable surface described by a vector
function x(a, b), parameterized by two scalars a, b with differential

ox 0
Px = dx, Adxy = = A Zdadb = x, A xpdadb,
oa " b

and multivector functions F, G, the integral

f Fd*xG

is called a multivector surface integral.
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An example of a two parameter surface, and the corresponding differ-
entials with respect to those parameters, is illustrated in fig. 2.8.

Figure 2.8: Two parameter manifold differentials.

In IR3 it will often be convenient to utilize a dual representation of the
area element d>x = IfidA, where dA is a scalar area element, and fi is a
normal vector to the surface. With such an area element representation we
will call 1 f dA FAG a surface integral.

Example: Spherical surface integral. ~ From eq. (2.97), we know that
X,XgXy = [r*sin 6, (2.122)
o)

Xg A Xp = XgX,
eRiem e (2.123)
=X,Ir"sin@,

so the (bivector-valued) area element for a spherical surface is

d*x = Ix,r* sin 0dod¢. (2.124)
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Suppose we integrate a vector valued function F(6,¢) = ax” + x? +
vyx?, where a, 3,y are constants, over the surface of a sphere of radius r,
then the surface integral (with the area element on the right) is

dezx = alr? fx’xr sin 6d0de + BIr* fxgx, sin 8d0d¢
(2.125)
+yIr? f x?x, sin 0d0d.

This can be simplified using #0¢ = I, and eq. (2.95), to find

x'x, =1
1 . 1.
0 = — P = —
IxX’x, = rIOr— r¢ (2.126)
Ix%x, = ! I$t = L 4
"7 rsind ~ rsing

SO

f Fd*x = al4nr® + Br f & sin 6dOd¢ — yr f 0dode

=al 47rr2,

(2.127)

where the integrands containing @, ¢ are killed by the integral over ¢ €
[0, 2r]. If integrated over a subset of the spherical surface, where such
perfect cancellation does not occur, this surface integral may have both
vector and trivector components.

Example: Bivector function.  Given a bivector valued function F(a, b) =
(a + b)ere; + 2(ae; — bey)es defined over the unit square a, b € [0, 1], and
a surface x(a,b) = ae; + be,, the multivector surface integral (with the
area element on the right) is

1 1 1 1
f Fd*x = f f (a+b)dadb +2 f f (ae; — bey)ese e dadb
0 0 0 0

1 1
=1+1f a2|(1)e1db—1f b e2da
0 0

=1 +I(e1 —ez)
=1+ (el +e2) es.
(2.128)

In this example, the integral of a bivector valued function over a (bivector-
valued) surface area element results in a multivector with a scalar and
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bivector grade. In higher dimensional spaces, such an integral may also
have grade-4 components.

2.3.3  Volume integral.

—1 Definition 2.6: Multivector volume integral.

Given a continuous and differentiable volume described by a vector
function x(a, b, c¢), parameterized by scalars a, b, c with volume ele-
ment

x ox 8
Px = dx, Adsy Adxe = 2 AN dadbde = x,xpx, dadbdc,
da 0b Oc

and multivector functions F, G, the integral

deSXG

is called a multivector volume integral.

In R? the volume element is always a pseudoscalar, which commutes
with all grades, so we are free to write f Fd’xG = f d*>xFG for any
multivectors F, G. It will often be useful to make the pseudoscalar nature
of the volume element explicit, writing d°x = IdV, where dV is a scalar
volume element.

As an example, let F(x) = r(x) + s(x) + It(x) + Iu(x) be an arbitrary
multivector function in R3, where r,u are scalar functions and s,t are
vector functions. Integrating over a unit cube in rectangular coordinates
d*x = Idxdydz = 1dV, the volume integral of such a multivector function
is

f Fd’x = f (r(x) + S(x) + It(x) + u(x)) IdV
(2.129)

= f (Ir(x) + Is(x) — t(x) — u(x)) dV.

The result still has all grades, but each of the original grade components
is mapped onto its dual space.
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2.3.4  Bidirectional derivative operators.

Having generalized line, surface, and volume integrals to multivector func-
tions, we wish to state the form of the integrand that is perfectly integrable.
That statement requires bidirectional integration operators, denoted using
left, right, or left-right overarrows, as follows.

—1 Definition 2.7: Bidirectional vector derivative operators.

Given a hypervolume parameterized by k parameters, k-volume vol-
ume element d*x, and multivector functions F, G, let

(ZZ Z x’f),-,
i

designate a linear differential operator (i.e. the gradient or vector
derivative), where the partials act on multivector functions to the left
or right (but not the reciprocal frame vectors x').

To express unidirection action of the operator only to the left or
right, we use arrows to designate the scope of the derivatives, writing
respectively

deXZGI faiF d'xx'G
il 3 [ o)
dekXZGZZdekXXi (6:G),
v = Jv

and designate bidirectional action as

dekXZGEf(deXZ)G+dekX(ZG).
\% %4 \%

In all such cases L operates on F and G, but not the volume element
d*x, which may also be a function of the implied parameterization.

The vector derivative may not commute with F, G nor the volume el-
ement d*x, so we are forced to use some notation to indicate what the
vector derivative (or gradient) acts on. In conventional right acting cases,
where there is no ambiguity, arrows will usually be omitted, but braces
may also be used to indicate the scope of derivative operators. This bidi-
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rectional notation will also be used for the gradient, especially for volume

integrals in IR where the vector derivative is identical to the gradient.
Some authors use the Hestenes dot notation, with overdots or primes to

indicating the exact scope of multivector derivative operators, as in

Fd*xdG = Fd*xdG + Fd*xdG. (2.130)

The dot notation has the advantage of emphasizing that the action of the
vector derivative (or gradient) is on the functions F, G, and not on the
hypervolume element ¢x. However, in this book, where primed operators
such as V’ are used to indicate that derivatives are taken with respect to
primed x’ variables, a mix of dots and ticks would have been confusing.

2.3.5 Fundamental theorem.

The fundamental theorem of geometric calculus is a generalization of
many conventional scalar and vector integral theorems, and relates a hy-
pervolume integral to its boundary. This is a powerful theorem, which we
will use with Green’s functions to solve Maxwell’s equation, but also to
derive the geometric algebra form of Stokes’ theorem, from which most
of the familiar integral calculus results follow.

— Theorem 2.3: Fundamental theorem of geometric calculus

Given multivectors F,G, a parameterization X = x(uy,up, -, Ug),
with hypervolume element d*x = d*ul}, where I, = X; AXp A+ -+ AXg,
the hypervolume integral is related to the boundary integral by

f Fd'x 9 G = f Fd'xG,
\% ov

where 9V represents the boundary of the volume, and d*~'x is the
hypersurface element. This is called the Fundamental theorem of ge-
ometric calculus.

The hypersurface element and boundary integral is defined for k >
1 as

2
Au;

k
fav Fd*'xG = ;fdk_lui(F (Ik-x’)G)
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where d*~!u; is the product of all du j except for du;. For k = 1 the hy-
persurface element and associated boundary “integral” is really just
convenient general shorthand, and should be taken to mean the eval-
uation of the F'G multivector product over the range of the parameter

f Fd’xG = FGlyp,,.
v

The geometry of the hypersurface element @*~!x will be made more clear
when we consider the specific cases of k = 1,2, 3, representing general-
ized line, surface, and volume integrals respectively. Instead of terrorizing
the reader with a general proof theorem 2.3, which requires some unpleas-
ant index gymnastics, this book will separately state and prove the funda-
mental theorem of calculus for each of the k = 1,2,3 cases that are of
interest for problems in IR? and IR?. For the interested reader, a sketch of
the general proof of theorem 2.3 is available in appendix B.

Before moving on to the line, surface, and volume integral cases, we
will state and prove the general Stokes’ theorem in its geometric algebra
form.

2.3.6  Stokes’ theorem.

An important consequence of the fundamental theorem of geometric cal-
culus is the geometric algebra generalization of Stokes’ theorem. The
Stokes’ theorem that we know from conventional vector calculus relates
R? surface integrals to the line integral around a bounding surface. The
geometric algebra form of Stokes’ theorem is equivalent to Stokes’ the-
orem from the theory of differential forms, which relates hypervolume
integrals of blades* to the integrals over their hypersurface boundaries, a
much more general result.

— Theorem 2.4: Stokes’ theorem

Stokes’ theorem relates the dot product of a k volume element d*x
with the wedge product “curl” of an s-blade F, s < k as follows

fdkx~(6/\F)=f d“'x-F.
1% oV

4 Blades are isomorphic to the k-forms found in the theory of differential forms.
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We will see that most of the well known scalar and vector integral the-
orems can easily be derived as direct consequences of theorem 2.4, itself
a special case of theorem 2.3.

Proof. We can prove Stokes’ theorem from theorem 2.3 by setting F' = 1,
and requiring that G is an s-blade, with grade s < k. The proof follows by
selecting the k — (s + 1) grade, the lowest grade of d*x(d A G), from both
sides of theorem 2.3.

For the grade selection of the hypervolume integral we have

<fdkx6G> :<fd"x(a.G)+fdkx(a/\G)> , (2.131)
Vv k—(s+1) Vv 14 k—(s—1)

however, the lowest grade of &*x(8 - G)isk—(s—1) = k—s+1 > k—
(s + 1), so the divergence integral is zero. As d*"'x is a k — 1 blade

ky | _ k=1
fv d*x- (0 A G) fa V(d XG) )

:f d'x-G.
K%

(2.132)

2.3.7 Fundamental theorem for Line integral.

The line integral specialization of theorem 2.3 is

— Theorem 2.5: Fundamental theorem for line integrals.

Given a continuous curve C = x(u) parameterized by u € [ug, u1],
and multivector functions F(x), G(x) that are differentable over C,
then

fc Fdxd G = F Glay = F(X(u1)G(x(u1)) = F(X(140))G (X(up)).-

The differential form dx = d'x = dux, = du dx/du varies over the curve,
and the vector derivative is just 8 = x“d,, (no sum).
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Proof. The proof follows by expansion. For

deX 3sz(Fdx5)G+dex(3G)
c c c

= é)—quxux“G+~deux,,x“6—G
C al/t C au

=fdua—FG+fduFé£ (2.133)
C ou C ou

:LW%WQ

= F(u1)G(uy1) — F(up)G(up),

We have a perfect cancellation of the reciprocal frame x* with the vector
x, that lies along the curve, since x"x,, = 1. This leaves a perfect derivative
of the product of FG, which can be integrated over the length of the curve,
yielding the difference of the product with respect to the parameterization
of the end points of the curve. 0

For a single parameter subspace the reciprocal frame vector x* is trivial
to calculate, as it is just the inverse of x,, that is x* = x,, /||Xu||2. Observe
that we did not actually have to calculate it, but instead only require that
the vector is invertible.

An important (and familiar) special case of theorem 2.5 is the funda-
mental theorem of calculus for line integrals, which can be obtained by
using a single scalar function f

— Theorem 2.6: Stokes’ theorem for scalar functions.

Given a continuous curve C = x(u) parameterized by parameter u €
[1o, u1], and a scalar function f(x) differentable over C, then

fcdx-szdex-af:ﬂAu.

Proof. Theorem 2.6 is no doubt familiar in its gradient form. Our proof
starts with theorem 2.5 setting F' = 1,G = f(x(u))

fcdxaf: Flaws (2.134)
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which is a multivector equation with scalar and bivector grades on the left
hand side, but only scalar grades on the right. Equating grades yields two
equations

fcdx-af: Flau (2.135a)

fdx/\()f:O. (2.135b)
c

Equation (2.135a), the scalar grade of eq. (2.134), proves part of theo-
rem 2.6. To complete the proof, consider the specific case of IR? which
is representitive. Suppose, that we have an IR? volume parameterization
X(u, v, w) sharing an edge with the curve C = x(u, 0, 0). The curvilinear
representation of the R? gradient is

V=x9,+x"9, +x"9,, = 0 +x"9, +x"0,, (2.136)
Over the curve C
dx-V =dux,- (0+x"0, +x"d,), (2.137)

butx, -x" =x,-X" =0, s0dx-V =dx-d over the curve. L]

2.3.8 Fundamental theorem for Surface integral.

The surface integral specialization of theorem 2.3 is

— Theorem 2.7: Fundamental theorem for surface integrals.

Given a continuous and connected surface S = x(u, v) parameterized
by u € [ug, u1], v € [vo, v1], multivector functions F(x), G(x) that are
differentable over S, and an (bivector-valued) area element d’x =
dx; A dxy = dudvx, \NX,

dezx 3 G = 56 FdxG,
N a8

where 05 is the boundary of the surface S.
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Proof. To prove theorem 2.7 we start by expanding the multivector prod-
uct d*x d in curvilinear coordinates, where we discover that this product
has only a vector grade. The vector derivative, the projection of the gra-
dient onto the surface at the point of integration (also called the tangent
space), now has two components

a:Zkﬁ,w

= x“a% + x”% = x"0, +x'0,.

(2.138)

To see why the product of the area elements and the vector derivative
d*xd = dudv (x, AX,) (x“0, +x"d,), (2.139)
has only a vector grade, observe that X € span {x,, X, }, so

(xy AXy) X" = (XMAXV)-XM+W

Xy AXy) -
=A%) x . (2.140)
=X, (X - X*) = % (X - XY)
= —X,.
Similarly
X, AX,) X = (X, AX,) X"+ (X STNX
( )
=(x,NX,) X"
( ) (2.141)

=X, (X X") = X (%, - X")

= X,.

Not only does eq. (2.139) have only a vector grade, that product reduces
to just

d*xd = x,0, — X,0,,. (2.142)
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Inserting eq. (2.142) into the surface integral, we find

f Fd’x G = f (Fdzx 5)G+ f Fd2x(5 G)
S S S

= f dudv (8,Fx, — 0,Fx,) G + f dudv F (x,0,G - x,0,G)
s s

OF ox OF ox 0x0G 0x0G
= - = Fl——_-=—
fsd”dv(av u  Ou av)G+de”dV (au 3 ov au)
0 (._0x 0 (._0x
= | dudv—|F—G|- | dudv —|F—G
fs ”Vav( ou ) f_; ’”au( Ov )
00x 0 0x
—fs‘dudVF(aa—a—ua)G

0 ox 0 ox
= —F—G| - — | F—G]|.
Ldudv 6\/( auG) ﬁdudv éu( 6VG)

This leaves two perfect differentials, which can both be integrated sepa-

f Fd’x8G = f du (Fa—XG) - f dv (FﬁG)
N Au Ou Av Av ov

= Fdx,G)|, - f Fdx,G)|, .

[ tasg)l,, - [ (raxa,

Equation (2.144) is an explicit algebraic expression of the boundary inte-
gral of theorem 2.7. To complete the proof, we are left with the task of ge-
ometrically interpretting this integrand. Suppose we are integrating over
the unit parameter volume space [u,v] € [0,1] ® [0, 1] as illustrated in
fig. 2.9. Comparing to the figure we see that we’ve ended up with a clock-
wise line integral around the boundary of the surface. For a given subset

(2.143)

rately

Au (2.144)

of the surface, the bivector area element can be chosen small enough that
it lies in the tangent space to the surface at the point of integration. In that
case, a larger bounding loop can be conceptualized as the sum of a number
of smaller ones, as sketched in fig. 2.10, in which case the contributions
of the interior loop paths (red and blue) cancel out, leaving only the ex-
terior loop contributions (green.) When that subdivision is made small
enough (assuming that the surface is continuous and differentiable along
each of the parameterization paths) then each area element approximates
the tangent space at the point of evaluation. O
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Figure 2.9: Contour for two parameter surface boundary.

Figure 2.10: Sum of infinitesimal loops.



2.3 INTEGRATION THEORY.

2.3.8.1 Two parameter Stokes’ theorem.

Two special cases of theorem 2.7, both variations of Stokes’ theorem, re-
sult by considering scalar and vector functions. For the scalar case we
have

— Theorem 2.8: Surface integral of scalar function (Stokes’).

Given a scalar function f(X) its surface integral is given by

fsdzx-af:fsdzx-Vf:SQdef.

In R3, this can be written as

fdAﬁfo:SB dx f,
S oS

where fi is the normal specified by d’x = IdA.

Proof. To show the first part, we can split the (multivector) surface inte-
gral into vector and trivector grades

fd2x6f:fd2x-6f+fd2x/\6f. (2.145)
S N N

Since x“,x" both lie in the span of {x,,x,}, d?xANd =0, killing the
second integral in eq. (2.145). If the gradient is decomposed into its pro-
jection along the tangent space (the vector derivative) and its perpendic-
ular components, only the vector derivative components of the gradient
contribute to its dot product with the area element. That is

&x-V =d’x- (x"0, +x"0, +---)
=d*x - (x"9, +x'0,) (2.146)
=d’x - d.

This means that for a scalar function

fdzxaf:fdzx-Vf. (2.147)
S S
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The second part of the theorem follows by grade selection, and applica-
tion of a duality transformation for the area element

&Px-Vf = <d2fo>1

= dAUIYS) (2.148)
=dA{I (- Vf+InxVf)),
=—-dAQXVf.

back substitution of eq. (2.148) completes the proof. O

For vector functions we have

— Theorem 2.9: Surface integral of a vector function (Stokes’).

Given a vector function f(x), the surface integral is given by

fdzx-(vAf):Sg dx-f.
S aS

In IR3, this can be written as

fdAﬁ-(fo) :56 dx -f,
S oS

where i is the normal specified by d’x = IdA.

2.3.8.2 Green’s theorem.

Theorem 2.9, when stated in terms of coordinates, is another well known
result.

— Theorem 2.10: Green’s theorem.

Given a vector f = Y; fix' in R", and a surface parameterized by
x = x(uy, up), Green’s theorem states

fdulduz (% - %) = % du1f1 + duzfz.
s Ouy  Ouy as
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This is often stated for vectors f = Pe; + Qe, € R? with a Cartesian
X,y parameterization as

fdxdy(a—P - 8—Q) = 56 Pdx + Qdy.
s dy Ox as

Proof. The first equality in theorem 2.10 holds in RV for vectors ex-
pressed in terms of an arbitrary curvilinear basis. Only the (curvilinear)

coordinates of the vector f contribute to this integral, and only those that
lie in the tangent space. The reciprocal basis vectors X are also nowhere
to be seen. This is because they are either obliterated in dot products with
X, or cancel due to mixed partial equality.

To see how this occurs let’s look at the area integrand of theorem 2.9

d’*x - (VAL) =dujduy (X1 AX2) - [Z (x’&) A (fjxf)]
ij
= dwduy Y ((x1 A%2) X)) - (0 %))
ij (2.149)
= duyduy Z ((Xl A X2> : Xi) . Xjaif,'
ij
+dwduy )" fi((x1 Ax2) - X) - (@ix).
ij

With a bit of trouble, we will see that the second integrand is zero. On

the other hand, the first integrand simplifies without too much trouble

Z ((xl A Xz) -Xi) . xja,-fj = Z (X152i — X251i) 'Xjaifj
ij T
= 3 %1 ¥oofi—xa - Xonf;  (2.150)
J
=02f1 — 01 /2.

For the second integrand, we have
ij ((Xl AXz) 'Xi) - (0x7)
ij

= ijZ(leSzi—Xszu)'(ain) 2.151)
J

i

- ij (x1-@2x)) —xp - (alxj))
J

133



134 MULTIVECTOR CALCULUS.

We can apply the chain rule (backwards) to the portion in brackets to
find

X1 - (02x7) — X2 - (91x7) =M— (02x1) - x/ —MJr (01%2) - x/

= Xj . ((91X2 - ale)
6u1 (9u2 auz (9141

(2.152)

In this reduction the derivatives of x; - x/ = &,/ were killed since those
are constants (either zero or one). The final step relies on the fact that
we assume our vector parameterization is well behaved enough that the
mixed partials are zero.

Substituting these results into theorem 2.9 we find

és dx-f = 4;95 (du1x1 + duzXz) . (Z f,'Xi)

Ié dulf]+du2f2 (2.153)
as

= fsdulduz (02fi = 0112).

2.3.9 Fundamental theorem for Volume integral.

The volume integral specialization of theorem 2.3 follows.

— Theorem 2.11: Fundamental theorem for volume integrals.

Given a continuous and connected volume V = x(u, v, w) parameter-
ized by u € [ug, u1],v € [vo,vi],w € [wo, w;], multivector functions
F(x), G(x) that are differentable over V, and an (trivector-valued) vol-
ume element d°x = dx; A dxs A dx3 = dudvdw X, A X, A X,

de3x 3 G = SE Fdsz,
1% 1%
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where 9V is the boundary of the volume V, and d’x is the counter-
clockwise oriented area element on the boundary of the volume, that
is

95 Fd’xG = f (Fdx; A dxG)|,

av Y
+f(FdX2/\dX3G)|Au
+f(FdX3 NdxiG)|, -

InR? with d°x = 1dV, d°x = IidA, this integral can be written using
a scalar volume element, as

deFBG:f dA FAG.
\% )%

Before diving into the proof of theorem 2.11, let’s consider the geome-
try of the volume element briefly.

For uniformity, let u = u;,v = up, w = us, so that the differentials along
each of the parameterization directions are

0

dX] = —Xdu1 = deu1
ouy
ox

dX2 = —du2 = X2dL£2 (2.154)
(9u2
0

dX3 = —Xdu3 = X3du3.
6143

The trivector valued volume element for this parameterization is
d*x = dx; Adxy Adxs = dPu(x; AXa AX3), (2.155)

where d*u = duydurduz. A volume and its corresponding differentials
with respect to three parameters is sketched in fig. 2.11.

In IR3 the vector derivative for a volume parameterization and the gra-
dient are identical. In higher dimensional spaces the projection of the gra-
dient onto the volume at the point of integration (also called the tangent
space), has three components

0= in(xi-V)

0 0 0 '
_J 9 20 30 (2.156)
- X ouq X oy X Ous

= x181 + x282 + X383.
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Figure 2.11: Three parameter volume element.

With the volume element and the vector derivative spelled out explic-
itly, we can proceed with a proof of theorem 2.11.

Proof. The first step, is the reduction of the product of the volume element
and the vector derivative, which we will see is a bivector.

&*xd = d’u (X1 AX2 AX3) (xlal + X205 + x363). (2.157)

Since all x' lie within span {x, X2, X3}, this multivector product has only a
vector grade. That is

(X1 AX2 AX3) x = (X1 AX2 AX3) X +W (2.158)

for all x'. These products reduces to

(x2 A X3 /\xl)x1 =X) A X3
(X3 AX] AX2) X2 =xX3AX; (2.159)

(x /\)(2/\7(3)x3 =X AXp.
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Inserting eq. (2.159) into the volume integral, we find

f Fd*xdG
\%
- f (Fd3x 5)G+ f Fd3x(5 G)
%4 Vv

= j;cﬁu ((01F)x2 A X3G + (02 F)x3 AXx1G + (03F)x1 A x2G)

+ fvd3u (Fxy Ax3(01G) + Fx3 A X1(62G) + Fx1 A X2(03G))
_ fv B (81(Fxa A x3G) + 02(Fxs A x1G) + 93(Fx1 A %:6))

- fv d*u (F(01(Xa AX3))G + F(02(x3 AX))G + F(83(X1 A X2))G)
= fvd3u (01(Fx2 AX3G) + 02(Fx3 AX1G) + 93(FX1 A %2G))

- f d3uF (al(Xz A X3) + (92(X3 A X1) + (93(X1 A Xz)) G
\%4
(2.160)

The sum within the second integral is

23:(9 Ik X
i=1

=03 ((x1 AXy AX3) - x3)
+ 01 ((Xz A X3 /\xl)-xl)
+ 0> ((X3 AX] AX)) - xz)
=03 (X1 AX2) + 01 (X2 AX3) + 02 (X3 A X))
= (03X1) A X2 + X1 A (03X2)
+(01X2) AX3 + X2 A (01X3)
+ (02X3) A X1 + X3 A (02X1)
=Xy A (=03X1 +91X3) + X3 A (01X + 92X ) + X1 A (=02X3 + 03%2)

A 8*x . 8*x oA 8*x . 0*x A 0*x .\ 8*x
- 3N T8, T 00) T T 0005 830, )

(2.161)
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which is zero by equality of mixed partials. This leaves three perfect dif-
ferentials, which can integrated separately, giving

j;Fd3XBG = fduzdu3 (Fxy /\"3G)|Au1
+ fdu3du1 (Fx3 /\XlG)|Au2 + fd”“d”2 (Fxy AXZG)|Au3
= f (FdXZ/\dX3G)|Au1
+ f (Fdxs /\dle)|Au2 +f (Fdx; A dXzG)|Au3.
(2.162)

This proves the theorem from an algebraic point of view. O

With the aid of a geometrical model, such as that of fig. 2.12, if assum-
ing that dx, dx;,dx3 is a right handed triple). it is possible to convince
oneself that the two parameter integrands describe an integral over a coun-
terclockwise oriented surface.

(b)

Figure 2.12: Differential surface of a volume.

We obtain the RHS of theorem 2.11 if we introduce a mnemonic for
the bounding oriented surface of the volume

d*x = dx; A dxa + dxy A dxsz + dxz A dxq, (2.163)
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where it is implied that each component of this area element and anything
that it is multiplied with is evaluated on the boundaries of the integration
volume (for the parameter omitted) as detailed explicitly in eq. (2.162).

2.3.9.1 Three parameter Stokes’ theorem.

Three special cases of theorem 2.11 can be obtained by integrating scalar,
vector or bivector functions over the volume, as follows

— Theorem 2.12: Volume integral of scalar function (Stokes’).

Given a scalar function f(x) its volume integral is given by

j‘:d3x-8f=fvd3x-Vf=5évd2xf.

In IR3, this can be written as

fvdVVf= j{;vdAﬁf

where fi is the outwards normal specified by d’x = IfidA, and d°x =
1dVv.

— Theorem 2.13: Volume integral of vector function (Stokes’).

The specialization of Stokes’ theorem for a volume integral of the
(bivector) curl of a vector function f(x), relates the volume integral
to a surface area over the boundary as follows

fvd3x-(aAf):fvaﬁx-(v/\f):ggvdzx-f.

In IR3, this can be written as

defo:f dAn xf,
14 oV

or with a duality transformation f = /B, where B is a bivector

deV-B:f dAf- B,
1% v
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where i is the normal specified by d?x = IfidA, and d*x = IdV.

— Theorem 2.14: Volume integral of bivector function (Stokes’).

Given a bivector function B(x), the volume integral of the (trivector)
curl is related to a surface integral by

fvd3x-(aAB):fvcﬁx.(vAB):ggvde-B.

In IR3, this can be written as

deV/\B:f dAf A B,
1% v

which yields the divergence theorem after making a duality transfor-
mation B(x) = If(x), where f is a vector, by

deV-f:f dAf -f,
1% v

where i is the normal specified by d’x = IidA, and d*x = IdV.

2.3.9.2 Divergence theorem.

Observe that for IR?> we there are dot product relations in each of theo-
rem 2.12, theorem 2.13 and theorem 2.14 which can be summarized as

— Theorem 2.15: Divergence theorem.

The divergence theorem may be generalized in R? to multivectors
M containing grades 0,1, or 2, but no grade 3 components

deV~M:f dAf- M,
1% v

where f is the normal to the surface bounding V given by d’x =
IfidA.
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2.4 MULTIVECTOR FOURIER TRANSFORM AND PHASORS.

It will often be convenient to utilize time harmonic (frequency domain)
representations. This can be achieved by utilizing Fourier transform pairs
or with a phasor representation.

We may define Fourier transform pairs of multivector fields and sources
in the conventional fashion

—1 Definition 2.8: Multivector Fourier transform pair.

The Fourier transform pair for a multivector function F(x, r) will be
written as

F(x,t) = wa(X)ej‘”’d(u
1 .
F,(x) = —fF(x, He 1“dt,
2r

where j is an arbitrary scalar imaginary that commutes with all mul-
tivectors.

In these transform pairs, the imaginary j need not be represented by
any geometrical imaginary such as ej;. In particular, we need not assume
that the representation of j is the R? pseudoscalar 7, despite the fact that
I does commute with all R? multivectors. We wish to have the freedom
to assume that non-geometric real and imaginary operations can be per-
formed without picking or leaving out any specific grade pseudoscalar
components of the multivector fields or sources, so we won’t impose any
a-priori restrictions on the representations of j. In particular, this provides
the freedom to utilize phasor (fixed frequency) representations of our mul-
tivector functions. We will use the engineering convention for our phasor
representations, where assuming a complex exponential time dependence
of the following form is assumed

—1 Definition 2.9: Multivector phasor representation.

The phasor representation F(x) of a multivector valued (real) func-
tion F(x, 1) is defined implicitly as

F(x,1) = Re(F(x)e"),
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where j is an arbitrary scalar imaginary that commutes with all mul-
tivectors.

The complex valued multivector f(x) is still generated from the real
Euclidean basis for IR?, so there will be no reason to introduce complex
inner products spaces into the mix.

The reader must take care when reading any literature that utilizes
Fourier transforms or phasor representation, since the conventions vary.
In particular the physics representation of a phasor typically uses the op-
posite sign convention F(x,t) = Re (F (x)e‘i“’f), which toggles the sign of
all the imaginaries in derived results.

2.5 GREEN’S FUNCTIONS.
2.5.1 Motivation.

Every engineer’s toolbox includes Laplace and Fourier transform tricks
for transforming differential equations to the frequency domain. Here the
space and time domain equivalent of the frequency and time domain linear
system response function, called the Green’s function, is introduced.

Everybody’s favorite differential equation, the harmonic oscillator, can
be used as an illustrative example

X+ 2kx’ + (wo)?x = F(0). (2.164)

Here derivatives are with respect to time, wy is the intrinsic angular fre-
quency of the oscillator, k is a damping factor, and f(¢) is a forcing func-
tion. If the oscillator represents a child on a swing at the park (a pendulum
system), then k represents the friction in the swing pivot and retardation
due to wind, and the forcing function represents the father pushing the
swing. The forcing function f(#) could include an initial impulse to get
the child up to speed, or could have a periodic aspect, such as the father
running underdogs® as the child gleefully shouts “Again, again, again!”

The full solution of this problem is x(f) = x,(¢) + xo(¢), where x4(f)
is a solution of eq. (2.164) and xp is any solution of the homogeneous

The underdog is a non-passive swing pushing technique, where you run behind and under
the swing and child, giving a push as you go. Before my kids learned to “pump their legs”,
and even afterwards, this was their favorite way of being pushed on the swing. With two
kids the Dad-forcing-function tires quickly, as it is applied repeatedly to both oscillating
children.



2.5 GREEN’S FUNCTIONS. 143

equation x; + 2kx;, + (wo)*xo = 0, picked to satisfy the boundary value
constraints of the problem.
Let’s attack this problem initially with Fourier transforms (definition 2.8)
We can assume zero position and velocity for the non-homogeneous
problem, since we can adjust the boundary conditions with the homoge-
neous solution xo(¢). With zero boundary conditions on x, x’, the trans-
form of eq. (2.164) is

((jw)? + 2 jwk + (wp)*)X(w) = F(w), (2.165)

so the system is solved in the frequency domain by the system response
function G(w)

X(w) = G(w)F(w), (2.166)

where
-1

Glw) = w? = 2jwk — (wp)?”

(2.167)

We can apply the inverse transformation to find the time domain solu-
tion for the forced oscillator problem.

x(f) = f dwG(w)F (w)e’™!
= f de(w)(% f dr’ f(/)e‘f“’”dt’)ef“” (2.168)

= f dr' f(t’)(zl—ﬂ f de(w)efw(f—f’>).

The frequency domain integral is the Green’s function. We’ll write this
as

1 . ’
G, 1) = > f dwG(w)e ), (2.169)

If we can evaluate this integral (exercise 2.11), then the system can be
considered solved, where a solution is given by the convolution integral

x(t) = fdt'f(t')G(t, ") + xo(1). (2.170)

The Green’s function is the weighting factor that determines how much
of f(¢') for each time ¢’ contributes to the motion of the system that is
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explicitly due to the forcing function. Green’s functions for physical prob-
lems are causal, so only forcing events in the past contribute to the current
state of the system (i.e. if you were to depend on only future pushes of the
swing, you would have a very bored child.)

An alternate way of viewing a linear systems problem is to assume that
a convolution solution of the form eq. (2.170) must exist. Since the equa-
tion is a linear, it is reasonable to assume that a linear weighted sum of
all the forcing function values must contribute to the solution. If such a
solution is assumed, then we can operate on that solution with the differ-
ential operator for the problem. For our harmonic oscillator problem that
operator is

_ 62 6 2
£_£+2k6_t+(w0) . (2.171)
We find
2
o) = (a + 2+ w0) )x(r)
62 a 4 ’/ ’
((9 5 +2k +(a)0) )fdl f@EHGE, 1) (2.172)

fdt f( )(— +2k;9 + (wp) )G(t, t),

and see that the Green’s function, when acted on by the differential oper-
ator, must have the characteristics of a delta function

82 a ’ ’
ﬁ+2k6 +(wo)? |G, 1)) = 8(t—1"). (2.173)

The problem of determining the Green’s function, implicitly determin-
ing the solution of any forced system, can be viewed as seeking the solu-
tion of distribution equations of the form

| LGt =61-1). | (2.174)

Framing the problem this way is independent of whatever techniques
(transform or other) that we may choose to use to determine the struc-
ture of the Green’s function itself. Observe that the Green’s function itself
is not unique. In particular, we may add any solution of the homogeneous
problem L'Gy(t,¢') = O to the Green’s function, just as we can do so for
the forced system itself.
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We will see that Green’s functions provide a general method of solv-
ing many of the linear differential equations that will be encountered in
electromagnetism.

Exercise 2.11 Harmonic oscillator Green’s function.

Evaluate the integral

G =L

0o 1 )
— —e“dw, 2.175
ZﬂIwa—ijk—wg =17

using the semicircular infinite contours depicted in fig. 2.13.

Figure 2.13: Contours for harmonic oscillator Green’s function.

2.5.1.1 Time domain problems in electromagnetism

Examples of the PDEs that we can apply Green’s function techniques to
include

(V+12)F(X,I)=J(x,t) (2.181a)
c ot

L = (v ) (w4 L) pn
(V Czatz)F(XJ)—(V Cat)(v"‘CBI)F(X,I)_B(X,I). (2.181b)

The reader is no doubt familiar with the wave equation (eq. (2.181b)),
where F is the waving function, and B is the forcing function. Scalar and
vector valued wave equations are encountered in scalar and vector forms
in conventional electromagnetism. We will see multivector variations of
the wave equation, so it should be assumed that F and B are multivector
valued.
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Equation (2.181a) is actually the geometric algebra form of Maxwell’s
equation (singular), where F' is a multivector with grades 1 and 2, and J is
a multivector containing all the charge and current density contributions.
We will call the operator in eq. (2.181a) the spacetime gradient®.

Armed with Fourier transform or phasor representations, the frequency
domain representations of eq. (2.181) are found to be

(V + jk) F(x) = J(x) (2.182a)

(V2 + ) F(x) = (V = jk) (V + jk) F(x) = B(x), (2.182b)

where k = w/c, and any explicit frequency dependence in our trans-
form pairs has been suppressed. We will call these equations the first and
second order Helmholtz equations respectively. The first order equation
applies a multivector differential operator to a multivector field, which
must equal the multivector forcing function (the sources).

For statics problems (k = 0), we may work with real fields and sources,
dispensing with any need to take real parts.

2.5.2  Green’s function solutions.

2.5.2.1 Unbounded.

The operators in eq. (2.181), and eq. (2.182) all have a similar linear struc-
ture. Abstracting that structure, all these problems have the form

LF(x) = J(X), (2.183)

where [ is an operator formed from a linear combination of linear opera-
tors 1,V, V2, 9,,d,.

Given the linear structure of the PDE that we wish to solve, it makes
sense to assume that the solutions also have a linear structure. The most
general such solution we can assume has the form

F(x,t) = f Gx,x';t,)JX',)dV'dt + Fo(x, 1), (2.184)

A slightly different operator is also called the spacetime gradient in STA (Space Time
Algebra) [7], which employs a non-Euclidean basis to generate a four dimensional rela-
tivistic geometric algebra. Our spacetime gradient is related to the STA spacetime gradient
by a constant factor.
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where Fy(X,?) is any solution to the equivalent homogeneous equation
LFy=0,and G(x,x’;t,1") is the Green’s function (to be determined) as-
sociated with eq. (2.183). Operating on the presumed solution eq. (2.184)
with L yields

Jx, )= LF(x,t) =L (f Gx,x';t,)JX',)dV'dt + Fo(x, t))
(2.185)
= f (LGx,X';1,1")) JX', )dV'dr,

which shows that we require the Green’s function to have delta function
semantics satisfying

LGx,X;1,1) = 6(x—x)5(t—1). (2.186)

The scalar valued Green’s functions for the Laplacian and the (2nd or-
der) Helmholtz equations are well known. The Green’s functions for the
spacetime gradient and the 1st order Helmholtz equation (which is just
the gradient when k = 0) are multivector valued and will be derived here.

2.5.2.2 Green’s theorem.

When the presumed solution is a superposition of only states in a bounded
region then life gets a bit more interesting. For instance, consider a prob-
lem for which the differential operator is a function of space only, with a
presumed solution such as

F(x) = de’B(X')G(x, x') + Fy(x), (2.187)
v

then life gets a bit more interesting. This sort of problem requires different
treatment for operators that are first and second order in the gradient.

For the second order problems, we require Green’s theorem, which
must be generalized slightly for use with multivector fields.

The basic idea is that we can relate the Laplacian of the Green’s func-
tion and the field F(x') ((V')’G(x,x))) = G(x,x') ((V')?F(x)) + - . That
relationship can be expressed as the integral of an antisymmetric sand-
wich of the two functions

Theorem 2.16: Green’s theorem
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Given a multivector function F and a scalar function G

f(FVZG—GVZF)dvzf (Fi-VG - Gh-VF),
Vv v

where 9V is the boundary of the volume V.

Proof. A straightforward, but perhaps inelegant way of proving this theo-
rem is to expand the antisymmetric product in coordinates

FV?G = GV?F = )" FouiG - GOxdiF
k
= ) 0k (FOkG = GOLF) — (9 F)(0G) + (kG (k).
k
(2.188)
Since G is a scalar, the last two terms cancel, and we can integrate

f (FV2G -GV?F)av = )’ f O (FOyG —GoyF).  (2.189)
14 T Jv

Each integral above involves one component of the gradient. From the-
orem 2.3 we know that

f vQodv = f NnQdA, (2.190)
v v
for any multivector Q. Equating components gives
fﬁdeV:f n-eQdA, (2.191)
14 v

which can be substituted into eq. (2.189) to find

f (FV’G-GV?F)av = f fi- e, (FOG — GO F) dA
14 T Jov
(2.192)
= f (F(f- V)G - G(h - V)F) dA.
)%

2.5.2.3 Bounded solutions to first order problems.

For first order problems we will need an intermediate result similar to
Green’s theorem.
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— Lemma 2.1: Normal relations for a gradient sandwich.

Given multivector functions F(x"), G(x,x’), and a gradient V’ acting
bidirectionally on functions of x’, we have

- f (G(X,x’) V)F(x’)dv’z f G(x,x’)(el F(x’))dV’
Vv %4

- f Gx,xX" W F(x")dA’.
)%

Proof. This follows directly from theorem 2.3

f G, XA F(x)dA’ = f G(x,x) ;, Fx\dV'’
oV Vv
- f (G(x,x');)F(x')dV'+ f G(x,x’)(V F(x’))dV’,
Vv \%4
(2.193)

which can be rearranged to prove lemma 2.1. O

2.5.3 Helmholtz equation.

2.5.3.1 Unbounded superposition solutions for the Helmholtz equation.

The specialization of eq. (2.186) to the Helmholtz equation eq. (2.182b)
is

(V2 + %) G(x.x') = 6(x - X). (2.194)

While it is possible [22] to derive the Green’s function using Fourier
transform techniques, we will state the result instead, which is well known

Theorem 2.17: Green’s function for the Helmholtz operator.
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The advancing (causal), and the receding (acausal) Green’s functions
satisfying eq. (2.194) are respectively

, e~ JKIx=x'l|
Gav(X,X') = ————
ddv( s ) 47T||X—X/”
, elklx=x'l
Grec(X,X') = ——.
rec( ’ ) 47T”X—X,”

We will use the advancing (causal) Green’s function, and refer to this
function as G(x,x’) without any subscript. Because it may not be obvi-
ous that these Green’s function representations are valid in a multivector
context, a demonstration of this fact can be found in appendix C.1.

Observe that as a special case, the Helmholtz Green’s function reduces
to the Green’s function for the Laplacian when k = 0

1

Gx.x)=——
(X)) =~ =¥

(2.195)

2.5.3.2  Bounded superposition solutions for the Helmholtz equation.

For our application of theorem 2.17 to the Helmholtz problem, we are
actually interested in a antisymmetric sandwich of the Helmholtz operator
by the function F and the scalar (Green’s) function G, but that reduces to
an asymmetric sandwich of our functions around the Laplacian

F(V2+k2)G—G(V2+k2)F

= FV2G + EK*G — GVF — GK*F (2.196)

= FV?G - GV°F,

SO
f F(X) ((V)? + %) G(x, X))
\%4
= f Gx,x) (V') + k) F(x')aV’ (2.197)
\%4

+ f (FX)@® - V)G(x,X) - G(x, X )@ - V)F(x')) dA’.
ov
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This shows that if we assume the Green’s function satisfies the delta
function condition eq. (2.194) , then the general solution of eq. (2.182b)
is formed from a bounded superposition of sources is

F(x) = f Gx,x)Bx)dV'’
1

+ f (Gx,x)@" - V)F(X')- FX)#@ - V)G(x,x')) dA’.
v

(2.198)

We are also free to add in any specific solution Fy(x) that satisfies the
homogeneous Helmholtz equation. There is also freedom to add any so-
lution of the homogeneous Helmholtz equation to the Green’s function
itself, so it is not unique. For a bounded superposition we generally desire
that the solution F and its normal derivative, or the Green’s function G
(and it’s normal derivative) or an appropriate combination of the two are
zero on the boundary, so that the surface integral is killed.

2.5.4  First order Helmholtz equation.

The specialization of eq. (2.186) to the first order Helmholtz equation
eq. (2.182a) is

(V + jk) G(x,x") = §(x — X'). (2.199)

This Green’s function is multivector valued

— Theorem 2.18: Green’s function for 1st order Helmholtz operator.

The Green’s function for the first order Helmholtz operator V + jk
satisfies

P

(¥ 434 6055 = 60x3) (- 7 8] = oxx,

and has the value
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wherer = x—X’,r = |[r|| and £ = r/r, and V’ denotes differentiation
with respect to x’.

A special but important case is the £ = 0 condition, which provides the
Green’s function for the gradient, which is vector valued

.
Gx.x':k = 0) = er—rz. (2.200)

Proof. 1f we denote the (advanced) Green’s function for the 2nd order
Helmbholtz operator theorem 2.17 as ¢(x, x’), we must have

(V +jk) Gx,x)=6(x—-x") = (V +jk) (V —jk) o(x,x"), (2.201)
we see that the Green’s function is given by
G(x,x') = (v - jk) B(x,X). (2.202)

This can be computed directly
N e—jkr

G(x,x') = (v - jk) (— )
4ar

. 0 ) e—jkr
(7))

(2.203)

Il
|
NG
N
=Y
z
P
Py
~.
R P
‘:N,_k
N —
|
~
R I
_

Il
M~
—_

~.

b
—~

—_

_+_

-
~
+

| =
~———

as claimed. O]

Observe that since ¢ is scalar valued, we can also rewrite eq. (2.202) in
terms of a right acting operator

G(x,x') = p(x,X) (9 - jk)
o (2.204)
= ¢(x,X) (— v —jk),

SO

G(x,x) (— v o+ jk) — $(x, X)) ((9’)2 + kz) —6(x—-x).  (2.205)
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This is relevant for bounded superposition states, which we will discuss
next now that the proof of theorem 2.18 is complete. In particular addition
of fv G(x,x") jkF(x")dV’ to both sides of lemma 2.1 gives

f (G(x,x')(— v +jk))F(x’)dV’: f G(x,x')((?l +jk)F(x’))dV’
\% \%

—f G(x,x A’ F(x")dA’.
14

0
(2.206)

Utilizing theorem 2.18, and substituting J(x’) from eq. (2.182a), we
find that one solution to the first order Helmholtz equation is

F(x):fG(X,X’)J(X')dV'—f G, x)i'F(x")dA’. (2.207)
\% ov

We are free to add any specific solution Fy that satisfies the homoge-
neous equation (V + jk) Fop = 0.

2.5.5 Spacetime gradient.

We want to find the Green’s function that solves spacetime gradient equa-
tions of the form eq. (2.181a). For the wave equation operator, it is helpful
to introduce a d’ Alembertian operator, defined as follows.

Definition 2.10: d’Alembertian (wave equation) operator.

The symbol [ is used to represent the d’Alembertian (wave equa-
tion) operator, with a positive sign on the Laplacian term

14 14 , 18
D—(V‘za)(”za)—v ErT

We will be able to derive the Green’s function for the spacetime gradi-
ent from the Green’s function for the d’ Alembertian. The Green’s function
for the spacetime gradient is multivector valued and given by the follow-
ing.

Theorem 2.19: Green’s function for the spacetime gradient.
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The Green’s function for the spacetime gradient V + (1/¢)0, satisfies
1 a ’ ’ ’ ’
V+-——|Gx-X,t-1)=0x—-x")o(t—-1),
c ot

and has the value

Iy 10
+—=+——|8(=r/c+1-1),
r20r 2 crot (=r/c )

Gx-x,t—1)= 1 (_Lﬁ
4n

wherer =x—x',r =|r|land £ = r/r.

With the help of eq. (C.18) it is possible to further evaluate the delta
function derivatives, however, we will defer doing so until we are ready
to apply this Green’s function in a convolution integral to solve Maxwell’s
equation.

Proof. To prove this result, let ¢(x — x’, t — t’) be the retarded time (causal)
Green’s function for the wave equation, satisfying

, " 10 10 , ,
Lop(x—x',t—1) = (V+ Cat)(v cat)¢(x x,t—1") (2.208)
=6(x—-x)o(t—1).
This function has the value
1
o, t—1t')=——6(-r/c+1t-1), (2.209)
drr

where r = x — X/, r = ||r]|. Derivations of this Green’s function, and it’s
acausal advanced time friend, can be found in [22], [16], and use the usual
Fourier transform and contour integration tricks.

Comparing eq. (2.208) to the defining statement of theorem 2.19, we
see that the spacetime gradient Green’s function is given by

Gx-x,t-1)= (V— %gt)q’)(r,t—t’)

_(Aa 14

P~ Ea)d’(l‘,t—f),

(2.210)

where £ = r/r. Evaluating the derivatives gives

G(r,t—1t) = 2 \E
JT

1 (,0 19\6(-r/c+t-1)
or cot

r

1 (t0 , # ) 18 ,
= —E(;Eé(—r/c+t—t)—r—2(5(—r/c+t—t)—;6—t6(—r/c+t—t)),
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(2.211)

which completes the proof after some sign cancellation and minor rear-
rangement. O

2.6 HELMHOLTZ THEOREM.

In conventional electromagnetism Maxwell’s equations are posed in terms
of separate divergence and curl equations. It is therefore desirable to show
that the divergence and curl of a function and it’s normal characteristics on
the boundary of an integration volume determine that function uniquely.
This is known as the Helmholtz theorem

— Theorem 2.20: Helmholtz first theorem.

A vector M is uniquely determined by its divergence
V-M-=s5,

and curl
VxM=C,

and its value over the boundary.

The conventional proof of Helmholtz’s theorem uses the Green’s func-
tion for the (second order) Helmholtz operator. Armed with a vector val-
ued Green’s function for the gradient, a first order proof is also possible.
As illustrations of the geometric integration theory developed in this chap-
ter, both strategies will be applied here to this problem.

In either case, we start by forming an even grade multivector (gradient)
equation containing both the dot and cross product contributions

VM =V-M+IVxM=s+IC. (2.212)

First order proof.  For the first order case, we perform a grade one se-
lection of lemma 2.1, setting F = M where G is the Green’s function for
the gradient given by eq. (2.200). The proof follows directly
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M(x) = — f (G(x, x) 3’) Mx)dV’
v
= f <G(x, x’) (9’ M(X’))> av’ — f (G(x,x")M'M(x")),dA’
Vv 1 ov
1
= f ———((x = x') (s(x') + IC(X"))),dV’
v 4r|x —x’||
1
_ _ ’ AlM ’ dAl
[, oMoy,
= f ;3 (x=x)s(x") - (x-x)x C(x"))dV’
vanr|x—x||

1
- — {((x =X )A'M(X")),dA’.
Lv 47r||x—X’||3 (G = XM,
(2.213)

If M is well behaved enough that the boundary integral vanishes on an
infinite surface, we see that M is completely specified by the divergence
and the curl. In general, the divergence and the curl, must also be supple-
mented by the value of vector valued function on the boundary.

Observe that the boundary integral has a particularly simple form for a
spherical surface or radius R centered on x’. Switching to spherical coor-
dinates r = X’ —x = R#(60, ¢) where t = (X’ — x)/||x’ — X|| is the outwards
normal, we have

1
—f —3((x—x’)ﬁ’M(x’))1dA’
avan||x - x||

M(x’) ,
= ————dA
v 47r||x—x’||2 (2.214)

1 T 27
= — f f M(R, 0, ¢) sin OdOd .
Ar Jo=0 Jg=0

This is an average of M over the surface of the radius-R sphere surround-
ing the point x where the field M is evaluated.

Second order proof.  Again, we use eq. (2.212) to discover the relation
between the vector M and its divergence and curl. The vector M can be
expressed at the point of interest as a convolution with the delta function
at all other points in space

M(x) = f dV' 6(x —x" )M®"). (2.215)
14



2.6 HELMHOLTZ THEOREM. 157

The Laplacian representation of the delta function in R? is

1 1 ,
o(x—x) = ——v2 (2.216)
lIx —x'|I”
so M can be represented as the following convolution
1
M(x) = —— f dv’ v? —M(x). (2.217)
4r Jy llx — x|

Using this relation and proceeding with a few applications of the chain
rule, plus the fact that V1/||x — x’|| = =V’1/||x — x’||, we find

—47M(x)

- J, v e

<f = '||M(X )>
<f v ( - '||) (X,)>1
A7 o Ve T,
2 Lo

M(X ) > <V f av s(x’) + IC(X’)>
v 1

Mx—x] lIx —x'||

dn p I )> +Vde’ S +v-de' 16D
Ix—x'l/, v lx=x] v o Ix=x

(2.218)

By inserting a no-op grade selection operation in the second step, the
trivector terms that would show up in subsequent steps are automatically
filtered out. This leaves us with a boundary term dependent on the sur-
face and the normal and tangential components of M. Added to that is a
pair of volume integrals that provide the unique dependence of M on its
divergence and curl. When the surface is taken to infinity, which requires
[IM]| /|lx — x’|| = 0, then the dependence of M on its divergence and curl
is unique.

In order to express final result in traditional vector algebra form, a cou-
ple transformations are required. The first is that

(alby, = Paxb = —axb. (2.219)
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For the grade selection in the boundary integral, note that

(VAX); = (V- X)); +(V(h A X)),
= V(@ - X) + (VI x X)) (2.220)
= V(- X) - V x (fi x X).

These give

1 M(x’ 1 M(x’
M(x):V—f ana. O g L gaax MX)
ar Jav IIx — x|l dr Jav IIx —x||

1 ' 1 C(x
-V— dv’&+Vx— dv’ﬁ.
dr Jy  lIx=x|| dr Jy o lIx=x||

(2.221)

2.7 PROBLEM SOLUTIONS.

Answer for Exercise 2.1

Proof. Since each reciprocal vector must each satisfy x' - x; = 1, let x/ =

ax;, then
=% - X;
= (CL’XL‘) * X (222)
=a (X X;),
or
- 1 1
x' = X; = —. (2.23)
X; * Xj X;
]

Answer for Exercise 2.2
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Assuming the representation of eq. (2.10), the dot products are

1:X1-xl :ax%+bx1-xz

Ozxz-x1 :axz-xl+bx§

0:x1-x2=cxf+dxl-x2

_ 2 _ 2
I =x; X" =cx; - X +dX;.

(2.24)

This can be written out as a pair of matrix equations

71 B x% X|-Xp||a
10 X - X| x% b
VO B x% X1 - X
|1 X7 - X| X%

The matrix inverse is

(2.25)
c

Jl

- -1
x% xl-xz} B 1 [ x% —X1 - X2

x2x2 — (X %)

] , (2.26)

|1 X2 - X1 X% —X2 - X1 X1

and multiplying by the (1,0), and (0, 1) vectors picks out the respective
columns, giving eq. (2.11).

Answer for Exercise 2.3
The bivector for the plane spanned by this basis is
X1 AXy = (e1 + 2e2) A (62 - 63)
=epx —ej3 —2ex (2.28)
=€y +e3 + 2632.
This has the square
(X] A Xz)2 = (612 + ez + 2632) . (612 +e3; + 2632)
=-1-1-4 (2.29)
= —6.

Dotting —x; with the bivector is

X1 - (Xz /\Xl) = — (e1 + 2e2) . (812 +e3; + 2632)
= —(ey —e3 —2e; —4de3) (2.30)

=2e; — e + 5e;3.
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For x; the dot product with the bivector is

Xy - (X] A Xz) (62 - e3) . (e12 +e3 + 2632)
= —e; —2e3—e; —2e (2.31)

—291 - 262 - 263,

SO

1
x' =~ (e; +e; +e3)
3 (2.32)

1
X2 = g (—2e1 +e — 563) .
It is easy to verify that this has the desired semantics.

Answer for Exercise 2.4

Solution Part a. The curvilinear basis associated with this parameteri-
zation can be computed by inspection

X] = €] COS Uy + &) sin up
) (2.43)
X = uj (—ej sinuy + Beycosuy) .
Solution Part b.
We need to compute the area element first
X] AXp = (ej cosuy + ey sinuy) A uy (—ey sinuy + Be; cos uy)
= ui{(ej cosuy +Be; sinuy) (—e; sinuy + ey cosuy)),
) .5 (2.44)
= U (ﬁelz COS™ Up —ﬁem sSin uz)
= w1,
where i = eqs.
The reciprocal frame vectors are given by
- 1
X =Xp-
X1 A Xy
. 1
= uy (—e; sinuy + Bey cosuy) — (2.45)

u1Pi

|
= —epSInuy + e cos uy,
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2 1
X =-X1-
X] AXp
) 1
= — (€1 Ccos + per Sin —_—
(e cosuy + ey sinuy ) e (2.46)
1 (1 : )
= —|=€exCoSupy —e;sinuy|.
ur \B

Solution Part c. To verify that x; - x/ = §;/ we can compute each of the
dot products

. |
x'-x; = <(e1 Ccos up + ey sinuy ) (’Eez sinup + €] cos u2)>

. 2.47
= cos? up + sin® up (2.47)
=1,
2 . 11 .
X~ -Xp = (u; (—e; sinuy + ey cosuy) — /—gez COS Uy — € sinup
ui
. 2.48
= sin” up + cos” uy (2.48)
=1,
1 1 . .
X Xy = /_3e2 sinuy + e cos up |u; (—e; sinuy + Bey cos uy)
. . (2.49)
= U1 SIN Uy COS Uy — U COS Uy S1N Uy
=0.
, 1 (1 . .
X" X1 ={\— BEQ COS Uy — €1 S1n up (e1 CosS Uy +,3€2 sin ug)
uj
1 . . (2.50)
= — (cosuy sinuy — sinup cos uy )
uy
=0.

Answer for Exercise 2.5



162

MULTIVECTOR CALCULUS.

1 . . . )
cosh (u — i0) sinh (u + i0) = 1 (e"_le - e‘““e) (e”“g - e‘“_’g)
— %(62;1 — 2 4 QR0 _ e—2i€) (2.54)
1
=3 (sinh(2u) + i sin(260)) .

The second identity follows from the first, setting 6 = 0. Finally, for the
third expanding the cosh in terms of exponentials, we find

1 . .
cosh (u +i0) = 5 (eyﬂe + e_ﬂ_le)

y )+ )

= — (cos@+isinf) + — (cos@—isind

2 2 (2.55)
et +e7H et —eH

= > cosf +1i sin 6

= cosh u cos 6 + i sinh y sin 6.

Answer for Exercise 2.6

Solution Part a. Using the multiple angle cosh expansion, we find

ej cosh (u + iuy) = e (coshpcos up + i sinh psin uy)

) ) (2.57)
= e coshu cosuy + e, sinh y sin uy,
SO
X = ujej cosh (i + iuy) = ejacosuy + exb sinuy, (2.58)
where
a = uj cosh
1EOSA (2.59)
b = u; sinh u,
are the semi-major and semi-minor axis values.
Solution Part b. The eccentricity (squared) is
€’ =1 —tanh?pu
B cosh? y1 — sinh?
~ cosh?p (2.60)
1

cosh? u ’
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so the eccentricity is
1
coshu’

Solution Part c. Our curvilinear basis vectors are
x; = e cosh (u + iuy)
X, = eyuy sinh (u + iuy)
To compute the reciprocals we need the area element
X1 AXp = (ej cosh (4 + iuz) euy sinh (1 + iuz)),
ui{icosh (u — iuz) sinh (u + iuy)),
%(i (sinh(2) + i sin(2uy))),

= uyicosh usinh u.
Our recipocal basis vectors are
1 1
X =Xy
X] AXp

= epu; sinh (u + iuy) —ulicoshl,u -
_ sinh (u+iup)
- e coshusinhu’

and

1
x? = —x

1
X AXp
1

= — h + [ _—
(e1 cosh (u +iuz)) uyicosh u sinh p

_eycosh (u+iup)

ujp coshusinhy
Solution Part d.
i sinh (u + iuy
X1 - xl = <61 cosh (,u + luz) elm>

1 5 . . .

= m(el cosh (¢ — iup) (sinh (u + zuz))>
1 1

= ———— (= (sinhQu) +isin(2

coshu sinh,u<2 (sinh(2u) + i sin u2)>>
_ sinh(2u)
~ 2coshusinhpu

=1.

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.606)
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ey cosh (u + iu2)>
X2 - X

<e2u1 sinh (,u + iuz) 11, cosh 1 sinh 2

1 . L . (2.67)
= m<s1nh (1 +iuz) €5 cosh (1 — tu2)>

1.

) e) cosh (u + iup
X| X" = <e1 cosh (u + iuy) " cosh(,u sinh,u)>

1
e, h —i h ]
uy cosh u sinh,u<e12 cosh (u = iuz) cosh (u + iuz)) (2.68)

|cosh (1 + iu2)|2
= ——————(ep)
uy cosh y sinh u

=0.

| < sinh (u + iuy)
=(ej—————

eyuy sinh (p +1i
1cosh;zsinh,u 2 (ke zu2)>

w|sinh (u + iuz) [ ) (2.69)
= 12

cosh y sinh u
=0.

Answer for Exercise 2.7
Computing the various dot products is made easier by noting that e3
and ¢’ commute, whereas e/fe; = ese Y, e1e = e %e|, 20" = e e,
(since ez, i and eyi all anticommute.) Also note that
j® = e31eere”
= e30¢ e (2.107)
=1

The dot products, working with the normalized vectors, are
-0 = (ft))
= {j) (2.108a)
=0
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-

= ()
= <e3 (cos B+ jsin6) ¢3>
= cos 9<e3$> + sin 9<e3jq3> (2.108b)
= cos 6(e3; cos ¢ + €3 sin ¢) + sin 6{e,)
=0

>

¢ = (tjo)
= (1) (2.108¢)
=0.

Answer for Exercise 2.8
e3lei¢e2ei¢ = e31ei¢e_i¢e2
= €312 (2.1()9)

=1

Answer for Exercise 2.9

A bit of shorthand is useful. We can write our Jacobian as

SeCs  SoSs Cy SeCs  SoSs Co
J=|rCyCy rCoSy —rSe|=1"|CoCy CoSy —Sg|» (2.110)
—}’SQS¢ }’SQC¢ 0 —SQS¢ S9C¢ 0

where the common factor of the two last rows has been factored out. Ex-
panding the cofactors along the bottom row we have

J = —r2595¢ Sng) Cg —V259C¢ S0C¢ Cg
06Ss —So CoCs —So
= 178482 S0 Co —1784C3 SoCo
Co —So Co —Sg (2.111)
= 1’885 (=S5 - C3) - r*SoC; (=S5 - C3)
=289 (55+C3)

= I"2Sg.
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Had we done a traditional first row or column determinant expansion,
things would have been considerably messier.

Answer for Exercise 2.10

We’ll only compute x4 here explicitly, as the other two vectors can be
computed by inspection.

We start with a plain old chain rule expansion, with the cavaet that we

must b e careful not to commute j with anything but the ¢*//2 terms.
T o0 | | | | | L Q112)
= —%e‘fg/z (pele’¢ + Re3) /% 4 IO (pele‘¢ + Re3) 619/2%

Note that the bivector j commutes with e, and then proceed to compute
the p dependent part of x4

P o2 (it . it

2e e ( je'’ +e J)e
= ge‘ja/zel (—e3 (cos¢ +ep3sing) + (cos ¢ + ej3sing) e3n) 912
= ge—je/Zel (—33213 sin ¢ + €133, sin (b)
= ge‘je/zel (—e21 sin ¢ + e sin ¢) o2

= pe
= pe

Jj6/2

012

_]9/291 12 sin ¢e]9/2

—j6/2 Jj6/2

e) sin ge
(2.113)

Similarly, the R dependent contribution is
R

2¢
Ije—je/z (—e33 +e337) €/
2 (2.114)

R . .
56_19/2 (ez + ez) 816/2

Re‘je/zezejg/z.

W2 (— jes +e3 )

Putting the pieces together, we have
xg = ¢ 2 (R + psin¢) eze’’/?, (2.115)

as claimed.



2.7 PROBLEM SOLUTIONS.

Answer for Exercise 2.11
With a = / w(z) — k2, we may factor the denominator

w? = 2jwk - W} = (w- (jk+a)) (w- (jk—a)), (2.176)

showing that we have poles in the upper half plane at jk + a.

It’s important to understand the behaviour of the integral on the infi-
nite semi-circular contours, which we can parameterize as w = Re'’. The
denominator is O(1/R?), but the exponential has the form

eIt — e]TR(cos 6+jsin6)

— @JTRc0s0 —Rrsin 2.177)

We see that the integral diverges on the upper half contour for 7 < 0, and
diverges on the lower half contour for 7 > 0. There’s a theorem (who’s
name I forget) that shows that the upper half contour integral evaluated for
7 > 0 will be zero on the infinite semicircle, as will the lower semicircular
contour for 7 < 0, so if we compute the residues for the complete contours
we find the value of the integral along the [—o0, co] horizontal.

We find

G(r<0)=0
-1 jwt Jjwt
G(T>0)=—2ﬂj[€+ +e+ ]
2n W= (jk + a,) w=jk-a @~ (Jk - CZ) w=jk+a
1 ( eitUk=a)  gjr(jk+a)
= - +
Jj ( —2a 2a )
1
= —¢ ¥ sin (a1),
a
(2.178)
or
G(r) = Oy @) (2.179)
a

Rather amusingly, when the system is supplied with an impulse function
f(®) = o(t), we see that the response to that infinite push on the swing is

x(1) = f ) Ot —1")e k=" Sin—(“g_ t,))é(t’)dl"

- 2.180
_ o i Sin (1) ( )
= O(1)e T,
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which describes an oscillation that starts at the point of the push, but de-
creases in amplitude steadily after that due to the damping term. Even
with an infinite strength initial push, the child will eventually be exhort-
ing the dad to supply another underdog, “Again, again, again!”.



ELECTROMAGNETISM.

3.1 CONVENTIONAL FORMULATION.

Maxwell’s equations provide an abstraction, the field, that aggregates the
effects of an arbitrary electric charge and current distribution on a “test
charge distribution. The test charge is assumed to be small and isolated

E3]

enough that it does not also appreciably change the fields themselves.
Once the fields are determined, the Lorentz force equation can be used to
determine the dynamics of the test particle. These dynamics can be deter-
mined without having to compute all the interactions of that charge with
all the charges and currents in space, nor having to continually account
for the interactions of those charge with each other.

We will use vector differential form of Maxwell’s equations with an-
tenna theory extensions (fictitious magnetic sources) as our starting point

VxE=-M-28
ot
aD
VXH=J+E (31)
V-D=p
V-B=pn.

These equations relate the primary electric and magnetic fields
o E(x,1) : Electric field intensity [V/m] (Volts/meter)
o H(x,7) : Magnetic field intensity [A/m] (Amperes/meter),

and the induced electric and magnetic fields

e D(x, 1) : Electric flux density (or displacement vector) [C/m] (Coulomb-

s/meter)

o B(x, ) : Magnetic flux density [W/ m?] (Webers/square meter),

to the charge densities
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e o(x,1) : Electric charge density [C /m3] (Coulombs/cubic meter)

e pon(X,t) : Magnetic charge density [W/ m?>] (Webers/cubic meter),
and the current densities

e J(x,1) : Electric current density [A/ m?] (Amperes/square meter),

e M(x, ) : Magnetic current density [V /m?] (Volts/square meter).

All of the fields and sources can vary in space and time, and are speci-
fied here in SI units. The sources M, py, can be considered fictional, rep-
resenting physical phenomena such as infinitesimal current loops.

In general, the relationship between the electric and magnetic fields
(constitutivity relationships) may be complicated non-isotropic tensor op-
erators, functions of all of E, D, B and H. In this book, we will assume that
the constitutive relationships between the electric and magnetic fields are
independent

B=uH

3.2
D = €E, (3-2)

where € = €, is the permittivity of the medium [F/m] (Farads/meter),
and u = u,up is the permeability of the medium [H/m] (Henries/meter).
The permittivity and permeability may be functions of both time and po-
sition, and model the materials that the fields are propagating through.
In free space u, = 1 and €, = 1 so these relationships are simply B =
uoH, D = gE, where

o ¢ = 8.85x 10712C2/N/m? : Permittivity of free space (Coulombs
squared/Newton/square meter)

o 11 = 47 x 107'N/A? : Permeability of free space (Newtons/Ampere-
squared).

These constants are related to the speed of light, ¢ = 3.00 x 108m/s by
Mo€Ey = 1/ C2.

Antenna theory extends Maxwell’s equations with fictional magnetic
charge and current densities that are useful to model real phenomena such
as infinitesimal current loops. Antenna related problems are usually tack-
led in the frequency domain. We will use the engineering conventions for
the frequency domain described in section 2.4.
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Continuous models for charge and current distributions are used in
Maxwell’s equations, despite the fact that charges (i.e. electrons) are par-
ticles, and are not distributed in space. The discrete nature of electronic
charge can be modeled using a delta function representation of the charge
and current densities

PO1) = D 4ub(X = Xg(1))

(3.3)

I D) = D qava(x, ).

This model is inherently non-quantum mechanical, as it assumes that it
is possible to simultaneous measure the position and velocity of an elec-

tron.

The dynamics of particle interaction with the fields are provided by the

Lorentz force and power equations

dp

" =q(E+vxB) (3.4a)
dé
- = gE - v. (3.4b)

Both the energy and the momentum relations of eq. (3.4) are stated,
since the simplest (relativistic) form of the Lorentz force equation directly
encodes both. For readers unfamiliar with eq. (3.4b), exercise 3.1 provides
a derivation method.

The quantities involved in the Lorentz equations are

p(x, 1) : Test particle momentum [kgm/s] (Kilogram meters/sec-
ond)

&(x, 1) : Test particle kinetic energy [J] (Joules, kilogram meter"2/second”2)
q : Test particle charge [C] (Coulombs)

v : Test particle velocity [m/s] (Meters/second)

The task of extracting all the physical meaning from the Maxwell and
Lorentz equations is a difficult one. Our attempt to do so will use the

formalism of geometric algebra.
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3.1.1 Problems.

Exercise 3.1 Lorentz power and force relationship. (§17 [19])

Using the relativistic definitions of momentum and energy

mv
pX, 1) = ———
V1 -=v2/c?
mc?
E(x,1) =

show that d&/dt = v -dp/dt, and use this to derive eq. (3.4b) from eq. (3.42).
3.2 MAXWELL’S EQUATION.
We will work with a multivector representation of the fields in isotropic

media satisfying the constituency relationships from eq. (3.2), and define
a multivector field that includes both electric and magnetic components

—1 Definition 3.1: Electromagnetic field strength.

The electromagnetic field strength ([V/m] (Volts/meter)) is defined
as

F=E+InH (=E+IcB),
where

e 1 = /u/e ([Q2] Ohms), is the impedance of the media.

e ¢ = 1/+/eu ([m/s] meters/second), is the group velocity of a
wave in the media. When € = €y, u = po, c is the speed of light.

F is called the Faraday by some authors.

The factors of 1 (or ¢) that multiply the magnetic fields are for dimen-
sional consistency, since [ VeE] = [vuH] = [B/+/ul. The justification
for imposing a dual (or complex) structure on the electromagnetic field
strength can be found in the historical development of Maxwell’s equa-
tions, but we will also see such a structure arise naturally in short order.



—_

3.2 MAXWELL’S EQUATION.

No information is lost by imposing the complex structure of defini-
tion 3.1, since we can always obtain the electric field vector E and the
magnetic field bivector /H by grade selection from the electromagnetic
field strength when desired

E = (F),

3.5
H = 1<F>2. G2
n

We will also define a multivector current containing all charge densities
and current densities

— Definition 3.2: Multivector current.

The current ([A/m?] (Amperes/square meter)) is defined as

J=n(cp=J)+1(com—M).

When the fictitious magnetic source terms (py,, M) are included, the cur-
rent has one grade for each possible source (scalar, vector, bivector, trivec-
tor). With only conventional electric sources, the current is still a multi-
vector, but contains only scalar and vector grades.

Given the multivector field and current, it is now possible to state Maxwell’s

equation (singular) in its geometric algebra form

— Theorem 3.1: Maxwell’s equation.

Maxwell’s equation is a multivector equation relating the change in
the electromagnetic field strength to charge and current densities and
is written as

10
V+-—|F=J
( +c6t)

Maxwell’s equation in this form will be the starting place for all the sub-
sequent analysis in this book. As mentioned in section 2.5, the operator
V + (1/¢)d; will be called the spacetime gradient'.

This form of spacetime gradient is given a special symbol by a number of authors, but
there is no general agreement on what to use. Instead of entering the fight, it will be
written out in full in this book.

173
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Proof. To prove theorem 3.1 we first insert the isotropic constituency re-
lationships from eq. (3.2) into eq. (3.1), so that we are working with two
field variables instead of four

vV.E=~
€
H
VXE:—M—,ua—
ot
Om (3.6)
V-H=—
i
E
V><H:J+ea—

ot

Inserting a = V into eq. (1.76) the vector product of the gradient with
another vector

Vb=V-b+IVxb. (3.7)

The dot and cross products for E and H in eq. (3.6) can be grouped using
eq. (3.7) into multivector gradient equations

H
VE = e+1(—M—ua—)
€

ot (3.8)
VHzp—m+I(J+ea—E).
u ot

Multiplying the gradient equation for the magnetic field by i/ so that both
equations have the same dimensions, and so that the electric field appears
in both equations as E and not /E, we find

10

VE + ——(InH) = lp -M
c ot € (3.9)

1 0E
c Ot

where u/n = ne = 1/c was used to simplify things slightly, and all the
field contributions have been moved to the left hand side. The first multi-
vector equation has only scalar and bivector grades, whereas the second
has only vector and trivector grades. This means that if we add these equa-
tions, we can recover each by grade selection, and no information is lost.
That sum is

(V+%%)(E+IUH):n(cp—J)+I(cpm—M). (3.10)



3.3 WAVE EQUATION AND CONTINUITY.

Application of definition 3.1 and definition 3.2 to eq. (3.10) proves the
theorem, verifying the assertion that Maxwell’s equations can be consoli-
dated into a single multivector equation. O

There is a lot of information packed into this single equation. Where
possible, we want to work with the multivector form of Maxwell’s equa-
tion, either in the compact form of theorem 3.1 or the explicit form of
eq. (3.10), and not decompose Maxwell’s equation into the conventional
representation by grade selection operations.

3.2.0.1 Problems.

Exercise 3.2 Dot and cross product relation to vector product.

Using coordinate expansion, convince yourself of the validity of eq. (3.7).

Exercise 3.3 Extracting the conventional Maxwell’s equations.

Apply grade 0,1,2, and 3 selection operations to eq. (3.10). Determine
the multiplicative (scalar or trivector) constants required to obtain eq. (3.6)
from the equations that result from such grade selection operations.

3.3 WAVE EQUATION AND CONTINUITY.

Some would argue that the conventional form eq. (3.1) of Maxwell’s equa-
tions have built in redundancy since continuity equations on the charge
and current densities couple some of these equations. We will take an op-
posing view, and show that such continuity equations are necessary con-
sequences of Maxwell’s equation in its wave equation form, and derive
those conditions. This amounts to a statement that the multivector current
J is not completely unconstrained.

— Theorem 3.2: Wave equation and continuity conditions.

The electromagnetic field is a solution to the non-homogeneous wave
equation
10

UF =(V-——|J
( cat)J
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In source free conditions, this reduces to a homogeneous wave equa-
tion, with group velocity c, the speed of the wave in the media. When
expanded explicitly in terms of electric and magnetic fields, and
charge and current densities, this single equation resolves to a non-
homogeneous wave equation for each of the electric and magnetic
fields

1
DE:—Vp+/J@+V><M
€

ot
1 M
H = —me+ea——V><J,
u ot

as well as a pair of continuity equations coupling the respective
charge and current densities

dp
vi+Z oo
I+ 5%
v.oma+m o,
ot

Proof. To prove, we operate on theorem 3.1 with V — (1/c)d;, one of the
factors, along with the spacetime gradient, of the d’Alembertian (wave
equation) operator, which gives

10
OF =|{V--——|J/ 3.20
( cat) (3:20)

Since the left hand side has only grades 1 and 2, eq. (3.20) splits naturally
into two equations, one for grades 1,2 and one for grades 0,3

o2},
(o-22)0,

Unpacking these further, we find that there is information carried in the
requirement that the grade 0,3 selection of eq. (3.21) is zero. In particular,
grade O selection gives

0 =<V -(1/c)dnJ)

- <(V_%aﬁz)(n (cp—J)+I(Cpm—M))> (3.22)

(3.21)

N R
_"(V‘”ar)’
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which demonstrates the continuity condition on the electric sources. Sim-
ilarly, grade three selection gives

0 =((V-(1/c)d)J)s

_ <(V—%%)(n (cp-1J) +I(Cpm_M))>3 (3.23)

=-1 (V M+ %) ,
ot
which demonstrates the continuity condition on the (fictitious) magnetic
sources if included in the current.
For the non-homogeneous wave equation of theorem 3.2, the current
derivatives may be expanded explicitly. For the wave equation for the

electric field, this is

- 12))

N (-

1 1 o)
-Vo-I(VAM) +-n—
e P ( )+cn61

(3.24)

10 1 aJ
—((v-=2)J) = 2vp+uZ 1 vxM
<( cat) >1 e PR VXN

as claimed. The forced magnetic field equation is

o= (")),
ot

1 1 oM
= L (v aTsrevp,+ I (3.25)
nl c ot

1 1 oM
—|-1(v [-Vpo, + le—
I( ( XJ)+,u’0+E(9t)

1 oM
—Vpom +e— -V xJ.
u ot
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3.4 PLANE WAVES.

With all sources zero, the free space Maxwell’s equation as given by the-
orem 3.1 for the electromagnetic field strength reduces to just

10
(V + E(?_t) F(x,t) =0. (3.26)

Utilizing a phasor representation of the form definition 2.9, we will
define the phasor representation of the field as

—1 Definition 3.3: Plane wave.

We represent the electromagnetic field strength plane wave solution
of Maxwell’s equation in phasor form as

F(x,1) = Re (F(k)e™"),

where the complex valued multivector F(K) also has a presumed ex-
ponential dependence

F(K) = Fe /&%,

We will now show that solutions of the electromagnetic field wave equa-
tion have the form

— Theorem 3.3: Plane wave solutions to Maxwell’s equation.

Single frequency plane wave solutions of Maxwell’s equation have
the form

F(x,1) = Re((1+K)k A E e /*xier)

where |[k|| = w/c, k = k/|k|| is the unit vector pointing along the
propagation direction, and E is any complex-valued vector variable.
When a E - k = 0 constraint is imposed on the vector variable E,
that variable can be interpreted as the electric field, and the solution
reduces to

F(x,t) = Re ((1 + R) E e_jk'x+jwt) ,
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showing that the field phasor F(k) = E(k) + InH(K) splits naturally
into electric and magnetic components

E(k) = E ¢ /¥¥
nH(K) = k x E e /*%,

where the directions k, E, H form a right handed triple.

Proof. We wish to act on F(k)e /**+/¢! with the spacetime gradient V +
(1/¢)d;, but must take care of order when applying the gradient to a non-
scalar valued function. In particular, if A is a multivector, then

3
VAe kX = Z e, 0 Ae KX

(3.27)

3
= Z enA (= jky) e /KX

Therefore, insertion of the presumed phasor solution of the field from
definition 3.3 into eq. (3.26) gives

0=—j (k - g)F(k). (3.28)
C
If F(k) has a left multivector factor
w\ ~
F(k) = (k + —) 7, (3.29)
C

where F is a multivector to be determined, then

2o e 2)r

7).

(3.30)
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which is zero if ||K|| = w/c. Let |K|E = Fog+ F; + F, + F3, where
Foy, F1, F», and F3 respectively have grades 0,1,2,3, so that
F(k) = (1+K) (Fo+ Fy + Fy + F3)
=Fo+F,+F,+ Fy+KkFo+kF, + kF, + kF;3
=Fo+Fi+Fy+F3+kFo+k-Fi+k-Fy+k-F3
+kAF +kAF,
= (Fo+k-F\)+(F1 +kFy+k-F,)
+(F2+R-F3+RAF1)+(F3+RAF2).

(3.31)

Since the field F has only vector and bivector grades, the grades zero and
three components of the expansion above must be zero, or

Fo=-k-F
R (3.32)
F3=-KAF,,
SO
Fk) = (1+k)(Fi—k-F + F, -k A Fy)
(3.33)

:(1+R)(F1—RF1+R/\F1+F2—RF2+R'F2).

The multivector 1 + k has the projective property of gobbling any leading
factors of k

(1+kk=k+1

1k (3.34)
sofor F; € F,F,

(A +K(Fi-kF) =1 +k)(F;—F)=0, (3.35)
leaving

Fk)=(1+K)(k-F+kAFy). (3.36)

For k - F, to be non-zero F, must be a bivector that lies in a plane
containing Kk, and k - F, is a vector in that plane that is perpendicular to k.
On the other hand k A F is non-zero only if | has a non-zero component
that does not lie in along the k direction, but k A Fy, like F, describes a
plane that containing k. This means that having both bivector and vector
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free variables F;, and F provide more degrees of freedom than required.

For example, if E is any vector, and F, = k A E, then

(1+R)R-F2 :(1+12)12-(12AE)

- (1K) (£ k(& )
(1 Rk (kA E) D
= (1+Kk)kAE,

which has the form (1 + ﬁ) (R A F ), so the electromagnetic field strength
phasor may be generally written

F(k) = (1 +K)k AEe/*™, (3.38)

Expanding the multivector factor (1 + ﬁ) k A E we find

(1+K)kAE=k-(KAE)+kA{k~AE)]+kAE

o . (3.39)
:E—k(k/\E)+k/\E.

The vector grade has the component of E along the propagation direction
removed (i.e. it is the rejection), so there is no loss of generality should
a E -k = 0 constraint be imposed. Such as constraint let’s us write the
bivector as a vector product k A E = KE, and then use the projective
property eq. (3.34) to gobble the leading k factor, leaving

F(k) = (1 +K)Ee ™ = (E+IkxE) e /*. (3.40)

It is also noteworthy that the directions k, E, H form a right handed
triple, which can be seen by computing their product

(kE)H = (-Ek)(-IKE)
= +IR%K? (3.41)
=1
These vectors must all be mutually orthonormal for their product to be a

pseudoscalar multiple. Should there be doubt, explicit dot products may
be computed with ease using grade selection operations

ond

i = (k(-TkE)) = ~(IE) = 0

 (B(-1RkE)) = (1K) = 0 o

=
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where the zeros follow by noting that /E, Ik are both bivectors. The con-
ventional representation of the right handed triple relationship between
the propagation direction and fields is stated as a cross product, not as
a pseudoscalar relationship as in eq. (3.41). These are easily seen to be

equivalent
k = 1AE
= I(HAE)
5o (3.43)
=IHxE)
=ExH

3.5 STATICS.
3.5.1 Inverting the Maxwell statics equation.

Similar to electrostatics and magnetostatics, we can restrict attention to
time invariant fields (0;F = 0) and time invariant sources (d;J = 0), but
consider both electric and magnetic sources. In that case Maxwell’s equa-
tion is reduced to an invertible first order gradient equation

VF(x) = J(x), (3.44)

— Theorem 3.4: Maxwell’s statics solution.

The solution to the Maxwell statics equation is given by

n”:l:fmA@—XN@»m+Fm
Vv

4 I =]

where F is any function for which VF( = 0. The explicit expansion
in electric and magnetic fields and charge and current densities is
given by

E(x) = i f dv’; (é(x - x"p(x") + (x-x") x M(X’))
14

4n I — x|

H(x) = 4i f dV';3 (J(X’) X (x—-x)+ l(x - x’)pm(x’)) )
T Jv [Ix — x| M




3.5 STATICS.

We see that the solution incorporates both a Coulomb’s law contribution
and a Biot-Savart law contribution, as well as their magnetic source ana-
logues if applicable.

Proof. To prove theorem 3.4, we utilize the Green’s function for the (first
order) gradient eq. (2.200), finding immediately

F(x):de’ Gx, x V' JX)
1

= < f dv’ G(x,x')V'J(x’)> (3.45)
\% 1,2
1 [ (x=x)J(x')
=— | aV{————) .
4r Jy < lIx — x| >12

Here a no-op grade selection has been inserted to simplify subsequent
manipulation?. We are also free to add any grade 1,2 solution of the ho-
mogeneous gradient equation, which provides the multivector form of the
solution.

To unpack the multivector result, let s = x — x’, and expand the grade
1,2 selection

(8012 =ms(co — )12 + (sI(com — M), »
nesp —n(s AJ) + clsp,, — (s A M) (3.46)

1
—sp +nl(J X8) +scopl +s XM,
€

so the field is
1 1 1
F(x):4—de'—3(—sp+s><M)
vy —x|P \e
1V e =l (3.47)
+1— | dV ———— (sco,, +nJ xs) .
el IIX—X’II3( Om +1J X8)

Comparing this expansion to the field components F = E + n/H, our job
is done. o

If this grade selection filter is omitted, it is possible to show that the scalar and pseu-
doscalar contributions to the (x — x")J product are zero on the boundary of the Green’s
integration volume. [18]
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3.5.2 Enclosed charge.

In conventional electrostatics we obtain a relation between the normal
electric field component and the enclosed charge by integrating the elec-
tric field divergence. The geometric algebra generalization of this relates
the product of the normal and the electromagnetic field strength related to
the enclosed multivector current

— Theorem 3.5: Enclosed multivector current.

The enclosed multivector current in the volume is related to the sur-
face integral of AF over the boundary of the volume by

f dAﬁF:deJ.
v 14

This is a multivector equation, carrying information for each grade
in the multivector current. That grade selection yeilds

1
fdAﬁ-E:—dep
v € Jv
fdAﬁxH:deJ
oV 1%
f dAﬁxE:—deM
oV 14
1
fdAﬁ-H:—depm.
)% HJv

Proof. To prove theorem 3.5 simply evaluate the volume integral of the
gradient of the field using theorem 2.11

deVF:f dANF, (3.48)
1 v

and note that

deVF=deJ. (3.49)
14 14
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This is a multivector relationship, containing a substantial amount of in-
formation, which can be extracted by expanding hFf

AF =i (E + I7H)
n-E+IGxE)+n(h-H+IhxH) (3.50)
fi-E - n(d x H) + I(h X E) + In(h - H).

Inserting this into theorem 3.5, and equating grades, we find

fdAﬁ.E:fdv’2

v 1% €

—f dAn(ﬁxH):—denJ
ov \%

If dA(ﬁxE):—IdeM
ov \%

If dAn(ﬁ-H):Idecpm,
av 14

which completes the proof after cancelling common factors and some
minor adjustments of the multiplicative constants. Of course eq. (3.51)
could have obtained directly from Maxwell’s equations in their conven-
tional form eq. (3.1). However, had we integrated the conventional Maxwell’s
equations, it would not have been obvious that the crazy mix of fields,
sources, dot and cross products in eq. (3.49) had a hidden structure as
simple as fav dANGF = deVJ. O

(3.51)

3.5.3 Enclosed current.

In this section we will present the generalization of Ampere’s law to line
integrals of the total electromagnetic field strength.

— Theorem 3.6: Line integral of the field.

The line integral of the electromagnetic field strength is

é dXF=IfdA(ﬁJ—C(£),
94 A on
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where dF /on = (@~ V) F. Expressed in terms of the conventional
consistent fields and sources, this multivector relationship expands
to four equations, one for each grade

56 dx-EzfdAﬁ-M
0A A

95 dxxE=fdA(ﬁ><M+n—p—8—E)
OA A € al’l

56 dx-H:—fdAﬁJ.
0A A

The last of the scalar equations in theorem 3.6 is Ampere’s law

56 dx-H = fﬁ-J=Ienc, (3.52)
0A A

and the first is the dual of Ampere’s law for (fictitious) magnetic current
density>. In eq. (3.52) the flux of the electric current density equals the
enclosed current flowing through an open surface. This enclosed current
equals the line integral of the magnetic field around the boundary of that
surface.

Proof. To prove theorem 3.6 we compute the surface integral of the cur-
rentJ =VF

f d*xJ = f d*xVF. (3.53)
A A

As we are working in IR not R?, the gradient may not be replaced by
the vector derivative in eq. (3.53). Instead we must split the gradient into
its vector derivative component, the projection of the gradient onto the
tangent plane of the integration surface, and its normal component

V=0+h(1" V) (3.54)

The surface integral form eq. (2.139) of the fundamental theorem of geo-
metric calculus may be applied to the vector derivative portion of the field
integral

f d*xVF = f d’x OF + f d*xn (h-V)F, (3.55)
A A A

Even without the fictitious magnetic sources, neither the name nor applications of the two
cross product line integrals with the normal derivatives are familiar to the author.
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fAdzx(J—ﬁ(ﬁ-V)F)
= fA dA (IhJ — (d- V) IF) (3.56)
fAd (1 nJ - 1(;—F)

where the surface area bivector has been written in its dual form d’x =
IfdA in terms of a scalar area element, and the directional derivative has
been written in scalar form with respect to a parameter n that represents
the length along the normal direction. This proves the first part of theo-
rem 3.0.

Observe that the dx F product has all possible grades

dx F = dx (E + InH)
=dx-E+Indx - H+dx ANE+ Indx N\H (3.57)
=dx-E —n(dxxH) + I[(dx X E) + In(dx - H),

as does the InJ product (in general)

mJ =i (2 - nJ+1 (cpm - M))
€

b/—\

=1/ nil]J — ficoy, + iM (3.58)

€
n-M+ntix]J)— ncpm+l(an)+nI——nI(n D).

On the other hand /F = IE — H has only grades 1,2, like F itself. This
allows the line integrals to be split by grade selection into components
with and without a normal derivative

é <dX F>0’3 = fdA <Iﬁ]>0’3
0A A

(3.59)
(dxF)ys = f dA ((IAJ), 2 — (R~ V) IF).
A

0A
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The first of eq. (3.59) contains Ampere’s law and its dual as one multivec-
tor equation, which can be seen more readily by explicit expansion in the
constituent fields and sources using eq. (3.57), eq. (3.58)

95 (dx-E+In(dx-H)):fdA(ﬁ-M—nI(ﬁ-J))
0A A

56 (=n(dx x H) + I(dx X E)) = f dA(n(ﬁ x J) = Acom
0A A

craxMy+arf - 2 (m- nH)).
€ On

(3.60)

Further grade selection operations, and minor adjustments of the lead-
ing constants completes the proof.

It is also worth pointing out that for pure magnetostatics problems
where J = nJ, F = InH, that Ampere’s law can be written in a trivec-
tor form

56 dx/\F:IfdAﬁ-lenfdAﬁ-J. (3.61)
0A A A

This encodes the fact that the magnetic field component of the total elec-
tromagnetic field strength is most naturally expressed in geometric alge-
bra as a bivector. O

3.5.4  Example field calculations.

Having seen a number of theoretical applications of the geometric alge-
bra framework, let’s now see how some of our new tools can be used to
calculate the fields for specific static electromagnetism charge and current
configurations.

3.5.4.1 Line segment.

In this example the (electric) field is calculated at a point on the z-axis,
due to a finite line charge density of A along a segment [a, b] of the x-axis.
The geometry of the problem is illustrated in fig. 3.1.

This is a fairly simple problem, and can be found in most introductory
electromagnetic texts, usually set with the field observation point on the
z-axis, and with a symmetric interval [—[/2, [/2], which has the side effect
of killing off all but the x-axis component of the field. For comparision
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€

x' = xe

Figure 3.1: Line charge density.

purposes, this problem will be tackled first using conventional algebra,
and then using geometric algebra.

Conventional approach.  The integral we wish to evaluate is

At 06— + rsin @
E(x) = —— f gy Feos0 = ver + rsin . /ej . (3.62)
4ne Ja (r? + x2 — 2rxcos )

This can be non-dimensionalized with a u = x/r change of variables,
and yields an integral for the x component and the z component of the
field

A f'b/r cosf—u
= u
Y Arer Jor (1+u2 —2ucosd)*?

Asing (b 302
E, =220 f du(1+u> = 2ucos6)
drer Joyr

(3.63)

There is a common integral in the x and y components of the field. We can
tidy this up a bit by writing

bir 302
A:f du(1+u2—2ucos9) /
a

r

b (3.64)
I =32
B=f udu(l+u2—2ucosé) ,
ajr
and then put the pieces back together again for the total field
A
E=—((Acosf— B)e; + Asinfes) . (3.65)
4rer

Some additional structure can be imposed by introducing a rotation
matrix to express the field observation point

X = ngel, (366)
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where

cos§ 0 -—sinf
Ro=| 0 1 0o |- (3.67)

sinf 0 cos@

Writing 1 for the R3 identity matrix, the field is

A
dmer

E =

(ARg - B1) e;. (3.68)

In retrospect we could have started using eq. (3.66) and obtained this re-
sult more directly. The A integral above results in both scaling and rotation
of the field, depending on the observation point and the limits of the inte-
gration. The B integral contributes only to the x-axis oriented component
of the field.

Using geometric algebra.  Introducing a unit imaginary i = e;3 for the
rotation from the x-axis to the z-axis, the field point observation point is

x = reje”. (3.69)

The charge element point is X’ = xej, so the difference can now be
written with e; factored to the left or to the right

x—-x =e¢ (reig - x) = (re_ie - x) e. (3.70)

These left and right factors can be used to convert the squared length of
x — X’ into from a vector product into a product of conventional looking
complex conjugates

) . ,
(x-x')" = (re ’H—x)elel (re")—x)

. ‘ (3.71)
= (re_’g - x) (re’9 - x) ,
so the squared length of the difference is
(x-x) =+ - rx(eig + e_ig)
., (3.72)
=r“+x"—2rxcoséb,
and the total (electric) field is
A ([ rejel? — xe,
= — X
4me Jo (124 x2 = 2xrcos6)’?
(3.73)

e fb/r A0 _
= u :
dmer Jar (1 + u? = 2ucos )/?
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We have replaced the matrix representation that had nine components,
four zeros, and a lot of redundancy with a simple multivector result. More-
over, the integral factor has the appearance of a conventional complex in-
tegral, and we can toss it as is into any numerical or symbol integration
systems capable of complex number integrals for evaluation. The end re-
sult is a single vector valued inverse radial factor Ae; /(4mer), multiplying
by an integral that served to either scale or rotate-and-scale.

In particular, for 8 = n/2, plugging this integral into Mathematica, we
find

e —u 1+iu
du = , (3.74)
f (1+u2—2u0089)3/2 V1 +u?

and for other angles 6 # nx/2

. (3.75)

fd e —u (1 — ue®) V1 + u? — 2ucos
u = -
(1+u? - 2ucos6)? (1 +u?)sin(26)

The numerator factors like e;(1 + iu) and e;(1 — ue™) compactly de-
scribe the direction of the vector field at the observation point. Either of
these can be expanded explicitly in sines and cosines if desired

e (1 +_lu) =€ +ues ' (3.76)
e (1 —ue ™) =e;(1 —ucosb) + ues sin .

Perhaps more interesting than the precise form of the solution is the fact
that geometric algebra allows for the introduction of a “complex plane”
for many problems that have only two degrees of freedom. When such a
complex plane is introduced, existing Computer Algebra Systems (CAS),
like Mathematica, can be utilized for the grunt work of the evaluation.

3.5.4.2 Infinite line current.

Given a static line charge density and current density along the z-axis

p(X) = A5(x)5(y)

(3.77)
J(x) = vp(x) = vAe36(x)d(y),
the total multivector current is
J=np-J)
= 1(c = ve3)A6(x)5(y) (3.78)

_ g(l - £e3)5(x)5(Y)-
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We can find the field for this current using theorem 3.4. To do so, let
the field observation point be x = x, + zes, so the total field is

F(x) = L fdx/dy/dz/ (x=x")(1- (V/3C)e3)>1,26(x,)6(y,)
% lIx — x|
A d Axy +(z—2)e3)( — (V/C)63)>1 2
dre J_o (X +(z-2 )2)
(3.79)

A (x, —(v/o)x e3) f"" d7
dme o (Xi 4 (Z—Z')2)3/2

Aes f °° (z—-2)d7
+ —_—
4re _oo( 5 3/2

x5 +(z—z’)2)

The first integral is 2/x>, whereas the second is zero (odd function,
over even interval). The bivector term of the grade selection above had
ax,; Ae3 = x,e3 factor, which can be further reduced using cylindrical
coordinates X = Rp + zes3, since X, = Rp, which leaves

F(x) = Lp(l—v/c) E(1-v/c) = E+1( xE) (3.80)

where v = ves. The vector component of this is the electric field, which is
therefore directed radially, whereas the (dual) magnetic field n/H is a set
of oriented planes spanning the radial and z-axis directions. We can also
see that there is a constant proportionality factor that relates the electric
and magnetic field components, namely

InH = -Ev/c, (3.81)
or

H=vxD. (3.82)
Exercise 3.4 Linear magnetic density and currents.

Given magnetic charge density p,, = 4,,6(x)é(y), and current density
M = vesp,, = Vo, show that the field is given by

o= (1),

or with B = 1,,0/(4nR),

F=Bxv+cIB.
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3.5.4.3 Infinite planar current.

A variation on the above example puts a uniform charge density p(x) =

00(z) in a plane, along with an associated current density J(x) = ve 190(x),

where i = ej,. Letting v = ve;e”, the multivector current is
J(x) = on (c-v)6(2), (3.83)

so the field off the plane is

d7’ dA’
F(x)=-— dre fff Ix — - ,”3« -x')(1 —V/C)>125(Z) (3.84)

If x; = (xAe3)es, and x|| (x" A e3)e3, are the components of the
vectors X, x’ in the x-y plane then integration over 7z’ and a change of
variables x| —x) = r/ ere’” yields

r'dr'd¢f .
Fx) = Ire ff(z +r’2)3/2 zeg—rele )(1—V/C)>1’2. (3.85)

The ¢ integrands are killed, so for z # 0, the field is

©_(ex(l =V/H- (3.86)

g
F(x) =
(x) 4relz]

Since v € span {e}, e;} the product e;v is a bivector and the grade selec-
tion can be dropped, leaving

F(x) =

osena), (1 - X). (3.87)
c

This field toggles sign when crossing the plane, but is constant other-

wise. The electric and magnetic field components are once again related

by eq. (3.82).

Exercise 3.5 Planar magnetic density and currents.

Given magnetic charge density p,, = 0,,6(2), and current density M =

Vom, V = vere?, i = e|,, show that the field is given by

o = TSI, )

il
c
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Figure 3.2: Circular line charge.
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3.5.4.4 Arc line charge.

In this example we will examine the (electric) field due to a line charge
density of A along a circular arc segment ¢’ € [a, b], of radius r in the
x-y plane. The field will be evaluated at the spherical coordinate point
(R, 0, $), as illustrated in fig. 3.2.

Using the GA spherical parameterization of eq. (2.91), and eq. (2.92),
the observation point now has the simple representation

X = Resel. (3.88)

and is the product of a polar directed vector with a complex exponential
whose argument is the polar rotation angle. The bivector j is a function
of the azimuthal angle ¢, and encodes all the geometry of the rotation.
To sum the contributions of the charge elements we need the distance
between the charge element and the observation point. That vector differ-
ence is
’_ 6 i
X—X = Reze’” —reje' . (3.89)
Compare this to the tuple representation
Xx—X = (Rsinfcosp—rcos¢’,Rsinfsin¢ — rcos¢’,cos ), (3.90)

for which the prospect of working with is considerably less attractive. The
squared length of eq. (3.89) is

(x—x)? = R + 17 = 2Rr (ese”) - (e1'). (3.91)
The dot product of unit vectors in eq. (3.91) can be reduced using scalar
grade selection
(e3ej9) . (elei"s,) <(e1 sin 9€i¢) (elei¢/)>
sin (e ¢’ (3.92)

sin @ cos(¢’ — @),

SO

”X - X'” = \/R2 + 72 — 2Rrsin @ cos(¢’ — o). (3.93)

The electric field is

F = f Ardg’ e Z e 399
drey J, (R? + r?> = 2Rrsinfcos(¢’ — ¢))
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Non-dimensionalizing eq. (3.94) with u = r/R, a change of variables
a = ¢’ — ¢, and noting that i& = e;¢, the field is

Ar b=¢ e3el? — yee?el®
= 2 da : 3/2
dneoR> Ja-yp (1 +u?—2usinfcosa) 3.5
Ar b-¢ f + Puie’™ 599
= —2 f da 32’
dreoR* Ju—g (1 +u?—2usinfcos @)
or
| ar b=¢ da
F=t 2 : 3/2
4rneR* Ja-g (1 +u? - 2usinfcosa)
(3.96)

N (3( Arui f b-¢ eda ]
4neoR? Jumy (1 +u? —2usinfcosa)*?)

Without CAS support for GA, this pair of integrals has to be evaluated
separately. The first integral scales the radial component of the electric
field. The second integral scales and rotates ¢ within the azimuthal plane,
producing an electric field component in a ¢ = ¢e'® direction.

3.5.4.5 Field of a ring current.

Let’s now compute the field due to a static charge and current density on
aring of radius R as illustrated in fig. 3.3.

Figure 3.3: Field due to a circular distribution.

A static charge distribution on a ring at z = 0 has the form

0(X) = 16(2)5(r — R). (3.97)
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As always the current distribution is of the form J = vp, and in this case
the velocity is azimuthal v = e¢® i = e|5. The total multivector current
is

J = Lo -R) (1 - X). (3.98)
€ C

Let the point that we observe the field, and the integration variables be

X =ze3+rp 00)
X =7es+7p. o
The field is
A rr gt ’ ’ ’
F(x) = —fffdzrdrdqﬁ 5(7)8(r — R)X
dre
(=05 9= 1) (1),
(=202 +(p—rp)?)" (3.100)
- L Rd¢’<(ze3 +rp—Rp') (1 - geze‘d”»l’z
4re (ZZ + (rﬁ _Rﬁ1)2>3/2

Without loss of generality, we can align the axes so that p = e, and
introduce dimensionless variables

Z=2z/R
F= /R (3.101)
which gives
3 Zai _ i _ Ya, ¥
o 27 d¢/<(ze3 +7e; —eé )(1 exe! ))1’2 G102)
4reR J (22 + (Fe, — elei¢/)2)3/2
In the denominator, the vector square expands as
~ N2 _ o i a2 i
fe| —eje =(F—e")ej(F—e
(Fe; —e1e” )™ = ( )ei( ) (3.103)

=7 +1—2Fcos(¢),

and the grade selection in the numerator is

~ ~ Ly v Ly ~ ~ Lyl
<(ze3 +7e| —ee? )(1 — —eye’? )> = Ze; + 7e; — e
c 12

v ~ Ly -~ .
-- (ze3le’¢ + Ficos(¢) + z) .
c
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(3.104)

Any of the exponential integrals terms are of the form

21 ., 2
f dd/ e Flcos(d')) = f 4o’ cos(@)f(cos(@)).  (3.105)

0 0

since the i sin ¢’ f(cos(¢) contributions are odd functions around ¢’ = 7.
For general z, r the integrals above require numeric evaluation or spe-
cial functions. Let

2 1
A= f dg¢’
0 (1422 +7 —2Fcos(¢))?
4
4E (_(7—1)§+z2)

V2 +FE-12 (2 +F+12)

(3.106a)

>
Il

o cos(¢’)
fo @ (1422 +7 —2Fcos(¢))?
) 2B +P+1)E(-mz) - (B + ¢+ D) K (-=5=2))

FNEZ+ - 12(2+F+1)?) ’

(3.106b)

where K (m), E(m) are complete elliptic integrals of the first and second
kind respectively. As seen in fig. 3.4, these functions are similar, both
tailing off quickly with z, p, with largest values the ring.

(b)

Figure 3.4: (a) AGZ, p). (b) BGZ, p).

Finally, restoring generality by making the transformation e; — eje’® =
D.er — exe'® = ¢, the field is now fully determined
A

" 4neR ((Ze3+7~A _¥)A_(f’+; (Ze3i)+7‘i))B). (3.107)



3.5 STATICS.

The field directions are nicely parameterized as multivector expres-
sions, with the relative weightings in different directions scaled by the po-
sition dependent integral coefficients of eq. (3.106). The multivector field
can be separated into its respective electric and magnetic components by
inspection

A
E = (F) = 7 (2Ae3 + p7A - B))

Av

1 ) (3.108)
H= %<_[F>1 = — (—63 (A + 17B) —¢ZA),

4nR

which, as expected, shows that the static charge distribution p oc A* only
contributes to the electric field, and the static current distribution J o« vA
only contributes to the magnetic field. See fig. 3.5, fig. 3.6 for plots of the
electric and magnetic field directional variation near Z = 0, and fig. 3.7
for larger z where the azimuthal component of the field dominates.

Figure 3.5: Electric field direction for circular charge density distribution near

z=0.

Exercise 3.6 Magnetic sources on a ring.

199

Given a constant (magnitude) multivector current on aring J = 14,,6(z)0(r —

R)(c — veye'®), i = ejn, show that the field is

AmC ({-. _~ v A VoL
F = TR ((zt+r¢e3 + Ee3)A+(e3¢+ - (zp re3))B).

4 oc: proportional to.
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Figure 3.6: Magnetic field direction for circular current density distribution near
z=0.

Figure 3.7: Magnetic field for larger z.
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3.5.4.6 Ampere’s law. Two current sources.

Let’s try using Ampere’s law as stated in theorem 3.6 two compute the
field at a point in the blue region illustrated in fig. 3.8. This represents
a pair of z-axis electric currents of magnitude /;, I, flowing through the
z = 0 points py, p2 on the x-y plane.

Figure 3.8: Magnetic field between two current sources.

Solving the system with superposition, let’s consider first one source
flowing through p = (p,, py,0) with current J = e3/.6(x — p,)6(y — py),
and evaluate the field due to this source at the point r. With only magnetic
sources in the multivector current, Ampere’s law takes the form

56 dx F = —IfdAe3(—77J) = Inl.. (3.109)
9A A

The field F must be a bivector satisfying dx - F = 0. The circle is parame-
terized by

r =p+Ree?, (3.110)
SO

dx = Reye'dp = Rpdg. (3.111)
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With the line element having only a ¢ component, F must be a bivector
proportional to e3#. Let F = Fges e'®, where Fy is a scalar, so that drF is
a constant multiple of the unit pseudoscalar

2 2 ) )
f drF = RF() f eze‘¢d¢e31e’¢
0 0

21 o
:RFOf e231e_’¢e’¢d¢
0

= 2rIRF),

(3.112)

SO

1

=—1I
2aR ¢
I

" 2R
The field strength relative to the point p is

Fo
(3.113)

(3.114)

Switching to an origin relative coordinate system, removing the z = 0
restriction for r and pg, and summing over both currents, the total field at
any point r strictly between the currents is

nly 1
F = —e:
S 2m Tes (e A(r—px))
ol . (3.115)

Gh 2mesn(r— Pr)

The bivector nature of a field with only electric current density sources is
naturally represented by the wedge product e3 A (r — px) which is a vector
product of e3 and the projection of r — p; onto the x-y plane.

3.6 DYNAMICS.
3.6.1 Inverting Maxwell’s equation.

Maxwell’s equation (theorem 3.1) is invertable using the Green’s function
for the spacetime gradient theorem 2.19. That solution is
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— Theorem 3.7: Jefimenkos solution.

The solution of Maxwell’s equation is given by

1 P 1 .
F(x,0) = Fo(X,0) + — f av' [SIx )+ — (1+8) I, 1)),
47 r2 cr

where Fy(x,t) is any specific solution of the homogeneous equa-
tion (V+(1/¢)d;) Fy = 0, time derivatives are denoted by over-
dots, and all times are evaluated at the retarded time ¢, = ¢ — r/c.
When expanded in terms of the electric and magnetic fields (ignor-
ing magnetic sources), the non-homogeneous portion of this solution
is known as Jefimenkos’ equations [10].

E- L (av (i (p(xl’t’) ; p(x”t’)) - %J(x’,zr))

47 €r r c
1 ) ] (3.116)
H= _fdv/ (_j(x/7 tr)+ _J(X/’ tr))Xf',
4n cr r2
Proof. The full solution is
F(x,t) = Fo(x,1) + de’dt' Gx-x,r-1")JX, 1)
= Fo(x,1)
1 £fo 10
— |l av'dt||-=—+=+—=|6(- -1 JX, 1
+47rf (( r25r+r2+cr8t) (=rfe+ )) (x.7)
(3.117)

where r = x—x',r = ||r|| and # = r/r. With the help of eq. (C.18), the
derivatives in the Green’s function eq. (3.117) can be evaluated, and the
convolution reduces to

fdt’G(X -x,t—-"HJX,1)

1 (¢t P 1)\ d 1 d
= —|=I& 1) =~~~ | = I 1) + ——J(X
47r(r2 (1) r( c)dt, (1) crdt, & r))

ty=t—r/c

(3.118)

There have been lots of opportunities to mess up with signs and factors
of ¢, so let’s expand this out explicitly for a non-magnetic current source
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J = p/e —nJ. Neglect the contribution of the homogeneous solution Fj,
and utilizing our freedom to insert a no-op grade 1,2 selection operation,
that removes any scalar and pseudoscalar terms that are necessarily killed
over the full integration range, we find

z_f <— ——nJ)+},<1+r>(§‘”J)>lz

dv'(izp s J——J+—f--erJ) (3.119)

47r cr cr €

1 T VT :
O LS LA S/ NS S L PV 1
dr er’  ecr cr cr r?
As F = E + InH, the respective electric and magnetic fields by inspec-
tion. After re-inserting the space and time parameters that we suppressed
temporarily, our work is done. O

The disadvantages of separating the field and current components into
their constituent components is also made painfully obvious by the com-
plexity of the conventional statement of the solution compared to the
equivalent multivector form.

3.7 ENERGY AND MOMENTUM.

3.7.1 Field energy and momentum density and the energy momentum
tensor.

It is assumed here that the conventional definitions of the field energy and
momentum density are known to the reader, as well as the conservation
equations relating their space and time derivatives. For reference, the con-
ventional definitions of those densities follow.

—1 Definition 3.4: Energy and momentum density, Poynting vector. |7

The quantities & and & defined as
€= ! (6E2 +,uH2)
2

1
&Pc=-ExH,
c
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are known respectively as the field energy density and the momentum
density. S = ¢*® = E x H is called the Poynting vector.

We will derive the conservation relationships that justify calling &, P the
energy and momentum densities, and will also show that the Poynting
vector represents the energy flux through a surface per unit time.

In geometric algebra, it is arguably more natural to write the Poynting
vector as a bivector-vector dot product such as

1
S =-(InH) -E, (3.120)
n

since this involves only components of the total electromagnetic field
strength ' = E + InH. However, we can do better, representing both &
and S in terms of F' directly. The key to doing so is making use of the fact
that the energy and momentum densities are themselves components of a
larger symmetric rank-2 energy momentum tensor, which can in turn be
represented compactly in geometric algebra.

— Definition 3.5: Energy-momentum and Maxwell stress tensors. [

The rank-2 symmetric tensor @*, with components
00 _ € (g2, 212
0% = (E? +*H?)
o1
@%=—(ExH)- e
C

e

1
—€ (E,'Ej + 772H,'Hj - 55,']' (E2 + UZHZ)) s

is called the energy momentum tensor. The spatial index subset of
this tensor is known as the Maxwell stress tensor, and is often repre-
sented in dyadic notation

(a‘ ?) -b = Z al-T,-jbj,
i.j

or

Ld
a-T= E aiTijej
L.J
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where T;; = oL

Here we use the usual convention of Greek indices such as y, v for ranging
over both time (0) and spatial {1, 2, 3} indexes, and Latin letters such as i, j
for the “spatial” indexes {1, 2, 3}. The names and notation for the tensors
vary considerably’.

In geometric algebra the energy momentum tensor, and the Maxwell
stress tensor may be represented as linear grade (0, 1)-multivector valued
functions of a grade (0, 1)-multivector.

—1 Definition 3.6: Energy momentum and Maxwell stress tensors. [

We define the energy momentum tensor as
1 t
T(a) = EEF aF',

where a is a grade (0, 1)-multivector parameter. We introduce a short-
hand notation for grade one selection with vector valued parameters

T(a) = (T (),

and call this the Maxwell stress tensor.

—1 Theorem 3.8: Expansion of the energy momentum tensor.

Given a scalar parameter @, and a vector parameter a = ), aiex, the
energy momentum tensor of definition 3.6 is a grade (0, 1)-multivector,
and may be expanded in terms of &, S and T(a) as

T(a+a):a(8+§)—a-§+T(a),
C C

where T(e;) - e; = —©Y, or T(a) = a- T.

5 O in definition 3.5 is called the symmetric stress tensor by some authors [16], and the

energy momentum tensor by others, and is sometimes written T*” ([19], [7]). The sign
conventions and notation for the spatial components @/ vary as well, but all authors
appear to call this subset the Maxwell stress tensor. The Maxwell stress tensor may be
written as o j(= —©%) [19], or as T;;(= —©%) ([10], [16].)
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Theorem 3.8 relates the geometric algebra definition of the energy mo-
mentum tensor to the quantities found in the conventional electromag-
netism literature.

Proof. Because T is a linear function of its parameter, we may prove this
in parts, starting with @ = 1,a = 0, which gives

1
T(1) = 5eFFT
1
= 56(E+IT]H) (E—InH)

= Se(E?+7’H?) + %Ien (HE - EH)
; (3.121)
(6E2 + uH?) + “HAE

1
= 5(eE2+uH2)+ “ExH
=&+
C

An immediate take away from this expansion is that we may dispense
with any requirement to refer to electric or magnetic field components
in isolation and can express the energy and momentum densities (and
Poynting) vector in terms of only the total electromagnetic field strength

&= %e<FF"'>
Pc = %e<FFT> 1 (3.122)
S = 2IU(FF1)

The power of this simple construction will be illustrated later when we
compute the field energy and momentum densities for a number of Maxwell
equation solutions in their geometric algebra form.

An expansion of T(ey) is harder to do algebraically than eq. (3.121), but
doing so will demonstrate that 7'(a) is a 0,1 grade multivector parameter
for any grade 0,1 parameter®. Cheating a bit, here are the results of a

6 Such an expansion is a worthwhile problem to develop GA manipulation skills. The reader
is encouraged to try this independently first, and to refer to appendix E for hints if re-
quired.
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brute force expansion of 7'(a) using a Mathematica GA computer algebra
package

T(1) = g(E%+E§+E§)+%”2(H$+H§+H§)
+ene (EyH; — E3H)) (3.123a)
+exne (EsH, — E1H3)
+esne (E\H, — ExH)y)

T(e1) = ne (E3H, — E>H3)

+ lele(Ez—Ez—Ez)+ 6—'72(H2—H2—H2)
2 e T S A (3.123b)
+e2€(E1E2 +T]2H1H2)

+ e3e(E1E3 + 172H1H3)

T(ey) = ne (E1Hs — E3H))

+e1€(E1Ey + 11 H Hy)
1 2+ E2_ 2 en’ H? + H2 — H2 (3.123¢)
+§e25(_ 1t ey~ 3)+7(_ 1Ty = 3)

+ e3€ (E2E3 + 7]2H2H3)

T(e3) = ne (E2H) — E1H,)
+e1€(E 1 E3 + 11 H Hs )
+ ee (E2E3 + 772H2H3) (3.123d)
1 2 2 2 6772 2 2 2
+ ze3e(—E1 -E3+E3)+ - (-H} - H3 + H3)

Comparison to definition 3.5 shows that multivector energy momentum
tensor is related to the conventional tensor representation by

(T(1)y = 0’ = @Y

(T(D)); - e = Oy ="
(T(e) = O, = -0"

T(e) e; = O/ = @7 = T;;.

(3.124)
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The only thing left to show is that how T(a) is equivalent to the dyadic
notation found in ([10], [16]).

T(a) = ) a/T(e)
= Z a; (T(ei) . ej) ej
i.j
= Z a,‘T,‘jej
i.j

—aT.

(3.125)

The dyadic notation is really just a clumsy way of expressing the fact that
T(a) is a linear vector valued function of a vector, which naturally has a
matrix representation. O

3.7.2  Poynting’s theorem (prerequisites.)

Poynting’s theorem is a set of conservation relationships between relating
space and time change of energy density and momentum density, or more
generally between related components of the energy momentum tensor.
The most powerful way of stating Poynting’s theorem using geometric
algebra requires a few new concepts, differential operator valued linear
functions, and the adjoint.

— Definition 3.7: Operator valued multivector functions.

Given a multivector valued linear functions of the form f(x) = AxB,
where A, B, x are multivectors, and a linear operator D such as V, 9,,
or V + (1/¢)d;, the operator valued linear function f(D) is defined as

f(D)=ADB=(AD)B+AD B),

where B indicates that D is acting bidirectionally to the left and to
the right.

Perhaps counter intuitively, using operator valued parameters for the
energy momentum tensor 7" or the Maxwell stress tensor T will be par-
ticularly effective to express the derivatives of the tensor. There are a few
cases of interest, all related to evaluation of the tensor with a parameter
value of the spacetime gradient.
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— Theorem 3.9: Energy momentum tensor operator parameters. [

laT 1 10 S

1100 = 7 ;5(8 ;)
S
Wy =-v.2

3
(T(V)) =T(V) = > (V-T(e) e
k=1

Proof. We will proceed to prove each of the results of theorem 3.9 in
sequence, starting with the time partial, which is a scalar operator
T(d)) = gF o, F'
€
= = (0,F)F" + F(o,F'
5 (@F)FT + F@,F") G126
€
= =0,FF"
2 t
=0,T(1).

To evaluate the tensor at the gradient we have to take care of order.
This is easiest in a scalar selection where we may cyclically permute any
multivector factors

6 >
(T(V)) = 5<F \Y FT>
_ §<VF*F> (3.127)
- §V<F%F>1’
but

F'F = (E—-IyH) (E + InH)
= E? + ”H? + I (EH - HE) (3.128)
=E’>+°H? - 27E x H.

Plugging eq. (3.128) into eq. (3.127) proves the result.
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Finally, we want to evaluate the Maxwell stress tensor of the gradient

M

TV) = Y & (T(V)) e

>~
I

€0 (T(en) - €x)
(3.129)
€O (T(er) - ey)

$ ks
NICRINEE

>~
—_

e (V-T(ep),

M

>~
Il
—_

as claimed. O

Will want to integrate T(V) over a volume, which is essentially a diver-

gence operation.

Theorem 3.10: Divergence integral for the Maxwell stress tensor.

deT(V):f dA T(#).
1 v

Proof. To prove theorem 3.10, we make use of the symmetric property of
the Maxwell stress tensor

f dVT(V):Z f dV eV - T(ey)
v T Jv
:Z f dA exh - T(ey)
:Z f dA ein,,T(ey) - e,
k,m %
:Z f dA exny,T(e,) - ey
k,m )%
:Z f dA e, T() - e

= f dA T(h),
4%

(3.130)
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as claimed. O

Finally, before stating Poynting’s theorem, we want to introduce the
concept of an adjoint.

—1 Definition 3.8: Adjoint.

The adjoint A(x) of a linear operator A(x) is defined implicitly by the
scalar selection

(YA()) = (xAp)).

The adjoint of the energy momentum tensor is particularly easy to calcu-
late.

— Theorem 3.11: Adjoint of the energy momentum tensor.

The adjoint of the energy momentum tensor is
T(x) = gFTxF.

The adjoint T and T satisfy the following relationships
(T) =) =6
(ﬂnx=—wam=—§

@m»=—ww»=w§
(T@), = (T@) =T

Proof. Using the cyclic scalar selection permutation property (ABC) =
(CAB) we form

(T() = 5(xFyF')

(3.131)
— SyFt
= 2<yF xF >
Referring back to definition 3.8 we see that the adjoint must have the
stated form. Proving the grade selection relationships of eq. (3.131) has
been left as an exercise for the reader. A brute force symbolic algebra
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proof using Mathematica is also available in stressEnergyTensorValues.nb.

O]

As in theorem 3.9, the adjoint may also be evaluated with differential
operator parameters.

Theorem 3.12: Adjoint energy-momentum tensor.

= 1or(1) 1086
(T} ==~ =z
= 1 0S

(T0m), = -5
= S
(TW)=v. :

<T(V)>1 = T(V).

Proof. The proofs of each of the statements in theorem 3.12 are all fairly
simple

_ P
T((1/09) = - EE (F'F)

(3.132)
10 S
(T(V)) = <1T(V)>
=(VT(1))
VT, (3.133)
S

=V.—-.
c
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. (3.134)

3.7.3  Poynting theorem.

All the prerequisites for stating Poynting’s theorem are now finally com-
plete.

1 Theorem 3.13: Poynting’s theorem (differential form.)

The adjoint energy momentum tensor of the spacetime gradient sat-
isfies the following multivector equation

T(V +(1/0)d,) = (FTJ + JTF)

The multivector F'J + J'F can only have scalar and vector grades,
since it equals its reverse. This equation can be put into a form that
is more obviously a conservation law by stating it as a set of scalar
grade identities

10 €
VA T@) + — 5 (T@) = 5 (a(F'T + T 1 F)),
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or as a pair of scalar and vector grade conservation relationships

108 S 1

-——+V.—=—(E-J+H-M

c Ot c C( 1 )

1 oS
__ZE+T(V):pE+eE><M+pmH+,uJ><H-
C

Conventionally, only the scalar grade relating the time rate of change
of the energy density to the flux of the Poynting vector, is called
Poynting’s theorem. Here the more general multivector (adjoint) re-
lationship is called Poynting’s theorem, which includes conserva-
tion laws relating for the field energy and momentum densities and
conservation laws relating the Poynting vector components and the
Maxwell stress tensor.

Proof. The conservation relationship of theorem 3.13 follows from

o 1o 1 ¥ 1
FI\V +=06,|F=(|V+-06,|F| F+F"[|V+-0,|F
c c c (3.135)
=JTF+F'J
The scalar form of theorem 3.13 follows from
(aT(V +(1/c)dp) = (V + (1/0)d)NT (a))

18 (3.136)
=V (T(a)), + ——(T(a)).
c ot

We may use the scalar form of the theorem to extract the scalar grade,
by setting a = 1, for which the right hand side can be reduced to a single
term since scalars are reversion invariant

(F1J) = (F1J) = (JTF), (3.137)
SO
VT 4Ty =V 1
- §<FTJ +J°F)
= e(F‘LJ>

= e((E—I}]H) (77 (cp—J) +I(Cpm _M))>
=e(-nE-J-nH-M)

1 1
=—-E-J--H-M,
C C
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(3.138)

which proves the claimed explicit expansion of the scalar grade selection
of Poynting’s theorem.

The left hand side of the vector grade selection follows by linearity
using theorem 3.12

(T(V+1/0)d), = (T +T((1/)d)),
168 (3.139)
T

The right hand side is a bit messier to simplify. Let’s do this in pieces by

=T(V) -

superposition, first considering just electric sources

€

2

(e(FTJ+ J'F)) %(ek ((E = InH)(cp - J) + (cp — D)(E + IyHD)))

1
= 508 ((E—InH)(cp - ) + (cp — D(E + InH)),
= %ek-(cpE+h]H/\J)

1
= e (coE —nH X J)

=e;- (PE+uJxH),
(3.140)

and then magnetic sources
§<ek (FfJ+JF))

= §<ek ((E — InH)I(cpm — M) — I(cpm — M)(E + I7H)))

€ 141
= Sex (B + 7H)(cpm ~ M) + (com ~ M)(-TE + i), 14D
= eey - (ncomH — ITE AM)
=e; (omH+€eEXM).

Jointly, eq. (3.139), eq. (3.140), eq. (3.141) complete the proof. ]

The integral form of theorem 3.13 submits nicely to physical interpreta-
tion.

Theorem 3.14: Poynting’s theorem (integral form.)
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éf‘dVé’z—f‘ dAﬁ-S—de(J-E+M-H)
ot Jy 1% 1%

de(pE+JXB)
v

+de(pmH—eMxE)=—2de@+f dA T(h).
v ot Jy v

Proof of theorem 3.14 is left to the reader, but requires only the divergence
theorem, theorem 3.10, and definition 3.4.

The scalar integral in theorem 3.14 relates the rate of change of total
energy in a volume to the flux of the Poynting through the surface bound-
ing the volume. If the energy in the volume increases(decreases), then in
a current free region, there must be Poynting flux into(out-of) the volume.
The direction of the Poynting vector is the direction that the energy is
leaving the volume, but only the projection of the Poynting vector along
the normal direction contributes to this energy loss.

The right hand side of the vector integral in theorem 3.14 is a contin-
uous representation of the Lorentz force (or dual Lorentz force for mag-
netic charges), the mechanical force on the charges in the volume. This
can be seen by setting J = pv (or M = p,, M)

de(pE+J><B)=dep(E+v><B)
\% \%4

(3.142)
= qu(E+v><B).
v
As the field in the volume is carrying the (electromagnetic) momentum
Pem = fv dV®, we can identify the sum of the Maxwell stress tensor
normal component over the bounding integral as time rate of change of
the mechanical and electromagnetic momentum

dpmech + dpern

dt dt

= f dAT(h). (3.143)
)%

3.7.4  Examples: Some static fields.

We’ve found solutions for a number of static charge and current distribu-
tions.
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(a) For constant electric sources along the z-axis (eq. (3.80)) , with cur-
rent J moving with velocity v = ves, the field had the form F =

Ep(1-v/c).

(b) For constant magnetic sources along the z-axis (exercise 3.4) , with
current M moving with velocity v = ves, the field had the form F =

nHIp (1-v/c).

(c) For constant electric sources in the x-y plane (eq. (3.87)) , with cur-
rent J moving with velocity v = ve e, i = ey, the field had the form
F = Ee3 (1 —V/C).

(d) For constant magnetic sources in the x-y plane (exercise 3.5) , with
current M moving with velocity v = vee'? i = ey, the field had the
form F = nHi (1 -v/c).

In all cases the field has the form F = A(1 — v/c), where A is either a
vector or a bivector that anticommutes with the current velocity v, so the
energy momentum tensor 7'(1) has the form

T(1) = gA(l _v/e)At

€ i 2
= EAAT(1+V/C) (3.144)
2
- fAAT(l +(X) +2X).
2 c c
For the electric sources this is
S 2
g+2 = E152(1+(X) +2X), (3.145)
c 2 c c
or
2
&= EE2(1 +(X) )
2 c (3.146)
S = eE?v.

For the magnetic sources this is

2
8+§=EH2(1+(X) +22), (3.147)
c 2 c c
or
H 2( v\
E§==H 1+(—)
2 c (3.143)

S = uH?v.
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There are three terms in the multivector (1 —v/c)* = 1 + (v/ c)2 +2v/c.
For electric sources, the first scalar term is due to the charge distribution,
and provides the electric field contribution to the energy density. The sec-
ond scalar term is due to the current distribution, and provides the mag-
netic field contribution to the energy density. The final vector term, propor-
tional to the current velocity contributes to the Poynting vector, showing
that the field momentum travels along the direction of the current in these
static configurations.

Calculation of the T'(ex) tensor components is generally more involved.
Let’s do this calculation for each of the fields above in turn to illustrate.

(a):  To calculate T'(e3) we can reduce the following products
FesFT = E*p(1-v/c)e; (1-v/c)p
~E%e3p (1 —v/c) p
~E%e3p(1+v*/c> = 2v/c)p (3.149)
—E%e3p? (1+v?/c* +2v/c)
= —F’e; (1 +v2 )+ 2v/c) .
Since

T(ex) = —g - e + T(e). (3.150)

This means that S - e3 = €E?v, as already found. The vector component
of this tensor element is

T(es) = ——E2e3(1 +v /c) (3.151)

This component of the stress tensor is aligned along the same axis as
the velocity. Calculation of the other stress tensor components is easiest
in cylindrical coordinates. Along the radial direction

p(=v/c)p(l=v/c)p= Fa (I+v/c)(1=v/c)p
= (1-v*/c)p,
and along the azimuthal direction

P(1=v/c)b(1-v/c)p

(3.152)

PO(1+v/c)(1-v/c)p
—0p* (1-v2/c?) (3.153)
( 2/c )
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Since T'(a) is a linear operator for any vector parameters a, it cannot
have any grade zero component along any directions e - e3 = 0. No grade
zero component of 7T'(ey), T(ey) implies that the Poynting vector is zero
along the e and e; directions respectively, as we saw above in eq. (3.140).

In summary

T(p) = SE*(1-v/c)p
T@) = —EEZ(I )9 (3.154)
T(e3) = —EEZ(I +v%/c )e3

For this field that T(p) is entirely radial, whereas T() is entirely az-
imuthal.
In terms of an arbitrary vector in cylindrical coordinates

a=ayp+agh + ae;, (3.155)

the grade one component of the tensor is

T(a) = —E2 (1=v2/?) (aph — asb)

) - (3.156)
_EE (1+v /c )aze3.
(b):  For F =nHIp (1—-v/c), and v = ve; we have
FaF' =g H*Ip (1 -v/c)a (1 —-v/c) p(—I
n"HIp (1-v/c)a(l-v/c)p(=I) G15)

=n*H*p(1-v/c)a(l-v/c)p

We can write the tensor components immediately, since eq. (3.157) has
exactly the same structure as the tensor components computed in part (a)
above. That is

T(a) = %Hz (1 - Vz/cz) (apf) - a(;@)

u

) S (3.158)
- EH (1 +v/c )azeg,.

(c):  For F =Ee;(1-v/c),and v = vp, we have

FaF' = Ee; (1-(v/co)p)a (1 —(v/c)p) es, (3.159)
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so we need the following grade selections

(e3 (1= (v/0)p) p (1-(w/c)p) es), = (e3p (1 - (v/c)p)’ e3),
= (esp (1+ 07/ —20v/0)p) e3),
= (1+07/c%) espes
—(1+0%/cH)p
(e3 (1= (v/c)p) B (1 - (v/o)p) e3), = (3B (1 + (v/0)p) (1 - (v/c)p) e3),
= (e30(1-(2/ch)es),
=-(1-0%/c)8
(e3(1-(v/o)p)es (1 =(v/o)p)es), =((1+/o)p) (1 -(/c)p)es),
= (1 - (vz/cz)) e3.
(3.160)

So the Maxwell stress tensor components of interest are

T(a) = ——E2 (1+2/ch)app
(3.161)
+ EEZ (1 - (vz/cz)) (aze3 - Clg@) .

(d): For F =nHi(l-v/c),i = e, and v = vp, we can use a duality
transformation for the unit bivector i

F =nHIe; (1-v/c), (3.162)
SO
FaF' = p’H%e; (1 -v/c)a(1-v/c)es. (3.163)
Equation (3.163) has the structure found in part (c) above, so
T(a) = H2 (1+ (/) app

(3.164)
+ ’%Hz (1 - (VZ/CZ)) (azeg - 099) .

3.7.5 Complex energy and power.
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— Theorem 3.15: Complex power representation.

Given a time domain representation of a phasor based field F = F(w)
F(t) = Re (Fe/"),
the energy momentum tensor multivector 7'(1) has the representation
S ¢ * ot T 2jwt
T(1)=&+= = —Re(F'F'+ FFe*").
c 4

With the usual definition of the complex Poynting vector

1 1
S = -ExH* = - (IH*) -E,

the energy and momentum components of 7'(1), for real y, € are
_ 1 2 2, | 2 2\ 2jwr
é—Z(ElEl +,u|H|)+ZRe((6E +/,tH)e )

1 .
S:ReS+§Re((ExH)e2ﬂ”’).

Proof. To prove theorem 3.15 we start by expanding the real part opera-
tion explicitly

F(f) = Re (Fej“”)
= l(Fejwf + F*e—jwt) (3165)
2 .

The energy momentum multivector for the field is therefore

1 . ) . )
z.sF(z)F(z)T = — (Fe/ + Fe71") (FTe/" + (F*)" ™)

€
8 (3.166)
- g (FF'e¥ + (FFieX) + F*F' + (F'FT)),

so we have
S 1
E+= = —eF(OF@®)'
c % (3.167)
_€ * it T 2jwt
= 4Re(F Fi+ FFTe? )

which proves the first part of the theorem.
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Next, we’d like to expand 7(1)
1

1
ZeF*FT = ZE(E* +InH") (E — InH)

1
=7 (E*€E + en”H'H + Ien (H'E - E'H) ) (3.168)
1 1
=3 (6|E|2 +uHP + - (H'E - E*H)) .
¢
The scalar terms are already real, but the real part of the vector term is

1 1

—Re(HHE-E'H) = — (H'E-E'H+ HE® - EH"

4c e( ) 8c ( * )
1

8c

1
= — (ExH +E" xH)
4c

1 .
= —Re (ExH").
52 Re ( )

The eFFT factor of ¢*/*' above was expanded in eq. (3.121), so the
energy momentum multivector is

(2H* AE +2H AEY)
(3.169)

S 1 1
&+ = =~ (elEf + uH?) + —Re (Ex H")
c 4 2c
L A - (3.170)
— i Jw
+Re((4(eE +,uH)+26E><H)e )

Expressing eq. (3.170) in terms of the complex Poynting vector &, com-
pletes the proof. 0

Observe that averaging over one period T Kkills any sinusoidal contribu-
tions, so the steady state energy and Poynting vectors are just

1 T+T 1 ) )
- fT 8(ndt = Z(elEl + ulHP?)

e (3.171)
T f S(tH)dt =Re §.

3.8 LORENTZ FORCE.
3.8.1 Statement.

We now wish to express the Lorentz force equation eq. (3.4a) in its geo-
metric algebra form. A few definitions are helpful.
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— Definition 3.9: Energy momentum multivector.

For a particle with energy €& and momentum p, we define the energy
momentum multivector as

T =& +cp.

—1 Definition 3.10: Multivector charge.

We may define a multivector charge that includes both the magnitude
and velocity (relative to the speed of light) of the charged particle.

Q=ffdv,
\%

where J = peve, M = pp, V. For electric charges this is

Q=Qe(1+ve/c),

and for magnetic charges
0 =Igm (1+vn/c),

where g, = fvpedV, qm = fvpma’V.

With a multivector charge defined, the Lorentz force equation can be
stated in terms of the total electromagnetic field strength

— Theorem 3.16: Lorentz force and power.

The respective power and force experienced by particles with electric
(and/or magnetic) charges is described by definition 3.10 is

Zar = (Fe), = 5 (Fro+ Q).

where (dT/dt)y = d&/dt is the power and (dT/dt); = cdp/dt is the
force on the particle, and QF is the electric or magnetic charge/veloc-
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ity multivector of definition 3.10. The conventional representation of
the Lorentz force/power equations

(FQ) = ‘2‘; g (E+vxB)
o(FQ") = ‘f gE - v.

may be recovered by grade selection operations. For magnetic parti-
cles, such a grade selection gives

¥ dp 1
<FQ >1 d—_qm(CB—EVmXE)
dé 1 Vm

<FQT> = ar = EQmB'T-

Proof. To prove theorem 3.16, we can expand the multivector product
Fq (1 +v/c) into its constituent grades

qF(1+g):q(E+IcB)(l+§)

=gE +¢gIBv + gEV + gcIB
c

1
- 5’E-v+q(E+v><B)+q(c1B+—E/\v)+q(1B)/\v.
C C
(3.172)

We see the (c-scaled) particle power relationship eq. (3.4b) in the grade
zero component and the Lorentz force eq. (3.4b) in the grade 1 component.
A substitution ¢ — —Igm, Vv — Vv, and subsequent grade 0,1 selection
gives

1
<—IqmF (1 + V—m)> = _Igm (cIB +-EA vm) — IgmIB - Vi,
C C
0! | (3.173)
= gm (cB — —Vp X E) + gmB - vp.
C

The grade one component of this multivector has the required form for
the dual Lorentz force equation from theorem 3.14. Scaling the grade
zero component by ¢ completes the proof. O
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3.8.2 Constant magnetic field.

The Lorentz force equation that determines the dynamics of a charged
particle in an external field F has been restated as a multivector differen-
tial equation, but how to solve such an equation is probably not obvious.
Given a constant external magnetic field bivector F' = IcB, the Lorentz
force equation, for small velocities’, is

dv v
— =gF - —, 3.174
m— =gk ( )
or
__qr
mc
dv_v (3.175)
dr ’

where () is a bivector containing all the constant factors.
This can be solved by introducing a multivector integration factor R
and its reverse R' on the left and right respectively

d
RER" = Rv- QR
dt
1
= SR (vQ-Qv) R’ (3.176)
1 .1
= —RvOR" — ~RQVR'
2 2 AV
or
dv 1 1
= R—R" + ~ROVR" — —RVOR". 3.177
0=RZ R+ JROVR = SRy G177)
Let
R = RQ)J/2. (3.178)

Since Q) is a bivector R" = —QR"/2, so by chain rule

0= %(RvRT). (3.179)

The integrating factor has solution

R = Y12, (3.180)

7 The (relativistically) correct Lorentz force equation for zero electric field is d(myv)/dt =

gF -v/c where y~! = /1 —v2/c2. See [7] for a relativistic approach to this problem.
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a “complex exponential”, so the solution of eq. (3.174) is
V(1) = e Y 2y(0)e /2, (3.181)

The velocity of the charged particle traces out a helical path. Any com-
ponent of the initial velocity v(0), perpendicular to the () plane is un-
touched by this rotation operation, whereas components of the initial ve-
locity v(0); that lie in the Q) plane will trace out a circular path. If €} is
the unit bivector for this plane, that velocity is

V() = (v(0)- Q)" = (v(0) AB)- B
V()L = (V0 A Q)OO = (v(0)-B)B

v(1) = v(0);e®Y + v(0),.
v(0)) cos(gBt/m) + v(0) X B sin(gBt/m) + v(0),,

(3.182)

where B = BB.

A multivector integration factor method for solving the Lorentz force
equation in constant external electric and magnetic fields can be found in
[11]. Other examples, solved using a relativistic formulation of GA, can
be found in [7], [13], and [14].

3.8.2.1 Problems.

Exercise 3.7 Constant magnetic field.

In eq. (3.182), each of (v(0)- Q) Q! (v(0) AQ)O7!, and v(0)e™ +
v(0),, was expanded by setting Q) = IB. Perform those calculations.

3.9 POLARIZATION.
3.9.1 Phasor representation.

In a discussion of polarization, it is convenient to align the propagation
direction along a fixed direction, usually the z-axis. Setting k = e3, 8z =
k - x in a plane wave representation from theorem 3.3 the field is

F(x,w) = (1 + e3)Ee -

. 3.183
F(x,t) = Re (F(x, a))e]‘”t) , ( )

where E-e3 =0, (i.e. E is an electric field, and not just a free parameter).
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Here the imaginary j has no intrinsic geometrical interpretation, E =
E; + JE; is allowed to have complex values, and all components of E is
perpendicular to the propagation direction (E; - es = E; - e3 = 0). Stated
explicitly, this means that the electric field phasor may have real or com-
plex components in either of the transverse plane basis directions, as in

E = (a1 +jB1)er + (a2 + jB2) €. (3.184)

The total time domain field for this general phasor field is easily found to
be

Fx,1)
=(1+e3) ((aqel + a’262) cos (wt —,BZ) - (ﬁlel +ﬁ2€2) sin (a)t —,BZ)) .

(3.185)

Different combinations of @1, @2, 81, 82 lead to linear, circular, or ellipti-
cally polarized plane wave states to be discussed shortly. Before doing so,
we want to find natural multivector representations of eq. (3.185). Such
representations are possible using either the pseudoscalar for the trans-
verse plane e, or the R? pseudoscalar 1.

3.9.2 Transverse plane pseudoscalar.

3.9.2.1 Statement.

In this section the pseudoscalar of the transverse plane, written i = e, is
used as an imaginary.

Definition 3.11: Phase angle.

Define the total phase as

d(z,1) = wr — Bz.

We seek a representation of the field utilizing complex exponentials of
the phase, instead of signs and cosines. It will be helpful to define the
coordinates of the Jones vector to state that representation.
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— Definition 3.12: Jones vectors.

The coordinates of the Jones vector, conventionally defined as a tuple
of complex values (cy, ¢y), are

c1=a)+ iﬁ]
C) =)+ iﬂg.

In this definition we have used i = ey, the pseudoscalar of the trans-
verse plane, as the imaginary.

We will not use the Jones vector as a tuple, but will use ¢y, ¢, as stated
above.

— Theorem 3.17: Circular polarization coefficients.

The time domain representation of the field in eq. (3.185) can be
stated in terms of the total phase as

F = (1 + 63) €] (aRei¢ + (1’L€_i¢) y
where

1 .
aR = 5 (c1+ic2)
1 .
a =5 (c1—ic2)",

where c1, ¢y are the 0,2 grade multivector representation of the Jones
vector coordinates from definition 3.12.
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Proof. To prove theorem 3.17, we have only to factor e; out of eq. (3.185)
and then substitute complex exponentials for the sine and cosine

(a1e1 + (1262) cos ((]5) - (ﬁlel +ﬁ262) sin (([J)
= e ((1 +zi) cos (¢) — (B1 +ai) sin (¢))

= e—l((aq + api) (ei‘/’ + e_i¢)

2
+ (B + Bai) i (¥ — €_i¢))
= e—21((a'1 + i,B] + i(Cl’Q + iﬁz)) €i¢
+ (1 +iB)" + i(az +iB2)) e—i¢)
= %1 ((c1 +icy) e + (c1 —icy)" e_i¢). O

3.9.2.2 Linear polarization.

Linear polarization is described by

1 .
ag = 5 [[E]j "0

| (3.186)
o =3 IE]| @9,
so the field is
F = (1 +e3) ||E||elei‘” cos(wt — Bz + 6). (3.187)

Here 6 is an arbitrary initial phase. The electric field E traces out all the
points along the line spanning the points between +e; e |[E||, whereas the
magnetic field H traces out all the points along +e,e" ||E|| /7 as illustrated
(with = 1) in fig. 3.9.

3.9.2.3 Circular polarization.

A field for which the change in phase results in the electric field tracing
out a (clockwise,counterclockwise) circle

Er = ||El| (ej cos ¢ + e, sinp) = ||E|| e; exp (e126)

. (3.188)
E. = ||E|| (e cos ¢ — ey sing) = |[El|e; exp (—e12¢),
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elEei"’

—elEeid’

Figure 3.9: Linear polarization.
is referred to as having (right,left) circular polarization, so the choice
ar = ||E||, ar = 0 results in a right polarized wave
F=(1+e3)|Elleje ™) (3.189)
and ar, = ||[E||, ar = 0 results in a left polarized wave
F=(1+e3)|E|eje @) (3.190)

There are different conventions for the polarization orientation, and here
the IEEE antenna convention discussed in [3] are used.

3.9.2.4  Elliptical parameterization.
An elliptical polarized electric field can be parameterized as
E = E e;cos¢ + Epe; sing, (3.191)

which corresponds to circular polarization coefficients with values

1
aRr = 5 (Ea _Eb)

1 (3.192)
ap, = 5 (Ea+Eb)-

Therefore an elliptically polarized field can be represented as

F = %(1 +e3)e; ((Ea + Ep)e + (E, - Eb)e"'"’) . (3.193)
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An interesting variation of the elliptical polarization uses a hyperbolic
parameterization. If a, b are the semi-major/minor axes of the ellipse (i.e.
a > b), and a = aeje” is the vectoral representation of the semi-major
axis (not necessarily placed along e;), and e = /1 — (b/a)? is the eccen-
tricity of the ellipse, then it can be shown ([11]) that an elliptic parameter-
ization can be written in the compact form

r(¢) = ea cosh(tanh_l(b/a) + ih). (3.194)

When the bivector imaginary i = e, is used then this parameteriza-
tion is real and has only vector grades, so the electromagnetic field for a
general elliptic wave has the form

F = eE, (1 +e3) e;e" cosh (m + ip)
m = tanh™' (E,/E,) (3.195)

e = /1= (Ep/E,),

where E,(Ep) are the magnitudes of the electric field components lying
along the semi-major(minor) axes, and the propagation direction e3 is or-
thogonal to both the major and minor axis directions. An elliptic electric
field polarization is illustrated in fig. 3.10, where the vectors representing
the major and minor axes are E, = E eje,E;, = Eye|e. Observe that
setting £, = 0 results in the linearly polarized field of eq. (3.187).

E,

Figure 3.10: Electric field with elliptical polarization.
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3.9.2.5 Energy and momentum.

Each polarization considered above (linear, circular, elliptical) have the
same general form

F=(1+e3)ee” f(¢), (3.196)

where f(¢) is a complex valued function (i.e. grade 0,2). The structure of
eq. (3.196) could be more general than considered so far. For example, a
Gaussian modulation could be added into the mix with f(¢) = ei=¢/0)"/2,
Independent of the form of f, we may compute the energy, momentum
and Maxwell stress tensor for the plane wave given by eq. (3.196).

— Theorem 3.18: Plane wave energy momentum tensor components.

The energy momentum tensor components for the plane wave given
by eq. (3.196) are

T(1) = —T(e3) = € (1 +e3) £ (: g+ g)

T(e;)=T(e)=0.

Only the propagation direction of a plane wave, regardless of its polariza-
tion (or even whether or not there are Gaussian or other damping factors),
carries any energy or momentum, and only the propagation direction com-
ponent of the Maxwell stress tensor T(a) is non-zero.

Proof. To prove theorem 3.18, we may compute T'(a) separately for each
of a = 1,e1,e5,e3. Key to all of these computations is the fact that es
commutes with scalars and i, and ey, e; both anticommute with i, and

}(a+ib)=(a—ib)

€] €]

. For T(1) we need the product

more generally
€

of the field and its reverse

FF' = (1 +e3)Me_i e (1+es3)

€

scalar (3.197)

= (1+e3) frft
=2(1+e3) ff7,
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so T(1) = € (1+e3) ff'. For T(e3) we have
FesF' = (1+e3) erc” fesfle Ve (1+e3)
—(1+e3)esere” ffieVe; (1+e3)
—(1+e3)ee”ffle e (1+e3)
=-2(1+e3) ff7,
so T(e3) = =T(1). For T(ey), we have

(3.198)

Fe F' = (1 +eg)ele"‘”fe1fT “Wer (1+e3)

1+e3)ee” f2ee? (1+e3)

e f2e® (1+e3)

e; (1+e3) f2e? (3.199)
(1-e3)e f2e

e f2e2V

1+e3

( )
( )
(1+e3)
(I+e3)
(1-€d)ers

1+e;3

2
1-e5

0.

Clearly Fe; F™ = 0 as well, so T'(e;) = T(e) = 0. O

Using theorem 3.18 the energy momentum vector for the linearly po-
larized wave of eq. (3.187) is

ra = g (1+e3) ||[E|* cos®(¢ +6), (3.200)
and for the circularly polarized wave of eq. (3.189), or eq. (3.190) is
€
T(1) = 5(1 +e3) [EJ. (3.201)

A circularly polarized wave carries maximum energy and momentum,
whereas the energy and momentum of a linearly polarized wave oscillates
with the phase angle.

For the elliptically polarized wave of eq. (3.195) we have

f(@) = eEgcosh (m + ig) . (3.202)
The absolute value of f is

fff = E2 cosh (m+i¢) (cosh (m +ig))"
= ¢?E2 (cosh(2m) + cos(2¢))

E? E?
2E2 —byol1-22 cosng
E; E;

(3.203)
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The simplification above made use of the identity

(1- (b/a)z) cosh(2 atanh(b/a)) = 1 + (b/a)z. (3.204)
The energy momentum for an elliptically polarized wave is therefore
E,

E2
(1 +e3)62E2[E +2(1 - E—g]cos2 ¢). (3.205)
a

a

T(1) =

N m

As expected, the phase dependent portion of the energy momentum tensor
vanishes as the wave function approaches circular polarization.

3.9.3 Pseudoscalar imaginary.

In this section we use the R? pseudoscalar as an imaginary. As before,
we seek a representation of the field utilizing complex exponentials of the
phase, instead of signs and cosines, and as before the we wish to define
Jones vector coordinates as a go-between.

— Definition 3.13: Jones vectors.

The coordinates of the Jones vector, conventionally defined as a tuple
of complex values (cy, ¢y), are

ap +Iﬁ1

ap + Iﬂz.

C1

(%)

In this definition we have used the R pseudoscalar I as the imagi-
nary.

We will not use the Jones vector as a tuple, but will use cy, ¢, as stated
above.

— Theorem 3.19: Circular polarization coefficients.

The time domain representation of the field in eq. (3.185) can be
stated in terms of the total phase as

F=(1+e3)e; (aRe_I¢ + aLel¢) ,
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where

1 4
aR = 5 (C] +102)r

ap, = 5 (C] —ICZ),

where c1, ¢; are the 0,2 grade multivector representation of the Jones
vector coordinates from definition 3.13.

Notice that the signs of the exponentials have flipped for the left and right
handed circular polarizations. It may not obvious that the electric and
magnetic fields in this representation have the desired transverse proper-
ties. To see why that is still the case, and to understand the conjugation
in the complex exponentials, consider the right circular polarization case
with ar = |[E|[,aL =0
F=(l+e3)e|E]e
= (1+e3)||E|l (e cos ¢ — ep3 sing) (3.2006)
= (1+e3)||E|l (e cos ¢ + ez sing),

but since (1 +e3) e3 = 1 + e3, we have
F=(1+e3)||E|l (e;cos¢+e;sing), (3.207)
which has the claimed right circular polarization.

Proof. To prove theorem 3.19 itself, the sine and cosine in eq. (3.185) can
be expanded in complex exponentials

2 (are; +azey) cosd —2 (Bre; +Srez) sin¢
= (11 + azey) (e"” + e‘1¢) + (Bre1 +B2e2) I(e"’j - e"¢)

= (aqel — Iaz(lez)) (e1¢ + e_l¢) + (,3181 - Iﬁz(lez)) 1(61¢ - e_l¢) .
(3.208)

Since the leading 1 + e3 gobbles any e3 factors, its action on the dual of
€ is
(1 + 63) Ilep; = (1 + 63) €3]

3.209
= (1 +63) €. ( )
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This allows us to unconditionally factor out e; from eq. (3.208), so the
field is

F = % (1 + 63) € ((CZ] - Ia'z) (e1¢ + e_1¢) + (ﬁ] - 1,82) I(ew — e_1¢))
= % (1 + 63) €] (((11 +I,81 -1 (a'z +I[32)) €I¢ + (0’1 - Iﬁ] -1 ((12 —1182)) e_w)
= % (1+e3)e ((01 —Icy) e + (CI - Ic;) e_1¢)
=(1+e3)e (aRe_I¢ + aLe_1¢).
(3.210)
O

Observe that there are some advantages to the pseudoscalar plane wave
form, especially for computing energy momentum tensor components
since I commutes with all grades. For example, we can see practically
by inspection that

T(1) =&+ % =€ (1 +e3) (jarl” +lavLP), (3211)

where the absolute value is computed using the reverse as the conjugation
operation |z|* = zz'.

3.10 TRANSVERSE FIELDS IN A WAVEGUIDE.

We now wish to consider more general solutions to the source free Maxwell’s
equation than the plane wave solutions derived in section 3.4. One way of
tackling this problem is to assume the solution exists, but ask how the field
components that lie strictly along the propagation direction are related to
the transverse components of the field. Without loss of generality, it can
be assumed that the propagation direction is along the z-axis.
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— Theorem 3.20: Transverse and propagation field components.

propagation direction and in the transverse plane are respectively

1
FZ == (F+e3Fe3)

N =N

F,=— (F—e3Fe3) s

If e3 is the propagation direction, the components of a field F in the
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where F = F, + F;.

Proof. To determine the components of the field that lie in the propa-
gation direction and transverse planes, we state the field in the propaga-
tion direction, building it from the electric and magnetic field projections
along the z-axis

Fz: (E-eg)eg +I77(H-e3)e3

1
== (Ee3 + e3E) es + 5177 (He3 + e3H) €3

—_—Nd | =

1 (3.212)
== (E + e3Ee3) + 51]] (H + e3He3)

= = (F+e3Fe3).

N =N

The difference F — F; is the transverse component

F,=F-F,

1

=F -5 (F+eFes) (3.213)
1

= — (F-esFe3).
5 (F —esFes)

O]

We wish to split the gradient into transverse and propagation direction
components.

—1 Definition 3.14: Transverse and propagation direction gradients.

Define the propagation direction gradient as e3d,, and transverse
gradient by

V[ =V- e3az.

Given this definition, we seek to show that

— Theorem 3.21: Transverse and propagation field solutions.

Given a field propagating along the z-axis (either forward or back-
wards), with angular frequency w, represented by the real part of

F(x,y,2,0) = F(x,y)el ™,
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the field components that solve the source free Maxwell’s equation
are related by

1

F,=7j V.F
e
1
F.=7j V.,F;.
z ]%’¢ke3 'y

Written out explicitly, the transverse field component expands as

Et:

J E (w_LkV,EZ + %63 X VIHZ)

w2 _ c

oH, = —7 (iantHZ ~ e x VtEZ).
12 c

w2 _
C

Proof. To prove we first insert the assumed phasor representation into
Maxwell’s equation, which gives

(v, + ](% = ke3)) F(x,y) = 0. (3.214)

Dropping the x,y dependence for now (i.e. F(x,y) — F, we find a re-
lation between the transverse gradient of F and the propagation direction
gradient of F

V.F = —j(%¢ke3)F. (3.215)

From this we now seek to determine the relationships between F; and F.
Since V, has no X, § components, e3 anticommutes with the transverse
gradient

e;V, = -Ves, (3.216)

but commutes with 1 ¥ e3. This means that

1 1

| (3.217)
or
1
E (V[F + e3 (V[F) e3) = Vl‘Fl
| (3.218)
E (V[F - e3 (V[F) e3) = VI‘FZ’
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so Maxwell’s equation eq. (3.215) becomes

V,F, = —j(9 T ke3)Fz
Z (3.219)

V.F, = —j(— T ke3)Ft.
C

Provided w? # (kc)?, these can be inverted. Such an inversion allows an
application of the transverse gradient to whichever one of F,, F; is known,
to compute the other, as stated in theorem 3.21.

The relation for F; in theorem 3.21 is usually stated in terms of the elec-
tric and magnetic fields. To perform that expansion, we must first evaluate
the multivector inverse explicitly

%i—ke3
F,=j ) 7"
() - 3.02
220
“ 4 kes (3.220)
t = Vth

so that we are in position to expand most of the terms in the numerator

(9 N keg)vth - _ (e3g N k) V.esF.
C C
w
= (ik - e3—)V, (E; + InH,)
C

= (ikV,EZ + cU—ne3 X VIHZ) + I(iantHz - 9e3 X VIEZ),
C C
(3.221)

from which the transverse electric and magnetic fields stated in theo-
rem 3.21 can be read off. O

A similar expansion for E,, H; in terms of E,;, H; is left to the reader.

Exercise 3.8 Transverse electric and magnetic field components.

Fill in the missing details in the steps of eq. (3.221).

Exercise 3.9 Propagation direction components.

Perform an expansion like eq. (3.221) to find E_, H; in terms of E,, H,.
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3.11 MULTIVECTOR POTENTIAL.
3.11.1 Definition.

Conventional electromagnetism utilizes scalar and vector potentials, so
it is reasonable to expect that the desired multivector representation of
the potential is a grade (0, 1)-multivector. A potential representation with
grades 2,3 works for (fictitious) magnetic sources, so we may generally al-
low a multivector potential to have any grades. Such a potential is related
to the field as follows.

—1 Definition 3.15: Multivector potential.

The electromagnetic field strength F for a multivector potential A is

[,

Before unpacking (V - %%)A, we want to label the different grades of

the multivector potential, and do so in a way that is consistent with the
conventional potential representation of the electric and magnetic fields.

—1 Definition 3.16: Multivector potential representation.

Let
A=-¢p+cA+nl(—¢y,+cF),
where
1. ¢ is the scalar potential V (Volts).
2. A is the vector potential W/m (Webers/meter).

3. ¢ is the scalar potential for (fictitious) magnetic sources A
(Amperes).

4. F is the vector potential for (fictitious) magnetic sources C
(Coulombs).
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This specific breakdown of A into scalar and vector potentials, and dual

(pseudoscalar and bivector) potentials has been chosen to match SI con-

ventions, specifically those of [4] (which includes fictitious magnetic sources.)
We can now express the fields in terms of the potentials.

Theorem 3.22: Fields and the potential wave equations.

In terms of the potential components, the electric field vector and the
magnetic field bivector are

10 oA 1
E=(|V--=]A) =-V¢—-—--VXF
<( cat) >1 ¢ ar e "

10 oF 1
I?]H = <(V— ;E)A>2 = I?](—V¢m— E +;VXA)

The potentials are related to the sources by

ng:—’f—ﬁ(v A+ 16¢)

e o\ 2ot

1 d¢

DA=—uJ+v(v.a+ =2
HI+ ( +c2(9t)

c? Ot
D¢m=—p—m—2(V-F+ ! a¢m)

2 ot

DF:—eM+V(V-F+i%)
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Proof. To prove theorem 3.22 we start by expanding (V — (1/¢)d;)A using
definition 3.16 and then group by grade to find

(V— 12)A = (V— %(%) (—¢+cA+nl (—¢m +cF))

c ot
10p OA
=-V V- A+cVAA+—— — —
d+c +c +c<9t Ey
10¢y, OF
In|-Von V- F+cVAF+ —— — —
+ n( ¢mt+c +c +c o (?t)
:CV'A+16—¢
c Ot
oA 1 oF 1
-V¢p———--VxF In|-V¢,— —+ -V XA
+¢8tex+n(¢6t+,ux)
E InH
1 0,
InlcV-F+—-———|,
+n(c +cat)

(3.222)

which shows the claimed field split.
In terms of the potentials Maxwell’s equation (V + %%) F=1Jis

vi i) [v_L19)4) -y (3.223)
c ot cot] [,
or
Da=s+(v+l2)([v-12)4) (3.224)
c ot c ot 03

This is almost a wave equation. Inserting eq. (3.222) into eq. (3.224) and
selecting each grade gives four almost-wave equations
p 10 10¢
“Odp==+—-—=[cV-A+-——
¢ € cot (c ¢ Ot
10¢

cA = —nJ+V(cV-A+——)
c ot

ncllJF = —IM+V-(I)7(CV-F+ 16g;tm))
c

10 1 O¢pm
—InU¢m = Icpm + ——In|cV -F + ———
n=¢ > +c61n(c +c ét)

Using n = uc,nce = 1, and V - (Iyy) = IV for scalar ¢, a bit of rearrange-
ment completes the proof. 0
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3.11.2  Gauge transformations.

Clearly it is desirable if potentials can be found for which V- A +(1/ cz)(?t(p =
V-F+(1/ c2)6,¢m = 0. Finding such potentials relies on the fact that the
potential representation is not unique. In particular, we have the freedom
to add any spacetime gradient of any scalar or pseudoscalar potential with-

out changing the field.

— Theorem 3.23: Gauge invariance.

to a multivector potential
10

A’ =A+(V+ ——)‘F,
cot

without changing the field. That is

SR A

The spacetime gradient of a grade (0, 3)-multivector ¥ may be added

Proof. To prove theorem 3.23 let

A’ A+(V+l—)(¢+l¢)

where y and ¢ are scalar functions. The field for potential A” is
Y
cot 12
(e 2825
cd co 12
10 10 10
o (e IR () S CRE

= F+ W +1¢))1 5,

(3.225)

(3.226)

which is just F since the d’Alembertian operator [] is a scalar operator

and ¥ + I¢ has no vector nor bivector grades.

O

We say that we are working in the Lorenz gauge, if the 0,3 grades of
(V - ZE)A are zero, or a transformation that kills those grades is made.
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— Theorem 3.24: Lorentz gauge transformation.

the transformation

A’ :A—(V+12)T,
c ot

where
c ot 03
OA = J.

gauge.

Given any multivector potential A solution of Maxwell’s equation,

allows Maxwell’s equation to be written in wave equation form

A potential satisfying this wave equation is said to be in the Lorentz

Proof. To prove theorem 3.24, let
A:A’+(V+12)‘I’,
cot
so Maxwell’s equation becomes
J= V+12 V—12 A
c ot cot 12
=[A - V+lﬁ V—lﬁ A
cot cot] [o3
=0A"+0 V+12 Y- V+12 V—lﬁ A
cot cot cat] [o3
=0A" + V+12 ay - V—lﬁ A .
cot cot) [o3

Requiring

(-2,
c ot 03

completes the proof.

(3.227)

(3.228)

(3.229)

O
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Observe that ¥ has only grades 0,3 as required of a gauge function.

Such a transformation completely decouples Maxwell’s equation, pro-
viding one scalar wave equation for each grade of [JA’ = J, relating each
grade of the potential A’ to exactly one grade of the source multivector cur-
rent J. We are free to immediately solve for A’ using the (causal) Green’s
function for the d’ Alembertian

o(x—-x'|—ct-7
4t |x — x’|| (3.230)
1 1= Llx = X)) o
T 4n Ix — x| ’

which is the sum of all the current contributions relative to the point x at
the retarded time #, = t — (1/¢) ||x — x’||. The field follows immediately by
differentiation and grade selection

10\,
F= <(v - Ea_z)A >1,2. (3.231)

Again, using the Green’s function for the d’ Alembertian, the explicit
form of the gauge function ¥ is

, (3.232)

lfdv,«v_%gt)A(X,’tr))os

¥Y=-—
dr [lx — x’||

however, we don’t actually need to compute this. Instead, we only have
to know we are free to construct a field from any solution A" of LJA” = J
using eq. (3.231).

3.11.3  Far field.

— Theorem 3.25: Far field magnetic vector potential.

Given a vector potential with a radial spherical wave representation

—jkr

A=S—7A0,0)

r

the far field (r > 1) electromagnetic field is

F=—jw(1+8) (FAA).
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If A, = #(f A A) represents the non-radial component of the poten-
tial, the respective electric and magnetic field components are

E:—J(,()AJ_

1
H=-fxE.
n

Proof. To prove theorem 3.25, we will utilize a spherical representation
of the gradient

V=19,+V,
0 (Ab (3.233)
V,.=-0p+ .
T 0 rsing ¢

The gradient of the vector potential is

—jkr

VA = (£, +V,)—A

1 — jkr — jkr
=f'(—jk——)e A+S—v.a
r]or r (3.234)

= —(jk+ l)fA+0(1/r2)
r
~ — jkEA.

Here, all the O(1/r?) terms, including the action of the non-radial com-
ponent of the gradient on the 1/r potential, have been neglected. From
eq. (3.234) the far field divergence and the (bivector) curl of A are

V-A=-—jki-A

(3.235)
VAA=—jkit ANA.
Finally, the far field gradient of the divergence of A is
V(V-A) = (#,+V,) (—jki-A)
~ —jkid, (- A)
(3.236)

:—jkf'(—jk—%)(f'-A)

~ —k*# (#-A),
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again neglecting any O(1/r?) terms. The field is
2
F = —ij—jZV(V-A)+cV/\A
= —jwA + jot (f-A) — jket A A
=—jo(A-t(t-A)) - jot AA
= —jwk (FAA) — jwf A A
=—jw(F+1)(FAA),

(3.237)

which completes the first part of the proof. Extraction of the electric and
magnetic fields can be done by inspection and is left to the reader to prove.
O

One interpretation of this is that the (bivector) magnetic field is repre-
sented by the plane perpendicular to the direction of propagation, and the
electric field by a vector in that plane.

— Theorem 3.26: Far field electric vector potential.

Given a vector potential with a radial spherical wave representation

—jkr
e ]
F =

F (6. 9),

r

the far field (r > 1) electromagnetic field is
F=—jonl (#+1)(FAF).

IfF, = ¢ (& AF) represents the non-radial component of the poten-
tial, the respective electric and magnetic field components are

E = jont xF
H:_ijJ_.

The proof of theorem 3.26 is left to the reader.

Example 3.1: Vertical dipole potential.}
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We will calculate the far field along the propagation direction vector
k in the z-y plane

k = ese”
(3.238)
1= €3,
for the infinitesimal dipole potential
Il _.
A = B e, (3.239)

47r

as illustrated in fig. 3.11.

Figure 3.11: Vertical infinitesimal dipole and selected propagation direc-
tion.

The wedge of k with A is proportional to

kA e3 = <RE3>2

= e3ei9e3
< Y ) (3.240)
= <e3e >2
= —isin@,
so from theorem 3.26 the field is
. Inl .
F = jo(1+ese®)isin eﬁ—;re—f"’. (3.241)
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The electric and magnetic fields can be found from the respective
vector and bivector grades of eq. (3.241)

_ jw,ulole_jk,
4drr

_ ja),ulole_jkr
4nr
Jknlyl sin 0

=——ce

E e3¢ising

e¢ sin@ (3.242)

—jkr g
€ cosf —e3sind
4xr ( ),

and
1 ol _.
H = — jwisin gL eikr
In 4nr
1 Il _.
= —expesjwsin aoﬁi—oe—fk’ (3.243)
n

nr

ik sin Oplol _;
—el—‘] SR8 - jir.

drr

The multivector electrodynamic field expression eq. (3.241) for
F is more algebraically compact than the separate electric and mag-
netic field expressions, but this comes with the complexity of dealing
with different types of imaginaries. There are two explicit unit imag-
inaries in eq. (3.241), the scalar imaginary j used to encode the time
harmonic nature of the field, and i = es3; used to represent the plane
that the far field propagation direction vector lay in. Additionally,
when the magnetic field component was extracted, the pseudoscalar
I = ejp3 entered into the mix. Care is required to keep these all sepa-
rate, especially since /, j commute with all grades, but i does not.

3.12 DIELECTRIC AND MAGNETIC MEDIA.
3.12.1 Statement.
Without imposing the constitutive relationships eq. (3.2) the geometric

algebra form of Maxwell’s equations requires a pair of equations, multi-
vector fields, and multivector sources, instead of one of each.

Theorem 3.27: Maxwell’s equations in media.
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Maxwell’s equations in media are

<(v v lﬁ)F> _ .
c ot 0.1

<(V + 12)G> =1Jn,
c ot 23

where c is the group velocity of F,G in the medium, the fields are
grade (1, 2)-multivectors

1
F=D+-H
c
G =E +IcB,

and the sources are grade (0, 1)-multivectors

1
Jezp_z-]

Jm = com — M.

Proof. To prove theorem 3.27 we may simply expand the spacetime gra-
dients and grade selection operations, and compare to eq. (3.1), the con-
ventional representation of Maxwell’s equations. For F' we have

J 10
p‘z—<(‘”za7)F>o,l

_ <(v + 1£) (D + £H)>
c ot c 0.1
16D 1 aH>
0,1

= V~D+V/\D+£V-H+£V/\H+——+I——
c ¢ cot 2ot

10D 1

=V:-D+-—--VxH,
cot ¢

(3.244)
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and for G

o3,
((v+22) EHCB)}“

:< -E+VAE+1IcV- B+IcV/\B+lcj,)—E I(;—]ts>
AE+1cV - B+I(Z—B

:I(VxE+cV~B+a—B).
ot
(3.245)

Applying further grade selection operations, rescaling (cancelling all fac-
tors of ¢ and I), and a bit of rearranging, gives

V-D=p
oD
VxH=J+ ar
f (3.246)
V-B=pnm
B
VXE=-M- 9B
or’
which are Maxwell’s equations. O
Exercise 3.10 Maxwell’s equations in media.

The proof above is somewhat unfriendly, as it works backwards from
the answer. No motivation was given for why the particular multivector
fields were chosen, nor why grade selection operations were required. To
obtain some insight on why this works, prove theorem 3.27 from eq. (3.2)
directly as follows:

1. Eliminate cross products using V x f = I(V A f).

2. Introduce a scalar constant ¢ with dimensions of velocity and red-
imensionalize any time derivatives of /0t = (1/c)d(cf)/0dt, so that
[(1/c)d/d1] = [V].
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3. If required, multiply each of Maxwell’s equations by a factor of I,
to obtain a scalar and vector equation for D, H, and a bivector and
pseudoscalar equation for E, B.

4. Sum the pairs of equations to form a multivector equation for each
of D,H and E, B.

5. Factor the terms in each equation into a product of the spacetime
gradient and the respective fields F, G, and show the result may be
simplified by grade selection.

3.12.2 Alternative form.

— Theorem 3.28: Grade selection free equations.

Given multivector solutions F’, G’ to
10
Je=|V+-—|F
¢ ( C(')t)
10
1oy =|V+-—]G,
" ( CBI)

these can be related to solutions F, G of Maxwell’s equations given
by theorem 3.27 by

F=(F),
G = <G’>1,2’

[r-£2)), -
[r-2)en), -

if
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Proof. To prove we select the grade 0,1 and grade 2,3 components from
space time gradient equations of theorem 3.28. For the electric sources,
this gives

=5,
“([eza)ens),, o ca)en), (esz) o),

(3.247)

however (V + %(%) (F’)3 has only grade 2,3 components, leaving just

10\, 10)\, .,
Je = <(V + EE‘) <F >1’2>O’1 + <(V + Ea_[) <F >>0,1, (3248)

as claimed. For the magnetic sources, we have

1, = <(V+ 12)G >
ot 23

~((za) el {7 a) @), {7 a) e,

(3.249)

however ( g) (G")p has only grade 0,1 components, leaving just

1
Ly = <( , ——) @, 2>2’3 ; <(v ; %gt) (G’>>2’3. (3.250)

O]

Theorem 3.28 is probably a more effect geometric algebra form for so-
lution of Maxwell’s equations in matter, as the grade selection free space-
time gradients can be solved for F’, G’ directly using Green’s function
convolution. However, we have an open question of how to impose a zero
scalar grade constraint on F’ and a zero pseudoscalar grade constraint on
G'.

Question: Is the solution as simple as grade selection of the convolu-
tion?

B f dr'dV{(G(x—x',t—1)Je),
(3.251)
= fdt'dV’(G(X—X',l—l')”m)],z’
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where G(x — x’, 1t — t’), is the Green’s function for the space time gradient
theorem 2.19, not to be confused with G = E + I¢B,

3.12.3  Gauge like transformations.

Because of the grade selection operations in theorem 3.27, we cannot sim-
ply solve for F, G using the Green’s function for the spacetime gradient.
However, we may make a gauge-like transformation of the fields. Addi-
tional exploration is required to determine if such transformations can be
utilized to solve theorem 3.27.

— Theorem 3.29: Multivector transformation of the fields.

If F, G are solutions to theorem 3.27, then so are

F'=F+ <(V— 12)“Ij2’3>
c ot 12

1
G’=G+<(V——g)‘1’o,1> ,
c ot 12

where ¥, 3 is any multivector with grades 2,3 and Yo is any multi-
vector with grades 0,1.

Proof. To prove theorem 3.29 we need to show that
((7=a)e), - (=a)r)
cot 0.1 cot 0.1
(7=a)o ), - (=2a)el.,
c ot 23 c ot 23
Let’s start with F
(=3}
cot 0.1
(=g, (s (e=2a) ),
c ot 0.1 cot c ot 12004
10 10 10
V+-——|F oy —-({V+——=|(|[V-—-—%]|Y .
R (e A A

(3.253)

(3.252)



3.12 DIELECTRIC AND MAGNETIC MEDIA. 257

The second term is killed since ¥, 3 has no grade 0,1 components by
definition, so neither does [J¥; 3. To see that the last term is zero, note

that (V - %%)‘Fm can have only grades 1,2,3, so <(V - %%)‘I’m)% is
: : 19 19

a trivector. This means that (V + EE) <( - EE)‘YH >0’3 has only grades

2,3, which are obliterated by the final grade 0,1 selection operation, leav-

ing just <(V + %%) F>0’1. For G we have

(2o, = (cz)el oA allo-ca) ).,

1
0 2,3 ’

cot

{120,

As before the d’ Alembertian term is killed as it has no grades 2,3. To see
that the last term is zero, note that (V - %%)‘{’0,1 can have only grades

0,1,2, so <(V - lﬁ) Yo.1 >o,3 is a scalar. This means that

(3.254)

c ot
10 10
V+——J{({V-—-—%|¥Y , 3.255
7o callo-ca) i, o
has only grades 0,1, which are obliterated by the final grade 2,3 selection
operation, leaving <(V + %g) G>2 . completing the proof. O

An additional variation of theorem 3.29 is also possible.

— Theorem 3.30: Multivector transformation of the fields.

If F, G are solutions to theorem 3.27, then so are
10
F =F+|V-——|¥
( c@t) 3
10
G =G+|V-——|¥
( cat) 01

where Y, 3 is any multivector with grades 2,3 and ¥ is any multi-
vector with grades 0,1.
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Proof. Theorem 3.30 can be proven by direct substitution. For F

V+lﬁ F + V—lé ‘Fzg = V+1§ F+D\F23
c ot c ot o1 c ot “lo1
10
={(|IV+—-—|F

<(V + l82)(; + DTO’1>

c ot

and for G

(2o (=20,

2,3

(e=cale) o

which completes the proof.

3.12.4  Boundary value conditions.

— Theorem 3.31: Boundary value relations.

The difference in the normal and tangential components of the elec-
tromagnetic field spanning a surface on which there are a surface cur-
rent or surface charge or current densities Je = Jesd(n), J;m = Jmsd(1)
can be related to those surface sources as follows

B(Fy = F1))o1 = Jes
(0(Gy - G1)>2,3 = IJms,

where F, = Dy + IHy/c,Gy = Er + IcB, k = 1,2 are the fields in
the where fi = fip = —fi; is the outwards facing normal in the second
medium. In terms of the conventional constituent fields, these may

be written
fi- (Dy-Dy) = p;
AX(Hz—Hl):JS
n (BZ_B1> = Pms
nX(Ez—E1)=—MS

Figure 3.12 illustrates a surface where we seek to find the fields above
the surface (region 2), and below the surface (region 1). These fields will
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be determined by integrating Maxwell’s equation over the pillbox config-
uration, allowing the height n of that pillbox above or below the surface
to tend to zero, and the area of the pillbox top to also tend to zero.

Figure 3.12: Pillbox integration volume.

Proof. We will work with theorem 3.27, Maxwell’s equations in media,
in their frequency domain form

<VF>O,1 + JkD = Jeso(n)

(3.256)
(VG)y3 + jkIcB = 1Jns0(n),
and integrate these over the pillbox volume in the figure. That is
de (VF)o1 + jkdeD = fdndA Jes6(n)
(3.257)

f dV(VG)ys + jkic f dVB =1 f dndA Jpnsd(n).

The gradient integrals can be evaluated with theorem 2.11. Evaluating the
delta functions picks leaves an area integral on the surface. Additionally,
we assume that we are making the pillbox volume small enough that we
can employ the mean value theorem for the D, B integrals

f dA(BF )y + jKAA (n]f)1 + nzf)z) = AAJe
v (3.258)

f dA (ARG, 3 + jkICAA (ni By +nyBa) = TAA .
v
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We now let n;, ny tend to zero, which kills off the D, B contributions, and
also kills off the side wall contributions in the first pillbox surface integral.
This leaves

(hpF2)o 1 + (0 F1)o) = Jes

N R (3.259)
(fxG2)r3 + (N1G1)a3 = Jins.
Inserting fi = fi; = —fi; completes the first part of the proof.
Expanding the grade selection operations, we find
n- (D -Dy) =p;
A (Hy/c—Hi/c) =-Js/c
(Hafe ~Hje) = =3/ (3.260)

fiA(Ey—E,) = —IM,
Ich - (By —By) = Icpps,

and expansion of the wedge’s as cross’s using eq. (1.72) completes the
proof. O

In the special case where there are surface charge and current densities
along the interface surface, but the media is uniform (€; = e,u; = ),
then the field and current relationship has a particularly simple form [6]

AF, - F)) = J,. (3.261)

Exercise 3.11 Uniform media with currents and densities.

Prove that eq. (3.261) holds when €] = e, u; = uo.

3.13 PROBLEM SOLUTIONS

Answer for Exercise 3.2

3\ b,
= e (.11)
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Here we’ve decomposed the sum into symmetric and antisymmetric con-
tributions. The symmetric part reduces easily to the divergence

3 3

b; b;
Zeie,-a— _N%i gy, (3.12)
. c’ix,- =1 6x,~

i=

Because, for i # j, e;e; = ¢; Ae; = [ (e;xe;), and both the wedge and
dot products are zero for i = j, we can reintroduce the sum over all i, j
indexes

Zelej —IZe,xe]—

i#j

i=1 i (3.13)

We’ve demonstrated the desired result, showing that our Laissez-faire sub-
stitutiona = Vinab = a-b+/ (ax b) was justified, despite the operator
nature of the gradient.

Answer for Exercise 3.3

Our grade selection operators yield the following four equations
(VE) = ncp

1 0E
“Z L VnH) = -
<C ar >1 "

1onm (3.14)
<VE 7 > =-IM
c ot [,
(VInH)3 = Icpp
Observe that n7c = 1/e, so the first equation recovers Gauss’s law
vV-E=£ (3.15)
€
Dividing the vector equation through by —n, we have
-10E
—Z _[(VAH) =), (3.16)

cn Ot
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or
0eE
—%+V><H=J, (3.17)

the Ampére-Maxwell equation (with D = €E, and H = B/u.) Multiplying
the bivector equation through by —1, and noting that n/c = u, we convert
it to a vector equation

_ 12 8/1H

o =I’M, (3.18)

—I? (VxE)

which is the Maxwell-Faraday equation (augmented with the fictious mag-
netic current density.) Finally, dividing the pseudoscalar equation through
by Ic, we find

pm="V-H=V-(uH), (3.19)
C

which is Gauss’s law for magnetism (with the fictious “engineering” mag-
netic charge density term.)
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— Theorem A.1: K-vector dot and wedge product relations.

Given a k-vector B and a vector a, the dot and wedge products have
the following commutation relationships

B-a=(-1)*"'a-B

Al
BAaa=(-1anB, &

and can be expressed as symmetric and antisymmetric sums depend-
ing on the grade of the blade

aAB= (aB + (—l)kBa)
(A.2)

a-B=

| =N =

(aB - (—l)kBa).

For example, if B and a are both vectors, we recover theorem 1.14. As
an other example, if B is a 2-vector, then

2(aAB)=aB+ Ba

(A.3)
2(a-B) = aB - Ba.

Observe that the dot(wedge) of two vectors is a (anti)symmetric sum
of products, whereas the wedge(dot) of a vector and a bivector is an
(anti)symmetric sum.

Proof. To prove theorem A.1, split the blade into components that inter-
sect with and are disjoint from a as follows

1
B=—-nmny:- -my_;+mmy---my, (A4)
a
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where n; orthogonal to a and each other, and where m; are all orthogonal.
The products of B with a are

1
aB=a-nn---ng_| +ammy - --m;
a

(A.5)
=Ny - Mg +ampm;y - - - my,
and
1
Ba=-nmny---m_ja+mmy---mya
a
k-1 k A.6
=D g -y + (D) amymy - - - my, (A.6)
k
=D (-mmy - - m g +ammy - -my)
or
(—l)kBa =-nnp---Ng_1 +ammy - - - my. (A.7)

Respective addition and subtraction of eq. (A.5) and eq. (A.7) gives

aB + (—l)"Ba =2amm, - --my

A.8
=2aAB, (&.8)
and
aB—(—1)'Ba=2nin, - ny_
(-1 ILLURERD T8} (A9)
=2a-B,
proving eq. (A.2). Grade selection from eq. (A.7) gives
~DfBra=-nmp - my_
(=D 1ny - Mg (A.10)
=-a-B,
and
~1BAa=amm;---m
(=D 1my k (AL
=aAB,
which proves eq. (A.1). O

Theorem A.2: Vector-trivector dot product.
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Given a vector a and a blade b A ¢ A d formed by wedging three
vectors, the dot product of the two can be expanded as bivectors like

a-(bAacAd)
=(bAcAd)-a (A.12)
=(a-b)(cArnd)—(a-c)(bAad)+(a-d)(bAc).

Proof. The proof follows by expansion in coordinates
a-(brcnd) = > abjcdfeejee) . (A.13)
j#k#l

The products within the grade two selection operator can be of either
grade two or grade four, so only the terms where one of i = j, i = k,
or i = [ contributes. Repeated anticommutation of the orthogonal unit
vectors can put each such pair adjacent, where they square to unity. Those
are respectively

(eiejere;); = ee
(eiejeier), = —(ejeieier), = —eje (A.14)
<eiejekei>2 = —<eje,~eke,~>2 = +<ejeke,~e,~>2 = e;e;.
Substitution back into eq. (1.108) gives
a-(bacAad)

= Z aibjcid (e; - ej(exe;) —e; - ex(eje)) +e; - ej(ejer)) (A.15)
JjEk#l

=(a-b)cArnd)-(a-c)bad)+(a-d)bAc).

Theorem A.2 is a specific case of the more general identity

— Theorem A.3: Vector blade dot product distribution.

A vector dotted with a n — blade distributes as

X (YIAY2 A=+ AYy)
n
D'y (Y1 A AVt AYirt A A V).

i=1
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This dot product is symmetric(antisymmetric) when the grade of
the blade the vector is dotted with is odd(even).

For a proof of theorem A.3 (valid for all metrics) see [7].

— Theorem A.4: Distribution of inner products

Given two blades A;, B, with grades subject to s > r > 0, and a
vector b, the inner product distributes according to

As-(bAB,) = (As-b) - B,

Proof. The proof is straightforward, relying primarily on grade selection,
but also mechanical. Start by expanding the wedge and dot products within
a grade selection operator

Ag- (b A Br) = (As(b A Br))s—(r+1)

1 (A.16)
= §<As (bB, + (—1)’Brb))s_(r+1).
Solving for B,b in
2b- B, =bB, - (-1)"B,b, (A.17)
we have
A -(bAB) = %(ASbB, AOB - By

= <Aber>s—(r+1) _M

The last term above is zero since we are selecting the s —r — 1 grade
element of a multivector with grades s —r + 1 and s + r — 1, which has no
terms for r > 0. Now we can expand the A;b multivector product, for

As-(BAB,) = {(As - b+A; AD) B 1) (A.19)

The latter multivector (with the wedge product factor) above has grades
s+ 1—rand s+ 1+ r, so this selection operator finds nothing. This leaves

As (bAB.) =((As-b) B+ (A D) AB) (1. (A.20)

The first dot products term has grade s — 1 — r and is selected, whereas
the wedge term has grade s — 1 +r # s —r — 1 (for r > 0). O



PROOF SKETCH FOR THE FUNDAMENTAL
THEOREM OF GEOMETRIC CALCULUS.

We start with expanding the hypervolume integral, by separating the ge-
ometric product of the volume element and vector derivative direction
vectors into dot and wedge contributions

f Fd'%dG=) f duFIx §; G
v — Jv
= Zfd"uF(Ik-x"Hk/\x") 9: G.
— Jy
1

Because X' lies in span {x j}, the wedge product above is zero, leaving
fVFd"x dG= vadkuF(zk.xi) 3G
= Z j; d u(@F)I; - X'G + Z fv d“uF (I - x') (9,G)
» | dtu(F (%) 6) = [ dhur (Z o (I .xf)]c.

(B.2)

(B.1)

The sum in the second integral turns out to be zero, but is somewhat
messy to show in general. The k = 1 is a special case, as it is trivial

d(x;-x")=8,1=0. (B.3)

The k = 2 case is illustrative

2
D0 (I3-x) = a1 Ax) - x1) +0x((x1 Ax2) X
i=1

= (91(—X2) + (92X1 (B.4)

~ 9%x . 9%x
Ou10,  Ourdy’
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which is zero by equality of mixed partials. To show that this sums to
zero in general observe that cyclic permutation of the wedge factors in
the pseudoscalar only changes the sign

Xl/\XZ/\"'/\Xk=X2/\X3/\---/\Xk/\Xl(—l)l(k_l)

=X3AXg4 A AXp AXq /\Xz(—l)z(k_l)
=X I AXg 2 A AXEAXTAXD A /\Xi(—l)[(k_l).

(B.5)
The pseudoscalar dot product I; - X' is therefore
Ik-xi = (X1 /\xz/\---/\xk)-xi
i1 (B.6)
=Xl AXi2 A AXE AXTAX A AXo (=) ,
and the sum is
IRACRY
i
= (0ii1X) AXiza A AXp AXE AXp Ao Aximg (=1 D
+Xis1 A Bjis2X) A  AXeAX AX Ao AXiog (1D (B.7)

+

FXi AXi2 A AXEAXAXY A A (9o x)(=1)ED,

For each i # j there will be one partial d; jx and one partial d;;x in this
sum. Consider, for example, the 1,2 case which come from the i = 1,2
terms in the sum

01(Xa AX3 A -+ A Xy Axp)(=1)'ED
+0r(X3 AXg A AXg AXp)(=1)2ED
= (012X) AX3 A AXp_p Axg)(=D)IED
FX3AXGA - AXE A (Do x)(=1)XED 4
= (D3 A AXe Ax) A (D201 0x + (D0 0x) + -

9*x 9*x )
+...

= /\ “e. /\ _ /\ /\ —_
(x3 X1 A\ %) ( Oou10us * Our0uy

(B.8)

By equality of mixed partials this difference of 1, 2 partials are killed. The
same argument holds for all other indexes, proving that }; 9; (Ik . xi) =0.
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Equation (B.2) is left with a sum of perfect differentials, each separately
integrable

vadkng:Zi:Lvdk_luiﬁuiduiaim(F(Ik-xi)G)
> fa dlu(F (1) o)

which completes the sketch of the proof.

While much of the theoretical heavy lifting was carried by the recip-
rocal frame vectors, the final result does not actually require computing
those vectors. When k equals the dimension of the space, as in IR volume
integrals, the vector derivative 9 is identical to the V, in which case we do
not even require the reciprocal frame vectors to express the gradient.

For a full proof of theorem 2.3, additional mathematical subtleties must
be considered. Issues of connectivity of the hypervolumes (and integra-

(B.9)

il

Au,—

tion theory in general) are covered very nicely in [20]. For other general
issues required for a complete proof, like the triangulation of the volume
and its boundary, please see [15], [7], and [23].
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GREEN’S FUNCTIONS.

c.1 HELMHOLTZ OPERATOR.

The goal.  The Helmholtz equation to solve is
(V2 +K°) f(x) = u(x). (C.1)
To solve using the Green’s function of theorem 2.17, we require
(V2 + 1) G(x.x) = *(x - X). (C.2)

Verifying this requires two steps, first considering points x # x’, and
then considering an infinitesimal neighborhood around x’.

Case I. x # x'.  We will absorb the sign associated with the causal and
acausal Green’s function variations by writing i = +j, so that for points
x # X/, (i.e. r = |[x = X|| # 0), working in spherical coordinates, we find

~47(V? +K) G(x.X) = %2 (PG') - 4mk*G
L L)), e o
= :—2(%((1"#( 1)eikr)+ Te’kr (C.3)
= %2 (K + (rik = X) ik) & + ]C—:eikr
= rlz (—rk2) e*r 4 kzi:r
=0.

Case 1. In the neighborhood of ||x — X’|| < € ~ Having shown that we end
up with zero everywhere that x # x” we are left to consider an infinitesi-
mal neighborhood of the volume surrounding the point x in our integral.
Following the Coulomb treatment in §2.2 of [21] we use a spherical vol-
ume element centered around x of radius €, and then convert a divergence
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to a surface area to evaluate the integral away from the problematic point.

f (V2 + %) Gx,x) f(x)dV’

: (v + ) o fxrav

== + x C4
A Jix—x|<e [Ix — x| C4H
| oI

e g— f(X'f‘X”) V2 + k2 //’
4r Jxi<e ( ) [l

where a change of variables X/ = x” —x, as illustrated in fig. C.1, has been
performed.

=

Figure C.1: Neighborhood ||x — x’|| < €.

We assume that f(x) is sufficiently continuous and “well behaved” that
it can be pulled it out of the integral, replaced with a mean value f(x*) in
the integration neighborhood around x” = 0.

iklIx” |
€ 4

f (V2 +12) G X f(x)aV” = lim _f&) (V2 +42)

T Jix|l<e (x| '



C.1 HELMHOLTZ OPERATOR.

(C.5)

The k? term of eq. (C.5) can be evaluated with a spherical coordinate
change of variables

tkHX”II ik
f K — f f f % 2drsin6dédy
Ixf<e X || =0 Jp=0

=47Tk2f re'* dr
r=0

ke ) (C6)
=4x f ue™du
u=0

= 4 (—iu+ De |
= 4 ((—ike + 1)etke — 1).

To evaluate the Laplacian term of eq. (C.5), we can make a change of
variables for the Laplacian

ik|[x" || ik||x"’| ik|[x" ||
e e e
v =V, —— =V |V —— C.7

W e T\ e ) €7

and then employ the divergence theorem

f el eKIX .,
\v/ dvV :f Vi | Vyr——dV
Ixl<e Xl % ll<e (x|
g
- f (fofT)-ﬁdA",
ov [Ix”|

where JV represents the surface of the |[x”’|| < € neighborhood, and fi is
the unit vector directed along x” = x” — x. To evaluate this surface integral
we will require only the radial portion of the gradient. With r = ||x”/||, that

is
iklIx"||
e 0 é
Vy——| = f
( X ||x”||) ( or r )

(C.8)

s
=jk=- - = ikr
[#-7)

ikr
:(ikr—l)er—z
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Using a spherical area element dA” = r? sin 8dfd¢, we obtain

oI
f V2 dvl/
Ixri<e X7l

f f (C.10)
0=0 J¢=0 r=e
= 47 (ike — 1) e*€.
Putting everything back together we have
1 e klIx=x'll
—— | (V*+# dV’
i ) (V) s )
= lim —f(x*) ((~ike + 1)e™ = 1 + (ike — 1) &'**
lim —£(x") (¢ ) (ke=1)e")

= lim —f(x") ((—ike + 1+ ike - 1e™* - 1)
= llg(l)f(x ).

Observe the perfect cancellation of all the explicitly € dependent terms.
The mean value point X* is also € dependent, but tends to x in the limit,
leaving

_ 1 2 2 eik||x—x’|| ’ ’
f(")__@f(v +k )mf(x )dv'. (C.12)

This proves the delta function property that we claimed the Green’s
function had.

C.2 DELTA FUNCTION DERIVATIVES.

The Green’s function for the spacetime gradient ends up with terms like
d
—8(=rfc+t-1)
dr

d
Eé(—r/c +t-1),

where ¢’ is the integration variable of the test function that the delta func-
tion will be applied to. If these were derivatives with respect to the inte-
gration variable, then we could use

(C.13)

*(d ’ Ay,
Im(%é(t ))¢(t)— ¢'(0), (C.14)
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which follows by chain rule, and an assumption that ¢(¢’) is well behaved
at the points at infinity. It is not clear that how, if at all, this could be
applied to either of eq. (C.13).

Let’s go back to square one, and figure out the meaning of these delta
functions by their action on a test function. We wish to compute

foo i(5(au +b-1)f(t)dr. (C.15)
—oo du

(o)

Let’s start with a change of variables "’ = au+ b —t’, for which we find

Y =au+b-1t"’

dt’, = —dt, (C16)
d _dt"d _ d
du dudr Car
Substitution back into eq. (C.15) gives
- d ’’ " ’7
af (W(S(t )) flau+b—1")(-dt")
—a f (s fau+ b -y
- o \dt”
= ad(t") flau+b—1")"_
(C.17)

—a f 5(/’)% flau+b—1")dt"

d
—aos flau+b—1")

d
agf(s)

t"=0

s=au+b

This shows that the action of the derivative of the delta function (with
respect to a non-integration variable parameter u) is

d d
—O6(au+b-1t)~ a—

C.18
du ds ( )

s=au+b
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LITERATURE VARIATIONS.

The notation and nomenclature used to express Maxwell’s equation in
the GA literature, much of which has a relativistic focus, has not been
standardized. Here is an overview of some of the variations that will be
encountered in readings.

Space Time Algebra (STA). [7] Maxwell’s equation is written

VF =J
F=E+IB
I =vyoy17273 (D.1)

J=y " =y (p-1J)
VZ)/'”@ :’)/()(at+V).

STA uses a relativistic basis {yﬂ} and its dual {y*} for which y% =
—71% = 1,k € 1,2,3, and »* -y, = &*,. Spatial vectors are expressed
in terms of the Pauli basis o; = y;y9, which are bivectors that behave as
Euclidean basis vectors (squaring to unity, and all mutually anticommuta-
tive). F is called the electromagnetic field strength (and is not a grade
(1,2)-multivector, but a bivector), V is called the vector derivative op-
erator, V called the three-dimensional vector derivative operator, and J
is called the spacetime current (and is a vector, not a multivector). The
physicist’s “natural units” ¢ = € = pg are typically used in STA. The
d’Alembertian in STA is (J = V2 = 9? — V2, although the earliest formu-
lation of STA [12] used [ for the vector derivative. Only spatial vectors
are in bold, and all other multivectors are non-bold. STA is inherently rel-
ativistic, and can be used to obtain many of the results in this book more
directly. STA can easily be related to the tensor formulation of electrody-
namics.

Maxwell’s equations as expressed in theorem 3.1 can be converted to
their STA form (in SI units) by setting e; = vy;yo and by left multiplying
both sides by .
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Algebra of Physical Space (APS). [5] Maxwell’s equation is written as

- 1
OF = —7
€C
F=E+icB
i =e3 (D.2)
1
5 = —5[ - V
c
. 1 ( + -)
= — C .
J oc pPc+)

F is called the Faraday, 0 the gradient, j the current density, and grade
(0, 1)-multivectors are called paravectors. A scalar ey = 1 is used as the
time-like basis “vector”, with an Euclidean basis {e|, e, e3} for the spatial
components. In APS, where ey = 1 is not a vector grade object, a standard
GA dot product for which e, - €” = ¢,,” to express proper length. APS uses
inner products based on grade selection from the multivector zz, where z
is the Clifford conjugation operation that changes the sign of any vector
and bivector grades of a multivector z. This conjugation operation is also
used to express Lorentz transformations, and is seen in Maxwell’s equa-
tion, operating on the current density and gradient. The d’Alembertian
is written as [J = 99 = (1/c*)0? - V2. While APS is only cosmetically
different than theorem 3.1 the treatment in [5] is inherently relativistic.

Jancewicz. [17]  Maxwell’s equation in linear isotropic media is written
as

Df+eDIn Ve+bDIn \u=7j

f=e+b
= E
¢ ‘/f (D.3)
b=—IB
Vi
I=-ej3
1

Jancewicz works with fields that have been re-dimensionalized to the
same units, uses an overhat bold notation for bivectors (which are some-
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times called volutors). @ is called the cliffor differential operator, f the
electromagnetic cliffor, and jthe density of electric sources. In media that
for which y, € are constant in space and time, his Maxwell equation re-
duces to D f = j. The d’Alembertian is written as (] = D*® = V? — €uo?,
where D* = V — /eud;. Unlike Baylis, which uses a “paravector” ap-
proach extensively for his relativistic treatment, this book ends with a
relativistic treatment using STA.






ENERGY MOMENTUM TENSOR (VECTOR.)

Did you cry cheater because of the reliance on brute force computer as-
sisted symbolic algebra to find the 7'(a) relations of eq. (3.124)? Or did
you try this as a problem, and need some assistance?

If so, here is an expansion of the energy momentum tensor for vector
parameters. We start with

Fel- = (E+I)7H) €;

(E.T)
=E,-+E/\ei+ln(Hi+H/\el~).

To show that the scalar grades are related to the Poynting vector as
(T(e;)) = —S-e;/c, we need the scalar grades of the tensor for vector
parameters

“(Fer") = S(EE+ Iy (HAe)E+ (Ener) B+ IyHiE)
+ (=M + 1 (Haer)H- (E A e;) TH + pHiH)
- g(#n (Hx ¢;)E -7 (Exe;) I’H)

(E.2)

=—(ExH)-e/c,
which is the Poynting relationship that was asserted. For the vector grades
we have
(FeiF'),
=((Ei+In(HAe;)+EAe; +InH;) (E—-InH)),
=(EE+In(H~Ae)E+ (EAe)-E+ InHE),
+n(—EdH+n (HAe) - H- (E ey TH+nHH)
= E;E + EE; — E’e; + "HH; - n*H%e; + n”” HH
= 2EE - E’¢; +n* (2HH - H’e;).

(E.3)

Assembling all the results, we have
€
(T(e))1-ej =3 (2EE; - E%6;; +n* (2H;H; - H?6;5)), (E.4)

which proves that (T'(e;)); - e; = —@ as stated in definition 3.5.
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DIFFERENTIAL FORMS COMPARISON.

It is likely that a student of electromagnetism will encounter differential
forms in their studies. As with geometric algebra, Maxwell’s equations
also have a compact representation in differential forms. That formal-
ism requires recasting the scalars or vectors of Maxwell’s equations as
1-forms (differentials), 2-forms, or 3-forms

E — E,dxcdt + Ey dycdt + E dzcdt,
B — B.dydz + B, dzdx + B, dxdy,

H — —-H,dxcdt — Hy dycdt — H, dzcdt, (E.1)
J — Jydydzedt + J, dzdxcedt + J; dxdycdt,
p — —pdxdydz.

This appendix is not intended to teach differential forms, nor electrody-
namics using differential forms'. Instead, this appendix assumes some
passing familiarity with differential forms, and provides an example that
illustrates how differential forms and geometric calculus can be related.

The key to relating the two formalisms is the introduction of a param-
eterization. To consider these relations, consider a vector surface those
span is controlled by two parameters

X = X(a, b). (F.2)

In geometric calculus we introduce differentials that span the tangent
plane at the point of evaluation

0
dx, = a_x da
¢ (F3)
dxp = x db
b= oy db;
so the area element for this parameterization is
d*x = dx, A dxp
ox  0Ox (F4)
=—A— :
3" 3b dadb

The interested reader is referred to [9] for an introduction to both differential forms, and
an introduction to their application to electrodynamics.
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To relate this to differential forms, introduce an orthonormal basis e - €; =
0, ei = 1. In this basis, the coordinate expansion (summation implied) of
the vector x is

X = €, Xk. (F~5)

The coordinate expansion of the geometric area element is

Oxi 0x;
2 k
A
X = 2a Bb ek e;dadb
Oxy Ox; 6xj Ox
= -— A ejdadb
Z(aa ob ~ a op )4
(9xk % (F~6)
= ) ee; | i 7\ dadb
u<v b
H(Xk,x])
eie; dadb.
; d(a,b)

Each element of this sum includes a product of a pseudoscalar, a Jacobian
determinant, and a scalar two parameter differential.

Now consider a two parameter differential for the same vector. Recall
that a differential (1-form) of a scalar function, again assuming two pa-
rameters, has the characteristic

df = 6—fd g—idb (E7)

In particular, we may compute the differentials of the coordinate functions

0
dxe = =X da + =X gp
0 ob (F.8)
L L T |
Y= ba ab
from which we can compute a 2-form
_ (Oxk Oxx 0x; axj
dxy Ndxj = ( P da + b db) ((%1 da b db
(9xk (9 axk 0x J
=24 3b — dandb+ b 9a db A da
— | da da
=lon oy da A db
b Db
_ 0(xg, xj)

da N db.

~ d(a,b)
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We have almost the same structure as with geometric algebra, however,
in differential forms, the antisymmetry of the surface area element is en-
coded in the 2-form da A db whereas in geometric calculus the required
antisymmetry is encoded in a unit bivector.

Should we restrict our attention to a strictly planar subspace, the map-
ping between the two formalisms becomes more striking. We now have

0
Px = €16, 212 g,

d(a, b)

A1 1) (F.10)
dxy A dxy = =22 da A db.
X1 X2 (9((1, b) a
That is, we can relate the formalisms by the mapping

eieydadb < da A db. (F.11)

The 1-form has an intrinsic vectorial nature, the 2-form has a bivector
nature, and a 3-form has a trivector nature.
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MATHEMATICA NOTEBOOKS.

These Mathematica notebooks, some just trivial ones used to generate
figures, others more elaborate, and perhaps some even polished, can be
found in
https://github.com/peeterjoot/mathematica/tree/master/GAelectrodynamics/.
The free Wolfram CDF player, is capable of read-only viewing these
notebooks to some extent.

e Dec 18, 2016 projectionAndRejectionDiagram.nb

Figure illustrating projection and rejection.

e Dec 19, 2016 oneParameterDifferentialFig.nb

One parameter differential figure.

e Dec 20, 2016 twoParameterDifterentialFig.nb

Two parameter differential figure, black and white versions.

o Aug 10, 2017 orientedAreasVarietyFigures.nb

Oriented areas of different shapes representing bivectors.

e Sep 26, 2017 parallelograms.nb

Overlapping parallelograms with fixed areas. Figure: parrallelograms-
Figl.eps.

e Sep 26, 2017 parallelogram.nb

This is the notebook for two rotation figures. One is for a rotation
of a vector lying in a plane (but that plane is viewed from a 3D
vantage point), and the other is for a rotation with respect to a plane
through an angle, and applied to a vector out of the plane.

e Oct 23, 2017 circularLineChargeDensity.nb

Some messy evaluation of integrals that end up expressed in terms
of elliptic E() and F() functions. Was associated with the evaluation
of the charge of a circular segment of line charge.


https://github.com/peeterjoot/mathematica/tree/master/GAelectrodynamics/
http://www.wolfram.com/cdf-player/
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/projectionAndRejectionDiagram.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/oneParameterDifferentialFig.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/twoParameterDifferentialFig.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/orientedAreasVarietyFigures.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/parallelograms.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/parallelogram.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/circularLineChargeDensity.nb
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Oct 23, 2017 LineChargelntegralsAndFigure.nb

Integrals for Line charge problem, including some of the special
angle cases that seem to require separate evaluation. Also has a
plot linechargeFigl.eps, and some plots (not in the book) of the
integrands.

Nov 2, 2017 lineChargeArcFigure.nb

Figure for circular arc of line charge. One arc of charge on the x-y
plane at a fixed radius. Field point, azimuthal angles for the range
of the line charge.

Nov 19, 2017 zcapPotential.nb

Figure for (magnetic) vector potential: vectorPotentialFig1.eps.

Nov 19, 2017 gaToroid.nb
Cool toroidal segment figure for the book. toroidFigl.eps

Nov 19, 2017 pillboxIntegrationVolumeFig1.nb

This is the figure for pillbox integration volume that was used in the
boundary value analysis of Maxwell’s equations.

Nov 23, 2017 circularBasisCoordinatesInTermsOfJonesVector.nb

Verify hand calculation from polarization.tex (also set as a prob-
lem). Got my hand calculation wrong. Try this with Mathematica
instead. Has some additional checking of the solution.

Nov 23, 2017 ellipticalPolarizationFig1.nb

A plot of a rotated ellipse showing the major and minor axes, and
the angle of rotation. This was related to an elliptically polarized
plane wave.

Nov 23, 2017 linearPolarizationFig1.nb

Figure (linearPolarizationFigl.eps) showing the electric and mag-
netic field directions for a linearly polarized field propagating at a
fixed angle to the horizontal in the transverse plane.

Nov 24, 2017 pseudoscalarPolarizedRelationtoJones.nb

Jones vector related calculations for GA representation of plane
wave.


https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/LineChargeIntegralsAndFigure.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/lineChargeArcFigure.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/zcapPotential.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/gaToroid.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/pillboxIntegrationVolumeFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/circularBasisCoordinatesInTermsOfJonesVector.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/ellipticalPolarizationFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/linearPolarizationFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/pseudoscalarPolarizedRelationtoJones.nb
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Nov 28, 2017 vectorOrientationAndAdditionFigures.nb

Vector addition and vector (and scalar) sign figures: VectorsWith-
OppositeOrientationFig1.eps, vectorAdditionFig1.eps, scalarOrien-
tationFig1.eps.

Dec 3, 2017 ellipticalPolarizationEnergyMomentumSimplification.nb
Hyperbolic cosine and arctan double angle reductions. Probably for
cosh parameterization of an ellipse.

Dec 3, 2017 amperesLawMultiplePoints.nb

Figure for amperesLawBetweenTwoCurrents.eps. Circles surround-
ing two currents, with respective phicap vectors around those sources.
Dec 5, 2017 stressEnergyTensorValues.nb

Uses my GA30.m package to compute the values of the energy mo-
mentum tensor multivectors, and relate those to the conventional
tensor description of the same. Calculates the expansion of the ad-
joint of the energy momentum tensor, and also the expansion of
some of the adjoint energy momentum tensor terms for the Poynt-
ing vector.

Dec 13, 2017 planeCurrentIntegrals.nb

Simple integrals for plane current distributions.

Dec 14, 2017 ringlntegral2.nb

Elliptic integrals for charge and current distribution on a ring.

Dec 14, 2017 currentRinglIntegrals.nb

Some integrals related to circular current/charge distributions. A
Manipulate that plots the magnitude of one of the integrands. A
plot (chargeAndCurrentOnRingFig1.eps) that shows the geometric
of the current ring and coordinate system used to solve or express
the problem.

Dec 17, 2017 cylinderFieldIntegrals.nb

Symbolic evaluation of integrals for a cylindrical field distribution
of finite and infinite length.


https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/vectorOrientationAndAdditionFigures.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/ellipticalPolarizationEnergyMomentumSimplification.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/amperesLawMultiplePoints.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/stressEnergyTensorValues.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/planeCurrentIntegrals.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/ringIntegral2.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/currentRingIntegrals.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/cylinderFieldIntegrals.nb
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Dec 17, 2017 ringFieldEllipticIntegralEquivalents.nb

This notebook has transformation techniques to translate a couple
of circular charge distribution integrals into their elliptic integral
form. It also has plots of some of the electric and magnetic fields
obtained from solving one such problem.

Jan 24, 2018 stressTensorSymmetricDemo.nb

A CliffordBasic calculation of the strain portion of the stress tensor,
and an explicit demonstration that it is symmetric.

Jan 28, 2018 exponentialFormOfVectorProductInR3.nb

A somewhat random seeming complex exponential evaluation us-
ing CliffordBasic, and an R3 bivector argument.

Jan 28, 2018 exponentialFormOfVectorProductInR2.nb

Some R2 complex exponential calculations using CliffordBasic.

Jan 28, 2018 compositionOfExponentials.nb

This is a figure that has an equilateral triangle in the corner of the
first quadrant. This was used to illustrate that the product of two
complex exponentials is another complex exponential (in R3), but
the bivector argument for that resulting exponential describes (in
general) a different plane.

Jan 29, 2018 radial VectorCylindricalFig1.nb

Figure: radial VectorCylindricalFig1.eps. Notebook uses a dynamic
(Manipulate) to generate the figure at a desirable angle and radius.

Feb 1, 2018 dualityInR3Figl.nb

Figure (dualityInR3Figl.eps) showing the R3 dual plane to a vector
graphically. The scaling of the dual plane was only for illustration
purposes and did not match the length of the vector.

Feb 3, 2018 factorizationProblem Verification.nb

Verify answers for normal factorization problem. 2.16

Feb 3, 2018 bivectorFactorizationFigures.nb

Figures that illustrate two rectangular factorizations of a bivector in
R3.


https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/ringFieldEllipticIntegralEquivalents.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/stressTensorSymmetricDemo.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/exponentialFormOfVectorProductInR3.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/exponentialFormOfVectorProductInR2.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/compositionOfExponentials.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/radialVectorCylindricalFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/dualityInR3Fig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/factorizationProblemVerification.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/bivectorFactorizationFigures.nb
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Feb 5, 2018 neighbourhoodFig1.nb

A nice little figure illustrating an infinitesimal neighbourhood around
a given point. This was used as a figure in the somewhat tedious ver-
ification of a Green’s function, done in one of the appendixes.

Feb 14, 2018 FourierTransformMathematicaParamsExploration.nb

The purpose of this notebook is to show (i.e. decode) the mean-
ing visually of the various Mathematica FourierTransform Fourier-
Parameters options available. Shows all the conventions (modern
physics, pure math, signal processing, classical physics).

Feb 20, 2018 elliptical ContoursFigures.nb

Hyperbolic parameterization of an ellipse, and contours for the as-
sociated curvilinear coordinates. ellipticalContoursFig1.eps, and el-
lipticalContoursFigl.eps figures.

Feb 22, 2018 2dmanifoldPlot.nb

Figure: 2dmanifoldFigl.eps. CliffordBasic calculation of the basis
elements above and the area element. Same calculation using my
GA30.m package. Generation of mmacell text for the book showing
the input and output cells for the CliffordBasic calculation.

Feb 24, 2018 reciprocalBasicCalculationFromFigure.nb

Reciprocal basis computation with conventional vector algebra. Same
calculation using bivectors. Display the cells for the book latex.

Feb 24, 2018 linearSystemR4.nb

A CliffordBasic solution to an R4 linear system a x + by = ¢, using
wedge products to solve. Also includes mmacell output to embed
the solution in the book as Mathematica input and output.

Feb 24, 2018 reflectionFigureGAcalculation.nb

CliffordBasic calculations for Figure 1.20 reflection (reflectionFigl.eps),
but not the figure itself. Also has mmacell output for the input and
output cells for this calculation.

Feb 24, 2018 curvilinearPolarFigl.nb

Plot (curvilinearPolarFigl.eps) that shows a 2d vector in polar co-
ordinates, the radial vector, and the angle relative to the horizon.


https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/neighbourhoodFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/FourierTransformMathematicaParamsExploration.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/ellipticalContoursFigures.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/2dmanifoldPlot.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/reciprocalBasicCalculationFromFigure.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/linearSystemR4.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/reflectionFigureGAcalculation.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/curvilinearPolarFig1.nb
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Feb 25, 2018 sphericalPolar.nb

Spherical polar basis and volume element. Calcuation of the curvi-
linear basis elements done with conventional vector algebra, and
CliffordBasic. Also includes mmacell output for the book.

Feb 28, 2018 orientedAreas.nb

Bivector square and parallelogram figures, Figures for 90 degree
rotations. Figure for line intersection. Figure for vector addition,
showing scaled multiples of orthonormal bases elements.

Feb 28, 2018 unitBivectorsFig.nb

Unit bivectors figures in R3. unitBivectorsFigl.eps, unitBivectors-
Fig2.eps.

Feb 28, 2018 bivectorAddition.nb

Pictoral addition of different size and shape bivectors.

Feb 28, 2018 unitBivectorAreaRepresentationsFig.nb

A figure that shows different shape representations of unit bivec-
tors in R2. Includes parallelogram, square, circle and ellipse rep-
resentations. Also includes inscribed arc to show the orientation
of the bivectors. That was done using Arrow in combination with
BSplineCurve, where the points on the curve come from evaluating
CirclePoints.

Feb 28, 2018 circularBivectorsIn3DFigl.nb

This is the notebook for a few bivector related illustrations. The
first is two circular representations of a bivector viewed from a 3D
vantage point. Another is a bivector addition figure, with two bivec-
tors summed in 3D. That figure was confusing (but cool), and has
been left out of the book. The last figure separates the space be-
tween those bivectors summed in the second figure showing the
summands and the sum all distinct. The current draft of the book
includes this figure, but it is still a bit confusing.

Apr 2, 2018 polarizationCircular.nb

A hand calculation seemed to show that I had the wrong expressions
for alphaL, alphaR in my polarization notes. Here’s a check of the
correction of those expressions


https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/sphericalPolar.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/orientedAreas.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/unitBivectorsFig.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/bivectorAddition.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/unitBivectorAreaRepresentationsFig.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/circularBivectorsIn3DFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/polarizationCircular.nb
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Jul 26, 2018 sphericalPolarGA30.nb

Uses geometric algebra to calculate the spherical polar position vec-
tor, and then take derivatives to find the trivector volume element
(Jacobian).

Feb 2, 2019 obliqueReciprocal.nb

figure in reciprocal.tex

Feb 10, 2019 bivectorAdditionIllustrated3D.nb

This is a graphical illustration of bivector addition, connecting the
normals of the bivectors head to tail like vector addition. The mag-
nitudes of the bivectors are represented by the unit normals scaled
by the area of the bivector representations. The notebook includes
a Manipulate expression that can be used to interactively examine
the effect of changing the size of each of the summed bivectors.
Jan 30, 2020 distanceToLine.nb

[lustration of distance from a point to a line.

Jul 26, 2020 2dReciprocal.nb

This does a 2D calculation of the reciprocal frame vectors (two dif-
ferent ways), and plots orthonormal and oblique grids with sample
vectors using those bases.

Aug 3, 2020 stickfig.nb

Stick figure generation module and a couple of linear force dia-
grams.

Nov 20, 2020 twoParameterDifferential Cov.nb

Two parameter differential figure, a covariant labelling variation.

Nov 22, 2020 twoParameterDifferential ColorFig.nb

Two parameter differential figure, color variation.

Nov 22, 2020 MathematicaColorToLatexRGB.nb

helper code to convert named Mathematica colors to RGB html and
latex values.
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https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/sphericalPolarGA30.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/obliqueReciprocal.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/bivectorAdditionIllustrated3D.nb
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