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P R E FAC E

Why you want to read this book. When you first learned vector algebra
you learned how to add and subtract vectors, and probably asked your in-
structor if it was possible to multiply vectors. Had you done so, you would
have been told either “No”, or a qualified “No, but we can do multiplica-
tion like operations, the dot and cross products.” This book is based on a
different answer, “Yes.” A set of rules that define a coherent multiplication
operation are provided.

Were you ever bothered by the fact that the cross product was only
defined in three dimensions, or had a nagging intuition that the dot and
cross products were related somehow? The dot product and cross product
seem to be complimentary, with the dot product encoding a projection
operation (how much of a vector lies in the direction of another), and the
magnitude of the cross product providing a rejection operation (how much
of a vector is perpendicular to the direction of another). These projection
and rejection operations should be perfectly well defined in 2, 4, or N
dimensions, not just 3. In this book you will see how to generalize the
cross product to N dimensions, and how this more general product (the
wedge product) is useful even in the two and three dimensional problems
that are of interest for physical problems (like electromagnetism.) You
will also see how the dot, cross (and wedge) products are all related to the
vector multiplication operation of geometric algebra.

When you studied vector calculus, did the collection of Stokes’s, Green’s
and Divergence theorems available seem too random, like there ought to
be a higher level structure that described all these similar operations? It
turns out that such structure is available in the both the language of differ-
ential forms, and that of tensor calculus. We’d like a toolbox that doesn’t
require expressing vectors as differentials, or resorting to coordinates. Not
only does geometric calculus provides such a toolbox, it also provides the
tools required to operate on functions of vector products, which has pro-
found applications for electromagnetism.

Were you offended by the crazy mix of signs, dots and cross products in
Maxwell’s equations? The geometric algebra form of Maxwell’s equation
resolves that crazy mix, expressing Maxwell’s equations as a single equa-
tion. The formalism of tensor algebra and differential forms also provide
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simpler ways of expressing Maxwell’s equations, but are arguably harder
to relate to the vector algebra formalism so familiar to electric engineers
and physics practitioners. In this book, you will see how to work with the
geometric algebra form of Maxwell’s equation, and how to relate these
new techniques to familiar methods.

Overview. Geometric algebra generalizes vectors, providing algebraic
representations of not just directed line segments, but also points, plane
segments, volumes, and higher degree geometric objects (hypervolumes.).
The geometric algebra representation of planes, volumes and hypervol-
umes requires a vector dot product, a vector multiplication operation, and
a generalized addition operation. The dot product provides the length of
a vector and a test for whether or not any two vectors are perpendicular.
The vector multiplication operation is used to construct directed plane
segments (bivectors), and directed volumes (trivectors), which are built
from the respective products of two or three mutually perpendicular vec-
tors. The addition operation allows for sums of scalars, vectors, or any
products of vectors. Such a sum is called a multivector.

The power to add scalars, vectors, and products of vectors can be ex-
ploited to simplify much of electromagnetism. In particular, Maxwell’s
equations for isotropic media can be merged into a single multivector
equation(

∇ +
1
c
∂

∂t

)
F = J, (0.1)

where

• ∇ is the gradient,

• c = 1/
√
µϵ is the group velocity for waves in the media (i.e. the

speed of light),

• F = E+ IcB is the multivector electromagnetic field that combines
the electric (E) and magnetic field (B) into a single entity,

• J = η (cρ − J) is the multivector current, combining the charge
density (ρ) and the current density (J) into a single entity,

• I = e1e2e3 is the ordered product of the three R3 basis vectors, and

• η =
√
µ/ϵ is the impedance of the media.
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Encountering Maxwell’s equation in its geometric algebra form leaves the
student with more questions than answers. Yes, it is a compact representa-
tion, but so are the tensor and differential forms (or even the quaternionic)
representations of Maxwell’s equations. The student needs to know how
to work with the representation if it is to be useful. It should also be clear
how to use the existing conventional mathematical tools of applied electro-
magnetism, or how to generalize those appropriately. Individually, there
are answers available to many of the questions that are generated attempt-
ing to apply the theory, but they are scattered and in many cases not easily
accessible.

Much of the geometric algebra literature for electrodynamics is pre-
sented with a relativistic bias, or assumes high levels of mathematical or
physics sophistication. The aim of this work was an attempt to make the
study of electromagnetism using geometric algebra more accessible, es-
pecially to other dumb engineers1 like myself.

What’s in this book. This book introduces the fundamentals of geomet-
ric algebra and calculus, and applies those tools to the study of electro-
magnetism. Geometric algebra extends vector algebra by introducing a
vector multiplication operation, the vector product, incorporating aspects
of both the dot and cross products. Products or sums of products of vec-
tors are called multivectors, and are capable of representing oriented point,
line, plane, and volume segments.

This book is divided into three parts.

Chapter-1. An introduction to geometric algebra (GA). Topics covered
include vectors, vector spaces, vector multiplication, bivectors, trivectors,
multivectors, multivector spaces, dot and wedge products, multivector rep-
resentation of complex numbers, rotation, reflection, projection and rejec-
tion, and linear system solution.

The focus of this book are geometric algebras generated from 2 or 3
dimensional Euclidean vector spaces. In some cases higher dimensional
spaces will be used in examples and theorems. Some, but not all, of the
places requiring generalizations for mixed signature (relativistic) spaces
will be pointed out.

1 Sheldon: “Engineering. Where the noble semiskilled labourers execute the vision of those
who think and dream. Hello, Oompa-Loompas of science.”
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Chapter-2. Geometric calculus, Green’s function solutions of differential
equations, and multivector Green’s functions. A multivector general-
ization of vector calculus, the fundamental theorem of geometric calculus,
is required to apply geometric algebra to electromagnetism. Special cases
of the fundamental theorem of geometric calculus include the fundamen-
tal theorem of calculus, Green’s (area) theorem, the divergence theorem,
and Stokes’ theorems. Multivector calculus also provides the opportunity
to define a few unique and powerful (multivector) Green’s functions of
particular relevance to electromagnetism.

Chapter-3. Application of Geometric Algebra to electromagnetism. In-
stead of working separately with electric and magnetic fields, we will
work with a hybrid multivector field, F, that includes both electric and
magnetic field contributions, and with a multivector current, J, that in-
cludes both charge and current densities.

Starting with the conventional form of Maxwell’s equation, the multi-
vector Maxwell’s equation (singular) is derived. This is a single multivec-
tor equation that is easier to solve and manipulate than the conventional
mess of divergence and curl equations that are familiar to the reader. The
multivector Maxwell’s equation is the starting point for the remainder
of the analysis of the book, and from it the wave equation, plane wave
solutions, and static and dynamic solutions are derived. The multivector
form of energy density, Poynting force, and the Maxwell stress tensor, and
all the associated conservation relationships are derived. The transverse
and propagation relationships for waveguide solutions are derived in their
multivector form. Polarization is discussed in a multivector context, and
multivector potentials and gauge transformations are introduced.

No attempt to motivate Maxwell’s equations, nor most of the results
derived from them is made in this book.

Prerequisites: The target audience for this book is advanced undergrad-
uate or graduate students of electrical engineering or physics. Such an
audience is assumed to be intimately familiar with vectors, vector alge-
bra, dot and cross products, determinants, coordinate representation, lin-
ear system solution, complex numbers, matrix algebra, and linear trans-
formations. It is also assumed that the reader understands and can apply
conventional vector calculus concepts including the divergence and curl
operators, the divergence and Stokes’ theorems, line, area and volume
integrals, Greens’ functions, and the Dirac delta function. Finally, it is
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assumed that the reader is intimately familiar with conventional electro-
magnetism, including Maxwell’s and the Lorentz force equations, scalar
and vector potentials, plane wave solutions, energy density and Poynting
vectors, and more.

Thanks: Portions of this book were reviewed or corrected by Steven De
Keninck, Dr. Wolfgang Lindner, Prof. Mo Mojahedi, Prof. Alan Macdon-
ald, Prof. Quirino Sugon Jr., Miroslav Josipović, Bruce Gould, Tim Put,
David Bond, Bill Ignatiuk, Sigmundur, Zhengbang Zhou, Jack Paladin,
Nicky, D, Foreest, Peter Eriksen, Christopher, Wrenn Wooten, Prof. Nor-
man Derby, prlw1 (on github), Ryan Mohseni, and Nicholas Dwork. I’d
like to thank everybody who provided me with any feedback (or merge-
requests!) This feedback has significantly improved the quality of the text.

Peeter Joot peeterjoot@pm.me
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1G E O M E T R I C A L G E B R A .

1.1 prerequisites .

Geometric algebra (GA for short), generalizes and extends vector algebra.
The following section contains a lightning review of some foundational
concepts, including scalar, vector, vector space, basis, orthonormality, and
metric.

1.1.1 Vector.

A vector is a directed line segment, with a length, direction, and an orien-
tation. A number of different representations of vectors are possible.

Graphical representation. A vector may be represented graphically as
an arrow, with the head indicating the direction of the vector. Multipli-
cation of vectors by positive numbers changes the length of the vector,
whereas multiplication by negative numbers changes the direction of the
vector and the length, as illustrated in fig. 1.1. Addition of vectors is per-
formed by connecting the arrows heads to tails as illustrated in fig. 1.2.
In this book a scalar is a number, usually real, but occasionally complex
valued. The set of real numbers will be designated R.

Figure 1.1: Scalar multiples of vectors.
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a

b

c

s

Figure 1.2: Addition of vectors.

Coordinate representation. The length and orientation of a vector, rela-
tive to a chosen fixed point (the origin) may be specified algebraically as
the coordinates of the head of the vector, as illustrated in fig. 1.3.

(1,0)

(1,2)

(0,1)
(-1.5,1)

(-1,-1)

(-1,0)
(0, 0)

Figure 1.3: Coordinate representation of vectors.

Two dimensional vectors may be represented as pairs of coordinates
(x, y), three dimensional vectors as triples of coordinates (x, y, z), and
more generally, N dimensional vectors may be represented as coordinate
tuples (x1, x2, · · · , xN). Given two vectors, say x = (x, y) , y = (a, b), the
sum of the vectors is just the sum of the coordinates x+ y = (x + a, y + b).
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Numeric multiplication of a vector rescales each of the coordinates, for
example with x = (x, y, z), αx = (αx, αy, αz).

It is often convienient to assemble such lists of coordinates in matrix
form as rows or columns, providing a few equivalent vector representa-
tions as shown in table 1.1.

Table 1.1: Equivalent vector coordinate representations.

Tuple Row Column

(x1, x2, · · · , xN)
[
x1 x2 . . . xN

]


x1

x2
...

xN


In this book, the length one (unit) vector in the i’th direction will be

given the symbol ei. For example, in three dimensional space with a col-
umn vector representation, the respective unit vectors along each of the x,
y, and z directions are designated

e1 =


1

0

0

 , e2 =


0

1

0

 , e3 =


0

0

1

 . (1.1)

Such symbolic designation allows any vector to be encoded in a repre-
sentation agnostic fashion. For example a vector x with coordinates x, y, z
is

x = xe1 + ye2 + ze3, (1.2)

independent of a tuple, row, column, or any other representation.

1.1.2 Vector space.

Two representation specific methods of vector addition and multiplication
have been described. Addition can be performed graphically, connecting
vectors heads to tails, or by adding the respective coordinates. Multiplica-
tion can be performed by changing the length of a vector represented by
an arrow, or by multiplying each coordinate algebraically. These rules can
be formalized and abstracted by introducing the concept of vector space,
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which describes both vector addition and multiplication in a representa-
tion agnostic fashion.

Definition 1.1: Vector space.

A vector space is a set V = {x, y, z, · · ·}, the elements of which are
called vectors, which has an addition operation designated + and a
scalar multiplication operation designated by juxtaposition, where
the following axioms are satisfied for all vectors x, y, z ∈ V and
scalars a, b ∈ R.

V is closed under addition x + y ∈ V

V is closed under scalar multi-
plication

ax ∈ V

Addition is associative (x + y) + z = x + (y + z)

Addition is commutative y + x = x + y

There exists a zero element 0 ∈
V

x + 0 = x

For any x ∈ V there exists a
negative additive inverse −x ∈
V

x + (−x) = 0

Scalar multiplication is dis-
tributive

a(x + y) = ax + ay,
(a + b)x = ax + bx

Scalar multiplication is asso-
ciative

(ab)x = a(bx)

There exists a multiplicative
identity

1x = x

One may define finite or infinite dimensional vector spaces with ma-
trix, polynomial, complex tuple, or many other types of elements. Some
examples of general vector spaces are given in the problems below, and
many more can be found in any introductory book on linear algebra. The
applications of geometric algebra to electromagnetism found in this book
require only real vector spaces with dimension no greater than three. Defi-
nition 1.1 serves as a reminder, as the concept of vector space will be built
upon and generalized shortly.
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Exercise 1.1 RN

Define RN as the set of tuples {(x1, x2, · · ·) | xi ∈ R}. Show that RN is
a vector space when the addition operation is defined as x + y ≡ (x1 +

y1, x2 + y2, · · ·) , and scalar multiplication is defined as ax ≡ (ax1, ax2, · · ·)
for any x = (x1, x2, · · ·) ∈ RN , y = (y1, y2, · · ·) ∈ RN , and a ∈ R.

Exercise 1.2 Polynomial vector space.

Show that the set of N’th degree polynomials V =
{∑N

k=0 akxk | ak ∈ R
}

is a vector space.

Exercise 1.3 Pauli matrices.

The Pauli matrices are defined as

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (1.3)

Given any scalars a, b, c ∈ R, show that the set V = {aσ1 + bσ2 + cσ3}

is a vector space with respect to matrix addition. Determine the form of
the zero and identity elements. Given a vector x = x1σ1 + x2σ2 + x3σ3,
show that the coordinates xi can be extracted by evaluating the matrix
trace of the matrix product σix.

1.1.3 Basis, span and dimension.

Definition 1.2: Linear combination

Let S = {x1, x2, · · · , xk} be a subset of a vector space V . A linear
combination of vectors in S is any sum

a1x1 + a2x2 + · · · + akxk.

For example, if x1 = e1 + e2, x2 = e1 − e2, then 2x1 + 3x2 = 5e1 − e2 is
a linear combination.

Definition 1.3: Linear dependence.
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Let S = {x1, x2, · · · , xk} be a subset of a vector space V . This set S is
linearly dependent if one can construct any equation

0 = a1x1 + a2x2 + · · · + akxk,

for which not all of the coefficients ai, 1 ≤ i ≤ k are zero.

For example, the vectors x1 = e1 + e2, x2 = e1 − e2, x3 = e1 + 3e2

are linearly dependent since 2x1 − x2 − x3 = 0, and the vectors y1 =

e1 + e2 + e3, y2 = e1 + e3, y3 = 3e1 + e2 + 3e3 are linearly dependent since
y1 + 2y2 − y3 = 0.

Definition 1.4: Linear independence.

Let S = {x1, x2, · · · , xk} be a subset of a vector space V . This set is
linearly independent if there are no equations with ai , 0, 1 ≤ i ≤ k
such that

0 = a1x1 + a2x2 + · · · + akxk.

For example, the vectors x1 = e1 + e2, x2 = e1 − e2, x3 = 2e1 + e3,
are linearly independent, as are the vectors y1 = e1 + e2 + e3, y2 = e1 +

e3, y3 = e2 + e3.

Definition 1.5: Span.

Let S = {x1, x2, · · · , xk} be a subset of a vector space V . The span of
this set is the set of all linear combinations of these vectors, denoted

span(S ) = {a1x1 + a2x2 + · · · + akxk} .

For example, the span of {e1, e2} consists of all the points in the x-y
plane. The span of the spherical basis vectors

{
r̂, θ̂, ϕ̂

}
is R3.

Definition 1.6: Subspace.

A vector space S that is a subset of V is a subspace of V .
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Definition 1.7: Basis and dimension

Let S = {x1, x2, · · · , xn} be a linearly independent subset of V . This
set is a basis if span(S ) = V . The number of vectors n in this set is
called the dimension of the space.

1.1.4 Standard basis, length and normality.

Definition 1.8: Dot product.

Let x, y be vectors from a vector space V . A dot product x · y is a
mapping V × V → R with the following properties.

Symmetric x · y = y · x

Bilinear (ax + by) · z =
ax · z + by · z, x · (ay + bz) =

ax · y + bx · z

Positive length x · x > 0, x , 0

Definition 1.9: Length

The length of a vector x ∈ V is defined as

∥x∥ =
√

x · x.

For example, x = e1 + e2 has length ∥x∥ =
√

2, and x = xe1 + ye2 + ze3

has length ∥x∥ = √
(
x2 + y2 + z2

)
.

Definition 1.10: Unit vector

A vector x is called a unit vector if the dot product with itself is unity
(x · x = 1).

Examples of unit vectors include e1, (e1 + e3)/
√

3, (2e1 − e2 − e3)/
√

6,
and any vector x = αe1 + βe2 + γe3, where α, β, γ are direction cosines
satisfying α2 + β2 + γ2 = 1.
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Definition 1.11: Orthogonal

Two vectors x, y ∈ V are orthogonal if their dot product is zero,
x · y = 0.

Examples of orthogonal vectors include x, y where

x = e1 + e2

y = e1 − e2,
(1.5)

and x, y, z where

x = e1 + e2 + e3

y = 2e1 − e2 − e3

z = e3 − e2.

(1.6)

Definition 1.12: Orthonormal

Two vectors x, y ∈ V are orthonormal if they are both unit vectors
and orthogonal to each other. A set of vectors {x, y, · · · , z} is an or-
thonormal set if all pairs of vectors in that set are orthonormal.

Examples of orthonormal vectors include x, y where

x =
1
√

2
(e1 + e2)

y =
1
√

2
(e1 − e2) ,

(1.7)

and x, y, z where

x =
1
√

3
(e1 + e2 + e3)

y =
1
√

6
(2e1 − e2 − e3)

z =
1
√

2
(e3 − e2) .

(1.8)
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Definition 1.13: Standard basis.

A basis {e1, e2, · · · , eN} is called a standard basis if that set is or-
thonormal.

Any number of possible standard bases are possible, each differing by
combinations of rotations and reflections. For example, given a standard
basis {e1, e2, e3}, the set {x, y, z} from eq. (1.8) is also a standard basis.

Definition 1.14: Metric.

Given a basis B = {x1, x2, · · · xN}, the metric of the space with respect
to B is the (symmetric) matrix G with elements gi j = xi · x j.

For example, with a basis B = {x1, x2} where x1 = e1 + e2, x2 = 2e1 −

e2, the metric is

G =

2 1

1 5

 . (1.9)

The metric with respect to a standard basis is just the identity matrix.
In relativisitic geometric algebra, the positive definite property of defi-

nition 1.8 is considered optional. In this case, the definition of length must
be modified, and one would say the length of a vector x is

√
|x · x|, and

that x is a unit vector if x · x = ±1. Such relativisitic dot products will
not be used in this book, but they are ubiquitous in the geometric alge-
bra literature, so it is worth knowing that the geometric algebra literature
may use a weaker defition of dot product than typical. The metric for a
relativistic vector space is not a positive definite matrix. In particular, the
metric with respect to a relativistic standard basis is zero off diagonal, and
has diagonals valued (1,−1,−1,−1) or (−1, 1, 1, 1). A space is called Eu-
clidean, when the metric with respect to a standard basis is the identity
matrix, that is ei · e j = δi j for all standard basis elements ei, e j, and called
non-Euclidean if ei · ei = −1 for at least one standard basis vector ei.

1.2 multivectors .

Geometric algebra builds upon a vector space by adding two additional
operations, a vector multiplication operation, and a generalized addition
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operation that extends vector addition to include addition of scalars and
products of vectors. Multiplication of vectors is indicated by juxtaposi-
tion, for example, if x, y, e1, e2, e3, · · · are vectors, then some vector prod-
ucts are

xy, xyx, xyxy,
e1e2, e2e1, e2e3, e3e2, e3e1, e1e3,

e1e2e3, e3e1e2, e2e3e1, e3e2e1, e2e1e3, e1e3e2,

e1e2e3e1, e1e2e3e1e3e2, · · ·

(1.10)

Products of vectors may be scalars, vectors, or other entities that rep-
resent higher dimensional oriented objects such as planes and volumes.
Vector multiplication is constrained by a rule, called the contraction ax-
iom, that gives a meaning to the square of a vector (a scalar equal to the
squared length of the vector), and indirectly imposes an anti-commutative
relationship between orthogonal vector products. The product of two vec-
tors is not a vector, and may include a scalar component as well as an
irreducible product of two orthogonal vectors called a bivector. With vec-
tors and their products living in different spaces, geometric algebra allows
scalars, vectors, or any products of vectors to be added, forming a larger
closed space of more general objects. Such a sum is called a multivector,
an example of which is

1 + 2e1 + 3e1e2 + 4e1e2e3. (1.11)

In this example, we have added a

• scalar (or 0-vector) 1, to a

• vector (or 1-vector) 2e1, to a

• bivector (or 2-vector) 3e1e2, to a

• trivector (or 3-vector) 4e1e2e3.

Geometric algebra uses vector multiplication to build up a hierarchy of
geometrical objects, representing points, lines, planes, volumes and hy-
pervolumes (in higher dimensional spaces.) Those objects are enumerated
below to give an idea where we are headed before stating the formal defi-
nition of a multivector space.

Scalar. A scalar, also called a 0-vector, is a zero-dimensional object
with sign, and a magnitude.
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Vector. A vector, also called a 1-vector, is a one-dimensional object
with a sign, a magnitude, and a rotational attitude within the space it is
embedded.

Bivector. A bivector, also called a 2-vector, is a 2 dimensional object
representing a signed plane segment with magnitude and orientation. As-
suming a vector product (with properties to be specified shortly), a bivec-
tor has the following algebraic description.

Definition 1.15: Bivector.

A bivector, or 2-vector, is a sum of products of pairs of orthogonal
vectors. Given an N dimensional vector space V with an orthogonal
basis {x1, x2, · · · , xN}, a general bivector can be expressed as∑

i, j

Bi jxix j,

where Bi j is a scalar.

Given orthogonal vectors x, y, z and standard basis elements e1, e2, · · ·,
examples of bivectors are xy, yz, 3xy − yz, e1e2, and e1e2 + e2e3 + e3e1.

The reader can check that bivectors specified by definition 1.15 form a
vector space according to definition 1.1.

If a bivector is formed from the product of just two orthogonal vectors1,
that bivector is said to represent the plane containing those two vectors.
Bivectors that represent the same plane can be summed by simply adding
the respective (signed) areas, as illustrated in fig. 1.4. Note that the shape
of a bivector’s area is not significant, only the magnitude of the area and
the sign of the bivector, which is represented as an oriented arc in the
plane.

Addition of arbitrarily oriented bivectors in R3 or other higher dimen-
sional spaces, requires decomposition of the bivector into a set of orthog-
onal planes, an operation best performed algebraically. The sum of a set
of bivectors may not represent the same plane as any of the summands,
as is crudely illustrated in fig. 1.5, where red + blue = green, where all
bivectors have a different rotational attitude in space.

1 Bivectors generated from R2, and R3 vectors can always be factored into a single product
of orthogonal vectors, and therefore represent a plane. Such a factorization may not be
possible in higher dimensional spaces.
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Figure 1.4: Graphical representation of bivector addition in the plane.

Figure 1.5: Bivector addition.

The bivector provides a structure that can encode plane oriented quan-
tities such as torque, angular momentum, or a general plane of rotation. A
quantity like angular momentum can be represented as a magnitude times
a quantity that represents the orientation of the plane of rotation. In con-
ventional vector algebra we use the normal of the plane to describe this
orientation, but that is problematic in higher dimensional spaces where
there is no unique normal. Use of the normal to represent a plane is unsat-
isfactory in two dimensional spaces, which have to be extended to three di-
mensions to use normal centric constructs like the cross product. A bivec-
tor representation of a plane can eliminate the requirement to utilize a
third (normal) dimension, which may not be relevant in the problem, and
can allow some concepts (like the cross product) to be generalized to di-
mensions other than three when desirable.

Later we will see that permutations of the orders of orthogonal vector
products are not independent. In particular given a pair of orthogonal vec-
tors x, y, that dependence is xy + yx = 0, or yx = −xy. This means that
{e1e2, e2e1} is not a basis for the R2 bivector space (those bivectors are
not linearly independent), but that either {e1e2} or {e2e1} is an R2 bivector
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basis. Similarly, for R3, we may pick a set such as R = {e1e2, e2e3, e3e1}

for the bivector basis2. If x, y are orthonormal vectors, the bivector prod-
uct xy or yx will be called a unit bivector. The basis R is illustrated in
fig. 1.6 with two different shaped representations of the “unit” bivector el-
ements of this basis. In both cases, the sign of the bivector is represented
graphically with an oriented arc.

(a) (b)

Figure 1.6: Unit bivectors for R3

Trivector. A trivector, also called a 3-vector, is a 3 dimensional object
representing a signed volume segment with magnitude and orientation.
Assuming a vector product (with properties to be specified shortly), a
trivector has the following algebraic description.

Definition 1.16: Trivector.

A trivector, or 3-vector, is a sum of products of triplets of mutually
orthogonal vectors. Given an N dimensional vector space V with an
orthogonal basis {x1, x2, · · · , xN}, a trivector is any value∑

i, j,k

Ti jkxix jxk,

where Ti jk is a scalar.

2 R is a “right handed” choice of basis, as it is related to the right handed vector basis
{e1, e2, e3} in a fundamental way. Observe that the indexes i, j of each bivector eie j in R
are cyclical permutations of i, j = 1, 2. Examples of other bivector basis choices include
{e1e2, e2e3, e1e3}, the set of all pairs of bivectors eie j where i < j, or a “left handed”
bivector basis {e2e1, e3e2, e1e3}.
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For example e1e2e3, 3e2e1e3, 5e1e2e4,−2e1e5e3 are all trivectors. How-
ever, in R3, it turns out that all trivectors are scalar multiples of e1e2e3.
Like scalars, there is no direction to such a quantity, and like scalars trivec-
tors may be signed. The magnitude of a trivector may be interpreted as a
volume. A geometric interpretation of the sign of a trivector will be de-
ferred until integration theory is tackled.

K-vector. Scalars, vectors, bivectors, trivectors, or any higher dimen-
sional analogues are all examples of a single algebraic structure composed
of zero, one, two, three, or “k” products of orthogonal vectors. These are
generally called k-vectors and defined as follows.

Definition 1.17: K-vector and grade.

A k-vector is a sum of products of k mutually orthogonal vectors.
Given an N dimensional vector space with an orthonormal basis

{x1, x2, · · · , xN} ,

a general k-vector can be expressed as∑
r,s,···,t

Krs···txrxs · · · xt,

where Krs···t is a scalar, indexed by k indexes r, s, · · · , t.
The number k of orthogonal vector factors of a k-vector is called

the grade.
A 0-vector is a scalar.

Illustrating with some examples

• 1 is a 0-vector with grade 0

• e1 is a 1-vector with grade 1

• e1e2, e2e3, and e3e1 are 2-vectors with grade 2, and

• e1e2e3 is a 3-vector with grade 3.

The highest grade for a k-vector in an N dimensional vector space is N.

Multivector.
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Definition 1.18: Multivector.

Given an N dimensional (generating) vector space V and a vector
multiplication operation represented by juxtaposition, a multivector
is a sum of scalars, vectors, or products of vectors.

Any k-vector or sum of k-vectors is also a multivector. Examples:

• e1e4, e1e2 + e2e3. These are bivectors, and also multivectors with
only grade 2 components.

• e1e2e3, e2e3e4. These are trivectors, and also multivectors with only
grade 3 components.

• 1 + e1e2 This is not a k-vector as there is no single grade, but is
a multivector. In this case, it is a sum of a scalar (0-vector) and a
bivector (2-vector).

• 0, 7,−3. These are scalars (0-vectors), and also multivectors.

A k-vector was a sum of orthogonal products, but a multivector may also
include arbitrary sums of any vector products, not all of which have to be
orthogonal. Examples include

• e1e1, e1e2e1e2,

• e1e2e1, e1e2e3e1e2,

• e1e2e1e3, e1e2e1e3e1e2,

• e1e2e1e3e1, e2e1e2e1e3e1e2.

Once the definition of vector multiplication has been made more precise,
we will be able to see that these multivectors are scalars, vectors, bivec-
tors, and trivectors respectively.

Multivector space. Bivectors, trivectors, k-vectors, and multivectors all
assumed that suitable multiplication and addition operations for vectors
and vector products had been defined. The definition of a multivector
space makes this more precise.
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Definition 1.19: Multivector space.

Given an N dimensional (generating) vector space V , a multivector
space generated by V is a set M = {x, y, z, · · ·} of multivectors (sums
of scalars, vectors, or products of vectors), where the following ax-
ioms are satisfied

Contraction x2 = x · x, ∀x ∈ V

M is closed under addition x + y ∈ M

M is closed under multiplica-
tion

xy ∈ M

Addition is associative (x + y) + z = x + (y + z)

Addition is commutative y + x = x + y

There exists a zero element 0 ∈
M

x + 0 = x

For all x ∈ M there exists a neg-
ative additive inverse −x ∈ M

x + (−x) = 0

Multiplication is distributive x(y + z) = xy + xz,
(x + y)z = xz + yz

Multiplication is associative (xy)z = x(yz)

There exists a multiplicative
identity 1 ∈ M

1x = x

The contraction axiom is arguably the most important of the multivec-
tor space axioms, as it allows for multiplicative closure. Another implica-
tion of the contraction axiom is that vector multiplication is not generally
commutative (order matters). The multiplicative closure property and the
commutative and non-commutative conditions for vector multiplication
will be examined next.

Observe that the axioms of a multivector space are almost that of a
field (i.e. real numbers, complex numbers, ...). However, a field also re-
quires a multiplicative inverse element for all elements of the space. Such
a multiplicative inverse exists for some multivector subspaces, but not in
general.
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The reader should compare definition 1.19 with definition 1.1 the spec-
ification of a vector space, and observe the similarities and differences.

1.3 colinear vectors .

It was pointed out that the vector multiplication operation was not as-
sumed to be commutative (order matters). The only condition for which
the product of two vectors is order independent, is when those vectors are
colinear.

Theorem 1.1: Vector commutation.

Given two vectors x, y, if y = αx for some scalar α, then x and y
commute

xy = yx.

Proof.

yx = αxx
xy = xαx = αxx.

The contraction axiom ensures that the product of two colinear vectors
is a scalar. In particular, the square of a unit vector, say u is unity. This
should be highlighted explicitly, because this property will be used again
and again

u2 = 1. (1.12)

For example, the squares of any orthonormal basis vectors are unity
(e1)2 = (e2)2 = (e3)2 = 1.

A corollary of eq. (1.12) is

1 = uu, (1.13)

for any unit vector u. Such a factorization trick will be used repeatedly in
this book.

1.4 orthogonal vectors .



18 geometric algebra .

Theorem 1.2: Anticommutation of orthogonal vectors

Let u, and v be two orthogonal vectors, the product of which uv is
a bivector. Changing the order of these products toggles the sign of
the bivector.

uv = −vu.

This sign change on interchange is called anticommutation.

Proof. Let u, v be a pair of orthogonal vectors, such as those of fig. 1.7.
The squared length of the sum u + v can be expressed in using the con-
traction axiom, or by explicit expansion (taking care to maintain the order
of products)

(u + v)2
= (u + v) (u + v) = u2 + uv + vu + v2

(u + v)2
= ∥u + v∥2 = u2 + v2.

Comparing the two expansions and rearranging completes the proof3.

Figure 1.7: Sum of orthogonal vectors.

3 We will see later (theorem 1.3) that the converse of this theorem is also true: If the product
of two vectors is a bivector, those vectors are orthogonal.
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Some examples of anticommuting pairs include, e2e1 = −e1e2, e3e2 =

−e2e3, and e1e3 = −e3e1. This theorem can also be applied to any pairs of
orthogonal vectors in a arbitrary k-vector, for example

e3e2e1 = (e3e2)e1

= −(e2e3)e1

= −e2(e3e1)

= +e2(e1e3)

= +(e2e1)e3

= −e1e2e3,

(1.14)

showing that reversal of all the factors in a trivector such as e1e2e3 toggles
the sign.

1.5 some nomenclature .

The workhorse operator of geometric algebra is called grade selection,
defined as

Definition 1.20: Grade selection operator

Given a set of k-vectors Mk, k ∈ [0,N], and any multivector of their
sum

M =
N∑

i=0

Mi,

the grade selection operator is defined as

⟨M⟩k = Mk.

Due to its importance, selection of the (scalar) zero grade is given
the shorthand

⟨M⟩ = ⟨M⟩0 = M0.

The grade selection operator will be used to define a generalized dot
product between multivectors, and the wedge product, which generalizes
the cross product (and is related to the cross product in R3).
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To illustrate grade selection by example, given a multivector M = 3 −
e3 + 2e1e2 + 7e1e2e4, then

⟨M⟩0 = ⟨M⟩ = 3

⟨M⟩1 = −e3

⟨M⟩2 = 2e1e2

⟨M⟩3 = 7e1e2e4.

(1.15)

Definition 1.21: Orthonormal product shorthand.

Given an orthonormal basis {e1, e2, · · ·}, a multiple indexed quantity
ei j···k should be interpreted as the product (in the same order) of the
basis elements with those indexes

ei j···k = eie j · · · ek.

For example,

e12 = e1e2

e123 = e1e2e3

e23121 = e2e3e1e2e1.

(1.16)

Definition 1.22: Pseudoscalar.

If {x1, x2, · · · , xk} is an orthogonal basis for a k-dimensional (sub)space,
then the product x1x2 · · · xk is called a pseudoscalar for that (sub)space.
A pseudoscalar that squares to ±1 is called a unit pseudoscalar.

A pseudoscalar is the highest grade k-vector in the algebra, so in R2

any bivector is a pseudoscalar, and in R3 any trivector is a pseudoscalar.
In R2, e1e2 is a pseudoscalar, as is 3e2e1, both of which are related by a
constant factor. In R3 the trivector e3e1e2 is a pseudoscalar, as is −7e3e1e2,
and both of these can also be related by a constant factor. For the subspace
span e1, e2 + e3, one pseudoscalar is e1(e2 + e3).

If all the vector factors of a pseudoscalar are not just orthogonal but
orthonormal, then it is a unit pseudoscalar. It is conventional to refer to

e12 = e1e2, (1.17)
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as “the pseudoscalar” for R2, and to

e123 = e1e2e3, (1.18)

as “the pseudoscalar” for a three dimensional space.
We will see that geometric algebra allows for many quantities that have

a complex imaginary nature, and that the pseudoscalars of eq. (1.17) and
eq. (1.18) both square to −1.

For this reason, it is often convenient to use an imaginary notation for
the R2 and R3 pseudoscalars

i = e12

I = e123.
(1.19)

For three dimensional problems in this book, i will often be used as the
unit pseudoscalar for whatever planar subspace is relevant to the problem,
which may not be the x-y plane. The meaning of i in any such cases will
always be defined explicitly.

Exercise 1.4 Permutations of the R3 pseudoscalar

Show that all the cyclic permutations of the R3 pseudoscalar are equal

I = e2e3e1 = e3e1e2 = e1e2e3.

1.6 two dimensions .

The multiplication table for the R2 geometric algebra can be computed
with relative ease. Many of the interesting products involve i = e1e2,
the unit pseudoscalar. The imaginary nature of the pseudoscalar can be
demonstrated using theorem 1.2

(e1e2)
2
= (e1e2)(e1e2)

= −(e1e2)(e2e1)

= −e1(e2
2)e1

= −e2
1

= −1.

(1.22)
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Like the (scalar) complex imaginary, the bivector e1e2 also squares to
−1. The only non-trivial products left to fill in the R2 multiplication table
are those of the unit vectors with i, products that are order dependent

e1i = e1 (e1e2)

= (e1e1) e2

= e2

ie1 = (e1e2) e1

= (−e2e1) e1

= −e2 (e1e1)

= −e2

e2i = e2 (e1e2)

= e2 (−e2e1)

= − (e2e2) e1

= −e1

ie2 = (e1e2) e2

= e1 (e2e2)

= e1.

(1.23)

The multiplication table for the R2 multivector basis can now be tabu-
lated

Table 1.2: 2D Multiplication table.

1 e1 e2 e1e2

1 1 e1 e2 e1e2

e1 e1 1 e1e2 e2

e2 e2 −e1e2 1 −e1

e1e2 e1e2 −e2 e1 −1

It is important to point out that the pseudoscalar i does not commute
with either basis vector, but anticommutes with both, since ie1 = −e1i,
and ie2 = −e2i. By superposition i anticommutes with any vector in the
x-y plane.

More generally, if u and v are orthonormal, and x ∈ span {u, v} then the
bivector uv anticommutes with x, or any other vector in this plane.
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1.7 plane rotations .

Plotting eq. (1.23), as in fig. 1.8, shows that multiplication by i rotates the
R2 basis vectors by ±π/2 radians, with the rotation direction dependent
on the order of multiplication.

(a) (b)

Figure 1.8: Multiplication by e1e2.

Multiplying a polar vector representation

x = ρ (e1 cos θ + e2 sin θ) , (1.24)

by i shows that a π/2 rotation is induced.
Multiplying the vector from the right by i gives

xi = xe1e2

= ρ (e1 cos θ + e2 sin θ) e1e2

= ρ (e2 cos θ − e1 sin θ) ,

(1.25)

a counterclockwise rotation of π/2 radians, and multiplying the vector by
i from the left gives

ix = e1e2x
= ρe1e2 (e1 cos θ + e2 sin θ) e1e2

= ρ (−e2 cos θ + e1 sin θ) ,

(1.26)

a clockwise rotation by π/2 radians (exercise 1.5).
The transformed vector x′ = xe1e2 = −e1e2x (= xi = −ix) has been

rotated in the direction that takes e1 to e2, as illustrated in fig. 1.9.
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Figure 1.9: π/2 rotation in the plane using pseudoscalar multiplication.

In complex number theory the complex exponential eiθ can be used as
a rotation operator. Geometric algebra puts this rotation operator into the
vector algebra toolbox, by utilizing Euler’s formula

eiθ = cos θ + i sin θ, (1.27)

valid for this pseudoscalar imaginary representation too (exercise 1.6). By
writing e2 = e1e1e2, a complex exponential can be factored directly out
of the polar vector representation eq. (1.24)

x = ρ (e1 cos θ + e2 sin θ)

= ρ (e1 cos θ + (e1e1)e2 sin θ)

= ρe1 (cos θ + e1e2 sin θ)

= ρe1 (cos θ + i sin θ)

= ρe1eiθ.

(1.28)

We end up with a complex exponential multivector factor on the right.
Alternatively, since e2 = e2e1e1, a complex exponential can be factored
out on the left

x = ρ (e1 cos θ + e2 sin θ)

= ρ (e1 cos θ + e2(e1e1) sin θ)

= ρ (cos θ − e1e2 sin θ) e1

= ρ (cos θ − i sin θ) e1

= ρe−iθe1.

(1.29)
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Left and right exponential expressions have now been found for the
polar representation

ρ (e1 cos θ + e2 sin θ) = ρe−iθe1 = ρe1eiθ. (1.30)

This is essentially a recipe for rotation of a vector in the x-y plane. Such
rotations are illustrated in fig. 1.10.

Figure 1.10: Rotation in a plane.

This generalizes to rotations of RN vectors constrained to a plane. Given
orthonormal vectors u, v and any vector in the plane of these two vectors
(x ∈ span {u, v}), this vector is rotated θ radians in the direction of rotation
that takes u to v by

x′ = xeuvθ = e−uvθx. (1.31)

The sense of rotation for the rotation euvθ is opposite that of evuθ, which
provides a first hint that bivectors can be characterized as having an ori-
entation, somewhat akin to thinking of a vector as having a head and a
tail.

Example 1.1: Velocity and acceleration in polar coordinates.

Complex exponential representations of rotations work very nicely
for describing vectors in polar coordinates. A radial vector can be
written as

r = rr̂, (1.32)
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as illustrated in fig. 1.11. The polar representation of the radial and
azimuthal unit vector are simply

Figure 1.11: Radial vector in polar coordinates.

r̂ = e1eiθ = e1 (cos θ + e1e2 sin θ) = e1 cos θ + e2 sin θ

θ̂ = e2eiθ = e2 (cos θ + e1e2 sin θ) = e2 cos θ − e1 sin θ,
(1.33)

where i = e12 is the unit bivector for the x-y plane. We can easily
show that these unit vectors are orthogonal

r̂θ̂ =
(
e1eiθ

) (
e−iθe2

)
= e1�

��eiθe−iθe2

= e1e2.

(1.34)

By theorem 1.2, since the product of r̂θ̂ is a bivector, r̂ is orthogonal
to θ̂.

We can find the velocity and acceleration by taking time deriva-
tives

v = r′r̂ + rr̂′

a = r′′r̂ + 2r′r̂′ + rr̂′′,
(1.35)
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but to make these more meaningful want to evaluate the r̂, θ̂ deriva-
tives explicitly. Those are

r̂′ =
(
e1eiθ

)′
= e1i

e1(e1e2) = (e1e1)e2

eiθθ′ = e2eiθθ′ = θ̂ω

θ̂
′
=

(
e2eiθ

)′
= e2i

e2e1e2 = (−e1e2)e2

eiθθ′ = −e1eiθθ′ = −r̂ω,
(1.36)

where ω = dθ/dt, and primes denote time derivatives. The velocity
and acceleration vectors can now be written explicitly in terms of
radial and azimuthal components. The velocity is

v = r′r̂ + rωθ̂, (1.37)

and the acceleration is

a = r′′r̂ + 2r′ωθ̂ + r(ωθ̂)′

= r′′r̂ + 2r′ωθ̂ + rω′θ̂ − rω2r̂,
(1.38)

or

a = r̂
(
r′′ − rω2

)
+

1
r
θ̂
(
r2ω

)′
. (1.39)

Using eq. (1.33), we also have the option of factoring out the rota-
tion operation from the position vector or any of its derivatives

r = (re1) eiθ

v = (r′e1 + rωe2) eiθ

a =
((

r′′ − rω2
)

e1 +
1
r

(
r2ω

)′
e2

)
eiθ.

(1.40)

In particular, for uniform circular motion, each of the position,
velocity and acceleration vectors can be represented by a vector that
is fixed in space, subsequently rotated by an angle θ.

Exercise 1.5 R2 rotations.
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Using familiar methods, such as rotation matrices, show that the counter-
clockwise and clockwise rotations of eq. (1.24) are given by eq. (1.25)
and eq. (1.26) respectively.

Exercise 1.6 Multivector Euler’s formula and trig relations.

For a multivector x assume an infinite series representation of the expo-
nential, sine and cosine functions and their hyperbolic analogues

ex =

∞∑
k=0

xk

k!

cos x =
∞∑

k=0

(−1)k x2k

(2k)!
sin x =

∞∑
k=0

(−1)k x2k+1

(2k + 1)!

cosh x =
∞∑

k=0

x2k

(2k)!
sinh x =

∞∑
k=0

x2k+1

(2k + 1)!

a. Show that for scalar θ, and any multivectors J that satisfies J2 =

−1, and K2 = 1, then hold for multivectors J,K satisfying J2 = −1
and K2 = 1 respectively.

cosh(Jθ) = cos θ, cosh(Kθ) = cosh θ

sinh(Jθ) = J sin θ, sinh(Kθ) = K sinh θ.

b. Show that the trigonometric and hyperbolic Euler formulas

eJθ = cos θ + J sin θ

eKθ = cosh θ + K sinh θ,

hold for multivectors J,K satisfying J2 = −1 and K2 = 1 respec-
tively.

c. Given multivectors X,Y , show that eX+Y = eXeY if X,Y commute.
That is XY = YX.

Exercise 1.7 Exponential derivatives.

a. For real or complex x, we know that

(ex)′ = x′ex,

but this is not generally true for multivectors x (or square matrices
for that matter.) Expand ex in Taylor series and take derivatives,
and show that this identity requires that that x′ commutes with x.
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b. Given any j2 = constant, and scalar constant θ, show that(
e jθ

)′
= j′ j−1 sinh( jθ),

where derivatives are with respect to j.
We will see an example of such an exponential later when we con-
struct an exponential representation of spherical polar vectors, set-
ting i = e12, j = e31eiϕ, x = re3e jθ. Such a vector representation
hides all the ϕ dependence away in the bivector j, and computation
of ∂x/∂ϕ requires that we know how to correctly compute these
sorts of exponential derivatives.
Hint: show that j j′ = − j′ j, and consider the effect of this on the
( jk)′ term in the Taylor series.

c. Let when j2 = −1, show that(
e jθ

)′
= j′ sin(θ).

Observe can also be found (much more easily) by first expanding
the exponential as

e jθ = cos θ + j sin θ,

and then taking derivatives. Contrast this to an application of (ex)′ =
x′ex, which would lead us to believe that (e jθ)′ = θ j′e jθ, which is
incorrect.

1.8 duality.

Pseudoscalar multiplication maps a subspace to its orthogonal comple-
ment, called the dual.

Definition 1.23: Dual

Given a multivector M and a unit pseudoscalar I for the space, the
dual is designated M∗, and has the value M∗ = MI.

For example, in R2 with i = e12, the dual of a vector x = xe1 + ye2 is

xi = (xe1 + ye2)i

= xe2 − ye1,
(1.63)
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which is perpendicular to x. This was also observed in eq. (1.25) and
eq. (1.26) which showed that multiplying a vector in a plane by a unit
pseudoscalar for that plane, maps a vector (say x) to a vector xi that is
orthogonal to x. The direction that xi points depends on the orientation of
the chosen pseudoscalar.

In three dimensions, a bivector can be factored into two orthogonal
vector factors, say B = ab, and pseudoscalar multiplication of BI = c
produces a vector c that is orthogonal to the factors a,b. For example, the
unit vectors and bivectors are related in the following fashion

e2e3 = e1I e2e3I = −e1

e3e1 = e2I e3e1I = −e2

e1e2 = e3I e1e2I = −e3.

(1.64)

For example, with r = ae1 + be2, the dual is

rI = (ae1 + be2) e123

= ae23 + be31

= e3 (−ae2 + be1) .

(1.65)

Here e3 was factored out of the resulting bivector, leaving two factors
both perpendicular to the original vector. Every vector that lies in the span
of the plane represented by this bivector is perpendicular to the original
vector. This is illustrated in fig. 1.12.

Figure 1.12: R3 duality illustration.

Some notes on duality

• The dual of any scalar is a pseudoscalar, whereas the dual of a pseu-
doscalar is a scalar.
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• The dual of a k-vector in a N-dimensional space is an (N − k)-vector.
For example, eq. (1.64) showed that the dual of a 1-vector in R3 was
a (3− 1)-vector, and the dual of a 2-vector is a (3− 2)-vector. In R7,
say, the dual of a 2-vector is a 5-vector, the dual of a 3-vector is a
4-vector, and so forth.

• All factors of the dual (N − k)-vector are orthogonal to all the factors
of the k-vector. Looking to eq. (1.64) for examples, we see that the
dual of the bivector e2e3 is e1, and both factors of the bivector e2, e3

are orthogonal to the dual of that bivector e1.

• Some authors use different sign conventions for duality, in particu-
lar, designating the dual as MI−1, which can have a different sign.
As one may choose pseudoscalars that differ in sign anyways, the
duality convention doesn’t matter too much, provided one is consis-
tent.

1.9 vector product, dot product and wedge product.

The product of two colinear vectors is a scalar, and the product of two
orthogonal vectors is a bivector. The product of two general vectors is a
multivector with structure to be determined. In the process of exploring
this structures we will prove the following theorems.

Theorem 1.3: Dot product as a scalar selection.

The dot product of two vectors a,b can be computed by scalar grade
selection

a · b = ⟨ab⟩.

Proving theorem 1.3 will be deferred slightly. Computation of dot prod-
ucts using scalar grade selection will be used extensively in this book, as
scalar grade selection of vector products will often be the easiest way to
compute a dot product.

Theorem 1.4: Grades of a vector product.
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The product of two vectors is a multivector that has only grades 0
and 2. That is

ab = ⟨ab⟩ + ⟨ab⟩2.

We’ve seen special cases of both theorem 1.3 and theorem 1.4 consid-
ering colinear and orthogonal vectors. The more general cases will be
proven in two ways, first using a polar representation of two vectors in a
plane, and then using a coordinate expansion of the vectors. This will also
provide some insight about the bivector component of the product of two
vectors.

Proof. Let {u, v} be an orthonormal basis for the plane containing two
vectors a and b, where the rotational sense of u → v is in the same di-
rection as the shortest rotation that takes a/∥a∥ → b/∥b∥, as illustrated in
fig. 1.13.

Figure 1.13: Two vectors in a plane.

Let iuv = uv designate the unit pseudoscalar for the plane, so that a
polar representation of a,b is

a = ∥a∥ueiuvθa = ∥a∥ e−iuvθau
b = ∥b∥ueiuvθb = ∥b∥ e−iuvθbu,

(1.66)
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The vector product of these two vectors is

ab =
(
∥a∥ e−iuvθau

) (
∥b∥ueiuvθb

)
= ∥a∥ ∥b∥ e−iuvθa(uu)eiuvθb

= ∥a∥ ∥b∥ eiuv(θb−θa).

= ∥a∥ ∥b∥ (cos(θb − θa) + iuv sin(θb − θa)) .

(1.67)

This completes the proof of theorem 1.4, as we see that the product
of two vectors is a multivector with only grades 0 and 2. It is also clear
that the scalar grade of the end result of eq. (1.67) is the RN dot product,
completing the proof of theorem 1.3.

The grade 2 component of the vector product is something new that
requires a name, which we call the wedge product.

Definition 1.24: Wedge product of two vectors.

Given two vectors a,b, the wedge product of the vectors is defined
as a grade-2 selection operation of their vector product and written

a∧ b ≡ ⟨ab⟩2.

Given this notation, the product of two vectors can be written

ab = a · b + a∧ b.

The split of a vector product into dot and wedge product components is
also important. However, to utilize it, the properties of the wedge product
have to be determined.

Summarizing eq. (1.67) with our new operators, where iuv = uv, and
u, v are orthonormal vectors in the plane of a,b with the same sense of
the smallest rotation that takes a to b, the vector, dot and wedge products
are

ab = ∥a∥ ∥b∥ exp (iuv(θb − θa))

a · b = ∥a∥ ∥b∥ cos(θb − θa)

a∧ b = iuv ∥a∥ ∥b∥ sin(θb − θa).

(1.68)
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Example 1.2: Products of two unit vectors.

To develop some intuition about the vector product, let’s consider
product of two unit vectors a,b in the equilateral triangle of fig. 1.14,
where

a =
1
√

2
(e3 + e1) = e3 exp (e31π/4)

b =
1
√

2
(e3 + e2) = e3 exp (e32π/4) .

(1.69)

Figure 1.14: Equilateral triangle in R3.

The product of these vectors is

ab =
1
2
(e3 + e1) (e3 + e2)

=
1
2
(1 + e32 + e13 + e12)

=
1
2
+

√
3

2
e32 + e13 + e12

√
3

.

(1.70)

Let the bivector factor be designated

j =
e32 + e13 + e12

√
3

. (1.71)
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The reader can check (exercise 1.11) that j is a unit bivector (i.e.
it squares to −1), allowing us to write

ab =
1
2
+

√
3

2
j

= cos(π/3) + j sin(π/3)

= exp ( jπ/3) .

(1.72)

Since both vector factors were unit length, this “complex” expo-
nential has no leading scalar factor contribution from ∥a∥ ∥b∥.

Now, let’s calculate the vector product using the polar form, which
gives

ab = (exp (−e31π/4) e3)(e3 exp (e32π/4))

= exp (−e31π/4) exp (e32π/4) .
(1.73)

The product of two unit vectors, each with a component in the z-axis
direction, results in a product of complex exponential rotation opera-
tors, each a grade (0, 2)-multivectors. The product of these complex
exponentials is another grade (0, 2)-multivector. This is a specific ex-
ample of the product of two rotation operators producing a rotation
operator for the composition of rotations, as follows

exp (e13π/4) exp (e32π/4) = exp ( jπ/3) . (1.74)

The rotation operator that describes the composition of rotations has
a different rotational plane, and rotates through a different rotation
angle.

We are left with a geometric interpretation for the vector prod-
uct. The product of two vectors can be interpreted as a rotation and
scaling operator. The product of two unit length vectors can be inter-
preted as a pure rotation operator.

Two wedge product properties can be immediately deduced from the
polar representation of eq. (1.68)

1. b∧ a = −a∧ b.

2. a∧ (αa) = 0, ∀α ∈ R.

We have now had a few hints that the wedge product might be related
to the cross product. Given two vectors a,b both the wedge and the cross
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product contain a ∥a∥ ∥b∥ sin ∆θ factor, and both the wedge and cross prod-
uct are antisymmetric operators. The cross product is a bilinear operator
(a+ b)× (c+ d) = a× c+ a× d+ b× c+ b× d. To see whether this is the
case for the wedge product, let’s examine the coordinate expansion of the
wedge product. Let

a =
∑

i

aiei

b =
∑

i

biei.
(1.75)

The product of these vectors is

ab =
∑

i

aiei


∑

j

b je j


=

∑
i j

aib jeie j

=
∑
i= j

aib jeie j +
∑
i, j

aib jeie j.

(1.76)

Since eiei = 1, we see again that the scalar component of the product is
the dot product

∑
i aibi. The remaining grade 2 components are the wedge

product, for which the coordinate expansion can be simplified further

a∧ b =
∑
i, j

aib jeie j

=
∑
i< j

aib jeie j +
∑
j<i

aib jeie j

=
∑
i< j

aib jeie j +
∑
i< j

a jbie jei

=
∑
i< j

(aib j − a jbi)eie j.

(1.77)

The scalar factors can be written as 2x2 determinants

a∧ b =
∑
i< j

∣∣∣∣∣∣∣ai a j

bi b j

∣∣∣∣∣∣∣ eie j. (1.78)

It is now straightforward to show that the wedge product is distributive
and bilinear (exercise 1.10). It is also simple to use eq. (1.78) to show that
b∧ a = −a∧ b and a∧ a = 0.
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For R2 there is only one term in eq. (1.78)

a∧ b =

∣∣∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣∣∣ e1e2. (1.79)

We are used to writing the cross product as a 3x3 determinant, which
can also be done with the coordinate expansion of the R3 wedge product

a∧ b =
∑

i j∈{12,13,23}

∣∣∣∣∣∣∣ai a j

bi b j

∣∣∣∣∣∣∣ eie j =

∣∣∣∣∣∣∣∣∣∣∣
e2e3 e3e1 e1e2

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣ . (1.80)

Let’s summarize the wedge product properties and relations we have
found so far, comparing the R3 wedge product to the cross product

Table 1.3: Cross product and R3 wedge product comparison.

Property Cross product Wedge product

Same vectors a × a = 0 a∧ a = 0

Antisymmetry b × a = −a × b b∧ a = −a∧ b

Linear a × (αb) = α(a × b) a∧ (αb) = α(a∧ b)

Distributive a × (b + c) =
a × b + a × c

a∧ (b + c) =
a∧ b + a∧ c

Determinant expan-
sion

a × b =

∣∣∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣∣ a∧ b =∣∣∣∣∣∣∣∣∣∣∣∣
e2e3 e3e1 e1e2

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣∣
Coordinate expan-
sion

a × b =∑
i< j

∣∣∣∣∣∣∣∣ai a j

bi b j

∣∣∣∣∣∣∣∣ ei × e j

a∧ b =∑
i< j

∣∣∣∣∣∣∣∣ai a j

bi b j

∣∣∣∣∣∣∣∣ eie j

Polar form n̂ ∥a∥ ∥b∥ sin(θb − θa) i ∥a∥ ∥b∥ sin(θb − θa)

All the wedge properties except the determinant expansion above are
valid in any dimension. Comparing eq. (1.80) to the determinant represen-
tation of the cross product, and referring to eq. (1.64), shows that the R3
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wedge product is related to the cross product by a duality transformation
i = In̂, or

a∧ b = I(a × b). (1.81)

The direction of the cross product a × b is orthogonal to the plane rep-
resented by the bivector a∧ b. The magnitude of both (up to a sign) is the
area of the parallelogram spanned by the two vectors.

Example 1.3: Wedge and cross product relationship.

To take some of the abstraction from eq. (1.81) let’s consider a spe-
cific example. Let

a = e1 + 2e2 + 3e3

b = 4e1 + 5e2 + 6e3.
(1.82)

The reader should check that the cross product of these two vectors
is

a × b = −3e1 + 6e2 − 3e3. (1.83)

By direct computation, we find that the wedge and the cross products
are related by a R3 pseudoscalar factor

a∧ b = (e1 + 2e2 + 3e3) ∧ (4e1 + 5e2 + 6e3)

=�����e1 ∧ (4e1) +(((((((2e2)∧ (5e2) +(((((((3e3)∧ (6e3)

+ 5e12 + 6e13 + 8e21 + 12e23 + 12e31 + 15e32

= (5 − 8)e12 + (6 − 12)e13 + (12 − 15)e23

= −3e12 − 6e13 − 3e23

= e123(−3e3) + e132(−6e2) + e231(−3e1)

= e123(−3e3 + 6e2 − 3e1)

= I(a × b).

(1.84)

The relationship between the wedge and cross products allows us to
express the R3 vector product as a multivector combination of the dot
and cross products

ab = a · b + I(a × b). (1.85)
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This is a very important relationship.
In particular, for electromagnetism, eq. (1.85) can be used with a = ∇

to combine pairs of Maxwell’s equations to form pairs of multivector gra-
dient equations, which can be merged further. The resulting multivector
equation will be called Maxwell equation (singular), and will be the start-
ing point of all our electromagnetic analysis.

We are used to expressing the dot and cross product components of
eq. (1.85) separately, for example, as

a · b = ∥a∥ ∥b∥ cos (∆θ)

a × b = n̂ ∥a∥ ∥b∥ sin (∆θ) ,
(1.86)

Introducing a unit bivector iab normal to the unit normal n̂ (i.e. iabn̂ =
e123), we can assemble eq. (1.86) into a cos+i sin form using eq. (1.85)

ab = ∥a∥ ∥b∥ (cos (∆θ) + In̂ sin (∆θ))

= ∥a∥ ∥b∥ exp (iab∆θ) .
(1.87)

Exercise 1.8 Wedge product of colinear vectors.

Given b = αa, use eq. (1.78) to show that the wedge product of any
pair of colinear vectors is zero.

Exercise 1.9 Wedge product antisymmetry.

Prove that the wedge product is antisymmetric using using eq. (1.78).

Exercise 1.10 Wedge product distributivity and bilinearity.

For vectors a,b, c and d, and scalars α, β use eq. (1.78) to show that

a. the wedge product is distributive

(a + b)∧ (c + d) = a∧ c + a∧ d + b∧ c + b∧ d,

b. and show that the wedge product is bilinear

(αa)∧ (βb) = (αβ)(a∧ b).

Note that these imply the wedge product also has the cross product
filtering property a∧ (b + αa) = a∧ b.

Exercise 1.11 Unit bivector.

Verify by explicit multiplication that the bivector of eq. (1.71) squares
to −1.
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1.10 reverse .

Definition 1.25: Reverse

Let A be a multivector with j multivector factors, A = B1B2 · · · B j,
not necessarily orthogonal. The reverse A†, or reversion, of this mul-
tivector A is

A† = B†j B
†

j−1 · · · B
†

1.

Scalars and vectors are their own reverse, and the reverse of a sum
of multivectors is the sum of the reversions of its summands.

Examples:

(1 + 2e12 + 3e321)
†
= 1 + 2e21 + 3e123

((1 + e1)(e23 − e12))† = (e32 + e12)(1 + e1).
(1.97)

A useful relation for k-vectors that are composed entirely of products
of orthogonal vectors exists. We call such k-vectors blades

Definition 1.26: Blade.

A product of k orthogonal vectors is called a k-blade, or a blade of
grade k. A grade zero blade is a scalar.

The notation F ∈
∧k is used in the literature to indicate that F is

a blade of grade k.

Any k-blade is also a k-vector, but not all k-vectors are k-blades. For
example in R4 the bivector e12 + e34 is not a 2-blade, since it cannot be
factored into orthogonal products, whereas any R3 bivector, such as e12 +

e23 + e31 is a blade (exercise 1.19). This will be relevant when formulating
rotations since bivectors that are blades can be used to simply describe
rotations or Lorentz boosts 4 whereas it is not easily possible to compute
an exponential of a non-blade bivector argument.

4 A rotation in spacetime.
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Theorem 1.5: Reverse of k-blade.

The reverse of a k-blade Ak = a1a2 · · · ak is given by

A†k = (−1)k(k−1)/2Ak.

Proof. We prove by successive interchange of factors.

A†k = akak−1 · · · a1

= (−1)k−1a1akak−1 · · · a2

= (−1)k−1(−1)k−2a1a2akak−1 · · · a3

...

= (−1)k−1(−1)k−2 · · · (−1)1a1a2 · · · ak

= (−1)k(k−1)/2a1a2 · · · ak

= (−1)k(k−1)/2Ak.

A special, but important case, is the reverse of the R3 pseudoscalar,
which is negated by reversion

I† = −I. (1.98)

1.11 complex representations .

We’ve seen that bivectors like e12 square to minus one. Geometric alge-
bra has infinitely many such imaginary numbers, which can be utilized
to introduce problem specific “complex planes” as desired. In three di-
mensional and higher spaces, imaginary representations (such as the R3

pseudoscalar) with grades higher than two are also possible.
Using the reversion relationship of eq. (1.98), we can see that the I

behaves as an imaginary

I2 = I(−I†)

= −(e1e2e3)(e3e2e1) = −e1e2e2e1

= −e1e1

= −1.

(1.99)
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Given many possible imaginary representations, complex and complex-
like numbers can be represented in GA for any k-vector i that satisfies
i2 = −1 since the multivector

z = x + iy, (1.100)

will have all the required properties of a complex number.
For example, in Euclidean spaces we could use either of

i =
u∧ v√
− (u∧ v)2

I =
u∧ v∧w√
− (u∧ v∧w)2

,
(1.101)

provided u, v,w are linearly independent vectors. Given a set of orthonor-
mal vectors u, v,w, then

i = uv
I = uvw,

(1.102)

are also suitable as imaginaries. Note that in eq. (1.102), the bivector i
differs from the unit R2 pseudoscalar only by a sign (i = ±e12), and the
trivector I, also differs from the R3 unit pseudoscalar only by a sign (I =
±e123).

Other complex number like representations are also possible with GA.
Quaternions, which are often used in computer graphics to represent rota-
tions, are the set q ∈ {a + xi + yj + zk | a, x, y, z ∈ R} where

i2 = j2 = k2 = −1

ij = k = −ji
jk = i = −kj
ki = j = −ik.

(1.103)

Like complex numbers, quaternions can be represented in GA as grade
(0, 2)-multivectors, but require three imaginaries instead of one.

Exercise 1.12 Quaternions.

Show that the relations eq. (1.103) are satisfied by the unit bivectors
i = e32, j = e13,k = e21, demonstrating that quaternions, like complex
numbers, may be represented as multivector subspaces.
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1.12 multivector dot product.

In general the product of two k-vectors is a multivector, with a selection
of different grades. For example, the product of two bivectors may have
grades 0, 2, or 4

e12 (e21 + e23 + e34) = 1 + e13 + e1234. (1.107)

Similarly, the product of a vector and bivector generally has grades 1
and 3

e1 (e12 + e23) = e2 + e123. (1.108)

The dot product was identified with scalar grade selection, which picks
out the lowest grade of their product. This motivates the definition of a
general multivector dot product

Definition 1.27: Multivector dot product

The dot (or inner) product of two multivectors A =
∑N

i=0 ⟨A⟩i, B =∑N
i=0 ⟨B⟩i is defined as

A · B ≡
N∑

i, j=0

〈
AiB j

〉
|i− j|

.

If A, B are k-vectors with equal grade, then the dot product is just the
scalar selection of their product

A · B = ⟨AB⟩, (1.109)

and if A, B are a k-vectors with grades r , s respectively, then their dot
product is a single grade selection

A · B = ⟨AB⟩|r−s|. (1.110)

Example 1.4: Multivector dot products.
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The most common and useful multivector dot products are for pairs
of multivectors that are each entirely a specific grade, such as a
vector-bivector dot product

(e1 + 2e2) · (e12 + e23) =
〈
(e1 + 2e2) (e12 + e23)

〉
1

= e2 − 2e1 + 2e3,
(1.111)

or a vector-trivector dot product

(e1 + 2e2) · e123 =
〈
(e1 + 2e2) e123

〉
2

= e23 + 2e31.
(1.112)

Should the products be of mixed grade, then we sum all the indi-
vidual dot products

(1 + e1 + 2e23) · (e2 − e31)

= ⟨1e2⟩1 + ⟨e1e2⟩ + 2⟨e23e2⟩1

− ⟨1e31⟩2 − ⟨e1e31⟩1 − 2⟨e23e31⟩

= e2 − 2e3 + e13 + e3.

(1.113)

Unfortunately, the notation for the multivector dot product is not stan-
dardized. In particular, some authors [8] prefer left and right contraction
operations that omit the absolute value in the grade selections. A dot prod-
uct like operator for scalar selection is also common.

Definition 1.28: Alternate dot products.

The left and right contraction operations are respectively defined as

A⌋B =
N∑

i, j=0

〈
AiB j

〉
j−i

A⌊B =
N∑

i, j=0

〈
AiB j

〉
i− j
,
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where any selection of a negative grade is taken to be zero. The scalar
product is defined as

A∗B =
N∑

i, j=0

〈
AiB j

〉
In an attempt to avoid inundating the reader with too many new opera-

tors, this book will stick to the dot, wedge and grade selection operators.
However, these alternates are common enough that they deserve mention-
ing.

1.12.1 Dot product of a vector and bivector

An important example of the generalized dot product is the dot product
of a vector and bivector. Unlike the dot product of two vectors, a vector-
bivector dot product is order dependent.

The vector dot product is zero when the two vectors are orthogonal.
This is also true if the vector and bivector are orthogonal, that is, having
no common factor, as in

e1 · e23 = ⟨e123⟩1 = 0. (1.114)

On the other hand, a non-zero vector-bivector dot product requires the
vector to have some overlap with the bivector. A bivector formed from the
product of two orthogonal vectors B = ab, where a · b = 0, will have a
non-zero dot product with any vector that lies in span {a,b}

(αa + βb) · (ab) = α ∥a∥2 b − β ∥b∥2 a. (1.115)

It is often useful to be able to expand a vector-bivector dot product. A
useful identity for such an expansion is

Theorem 1.6: Dot product of vector and wedge product.

The dot product of a vector a with the wedge product of two vectors
b, c distributes as

a · (b∧ c) = (c∧ b) · a = (a · b)c − (a · c)b.
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Before proving this theorem, let’s take a look at what it implies. This
shows that only vectors with some component in the span of the plane
represented by the bivector will result in a non-zero vector-bivector dot
product. We also know that when a vector that lies entirely in the span
of a bivector is multiplied by that bivector, the result is rotated by ±π/2.
This means that a vector-bivector dot product is orthogonal to the vector
that is dotted with the bivector. This can also be seen algebraically since

a · (a · (b∧ c)) = a · ((a · b)c − (a · c)b)
= (a · c) (a · b) − (a · c) (a · b)
= 0.

(1.116)

A vector-bivector dot product selects only the component of the vector
that lies in the plane of the bivector, and rotates that component by ±π/2
in that plane.

Proof. There are (somewhat tricky) coordinate free ways to prove theo-
rem 1.6 , but a straightforward expansion in coordinates also does the job.

a · (b∧ c) =
∑
i, j,k

aib jckei · (e j ∧ ek) =
∑
i, j,k

aib jck
〈
eie jek

〉
1

(c∧ b) · a =
∑
i, j,k

aib jck(ek ∧ e j) · ei =
∑
i, j,k

aib jck
〈
eke jei

〉
1
.

(1.117)

If all of i, j, k are unique then
〈
eie jek

〉
1
= 0, so the vector selection is

non-zero only when i equals one of j, k. For example

⟨e1e1e2⟩1 = e2

⟨e1e2e1⟩1 = −e2.
(1.118)

Given j , k, and i = j or i = k, then it is simple to show (exercise 1.13)
that 〈

eie jek
〉

1
=

〈
eke jei

〉
1
, (1.119)

so a · (b∧ c) = (c∧ b) · a. Additionally, again if j , k (exercise 1.14)〈
eie jek

〉
1
= ek (e j · ei) − e j (ek · ei) . (1.120)

Plugging eq. (1.120) back into eq. (1.117) proves the theorem

a · (b∧ c) =
∑
i, j,k

aib jck (ek (e j · ei) − e j (ek · ei))

= (a · b) c − (a · c) b.
(1.121)
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The RHS of eq. (1.121) shows that the vector-bivector dot product has
the following relation to the R3 vector triple product

Theorem 1.7: Triple cross product.

For vectors in R3, the dot product of a vector and vector wedge prod-
uct can be expressed as a vector triple product

a · (b∧ c) = (b × c) × a.

Proof. The lazy proof, not related to geometric algebra at all, would be to
invoke the well known distribution identity for the vector triple product
([17])

a × (b × c) = (a · c)b − (a · b)c. (1.122)

We can prove this result directly by applying the identity a∧ b = I(a×
b) to the vector-bivector product, and then selecting the vector grade

a (b∧ c) = aI (b × c)
= I (a · (b × c)) + I (a∧ (b × c))
= I (a · (b × c)) + I2a × (b × c)
= I (a · (b × c)) + (b × c) × a.

(1.123)

This multivector has a pseudoscalar (grade 3) component, and a vec-
tor component. Selecting the grade one component, and invoking defini-
tion 1.27 to express this grade selection as a dot product, completes the
proof 〈

a (b∧ c)
〉

1 = a · (b∧ c) = (b × c) × a. (1.124)

1.12.2 Bivector dot product.

Being able to compute the generalized dot product of two bivectors will
also have a number of applications. When those bivectors are wedge prod-
ucts, there is a useful distribution identity for this dot product.
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Theorem 1.8: Dot product distribution over wedge products.

Given two sets of wedge products a∧ b, and c∧ d, their dot product
is

(a∧ b) · (c∧ d) = ((a∧ b) · c) · d = (b · c)(a · d)− (a · c)(b · d).

Proof. To prove this, select the scalar grade of the product (a∧ b)(c∧ d)

(a∧ b)(c∧ d) = (a∧ b)(cd − c · d)

= (a∧ b)cd − (a∧ b)(c · d).
(1.125)

The second term, a bivector, is not of interest since it will be killed by
the scalar selection operation. The remainder can be expanded in grades,
first making use of the fact that a bivector-vector product has only grade
1 and 3 components

(a∧ b)c = (a∧ b) · c + ⟨(a∧ b)c⟩3. (1.126)

Multiplication of the trivector term by d produces only grades 2, 4,
which will be discarded when we apply a scalar grade selection, so we
ignore those. The product of (a ∧ b) · c, a vector, with d is a grade (0, 2)-
multivector, of which only the scalar grade is of interest. That is

(a∧ b) · (c∧ d) = ⟨(a∧ b)(c∧ d)⟩

= ((a∧ b) · c) · d.
(1.127)

To complete the proof, we apply theorem 1.6

((a∧ b) · c) · d = (a(b · c) − b(a · c)) · d
= (a · d)(b · c) − (b · d)(a · c).

(1.128)

Identity eq. (1.128) has the following R3 cross product equivalent.

Theorem 1.9: Dot products of wedges as cross products.

The dot product of two R3 wedge products can be expressed as cross
products

(a∧ b) · (c∧ d) = −(a × b) · (c × d).
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Proof. This follows by scalar grade selection

(a∧ b) · (c∧ d) = ⟨(a∧ b)(c∧ d)⟩

= ⟨I(a × b)I(c × d)⟩

= −(a × b) · (c × d).

(1.129)

Table 1.4: Comparison of distribution identities.

Geometric algebra Vector algebra

vector-bivector dot
product (scalar triple
cross product)

a · (b∧ c) (b × c) × a

bivector dot product
(dot product of cross
products)

(a∧ b) · (c∧ d) −(a × b) · (c × d)

1.12.3 Problems.

Exercise 1.13 Index permutation in vector selection.

Prove eq. (1.119). That is, given j , k, and i = j or i = k, show that〈
eie jek

〉
1
=

〈
eke jei

〉
1
, (1.130)

Exercise 1.14 Dot product of unit vector with unit bivector.

Prove eq. (1.120). That is, given j , k, show that〈
eie jek

〉
1
= ek (e j · ei) − e j (ek · ei) . (1.133)

1.13 permutation within scalar selection .

As scalar selection is at the heart of the generalized dot product, it is
worth knowing some of the ways that such a selection operation can be
manipulated.
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Theorem 1.10: Permutation within scalar selection.

The factors within a scalar grade selection of a pair of multivector
products may be permuted or may be cyclically permuted

⟨AB⟩ = ⟨BA⟩

⟨AB · · · YZ⟩ = ⟨ZAB · · · Y⟩.

Proof. It is sufficient to prove just the two multivector permutation case.
One simple, but inelegant method, is to first expand the pair of multivec-
tors in coordinates. Let

A = a0 +
∑

i

aiei +
∑
i< j

ai jei j + · · ·

B = b0 +
∑

i

biei +
∑
i< j

bi jei j + · · ·
(1.138)

Only the products of equal unit k-vectors ei j, ei jk, · · · can contribute
scalar components to the sum, so the scalar selection of the products must
have the form

⟨AB⟩ = a0b0 +
∑

i

aibie2
i +

∑
i< j

ai jbi je2
i j + · · · (1.139)

This sum is also clearly equal to ⟨BA⟩.

1.14 multivector wedge product.

We’ve identified the vector wedge product of two vectors with the selec-
tion of the highest grade of their product. Looking back to the multivec-
tor products of eq. (1.107), and eq. (1.108) as motivation, a generalized
wedge product can be defined that selects the highest grade terms of a
given multivector product

Definition 1.29: Multivector wedge product.
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For the multivectors A, B defined in definition 1.27, the wedge (or
outer) product is defined as

A∧ B ≡
N∑

i, j=0

〈
AiB j

〉
i+ j
.

If A, B are a k-vectors with grades r, s respectively, then their wedge
product is a single grade selection

A∧ B = ⟨AB⟩r+s. (1.140)

The most important example of the generalized wedge is the wedge
product of a vector with wedge of two vectors

Theorem 1.11: Wedge of three vectors.

The wedge product of three vectors is associative

(a∧ b)∧ c = a∧ (b∧ c),

so can be written simply as a∧ b∧ c.

Proof. The proof follows directly from the definition

(a∧ b)∧ c = ⟨(a∧ b)c⟩3
= ⟨(ab − a · b)c⟩3
= ⟨abc⟩3 − (a · b)⟨c⟩3
= ⟨abc⟩3,

(1.141)

where the grade-3 selection of a vector is zero by definition. Similarly

a∧ (b∧ c) = ⟨a(b∧ c)⟩3
= ⟨a(bc − b · c)⟩3
= ⟨abc⟩3 − (b · c)⟨a⟩3
= ⟨abc⟩3.

(1.142)

It is simple to show that the wedge of three vectors is completely anti-
symmetric (any interchange of vectors changes the sign), and that cyclic
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permutation a → b → c → a of the vectors leaves it unchanged (exer-
cise 1.15). These properties are also common to the scalar triple product
of R3 vector algebra, because both the scalar triple product and the wedge
of three vectors has a determinant structure, which can be shown by direct
expansion in coordinates

a∧ b∧ c =
〈
aib jckeie jek

〉
3

=
∑

i, j,k

aib jckeie jek

=
∑

i< j<k

∣∣∣∣∣∣∣∣∣∣∣
ai a j ak

bi b j bk

ci c j ck

∣∣∣∣∣∣∣∣∣∣∣ ei jk.

(1.143)

In R3 this sum has only one term

a∧ b∧ c =

∣∣∣∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣∣∣∣ I, (1.144)

in which the determinant is recognizable as the scalar triple product. This
shows that the R3 wedge of three vectors is the scalar triple product times
the pseudoscalar

a∧ b∧ c = (a · (b × c)) I. (1.145)

Note that the wedge of n vectors is also associative. A full proof is
possible by induction, which won’t be done here. Instead, as a hint of
how to proceed if desired, consider the coordinate expansion of a trivector
wedged with a vector

(a∧ b∧ c)∧ d =
∑

i, j,k,l

〈
aib jckeie jekdlel

〉
4

=
∑

i, j,k,l

aib jckdleie jekel.
(1.146)

This can be rewritten with any desired grouping ((a ∧ b) ∧ c) ∧ d =
(a∧ b)∧ (c∧ d) = a∧ (b∧ c∧ d) = · · ·. Observe that this can also be put
into a determinant form like that of eq. (1.143). Whenever the number of
vectors matches the dimension of the underlying vector space, this will
be a single determinant of all the coordinates of the vectors multiplied by
the unit pseudoscalar for the vector space.
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1.14.1 Problems.

Exercise 1.15 Properties of the wedge of three vectors.

Show that the wedge product of three vectors is completely antisymmetric,
and show that the wedge product of three vectors is invariant with respect
to cyclic permutation.

Exercise 1.16 R4 wedge of a non-blade with itself.

While the wedge product of a blade with itself is always zero, this is not
generally true of the wedge products of arbitrary k-vectors in higher di-
mensional spaces. To demonstrate this, show that the wedge of the bivec-
tor B = e1e2 + e3e4 with itself is non-zero. Why is this bivector not a
blade?

1.15 projection and rejection .

Let’s now look at how the dot plus wedge product decomposition of the
vector product can be applied to compute vector projection and rejection,
which are defined as

Definition 1.30: Vector projection and rejection.

Given a vector x and vector u the projection of x onto the direction
of u is defined as

Proju(x) = (x · û)û,

where û = u/∥u∥. The rejection of x by u is defined as the component
of x that is orthogonal to u

Reju (x) = x − Proju(x).

An example of projection and rejection with respect to a direction vec-
tor u is illustrated in fig. 1.15.
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Figure 1.15: Projection and rejection illustrated.

Computation of the projective and rejective components of a vector
x relative to a direction û requires little more than a multiplication by
1 = ûû, and some rearrangement

x = xûû
= (xû) û

=

(
x · û + x∧ û

)
û

= (x · û) û + (x∧ û) û.

(1.152)

The vector x is split nicely into its projection and rejective components
in a complementary fashion

Proju(x) = (x · û) û (1.153a)

Reju (x) = (x∧ û) û. (1.153b)

By construction, (x∧ û) û must be a vector, despite any appearance of
a multivector nature.

The utility of this multivector rejection formula is not for hand or com-
puter algebra calculations, where it will generally be faster and simpler to
compute x − (x · û)û, than to use eq. (1.153b). Instead this will come in
handy as a new abstract algebraic tool.
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When it is desirable to perform this calculation explicitly, it can be done
more efficiently using a no-op grade selection operation. In particular, a
vector can be written as its own grade-1 selection

x = ⟨x⟩1, (1.154)

so the rejection can be re-expressed using definition 1.27 as a generalized
bivector-vector dot product

Reju (x) =
〈
(x∧ û) û

〉
1 = (x∧ û) · û. (1.155)

In R3, using theorem 1.7, the rejection operation can also be expressed
as a vector triple product

Reju (x) = û × (x × û) . (1.156)

To help establish some confidence with these new additions to our
toolbox, here are a pair of illustrative examples using eq. (1.153b), and
eq. (1.155) respectively.

Example 1.5: An R2 rejection.

Let x = ae1 + be2 and u = e1 for which the wedge is x ∧ û = be2e1.
Using eq. (1.153b) the rejection of x by u is

Reju (x) = (x∧ û) û
= (be2e1)e1

= be2(e1e1)

= be2,

(1.157)

as expected.

This example provides some guidance about what is happening geo-
metrically in eq. (1.153b). The wedge operation produces a pseudoscalar
for the plane spanned by {x,u} that is scaled as sin θ where θ is the angle
between x and u. When that pseudoscalar is multiplied by û, û is rotated
in the plane by π/2 radians towards x, yielding the normal component of
the vector x.

Here’s a slightly less trivial R3 example
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Example 1.6: An R3 rejection.

Let x = ae2 + be3 and û = (e1 + e2)/
√

2 for which the wedge product
is

x∧ û =
1
√

2

∣∣∣∣∣∣∣∣∣∣∣
e23 e31 e12

0 a b

1 1 0

∣∣∣∣∣∣∣∣∣∣∣
=

1
√

2
(e23(−b) − e31(−b) + e12(−a))

=
1
√

2
(b(e32 + e31) + ae21) .

(1.158)

Using eq. (1.155) the rejection of x by u is

(x∧ û) · û =
1
2
(b(e32 + e31) + ae21) · (e1 + e2). (1.159)

Each of these bivector-vector dot products has the form ers · et =

⟨erst⟩1 which is zero whenever the indexes r, s, t are unique, and is a
vector whenever one of indexes are repeated (r = t, or s = t). This
leaves

(x∧ û) · û =
1
2
(be3 + ae2 + be3 − ae1)

= be3 +
a
2

(e2 − e1).
(1.160)

Example 1.7: Velocity and acceleration in polar coordinates.

In eq. (1.37), and eq. (1.38) we found the polar representation of the
velocity and acceleration vectors associated with the radial parame-
terization r(r, θ) = rr̂(θ).

We can alternatively compute the radial and azimuthal compo-
nents of these vectors in terms of their projective and rejective com-
ponents

v = vr̂r̂ = (v · r̂ + v∧ r̂) r̂
a = ar̂r̂ = (a · r̂ + a∧ r̂) r̂,

(1.161)
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so

v · r̂ = r′

v∧ r̂ = rωθ̂ ∧ r̂ = ωθ̂ ∧ r
a · r̂ = r′′ − rω2

a∧ r̂ =
1
r

(
r2ω

)′
θ̂ ∧ r̂.

(1.162)

We see that it is natural to introduce angular velocity and acceler-
ation bivectors. These both lie in the θ̂∧ r̂ plane. Of course, it is also
possible to substitute the cross product for the wedge product, but
doing so requires the introduction of a normal direction that may not
intrinsically be part of the problem (i.e. two dimensional problems).

In the GA literature the projection and rejection operations are usually
written using the vector inverse.

Definition 1.31: Vector inverse.

Define the inverse of a vector x, when it exists, as

x−1 =
x
∥x∥2

.

This inverse satisfies x−1x = xx−1 = 1.

The vector inverse may not exist in a non-Euclidean vector space where
x2 can be zero for non-zero vectors x.

In terms of the vector inverse, the projection and rejection operations
with respect to u can be written without any reference to the unit vector
û = u/∥u∥ that lies along that vector

Proju(x) = (x · u)
1
u

Reju (x) = (x∧ u)
1
u
= (x∧ u) ·

1
u
.

(1.163)

It was claimed in the definition of rejection that the rejection is orthog-
onal to the projection. This can be shown trivially without any use of GA
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(exercise 1.17). This also follows naturally using the grade selection oper-
ator representation of the dot product

Reju (x) · Proju(x) =
〈
Reju (x) Proju(x)

〉
=

〈
(x∧ û) û (x · û) û

〉
= (x · û)

〈
(x∧ û) û2

〉
= (x · û) ⟨x∧ û⟩
= 0.

(1.164)

This is zero because the scalar grade of a wedge product, a bivector, is
zero by definition.

Exercise 1.17 Rejection orthogonality.

Prove, without any use of GA, that x − Proju(x) is orthogonal to u, as
claimed in definition 1.30.

Exercise 1.18 Rejection example.

a. Repeat example 1.6 by calculating (x ∧ û)û and show that all the
grade three components of this multivector product vanish.

b. Compute x − (x · û)û and show that this matches eq. (1.160).

1.16 normal factorization of the wedge product.

A general bivector has the form

B =
∑
i, j

ai jei j, (1.170)

which is not necessarily a blade. On the other hand, a wedge product is
always a blade 5

Theorem 1.12: Wedge product normal factorization

The wedge product of any two non-colinear vectors a,b always has
a orthogonal (2-blade) factorization

a∧ b = uv, u · v = 0.

5 In R3 any bivector is also a blade [1]



1.17 the wedge product as an oriented area . 59

This can be proven by construction. Pick u = a and v = Reja (b), then

a Reja (b) =������a ·Reja (b) + a∧Reja (b)

= a∧
(
b −

b · a
∥a∥2

a
)

= a∧ b,

(1.171)

since a∧ (αa) = 0 for any scalar α.
The significance of theorem 1.12 is that the square of any wedge prod-

uct is negative

(uv)2 = (uv)(−vu)

= −u(v2)u
= −|u|2|v|2,

(1.172)

which in turn means that exponentials with wedge product arguments can
be used as rotation operators.

Exercise 1.19 R3 bivector factorization.

Find some orthogonal factorizations for the R3 bivector e12 + e23 + e31.

1.17 the wedge product as an oriented area .

The coordinate representation of the R2 wedge product (eq. (1.79)) had
a single e12 bivector factor, whereas the expansion in coordinates for the
general RN wedge product was considerably messier (eq. (1.78)). This
difference can be eliminated by judicious choice of basis.

A simpler coordinate representation for the RN wedge product follows
by choosing an orthonormal basis for the planar subspace spanned by the
wedge vectors. Given vectors a,b, let {û, v̂} be an orthonormal basis for
the plane subspace P = span {a,b}. The coordinate representations of a,b
in this basis are

a = (a · û)û + (a · v̂)v̂
b = (b · û)û + (b · v̂)v̂.

(1.179)
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The wedge of these vectors is

a∧ b =
(
(a · û)û + (a · v̂)v̂

)
∧

(
(b · û)û + (b · v̂)v̂

)
=

(
(a · û)(b · v̂) − (a · v̂)(b · û)

)
ûv̂

=

∣∣∣∣∣∣∣a · û a · v̂
b · û b · v̂

∣∣∣∣∣∣∣ ûv̂.

(1.180)

We see that this basis allows for the most compact (single term) coor-
dinate representation of the wedge product.

If a counterclockwise rotation by π/2 takes û to v̂ the determinant will
equal the area of the parallelogram spanned by a and b. Let that area be
designated

A =

∣∣∣∣∣∣∣a · û a · v̂
b · û b · v̂

∣∣∣∣∣∣∣ . (1.181)

A given wedge product may have any number of other wedge or or-
thogonal product representations

a∧ b = (a + βb)∧ b
= a∧ (b + αa)

= (Aû)∧ v̂
= û∧ (Av̂)

= (αAû)∧
v̂
α

= (βAû′)∧
v̂′

β

(1.182)

These equivalencies can be thought of as different geometrical repre-
sentations of the same object. Since the spanned area and relative order-
ing of the wedged vectors remains constant. Some different parallelogram
representations of a wedge products are illustrated in fig. 1.16.

As there are many possible orthogonal factorizations for a given wedge
product, and also many possible wedge products that produce the same
value bivector, we can say that a wedge product represents an area with
a specific cyclic orientation, but any such area is a valid representation.
This is illustrated in fig. 1.17.
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Figure 1.16: Parallelogram representations of wedge products.

Figure 1.17: Different shape representations of a wedge product.
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Exercise 1.20 Parallelogram area.

Show that the area A of the parallelogram spanned by vectors a,b as
illustrated in fig. 1.18,

a = a1e1 + a2e2

b = b1e1 + b2e2,

is

Figure 1.18: Parallelogram area.

A = ±

∣∣∣∣∣∣∣b1 b2

a1 a2

∣∣∣∣∣∣∣ ,
where we adjust the sign to make the end result come out positive.

1.18 general rotation .

Equation (1.23) showed that the R2 pseudoscalar anticommutes with any
vector x ∈ R2,

xi = −ix, (1.188)

and that the sign of the bivector exponential argument must be negated to
maintain the value of the vector x ∈ R2 on interchange

xeiθ = e−iθx. (1.189)

The higher dimensional generalization of these results are

Theorem 1.13: Bivector exponential properties.

Given two non-colinear vectors a,b, let the planar subspace formed
by their span be designated S = span {a,b}.
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(a) Any vector p ∈ S anticommutes with the wedge product a∧ b

p(a∧ b) = −(a∧ b)p.

(b) Any vector n orthogonal to this plane (n · a = n · b = 0) com-
mutes with this wedge product

n(a∧ b) = (a∧ b)n.

(c) Reversing the order of multiplication of a vector p ∈ S with an
exponential ea∧b, requires the sign of the exponential argument
to be negated

pea∧b = e−a∧bp.

This sign change on interchange will be called conjugation.

(d) Any orthogonal vectors n commute with a such a complex expo-
nential

nea∧b = ea∧bn.

Proof. The proof relies on the fact that a orthogonal factorization of the
wedge product is possible. If p is one of those factors, then the other is
uniquely determined by the multivector equation a ∧ b = pq, for which
we must have q = 1

x (a∧ b) ∈ S and p · q = 0 6 . Then

p(a∧ b) = p(pq)

= p(−qp)

= −(pq)p
= −(a∧ b)p.

(1.190)

6 The identities required to show that q above has no trivector grades, and to evaluate it
explicitly in terms of a,b, x, will be derived later.
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Any orthogonal vectors n must also be perpendicular to the factors p,q,
with n · p = n · q = 0, so

n(a∧ b) = n(pq)

= (−pn)q
= −p(−qn)

= (pq)n
= (a∧ b)n.

(1.191)

For the complex exponentials, introduce a unit pseudoscalar for the
plane i = p̂q̂ satisfying i2 = −1 and a scalar rotation angle θ = (a∧ b)/i,
then for vectors p ∈ S

pea∧b = peiθ

= p (cos θ + i sin θ)

= (cos θ − i sin θ) p
= e−iθp
= e−a∧bp,

(1.192)

and for vectors n orthogonal to S

nea∧b = neiθ

= n (cos θ + i sin θ)

= (cos θ + i sin θ) n
= eiθn
= ea∧bn.

(1.193)

The point of this somewhat abstract seeming theorem is to prepare for
the statement of a general RN rotation, which is

Definition 1.32: General rotation

Let B = {p̂, q̂} be an orthonormal basis for a planar subspace with
unit pseudoscalar i = p̂q̂ where i2 = −1. The rotation of a vector x
through an angle θ with respect to this plane is

Rθ(x) = e−iθ/2xeiθ/2.
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Here the rotation sense is that of the π/2 rotation from p̂ to q̂ in
the subspace S = span B.

This statement did not make any mention of an orthogonal direction.
Such an orthogonal direction is not unique for dimensions higher than 3,
nor defined for two dimensions. Instead the rotational sense is defined by
the ordering of the factors in the bivector i.

To check that this operation has the desired semantics, let x = x∥ + x⊥,
where x∥ ∈ S and x⊥ · p = 0∀p ∈ S . Then

Rθ(x) = e−iθ/2xeiθ/2

= e−iθ/2 (x∥ + x⊥) eiθ/2

= x∥eiθ + x⊥e−iθ/2eiθ/2

= x∥eiθ + x⊥.

(1.194)

As desired, this rotation operation rotates components of the vector that
lies in the planar subspace S by θ, while leaving the components of the
vector orthogonal to the plane unchanged, as illustrated in fig. 1.19. This
is what we can call rotation around a normal in R3.

1.19 symmetric and antisymmetric vector sums .

Theorem 1.14: Symmetric and antisymmetric vector products.

1. The dot product of vectors x, y can be written as

x · y =
1
2
(xy + yx) .

This sum, including all permutations of the products of x and
y is called a completely symmetric sum. A useful variation of
this relationship is

yx = 2(x · y) − xy.

2. The wedge product of vectors x, y can be written as

x∧ y =
1
2
(xy − yx) .
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Figure 1.19: Rotation with respect to the plane of a pseudoscalar.
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This sum, including all permutations of the products x and y,
with a sign change for any interchange, is called a completely
antisymmetric sum.

Proof. These identities highlight the symmetric and antisymmetric nature
of the respective dot and wedge products in a coordinate free form, and
will be useful in the manipulation of various identities. The proof follows
by direct computation after first noting that the respect vector products
are

xy = x · y + x∧ y (1.195a)

yx = y · x + y∧ x
= x · y − x∧ y.

(1.195b)

In eq. (1.195b) the interchange utilized the respective symmetric and
antisymmetric nature of the dot and wedge products.

Adding and subtracting eq. (1.195) proves the result.

1.20 reflection .

Geometrically the reflection of a vector x across a line directed along u is
the difference of the projection and rejection

x′ = (x · u)
1
u
− (x∧ u)

1
u

= (x · u − x∧ u)
1
u
.

(1.196)

Using the symmetric and antisymmetric sum representations of the dot
and wedge products from theorem 1.14 the reflection can be expressed as
vector products

x′ =
1
2
(��xu + ux −��xu + ux)

1
u
, (1.197)

yielding a remarkably simple form in terms of vector products

x′ = ux
1
u
. (1.198)

As an illustration, here is a sample CliffordBasic reflection computation
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In[1]:= ClearAll[u, x, uu, invu, i, o, proj, rej, ux,
uxu]
u = 4 e[1] + 2 e[2];
x = 3 e[1] + 3 e[2];
uu = InnerProduct[u, u];
invu = u / uu;
i = InnerProduct[x, u];
o = OuterProduct[x, u];
proj = i invu // N // Simplify
rej = GeometricProduct[o, invu] // N // Simplify
ux = GeometricProduct[u, x]

Out[1]= 3.6 e[1] + 1.8 e[2]

Out[2]= -0.6 e[1] + 1.2 e[2]

Out[3]= 18 + 6 e[1,2]

Out[4]= 4.2 e[1] + 0.6 e[2]

the results of which are plotted in fig. 1.20.

ref

Figure 1.20: Reflection.
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Table 1.5: Comparision of geometric identities.

Geometric algebra Traditional algebra

Projection (x · û)û (x · û)û

Rejection (x∧ û)û (û × x) × û

2D rotation xeiθ, i = e12

 cos θ sin θ

− sin θ cos θ


x

y


3D rotation in the
plane of û, v̂, where
û · v̂ = 0

e−ûv̂θ/2xeûv̂θ/2 (x · û)(û cos θ +
v̂ sin θ) + (x ·

v̂)(v̂ cos θ − û sin θ) +
(û × x) × û

Reflection ûxû (x · û)û + û × (û × x)

1.21 linear systems .

Theorem 1.15: Best fit solution of linear system.

Given k linearly independent vectors a1, a2, · · · ak, and the projection
b∥ of a vector b onto the hypervolume spanned by {a1, · · · , ak}

b∥ = i−1 (i · b) ,

where i = a1 ∧ a2 ∧ · · · ∧ ak, is a pseudoscalar for that hypervolume,
then the system

a1x1 + a2x2 · · · + akxk = b∥,

is solved by

x1 = i−1 · (b∧ a2 ∧ · · · ∧ ak)

x2 = i−1 · (a1 ∧ b∧ · · · ∧ ak)

...

xn = i−1 · (a1 ∧ a2 ∧ · · · ∧ b) .

If b ∈ span {a1, · · · , ak}, so that b∥ = b, then the dot products
between the k-blades above may be dropped.
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This is equivalent to a Moore-Penrose or SVD pseudoinverse solution for
the system

[
a1 · · · an

] 
x1
...

xn

 = b. (1.199)

Furthermore, also when the system is exact, if the dimension of the vec-
tors ai is k, then this solution is equivalent to Cramer’s rule.

Rather than formally trying to prove this theorem, we can tackle it in-
formally, starting with some examples.

1.21.0.1 Example: two variable system.

The simplest example is that of a two variable system

ax + by = c. (1.200)

Let’s proceed to solve this using the wedge product, assuming to start with
that the system has an exact solution (i.e.: that c is a linear combination
of a,b.)

To solve for x simply wedge with b, and to solve for y wedge with a

(ax +�by) ∧ b = c∧ b
a∧ (�ax + by) = a∧ c,

(1.201)

so, the solution, if it exists, is given by

x =
1

a∧ b
c∧ b

y =
1

a∧ b
a∧ c.

(1.202)

1.21.0.2 Example: exact k variable system.

This idea generalizes trivially to higher order systems can be solved, sim-
ply requiring wedging more times to eliminate all terms other than the
one of interest.

For example, if the k variable system

a1x1 + a2x2 · · · + akxk = b, (1.203)
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has a solution, we can solve for any of the xi’s by wedging repeatedly. For
example, we can find x1 by wedging with all a2, · · · ak, to find

x1 (a1 ∧ a2 ∧ · · · ∧ ak) = b∧ a2 ∧ · · · ∧ ak, (1.204)

or

x1 =
1

a1 ∧ a2 ∧ · · · ∧ ak
(b∧ a2 ∧ · · · ∧ ak) (1.205)

If this system has no solution, then these k-vector ratios will not be scalars.
It’s fairly easy to see that to solve for x j, we start switch the numerator

to the pseudoscalar i, with b taking the place of a j.

1.21.0.3 Example: R3 Cramer’s rule.

If this sounds like Cramer’s rule, that is because the two are equivalent
when the dimension of the vector equals the number of variables in the
linear system. For example, consider the solution for x1 of eq. (1.203) for
an R3 system, with a1 = u, a2 = v, a3 = w

x1 =
b∧ v∧w
u∧ v∧w

=

∣∣∣∣∣∣∣∣∣∣∣
b1 v1 w1

b2 v2 w2

b3 v3 w3

∣∣∣∣∣∣∣∣∣∣∣����e1e2e3

∣∣∣∣∣∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣∣∣∣∣∣����e1e2e3

, (1.206)

which is exactly the ratio of determinants found in the Cramer’s rule solu-
tion of this problem. We get Cramer’s rule for free due to the antisymmet-
ric structure of the wedge product.

Cramer’s rule doesn’t apply to cases where the dimension of the space
exceeds the number of variables, but a wedge product solution does not
have that restriction.
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1.21.0.4 Example: Some R4 vectors.

As an example, consider the two variable system eq. (1.200) for vectors
in R4 as follows

a =


1

1

0

0


, b =


1

0

0

1


, c =


1

2

0

−1


. (1.207)

Here’s a (Mathematica) computation of the wedge products for the so-
lution 7

In[5]:= ClearAll[a, b, c, iab, aWedgeB, cWedgeB, aWedgeC,
x, y]

a = e[1] + e[2];
b = e[1] + e[4];
c = e[1] + 2 e[2] - e[4];

aWedgeB = OuterProduct[a, b];
cWedgeB = OuterProduct[c, b];
aWedgeC = OuterProduct[a, c];

(* 1/aWedgeB *)
iab = aWedgeB / GeometricProduct[aWedgeB,
aWedgeB];
x = GeometricProduct[iab, cWedgeB];
y = GeometricProduct[iab, aWedgeC];

{{a ∧∧∧ b = , aWedgeB},{c ∧∧∧ b = , cWedgeB},
{a ∧∧∧ c = , aWedgeC},{¨ = ¨ x},{ÿ = ¨ y}

Out[5]= a ∧ b = -e[1,2] + e[1,4] + e[2,4]

c ∧ b = -2 e[1,2] + 2 e[1,4] + 2 e[2,4]

a ∧ c = e[1,2] - e[1,4] - e[2,4]

x = 2

which shows that 2a − b = c.

1.21.0.5 Example: intersection of two lines.

As a concrete example, let’s solve the intersection of two lines problem
illustrated in fig. 1.21.

7 Using the CliffordBasic.m geometric algebra module from [2].
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Figure 1.21: Intersection of two lines.

In parametric form, the lines in this problem are

r1(s) = a0 + s(a1 − a0)

r2(t) = b0 + t(b1 − b0),
(1.208)

so the solution, if it exists, is found at the point satisfying the equality

a0 + s(a1 − a0) = b0 + t(b1 − b0). (1.209)

With

u1 = a1 − a0

u2 = b1 − b0

d = a0 − b0,

(1.210)

the desired equation to solve is

d + su1 = tu2. (1.211)

As with any linear system, we can solve for s or t by wedging both
sides with one of u1 or u2

d∧ u1 = tu2 ∧ u1

d∧ u2 + su1 ∧ u2 = 0.
(1.212)

In R2 these equations have a solution if u1 ∧ u2 , 0, and in RN these
have solutions if the bivectors on each sides of the equations describe the
same plane (i.e. the bivectors on each side of eq. (1.212) are related by
a scalar factor). Put another way, these have solutions when s and t are
scalars with the values

s =
u2 ∧ d
u1 ∧ u2

t =
u1 ∧ d
u1 ∧ u2

.

(1.213)
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Exercise 1.21 Intersection of a line and plane.

Let a line be parameterized by

r(a) = p + αa,

and a plane be parameterized by

r(b, c) = q + βb + γc.

a. For the intersection of the two, state the vector equation to be
solved, and its solution for a in terms of a ratio of wedge prod-
ucts.

b. State the conditions for which the solution exist in R3 and RN .

c. In terms of coordinates in R3 write out the ratio of wedge products
as determinants and compare to the Cramer’s rule solution.

1.21.0.6 Example: Best fit solution for two variable system.

Now, let’s consider the case where the system cannot be solved exactly.
It’s sufficient to illustrate the ideas using just two variables.

Geometrically, the best we can do is to try to solve the related “least
squares” problem

xa + yb = c∥, (1.222)

where c∥ is the projection of c onto the plane spanned by a,b. Regard-
less of the value of c, we can always find a solution to this problem. For
example, solving for x, we have

x =
1

a∧ b
c∥ ∧ b

=
1

a∧ b
· (c∥ ∧ b)

=
1

a∧ b
· (c∧ b) −

1
a∧ b

· (c⊥ ∧ b) .

(1.223)

The zero above follows because c⊥ is perpendicular to both a and b by
construction. Geometrically, we are trying to dot two perpendicular bivec-
tors, where b is a common factor of those two bivectors, as illustrated in
fig. 1.22.
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Figure 1.22: Perpendicular bivectors.

We see that the solution to this two variable linear system problem, is

x =
1

a∧ b
· (c∧ b) . (1.224a)

y =
1

a∧ b
· (a∧ c) . (1.224b)

Exercise 1.22 Perpendicular blades.

Show algebraically, that the second term from eq. (1.223)

−
1

a∧ b
· (c⊥ ∧ b) ,

is zero.

Exercise 1.23 Two variable least squares problem.

We called the projection solution, a least-squares solution, without full
justification. Justify this by finding the best fit solution to the two variable
system

xa + yb = c,
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by minimizing the squared error function

ϵ = (c − xa − yb)2
. (1.227)

Show that the resulting solution is identical to eq. (1.224).

1.22 problem solutions .

Answer for Exercise 1.3

The reader can check that with zero element 0 =

0 0

0 0

, and a scalar

multiplicative identity 1, all the vector space properties are satisified.

For the coordinates observe that x =

 c a − ib

a + ib −c

, and

tr (σ1x) = tr

a + ib −c

c a − ib

 = 2a

tr (σ2x) = tr

−ia + b ic

ic ia + b

 = 2b

tr (σ3x) = tr

 c a − ib

a + ib c

 = 2c,

(1.4)

so a = tr (σ1x) /2, b = tr (σ2x) /2, c = tr (σ3x) /2.

Answer for Exercise 1.4
To verify, swap repeatedly, changing the sign with each swap. Any

cyclic permutation requires exactly two swaps

e2e3e1 = e2 (e3e1)

= −e2 (e1e3)

= − (e2e1) e3

= +e1e2e3,

(1.20)

e3e1e2 = (e3e1) e2

= − (e1e3) e2

= −e1 (e3e2)

= +e1e2e3.

(1.21)
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Answer for Exercise 1.5
The 2D rotation matrix is

Rθ =

cos θ − sin θ

sin θ cos θ

 , (1.41)

so to rotate coordinates by ±π/2, we multiply by

R±π/2 = ±

0 −1

1 0

 . (1.42)

In particular

R±π/2

ρ cos θ

ρ sin θ

 = ±π/2
0 −1

1 0


ρ cos θ

ρ sin θ

 = ±ρ
− sin θ

cos θ

 , (1.43)

consistent with the results observed from left and right multiplication with
the plane pseudoscalar e1e2.

Answer for Exercise 1.6
Solution Part a. Let χ be a multivector that squares to ±1. Series ex-

pansion of cosh(χθ), for scalar theta yields

cosh(χθ) =
∞∑

k=0

(χθ)2k

(2k)!
=

∞∑
k=0

χ2kθ2k

(2k)!
. (1.44)

In particular, for χ = J,K respectively, we have

cosh (Jθ) =
∞∑

k=0

(−1)k
θ2k

(2k)!
= cos θ

cosh (Kθ) =
∞∑

k=0

(+1)k
θ2k

(2k)!
= cosh θ.

(1.45)

Similarly,

sinh(χθ) =
∞∑

k=0

(χθ)2k+1

(2k + 1)!
= χ

∞∑
k=0

χ2kθ2k+1

(2k + 1)!
. (1.46)

So, for χ = J,K respectively, we have

sinh (Jθ) = J
∞∑

k=0

(−1)k
θ2k+1

(2k + 1)!
= J sin θ

sinh (Kθ) = K
∞∑

k=0

(+1)k
θ2k+1

(2k + 1)!
= K sinh θ.

(1.47)
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Solution Part b. Series expanding again, we may split the exponential
into even and odd parts, for any multivector x

ex =

∞∑
k=0

xk

k!

=

∞∑
k=0

x2k

(2k)!
+

∞∑
k=0

x2k+1

(2k + 1)!

= cosh(x) + sinh(x).

(1.48)

There is nothing in such a series expansion that cares about the type of
x, only that we can take repeated powers. The remainder of the problem
follows from our results above after substitution of x = Jθ and x = Kθ
respectively.

Solution Part c. The exponential of a sum, such as X + Y , regardless of
the types or characteristics of X and Y is

eX+Y =

∞∑
k=0

(X + Y)k

k!
. (1.49)

Let’s look at the powers of such a sum. For the square and cube we have

(X + Y)2
= X2 + XY + YX + Y2, (1.50)

(X + Y)3
= X3 + X2Y + XYX + YX2 + Y2X + YXY + XY2 + Y3. (1.51)

Observe that the conventional binomial series form for these powers is
only possible if X and Y commute. If we have such commutation, then
the exponential takes the form

eX+Y =

∞∑
k=0

k∑
j=0

(
k
j

)
X jYk− j

k!

=

∞∑
k=0

k∑
j=0

X jYk− j

j! (k − j)!
.

(1.52)

This is a sum over all points in a trianglular region of the first quadrant
of indexes on the k, j axes. We can, however, sum over all the diagonals
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s = k − j = constant, and index our position on each of those diagonals
by u = j, to find

eX+Y =

∞∑
s=0

∞∑
u=0

XuY s

u! s!

=

∞∑
u=0

Xu

u!

∞∑
s=0

Y s

s!

= eXeY .

(1.53)

We see that commutation of variables is required for an exponential of a
sum to equal the product of the exponentials. This is worth understanding
since it shows us that we can factor exponentials of sums such as Z = 1 +
e1e2, Z = e1e2+ e3e4, Z = e1+ e1e2e3, into the product of the exponentials
of the summands of those multivectors, but cannot do so with multivectors
like Z = e1 + e2, Z = e1 + e1e2, or Z = e1e2 + e2e3.

Answer for Exercise 1.7

Part a. From the power series representation of the exponential, we
compute

(ex)′ =
∞∑

k=1

(xk)′

k!
(1.54)

If x is an arbitrary algebraic entity with unknown characteristics, we may
only write(

xk
)′
= x′xk−1 + xx′xk−2 + · · · (1.55)

It is only when we know a-priori that x and x′ commute, can we reduce
this in the usual combinatoric fashion, writing(

xk
)′
= kx′xk−1. (1.56)
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If (and only if) that is true, do we have

(ex)′ =
∞∑

k=1

kx′xk−1

k!

= x′
∞∑

k=1

xk−1

(k − 1)!

= x′
∞∑

k=0

xk

k!

= x′ex.

(1.57)

Hiding in this identity is the assumption that x commutes with x′, so it is
not generally true for non-commutative objects with as multivectors, or
square matrices.

Part b. If j2 is a constant, then we must have(
j2
)′
= j j′ + j′ j = 0, (1.58)

or

j j′ = − j′ j. (1.59)

For example, for the j = e31eiϕ in the spherical polar example that was
mentioned, taking derivatives with respect to ϕ, we have j′ j = − j j′ = e12.

We now set x = jθ, and see that we have(
( jθ)k

)′
=

(
j′ jk−1 + j j′ jk−2 + · · ·

)
θk, (1.60)

but since j anticommutes with j′ this is zero whenever k is even, and all
but one term cancels out when k is odd. The exponential derivative is

(
e jθ

)′
=

∞∑
k=1, k∈odd

j′ jk−1θk

k!

= j′ j−1
∞∑

k=1, k∈odd

jkθk

k!

= j′ j−1 sinh ( jθ) .

(1.61)
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Part c. When j2 = −1, sinh ( jθ) = j sin θ, so(
e jθ

)′
= j′ j−1 j sin θ = j′ sin θ. (1.62)

Clearly, this is what we find if we first expand the exponential in its cis
form.

Answer for Exercise 1.8

a∧ (αa) =
∑
i< j

∣∣∣∣∣∣∣ ai a j

αai αa j

∣∣∣∣∣∣∣ eie j, (1.88)

but ∣∣∣∣∣∣∣ ai a j

αai αa j

∣∣∣∣∣∣∣ = α
∣∣∣∣∣∣∣ai a j

ai a j

∣∣∣∣∣∣∣ = 0, (1.89)

for all i, j, so a∧ (αa) = 0.

Answer for Exercise 1.9

Substitution gives

b∧ a =
∑
i< j

∣∣∣∣∣∣∣bi b j

ai a j

∣∣∣∣∣∣∣ eie j, (1.90)

but ∣∣∣∣∣∣∣bi b j

ai a j

∣∣∣∣∣∣∣ = −
∣∣∣∣∣∣∣ai a j

bi b j

∣∣∣∣∣∣∣ , (1.91)

for all i, j, so b∧ a = −a∧ b.

Answer for Exercise 1.10

Solution Part a. Substitution gives

(a + b)∧ (c + d) = a∧ b =
∑
i< j

∣∣∣∣∣∣∣(ai + bi) (a j + b j)

(ci + di) (c j + d j)

∣∣∣∣∣∣∣ eie j, (1.92)
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but that determinant expands as∣∣∣∣∣∣∣(ai + bi) (a j + b j)

(ci + di) (c j + d j)

∣∣∣∣∣∣∣
= (ai + bi) (c j + d j) − (a j + b j) (ci + di)

= aic j − a jci + bic j − b jci + aid j − a jdi + bid j − b jdi

=

∣∣∣∣∣∣∣ai a j

ci c j

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣ai a j

di d j

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣bi b j

ci c j

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣bi b j

di d j

∣∣∣∣∣∣∣ .
(1.93)

Backsubstitution and comparison proves the result.
Solution Part b. Substitution gives

(αa) ∧ (βb) =
∑
i< j

∣∣∣∣∣∣∣αai αa j

βbi βb j

∣∣∣∣∣∣∣ eie j, (1.94)

but ∣∣∣∣∣∣∣αai αa j

βbi βb j

∣∣∣∣∣∣∣ = αβ
∣∣∣∣∣∣∣ai a j

bi b j

∣∣∣∣∣∣∣ , (1.95)

proving the result.

Answer for Exercise 1.11

j2 =
1
3
(e32 + e13 + e12) (e32 + e13 + e12)

=
1
3

(
e2

32 + e2
13 + e2

12 + e3213 + e3212 + e1332 + e1312 + e1232 + e1213
)

=
1
3
(−3 + e3321 − e3221 + e12 − e3112 − e1322 − e1123)

=
1
3
(−3 + e21 − e31 + e12 − e32 − e13 − e23)

=
−3
3

= −1.
(1.96)
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Answer for Exercise 1.12

Here are the basic quaternionic relations

ij = e32e13 = (−e23)(−e31) = e21 = k (1.104)

jk = e13e21 = (−e31)(−e12) = e32 = i (1.105)

ki = e21e32 = (−e12)(−e23) = e13 = j. (1.106)

All these bivectors obviously square to −1, which incidentally shows that
ijk = k2 = −1, a well known quaternion identity.

Answer for Exercise 1.13

Since j , k, e jek = −eke j, so for i = k〈
eie jek

〉
1
= −

〈
eieke j

〉
1
= −

〈
ekeie j

〉
1
=

〈
eke jei

〉
1
, (1.131)

and for i = j〈
eie jek

〉
1
=

〈
e jeiek

〉
1
= −

〈
e jekei

〉
1
=

〈
eke jei

〉
1
. (1.132)

Answer for Exercise 1.14

We can tackle this first looking at the i = j case, where〈
eie jek

〉
1
=

〈
(ei · e j) ek

〉
1
= (ei · e j) ek. (1.134)

For the i = k case, we have〈
eie jek

〉
1
= −

〈
eieke j

〉
1
= −

〈
(ei · ek) e j

〉
1
= − (ei · ek) e j. (1.135)

Combining both possibilities we have〈
eie jek

〉
1
= (ei · e j) ek − (ei · ek) e j. (1.136)

Incidentally, note that this only holds when j , k. More generally〈
eie jek

〉
1
= (ei · e j) ek − (ei · ek) e j + (e j · ek) ei, (1.137)

(since there is a term for each permutation of i, j, k and a sign change
when that permutuation is not even.)
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Answer for Exercise 1.15

Writing the wedge of three vectors as a grade three selection

a∧ b∧ c = ⟨abc⟩3, (1.147)

and applying the vector product identity xy = −yx + 2x · y, we have

a∧ b∧ c = ⟨abc⟩3
=

〈
(−ba + 2a · b) c

〉
3

= −⟨bac⟩3
= −b∧ a∧ c.

(1.148)

Similarly

a∧ b∧ c = ⟨abc⟩3
=

〈
a (−cb + 2b · c)

〉
3

= −⟨acb⟩3
= −a∧ c∧ b.

(1.149)

We see that any two adjactent wedge products in the wedge of three vec-
tors may be interchanged with a corresponding sign change, a process that
can be repeated until all combinations are formed. This includes

a∧ b∧ c = −b∧ a∧ c
= +b∧ c∧ a
= −c∧ b∧ a
= c∧ a∧ b
= −a∧ c∧ b.

(1.150)

Answer for Exercise 1.16

(e12 + e34) ∧ (e12 + e34) = e1234 + e3412 = 2e1234. (1.151)

A blade is the wedge product of two vectors, or the geometric product of
two orthogonal vectors. The grade-2 multivector e12 + e34 is not a blade,
since there is no common factor between e12 and e34. It is not possible to
factor this multivector into two orthogonal products.
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Answer for Exercise 1.17

(x − Projû(x)) · û = x · û − ((x · û) û) · û
= x · û − (x · û) (û · û)
= x · û − x · û
= 0.

(1.165)

Answer for Exercise 1.18

Solution Part a. Given x = ae2 + be3 and û = (e1 + e2)/
√

2, we found
that

x∧ û =
1
√

2
(b (e32 + e31) + ae21) . (1.166)

Multiplying once more by û on the right, we have

(x∧ û) û =
1
2
(b (e32 + e31) + ae21) (e1 + e2)

=
1
2
(b (e321 + e311) + ae211 + b (e322 + e312) + ae212)

=
1
2
(b (e321 + e3) + ae2 + b (e3 + e312) − ae1)

=
1
2
(2be3 + a (e2 − e1)) .

(1.167)

We are left with (x∧ û) û = (x∧ û) · û, since all the trivector components
cancel perfectly.

Solution Part b. Now we can compare the above to x − (x · û) û. First

x · û = (ae2 + be3) · (e1 + e2)
1
√

2
=

a
√

2
, (1.168)

so

x − (x · û) û = ae2 + be3 −
a
2
(e1 + e2)

= be3 +
a
2
(−e1 + e2) ,

(1.169)

as calculated from (x∧ û) û.
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Answer for Exercise 1.19

In general, given a bivector B = a1e23 + a2e31 + a3e12, if we pick the
coefficient ai that has the largest absolute magnitude (to avoid numerical
instability in case the bivector is ill-conditioned and has a small non-zero
component in one direction), and then select one of the two vector factors
of the unit blade that is associated with that component, calling this e,
then we can utilize this vector e to find one vector that lies in the plane
of B. For example, if the largest absolute magnitude coefficient is a3 then
pick either e = e1 or e = e2. Now, compute

a = B · e.

This vector lies in the plane that B represents. Specifically, it is the pro-
jection of e onto B, but rotated 90 degrees, since (B · e) e would be the
projection itself. If we dot a with B then we find another vector that lies
in the plane represented by B, but is rotated 90 degrees in the plane, away
from a. That is:

b = B · a

We’ve now found two perpendicular vectors that lie in the plane that B
represents, so we have

B ∝ ab = a∧ b.

Let’s try these ideas with the bivector of this problem B = e23 + e31 + e12.
All components are equally weighted, so let’s compute the B · e1 to start
with to find a first factor of B.

B · e1 = (e23 + e31 + e12) · e1

= e3 − e2.
(1.173)

Dotting this into B once again will find a second factor

B · (e3 − e2) = (e23 + e31 + e12) · (e3 − e2)

= e2 − e1 + e3 − e1

= −2e1 + e2 + e3.

(1.174)

Adjusting the scaling appropriately, gives us two orthogonal factors of B

e12 + e23 + e31 =
e3 − e2

2
(2e1 − e2 − e3) . (1.175)
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Let’s see what factors we find by dotting B with e3 instead. This gives
us

B · e3 = (e12 + e23 + e31) · e3

= e2 − e1.
(1.176)

Dotting this into B a second time yields

B · (e2 − e1) = (e12 + e23 + e31) · (e2 − e1)

= e1 − e3 + e2 − e3.
(1.177)

After rescaling, we find

e12 + e23 + e31 = (e1 + e2 − 2e3)
e2 − e1

2
(1.178)

Each of the sets of factors of eq. (1.175), eq. (1.178) can be interpreted
as the edges of two different rectangular representations of the bivector,
for which the total area is fixed. The span of either set of factors describes
the plane that the bivector represents.

Answer for Exercise 1.20

The parallelogram area is base times height, that is

A = ∥a∥
∥∥∥(b∧ â) â

∥∥∥ = ∥∥∥(b∧ a) â
∥∥∥ , (1.183)

but

b∧ a =

∣∣∣∣∣∣∣b1 b2

a1 a2

∣∣∣∣∣∣∣ e12 =Ai (1.184)

where A =

∣∣∣∣∣∣∣b1 b2

a1 a2

∣∣∣∣∣∣∣, and i = e12. Our expression for the area is reduced

to

A = |A| ∥iâ∥ . (1.185)

Note that

∥iâ∥ = ∥â∥ = 1, (1.186)

since the multiplicative action of i is to rotate by 90 degrees, not changing
the (unit) length at all. That leaves

A = ±

∣∣∣∣∣∣∣b1 b2

a1 a2

∣∣∣∣∣∣∣ , (1.187)
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as expected.

Answer for Exercise 1.21

Solution Part a. We are looking for solutions α, β, γ such that the equal-
ity

p + αa = q + βb + γc, (1.214)

is satisfied. We have only to wedge with b∧ c, to find

p∧ b∧ c + α (a∧ b∧ c) = q∧ b∧ c, (1.215)

or

α =
(q − p) ∧ b∧ c

a∧ b∧ c
. (1.216)

Solution Part b. For R3, a solution exists provided a ∧ b ∧ c , 0, but
for RN a solution also requires

(q − p) ∧ b∧ c ∝ a∧ b∧ c. (1.217)

For instance, there is no solution if (q − p)∧ b∧ c = e124, but a∧ b∧ c =
e234.

Solution Part c. To solve this equation using coordinates, we seek so-
lutions to

p − q = −αa + βb + γc, (1.218)

or

(p − q) · ek = (−αa + βb + γc) · ek, (1.219)

∀k ∈ [1,N]. In matrix form, this is
p1 − q1

p2 − q2
...

pN − qN


=


−a1 b1 c1

−a2 b2 c2
...

−aN bN cN



α

β

γ

 . (1.220)
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The Cramer’s rule solution only applies to the R3 system, and has the
form


α

β

γ

 =

∣∣∣∣∣∣∣∣∣∣∣
p1 − q1 b1 c1

p2 − q2 b2 c2

p3 − q3 b3 c3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−a1 b1 c1

−a2 b2 c2

−a3 b3 c3

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
q1 − p1 b1 c1

q2 − p2 b2 c2

q3 − p3 b3 c3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣∣∣∣
. (1.221)

This is obviously equivalent to the GA solution, where the ratio of de-
terminants is found immediately from the coordinate representation of
a triple wedge product. We can’t solve this system of equations using
Cramer’s rule for RN when N > 3 since the system is overspecified in that
case. That overspecification is why we require the additional (q − p)∧b∧
c ∝ a ∧ b ∧ c constraint for the GA solution using wedge products. Note
that this wedge product solution method is unlikely to be numerically sta-
ble for N > 3, and we are probably better off solving with SVD, so that
we have some estimation of the numerical errors that either rule out or
validate the solution.

Answer for Exercise 1.22

We can reduce that second term, first expanding the bivector inverse
explicitly

−
1

a∧ b
· (c⊥ ∧ b) = −

a∧ b
(a∧ b)2 · (c⊥ ∧ b) . (1.225)

We can ignore the scalar −1/(a∧ b)2 factor, and expand the bivector dot
product, to find

(a∧ b) · (c⊥ ∧ b) = ((a∧ b) · c⊥) · b
= (a (b · c⊥) − b (a · c⊥)) · b
= 0.

(1.226)

Answer for Exercise 1.23
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We follow the usual procedure, by equating all partials to zero

0 =
∂ϵ

∂x
= 2 (c − xa − yb) · (−a)

0 =
∂ϵ

∂y
= 2 (c − xa − yb) · (−b).

(1.228)

This is a two equation, two unknown system, which can be expressed in
matrix form as a2 a · b

a · b b2


x

y

 =
a · cb · c

 . (1.229)

This has solution

x

y

 = 1∣∣∣∣∣∣∣ a2 a · b
a · b b2

∣∣∣∣∣∣∣
 b2 −a · b
−a · b a2


a · cb · c

 =
b2 (a · c) − (a · b) (b · c)
a2 (b · c) − (a · b) (a · c)


a2b2 − (a · b)2 .

(1.230)

All of these differences can be expressed as wedge dot products, using
the following expansions in reverse

(a∧ b) · (c∧ d) = a · (b · (c∧ d))
= a · ((b · c) d − (b · d) c)
= (a · d) (b · c) − (a · c) (b · d) .

(1.231)

We find

x =
b2 (a · c) − (a · b) (b · c)

− (a∧ b)2

=
(a∧ b) · (b∧ c)

− (a∧ b)2

=
1

a∧ b
· (c∧ b) ,

(1.232)

and

y =
a2 (b · c) − (a · b) (a · c)

− (a∧ b)2

=
− (a∧ b) · (a∧ c)

− (a∧ b)2

=
1

a∧ b
· (a∧ c) .

(1.233)
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Sure enough, we find what was dubbed the least squares solution, which
we now know can be written out as a ratio of (dotted) wedge products.





2M U LT I V E C T O R C A L C U L U S .

2.1 reciprocal frames .

2.1.1 Motivation and definition.

The end goal of this chapter is to be able to integrate multivector func-
tions along curves and surfaces, known collectively as manifolds. For our
purposes, a manifold is defined by a parameterization, such as the vector
valued function x(a, b) where a, b are scalar parameters. With one param-
eter the vector traces out a curve, with two a surface, three a volume, and
so forth. The respective partial derivatives of such a parameterized vector
define a local basis for the surface at the point at which the partials are
evaluated. The span of such a basis is called the tangent space, and the
partials that constitute it are not necessarily orthonormal, or even orthog-
onal.

Unfortunately, in order to work with the curvilinear non-orthonormal
bases that will be encountered in general integration theory, some addi-
tional tools are required.

• We introduce a reciprocal frame (basis) which partially generalizes
the notion of orthogonality to non-orthonormal bases.

• We will borrow the upper and lower index (tensor) notation from
relativistic physics that is useful for the intrinsically non-orthonormal
spaces encountered in that study, as this notation works well to de-
fine the reciprocal frame.

Definition 2.1: Reciprocal frame

Given a subspace basis β = {x1, x2, · · · xm}, not necessarily orthonor-
mal, the reciprocal frame is the set

{
x1, x2, · · · xm

}
∈ span β satisfying

xi · x j = δi
j,
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where the vector x j is not the j-th power of x, but is a superscript
index, the conventional way of denoting a reciprocal frame vector,
and δi

j is the Kronecker delta.

If a basis {xi} is orthogonal, then the reciprocal frame vectors are, lit-
erally, the reciprocals xi = 1/xi (exercise 2.1). Any orthonormal basis,
where every basis vector is its own inverse, is also its reciprocal basis.

In general, if the original basis is not-orthogonal, every reciprocal basis
vector is orthogonal to all but one of the original basis vectors, but may not
be orthogonal to any other reciprocal basis vector. Techniques for compu-
tation of reciprocal bases will be developed for the non-orthogonal case.

Mixed index variables have been introduced above for the first time in
this text, which may be unfamiliar. These are most often used in tensor
algebra, where any expression that has pairs of upper and lower indexes
implies a sum, and is called the summation (or Einstein) convention. For
example:

aibi ≡
∑

i

aibi

Ai
jBiC j ≡

∑
i, j

Ai
jBiC j.

(2.1)

Summation convention will not be used explicitly in this text, as it de-
viates from normal practises in electrical engineering1.

2.1.1.1 Vector coordinates.

The most important application of a reciprocal frame is for the compu-
tation of the coordinates of a vector with respect to a non-orthonormal
frame. Let a vector a have coordinates ai with respect to a basis {xi}

a =
∑

j

a jx j, (2.2)

where j in a j is an index not a power2.

1 Generally, when summation convention is used, explicit summation is only used explicitly
when upper and lower indexes are not perfectly matched, but summation is still implied.
Readers of texts that use summation convention can check for proper matching of upper
and lower indexes to ensure that the expressions make sense. Such matching is the reason
a mixed index Kronecker delta has been used in the definition of the reciprocal frame.

2 In tensor algebra, any index that is found in matched upper and lower index pairs, is
known as a dummy summation index, whereas an index that is unmatched is known as a
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Dotting with the reciprocal frame vectors xi provides these coordinates
ai

a · xi =

∑
j

a jx j

 · xi

=
∑

j

a jδ j
i

= ai.

(2.3)

Alternatively, coordinates can be computed with respect to the recipro-
cal frame. Let those coordinates be ai, so that

a =
∑

i

aixi. (2.4)

Dotting with the basis vectors xi provides the reciprocal frame relative
coordinates ai

a · xi =

∑
j

a jx j

 · xi

=
∑

j

a jδ
j
i

= ai.

(2.5)

We can summarize eq. (2.3) and eq. (2.5) by stating that a vector can
be expressed in terms of coordinates relative to either the original or re-
ciprocal basis as follows

a =
∑

j

(
a · x j

)
x j =

∑
j

(a · x j) x j. (2.6)

In tensor algebra the basis is generally implied3.

free index. For example, in a jbi j (summation implied) j is a summation index, and i is a
free index. We are free to make a change of variables of any summation index, so for the
same example we can write akbik. These index tracking conventions are obvious when
summation symbols are included explicitly, as we will do.

3 In tensor algebra, a vector, identified by the coordinates ai is called a contravariant vector.
When that vector is identified by the coordinates ai it is called a covariant vector. These
labels relate to how the coordinates transform with respect to norm preserving transfor-
mations. We have no need of this nomenclature, since we never transform coordinates
in isolation, but will always transform the coordinates along with their associated basis
vectors.
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An example of a 2D oblique Euclidean basis and a corresponding recip-
rocal basis is plotted in fig. 2.1. Also plotted are the superposition of the
projections required to arrive at point (4, 2) along the x1, x2 directions or
the x1, x2 directions. In this plot, neither of the reciprocal frame vectors
xi are orthogonal to the corresponding basis vectors xi. When one of xi

is increased(decreased) in magnitude, there will be a corresponding de-
crease(increase) in the magnitude of xi, but if the orientation is remained
fixed, the corresponding direction of the reciprocal frame vector stays the
same.

Figure 2.1: Oblique and reciprocal bases.

2.1.1.2 Bivector coordinates.

Higher grade multivector objects may also be represented in curvilinear
coordinates. Illustrating by example, we will calculate the coordinates of a
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bivector constrained to a three parameter manifold span {x1, x2, x3} which
can be represented as

B =
1
2

∑
i, j

Bi jxi ∧ x j =
∑
i< j

Bi jxi ∧ x j. (2.7)

The coordinates Bi j can be determined by dotting B with x j ∧ xi, where
i , j, yielding

B ·
(
x j ∧ xi

)
=

1
2

∑
r,s

Brs (xr ∧ xs) ·
(
x j ∧ xi

)
=

1
2

∑
r,s

Brs
(
(xr ∧ xs) · x j

)
· xi

=
1
2

∑
r,s

Brs
(
xrδs

j − xsδr
j
)
· xi

=
1
2

∑
r,s

Brs
(
δr

iδs
j − δs

iδr
j
)

=
1
2

(
Bi j − B ji

)
.

(2.8)

We see that the coordinates of a bivector, even with respect to a non-
orthonormal basis, are antisymmetric, so eq. (2.8) is just Bi j as claimed.
That is

Bi j = B ·
(
x j ∧ xi

)
. (2.9)

Just as the reciprocal frame was instrumental for computation of the co-
ordinates of a vector with respect to an arbitrary (i.e. non-orthonormal
frame), we use the reciprocal frame to calculate the coordinates of a bivec-
tor, and could do the same for higher grade k-vectors as well.

2.1.2 R2 reciprocal frame.

How are the reciprocal frame vectors computed? While these vectors have
a natural GA representation, this is not intrinsically a GA problem, and
can be solved with standard linear algebra, using a matrix inversion. For
example, given a 2D basis {x1, x2}, the reciprocal basis can be assumed to
have a coordinate representation in the original basis

x1 = ax1 + bx2

x2 = cx1 + dx2.
(2.10)
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Imposing the constraints of definition 2.1 leads to a pair of 2x2 linear
systems that are easily solved to find

x1 =
1

(x1)2(x2)2 − (x1 · x2)
2

(
(x2)2x1 − (x1 · x2) x2

)
x2 =

1

(x1)2(x2)2 − (x1 · x2)
2

(
(x1)2x2 − (x1 · x2) x1

)
.

(2.11)

The reader may notice that for R3 the denominator is related to the
norm of the cross product x1 × x2. More generally, this can be expressed
as the square of the bivector x1 ∧ x2

− (x1 ∧ x2)
2
= − (x1 ∧ x2) · (x1 ∧ x2)

= − ((x1 ∧ x2) · x1) · x2

= (x1)2(x2)2 − (x1 · x2)
2
.

(2.12)

Additionally, the numerators are each dot products of x1, x2 with that
same bivector

x1 =
x2 · (x1 ∧ x2)

(x1 ∧ x2)
2

x2 =
x1 · (x2 ∧ x1)

(x1 ∧ x2)
2 ,

(2.13)

or

x1 = x2 ·
1

x1 ∧ x2

x2 = x1 ·
1

x2 ∧ x1
.

(2.14)

Recall that dotting with the unit bivector of a plane (or its inverse) ro-
tates a vector in that plane by π/2. In a plane subspace, such a rotation is
exactly the transformation to ensure that x1 · x2 = x2 · x1 = 0. This shows
that the reciprocal frame for the basis of a two dimensional subspace is
found by a duality transformation of each of the curvilinear coordinates,
plus a subsequent scaling operation. As x1 ∧ x2, the pseudoscalar for the
subspace spanned by {x1, x2}, is not generally a unit bivector, the dot prod-
uct with its inverse also has a scaling effect.
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Numerical example: Here is a Mathematica calculation of the recipro-
cal frame depicted in fig. 2.1

In[6]:= ClearAll[x1, x2, inverse]
x1 = e[1] + e[2]; x2 = e[1] + 2 e[2];
x12 = OuterProduct[x1, x2];
inverse[a_] := a / GeometricProduct[a, a] ;
x12inverse = inverse[x12];
s1 = InnerProduct[x2, x12inverse];
s2 = InnerProduct[x1, -x12inverse];
s1
s2
dots[a_,b_] := {a , "···", b, " = ",

InnerProduct[a // ReleaseHold,
b // ReleaseHold]};
MapThread[dots, {{x1 // HoldForm, x2 // HoldForm,

x1 // HoldForm, x2 //
HoldForm},

{s1 // HoldForm, s1 // HoldForm,

Out[6]= 2 e[1] - e[2]

Out[7]= -e[1] + e[2]

Out[8]= x1 · s1 = 1

x2 · s1 = 0

x1 · s2 = 0

This shows the reciprocal vector calculations using eq. (2.14) and that
the defining property xi · x j = δi

j of the reciprocal frame vectors is satis-
fied.

Example: R2: Given a pair of arbitrary oriented vectors in R2, x1 =

a1e1 + a2e2, x2 = b1e1 + b2e2, the pseudoscalar associated with the basis
{x1, x2} is

x1 ∧ x2 = (a1e1 + a2e2) ∧ (b1e1 + b2e2)

= (a1b2 − a2b1) e12.
(2.15)

The inverse of this pseudoscalar is

1
x1 ∧ x2

=
1

a1b2 − a2b1
e21. (2.16)
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So for this fixed oblique R2 basis, the reciprocal frame is just

x1 = x2
e21

a1b2 − a2b1

x2 = x1
e12

a1b2 − a2b1
.

(2.17)

The vector x1 is obtained by rotating x2 by −π/2, and rescaling it by
the area of the parallelogram spanned by x1, x2. The vector x2 is obtained
with the same scaling plus a rotation of x1 by π/2.

2.1.3 R3 reciprocal frame.

In this section we generalize eq. (2.14) to R3 vectors, which will illustrate
the general case by example.

Given a subspace spanned by a three vector basis {x1, x2, x3} the recip-
rocal frame vectors can be written as dot products

x1 = (x2 ∧ x3) ·
(
x3 ∧ x2 ∧ x1

)
x2 = (x3 ∧ x1) ·

(
x1 ∧ x3 ∧ x2

)
x3 = (x1 ∧ x2) ·

(
x2 ∧ x1 ∧ x3

)
.

(2.18)

Each of those trivector terms equals −x1 ∧ x2 ∧ x3 and can be related to
the (known) pseudoscalar x1 ∧ x2 ∧ x3 by observing that(

x1 ∧ x2 ∧ x3
)
· (x3 ∧ x2 ∧ x1) = x1 ·

(
x2 ·

(
x3 · (x3 ∧ x2 ∧ x1)

))
= x1 ·

(
x2 · (x2 ∧ x1)

)
= x1 · x1

= 1,

(2.19)

which means that

−x1 ∧ x2 ∧ x3 = −
1

x3 ∧ x2 ∧ x1

=
1

x1 ∧ x2 ∧ x3
,

(2.20)
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and

x1 = (x2 ∧ x3) ·
1

x1 ∧ x2 ∧ x3

x2 = (x3 ∧ x1) ·
1

x1 ∧ x2 ∧ x3

x3 = (x1 ∧ x2) ·
1

x1 ∧ x2 ∧ x3

(2.21)

Geometrically, dotting with this trivector is a duality transformation
within the subspace spanned by the three vectors x1, x2, x3, also scaling
the result so that the xi · x j = δi

j condition is satisfied. The scaling factor
is the volume of the parallelepiped spanned by x1, x2, x3.

2.1.4 Problems.

Exercise 2.1 Orthogonal reciprocals.

Given an orthogonal basis {xi}, show that

xi =
1
xi
.

Exercise 2.2 Reciprocal frame for two dimensional subspace.

Prove eq. (2.11).
Hint: Take dot products of eq. (2.10) with x1, x2, group the resulting

equations into matrix form (you’ll find the same matrix for both sets of
unknowns), and then invert the matrix to find the solution.

Exercise 2.3 Two vector reciprocal frame

Calculate the reciprocal frame for the R3 subspace spanned by {x1, x2}

where

x1 = e1 + 2e2

x2 = e2 − e3.
(2.27)



102 multivector calculus .

2.2 curvilinear bases .

2.2.1 Two parameters.

Curvilinear coordinates can be defined for any subspace spanned by a pa-
rameterized vector into that space. As an example, consider a two param-
eter planar subspace parameterized by the following continuous vector
function

x(u1, u2) = u1

(
e1 cos u2 +

1
2

e2 sin u2

)
, (2.33)

where u1 ∈ [0, 1] and u2 ∈ [0, π/2]. This parameterization spans the first
quadrant of the ellipse with semi-major axis length 1, and semi-minor axis
length 1/2. A parameterization of an elliptic area may or may not be of
much use in electrodynamics, but it happens to provide a non-trivial, yet
simple, example of a non-orthonormal parameterization. Contours for this
parameterization are plotted in fig. 2.2. The radial contours are for fixed
values of u2 and the elliptical contours fix the value of u1, and depict a set
of elliptic curves with a semi-major/major axis ratio of 1/2.

Figure 2.2: Contours for an elliptical region.

We define a curvilinear basis associated with each point in the region
by the partials

x1 =
∂x
∂u1

x2 =
∂x
∂u2

.

(2.34)
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For eq. (2.33) our curvilinear basis elements are

x1 = e1 cos u2 +
1
2

e2 sin u2

x2 = u1

(
−e1 sin u2 +

1
2

e2 cos u2

)
,

(2.35)

We form vector valued differentials for each parameter

dx1 = x1du1

dx2 = x2du2.
(2.36)

For eq. (2.33), the values of these differentials dx1, dx2 with du1 =

du2 = 0.1 are plotted in fig. 2.3 for the points

(u1, u2) = (0.7, 5π/20), (0.9, 3π/20), (1.0, 5π/20) (2.37)

in (dark-thick) red, blue and purple respectively.

0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

Figure 2.3: Differentials for an elliptical parameterization.

In this case and in general there is no reason to presume that there is any
orthonormality constraint on the basis {x1, x2} for a given two parameter
subspace.

Should we wish to calculate the reciprocal frame for eq. (2.33), we
would find (exercise 2.4) that

x1 = e1 cos u2 + 2e2 sin u2

x2 =
1
u1

(−e1 sin u2 + 2e2 cos u2)
(2.38)
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These are plotted (scaled by da = 0.1 so they fit in the image nicely) in
fig. 2.3 using thin light arrows.

When evaluating surface integrals, we will form oriented (bivector)
area elements from the wedge product of the differentials

d2x ≡ dx1 ∧ dx2. (2.39)

This absolute value of this area element
√
−(d2x)2 is the area of the par-

allelogram spanned by dx1, dx2. In this example, all such area elements
lie in the x − y plane, but that need not be the case.

Also note that we will only perform integrals for those parametrizations
for which the area element d2x is non-zero.

Exercise 2.4 Elliptic parameterization.

An elliptical area can be parameterized as

x(u1, u2) = u1 (e1 cos u2 + βe2 sin u2) , (2.40)

where β =
√

1 − ϵ2, and ϵ is the eccentricity of the ellipse.

a. Compute the curvilinear vectors

x1 = ∂x/∂u1

x2 = ∂x/∂u2.
(2.41)

b. Compute the reciprocal frame vectors

x1 = x2 ·
1

x1 ∧ x2

x2 = −x1 ·
1

x1 ∧ x2
.

(2.42)

c. Verify that xi · x j = δi
j.

Exercise 2.5 Hyperbolic identities.

Show that

2 cosh (µ − iθ) sinh (µ + iθ) = sinh(2µ) + i sin(2θ). (2.51)

2 cosh (µ) sinh (µ) = sinh(2µ). (2.52)
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cosh (µ + iθ) = cosh µ cos θ + i sinh µ sin θ. (2.53)

Exercise 2.6 Elliptic curvilinear and reciprocal basis.

a. Show that an ellipse can be parameterized by

x = u1e1 cosh (µ + iu2) , (2.56)

where i = e12, and find the values of the semi-major and semi-
minor axes.

b. Determine how µ and the eccentricity ϵ =
√

1 − b2/a2 are related.

c. Compute the curvilinear and reciprocal frame vectors for the pa-
rameterization x(u1, u2) above.

d. Check that xi · x j = δ
i
j.

At the point of evaluation, the span of these differentials is called the
tangent space. In this particular case the tangent space at all points in the
region is the entire x-y plane. These partials locally span the tangent space
at a given point on the surface.

2.2.1.1 Curved two parameter surfaces.

Continuing to illustrate by example, let’s now consider a non-planar two
parameter surface

x(u1, u2) = (u1 − u2)2e1 + (1 − (u2)2)e2 + u1u2e3. (2.70)

The curvilinear basis elements, and the area element, are

x1 = 2(u1 − u2)e1 + u2e3

x2 = 2(u2 − u1)e1 − 2u2e2 + u1e3

x1 ∧ x2 = −4u2 (u1 − u2) e12 + 2u2
2e23 + 2

(
u2

1 − u2
2

)
e13.

(2.71)

Two examples of these vectors and the associated area element (rescaled
to fit) is plotted in fig. 2.4. This plane is called the tangent space at the
point in question, and has been evaluated at (u1, u2) = (0.5, 0.5), (0.35, 0.75).
The results of eq. (2.71) can be calculated easily by hand for this partic-
ular parameterization, but also submit to symbolic calculation software.
Here’s a complete example using CliffordBasic
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Figure 2.4: Two parameter manifold.

In[9]:= << CliffordBasic‘;

In[10]:= ClearAll[xp, x, x1, x2]
(* Use dummy parameter values for the
derivatives,
and then switch them to function parameter
values. *)
xp := (a - b)^2 e[1] + (1 - b^2) e[2] + b a e
[3];
x[u_, v_] := xp /. {a →→→ u, b→→→v};
x1[u_, v_] := D[xp, a] /. {a →→→ u, b→→→v};
x2[u_, v_] := D[xp, b] /. {a →→→ u, b→→→v};

x1[u,v]
x2[u,v]

Out[10]= 2 (u-v) e[1] + v e[3]

Out[11]= -2 (u - v) e[1] - 2 v e[2] + u e[3]

Out[12]= (-4 u v + 4 v2) e[1,2] + (2 u2 - 2 v2) e[1,3] +

2 v2 e[2,3]

2.2.2 Three (or more) parameters.

We can extend the previous two parameter subspace ideas to higher dimen-
sional (or one dimensional) subspaces associated with a parameterization
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Definition 2.2: Curvilinear bases and volume element

Given a parameterization x(u1, u2, · · · , uk) with k degrees of freedom,
we define the curvilinear basis elements xi by the partials

xi =
∂x
∂ui

.

The span of {xi} at the point of evaluation is called the tangent space.
A subspace associated with a parameterization of this sort is also
called a manifold. The volume element for the subspace is

dkx = du1du2 · · · duk x1 ∧ x2 ∧ · · · ∧ xk.

Such a volume element is a k-vector. The volume of the (hyper-)

parallelepiped bounded by {xi} is
√∣∣∣(dkx)2

∣∣∣.
We will assume that the parameterization is non-generate. This means

that the volume element dkx is non-zero in the region of interest. Note
that a zero volume element implies a linear dependency in the curvilinear
basis elements xi.

Given a parameterization x = x(u, v, · · · ,w), we may write xu, xv, · · · , xw

for the curvilinear basis elements, and xu, xv, · · · , xw for the reciprocal
frame elements. When doing so, sums over numeric indexes like

∑
i xixi

should be interpreted as a sum over all the parameter labels, i.e. xuxu +

xvxv + · · ·.

2.2.3 Gradient.

With the introduction of the ideas of reciprocal frame and curvilinear coor-
dinates, we are getting closer to be able to formulate the geometric algebra
generalizations of vector calculus.

The next step in the required mathematical preliminaries for geometric
calculus is to determine the form of the gradient with respect to curvilinear
coordinates and the parameters associated with those coordinates.

Suppose we have a vector parameterization of RN

x = x(u1, u2, · · · , uN). (2.72)
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We can employ the chain rule to express the gradient in terms of deriva-
tives with respect to ui

∇ =
∑

i

ei
∂

∂xi

=
∑
i, j

ei
∂u j

∂xi

∂

∂u j

=
∑

j

∑
i

ei
∂u j

∂xi

 ∂

∂u j

=
∑

j

(∇u j)
∂

∂u j
.

(2.73)

It turns out that the gradients of the parameters are in fact the reciprocal
frame vectors

Theorem 2.1: Reciprocal frame vectors

Given a curvilinear basis with elements xi = ∂x/∂ui, the reciprocal
frame vectors are given by

xi = ∇ui.

Proof. This can be proven by direct computation

xi · x j = (∇ui) ·
∂x
∂u j

=

n∑
r,s=1

(
er
∂ui

∂xr

)
·

(
es
∂xs

∂u j

)

=

n∑
r,s=1

(er · es)
∂ui

∂xr

∂xs

∂u j

=

n∑
r,s=1

δrs
∂ui

∂xr

∂xs

∂u j

=

n∑
r=1

∂ui

∂xr

∂xr

∂u j

=
∂u j

∂ui

= δi
j.

(2.74)
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This shows that xi = ∇ui has the properties required of the reciprocal
frame, proving the theorem.

We are now able to define the gradient with respect to an arbitrary set
of parameters

Theorem 2.2: Curvilinear representation of the gradient

Given an N-parameter vector parameterization x = x(u1, u2, · · · , uN)
of RN , with curvilinear basis elements xi = ∂x/∂ui, the gradient is

∇ =
∑

i

xi ∂

∂ui
.

It is convenient to define ∂i ≡ ∂/∂ui, so that the gradient can be
expressed in mixed index representation

∇ =
∑

i

xi∂i.

2.2.4 Vector derivative.

Given curvilinear coordinates defined on a subspace definition 2.2, we
don’t have enough parameters to define the gradient. For calculus on the
k-dimensional subspace, we define the vector derivative

Definition 2.3: Vector derivative

Given a k-parameter vector parameterization x = x(u1, u2, · · · , uk) of
RN with k ≤ N, and curvilinear basis elements xi = ∂x/∂ui, the
vector derivative ∂ is defined as

∂ =
k∑

i=1

xi∂i.

When the dimension of the subspace (number of parameters) equals the
dimension of the underlying vector space, the vector derivative equals the
gradient. Otherwise we can write

∇ = ∂ +∇⊥, (2.75)
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and can think of the vector derivative as the projection of the gradient onto
the tangent space at the point of evaluation.

Please see [21] for an excellent introduction of the reciprocal frame, the
gradient, and the vector derivative, and for details about the connectivity
of the manifold ignored here.

2.2.5 Examples.

We’ve just blasted through a few abstract ideas:

• The curvilinear representation of the gradient.

• The gradient representation of the reciprocal frame.

• The vector derivative.

This completes the mathematical preliminaries required to formulate
geometric calculus, the multivector generalization of line, surface, and
volume integrals. Before diving into the calculus let’s consider some ex-
ample parameterizations to illustrate how some of the new ideas above fit
together.

2.2.5.1 Example parameterization: Polar coordinates.

We will now consider a simple concrete example of a vector parameteri-
zation, that of polar coordinates in R2

x(ρ, ϕ) = ρe1 exp (e12ϕ) , (2.76)

as illustrated in fig. 2.5.

Figure 2.5: Polar coordinates.

Using this example we will
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• Compute the curvilinear coordinates. We will refer to these as xρ, xϕ,
instead of x1, x2.

• Find the squared length of xρ, xϕ, and show that they are perpendic-
ular (but not orthonormal.)

• Perform a first bivector valued integral.

• Compute the reciprocal frame vectors with geometric arguments.

• Compute the reciprocal frame explicitly from the gradients of the
coordinates.

• Find the polar form of the gradient with respect to this parameteri-
zation.

Curvilinear coordinates. The curvilinear coordinate basis can be com-
puted directly

xρ =
∂

∂ρ
(ρe1 exp (e12ϕ))

= e1 exp (e12ϕ)

(2.77a)

xϕ =
∂

∂ϕ
(ρe1 exp (e12ϕ))

= ρe1e12 exp (e12ϕ)

= ρe2 exp (e12ϕ) .

(2.77b)

For plane configurations, it is often handy to represent the plane pseu-
doscalar with an imaginary symbol. Here we will use i = e12, allowing
for the compact representations xρ = e1eiϕ and xϕ = ρe2eiϕ. This also
highlights the geometric interpretation of the basis vectors, as we see that
the

{
xρ, xϕ

}
basis vectors are constructed by rotating {e1, ρe2} by ϕ radians

in the direction from e1 to e2.

Normality. To show that these vectors are perpendicular, we first com-
pute their product, which we will find has no scalar part. From theo-
rem 1.13, property (c), observe that xeiϕ = e−iϕx for any vector x in the
plane, so

xρxϕ =
(
e1eiϕ

) (
ρe2eiϕ

)
= ρe1e2e−iϕeiϕ

= ρe12.

(2.78)
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Since this has no scalar part xρ · xϕ =
〈
xρxϕ

〉
= 0.

Length of basis elements. We can use scalar selection to find the (squared)
length of the vectors, finding

x2
ρ =

〈
e1eiϕe1eiϕ

〉
=

〈
e1eiϕe−iϕe1

〉
=

〈
e2

1

〉
= 1,

(2.79)

and

x2
ϕ =

〈(
ρe2eiϕ

) (
ρe2eiϕ

)〉
= ρ2

〈
e2eiϕe−iϕe2

〉
= ρ2

〈
e2

2

〉
= ρ2.

(2.80)

A bivector integral. One of our goals is to understand the multivector
generalization of Stokes’ theorem and the divergence theorem, but even
before that, we can evaluate some simple multivector integrals. In par-
ticular, we can calculate the (oriented) area of a circle, given a bivector
representation of the area element.∫ r

ρ=0

∫ 2π

ϕ=0
dxρ ∧ dxϕ =

∫ r

ρ=0

∫ 2π

ϕ=0
dρdϕ xρ ∧ xϕ

=

∫ r

ρ=0

∫ 2π

ϕ=0
ρdρdϕ e12 = πr2e12.

(2.81)

Integrating the bivector area over a circular region gives us the area of
that region, but weighted by the R2 pseudoscalar. This is an oriented area.

Reciprocal basis. Because xρ, xϕ are mutually perpendicular, we have
only to rescale them to determine the reciprocal basis, and can do so by
inspection

xρ = e1eiϕ

xϕ =
1
ρ

e2eiϕ.
(2.82)
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According to theorem 2.1 we should be able to find eq. (2.82) by com-
puting the gradients of ρ and ϕ respectively. If we do so using the R2

standard basis representation of the gradient, we must first solve for ρ =
ρ(x, y), ϕ = ϕ(x, y), inverting

x = ρ cos ϕ

y = ρ sin ϕ.
(2.83)

An implicit solution to this inversion problem is

ρ2 = x2 + y2

tan ϕ = y/x,
(2.84)

which we can implicitly differentiate to evaluate the components of the
desired gradients

2ρ
∂ρ

∂x
= 2x

2ρ
∂ρ

∂y
= 2y

1
cos2 ϕ

∂ϕ

∂x
= −

y
x2

1
cos2 ϕ

∂ϕ

∂y
=

1
x
.

(2.85)

So the gradients are

∇ρ = (∂ρ/∂x, ∂ρ/∂y)

= (x/ρ, y/ρ)

= (cos ϕ, sin ϕ)

= e1ee12ϕ

= xρ

(2.86a)

∇ϕ = cos2 ϕ

(
−

y
x2 ,

1
x

)
=

1
ρ

(− sin ϕ, cos ϕ)

=
e2

ρ
(cos ϕ + e12 sin ϕ)

=
e2

ρ
ee12ϕ

= xϕ,

(2.86b)

which is consistent with eq. (2.82), as expected.
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Gradient. The polar form of the R2 gradient is

∇ = xρ
∂

∂ρ
+ xϕ

∂

∂ϕ

= ρ̂
∂

∂ρ
+

1
ρ
ϕ̂
∂

∂ϕ
,

(2.87)

where

ρ̂ =
xρ∥∥∥xρ

∥∥∥ = xρ = e1eiϕ = xρ

ϕ̂ =
xϕ∥∥∥xϕ

∥∥∥ = 1
ρ

xϕ = e2eiϕ = ρxϕ.
(2.88)

Should we extend this vector space to R3, the parameterization of
eq. (2.76) covers the subspace of the x-y plane, and for that subspace,
the vector derivative is

∂ = xρ
∂

∂ρ
+ xϕ

∂

∂ϕ

= ρ̂
∂

∂ρ
+

1
ρ
ϕ̂
∂

∂ϕ
.

(2.89)

2.2.5.2 Example parameterization: Spherical coordinates.

We will use the physics and engineering convention for spherical polar an-
gles, as illustrated in fig. 2.6. The conventional way to introduce a spher-
ical polar position vector representation is through coordinates, where in-
spection of the geometry shows that

x = r (sin θ cos ϕ, sin θ sin ϕ, cos θ) , (2.90)

We can find a compact GA representation from this coordinate represen-
tation without too much trouble (exercise 2.10), but we can also examine
the geometry of the situation directly.

For the unit bivector for the azimuthal (x-y) plane, let’s write

i = e12, (2.91)

We see that the projection of x onto the azimuthal plane has direction
Proji x ∝ e1eiϕ. As we rotate from the north pole e3 down through x to the
azimuthal plane, we are rotating in the plane

j = e3 ∧
(
e1eiϕ

)
= e31eiϕ.

(2.92)
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Figure 2.6: Spherical polar conventions.

So, just by inspection, we’ve found the spherical polar representation of
x, which is

x = re3e jθ. (2.93)

Observe that all the ϕ dependency sneakily hides out in the unit bivector
j = j(ϕ).

Given a parameterized representation of x, we may compute the basis
elements

xr = e3e jθ (2.94a)

xθ = re3 je jθ

= re3e j(θ+π/2)
(2.94b)

xϕ =
∂

∂ϕ

(
re3e jθ

)
= re3

∂

∂ϕ
(cos θ + j sin θ)

= re3 sin θ
∂

∂ϕ

(
e31eiϕ

)
= r sin θe1e12eiϕ

= r sin θe2eiϕ.

(2.94c)
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See exercise 1.7 for why it is necessary to first expand the exponential into
its trigonometric constituents. These vectors are all mutually orthogonal
(exercise 2.7).

Orthonormalization of the curvilinear basis is now possible by inspec-
tion

r̂ = xr = e3e jθ

θ̂ =
1
r

xθ = e3e j(θ+π/2) = r̂ j

ϕ̂ =
1

r sin θ
xϕ = e2eiϕ,

(2.95)

so

xr = r̂ = e3e jθ

xθ =
1
r
θ̂ =

1
r

e3e j(θ+π/2)

xϕ =
1

r sin θ
ϕ̂ =

1
r sin θ

e2eiϕ.

(2.96)

The unit vectors r̂, θ̂, ϕ̂ are illustrated in fig. 2.7.

Figure 2.7: Spherical polar unit vectors.

Having computed the reciprocals, we may now form the spherical polar
representation of the gradient

∇ = xr ∂

∂r
+ xθ

∂

∂θ
+ xϕ

∂

∂ϕ

= r̂
∂

∂r
+

1
r
θ̂
∂

∂θ
+

1
r sin θ

ϕ̂
∂

∂ϕ
.

(2.97)
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It’s worth pointing out that computations like finding the curvilinear
basis vectors is easily performed in software

In[13]:= ClearAll[i, j, ej, x, xr, xt, xp]
i = e[1, 2];
j[phi_] = GeometricProduct[e[3, 1], Cos[phi] + i
Sin[phi]];

ej[t_, p_] = Cos[t] + j[p] Sin[t];
x[r_, t_, p_] = r GeometricProduct[e[3], ej[t, p
]];

xr[r_, theta_, phi_] = D[x[a, theta, phi], a] /.
a→→→r;

xt[r_, theta_, phi_] = D[x[r, t, phi], t] /. t
→→→theta;
xp[r_, theta_, phi_] = D[x[r, theta, p], p] /. p
→→→phi;

{x[r, θθθ, ϕϕϕ],
xr[r, θθθ, ϕϕϕ],
xt[r, θθθ, ϕϕϕ],

Out[13]= r (Cos[θ] e[3] + Cos[ϕ] e[1] Sin[θ] + e[2] Sin[θ]

Sin[ϕ])
Cos[θ] e[3] + Cos[ϕ] e[1] Sin[θ] + e[2] Sin[ θ]

Sin[ϕ]
r (Cos[θ] Cos[ϕ] e[1] - e[3] Sin[θ] + Cos[θ] e[2]

Sin[ϕ])

where it also easy to show that these vectors are mutually perpendicular

In[14]:= ClearAll[x1, x2, x3]
x1 = xr[r, θθθ, ϕϕϕ];
x2 = xt[r, θθθ, ϕϕϕ];
x3 = xp[r, θθθ, ϕϕϕ];

Out[14]= {0,0,0}

Unfortunately, if we perform these computations in software, we loose
our compact representation.
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The spherical (oriented) volume element can also be computed in a
compact fashion

d3x
drdθdϕ

= xr ∧ xθ ∧ xϕ

=
〈
xrxθxϕ

〉
3

=
〈
r̂rr̂ jr sin θe2eiϕ

〉
3

= r2 sin θ
〈
e31eiϕe2eiϕ

〉
3

= r2 sin θ e123.

(2.98)

The scalar factor is the Jacobian with respect to the spherical parame-
terization

dV
drdθdϕ

=
∂(x1, x2, x3)
∂(r, θ, ϕ)

=

∣∣∣∣∣∣∣∣∣∣∣
sin θ cos ϕ sin θ sin ϕ cos θ

r cos θ cos ϕ r cos θ sin ϕ −r sin θ

−r sin θ sin ϕ r sin θ cos ϕ 0

∣∣∣∣∣∣∣∣∣∣∣
= r2 sin θ.

(2.99)

The final reduction of eq. (2.98), and the expansion of the Jacobian
eq. (2.99), are both easily verified with software.

In[15]:= OuterProduct[ xr[r, θθθ, ϕϕϕ],
xt[r, θθθ, ϕϕϕ],
xp[r, θθθ, ϕϕϕ]]

{e1,e2,e3} = IdentityMatrix[3];
jacobian = {xr[r, θθθ, ϕϕϕ],
xt[r, θθθ, ϕϕϕ],
xp[r, θθθ, ϕϕϕ]} /. {e[1] →→→ e1, e[2] →→→ e2, e[3]→→→e3
};

Out[15]= r2 e[1,2,3] Sin[θ]

Out[16]= r2 Sin[θ]

Performing these calculations manually are left as problems for the stu-
dent (exercise 2.9, exercise 2.8).
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Figure 2.8: Toroidal parameterization.

2.2.5.3 Example parameterization: Toroidal coordinates.

Here is a 3D example of a parameterization with a non-orthogonal curvi-
linear basis, that of a toroidal subspace specified by two angles and a
radial distance to the center of the toroid, as illustrated in fig. 2.8.

The position vector on the surface of a toroid of radius ρ within the
torus can be stated directly

x(ρ, θ, ϕ) = e− jθ/2
(
ρe1eiϕ + Re3

)
e jθ/2 (2.100a)

i = e1e3 (2.100b)

j = e3e2 (2.100c)

It happens that the unit bivectors i and j used in this construction hap-
pen to have the quaternion-ic properties i j = − ji, and i2 = j2 = −1 which
can be verified easily.

The curvilinear basis is found (exercise 2.11) to be

xρ =
∂x
∂ρ
= e− jθ/2e1eiϕe jθ/2 (2.101a)

xθ =
∂x
∂θ
= e− jθ/2 (R + ρ sin ϕ) e2e jθ/2 (2.101b)

xϕ =
∂x
∂ϕ
= e− jθ/2ρe3eiϕe jθ/2. (2.101c)
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The oriented volume element can be computed using a trivector selec-
tion operation, which conveniently wipes out a number of the interior
exponentials

∂x
∂ρ
∧
∂x
∂θ
∧
∂x
∂ϕ
= ρ (R + ρ sin ϕ)

〈
e− jθ/2e1eiϕe2e3eiϕe jθ/2

〉
3
. (2.102)

Note that e1 commutes with j = e3e2, so also with e− jθ/2. Also e2e3 =

− j anticommutes with i, so there is a conjugate commutation effect eiϕ j =
je−iϕ. This gives〈

e− jθ/2e1eiϕe2e3eiϕe jθ/2
〉

3
= −

〈
e1e− jθ/2 je−iϕeiϕe jθ/2

〉
3

= −
〈
e1e− jθ/2 je jθ/2

〉
3

= −⟨e1 j⟩3
= I.

(2.103)

Together the trivector grade selection reduces almost magically to just

∂x
∂ρ
∧
∂x
∂θ
∧
∂x
∂ϕ
= ρ (R + ρ sin ϕ) I. (2.104)

Thus the (scalar) volume element is

dV = ρ (R + ρ sin ϕ) dρdθdϕ. (2.105)

As a check, it should be the case that the volume of the complete torus
using this volume element has the expected V = (2πR)(πr2) value.

That volume is

V =
∫ r

ρ=0

∫ 2π

θ=0

∫ 2π

ϕ=0
ρ (R + ρ sin ϕ) dρdθdϕ. (2.106)

The sine term conveniently vanishes over the 2π interval, leaving just

V =
1
2

r2R(2π)(2π), (2.107)

as expected.

2.2.6 Problems.
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Exercise 2.7 Spherical coordinate basis orthogonality.

Using scalar selection, show that the spherical curvilinear basis of eq. (2.94)
are all mutually orthogonal.

Exercise 2.8 Spherical volume element pseudoscalar.

Using geometric algebra, perform the reduction of the grade three se-
lection made in the final step of eq. (2.98).

Exercise 2.9 Spherical volume Jacobian.

Without software, expand and simplify the determinant of eq. (2.99).

Exercise 2.10 Spherical polar coordinates.

Starting with

x = r (e1 sin θ cos ϕ + e2 sin θ sin ϕ + e3 cos θ) ,

first factor out e1 from the sin θ terms, and group the remaining factors
into complex exponential form. Then factor our e3 from both remaining
terms to factor out a ϕ dependent unit bivector, and put the entire expres-
sion into complex exponential form. Hint: e2 = e1e1e2.

Exercise 2.11 Curvilinear basis for toroidal parameterization.

Prove eq. (2.101).

2.3 integration theory.

2.3.1 Line integral.

In geometric algebra, the integrand of a multivector line integral contains
a product of multivector(s) and a single parameter differential.

Definition 2.4: Multivector line integral.

Given a continuous and differentiable curve described by a vector
function x(a), parameterized by single value a with differential

d1x ≡ dxa =
∂x
∂a

da = xada,
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and multivector functions F,G, the integral∫
Fd1xG

is called a multivector line integral.

An illustration of a single parameter curve and its differential with re-
spect to that parameter, is given in fig. 2.9. Observe that the differential
is tangent to the curve at all points. Possible physical realizations of the
parameter describing the curve include time, arclength, or angle.

Figure 2.9: One parameter manifold.

Suppose that f(x(a)) is a vector valued function defined along the curve.
The conventional line integral from vector calculus, a dot product of a dif-
ferential and the function f may be obtained by the sum of two multivector
line integrals one with F,G = f/2, 1, and the other with F,G = 1, f/2∫

dx
f
2
+

∫
f
2

dx =
∫

dx · f. (2.119)

Unlike the conventional dot product line integral, the multivector line in-
tegral of a vector function such as

∫
dxf is generally multivector valued,

with both a scalar and a bivector component. Let’s consider some exam-
ples of multivector line integrals.
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Example: Circular path. Let f (t) = at + bt2, where a,b are constant
vectors, t is a scalar parameter, and the integration path is circular x(t) =
e1eit, where i = e1e2. The line integral of f dx is∫

f(t) dx = ae2

∫
teitdt + be2

∫
t2eitdt

=
(
ae2 (1 − it) + be2

(
2i + 2t − it2

))
eit

= (a + 2bt) e2eit +
(
at − 2b + bt2

)
e1eit,

(2.120)

and the line integral of dx f is∫
dx f = e2

∫
teitdta + e2

∫
t2eitdtb

= e2eit
(
(1 − it) a +

(
2i + 2t − it2

)
b
)

= e2eit (a + 2bt) + e1eit
(
at − 2b + bt2

)
.

(2.121)

Unless the vector constants a,b have only components along the z-axis,
eq. (2.120) and eq. (2.121) are not generally equal.

Example: Circular bivector. Given a bivector valued function F(t) =
e2 ∧

(
e3eit

)
, where i = e3e1, and a curve x(t) = e3 + e2t + e1t2/2, we can

compute the line integral with the differential on the right∫
F dx = e23

∫
eit (e2 + e1t) dt

= −e3

∫
eitdt + e123

∫
te−itdt

= e1eit + e123 (1 + it) e−it

= e1eit − e2te−it + e123e−it,

(2.122)

or the line integral with the differential on the left∫
dx F =

∫
(e2 + e1t) e23eitdt

= e3

∫
eitdt + e123

∫
teit

= −e1eit + e123 (1 − it) eit

= −e1eit + e123eit + e2teit.

(2.123)

In both eq. (2.122) and eq. (2.123) the end result has both vector and
trivector grades. While both integrals are equal (zero) when the angular
velocity parameter t is a multiple of 2π, this shows that the order of the
products in the integrand makes a difference once again.
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Example: Function with only scalar and pseudoscalar grades. In R3,
given any function with only scalar and pseudoscalar grades, say F(t) =
f (t) + Ig(t), where f , g are both scalar functions, then the order of the
products in a line integrand do not matter. For any such function we have∫

Fdx =
∫

dxF, (2.124)

since both the scalar and pseudoscalar grades commute with any vector
differential.

2.3.2 Surface integral.

Definition 2.5: Multivector surface integral.

Given a continuous and differentiable surface described by a vector
function x(a, b), parameterized by two scalars a, b with differential

d2x ≡ dxa ∧ dxb =
∂x
∂a
∧
∂x
∂b

dadb = xa ∧ xbdadb,

and multivector functions F,G, the integral∫
Fd2xG

is called a multivector surface integral.

An example of a two parameter surface, and the corresponding differ-
entials with respect to those parameters, is illustrated in fig. 2.10.

In R3 it will often be convenient to utilize a dual representation of the
area element d2x = In̂dA, where dA is a scalar area element, and n̂ is a
normal vector to the surface. With such an area element representation we
will call I

∫
dA Fn̂G a surface integral.

Example: Spherical surface integral. From eq. (2.98), we know that

xrxθxϕ = Ir2 sin θ, (2.125)

so

xθ ∧ xϕ = xθxϕ
= xrIr2 sin θ,

(2.126)
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Figure 2.10: Two parameter manifold differentials.

so the (bivector-valued) area element for a spherical surface is

d2x = Ixrr2 sin θdθdϕ. (2.127)

Suppose we integrate a vector valued function F(θ, ϕ) = αxr + βxθ +
γxϕ, where α, β, γ are constants, over the surface of a sphere of radius r,
then the surface integral (with the area element on the right) is∫

Fd2x = αIr2
∫

xrxr sin θdθdϕ + βIr2
∫

xθxr sin θdθdϕ

+ γIr2
∫

xϕxr sin θdθdϕ.
(2.128)

This can be simplified using r̂θ̂ϕ̂ = I, and eq. (2.96), to find

xrxr = 1

Ixθxr =
1
r

Iθ̂r̂ =
1
r
ϕ̂

Ixϕxr =
1

r sin θ
Iϕ̂r̂ = −

1
r sin θ

θ̂,

(2.129)

so ∫
Fd2x = αI4πr2 + βr

∫
ϕ̂ sin θdθdϕ − γr

∫
θ̂dθdϕ

= αI4πr2,

(2.130)
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where the integrands containing θ̂, ϕ̂ are killed by the integral over ϕ ∈
[0, 2π]. If integrated over a subset of the spherical surface, where such
perfect cancellation does not occur, this surface integral may have both
vector and trivector components.

Example: Bivector function. Given a bivector valued function F(a, b) =
(a+ b)e2e1 + 2(ae1 − be2)e3 defined over the unit square a, b ∈ [0, 1], and
a surface x(a, b) = ae1 + be2, the multivector surface integral (with the
area element on the right) is∫

Fd2x =
∫ 1

0

∫ 1

0
(a + b) dadb + 2

∫ 1

0

∫ 1

0
(ae1 − be2)e3e1e2 dadb

= 1 + I
∫ 1

0
a2

∣∣∣1
0e1db − I

∫ 1

0
b2

∣∣∣1
0e2da

= 1 + I (e1 − e2)

= 1 + (e1 + e2) e3.

(2.131)

In this example, the integral of a bivector valued function over a (bivector-
valued) surface area element results in a multivector with a scalar and
bivector grade. In higher dimensional spaces, such an integral may also
have grade-4 components.

2.3.3 Volume integral.

Definition 2.6: Multivector volume integral.

Given a continuous and differentiable volume described by a vector
function x(a, b, c), parameterized by scalars a, b, c with volume ele-
ment

d3x ≡ dxa ∧ dxb ∧ dxc =
∂x
∂a
∧
∂x
∂b
∧
∂x
∂c

dadbdc = xaxbxc dadbdc,

and multivector functions F,G, the integral∫
Fd3xG

is called a multivector volume integral.
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In R3 the volume element is always a pseudoscalar, which commutes
with all grades, so we are free to write

∫
Fd3xG =

∫
d3xFG for any

multivectors F,G. It will often be useful to make the pseudoscalar nature
of the volume element explicit, writing d3x = IdV , where dV is a scalar
volume element.

As an example, let F(x) = r(x) + s(x) + It(x) + Iu(x) be an arbitrary
multivector function in R3, where r, u are scalar functions and s, t are
vector functions. Integrating over a unit cube in rectangular coordinates
d3x = Idxdydz = IdV , the volume integral of such a multivector function
is ∫

Fd3x =
∫

(r(x) + s(x) + It(x) + Iu(x)) IdV

=

∫
(Ir(x) + Is(x) − t(x) − u(x)) dV.

(2.132)

The result still has all grades, but each of the original grade components
is mapped onto its dual space.

2.3.4 Bidirectional derivative operators.

Having generalized line, surface, and volume integrals to multivector func-
tions, we wish to state the form of the integrand that is perfectly integrable.
That statement requires bidirectional integration operators, denoted using
left, right, or left-right overarrows, as follows.

Definition 2.7: Bidirectional vector derivative operators.

Given a hypervolume parameterized by k parameters, k-volume vol-
ume element dkx, and multivector functions F,G, let

↔

L=
∑

i

xi∂i,

designate a linear differential operator (i.e. the gradient or vector
derivative), where the partials act on multivector functions to the left
or right (but not the reciprocal frame vectors xi).
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To express unidirection action of the operator only to the left or
right, we use arrows to designate the scope of the derivatives, writing
respectively∫

V
Fdkx

←

L G =
∑

i

∫
V
(∂iF) dkxxiG∫

V
Fdkx

→

L G =
∑

i

∫
V

Fdkxxi (∂iG) ,

and designate bidirectional action as∫
V

Fdkx
↔

L G ≡
∫

V

(
Fdkx

←

L
)

G +
∫

V
Fdkx

(
→

L G
)
.

In all such cases L operates on F and G, but not the volume element
dkx, which may also be a function of the implied parameterization.

The vector derivative may not commute with F,G nor the volume el-
ement dkx, so we are forced to use some notation to indicate what the
vector derivative (or gradient) acts on. In conventional right acting cases,
where there is no ambiguity, arrows will usually be omitted, but braces
may also be used to indicate the scope of derivative operators. This bidi-
rectional notation will also be used for the gradient, especially for volume
integrals in R3 where the vector derivative is identical to the gradient.

Some authors use the Hestenes dot notation, with overdots or primes to
indicating the exact scope of multivector derivative operators, as in

Ḟdkx∂̇Ġ = Ḟdkx∂̇G + Fdkx∂̇Ġ. (2.133)

The dot notation has the advantage of emphasizing that the action of the
vector derivative (or gradient) is on the functions F,G, and not on the
hypervolume element dkx. However, in this book, where primed operators
such as ∇′ are used to indicate that derivatives are taken with respect to
primed x′ variables, a mix of dots and ticks would have been confusing.

2.3.5 Fundamental theorem.

The fundamental theorem of geometric calculus is a generalization of
many conventional scalar and vector integral theorems, and relates a hy-
pervolume integral to its boundary. This is a powerful theorem, which we
will use with Green’s functions to solve Maxwell’s equation, but also to
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derive the geometric algebra form of Stokes’ theorem, from which most
of the familiar integral calculus results follow.

Theorem 2.3: Fundamental theorem of geometric calculus

Given multivectors F,G, a parameterization x = x(u1, u2, · · · , uk),
with hypervolume element dkx = dkuIk, where Ik = x1∧x2∧ · · ·∧xk,
the hypervolume integral is related to the boundary integral by∫

V
Fdkx

↔

∂ G =
∫
∂V

Fdk−1xG,

where ∂V represents the boundary of the volume, and dk−1x is the
hypersurface element. This is called the Fundamental theorem of ge-
ometric calculus.

The hypersurface element and boundary integral is defined for k >
1 as ∫

∂V
Fdk−1xG ≡

k∑
i=1

∫
dk−1ui

(
F

(
Ik · xi

)
G
)∣∣∣∣

∆ui
,

where dk−1ui is the product of all du j except for dui. For k = 1 the hy-
persurface element and associated boundary “integral” is really just
convenient general shorthand, and should be taken to mean the eval-
uation of the FG multivector product over the range of the parameter∫

∂V
Fd0xG ≡ FG|∆u1 .

The geometry of the hypersurface element dk−1x will be made more clear
when we consider the specific cases of k = 1, 2, 3, representing general-
ized line, surface, and volume integrals respectively. Instead of terrorizing
the reader with a general proof theorem 2.3, which requires some unpleas-
ant index gymnastics, this book will separately state and prove the funda-
mental theorem of calculus for each of the k = 1, 2, 3 cases that are of
interest for problems in R2 and R3. For the interested reader, a sketch of
the general proof of theorem 2.3 is available in appendix B.

Before moving on to the line, surface, and volume integral cases, we
will state and prove the general Stokes’ theorem in its geometric algebra
form.
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2.3.6 Stokes’ theorem.

An important consequence of the fundamental theorem of geometric cal-
culus is the geometric algebra generalization of Stokes’ theorem. The
Stokes’ theorem that we know from conventional vector calculus relates
R3 surface integrals to the line integral around a bounding surface. The
geometric algebra form of Stokes’ theorem is equivalent to Stokes’ the-
orem from the theory of differential forms, which relates hypervolume
integrals of blades4 to the integrals over their hypersurface boundaries, a
much more general result.

Theorem 2.4: Stokes’ theorem

Stokes’ theorem relates the dot product of a k volume element dkx
with the wedge product “curl” of an s-blade F, s < k as follows∫

V
dkx · (∂∧ F) =

∫
∂V

dk−1x · F.

We will see that most of the well known scalar and vector integral the-
orems can easily be derived as direct consequences of theorem 2.4, itself
a special case of theorem 2.3.

Proof. We can prove Stokes’ theorem from theorem 2.3 by setting F = 1,
and requiring that G is an s-blade, with grade s < k. The proof follows by
selecting the k − (s + 1) grade, the lowest grade of dkx(∂ ∧G), from both
sides of theorem 2.3.

For the grade selection of the hypervolume integral we have〈∫
V

dkx∂G
〉

k−(s+1)
=

〈∫
V

dkx(∂ ·G) +
∫

V
dkx(∂∧G)

〉
k−(s−1)

, (2.134)

however, the lowest grade of dkx(∂ ·G) is k − (s − 1) = k − s + 1 > k −
(s + 1), so the divergence integral is zero. As dk−1x is a k − 1 blade∫

V
dkx · (∂∧G) =

∫
∂V

〈
dk−1xG

〉
k−(s+1)

=

∫
∂V

dk−1x ·G.
(2.135)

4 Blades are isomorphic to the k-forms found in the theory of differential forms.
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2.3.7 Fundamental theorem for Line integral.

The line integral specialization of theorem 2.3 is

Theorem 2.5: Fundamental theorem for line integrals.

Given a continuous curve C = x(u) parameterized by u ∈ [u0, u1],
and multivector functions F(x),G(x) that are differentable over C,
then ∫

C
Fdx

↔

∂ G = FG|∆u = F(x(u1))G(x(u1))− F(x(u0))G(x(u0)).

The differential form dx = d1x = du xu = du ∂x/∂u varies over the curve,
and the vector derivative is just ∂ = xu∂u (no sum).

Proof. The proof follows by expansion. For∫
C

Fdx
↔

∂ G =
∫

C

(
Fdx

←

∂
)

G +
∫

C
Fdx

(→
∂ G

)
=

∫
C

∂F
∂u

du xuxuG +
∫

C
Fdu xuxu ∂G

∂u

=

∫
C

du
∂F
∂u

G +
∫

C
du F

∂G
∂u

=

∫
C

du
∂

∂u
(FG)

= F(u1)G(u1) − F(u0)G(u0),

(2.136)

We have a perfect cancellation of the reciprocal frame xu with the vector
xu that lies along the curve, since xuxu = 1. This leaves a perfect derivative
of the product of FG, which can be integrated over the length of the curve,
yielding the difference of the product with respect to the parameterization
of the end points of the curve.

For a single parameter subspace the reciprocal frame vector xu is trivial
to calculate, as it is just the inverse of xu, that is xu = xu/∥xu∥

2. Observe
that we did not actually have to calculate it, but instead only require that
the vector is invertible.

An important (and familiar) special case of theorem 2.5 is the funda-
mental theorem of calculus for line integrals, which can be obtained by
using a single scalar function f
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Theorem 2.6: Stokes’ theorem for scalar functions.

Given a continuous curve C = x(u) parameterized by parameter u ∈
[u0, u1], and a scalar function f (x) differentable over C, then∫

C
dx ·∇ f =

∫
C

dx · ∂ f = f |∆u.

Proof. Theorem 2.6 is no doubt familiar in its gradient form. Our proof
starts with theorem 2.5 setting F = 1,G = f (x(u))∫

C
dx∂ f = f |∆u, (2.137)

which is a multivector equation with scalar and bivector grades on the left
hand side, but only scalar grades on the right. Equating grades yields two
equations∫

C
dx · ∂ f = f |∆u (2.138a)

∫
C

dx∧ ∂ f = 0. (2.138b)

Equation (2.138a), the scalar grade of eq. (2.137), proves part of theo-
rem 2.6. To complete the proof, consider the specific case of R3 which
is representitive. Suppose, that we have an R3 volume parameterization
x(u, v,w) sharing an edge with the curve C = x(u, 0, 0). The curvilinear
representation of the R3 gradient is

∇ = xu∂u + xv∂v + xw∂w = ∂ + xv∂v + xw∂w, (2.139)

Over the curve C

dx ·∇ = du xu · (∂ + xv∂v + xw∂w) , (2.140)

but xu · xv = xu · xw = 0, so dx ·∇ = dx · ∂ over the curve.

2.3.8 Fundamental theorem for Surface integral.

The surface integral specialization of theorem 2.3 is
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Theorem 2.7: Fundamental theorem for surface integrals.

Given a continuous and connected surface S = x(u, v) parameterized
by u ∈ [u0, u1], v ∈ [v0, v1], multivector functions F(x),G(x) that are
differentable over S , and an (bivector-valued) area element d2x =
dx1 ∧ dx2 = dudv xu ∧ xv∫

S
Fd2x

↔

∂ G =

∂S

FdxG,

where ∂S is the boundary of the surface S .

Proof. To prove theorem 2.7 we start by expanding the multivector prod-
uct d2x∂ in curvilinear coordinates, where we discover that this product
has only a vector grade. The vector derivative, the projection of the gra-
dient onto the surface at the point of integration (also called the tangent
space), now has two components

∂ =
∑

i

xi(xi ·∇)

= xu ∂

∂u
+ xv ∂

∂v
≡ xu∂u + xv∂v.

(2.141)

To see why the product of the area elements and the vector derivative

d2x∂ = dudv (xu ∧ xv) (xu∂u + xv∂v) , (2.142)

has only a vector grade, observe that xu ∈ span {xu, xv}, so

(xu ∧ xv) xu = (xu ∧ xv) · xu +(((((((
(xu ∧ xv) ∧ xu

= (xu ∧ xv) · xu

= xu (xv · xu) − xv (xu · xu)

= −xv.

(2.143)

Similarly

(xu ∧ xv) xv = (xu ∧ xv) · xv +(((((((
(xu ∧ xv) ∧ xv

= (xu ∧ xv) · xv

= xu (xv · xv) − xv (xu · xv)

= xu.

(2.144)
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Not only does eq. (2.142) have only a vector grade, that product reduces
to just

d2x∂ = xu∂v − xv∂u. (2.145)

Inserting eq. (2.145) into the surface integral, we find∫
S

Fd2x∂G =
∫

S

(
Fd2x

←

∂
)

G +
∫

S
Fd2x

(→
∂ G

)
=

∫
S

dudv (∂vFxu − ∂uFxv)G +
∫

S
dudv F (xu∂vG − xv∂uG)

=

∫
S

dudv
(
∂F
∂v

∂x
∂u
−
∂F
∂u

∂x
∂v

)
G +

∫
S

dudv F
(
∂x
∂u
∂G
∂v
−
∂x
∂v
∂G
∂u

)
=

∫
S

dudv
∂

∂v

(
F
∂x
∂u

G
)
−

∫
S

dudv
∂

∂u

(
F
∂x
∂v

G
)

−

∫
S

dudv F
(
∂

∂v
∂x
∂u
−
∂

∂u
∂x
∂v

)
G

=

∫
S

dudv
∂

∂v

(
F
∂x
∂u

G
)
−

∫
S

dudv
∂

∂u

(
F
∂x
∂v

G
)
.

(2.146)

This leaves two perfect differentials, which can both be integrated sepa-
rately ∫

S
Fd2x∂G =

∫
∆u

du
(
F
∂x
∂u

G
)∣∣∣∣∣∣

∆v
−

∫
∆v

dv
(
F
∂x
∂v

G
)∣∣∣∣∣∣

∆u

=

∫
∆u

(FdxuG)
∣∣∣
∆v −

∫
∆v

(FdxvG)
∣∣∣
∆u.

(2.147)

Equation (2.147) is an explicit algebraic expression of the boundary inte-
gral of theorem 2.7. To complete the proof, we are left with the task of ge-
ometrically interpretting this integrand. Suppose we are integrating over
the unit parameter volume space [u, v] ∈ [0, 1] ⊗ [0, 1] as illustrated in
fig. 2.11. Comparing to the figure we see that we’ve ended up with a clock-
wise line integral around the boundary of the surface. For a given subset
of the surface, the bivector area element can be chosen small enough that
it lies in the tangent space to the surface at the point of integration. In that
case, a larger bounding loop can be conceptualized as the sum of a number
of smaller ones, as sketched in fig. 2.12, in which case the contributions
of the interior loop paths (red and blue) cancel out, leaving only the ex-
terior loop contributions (green.) When that subdivision is made small
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Figure 2.11: Contour for two parameter surface boundary.

enough (assuming that the surface is continuous and differentiable along
each of the parameterization paths) then each area element approximates
the tangent space at the point of evaluation.

2.3.8.1 Two parameter Stokes’ theorem.

Two special cases of theorem 2.7, both variations of Stokes’ theorem, re-
sult by considering scalar and vector functions. For the scalar case we
have

Theorem 2.8: Surface integral of scalar function (Stokes’).

Given a scalar function f (x) its surface integral is given by∫
S

d2x · ∂ f =
∫

S
d2x ·∇ f =


∂S

dx f .

In R3, this can be written as∫
S

dA n̂ ×∇ f =
�
∂S

dx f ,
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Figure 2.12: Sum of infinitesimal loops.

where n̂ is the normal specified by d2x = In̂dA.

Proof. To show the first part, we can split the (multivector) surface inte-
gral into vector and trivector grades∫

S
d2x∂ f =

∫
S

d2x · ∂ f +
∫

S
d2x∧ ∂ f . (2.148)

Since xu, xv both lie in the span of {xu, xv}, d2x ∧ ∂ = 0, killing the
second integral in eq. (2.148). If the gradient is decomposed into its pro-
jection along the tangent space (the vector derivative) and its perpendic-
ular components, only the vector derivative components of the gradient
contribute to its dot product with the area element. That is

d2x ·∇ = d2x · (xu∂u + xv∂v + · · ·)

= d2x · (xu∂u + xv∂v)

= d2x · ∂.
(2.149)

This means that for a scalar function∫
S

d2x∂ f =
∫

S
d2x ·∇ f . (2.150)
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The second part of the theorem follows by grade selection, and applica-
tion of a duality transformation for the area element

d2x ·∇ f =
〈
d2x∇ f

〉
1

= dA ⟨In̂∇ f ⟩1
= dA

〈
I (n̂ ·∇ f + In̂ ×∇ f )

〉
1

= −dA n̂ ×∇ f .

(2.151)

back substitution of eq. (2.151) completes the proof.

For vector functions we have

Theorem 2.9: Surface integral of a vector function (Stokes’).

Given a vector function f(x), the surface integral is given by∫
S

d2x · (∇∧ f) =

∂S

dx · f.

In R3, this can be written as∫
S

dA n̂ · (∇ × f) =
�
∂S

dx · f,

where n̂ is the normal specified by d2x = In̂dA.

2.3.8.2 Green’s theorem.

Theorem 2.9, when stated in terms of coordinates, is another well known
result.

Theorem 2.10: Green’s theorem.

Given a vector f =
∑

i fixi in RN , and a surface parameterized by
x = x(u1, u2), Green’s theorem states∫

S
du1du2

(
∂ f1
∂u2
−
∂ f2
∂u1

)
=


∂S

du1 f1 + du2 f2.
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This is often stated for vectors f = Pe1 + Qe2 ∈ R2 with a Cartesian
x, y parameterization as∫

S
dxdy

(
∂P
∂y
−
∂Q
∂x

)
=


∂S

Pdx + Qdy.

Proof. The first equality in theorem 2.10 holds in RN for vectors ex-
pressed in terms of an arbitrary curvilinear basis. Only the (curvilinear)
coordinates of the vector f contribute to this integral, and only those that
lie in the tangent space. The reciprocal basis vectors xi are also nowhere
to be seen. This is because they are either obliterated in dot products with
x j, or cancel due to mixed partial equality.

To see how this occurs let’s look at the area integrand of theorem 2.9

d2x · (∇∧ f) = du1du2 (x1 ∧ x2) ·

∑
i j

(
xi∂i

)
∧

(
f jx j

)
= du1du2

∑
i j

(
(x1 ∧ x2) · xi

)
·
(
∂i( f jx j)

)
= du1du2

∑
i j

(
(x1 ∧ x2) · xi

)
· x j∂i f j

+ du1du2

∑
i j

f j
(
(x1 ∧ x2) · xi

)
· (∂ix j).

(2.152)

With a bit of trouble, we will see that the second integrand is zero. On
the other hand, the first integrand simplifies without too much trouble∑

i j

(
(x1 ∧ x2) · xi

)
· x j∂i f j =

∑
i j

(x1δ2i − x2δ1i) · x j∂i f j

=
∑

j

x1 · x j∂2 f j − x2 · x j∂1 f j

= ∂2 f1 − ∂1 f2.

(2.153)

For the second integrand, we have∑
i j

f j
(
(x1 ∧ x2) · xi

)
· (∂ix j)

=
∑

j

f j

∑
i

(x1δ2i − x2δ1i) · (∂ix j)

=
∑

j

f j
(
x1 · (∂2x j) − x2 · (∂1x j)

) (2.154)
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We can apply the chain rule (backwards) to the portion in brackets to
find

x1 · (∂2x j) − x2 · (∂1x j) =�����
∂2

(
x1 · x j

)
− (∂2x1) · x j −�����

∂1
(
x2 · x j

)
+ (∂1x2) · x j

= x j · (∂1x2 − ∂2x1)

= x j ·

(
∂

∂u1

∂x
∂u2
−

∂

∂u2

∂x
∂u1

)
= 0.

(2.155)

In this reduction the derivatives of xi · x j = δi
j were killed since those

are constants (either zero or one). The final step relies on the fact that
we assume our vector parameterization is well behaved enough that the
mixed partials are zero.

Substituting these results into theorem 2.9 we find
∂S

dx · f =

∂S

(du1x1 + du2x2) ·

∑
i

fixi


=


∂S

du1 f1 + du2 f2

=

∫
S

du1du2 (∂2 f1 − ∂1 f2) .

(2.156)

2.3.9 Fundamental theorem for Volume integral.

The volume integral specialization of theorem 2.3 follows.

Theorem 2.11: Fundamental theorem for volume integrals.

Given a continuous and connected volume V = x(u, v,w) parameter-
ized by u ∈ [u0, u1], v ∈ [v0, v1],w ∈ [w0,w1], multivector functions
F(x),G(x) that are differentable over V , and an (trivector-valued) vol-
ume element d3x = dx1 ∧ dx2 ∧ dx3 = dudvdw xu ∧ xv ∧ xw∫

V
Fd3x

↔

∂ G =

∂V

Fd2xG,



140 multivector calculus .

where ∂V is the boundary of the volume V , and d2x is the counter-
clockwise oriented area element on the boundary of the volume, that
is 

∂V
Fd2xG =

∫
(Fdx1 ∧ dx2G)

∣∣∣
∆w

+

∫
(Fdx2 ∧ dx3G)

∣∣∣
∆u

+

∫
(Fdx3 ∧ dx1G)

∣∣∣
∆v.

In R3 with d3x = IdV , d2x = In̂dA, this integral can be written using
a scalar volume element, as∫

V
dV F

↔

∂ G =
∫
∂V

dA Fn̂G.

Before diving into the proof of theorem 2.11, let’s consider the geome-
try of the volume element briefly.

For uniformity, let u = u1, v = u2,w = u3, so that the differentials along
each of the parameterization directions are

dx1 =
∂x
∂u1

du1 = x1du1

dx2 =
∂x
∂u2

du2 = x2du2

dx3 =
∂x
∂u3

du3 = x3du3.

(2.157)

The trivector valued volume element for this parameterization is

d3x = dx1 ∧ dx2 ∧ dx3 = d3u (x1 ∧ x2 ∧ x3), (2.158)

where d3u = du1du2du3. A volume and its corresponding differentials
with respect to three parameters is sketched in fig. 2.13.

In R3 the vector derivative for a volume parameterization and the gra-
dient are identical. In higher dimensional spaces the projection of the gra-
dient onto the volume at the point of integration (also called the tangent
space), has three components

∂ =
∑

i

xi(xi ·∇)

= x1 ∂

∂u1
+ x2 ∂

∂u2
+ x3 ∂

∂u3

≡ x1∂1 + x2∂2 + x3∂3.

(2.159)
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Figure 2.13: Three parameter volume element.

With the volume element and the vector derivative spelled out explic-
itly, we can proceed with a proof of theorem 2.11.

Proof. The first step, is the reduction of the product of the volume element
and the vector derivative, which we will see is a bivector.

d3x∂ = d3u (x1 ∧ x2 ∧ x3)
(
x1∂1 + x2∂2 + x3∂3

)
. (2.160)

Since all xi lie within span {x1, x2, x3}, this multivector product has only a
vector grade. That is

(x1 ∧ x2 ∧ x3) xi = (x1 ∧ x2 ∧ x3) · xi +(((((((((
(x1 ∧ x2 ∧ x3) ∧ xi, (2.161)

for all xi. These products reduces to

(x2 ∧ x3 ∧ x1) x1 = x2 ∧ x3

(x3 ∧ x1 ∧ x2) x2 = x3 ∧ x1

(x1 ∧ x2 ∧ x3) x3 = x1 ∧ x2.

(2.162)
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Inserting eq. (2.162) into the volume integral, we find∫
V

Fd3x∂G

=

∫
V

(
Fd3x

←

∂
)

G +
∫

V
Fd3x

(→
∂ G

)
=

∫
V

d3u ((∂1F)x2 ∧ x3G + (∂2F)x3 ∧ x1G + (∂3F)x1 ∧ x2G)

+

∫
V

d3u (Fx2 ∧ x3(∂1G) + Fx3 ∧ x1(∂2G) + Fx1 ∧ x2(∂3G))

=

∫
V

d3u (∂1(Fx2 ∧ x3G) + ∂2(Fx3 ∧ x1G) + ∂3(Fx1 ∧ x2G))

−

∫
V

d3u (F(∂1(x2 ∧ x3))G + F(∂2(x3 ∧ x1))G + F(∂3(x1 ∧ x2))G)

=

∫
V

d3u (∂1(Fx2 ∧ x3G) + ∂2(Fx3 ∧ x1G) + ∂3(Fx1 ∧ x2G))

−

∫
V

d3u F (∂1(x2 ∧ x3) + ∂2(x3 ∧ x1) + ∂3(x1 ∧ x2))G.

(2.163)

The sum within the second integral is

3∑
i=1

∂i
(
Ik · xi

)
= ∂3

(
(x1 ∧ x2 ∧ x3) · x3

)
+ ∂1

(
(x2 ∧ x3 ∧ x1) · x1

)
+ ∂2

(
(x3 ∧ x1 ∧ x2) · x2

)
= ∂3 (x1 ∧ x2) + ∂1 (x2 ∧ x3) + ∂2 (x3 ∧ x1)

= (∂3x1)∧ x2 + x1 ∧ (∂3x2)

+ (∂1x2)∧ x3 + x2 ∧ (∂1x3)

+ (∂2x3)∧ x1 + x3 ∧ (∂2x1)

= x2 ∧ (−∂3x1 + ∂1x3) + x3 ∧ (−∂1x2 + ∂2x1) + x1 ∧ (−∂2x3 + ∂3x2)

= x2 ∧

(
−
∂2x
∂3∂1

+
∂2x
∂1∂3

)
+ x3 ∧

(
−
∂2x
∂1∂2

+
∂2x
∂2∂1

)
+ x1 ∧

(
−
∂2x
∂2∂3

+
∂2x
∂3∂2

)
,

(2.164)
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which is zero by equality of mixed partials. This leaves three perfect dif-
ferentials, which can integrated separately, giving∫

V
Fd3x∂G =

∫
du2du3 (Fx2 ∧ x3G)

∣∣∣
∆u1

+

∫
du3du1 (Fx3 ∧ x1G)

∣∣∣
∆u2
+

∫
du1du2 (Fx1 ∧ x2G)

∣∣∣
∆u3

=

∫
(Fdx2 ∧ dx3G)

∣∣∣
∆u1

+

∫
(Fdx3 ∧ dx1G)

∣∣∣
∆u2
+

∫
(Fdx1 ∧ dx2G)

∣∣∣
∆u3
.

(2.165)

This proves the theorem from an algebraic point of view.

With the aid of a geometrical model, such as that of fig. 2.14, if assum-
ing that dx1, dx2, dx3 is a right handed triple). it is possible to convince
oneself that the two parameter integrands describe an integral over a coun-
terclockwise oriented surface.

(a) (b)

Figure 2.14: Differential surface of a volume.

We obtain the RHS of theorem 2.11 if we introduce a mnemonic for
the bounding oriented surface of the volume

d2x ≡ dx1 ∧ dx2 + dx2 ∧ dx3 + dx3 ∧ dx1, (2.166)
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where it is implied that each component of this area element and anything
that it is multiplied with is evaluated on the boundaries of the integration
volume (for the parameter omitted) as detailed explicitly in eq. (2.165).

2.3.9.1 Three parameter Stokes’ theorem.

Three special cases of theorem 2.11 can be obtained by integrating scalar,
vector or bivector functions over the volume, as follows

Theorem 2.12: Volume integral of scalar function (Stokes’).

Given a scalar function f (x) its volume integral is given by∫
V

d3x · ∂ f =
∫

V
d3x ·∇ f =

�
∂V

d2x f .

In R3, this can be written as∫
V

dV ∇ f =
∫
∂V

dA n̂ f

where n̂ is the outwards normal specified by d2x = In̂dA, and d3x =
IdV .

Theorem 2.13: Volume integral of vector function (Stokes’).

The specialization of Stokes’ theorem for a volume integral of the
(bivector) curl of a vector function f(x), relates the volume integral
to a surface area over the boundary as follows∫

V
d3x · (∂∧ f) =

∫
V

d3x · (∇∧ f) =
�
∂V

d2x · f.

In R3, this can be written as∫
V

dV ∇ × f =
∫
∂V

dA n̂ × f,

or with a duality transformation f = IB, where B is a bivector∫
V

dV ∇ · B =
∫
∂V

dA n̂ · B,
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where n̂ is the normal specified by d2x = In̂dA, and d3x = IdV .

Theorem 2.14: Volume integral of bivector function (Stokes’).

Given a bivector function B(x), the volume integral of the (trivector)
curl is related to a surface integral by∫

V
d3x · (∂∧ B) =

∫
V

d3x · (∇∧ B) =
�
∂V

d2x · B.

In R3, this can be written as∫
V

dV ∇∧ B =
∫
∂V

dA n̂∧ B,

which yields the divergence theorem after making a duality transfor-
mation B(x) = If(x), where f is a vector, by∫

V
dV ∇ · f =

∫
∂V

dA n̂ · f,

where n̂ is the normal specified by d2x = In̂dA, and d3x = IdV .

2.3.9.2 Divergence theorem.

Observe that for R3 we there are dot product relations in each of theo-
rem 2.12, theorem 2.13 and theorem 2.14 which can be summarized as

Theorem 2.15: Divergence theorem.

The divergence theorem may be generalized in R3 to multivectors
M containing grades 0,1, or 2, but no grade 3 components∫

V
dV ∇ ·M =

∫
∂V

dA n̂ ·M,

where n̂ is the normal to the surface bounding V given by d2x =
In̂dA.



146 multivector calculus .

2.4 vector calculus identities .

2.4.1 Curl.

Definition 2.8: Curl of a k-blade.

Let Ak be a k-blade. We define the curl of a k-blade as the wedge
product of the gradient with that k-blade, designated

∇∧ Ak.

From the definition of the multivector wedge product definition 1.29, it is
worth noting that the curl of a scalar function f , is in fact just the gradient
of that function

∇∧ f = ⟨∇ f ⟩1+0 = ∇ f . (2.167)

Recall that the conventional curl of an R3 vector, is written in terms
of the cross product, as ∇ × v. The cross product curl can be thought of
a measure of how much a vector field rotates, and is proportional to the
rotational axis. Our wedge product curl, when applied to a vector, is also
a measure of the rotational nature of the vector field, but is a bivector that
describes the rotational plane. Our use of a wedge product based curl risks
some ambiguity, compared to the conventional R3 cross product based
curl, but this ambiguity is worthwhile, since a wedge product based curl
is much more useful in a geometric algebra context.

Let’s consider some examples of curls of vector fields, starting with

v = xe2, (2.168)

as plotted in fig. 2.15. The curl is

(e1∂x + e2∂y + e3∂z) ∧ (xe2) = e12, (2.169)

describing a positive oriented rotation in the x-y plane. The conventional
cross product curl of this field is

∇ × v = −I (∇∧ v)
= −e12312

= e3,

(2.170)
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Figure 2.15: Curl example 1.

also describes a positive rotation in the x-y plane (i.e.: around the z-axis.)
As a second example, consider the purely rotational vector field

v = −ye1 + xe2, (2.171)

as plotted in fig. 2.16. That curl, computed in this Cartesian representation

Figure 2.16: Curl example 2.

is

∇∧ v = (e1∂x + e2∂y + e3∂z) ∧ (−ye1 + xe2)

= e1 ∧ e2 − e2 ∧ e1

= 2e12.

(2.172)
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This vector field also describes a positive rotation in the x-y plane. As
this field is intrinsically rotational, this curl can also be computed in polar
coordinates (exercise 2.12.)

As a third example, consider a non-planar vector field

v = ye1 + ze2 + xe3, (2.173)

for which the curl is

∇∧ v = (e1∂x + e2∂y + e3∂z) ∧ (ye1 + ze2 + xe3)

= e13 + e21 + e32

= (e2 − e3) ∧ (e1 − e3) .

(2.174)

In the last step, an arbitrary wedge product factorization was selected to
illustrate the orientation of the plane, as in fig. 2.17.

Figure 2.17: Curl of 3D vector field.

These three examples were all simple vector fields that had constant
(bivector-valued) curl, but that need not be the case in general.

In R3, the curl of a bivector, is related to the vector divergence, since
we can write B = Iv for an R3 bivector, so

∇∧ B = ⟨∇Iv⟩3 = I (∇ · v) , (2.175)

so R3 bivectors dual to divergence free vectors will have zero curl. See
exercise 2.13 for some examples of bivector curl.
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Lemma 2.1: Repeated curl identities.

Let A be a smooth k-blade, then

∇∧ (∇∧ A) = 0.

For R3, this result, for a scalar function f , and a vector function f, in
terms of the cross product, as

∇ × (∇ f ) = 0

∇ · (∇ × f) = 0.
(2.176)

Proof. First consider the 0-blade case

∇∧ (∇∧ A) = ∇∧ (∇A)

=
∑

i j

ei ∧ e j
∂2A
∂xi∂x j

= 0.

(2.177)

The smooth criteria of for the function A is assumed to imply that we have
equality of mixed partials, and since this is a sum of an antisymmetric
term with respect to indexes i, j (the wedge) and a symmetric term in
indexes i, j (the partials), we have zero overall.

Now consider a k-blade A, k > 0. Expanding the gradients, we have

∇∧ (∇∧ A) =
∑

i j

ei ∧ e j ∧
∂2A
∂xi∂x j

. (2.178)

It may be obvious that this is zero for the same reasons as above (sum
of product of symmetric and antisymmetric entities). We can, however,
make it more obvious, at the cost of some hellish indexing, by expressing
A in coordinate form. Let

A =
∑

i1,i2,···,ik

Ai1,i2,···,ik ei1 ∧ ei2 ∧ · · · ∧ eik , (2.179)

then

∇∧ (∇∧ A) =
∑

i, j,i1,i2,···,ik

ei ∧ e j ∧ ei1 ∧ ei2 ∧ · · · ∧ eik
∂2

∂xi∂x j
Ai1,i2,···,ik

= 0.



150 multivector calculus .

(2.180)

Now we clearly have a sum of an antisymmetric term (the wedges), and
a symmetric term (assuming smooth A means that we have equality of
mixed partials), so the sum is zero.

Finally, for the R3 identities, we have

∇ × (∇ f ) = −I (∇∧ (∇ f ))

= 0,
(2.181)

since ∇∧ (∇ f ) = 0. For a vector f, we have

∇ · (∇ × f) =
〈
∇ (∇ × f)

〉
=

〈
∇(−I) (∇∧ f)

〉
= −

〈
I∇ (∇∧ f)

〉
= −I∇∧ (∇∧ f)
= 0,

(2.182)

again, because ∇∧ (∇∧ f) = 0.

2.4.2 Chain rule identities.

Lemma 2.2: Chain rule identities.

Let f be a scalar function and A be a k-blade, then

∇ ( f A) = (∇ f ) A + f (∇A) .

For A with grade k > 0, the grade k − 1 and k + 1 components of this
product are

∇ · ( f A) = (∇ f ) · A + f (∇ · A)

∇∧ ( f A) = (∇ f ) ∧ A + f (∇∧ A) .

For R3, and vector A = A, the wedge product relation above can be
written in dual form as

∇ × ( f A) = (∇ f ) ×A + f (∇ ×A) .

Proving this is left to the reader.
Next up is another chain rule identity
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Lemma 2.3: Gradient of dot product.

If a,b are vectors, then

∇ (a · b) = (a ·∇) b + (b ·∇) a + (∇∧ b) · a + (∇∧ a) · b

For R3, this can be written as

∇ (a · b) = (a ·∇) b + (b ·∇) a + a × (∇ × b) + b × (∇ × a)

Proof. We will use
→

∇ to indicate that the gradient operates on everything

to the right,
↔

∇ to indicate that the gradient operates bidirectionally, and
∇′AB′ to indicate that the gradient’s scope is limited to the ticked entity
(just on B in this case.)

→

∇ (a · b) =
〈→
∇ (ab − a∧ b)

〉
1

=
〈
∇
′a′b +∇′ab′

〉
1−
→

∇ · (a∧ b)
= (∇ · a) b + (∇∧ a) · b +

〈
−a∇b + 2 (a ·∇) b

〉
1

−∇′ · (a′ ∧ b) −∇′ · (a∧ b′)
= (∇ · a) b + (∇∧ a) · b − a (∇ · b) − a · (∇∧ b)
+ 2 (a ·∇) b −∇′ · (a′ ∧ b) −∇′ · (a∧ b′) .

(2.183)

We are running out of room, and have not had any cancellation yet, so
let’s expand those last two terms separately

−∇′ · (a′ ∧ b) −∇′ · (a∧ b′)
= − (∇′ · a′) b + (∇′ · b) a′ − (∇′ · a) b′ + (∇′ · b′) a
= − (∇ · a) b + (b ·∇) a − (a ·∇) b + (∇ · b) a.

(2.184)

Now we can cancel some terms, leaving

→

∇ (a · b) = (∇∧ a) · b − a · (∇∧ b) + (a ·∇) b + (b ·∇) a. (2.185)

After adjustment of the order and sign of the second term, we see that this
is the result we wanted. To show the R3 formulation, we have only apply
theorem 1.7.
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Lemma 2.4: Divergence of a bivector.

Let a,b ∈ RN be vectors. The divergence of their wedge can be
written

∇ · (a∧ b) = b (∇ · a) − a (∇ · b) − (b ·∇) a + (a ·∇) b.

For R3, this can also be written in triple cross product form

∇ · (a∧ b) = −∇ × (a × b) .

Proof.
→

∇ · (a∧ b) = ∇′ · (a′ ∧ b) +∇′ · (a∧ b′)
= (∇′ · a′) b − (∇′ · b) a′ + (∇′ · a) b′ − (∇′ · b′) a
= (∇ · a) b − (b ·∇) a + (a ·∇) b − (∇ · b) a.

(2.186)

For the R3 part of the story, we have

∇ × (a × b) =
〈
−I (∇∧ (a × b))

〉
1

=
〈
−I∇ (a × b)

〉
1

=
〈
(−I)2

∇ (a∧ b)
〉

1

= −∇ · (a∧ b)

(2.187)

Lemma 2.5: Curl of a wedge of gradients.

Let f , g, h be smooth functions with smooth derivatives. Then

∇∧ ( f (∇g∧∇h)) = ∇ f ∧∇g∧∇h.

For R3 this can be written as

∇ · ( f (∇g ×∇h)) = ∇ f · (∇g ×∇h) .

Proof. The GA identity follows by chain rule and application of lemma 2.1.

∇∧ ( f (∇g∧∇h)) = ∇ f ∧ (∇g∧∇h) + f∇∧ (∇g∧∇h)

= ∇ f ∧∇g∧∇h.
(2.188)
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The R3 part of the lemma can be shown using eq. (1.145), or we can
compute it directly

∇ · ( f (∇g ×∇h)) =
〈
∇ ( f (∇g ×∇h))

〉
= ∇ f · ((∇g ×∇h)) + f

〈
−I∇ (∇g∧∇h)

〉
= ∇ f · ((∇g ×∇h)) − f I (∇∧ (∇g∧∇h)) .

(2.189)

The last term is clearly zero, since after our chain rule application, we end
up with a ∇∧∇ term on either branch of the chain rule expansion.

Lemma 2.6: Curl of a bivector.

Let a,b be vectors. The curl of their wedge is

∇∧ (a∧ b) = b∧ (∇∧ a) − a∧ (∇∧ b)

For R3, this can be expressed as the divergence of a cross product

∇ · (a × b) = b · (∇ × a) − a · (∇ × b)

Proof. The GA case is a trivial chain rule application
→

∇ ∧ (a∧ b) = (∇′ ∧ a′) ∧ b + (∇′ ∧ a) ∧ b′

= b∧ (∇∧ a) − a∧ (∇∧ b) .
(2.190)

The R3 case, is less obvious by inspection, but follows from eq. (1.145).

2.4.3 Problems.

Exercise 2.12 Curl example in polar coordinates.

Find the polar form of eq. (2.171) and then compute the curl, using the
polar representation of the gradient found in eq. (2.87).

Exercise 2.13 Some bivector curls.

For each B compute the curl ∇∧ B.

a. B = xe23 + ye31 + ze12,

b. B = xe31,

c. B = xyze23.
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2.5 multivector fourier transform and phasors .

It will often be convenient to utilize time harmonic (frequency domain)
representations. This can be achieved by utilizing Fourier transform pairs
or with a phasor representation.

We may define Fourier transform pairs of multivector fields and sources
in the conventional fashion

Definition 2.9: Multivector Fourier transform pair.

The Fourier transform pair for a multivector function F(x, t) will be
written as

F(x, t) =
∫

Fω(x)e jωtdω

Fω(x) =
1

2π

∫
F(x, t)e− jωtdt,

where j is an arbitrary scalar imaginary that commutes with all mul-
tivectors.

In these transform pairs, the imaginary j need not be represented by
any geometrical imaginary such as e12. In particular, we need not assume
that the representation of j is the R3 pseudoscalar I, despite the fact that
I does commute with all R3 multivectors. We wish to have the freedom
to assume that non-geometric real and imaginary operations can be per-
formed without picking or leaving out any specific grade pseudoscalar
components of the multivector fields or sources, so we won’t impose any
a-priori restrictions on the representations of j. In particular, this provides
the freedom to utilize phasor (fixed frequency) representations of our mul-
tivector functions. We will use the engineering convention for our phasor
representations, where assuming a complex exponential time dependence
of the following form is assumed

Definition 2.10: Multivector phasor representation.

The phasor representation F(x) of a multivector valued (real) func-
tion F(x, t) is defined implicitly as

F(x, t) = Re
(
F(x)e jωt

)
,
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where j is an arbitrary scalar imaginary that commutes with all mul-
tivectors.

The complex valued multivector f (x) is still generated from the real
Euclidean basis for R3, so there will be no reason to introduce complex
inner products spaces into the mix.

The reader must take care when reading any literature that utilizes
Fourier transforms or phasor representation, since the conventions vary.
In particular the physics representation of a phasor typically uses the op-
posite sign convention F(x, t) = Re

(
F(x)e−iωt

)
, which toggles the sign of

all the imaginaries in derived results.

2.6 green’s functions .

2.6.1 Motivation.

Every engineer’s toolbox includes Laplace and Fourier transform tricks
for transforming differential equations to the frequency domain. Here the
space and time domain equivalent of the frequency and time domain linear
system response function, called the Green’s function, is introduced.

Everybody’s favorite differential equation, the harmonic oscillator, can
be used as an illustrative example

x′′ + 2kx′ + (ω0)2x = f (t). (2.196)

Here derivatives are with respect to time, ω0 is the intrinsic angular fre-
quency of the oscillator, k is a damping factor, and f (t) is a forcing func-
tion. If the oscillator represents a child on a swing at the park (a pendulum
system), then k represents the friction in the swing pivot and retardation
due to wind, and the forcing function represents the father pushing the
swing. The forcing function f (t) could include an initial impulse to get
the child up to speed, or could have a periodic aspect, such as the father
running underdogs5 as the child gleefully shouts “Again, again, again!”

The full solution of this problem is x(t) = xs(t) + x0(t), where xs(t)
is a solution of eq. (2.196) and x0 is any solution of the homogeneous

5 The underdog is a non-passive swing pushing technique, where you run behind and under
the swing and child, giving a push as you go. Before my kids learned to “pump their legs”,
and even afterwards, this was their favorite way of being pushed on the swing. With two
kids the Dad-forcing-function tires quickly, as it is applied repeatedly to both oscillating
children.
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equation x′′0 + 2kx′0 + (ω0)2x0 = 0, picked to satisfy the boundary value
constraints of the problem.

Let’s attack this problem initially with Fourier transforms (definition 2.9)
We can assume zero position and velocity for the non-homogeneous

problem, since we can adjust the boundary conditions with the homoge-
neous solution x0(t). With zero boundary conditions on x, x′, the trans-
form of eq. (2.196) is

(( jω)2 + 2 jωk + (ω0)2)X(ω) = F(ω), (2.197)

so the system is solved in the frequency domain by the system response
function G(ω)

X(ω) = G(ω)F(ω), (2.198)

where

G(ω) =
−1

ω2 − 2 jωk − (ω0)2 . (2.199)

We can apply the inverse transformation to find the time domain solu-
tion for the forced oscillator problem.

x(t) =
∫

dωG(ω)F(ω)e jωt

=

∫
dωG(ω)

(
1

2π

∫
dt′ f (t′)e− jωt′dt′

)
e jωt

=

∫
dt′ f (t′)

(
1

2π

∫
dωG(ω)e jω(t−t′)

)
.

(2.200)

The frequency domain integral is the Green’s function. We’ll write this
as

G(t, t′) =
1

2π

∫
dωG(ω)e jω(t−t′). (2.201)

If we can evaluate this integral (exercise 2.14), then the system can be
considered solved, where a solution is given by the convolution integral

x(t) =
∫

dt′ f (t′)G(t, t′) + x0(t). (2.202)

The Green’s function is the weighting factor that determines how much
of f (t′) for each time t′ contributes to the motion of the system that is
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explicitly due to the forcing function. Green’s functions for physical prob-
lems are causal, so only forcing events in the past contribute to the current
state of the system (i.e. if you were to depend on only future pushes of the
swing, you would have a very bored child.)

An alternate way of viewing a linear systems problem is to assume that
a convolution solution of the form eq. (2.202) must exist. Since the equa-
tion is a linear, it is reasonable to assume that a linear weighted sum of
all the forcing function values must contribute to the solution. If such a
solution is assumed, then we can operate on that solution with the differ-
ential operator for the problem. For our harmonic oscillator problem that
operator is

L =
∂2

∂t2 + 2k
∂

∂t
+ (ω0)2. (2.203)

We find

f (t) =
(
∂2

∂t2 + 2k
∂

∂t
+ (ω0)2

)
x(t)

=

(
∂2

∂t2 + 2k
∂

∂t
+ (ω0)2

) ∫
dt′ f (t′)G(t, t′)

=

∫
dt′ f (t′)

(
∂2

∂t2 + 2k
∂

∂t
+ (ω0)2

)
G(t, t′),

(2.204)

and see that the Green’s function, when acted on by the differential oper-
ator, must have the characteristics of a delta function(

∂2

∂t2 + 2k
∂

∂t
+ (ω0)2

)
G(t, t′) = δ(t − t′). (2.205)

The problem of determining the Green’s function, implicitly determin-
ing the solution of any forced system, can be viewed as seeking the solu-
tion of distribution equations of the form

LG(t, t′) = δ(t − t′). (2.206)

Framing the problem this way is independent of whatever techniques
(transform or other) that we may choose to use to determine the struc-
ture of the Green’s function itself. Observe that the Green’s function itself
is not unique. In particular, we may add any solution of the homogeneous
problem LG0(t, t′) = 0 to the Green’s function, just as we can do so for
the forced system itself.
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We will see that Green’s functions provide a general method of solv-
ing many of the linear differential equations that will be encountered in
electromagnetism.

Exercise 2.14 Harmonic oscillator Green’s function.

Evaluate the integral

G(τ) =
−1
2π

∫ ∞

−∞

1
ω2 − 2 jωk −ω2

0

e jωτdω, (2.207)

using the semicircular infinite contours depicted in fig. 2.18.

xx

Figure 2.18: Contours for harmonic oscillator Green’s function.

2.6.1.1 Time domain problems in electromagnetism

Examples of the PDEs that we can apply Green’s function techniques to
include

(
∇ +

1
c
∂

∂t

)
F(x, t) = J(x, t) (2.213a)

(
∇

2 −
1
c2

∂2

∂t2

)
F(x, t) =

(
∇ −

1
c
∂

∂t

) (
∇ +

1
c
∂

∂t

)
F(x, t) = B(x, t). (2.213b)

The reader is no doubt familiar with the wave equation (eq. (2.213b)),
where F is the waving function, and B is the forcing function. Scalar and
vector valued wave equations are encountered in scalar and vector forms
in conventional electromagnetism. We will see multivector variations of
the wave equation, so it should be assumed that F and B are multivector
valued.
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Equation (2.213a) is actually the geometric algebra form of Maxwell’s
equation (singular), where F is a multivector with grades 1 and 2, and J is
a multivector containing all the charge and current density contributions.
We will call the operator in eq. (2.213a) the spacetime gradient6.

Armed with Fourier transform or phasor representations, the frequency
domain representations of eq. (2.213) are found to be

(∇ + jk) F(x) = J(x) (2.214a)

(
∇

2 + k2
)

F(x) = (∇ − jk) (∇ + jk) F(x) = B(x), (2.214b)

where k = ω/c, and any explicit frequency dependence in our trans-
form pairs has been suppressed. We will call these equations the first and
second order Helmholtz equations respectively. The first order equation
applies a multivector differential operator to a multivector field, which
must equal the multivector forcing function (the sources).

For statics problems (k = 0), we may work with real fields and sources,
dispensing with any need to take real parts.

2.6.2 Green’s function solutions.

2.6.2.1 Unbounded.

The operators in eq. (2.213), and eq. (2.214) all have a similar linear struc-
ture. Abstracting that structure, all these problems have the form

LF(x) = J(x), (2.215)

where L is an operator formed from a linear combination of linear opera-
tors 1,∇,∇2, ∂t, ∂tt.

Given the linear structure of the PDE that we wish to solve, it makes
sense to assume that the solutions also have a linear structure. The most
general such solution we can assume has the form

F(x, t) =
∫

G(x, x′; t, t′)J(x′, t′)dV ′dt′ + F0(x, t), (2.216)

6 A slightly different operator is also called the spacetime gradient in STA (Space Time
Algebra) [7], which employs a non-Euclidean basis to generate a four dimensional rela-
tivistic geometric algebra. Our spacetime gradient is related to the STA spacetime gradient
by a constant factor.



160 multivector calculus .

where F0(x, t) is any solution to the equivalent homogeneous equation
LF0 = 0, and G(x, x′; t, t′) is the Green’s function (to be determined) as-
sociated with eq. (2.215). Operating on the presumed solution eq. (2.216)
with L yields

J(x, t) = LF(x, t) = L

(∫
G(x, x′; t, t′)J(x′, t′)dV ′dt′ + F0(x, t)

)
=

∫
(LG(x, x′; t, t′)) J(x′, t′)dV ′dt′,

(2.217)

which shows that we require the Green’s function to have delta function
semantics satisfying

LG(x, x′; t, t′) = δ(x − x′)δ(t − t′). (2.218)

The scalar valued Green’s functions for the Laplacian and the (2nd or-
der) Helmholtz equations are well known. The Green’s functions for the
spacetime gradient and the 1st order Helmholtz equation (which is just
the gradient when k = 0) are multivector valued and will be derived here.

2.6.2.2 Green’s theorem.

When the presumed solution is a superposition of only states in a bounded
region then life gets a bit more interesting. For instance, consider a prob-
lem for which the differential operator is a function of space only, with a
presumed solution such as

F(x) =
∫

V
dV ′B(x′)G(x, x′) + F0(x), (2.219)

then life gets a bit more interesting. This sort of problem requires different
treatment for operators that are first and second order in the gradient.

For the second order problems, we require Green’s theorem, which
must be generalized slightly for use with multivector fields.

The basic idea is that we can relate the Laplacian of the Green’s func-
tion and the field F(x′)

(
(∇′)2G(x, x′)

)
= G(x, x′)

(
(∇′)2F(x′)

)
+ · · ·. That

relationship can be expressed as the integral of an antisymmetric sand-
wich of the two functions

Theorem 2.16: Green’s theorem
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Given a multivector function F and a scalar function G∫
V

(
F∇2G −G∇2F

)
dV =

∫
∂V

(Fn̂ ·∇G −Gn̂ ·∇F) ,

where ∂V is the boundary of the volume V .

Proof. A straightforward, but perhaps inelegant way of proving this theo-
rem is to expand the antisymmetric product in coordinates

F∇2G −G∇2F =
∑

k

F∂k∂kG −G∂k∂kF

=
∑

k

∂k (F∂kG −G∂kF) − (∂kF)(∂kG) + (∂kG)(∂kF).

(2.220)

Since G is a scalar, the last two terms cancel, and we can integrate∫
V

(
F∇2G −G∇2F

)
dV =

∑
k

∫
V
∂k (F∂kG −G∂kF) . (2.221)

Each integral above involves one component of the gradient. From the-
orem 2.3 we know that∫

V
∇QdV =

∫
∂V

n̂QdA, (2.222)

for any multivector Q. Equating components gives∫
V
∂kQdV =

∫
∂V

n̂ · ekQdA, (2.223)

which can be substituted into eq. (2.221) to find∫
V

(
F∇2G −G∇2F

)
dV =

∑
k

∫
∂V

n̂ · ek (F∂kG −G∂kF) dA

=

∫
∂V

(F(n̂ ·∇)G −G(n̂ ·∇)F) dA.
(2.224)

2.6.2.3 Bounded solutions to first order problems.

For first order problems we will need an intermediate result similar to
Green’s theorem.
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Lemma 2.7: Normal relations for a gradient sandwich.

Given multivector functions F(x′),G(x, x′), and a gradient ∇′ acting
bidirectionally on functions of x′, we have

−

∫
V

(
G(x, x′)

←

∇

′
)

F(x′)dV ′ =
∫

V
G(x, x′)

(
→

∇

′

F(x′)
)

dV ′

−

∫
∂V

G(x, x′)n̂′F(x′)dA′.

Proof. This follows directly from theorem 2.3∫
∂V

G(x, x′)n̂′F(x′)dA′ =
∫

V
G(x, x′)

↔

∇

′

F(x′)dV ′

=

∫
V

(
G(x, x′)

←

∇

′
)

F(x′)dV ′ +
∫

V
G(x, x′)

(
→

∇

′

F(x′)
)

dV ′,

(2.225)

which can be rearranged to prove lemma 2.7.

2.6.3 Helmholtz equation.

2.6.3.1 Unbounded superposition solutions for the Helmholtz equation.

The specialization of eq. (2.218) to the Helmholtz equation eq. (2.214b)
is (

∇
2 + k2

)
G(x, x′) = δ(x − x′). (2.226)

While it is possible [24] to derive the Green’s function using Fourier
transform techniques, we will state the result instead, which is well known

Theorem 2.17: Green’s function for the Helmholtz operator.
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The advancing (causal), and the receding (acausal) Green’s functions
satisfying eq. (2.226) are respectively

Gadv(x, x′) = −
e− jk∥x−x′∥

4π ∥x − x′∥

Grec(x, x′) = −
e jk∥x−x′∥

4π ∥x − x′∥
.

We will use the advancing (causal) Green’s function, and refer to this
function as G(x, x′) without any subscript. Because it may not be obvi-
ous that these Green’s function representations are valid in a multivector
context, a demonstration of this fact can be found in appendix C.1.

Observe that as a special case, the Helmholtz Green’s function reduces
to the Green’s function for the Laplacian when k = 0

G(x, x′) = −
1

4π ∥x − x′∥
. (2.227)

2.6.3.2 Bounded superposition solutions for the Helmholtz equation.

For our application of theorem 2.17 to the Helmholtz problem, we are
actually interested in a antisymmetric sandwich of the Helmholtz operator
by the function F and the scalar (Green’s) function G, but that reduces to
an asymmetric sandwich of our functions around the Laplacian

F
(
∇

2 + k2
)
G −G

(
∇

2 + k2
)

F

= F∇2G +���Fk2G −G∇2F −���Gk2F

= F∇2G −G∇2F,

(2.228)

so∫
V

F(x′)
(
(∇′)2 + k2

)
G(x, x′)

=

∫
V

G(x, x′)
(
(∇′)2 + k2

)
F(x′)dV ′

+

∫
∂V

(F(x′)(n̂′ ·∇′)G(x, x′) −G(x, x′)(n̂′ ·∇′)F(x′)) dA′.

(2.229)
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This shows that if we assume the Green’s function satisfies the delta
function condition eq. (2.226) , then the general solution of eq. (2.214b)
is formed from a bounded superposition of sources is

F(x) =
∫

V
G(x, x′)B(x′)dV ′

+

∫
∂V

(G(x, x′)(n̂′ ·∇′)F(x′) − F(x′)(n̂′ ·∇′)G(x, x′)) dA′.

(2.230)

We are also free to add in any specific solution F0(x) that satisfies the
homogeneous Helmholtz equation. There is also freedom to add any so-
lution of the homogeneous Helmholtz equation to the Green’s function
itself, so it is not unique. For a bounded superposition we generally desire
that the solution F and its normal derivative, or the Green’s function G
(and it’s normal derivative) or an appropriate combination of the two are
zero on the boundary, so that the surface integral is killed.

2.6.4 First order Helmholtz equation.

The specialization of eq. (2.218) to the first order Helmholtz equation
eq. (2.214a) is

(∇ + jk)G(x, x′) = δ(x − x′). (2.231)

This Green’s function is multivector valued

Theorem 2.18: Green’s function for 1st order Helmholtz operator.

The Green’s function for the first order Helmholtz operator ∇ + jk
satisfies(→

∇ + jk
)

G(x, x′) = G(x, x′)
(
−
←

∇

′

+ jk
)
= δ(x − x′),

and has the value

G(x, x′) =
e− jkr

4πr

(
jk (1 + r̂) +

r̂
r

)
,
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where r = x − x′, r = ∥r∥ and r̂ = r/r, and ∇′ denotes differentiation
with respect to x′.

A special but important case is the k = 0 condition, which provides the
Green’s function for the gradient, which is vector valued

G(x, x′; k = 0) =
1

4π
r̂
r2 . (2.232)

Proof. If we denote the (advanced) Green’s function for the 2nd order
Helmholtz operator theorem 2.17 as ϕ(x, x′), we must have(→

∇ + jk
)

G(x, x′) = δ(x − x′) =
(→
∇ + jk

) (→
∇ − jk

)
ϕ(x, x′), (2.233)

we see that the Green’s function is given by

G(x, x′) =
(→
∇ − jk

)
ϕ(x, x′). (2.234)

This can be computed directly

G(x, x′) =
(→
∇ − jk

) (
−

e− jkr

4πr

)
=

(
r̂
∂

∂r
− jk

) (
−

e− jkr

4πr

)
=
−e− jkr

4π

(
r̂
(
−

jk
r
−

1
r2

)
−

jk
r

)
=

e− jkr

4π

(
jk (1 + r̂) +

r̂
r

)
,

(2.235)

as claimed.

Observe that since ϕ is scalar valued, we can also rewrite eq. (2.234) in
terms of a right acting operator

G(x, x′) = ϕ(x, x′)
(←
∇ − jk

)
= ϕ(x, x′)

(
−
←

∇

′

− jk
)
,

(2.236)

so

G(x, x′)
(
−
←

∇

′

+ jk
)
= ϕ(x, x′)

(
(
←

∇

′

)2 + k2
)
= δ(x − x′). (2.237)
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This is relevant for bounded superposition states, which we will discuss
next now that the proof of theorem 2.18 is complete. In particular addition
of

∫
V G(x, x′) jkF(x′)dV ′ to both sides of lemma 2.7 gives∫

V

(
G(x, x′)

(
−
←

∇

′

+ jk
))

F(x′)dV ′ =
∫

V
G(x, x′)

((
→

∇

′

+ jk
)

F(x′)
)

dV ′

−

∫
∂V

G(x, x′)n̂′F(x′)dA′.

(2.238)

Utilizing theorem 2.18, and substituting J(x′) from eq. (2.214a), we
find that one solution to the first order Helmholtz equation is

F(x) =
∫

V
G(x, x′)J(x′)dV ′ −

∫
∂V

G(x, x′)n̂′F(x′)dA′. (2.239)

We are free to add any specific solution F0 that satisfies the homoge-
neous equation (∇ + jk) F0 = 0.

2.6.5 Spacetime gradient.

We want to find the Green’s function that solves spacetime gradient equa-
tions of the form eq. (2.213a). For the wave equation operator, it is helpful
to introduce a d’Alembertian operator, defined as follows.

Definition 2.11: d’Alembertian (wave equation) operator.

In this book, the symbol □ is used to represent the d’Alembertian
(wave equation) operator, with a positive sign on the Laplacian term

□ =
(
∇ −

1
c
∂

∂t

) (
∇ +

1
c
∂

∂t

)
= ∇2 −

1
c2

∂2

∂t2 .

We will be able to derive the Green’s function for the spacetime gradi-
ent from the Green’s function for the d’Alembertian. The Green’s function
for the spacetime gradient is multivector valued and given by the follow-
ing.

Theorem 2.19: Green’s function for the spacetime gradient.
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The Green’s function for the spacetime gradient ∇+ (1/c)∂t satisfies(
∇ +

1
c
∂

∂t

)
G(x − x′, t − t′) = δ(x − x′)δ(t − t′),

and has the value

G(x − x′, t − t′) =
1

4π

(
−

r̂
r2

∂

∂r
+

r̂
r2 +

1
cr
∂

∂t

)
δ(−r/c + t − t′),

where r = x − x′, r = ∥r∥ and r̂ = r/r.

With the help of eq. (C.18) it is possible to further evaluate the delta
function derivatives, however, we will defer doing so until we are ready
to apply this Green’s function in a convolution integral to solve Maxwell’s
equation.

Proof. To prove this result, let ϕ(x− x′, t− t′) be the retarded time (causal)
Green’s function for the wave equation, satisfying

□ϕ(x − x′, t − t′) =
(
∇ +

1
c
∂

∂t

) (
∇ −

1
c
∂

∂t

)
ϕ(x − x′, t − t′)

= δ(x − x′)δ(t − t′).
(2.240)

This function has the value

ϕ(r, t − t′) = −
1

4πr
δ(−r/c + t − t′), (2.241)

where r = x − x′, r = ∥r∥. Derivations of this Green’s function, and it’s
acausal advanced time friend, can be found in [24], [17], and use the usual
Fourier transform and contour integration tricks.

Comparing eq. (2.240) to the defining statement of theorem 2.19, we
see that the spacetime gradient Green’s function is given by

G(x − x′, t − t′) =
(
∇ −

1
c
∂

∂t

)
ϕ(r, t − t′)

=

(
r̂
∂

∂r
−

1
c
∂

∂t

)
ϕ(r, t − t′),

(2.242)

where r̂ = r/r. Evaluating the derivatives gives

G(r, t − t′) = −
1

4π

(
r̂
∂

∂r
−

1
c
∂

∂t

)
δ(−r/c + t − t′)

r

= −
1

4π

(
r̂
r
∂

∂r
δ(−r/c + t − t′) −

r̂
r2 δ(−r/c + t − t′) −

1
cr
∂

∂t
δ(−r/c + t − t′)

)
,
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(2.243)

which completes the proof after some sign cancellation and minor rear-
rangement.

2.7 helmholtz theorem .

In conventional electromagnetism Maxwell’s equations are posed in terms
of separate divergence and curl equations. It is therefore desirable to show
that the divergence and curl of a function and it’s normal characteristics on
the boundary of an integration volume determine that function uniquely.
This is known as the Helmholtz theorem

Theorem 2.20: Helmholtz first theorem.

A vector M is uniquely determined by its divergence

∇ ·M = s,

and curl

∇ ×M = C,

and its value over the boundary.

The conventional proof of Helmholtz’s theorem uses the Green’s func-
tion for the (second order) Helmholtz operator. Armed with a vector val-
ued Green’s function for the gradient, a first order proof is also possible.
As illustrations of the geometric integration theory developed in this chap-
ter, both strategies will be applied here to this problem.

In either case, we start by forming an even grade multivector (gradient)
equation containing both the dot and cross product contributions

∇M = ∇ ·M + I∇ ×M = s + IC. (2.244)

First order proof. For the first order case, we perform a grade one se-
lection of lemma 2.7, setting F = M where G is the Green’s function for
the gradient given by eq. (2.232). The proof follows directly
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M(x) = −
∫

V

(
G(x, x′)

←

∇

′
)

M(x′)dV ′

=

∫
V

〈
G(x, x′)

(
→

∇

′

M(x′)
)〉

1
dV ′ −

∫
∂V

〈
G(x, x′)n̂′M(x′)

〉
1dA′

=

∫
V

1
4π ∥x − x′∥3

〈
(x − x′) (s(x′) + IC(x′))

〉
1dV ′

−

∫
∂V

1
4π ∥x − x′∥3

〈
(x − x′)n̂′M(x′)

〉
1dA′

=

∫
V

1
4π ∥x − x′∥3

((x − x′)s(x′) − (x − x′) ×C(x′)) dV ′

−

∫
∂V

1
4π ∥x − x′∥3

〈
(x − x′)n̂′M(x′)

〉
1dA′.

(2.245)

If M is well behaved enough that the boundary integral vanishes on an
infinite surface, we see that M is completely specified by the divergence
and the curl. In general, the divergence and the curl, must also be supple-
mented by the value of vector valued function on the boundary.

Observe that the boundary integral has a particularly simple form for a
spherical surface or radius R centered on x′. Switching to spherical coor-
dinates r = x′ − x = R r̂(θ, ϕ) where r̂ = (x′ − x)/∥x′ − x∥ is the outwards
normal, we have

−

∫
∂V

1
4π ∥x − x′∥3

〈
(x − x′)n̂′M(x′)

〉
1dA′

=

∫
∂V

M(x′)
4π ∥x − x′∥2

dA′

=
1

4π

∫ π

θ=0

∫ 2π

ϕ=0
M(R, θ, ϕ) sin θdθdϕ.

(2.246)

This is an average of M over the surface of the radius-R sphere surround-
ing the point x where the field M is evaluated.

Second order proof. Again, we use eq. (2.244) to discover the relation
between the vector M and its divergence and curl. The vector M can be
expressed at the point of interest as a convolution with the delta function
at all other points in space

M(x) =
∫

V
dV ′ δ(x − x′)M(x′). (2.247)
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The Laplacian representation of the delta function in R3 is

δ(x − x′) = −
1

4π
∇

2 1
∥x − x′∥

, (2.248)

so M can be represented as the following convolution

M(x) = −
1

4π

∫
V

dV ′∇2 1
∥x − x′∥

M(x′). (2.249)

Using this relation and proceeding with a few applications of the chain
rule, plus the fact that ∇1/∥x − x′∥ = −∇′1/∥x − x′∥, we find

−4πM(x)

=

∫
V

dV ′∇2 1
∥x − x′∥

M(x′)

=

〈∫
V

dV ′∇2 1
∥x − x′∥

M(x′)
〉

1

= −

〈∫
V

dV ′∇
(
∇
′ 1
∥x − x′∥

)
M(x′)

〉
1

= −

〈
∇

∫
V

dV ′
(
∇
′ M(x′)
∥x − x′∥

−
∇′M(x′)
∥x − x′∥

)〉
1

= −

〈
∇

∫
∂V

dA′ n̂
M(x′)
∥x − x′∥

〉
1
+

〈
∇

∫
V

dV ′
s(x′) + IC(x′)
∥x − x′∥

〉
1

= −

〈
∇

∫
∂V

dA′ n̂
M(x′)
∥x − x′∥

〉
1
+∇

∫
V

dV ′
s(x′)
∥x − x′∥

+∇ ·

∫
V

dV ′
IC(x′)
∥x − x′∥

.

(2.250)

By inserting a no-op grade selection operation in the second step, the
trivector terms that would show up in subsequent steps are automatically
filtered out. This leaves us with a boundary term dependent on the sur-
face and the normal and tangential components of M. Added to that is a
pair of volume integrals that provide the unique dependence of M on its
divergence and curl. When the surface is taken to infinity, which requires
∥M∥ /∥x − x′∥ → 0, then the dependence of M on its divergence and curl
is unique.

In order to express final result in traditional vector algebra form, a cou-
ple transformations are required. The first is that

⟨aIb⟩1 = I2a × b = −a × b. (2.251)
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For the grade selection in the boundary integral, note that

⟨∇n̂X⟩1 = ⟨∇(n̂ ·X)⟩1 + ⟨∇(n̂∧X)⟩1
= ∇(n̂ ·X) + ⟨∇I(n̂ ×X)⟩1
= ∇(n̂ ·X) −∇ × (n̂ ×X).

(2.252)

These give

M(x) = ∇
1

4π

∫
∂V

dA′ n̂ ·
M(x′)
∥x − x′∥

−∇ ×
1

4π

∫
∂V

dA′ n̂ ×
M(x′)
∥x − x′∥

−∇
1

4π

∫
V

dV ′
s(x′)
∥x − x′∥

+∇ ×
1

4π

∫
V

dV ′
C(x′)
∥x − x′∥

.

(2.253)

2.8 problem solutions .

Answer for Exercise 2.1

Proof. Since each reciprocal vector must each satisfy xi · xi = 1, let xi =

αxi, then

1 = xi · xi

= (αxi) · xi

= α (xi · xi) ,

(2.22)

or

xi =
1

xi · xi
xi =

1
xi
. (2.23)

Answer for Exercise 2.2
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Assuming the representation of eq. (2.10), the dot products are

1 = x1 · x1 = ax2
1 + bx1 · x2

0 = x2 · x1 = ax2 · x1 + bx2
2

0 = x1 · x2 = cx2
1 + dx1 · x2

1 = x2 · x2 = cx2 · x1 + dx2
2.

(2.24)

This can be written out as a pair of matrix equations10
 =

 x2
1 x1 · x2

x2 · x1 x2
2


ab

01
 =

 x2
1 x1 · x2

x2 · x1 x2
2


cd

 .
(2.25)

The matrix inverse is x2
1 x1 · x2

x2 · x1 x2
2


−1

=
1

x2
1x2

2 − (x1 · x2)
2

 x2
2 −x1 · x2

−x2 · x1 x2
1

 , (2.26)

and multiplying by the (1, 0), and (0, 1) vectors picks out the respective
columns, giving eq. (2.11).

Answer for Exercise 2.3

The bivector for the plane spanned by this basis is

x1 ∧ x2 = (e1 + 2e2) ∧ (e2 − e3)

= e12 − e13 − 2e23

= e12 + e31 + 2e32.

(2.28)

This has the square

(x1 ∧ x2)
2
= (e12 + e31 + 2e32) · (e12 + e31 + 2e32)

= −1 − 1 − 4

= −6.

(2.29)

Dotting −x1 with the bivector is

x1 · (x2 ∧ x1) = − (e1 + 2e2) · (e12 + e31 + 2e32)

= − (e2 − e3 − 2e1 − 4e3)

= 2e1 − e2 + 5e3.

(2.30)
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For x2 the dot product with the bivector is

x2 · (x1 ∧ x2) = (e2 − e3) · (e12 + e31 + 2e32)

= −e1 − 2e3 − e1 − 2e2

= −2e1 − 2e2 − 2e3,

(2.31)

so

x1 =
1
3
(e1 + e2 + e3)

x2 =
1
6
(−2e1 + e2 − 5e3) .

(2.32)

It is easy to verify that this has the desired semantics.

Answer for Exercise 2.4

Solution Part a. The curvilinear basis associated with this parameteri-
zation can be computed by inspection

x1 = e1 cos u2 + βe2 sin u2

x2 = u1 (−e1 sin u2 + βe2 cos u2) .
(2.43)

Solution Part b.
We need to compute the area element first

x1 ∧ x2 = (e1 cos u2 + βe2 sin u2) ∧ u1 (−e1 sin u2 + βe2 cos u2)

= u1
〈
(e1 cos u2 + βe2 sin u2) (−e1 sin u2 + βe2 cos u2)

〉
2

= u1
(
βe12 cos2 u2 − βe21 sin2 u2

)
= u1βi,

(2.44)

where i = e12.
The reciprocal frame vectors are given by

x1 = x2 ·
1

x1 ∧ x2

= u1 (−e1 sin u2 + βe2 cos u2)
1

u1βi

=
1
β

e2 sin u2 + e1 cos u2,

(2.45)
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x2 = −x1 ·
1

x1 ∧ x2

= − (e1 cos u2 + βe2 sin u2)
1

u1βi

=
1
u1

(
1
β

e2 cos u2 − e1 sin u2

)
.

(2.46)

Solution Part c. To verify that xi · x j = δi
j we can compute each of the

dot products

x1 · x1 =

〈
(e1 cos u2 + βe2 sin u2)

(
1
β

e2 sin u2 + e1 cos u2

)〉
= cos2 u2 + sin2 u2

= 1,

(2.47)

x2 · x2 =

〈
u1 (−e1 sin u2 + βe2 cos u2)

1
u1

(
1
β

e2 cos u2 − e1 sin u2

)〉
= sin2 u2 + cos2 u2

= 1,

(2.48)

x1 · x2 =

〈(
1
β

e2 sin u2 + e1 cos u2

)
u1 (−e1 sin u2 + βe2 cos u2)

〉
= u1 sin u2 cos u2 − u1 cos u2 sin u2

= 0.

(2.49)

x2 · x1 =

〈
1
u1

(
1
β

e2 cos u2 − e1 sin u2

)
(e1 cos u2 + βe2 sin u2)

〉
=

1
u1

(cos u2 sin u2 − sin u2 cos u2)

= 0.

(2.50)

Answer for Exercise 2.5
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cosh (µ − iθ) sinh (µ + iθ) =
1
4

(
eµ−iθ − e−µ+iθ

) (
eµ+iθ − e−µ−iθ

)
=

1
4

(
e2µ − e−2µ + e2iθ − e−2iθ

)
=

1
2
(sinh(2µ) + i sin(2θ)) .

(2.54)

The second identity follows from the first, setting θ = 0. Finally, for the
third expanding the cosh in terms of exponentials, we find

cosh (µ + iθ) =
1
2

(
eµ+iθ + e−µ−iθ

)
=

eµ

2
(cos θ + i sin θ) +

e−µ

2
(cos θ − i sin θ)

=
eµ + e−µ

2
cos θ + i

eµ − e−µ

2
sin θ

= cosh µ cos θ + i sinh µ sin θ.

(2.55)

Answer for Exercise 2.6

Solution Part a. Using the multiple angle cosh expansion, we find

e1 cosh (µ + iu2) = e1 (cosh µ cos u2 + i sinh µ sin u2)

= e1 cosh µ cos u2 + e2 sinh µ sin u2,
(2.57)

so

x = u1e1 cosh (µ + iu2) = e1a cos u2 + e2b sin u2, (2.58)

where

a = u1 cosh µ

b = u1 sinh µ,
(2.59)

are the semi-major and semi-minor axis values.
Solution Part b. The eccentricity (squared) is

ϵ2 = 1 − tanh2 µ

=
cosh2 µ − sinh2 µ

cosh2 µ

=
1

cosh2 µ
,

(2.60)
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so the eccentricity is

ϵ =
1

cosh µ
. (2.61)

Solution Part c. Our curvilinear basis vectors are

x1 = e1 cosh (µ + iu2)

x2 = e2u1 sinh (µ + iu2)
(2.62)

To compute the reciprocals we need the area element

x1 ∧ x2 =
〈
e1 cosh (µ + iu2) e2u1 sinh (µ + iu2)

〉
2

= u1
〈
i cosh (µ − iu2) sinh (µ + iu2)

〉
2

=
u1

2
〈
i (sinh(2µ) + i sin(2u2))

〉
2

= u1i cosh µ sinh µ.

(2.63)

Our recipocal basis vectors are

x1 = x2
1

x1 ∧ x2

= e2u1 sinh (µ + iu2)
1

u1i cosh µ sinh µ

= e1
sinh (µ + iu2)

cosh µ sinh µ
,

(2.64)

and

x2 = −x1
1

x1 ∧ x2

= − (e1 cosh (µ + iu2))
1

u1i cosh µ sinh µ

=
e2 cosh (µ + iu2)

u1 cosh µ sinh µ
.

(2.65)

Solution Part d.

x1 · x1 =

〈
e1 cosh (µ + iu2) e1

sinh (µ + iu2)

cosh µ sinh µ

〉
=

1
cosh µ sinh µ

〈
e2

1 cosh (µ − iu2) (sinh (µ + iu2))
〉

=
1

cosh µ sinh µ

〈
1
2
(sinh(2µ) + i sin(2u2))

〉
=

sinh(2µ)
2 cosh µ sinh µ

= 1.

(2.66)
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x2 · x2 =

〈
e2u1 sinh (µ + iu2)

e2 cosh (µ + iu2)

u1 cosh µ sinh µ

〉
=

1
cosh µ sinh µ

〈
sinh (µ + iu2) e2

2 cosh (µ − iu2)
〉

= 1.

(2.67)

x1 · x2 =

〈
e1 cosh (µ + iu2)

e2 cosh (µ + iu2)

u1 cosh µ sinh µ

〉
=

1
u1 cosh µ sinh µ

〈
e12 cosh (µ − iu2) cosh (µ + iu2)

〉
=

∣∣∣cosh (µ + iu2)
∣∣∣2

u1 cosh µ sinh µ
⟨e12⟩

= 0.

(2.68)

x1 · x2 =

〈
e1

sinh (µ + iu2)

cosh µ sinh µ
e2u1 sinh (µ + iu2)

〉

=
u1

∣∣∣sinh (µ + iu2)
∣∣∣2

cosh µ sinh µ
⟨e12⟩

= 0.

(2.69)

Answer for Exercise 2.7

Computing the various dot products is made easier by noting that e3

and eiϕ commute, whereas e jθe3 = e3e− jθ, e1eiϕ = e−iϕe1, e2eiϕ = e−iϕe2

(since e3 j, e1i and e2i all anticommute.) Also note that

jϕ̂ = e31eiϕe2eiϕ

= e312e−iϕeiϕ

= I.

(2.108)

The dot products, working with the normalized vectors, are

r̂ · θ̂ = ⟨r̂r̂ j⟩

= ⟨ j⟩

= 0

(2.109a)
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r̂ · ϕ̂ =
〈
e3e jθϕ̂

〉
=

〈
e3 (cos θ + j sin θ) ϕ̂

〉
= cos θ

〈
e3ϕ̂

〉
+ sin θ

〈
e3 jϕ̂

〉
= cos θ⟨e32 cos ϕ + e13 sin ϕ⟩ + sin θ⟨e12⟩

= 0

(2.109b)

θ̂ · ϕ̂ =
〈
r̂ jϕ̂

〉
= ⟨r̂I⟩

= 0.

(2.109c)

Answer for Exercise 2.8

e31eiϕe2eiϕ = e31eiϕe−iϕe2

= e312

= I.

(2.110)

Answer for Exercise 2.9
A bit of shorthand is useful. We can write our Jacobian as

J =

∣∣∣∣∣∣∣∣∣∣∣
S θCϕ S θS ϕ Cθ

rCθCϕ rCθS ϕ −rS θ

−rS θS ϕ rS θCϕ 0

∣∣∣∣∣∣∣∣∣∣∣ = r2

∣∣∣∣∣∣∣∣∣∣∣
S θCϕ S θS ϕ Cθ

CθCϕ CθS ϕ −S θ

−S θS ϕ S θCϕ 0

∣∣∣∣∣∣∣∣∣∣∣ , (2.111)

where the common factor of the two last rows has been factored out. Ex-
panding the cofactors along the bottom row we have

J = −r2S θS ϕ

∣∣∣∣∣∣∣S θS ϕ Cθ

CθS ϕ −S θ

∣∣∣∣∣∣∣ − r2S θCϕ

∣∣∣∣∣∣∣S θCϕ Cθ

CθCϕ −S θ

∣∣∣∣∣∣∣
= −r2S θS 2

ϕ

∣∣∣∣∣∣∣S θ Cθ

Cθ −S θ

∣∣∣∣∣∣∣ − r2S θC2
ϕ

∣∣∣∣∣∣∣S θCθ

Cθ −S θ

∣∣∣∣∣∣∣
= −r2S θS 2

ϕ

(
−S 2

θ −C2
θ

)
− r2S θC2

ϕ

(
−S 2

θ −C2
θ

)
= r2S θ

(
S 2
ϕ +C2

ϕ

)
= r2S θ.

(2.112)
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Had we done a traditional first row or column determinant expansion,
things would have been considerably messier.

Answer for Exercise 2.10

x = r (e1 sin θ cos ϕ + e2 sin θ sin ϕ + e3 cos θ)

= r (sin θe1(cos ϕ + e12 sin ϕ) + e3 cos θ)

= r
(
sin θe1ee12ϕ + e3 cos θ

)
= re3

(
cos θ + sin θe3e1ee12ϕ

)
.

(2.113)

Writing j = e3e1ee12ϕ, this is

x = re3e jθ. (2.114)

Answer for Exercise 2.11

We’ll only compute xθ here explicitly, as the other two vectors can be
computed by inspection.

We start with a plain old chain rule expansion, with the cavaet that we
must b e careful not to commute j with anything but the e± jθ/2 terms.

xθ =
∂x
∂θ

= −
j
2

e− jθ/2
(
ρe1eiϕ + Re3

)
e jθ/2 + e− jθ/2

(
ρe1eiϕ + Re3

)
e jθ/2 j

2

(2.115)

Note that the bivector j commutes with e1, and then proceed to compute
the ρ dependent part of xθ

ρ

2
e− jθ/2e1

(
− jeiϕ + eiϕ j

)
e jθ/2

=
ρ

2
e− jθ/2e1 (−e32 (cos ϕ + e13 sin ϕ) + (cos ϕ + e13 sin ϕ) e32) e jθ/2

=
ρ

2
e− jθ/2e1 (−e3213 sin ϕ + e1332 sin ϕ) e jθ/2

=
ρ

2
e− jθ/2e1 (−e21 sin ϕ + e12 sin ϕ) e jθ/2

= ρe− jθ/2e112 sin ϕe jθ/2

= ρe− jθ/2e2 sin ϕe jθ/2.

(2.116)
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Similarly, the R dependent contribution is
R
2

e− jθ/2 (− je3 + e3 j) e jθ/2

R
2

e− jθ/2 (−e323 + e332) e jθ/2

R
2

e− jθ/2 (e2 + e2) e jθ/2

Re− jθ/2e2e jθ/2.

(2.117)

Putting the pieces together, we have

xθ = e− jθ/2 (R + ρ sin ϕ) e2e jθ/2, (2.118)

as claimed.

Answer for Exercise 2.12
Let x = ρ cos ϕ and y = ρ sin ϕ, which provides the polar form of the

field

v = −ye1 + xe2

= −ρ sin ϕe1 + ρ cos ϕe2

= ρe2 (cos ϕ − e2e1 sin ϕ)

= ρe2eiϕ

= ρρ̂i.

(2.191)

The curl is

∇∧ v =
〈
ρ̂

(
∂

∂ρ
+

i
ρ

∂

∂ϕ

)
ρρ̂i

〉
2

=

〈
ρ̂ρ̂i + ρ̂

i
ρ
ρρ̂i2

〉
2

= i − ρ̂iρ̂

= 2i,

(2.192)

as we also found from the Cartesian representation.

Answer for Exercise 2.13

Part a.

∇∧ B = (e1∂1 + e2∂2 + e3∂3) ∧ (xe23 + ye31 + ze12)

= e1 ∧ e23 + e2 ∧ e31 + e3 ∧ e12

= 3e123.

(2.193)
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Part b.

∇∧ B = (e1∂1 + e2∂2 + e3∂3) ∧ (xe31)

= e1 ∧ e31

= 0.

(2.194)

Part c.

∇∧ B = (e1∂1 + e2∂2 + e3∂3) ∧ (xyze23)

= yze123.
(2.195)

Answer for Exercise 2.14

With α =
√
ω2

0 − k2, we may factor the denominator

ω2 − 2 jωk −ω2
0 = (ω − ( jk + α)) (ω − ( jk − α)) , (2.208)

showing that we have poles in the upper half plane at jk ± α.
It’s important to understand the behaviour of the integral on the infi-

nite semi-circular contours, which we can parameterize as ω = Reiθ. The
denominator is O(1/R2), but the exponential has the form

e jωτ = e jτR(cos θ+ j sin θ)

= e jτR cos θe−Rτ sin θ.
(2.209)

We see that the integral diverges on the upper half contour for τ < 0, and
diverges on the lower half contour for τ > 0. There’s a theorem (who’s
name I forget) that shows that the upper half contour integral evaluated for
τ > 0 will be zero on the infinite semicircle, as will the lower semicircular
contour for τ < 0, so if we compute the residues for the complete contours
we find the value of the integral along the [−∞,∞] horizontal.

We find

G(τ < 0) = 0

G(τ > 0) =
−1
2π

2π j

 e jωτ

ω − ( jk + α)

∣∣∣∣∣∣
ω= jk−α

+
e jωτ

ω − ( jk − α)

∣∣∣∣∣∣
ω= jk+α


=

1
j

e jτ( jk−α)

−2α
+

e jτ( jk+α)

2α


=

1
α

e−kτ sin (ατ) ,
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(2.210)

or

G(τ) = Θ(τ)e−kτ sin (ατ)
α

. (2.211)

Rather amusingly, when the system is supplied with an impulse function
f (t) = δ(t), we see that the response to that infinite push on the swing is

x(t) =
∫ ∞

−∞

Θ(t − t′)e−k(t−t′) sin (α(t − t′))
α

δ(t′)dt′

= Θ(t)e−kt sin (αt)
α

,

(2.212)

which describes an oscillation that starts at the point of the push, but de-
creases in amplitude steadily after that due to the damping term. Even
with an infinite strength initial push, the child will eventually be exhort-
ing the dad to supply another underdog, “Again, again, again!”.
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3.1 conventional formulation .

Maxwell’s equations provide an abstraction, the field, that aggregates the
effects of an arbitrary electric charge and current distribution on a “test”
charge distribution. The test charge is assumed to be small and isolated
enough that it does not also appreciably change the fields themselves.
Once the fields are determined, the Lorentz force equation can be used to
determine the dynamics of the test particle. These dynamics can be deter-
mined without having to compute all the interactions of that charge with
all the charges and currents in space, nor having to continually account
for the interactions of those charge with each other.

We will use vector differential form of Maxwell’s equations with an-
tenna theory extensions (fictitious magnetic sources) as our starting point

∇ ×E = −M −
∂B
∂t

∇ ×H = J +
∂D
∂t

∇ ·D = ρ
∇ ·B = ρm.

(3.1)

These equations relate the primary electric and magnetic fields

• E(x, t) : Electric field intensity [V/m] (Volts/meter)

• H(x, t) : Magnetic field intensity [A/m] (Amperes/meter),

and the induced electric and magnetic fields

• D(x, t) : Electric flux density (or displacement vector) [C/m] (Coulomb-
s/meter)

• B(x, t) : Magnetic flux density [W/m2] (Webers/square meter),

to the charge densities
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• ρ(x, t) : Electric charge density [C/m3] (Coulombs/cubic meter)

• ρm(x, t) : Magnetic charge density [W/m3] (Webers/cubic meter),

and the current densities

• J(x, t) : Electric current density [A/m2] (Amperes/square meter),

• M(x, t) : Magnetic current density [V/m2] (Volts/square meter).

All of the fields and sources can vary in space and time, and are speci-
fied here in SI units. The sources M, ρm can be considered fictional, rep-
resenting physical phenomena such as infinitesimal current loops.

In general, the relationship between the electric and magnetic fields
(constitutivity relationships) may be complicated non-isotropic tensor op-
erators, functions of all of E,D,B and H. In this book, we will assume that
the constitutive relationships between the electric and magnetic fields are
independent

B = µH
D = ϵE,

(3.2)

where ϵ = ϵrϵ0 is the permittivity of the medium [F/m] (Farads/meter),
and µ = µrµ0 is the permeability of the medium [H/m] (Henries/meter).
The permittivity and permeability may be functions of both time and po-
sition, and model the materials that the fields are propagating through.
In free space µr = 1 and ϵr = 1 so these relationships are simply B =
µ0H,D = ϵ0E, where

• ϵ0 = 8.85 × 10−12C2/N/m2 : Permittivity of free space (Coulombs
squared/Newton/square meter)

• µ0 = 4π×10−7N/A2 : Permeability of free space (Newtons/Ampere-
squared).

These constants are related to the speed of light, c = 3.00 × 108m/s by
µ0ϵ0 = 1/c2.

Antenna theory extends Maxwell’s equations with fictional magnetic
charge and current densities that are useful to model real phenomena such
as infinitesimal current loops. Antenna related problems are usually tack-
led in the frequency domain. We will use the engineering conventions for
the frequency domain described in section 2.5.
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Continuous models for charge and current distributions are used in
Maxwell’s equations, despite the fact that charges (i.e. electrons) are par-
ticles, and are not distributed in space. The discrete nature of electronic
charge can be modeled using a delta function representation of the charge
and current densities

ρ(x, t) =
∑

a

qaδ(x − xa(t))

J(x, t) =
∑

a

qava(x, t).
(3.3)

This model is inherently non-quantum mechanical, as it assumes that it
is possible to simultaneous measure the position and velocity of an elec-
tron.

The dynamics of particle interaction with the fields are provided by the
Lorentz force and power equations

dp
dt
= q (E + v ×B) (3.4a)

dE
dt
= qE · v. (3.4b)

Both the energy and the momentum relations of eq. (3.4) are stated,
since the simplest (relativistic) form of the Lorentz force equation directly
encodes both. For readers unfamiliar with eq. (3.4b), exercise 3.1 provides
a derivation method.

The quantities involved in the Lorentz equations are

• p(x, t) : Test particle momentum [kg m/s] (Kilogram meters/sec-
ond)

• E(x, t) : Test particle kinetic energy [J] (Joules, kilogram meter^2/second^2)

• q : Test particle charge [C] (Coulombs)

• v : Test particle velocity [m/s] (Meters/second)

The task of extracting all the physical meaning from the Maxwell and
Lorentz equations is a difficult one. Our attempt to do so will use the
formalism of geometric algebra.
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3.1.1 Problems.

Exercise 3.1 Lorentz power and force relationship. (§17 [20])

Using the relativistic definitions of momentum and energy

p(x, t) =
mv√

1 − v2/c2

E(x, t) =
mc2√

1 − v2/c2
,

show that dE/dt = v ·dp/dt, and use this to derive eq. (3.4b) from eq. (3.4a).

3.2 maxwell’s equation .

We will work with a multivector representation of the fields in isotropic
media satisfying the constituency relationships from eq. (3.2), and define
a multivector field that includes both electric and magnetic components

Definition 3.1: Electromagnetic field strength.

The electromagnetic field strength ([V/m] (Volts/meter)) is defined
as

F = E + IηH (= E + IcB),

where

• η =
√
µ/ϵ ([Ω] Ohms), is the impedance of the media.

• c = 1/
√
ϵµ ([m/s] meters/second), is the group velocity of a

wave in the media. When ϵ = ϵ0, µ = µ0, c is the speed of light.

F is called the Faraday by some authors.

The factors of η (or c) that multiply the magnetic fields are for dimen-
sional consistency, since [

√
ϵE] = [

√
µH] = [B/√µ]. The justification

for imposing a dual (or complex) structure on the electromagnetic field
strength can be found in the historical development of Maxwell’s equa-
tions, but we will also see such a structure arise naturally in short order.
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No information is lost by imposing the complex structure of defini-
tion 3.1, since we can always obtain the electric field vector E and the
magnetic field bivector IH by grade selection from the electromagnetic
field strength when desired

E = ⟨F⟩1

IH =
1
η
⟨F⟩2.

(3.5)

We will also define a multivector current containing all charge densities
and current densities

Definition 3.2: Multivector current.

The current ([A/m2] (Amperes/square meter)) is defined as

J = η (cρ − J) + I (cρm −M) .

When the fictitious magnetic source terms (ρm,M) are included, the cur-
rent has one grade for each possible source (scalar, vector, bivector, trivec-
tor). With only conventional electric sources, the current is still a multi-
vector, but contains only scalar and vector grades.

Given the multivector field and current, it is now possible to state Maxwell’s
equation (singular) in its geometric algebra form

Theorem 3.1: Maxwell’s equation.

Maxwell’s equation is a multivector equation relating the change in
the electromagnetic field strength to charge and current densities and
is written as(

∇ +
1
c
∂

∂t

)
F = J.

Maxwell’s equation in this form will be the starting place for all the sub-
sequent analysis in this book. As mentioned in section 2.6, the operator
∇ + (1/c)∂t will be called the spacetime gradient1.

1 This form of spacetime gradient is given a special symbol by a number of authors, but
there is no general agreement on what to use. Instead of entering the fight, it will be
written out in full in this book.
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Proof. To prove theorem 3.1 we first insert the isotropic constituency re-
lationships from eq. (3.2) into eq. (3.1), so that we are working with two
field variables instead of four

∇ ·E =
ρ

ϵ

∇ ×E = −M − µ
∂H
∂t

∇ ·H =
ρm

µ

∇ ×H = J + ϵ
∂E
∂t

(3.6)

Inserting a = ∇ into eq. (1.85) the vector product of the gradient with
another vector

∇b = ∇ · b + I∇ × b. (3.7)

The dot and cross products for E and H in eq. (3.6) can be grouped using
eq. (3.7) into multivector gradient equations

∇E =
ρ

ϵ
+ I

(
−M − µ

∂H
∂t

)
∇H =

ρm

µ
+ I

(
J + ϵ

∂E
∂t

)
.

(3.8)

Multiplying the gradient equation for the magnetic field by ηI so that both
equations have the same dimensions, and so that the electric field appears
in both equations as E and not IE, we find

∇E +
1
c
∂

∂t
(IηH) =

1
ϵ
ρ − IM

∇IηH +
1
c
∂E
∂t
= Icρm − ηJ,

(3.9)

where µ/η = ηϵ = 1/c was used to simplify things slightly, and all the
field contributions have been moved to the left hand side. The first multi-
vector equation has only scalar and bivector grades, whereas the second
has only vector and trivector grades. This means that if we add these equa-
tions, we can recover each by grade selection, and no information is lost.
That sum is(

∇ +
1
c
∂

∂t

)
(E + IηH) = η (cρ − J) + I (cρm −M) . (3.10)
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Application of definition 3.1 and definition 3.2 to eq. (3.10) proves the
theorem, verifying the assertion that Maxwell’s equations can be consoli-
dated into a single multivector equation.

There is a lot of information packed into this single equation. Where
possible, we want to work with the multivector form of Maxwell’s equa-
tion, either in the compact form of theorem 3.1 or the explicit form of
eq. (3.10), and not decompose Maxwell’s equation into the conventional
representation by grade selection operations.

3.2.0.1 Problems.

Exercise 3.2 Dot and cross product relation to vector product.

Using coordinate expansion, convince yourself of the validity of eq. (3.7).

Exercise 3.3 Extracting the conventional Maxwell’s equations.

Apply grade 0,1,2, and 3 selection operations to eq. (3.10). Determine
the multiplicative (scalar or trivector) constants required to obtain eq. (3.6)
from the equations that result from such grade selection operations.

3.3 wave equation and continuity.

Some would argue that the conventional form eq. (3.1) of Maxwell’s equa-
tions have built in redundancy since continuity equations on the charge
and current densities couple some of these equations. We will take an op-
posing view, and show that such continuity equations are necessary con-
sequences of Maxwell’s equation in its wave equation form, and derive
those conditions. This amounts to a statement that the multivector current
J is not completely unconstrained.

Theorem 3.2: Wave equation and continuity conditions.

The electromagnetic field is a solution to the non-homogeneous wave
equation (□: see definition 2.11)

□F =
(
∇ −

1
c
∂

∂t

)
J.
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In source free conditions, this reduces to a homogeneous wave equa-
tion, with group velocity c, the speed of the wave in the media. When
expanded explicitly in terms of electric and magnetic fields, and
charge and current densities, this single equation resolves to a non-
homogeneous wave equation for each of the electric and magnetic
fields

□E =
1
ϵ
∇ρ + µ

∂J
∂t
+∇ ×M

□H =
1
µ
∇ρm + ϵ

∂M
∂t
−∇ × J,

as well as a pair of continuity equations coupling the respective
charge and current densities

∇ · J +
∂ρ

∂t
= 0

∇ ·M +
∂ρm

∂t
= 0.

Proof. To prove, we operate on theorem 3.1 with ∇ − (1/c)∂t, one of the
factors, along with the spacetime gradient, of the d’Alembertian (wave
equation) operator, which gives

□F =
(
∇ −

1
c
∂

∂t

)
J. (3.20)

Since the left hand side has only grades 1 and 2, eq. (3.20) splits naturally
into two equations, one for grades 1,2 and one for grades 0,3

□F =
〈(
∇ −

1
c
∂

∂t

)
J
〉

1,2

0 =
〈(
∇ −

1
c
∂

∂t

)
J
〉

0,3
.

(3.21)

Unpacking these further, we find that there is information carried in the
requirement that the grade 0,3 selection of eq. (3.21) is zero. In particular,
grade 0 selection gives

0 = ⟨(∇ − (1/c)∂t)J⟩

=

〈(
∇ −

1
c
∂

∂t

)
(η (cρ − J) + I (cρm −M))

〉
= −η

(
∇ · J +

∂ρ

∂t

)
,

(3.22)
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which demonstrates the continuity condition on the electric sources. Sim-
ilarly, grade three selection gives

0 = ⟨(∇ − (1/c)∂t)J⟩3

=

〈(
∇ −

1
c
∂

∂t

)
(η (cρ − J) + I (cρm −M))

〉
3

= −I
(
∇ ·M +

∂ρm

∂t

)
,

(3.23)

which demonstrates the continuity condition on the (fictitious) magnetic
sources if included in the current.

For the non-homogeneous wave equation of theorem 3.2, the current
derivatives may be expanded explicitly. For the wave equation for the
electric field, this is

□E =
〈(
∇ −

1
c
∂

∂t

)
J
〉

1

=

〈(
∇ −

1
c
∂

∂t

) (
ρ

ϵ
− ηJ + I (cρm −M)

)〉
1

=
1
ϵ
∇ρ − I (∇∧M) +

1
c
η
∂J
∂t

=

〈(
∇ −

1
c
∂

∂t

)
J
〉

1
=

1
ϵ
∇ρ + µ

∂J
∂t
+∇ ×M,

(3.24)

as claimed. The forced magnetic field equation is

□H =
1
ηI

〈(
∇ −

1
c
∂

∂t

)
J
〉

2

=
1
ηI

〈(
∇ −

1
c
∂

∂t

) (
ρ

ϵ
− ηJ + I (cρm −M)

)〉
2

=
1
ηI

(
−∇∧ J + Ic∇ρm +

I
c
∂M
∂t

)
=

1
I

(
−I (∇ × J) + I

1
µ
∇ρm + Iϵ

∂M
∂t

)
=

1
µ
∇ρm + ϵ

∂M
∂t
−∇ × J.

(3.25)
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3.4 plane waves .

With all sources zero, the free space Maxwell’s equation as given by the-
orem 3.1 for the electromagnetic field strength reduces to just(

∇ +
1
c
∂

∂t

)
F(x, t) = 0. (3.26)

Utilizing a phasor representation of the form definition 2.10, we will
define the phasor representation of the field as

Definition 3.3: Plane wave.

We represent the electromagnetic field strength plane wave solution
of Maxwell’s equation in phasor form as

F(x, t) = Re
(
F(k)e jωt

)
,

where the complex valued multivector F(k) also has a presumed ex-
ponential dependence

F(k) = F̃e− jk·x.

We will now show that solutions of the electromagnetic field wave equa-
tion have the form

Theorem 3.3: Plane wave solutions to Maxwell’s equation.

Single frequency plane wave solutions of Maxwell’s equation have
the form

F(x, t) = Re
((

1 + k̂
)

k̂∧E e− jk·x+ jωt
)
,

where ∥k∥ = ω/c, k̂ = k/∥k∥ is the unit vector pointing along the
propagation direction, and E is any complex-valued vector variable.
When a E · k = 0 constraint is imposed on the vector variable E,
that variable can be interpreted as the electric field, and the solution
reduces to

F(x, t) = Re
((

1 + k̂
)

E e− jk·x+ jωt
)
,
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showing that the field phasor F(k) = E(k) + IηH(k) splits naturally
into electric and magnetic components

E(k) = E e− jk·x

ηH(k) = k̂ ×E e− jk·x,

where the directions k̂,E,H form a right handed triple.

Proof. We wish to act on F(k)e− jk·x+ jωt with the spacetime gradient ∇ +
(1/c)∂t, but must take care of order when applying the gradient to a non-
scalar valued function. In particular, if A is a multivector, then

∇Ae− jk·x =

3∑
m=1

em∂mAe− jk·x

=

3∑
m=1

emA (− jkm) e− jk·x

= − jkA.

(3.27)

Therefore, insertion of the presumed phasor solution of the field from
definition 3.3 into eq. (3.26) gives

0 = − j
(
k −

ω

c

)
F(k). (3.28)

If F(k) has a left multivector factor

F(k) =
(
k +

ω

c

)
F̃, (3.29)

where F̃ is a multivector to be determined, then(
k −

ω

c

)
F(k) =

(
k −

ω

c

) (
k +

ω

c

)
F̃

=

(
k2 −

(
ω

c

)2
)

F̃,
(3.30)



194 electromagnetism .

which is zero if ∥k∥ = ω/c. Let ∥k∥ F̃ = F0 + F1 + F2 + F3, where
F0, F1, F2, and F3 respectively have grades 0,1,2,3, so that

F(k) =
(
1 + k̂

)
(F0 + F1 + F2 + F3)

= F0 + F1 + F2 + F3 + k̂F0 + k̂F1 + k̂F2 + k̂F3

= F0 + F1 + F2 + F3 + k̂F0 + k̂ · F1 + k̂ · F2 + k̂ · F3

+ k̂∧ F1 + k̂∧ F2

=
(
F0 + k̂ · F1

)
+

(
F1 + k̂F0 + k̂ · F2

)
+

(
F2 + k̂ · F3 + k̂∧ F1

)
+

(
F3 + k̂∧ F2

)
.

(3.31)

Since the field F has only vector and bivector grades, the grades zero and
three components of the expansion above must be zero, or

F0 = −k̂ · F1

F3 = −k̂∧ F2,
(3.32)

so

F(k) =
(
1 + k̂

) (
F1 − k̂ · F1 + F2 − k̂∧ F2

)
=

(
1 + k̂

) (
F1 − k̂F1 + k̂∧ F1 + F2 − k̂F2 + k̂ · F2

)
.

(3.33)

The multivector 1+ k̂ has the projective property of gobbling any leading
factors of k̂

(1 + k̂)k̂ = k̂ + 1

= 1 + k̂,
(3.34)

so for Fi ∈ F1, F2

(1 + k̂)(Fi − k̂Fi) = (1 + k̂)(Fi − Fi) = 0, (3.35)

leaving

F(k) =
(
1 + k̂

) (
k̂ · F2 + k̂∧ F1

)
. (3.36)

For k̂ · F2 to be non-zero F2 must be a bivector that lies in a plane
containing k̂, and k̂ · F2 is a vector in that plane that is perpendicular to k̂.
On the other hand k̂∧F1 is non-zero only if F1 has a non-zero component
that does not lie in along the k̂ direction, but k̂ ∧ F1, like F2 describes a
plane that containing k̂. This means that having both bivector and vector
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free variables F2 and F1 provide more degrees of freedom than required.
For example, if E is any vector, and F2 = k̂∧E, then(

1 + k̂
)

k̂ · F2 =
(
1 + k̂

)
k̂ ·

(
k̂∧E

)
=

(
1 + k̂

) (
E − k̂

(
k̂ ·E

))
=

(
1 + k̂

)
k̂
(
k̂∧E

)
=

(
1 + k̂

)
k̂∧E,

(3.37)

which has the form
(
1 + k̂

) (
k̂∧ F1

)
, so the electromagnetic field strength

phasor may be generally written

F(k) =
(
1 + k̂

)
k̂∧E e− jk·x, (3.38)

Expanding the multivector factor
(
1 + k̂

)
k̂∧E we find(

1 + k̂
)

k̂∧E = k̂ ·
(
k̂∧E

)
+������k̂∧

(
k̂∧E

)
+ k̂∧E

= E − k̂
(
k̂∧E

)
+ k̂∧E.

(3.39)

The vector grade has the component of E along the propagation direction
removed (i.e. it is the rejection), so there is no loss of generality should
a E · k = 0 constraint be imposed. Such as constraint let’s us write the
bivector as a vector product k̂ ∧ E = k̂E, and then use the projective
property eq. (3.34) to gobble the leading k̂ factor, leaving

F(k) =
(
1 + k̂

)
E e− jk·x =

(
E + Ik̂ ×E

)
e− jk·x. (3.40)

It is also noteworthy that the directions k̂, Ê, Ĥ form a right handed
triple, which can be seen by computing their product

(k̂Ê)Ĥ = (−Êk̂)(−Ik̂Ê)

= +IÊ2k̂2

= I.

(3.41)

These vectors must all be mutually orthonormal for their product to be a
pseudoscalar multiple. Should there be doubt, explicit dot products may
be computed with ease using grade selection operations

k̂ · Ĥ =
〈
k̂(−Ik̂Ê)

〉
= −

〈
IÊ

〉
= 0

Ê · Ĥ =
〈
Ê(−Ik̂Ê)

〉
= −

〈
Ik̂

〉
= 0,

(3.42)
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where the zeros follow by noting that IÊ, Ik̂ are both bivectors. The con-
ventional representation of the right handed triple relationship between
the propagation direction and fields is stated as a cross product, not as
a pseudoscalar relationship as in eq. (3.41). These are easily seen to be
equivalent

k̂ = IĤÊ
= I(Ĥ∧ Ê)

= I2(Ĥ × Ê)

= Ê × Ĥ.

(3.43)

3.5 statics .

3.5.1 Inverting the Maxwell statics equation.

Similar to electrostatics and magnetostatics, we can restrict attention to
time invariant fields (∂tF = 0) and time invariant sources (∂t J = 0), but
consider both electric and magnetic sources. In that case Maxwell’s equa-
tion is reduced to an invertible first order gradient equation

∇F(x) = J(x), (3.44)

Theorem 3.4: Maxwell’s statics solution.

The solution to the Maxwell statics equation is given by

F(x) =
1

4π

∫
V

dV ′
⟨(x − x′)J(x′)⟩1,2
∥x − x′∥3

+ F0,

where F0 is any function for which ∇F0 = 0. The explicit expansion
in electric and magnetic fields and charge and current densities is
given by

E(x) =
1

4π

∫
V

dV ′
1

∥x − x′∥3

(
1
ϵ

(x − x′)ρ(x′) + (x − x′) ×M(x′)
)

H(x) =
1

4π

∫
V

dV ′
1

∥x − x′∥3

(
J(x′) × (x − x′) +

1
µ

(x − x′)ρm(x′)
)
.
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We see that the solution incorporates both a Coulomb’s law contribution
and a Biot-Savart law contribution, as well as their magnetic source ana-
logues if applicable.

Proof. To prove theorem 3.4, we utilize the Green’s function for the (first
order) gradient eq. (2.232), finding immediately

F(x) =
∫

V
dV ′G(x, x′)∇′J(x′)

=

〈∫
V

dV ′G(x, x′)∇′J(x′)
〉

1,2

=
1

4π

∫
V

dV ′
〈

(x − x′)J(x′)
∥x − x′∥3

〉
1,2
.

(3.45)

Here a no-op grade selection has been inserted to simplify subsequent
manipulation2. We are also free to add any grade 1,2 solution of the ho-
mogeneous gradient equation, which provides the multivector form of the
solution.

To unpack the multivector result, let s = x − x′, and expand the grade
1,2 selection

⟨sJ⟩1,2 = η⟨s(cρ − J)⟩1,2 + ⟨sI(cρm −M)⟩1,2
= ηcsρ − η(s∧ J) + cIsρm − I(s∧M)

=
1
ϵ

sρ + ηI(J × s) + scρmI + s ×M,

(3.46)

so the field is

F(x) =
1

4π

∫
V

dV ′
1

∥x − x′∥3

(
1
ϵ

sρ + s ×M
)

+ I
1

4π

∫
V

dV ′
1

∥x − x′∥3
(scρm + ηJ × s) .

(3.47)

Comparing this expansion to the field components F = E + ηIH, our job
is done.

2 If this grade selection filter is omitted, it is possible to show that the scalar and pseu-
doscalar contributions to the (x − x′)J product are zero on the boundary of the Green’s
integration volume. [19]
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3.5.2 Enclosed charge.

In conventional electrostatics we obtain a relation between the normal
electric field component and the enclosed charge by integrating the elec-
tric field divergence. The geometric algebra generalization of this relates
the product of the normal and the electromagnetic field strength related to
the enclosed multivector current

Theorem 3.5: Enclosed multivector current.

The enclosed multivector current in the volume is related to the sur-
face integral of n̂F over the boundary of the volume by∫

∂V
dA n̂F =

∫
V

dV J.

This is a multivector equation, carrying information for each grade
in the multivector current. That grade selection yeilds∫

∂V
dA n̂ ·E =

1
ϵ

∫
V

dV ρ∫
∂V

dA n̂ ×H =
∫

V
dV J∫

∂V
dA n̂ ×E = −

∫
V

dV M∫
∂V

dA n̂ ·H =
1
µ

∫
V

dV ρm.

Proof. To prove theorem 3.5 simply evaluate the volume integral of the
gradient of the field using theorem 2.11∫

V
dV ∇F =

∫
∂V

dA n̂F, (3.48)

and note that∫
V

dV ∇F =
∫

V
dV J. (3.49)
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This is a multivector relationship, containing a substantial amount of in-
formation, which can be extracted by expanding n̂F

n̂F = n̂ (E + IηH)

= n̂ ·E + I(n̂ ×E) + Iη (n̂ ·H + In̂ ×H)

= n̂ ·E − η(n̂ ×H) + I(n̂ ×E) + Iη(n̂ ·H).

(3.50)

Inserting this into theorem 3.5, and equating grades, we find∫
∂V

dA n̂ ·E =
∫

V
dV

ρ

ϵ

−

∫
∂V

dA η(n̂ ×H) = −
∫

V
dV ηJ

I
∫
∂V

dA (n̂ ×E) = −I
∫

V
dV M

I
∫
∂V

dA η(n̂ ·H) = I
∫

V
dV cρm,

(3.51)

which completes the proof after cancelling common factors and some
minor adjustments of the multiplicative constants. Of course eq. (3.51)
could have obtained directly from Maxwell’s equations in their conven-
tional form eq. (3.1). However, had we integrated the conventional Maxwell’s
equations, it would not have been obvious that the crazy mix of fields,
sources, dot and cross products in eq. (3.49) had a hidden structure as
simple as

∫
∂V dA n̂F =

∫
V dV J.

3.5.3 Enclosed current.

In this section we will present the generalization of Ampere’s law to line
integrals of the total electromagnetic field strength.

Theorem 3.6: Line integral of the field.

The line integral of the electromagnetic field strength is
∂A

dx F = I
∫

A
dA

(
n̂J −

∂F
∂n

)
,
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where ∂F/∂n = (n̂ ·∇) F. Expressed in terms of the conventional
consistent fields and sources, this multivector relationship expands
to four equations, one for each grade

∂A
dx ·E =

∫
A

dA n̂ ·M
∂A

dx ×H =
∫

A
dA

(
−n̂ × J +

n̂ρm

µ
−
∂H
∂n

)

∂A

dx ×E =
∫

A
dA

(
n̂ ×M +

n̂ρ
ϵ
−
∂E
∂n

)

∂A

dx ·H = −
∫

A
dA n̂ · J.

The last of the scalar equations in theorem 3.6 is Ampere’s law�
∂A

dx ·H =
∫

A
n̂ · J = Ienc, (3.52)

and the first is the dual of Ampere’s law for (fictitious) magnetic current
density3. In eq. (3.52) the flux of the electric current density equals the
enclosed current flowing through an open surface. This enclosed current
equals the line integral of the magnetic field around the boundary of that
surface.

Proof. To prove theorem 3.6 we compute the surface integral of the cur-
rent J = ∇F∫

A
d2x J =

∫
A

d2x∇F. (3.53)

As we are working in R3 not R2, the gradient may not be replaced by
the vector derivative in eq. (3.53). Instead we must split the gradient into
its vector derivative component, the projection of the gradient onto the
tangent plane of the integration surface, and its normal component

∇ = ∂ + n̂(n̂ ·∇). (3.54)

The surface integral form eq. (2.142) of the fundamental theorem of geo-
metric calculus may be applied to the vector derivative portion of the field
integral∫

A
d2x∇F =

∫
A

d2x∂F +
∫

A
d2x n̂ (n̂ ·∇) F, (3.55)

3 Even without the fictitious magnetic sources, neither the name nor applications of the two
cross product line integrals with the normal derivatives are familiar to the author.
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so 
∂A

dx F =
∫

A
d2x (J − n̂ (n̂ ·∇) F)

=

∫
A

dA (In̂J − (n̂ ·∇) IF)

=

∫
A

dA
(
In̂J − I

∂F
∂n

)
,

(3.56)

where the surface area bivector has been written in its dual form d2x =
In̂dA in terms of a scalar area element, and the directional derivative has
been written in scalar form with respect to a parameter n that represents
the length along the normal direction. This proves the first part of theo-
rem 3.6.

Observe that the dx F product has all possible grades

dx F = dx (E + IηH)

= dx ·E + Iηdx ·H + dx∧E + Iηdx∧H
= dx ·E − η(dx ×H) + I(dx ×E) + Iη(dx ·H),

(3.57)

as does the In̂J product (in general)

In̂J = In̂
(
ρ

ϵ
− ηJ + I (cρm −M)

)
= n̂I

ρ

ϵ
− ηn̂IJ − n̂cρm + n̂M

= n̂ ·M + η(n̂ × J) − n̂cρm + I(n̂ ×M) + n̂I
ρ

ϵ
− ηI(n̂ · J).

(3.58)

On the other hand IF = IE − ηH has only grades 1,2, like F itself. This
allows the line integrals to be split by grade selection into components
with and without a normal derivative

∂A
⟨dx F⟩0,3 =

∫
A

dA ⟨In̂J⟩0,3
∂A
⟨dx F⟩1,2 =

∫
A

dA (⟨In̂J⟩1,2 − (n̂ ·∇) IF) .
(3.59)
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The first of eq. (3.59) contains Ampere’s law and its dual as one multivec-
tor equation, which can be seen more readily by explicit expansion in the
constituent fields and sources using eq. (3.57), eq. (3.58)

∂A
(dx ·E + Iη(dx ·H)) =

∫
A

dA (n̂ ·M − ηI(n̂ · J))
∂A

(−η(dx ×H) + I(dx ×E)) =
∫

A
dA

(
η(n̂ × J) − n̂cρm

+ I(n̂ ×M) + n̂I
ρ

ϵ
−
∂

∂n
(IE − ηH)

)
.

(3.60)

Further grade selection operations, and minor adjustments of the lead-
ing constants completes the proof.

It is also worth pointing out that for pure magnetostatics problems
where J = ηJ, F = IηH, that Ampere’s law can be written in a trivec-
tor form

∂A
dx∧ F = I

∫
A

dA n̂ · J = Iη
∫

A
dA n̂ · J. (3.61)

This encodes the fact that the magnetic field component of the total elec-
tromagnetic field strength is most naturally expressed in geometric alge-
bra as a bivector.

3.5.4 Example field calculations.

Having seen a number of theoretical applications of the geometric alge-
bra framework, let’s now see how some of our new tools can be used to
calculate the fields for specific static electromagnetism charge and current
configurations.

3.5.4.1 Line segment.

In this example the (electric) field is calculated at a point on the z-axis,
due to a finite line charge density of λ along a segment [a, b] of the x-axis.
The geometry of the problem is illustrated in fig. 3.1.

This is a fairly simple problem, and can be found in most introductory
electromagnetic texts, usually set with the field observation point on the
z-axis, and with a symmetric interval [−l/2, l/2], which has the side effect
of killing off all but the x-axis component of the field. For comparision
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Figure 3.1: Line charge density.

purposes, this problem will be tackled first using conventional algebra,
and then using geometric algebra.

Conventional approach. The integral we wish to evaluate is

E(x) =
λ

4πϵ

∫ b

a
dx

(r cos θ − x)e1 + r sin θe3

(r2 + x2 − 2rx cos θ)3/2 . (3.62)

This can be non-dimensionalized with a u = x/r change of variables,
and yields an integral for the x component and the z component of the
field

Ex =
λ

4πϵr

∫ b/r

a/r
du

cos θ − u

(1 + u2 − 2u cos θ)3/2

Ey =
λ sin θ
4πϵr

∫ b/r

a/r
du

(
1 + u2 − 2u cos θ

)−3/2
.

(3.63)

There is a common integral in the x and y components of the field. We can
tidy this up a bit by writing

A =
∫ b/r

a/r
du

(
1 + u2 − 2u cos θ

)−3/2

B =
∫ b/r

a/r
udu

(
1 + u2 − 2u cos θ

)−3/2
,

(3.64)

and then put the pieces back together again for the total field

E =
λ

4πϵr
((A cos θ − B)e1 + A sin θe3) . (3.65)

Some additional structure can be imposed by introducing a rotation
matrix to express the field observation point

x = rRθe1, (3.66)
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where

Rθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 . (3.67)

Writing 1 for the R3 identity matrix, the field is

E =
λ

4πϵr
(ARθ − B1) e1. (3.68)

In retrospect we could have started using eq. (3.66) and obtained this re-
sult more directly. The A integral above results in both scaling and rotation
of the field, depending on the observation point and the limits of the inte-
gration. The B integral contributes only to the x-axis oriented component
of the field.

Using geometric algebra. Introducing a unit imaginary i = e13 for the
rotation from the x-axis to the z-axis, the field point observation point is

x = re1eiθ. (3.69)

The charge element point is x′ = xe1, so the difference can now be
written with e1 factored to the left or to the right

x − x′ = e1
(
reiθ − x

)
=

(
re−iθ − x

)
e1. (3.70)

These left and right factors can be used to convert the squared length of
x − x′ into from a vector product into a product of conventional looking
complex conjugates

(x − x′)2
=

(
re−iθ − x

)
e1e1

(
reiθ − x

)
=

(
re−iθ − x

) (
reiθ − x

)
,

(3.71)

so the squared length of the difference is

(x − x′)2
= r2 + x2 − rx

(
eiθ + e−iθ

)
= r2 + x2 − 2rx cos θ,

(3.72)

and the total (electric) field is

F =
λ

4πϵ

∫ b

a
dx

re1eiθ − xe1

(r2 + x2 − 2xr cos θ)3/2

=
λe1

4πϵr

∫ b/r

a/r
du

eiθ − u

(1 + u2 − 2u cos θ)3/2 .

(3.73)
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We have replaced the matrix representation that had nine components,
four zeros, and a lot of redundancy with a simple multivector result. More-
over, the integral factor has the appearance of a conventional complex in-
tegral, and we can toss it as is into any numerical or symbol integration
systems capable of complex number integrals for evaluation. The end re-
sult is a single vector valued inverse radial factor λe1/(4πϵr), multiplying
by an integral that served to either scale or rotate-and-scale.

In particular, for θ = π/2, plugging this integral into Mathematica, we
find ∫

du
eiθ − u

(1 + u2 − 2u cos θ)3/2 =
1 + iu√
1 + u2

, (3.74)

and for other angles θ , nπ/2∫
du

eiθ − u

(1 + u2 − 2u cos θ)3/2 =
(1 − ue−iθ)

√
1 + u2 − 2u cos θ

(1 + u2) sin(2θ)
. (3.75)

The numerator factors like e1(1 + iu) and e1(1 − ue−iθ) compactly de-
scribe the direction of the vector field at the observation point. Either of
these can be expanded explicitly in sines and cosines if desired

e1(1 + iu) = e1 + ue3

e1(1 − ue−iθ) = e1(1 − u cos θ) + ue3 sin θ.
(3.76)

Perhaps more interesting than the precise form of the solution is the fact
that geometric algebra allows for the introduction of a “complex plane”
for many problems that have only two degrees of freedom. When such a
complex plane is introduced, existing Computer Algebra Systems (CAS),
like Mathematica, can be utilized for the grunt work of the evaluation.

3.5.4.2 Infinite line current.

Given a static line charge density and current density along the z-axis

ρ(x) = λδ(x)δ(y)

J(x) = vρ(x) = vλe3δ(x)δ(y),
(3.77)

the total multivector current is

J = η(cρ − J)

= η(c − ve3)λδ(x)δ(y)

=
λ

ϵ

(
1 −

v
c

e3

)
δ(x)δ(y).

(3.78)
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We can find the field for this current using theorem 3.4. To do so, let
the field observation point be x = x⊥ + ze3, so the total field is

F(x) =
λ

4πϵ

∫
V

dx′dy′dz′
⟨(x − x′)(1 − (v/c)e3)⟩1,2

∥x − x′∥3
δ(x′)δ(y′)

=
λ

4πϵ

∫ ∞

−∞

dz′
⟨(x⊥ + (z − z′)e3)(1 − (v/c)e3)⟩1,2(

x2
⊥ + (z − z′)2

)3/2

=
λ (x⊥ − (v/c)x⊥e3)

4πϵ

∫ ∞

−∞

dz′(
x2
⊥ + (z − z′)2

)3/2

+
λe3

4πϵ

∫ ∞

−∞

(z − z′)dz′(
x2
⊥ + (z − z′)2

)3/2 .

(3.79)

The first integral is 2/x2
⊥, whereas the second is zero (odd function,

over even interval). The bivector term of the grade selection above had
a x⊥ ∧ e3 = x⊥e3 factor, which can be further reduced using cylindrical
coordinates x = Rρ̂ + ze3, since x⊥ = Rρ̂, which leaves

F(x) =
λ

2πϵR
ρ̂ (1 − v/c) = E (1 − v/c) = E + I

(v
c
×E

)
, (3.80)

where v = ve3. The vector component of this is the electric field, which is
therefore directed radially, whereas the (dual) magnetic field ηIH is a set
of oriented planes spanning the radial and z-axis directions. We can also
see that there is a constant proportionality factor that relates the electric
and magnetic field components, namely

IηH = −Ev/c, (3.81)

or

H = v ×D. (3.82)

Exercise 3.4 Linear magnetic density and currents.

Given magnetic charge density ρm = λmδ(x)δ(y), and current density
M = ve3ρm = vρm, show that the field is given by

F(x) =
λmc
4πR

Iρ̂
(
1 −

v
c

)
,

or with B = λmρ̂/(4πR),

F = B × v + cIB.
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3.5.4.3 Infinite planar current.

A variation on the above example puts a uniform charge density ρ(x) =
σδ(z) in a plane, along with an associated current density J(x) = ve1eiθρ(x),
where i = e12. Letting v = ve1eiθ, the multivector current is

J(x) = ση (c − v) δ(z), (3.83)

so the field off the plane is

F(x) =
σ

4πϵ

$
dz′dA′

∥x − x′∥3
〈
(x − x′)(1 − v/c)

〉
1,2δ(z

′). (3.84)

If x∥ = (x ∧ e3)e3, and x′
∥
= (x′ ∧ e3)e3, are the components of the

vectors x, x′ in the x-y plane, then integration over z′ and a change of
variables x′

∥
− x∥ = r′e1eiθ′ yields

F(x) =
σ

4πϵ

"
r′dr′dθ′

(z2 + r′2)3/2

〈(
ze3 − r′e1eiθ′

)
(1 − v/c)

〉
1,2
. (3.85)

The eiθ′ integrands are killed, so for z , 0, the field is

F(x) =
σz

4πϵ |z|
⟨e3(1 − v/c)⟩1,2. (3.86)

Since v ∈ span {e1, e2} the product e3v is a bivector and the grade selec-
tion can be dropped, leaving

F(x) =
σ sgn(z)

4πϵ
e3

(
1 −

v
c

)
. (3.87)

This field toggles sign when crossing the plane, but is constant other-
wise. The electric and magnetic field components are once again related
by eq. (3.82).

Exercise 3.5 Planar magnetic density and currents.

Given magnetic charge density ρm = σmδ(z), and current density M =
vρm, v = ve1eiθ, i = e12, show that the field is given by

F(x) =
σmc sgn(z)

4π
i
(
1 −

v
c

)
.
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Figure 3.2: Circular line charge.
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3.5.4.4 Arc line charge.

In this example we will examine the (electric) field due to a line charge
density of λ along a circular arc segment ϕ′ ∈ [a, b], of radius r in the
x-y plane. The field will be evaluated at the spherical coordinate point
(R, θ, ϕ), as illustrated in fig. 3.2.

Using the GA spherical parameterization eq. (2.93), the observation
point now has the simple representation

x = Re3e jθ, (3.88)

and is the product of a polar directed vector with a complex exponential
whose argument is the polar rotation angle. The bivector j is a function
of the azimuthal angle ϕ, and encodes all the geometry of the rotation.
To sum the contributions of the charge elements we need the distance
between the charge element and the observation point. That vector differ-
ence is

x − x′ = Re3e jθ − re1eiϕ′ . (3.89)

Compare this to the tuple representation

x− x′ = (R sin θ cos ϕ− r cos ϕ′,R sin θ sin ϕ− r cos ϕ′, cos θ), (3.90)

for which the prospect of working with is considerably less attractive. The
squared length of eq. (3.89) is

(x − x′)2 = R2 + r2 − 2Rr
(
e3e jθ

)
·
(
e1eiϕ′

)
. (3.91)

The dot product of unit vectors in eq. (3.91) can be reduced using scalar
grade selection(

e3e jθ
)
·
(
e1eiϕ′

)
=

〈(
e1 sin θeiϕ

) (
e1eiϕ′

)〉
= sin θ

〈
e−iϕeiϕ′

〉
= sin θ cos(ϕ′ − ϕ),

(3.92)

so ∥∥∥x − x′
∥∥∥ = √

R2 + r2 − 2Rr sin θ cos(ϕ′ − ϕ). (3.93)

The electric field is

F =
1

4πϵ0

∫ b

a
λrdϕ′

Re3e jθ − re1eiϕ′

(R2 + r2 − 2Rr sin θ cos(ϕ′ − ϕ))3/2 . (3.94)
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Non-dimensionalizing eq. (3.94) with u = r/R, a change of variables
α = ϕ′ − ϕ, and noting that iϕ̂ = e1eiϕ, the field is

F =
λr

4πϵ0R2

∫ b−ϕ

a−ϕ
dα

e3e jθ − ue1eiϕeiα

(1 + u2 − 2u sin θ cosα)3/2

=
λr

4πϵ0R2

∫ b−ϕ

a−ϕ
dα

r̂ + ϕ̂uieiα

(1 + u2 − 2u sin θ cosα)3/2 ,

(3.95)

or

F = r̂
 λr

4πϵ0R2

∫ b−ϕ

a−ϕ

dα

(1 + u2 − 2u sin θ cosα)3/2


+ ϕ̂

 λrui
4πϵ0R2

∫ b−ϕ

a−ϕ

eiαdα

(1 + u2 − 2u sin θ cosα)3/2

 . (3.96)

Without CAS support for GA, this pair of integrals has to be evaluated
separately. The first integral scales the radial component of the electric
field. The second integral scales and rotates ϕ̂ within the azimuthal plane,
producing an electric field component in a ϕ̂′ = ϕ̂eiΦ direction.

3.5.4.5 Field of a ring current.

Let’s now compute the field due to a static charge and current density on
a ring of radius R as illustrated in fig. 3.3.

Figure 3.3: Field due to a circular distribution.

A static charge distribution on a ring at z = 0 has the form

ρ(x) = λδ(z)δ(r − R). (3.97)
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As always the current distribution is of the form J = vρ, and in this case
the velocity is azimuthal v = e2eiϕ, i = e12. The total multivector current
is

J =
1
ϵ
λδ(z)δ(r − R)

(
1 −

v
c

)
. (3.98)

Let the point that we observe the field, and the integration variables be

x = ze3 + rρ̂

x′ = z′e3 + r′ρ̂′.
(3.99)

The field is

F(x) =
λ

4πϵ

$
dz′r′dr′dϕ′ δ(z′) δ(r′ − R)×〈

((z − z′)e3 + rρ̂ − r′ρ̂′)
(
1 − v

c e2eiϕ′
)〉

1,2

((z − z′)2 + (rρ̂ − r′ρ̂′)2)3/2

=
λ

4πϵ

∫
Rdϕ′

〈
(ze3 + rρ̂ − Rρ̂′)

(
1 − v

c e2eiϕ′
)〉

1,2

(z2 + (rρ̂ − Rρ̂′)2)3/2 .

(3.100)

Without loss of generality, we can align the axes so that ρ̂ = e1, and
introduce dimensionless variables

z̃ = z/R

r̃ = r/R,
(3.101)

which gives

F =
λ

4πϵR

∫ 2π

0
dϕ′

〈(
z̃e3 + r̃e1 − e1eiϕ′

) (
1 − v

c e2eiϕ′
)〉

1,2

(z̃2 + (r̃e1 − e1eiϕ′)2)3/2 . (3.102)

In the denominator, the vector square expands as

(r̃e1 − e1eiϕ′)2 = (r̃ − e−iϕ′)e2
1(r̃ − eiϕ′)

= r̃2 + 1 − 2r̃ cos(ϕ′),
(3.103)

and the grade selection in the numerator is〈(
z̃e3 + r̃e1 − e1eiϕ′

) (
1 −

v
c

e2eiϕ′
)〉

1,2
= z̃e3 + r̃e1 − e1eiϕ′

−
v
c

(
z̃e31eiϕ′ + r̃i cos(ϕ′) + i

)
.
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(3.104)

Any of the exponential integrals terms are of the form∫ 2π

0
dϕ′eiϕ′ f (cos(ϕ′)) =

∫ 2π

0
dϕ′ cos(ϕ′) f (cos(ϕ′)), (3.105)

since the i sin ϕ′ f (cos(ϕ′) contributions are odd functions around ϕ′ = π.
For general z, r the integrals above require numeric evaluation or spe-

cial functions. Let

A =
∫ 2π

0
dϕ′

1

(1 + z̃2 + r̃2 − 2r̃ cos(ϕ′))3/2

=
4E

(
− 4r̃

(r̃−1)2+z̃2

)
√

z̃2 + (r̃ − 1)2 (z̃2 + (r̃ + 1)2)

(3.106a)

B =
∫ 2π

0
dϕ′

cos(ϕ′)

(1 + z̃2 + r̃2 − 2r̃ cos(ϕ′))3/2

=
2
((

z̃2 + r̃2 + 1
)

E
(
− 4r̃

(r̃−1)2+z̃2

)
−

(
z̃2 + (r̃ + 1)2

)
K

(
− 4r̃

(r̃−1)2+z̃2

))
r̃
√

z̃2 + (r̃ − 1)2 (z̃2 + (r̃ + 1)2)
,

(3.106b)

where K(m), E(m) are complete elliptic integrals of the first and second
kind respectively. As seen in fig. 3.4, these functions are similar, both
tailing off quickly with z, ρ, with largest values the ring.

(a) (b)

Figure 3.4: (a) A(z̃, ρ̃). (b) B(z̃, ρ̃).

Finally, restoring generality by making the transformation e1 → e1eiϕ =

ρ̂, e2 → e2eiϕ = ϕ̂, the field is now fully determined

F =
λ

4πϵR

((
z̃e3 + r̃ρ̂ −

vi
c

)
A −

(
ρ̂ +

v
c
(z̃e3ρ̂ + r̃i)

)
B
)
. (3.107)
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The field directions are nicely parameterized as multivector expres-
sions, with the relative weightings in different directions scaled by the po-
sition dependent integral coefficients of eq. (3.106). The multivector field
can be separated into its respective electric and magnetic components by
inspection

E = ⟨F⟩1 =
λ

4πRϵ
(z̃Ae3 + ρ̂(r̃A − B))

H =
1
η0
⟨−IF⟩1 =

λv
4πR

(
−e3 (A + r̃B) − ϕ̂z̃A

)
,

(3.108)

which, as expected, shows that the static charge distribution ρ ∝ λ4 only
contributes to the electric field, and the static current distribution J ∝ vλ
only contributes to the magnetic field. See fig. 3.5, fig. 3.6 for plots of the
electric and magnetic field directional variation near z̃ = 0, and fig. 3.7
for larger z where the azimuthal component of the field dominates.

Figure 3.5: Electric field direction for circular charge density distribution near
z = 0.

Exercise 3.6 Magnetic sources on a ring.

Given a constant (magnitude) multivector current on a ring J = Iλmδ(z)δ(r−
R)(c − ve2eiϕ), i = e12, show that the field is

F =
λmc
4πR

((
z̃i + r̃ϕ̂e3 +

v
c

e3

)
A +

(
e3ϕ̂ +

v
c
(z̃ρ̂ − r̃e3)

)
B
)
.

4 ∝: proportional to.
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Figure 3.6: Magnetic field direction for circular current density distribution near
z = 0.

Figure 3.7: Magnetic field for larger z.
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3.5.4.6 Ampere’s law. Two current sources.

Let’s try using Ampere’s law as stated in theorem 3.6 two compute the
field at a point in the blue region illustrated in fig. 3.8. This represents
a pair of z-axis electric currents of magnitude I1, I2 flowing through the
z = 0 points p1,p2 on the x-y plane.

Figure 3.8: Magnetic field between two current sources.

Solving the system with superposition, let’s consider first one source
flowing through p = (px, py, 0) with current J = e3Ieδ(x − px)δ(y − py),
and evaluate the field due to this source at the point r. With only magnetic
sources in the multivector current, Ampere’s law takes the form�

∂A
dx F = −I

∫
A

dA e3(−ηJ) = IηIe. (3.109)

The field F must be a bivector satisfying dx · F = 0. The circle is parame-
terized by

r = p + Re1eiϕ, (3.110)

so

dx = Re2eiϕdϕ = Rϕ̂dϕ. (3.111)
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With the line element having only a ϕ̂ component, F must be a bivector
proportional to e3r̂. Let F = F0e31eiϕ, where F0 is a scalar, so that drF is
a constant multiple of the unit pseudoscalar∫ 2π

0
drF = RF0

∫ 2π

0
e2eiϕdϕe31eiϕ

= RF0

∫ 2π

0
e231e−iϕeiϕdϕ

= 2πIRF0,

(3.112)

so

F0 =
1

I2πR
IIe

=
Ie

2πR
.

(3.113)

The field strength relative to the point p is

F =
ηIe

2πR
e3r̂

=
ηIe

2πR
e3r̂.

(3.114)

Switching to an origin relative coordinate system, removing the z = 0
restriction for r and pk, and summing over both currents, the total field at
any point r strictly between the currents is

F =
∑

k=1,2

ηIk

2π
e3

1
e3 (e3 ∧ (r − pk))

=
∑

k=1,2

ηIk

2π
1

e3 ∧ (r − pk)
.

(3.115)

The bivector nature of a field with only electric current density sources is
naturally represented by the wedge product e3 ∧ (r − pk) which is a vector
product of e3 and the projection of r − pk onto the x-y plane.

3.6 dynamics .

3.6.1 Inverting Maxwell’s equation.

Maxwell’s equation (theorem 3.1) is invertable using the Green’s function
for the spacetime gradient theorem 2.19. That solution is
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Theorem 3.7: Jefimenkos solution.

The solution of Maxwell’s equation is given by

F(x, t) = F0(x, t)+
1

4π

∫
dV ′

(
r̂
r2 J(x′, tr) +

1
cr

(1 + r̂) J̇(x′, tr)
)
,

where F0(x, t) is any specific solution of the homogeneous equa-
tion (∇ + (1/c)∂t) F0 = 0, time derivatives are denoted by over-
dots, and all times are evaluated at the retarded time tr = t − r/c.
When expanded in terms of the electric and magnetic fields (ignor-
ing magnetic sources), the non-homogeneous portion of this solution
is known as Jefimenkos’ equations [11].

E =
1

4π

∫
dV ′

(
r̂
ϵr

(
ρ(x′, tr)

r
+
ρ̇(x′, tr)

c

)
−
η

cr
J̇(x′, tr)

)
H =

1
4π

∫
dV ′

(
1
cr

J̇(x′, tr) +
1
r2 J(x′, tr)

)
× r̂,

(3.116)

Proof. The full solution is

F(x, t) = F0(x, t) +
∫

dV ′dt′G(x − x′, t − t′)J(x′, t′)

= F0(x, t)

+
1

4π

∫
dV ′dt′

((
−

r̂
r2

∂

∂r
+

r̂
r2 +

1
cr
∂

∂t

)
δ(−r/c + t − t′)

)
J(x′, t′)

(3.117)

where r = x − x′, r = ∥r∥ and r̂ = r/r. With the help of eq. (C.18), the
derivatives in the Green’s function eq. (3.117) can be evaluated, and the
convolution reduces to∫

dt′G(x − x′, t − t′)J(x′, t′)

=
1

4π

(
r̂
r2 J(x′, tr) −

r̂
r

(
−

1
c

)
d

dtr
J(x′, tr) +

1
cr

d
dtr

J(x′, tr)
)∣∣∣∣∣∣

tr=t−r/c
.

(3.118)

There have been lots of opportunities to mess up with signs and factors
of c, so let’s expand this out explicitly for a non-magnetic current source
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J = ρ/ϵ − ηJ. Neglect the contribution of the homogeneous solution F0,
and utilizing our freedom to insert a no-op grade 1,2 selection operation,
that removes any scalar and pseudoscalar terms that are necessarily killed
over the full integration range, we find

F =
1

4π

∫
dV ′

〈
r̂
r2

(
ρ

ϵ
− ηJ

)
+

1
cr

(1 + r̂)
(
ρ̇

ϵ
− ηJ̇

)〉
1,2

=
1

4π

∫
dV ′

(
r̂
ϵr2 ρ − η

r̂
r2 ∧ J −

η

cr
J̇ +

1
cr

r̂
ρ̇

ϵ
−
η

cr
r̂∧ J̇

)
=

1
4π

∫
dV ′

 r̂
ϵr2 ρ +

r̂ρ̇
ϵcr
−
ηJ̇
cr
− I

η

cr
r̂ × J̇ − I

η

r2 r̂ × J
 .

(3.119)

As F = E + IηH, the respective electric and magnetic fields by inspec-
tion. After re-inserting the space and time parameters that we suppressed
temporarily, our work is done.

The disadvantages of separating the field and current components into
their constituent components is also made painfully obvious by the com-
plexity of the conventional statement of the solution compared to the
equivalent multivector form.

3.7 energy and momentum .

3.7.1 Field energy and momentum density and the energy momentum
tensor.

It is assumed here that the conventional definitions of the field energy and
momentum density are known to the reader, as well as the conservation
equations relating their space and time derivatives. For reference, the con-
ventional definitions of those densities follow.

Definition 3.4: Energy and momentum density, Poynting vector.

The quantities E and P defined as

E =
1
2

(
ϵE2 + µH2

)
Pc =

1
c

E ×H,
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are known respectively as the field energy density and the momentum
density. S = c2P = E ×H is called the Poynting vector.

We will derive the conservation relationships that justify calling E,P the
energy and momentum densities, and will also show that the Poynting
vector represents the energy flux through a surface per unit time.

In geometric algebra, it is arguably more natural to write the Poynting
vector as a bivector-vector dot product such as

S =
1
η
(IηH) ·E, (3.120)

since this involves only components of the total electromagnetic field
strength F = E + IηH. However, we can do better, representing both E

and S in terms of F directly. The key to doing so is making use of the fact
that the energy and momentum densities are themselves components of a
larger symmetric rank-2 energy momentum tensor, which can in turn be
represented compactly in geometric algebra.

Definition 3.5: Energy-momentum and Maxwell stress tensors.

The rank-2 symmetric tensor Θµν, with components

Θ00 =
ϵ

2

(
E2 + η2H2

)
Θ0i =

1
c
(E ×H) · ei

Θi j = −ϵ

(
EiE j + η

2HiH j −
1
2
δi j

(
E2 + η2H2

))
,

is called the energy momentum tensor. The spatial index subset of
this tensor is known as the Maxwell stress tensor, and is often repre-
sented in dyadic notation(

a·
↔

T
)
· b =

∑
i, j

aiTi jb j,

or

a·
↔

T≡
∑
i, j

aiTi je j
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where Ti j = −Θi j.

Here we use the usual convention of Greek indices such as µ, ν for ranging
over both time (0) and spatial {1, 2, 3} indexes, and Latin letters such as i, j
for the “spatial” indexes {1, 2, 3}. The names and notation for the tensors
vary considerably5.

In geometric algebra the energy momentum tensor, and the Maxwell
stress tensor may be represented as linear grade (0, 1)-multivector valued
functions of a grade (0, 1)-multivector.

Definition 3.6: Energy momentum and Maxwell stress tensors.

We define the energy momentum tensor as

T (a) =
1
2
ϵFaF†,

where a is a grade (0, 1)-multivector parameter. We introduce a short-
hand notation for grade one selection with vector valued parameters

T(a) = ⟨T (a)⟩1,

and call this the Maxwell stress tensor.

Theorem 3.8: Expansion of the energy momentum tensor.

Given a scalar parameter α, and a vector parameter a =
∑

k akek, the
energy momentum tensor of definition 3.6 is a grade (0, 1)-multivector,
and may be expanded in terms of E,S and T(a) as

T (α + a) = α
(
E +

S
c

)
− a ·

S
c
+T(a),

where T(ei) · e j = −Θi j, or T(a) = a·
↔

T.

5 Θµν in definition 3.5 is called the symmetric stress tensor by some authors [17], and the
energy momentum tensor by others, and is sometimes written Tµν ([20], [7]). The sign
conventions and notation for the spatial components Θi j vary as well, but all authors
appear to call this subset the Maxwell stress tensor. The Maxwell stress tensor may be
written as σi j(= −Θi j) [20], or as Ti j(= −Θi j) ([11], [17].)
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Theorem 3.8 relates the geometric algebra definition of the energy mo-
mentum tensor to the quantities found in the conventional electromag-
netism literature.

Proof. Because T is a linear function of its parameter, we may prove this
in parts, starting with α = 1, a = 0, which gives

T (1) =
1
2
ϵFF†

=
1
2
ϵ (E + IηH) (E − IηH)

=
1
2
ϵ
(
E2 + η2H2

)
+

1
2

Iϵη (HE −EH)

=
1
2

(
ϵE2 + µH2

)
+

I
c

H∧E

=
1
2

(
ϵE2 + µH2

)
+

1
c

E ×H

= E +
S
c
.

(3.121)

An immediate take away from this expansion is that we may dispense
with any requirement to refer to electric or magnetic field components
in isolation and can express the energy and momentum densities (and
Poynting) vector in terms of only the total electromagnetic field strength

E =
1
2
ϵ
〈
FF†

〉
Pc =

1
2
ϵ
〈
FF†

〉
1

S =
1
2η

〈
FF†

〉
1
.

(3.122)

The power of this simple construction will be illustrated later when we
compute the field energy and momentum densities for a number of Maxwell
equation solutions in their geometric algebra form.

An expansion of T (ek) is harder to do algebraically than eq. (3.121), but
doing so will demonstrate that T (a) is a 0,1 grade multivector parameter
for any grade 0,1 parameter6. Cheating a bit, here are the results of a

6 Such an expansion is a worthwhile problem to develop GA manipulation skills. The reader
is encouraged to try this independently first, and to refer to appendix E for hints if re-
quired.
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brute force expansion of T (a) using a Mathematica GA computer algebra
package

T (1) =
ϵ

2

(
E2

1 + E2
2 + E2

3

)
+
ϵη2

2

(
H2

1 + H2
2 + H2

3

)
+ e1ηϵ (E2H3 − E3H2)

+ e2ηϵ (E3H1 − E1H3)

+ e3ηϵ (E1H2 − E2H1)

(3.123a)

T (e1) = ηϵ (E3H2 − E2H3)

+
1
2

e1ϵ
(
E2

1 − E2
2 − E2

3

)
+
ϵη2

2

(
H2

1 − H2
2 − H2

3

)
+ e2ϵ

(
E1E2 + η

2H1H2
)

+ e3ϵ
(
E1E3 + η

2H1H3
)

(3.123b)

T (e2) = ηϵ (E1H3 − E3H1)

+ e1ϵ
(
E1E2 + η

2H1H2
)

+
1
2

e2ϵ
(
−E2

1 + E2
2 − E2

3

)
+
ϵη2

2

(
−H2

1 + H2
2 − H2

3

)
+ e3ϵ

(
E2E3 + η

2H2H3
)

(3.123c)

T (e3) = ηϵ (E2H1 − E1H2)

+ e1ϵ
(
E1E3 + η

2H1H3
)

+ e2ϵ
(
E2E3 + η

2H2H3
)

+
1
2

e3ϵ
(
−E2

1 − E2
2 + E2

3

)
+
ϵη2

2

(
−H2

1 − H2
2 + H2

3

)
(3.123d)

Comparison to definition 3.5 shows that multivector energy momentum
tensor is related to the conventional tensor representation by

⟨T (1)⟩ = Θ0
0 = Θ00

⟨T (1)⟩1 · ei = Θ0
i = Θ0i

⟨T (ei)⟩ = Θi
0 = −Θi0

T(ei) · e j = Θi
j = −Θi j = Ti j.

(3.124)
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The only thing left to show is that how T(a) is equivalent to the dyadic
notation found in ([11], [17]).

T(a) =
∑

i

aiT(ei)

=
∑
i, j

ai (T(ei) · e j) e j

=
∑
i, j

aiTi je j

= a·
↔

T .

(3.125)

The dyadic notation is really just a clumsy way of expressing the fact that
T(a) is a linear vector valued function of a vector, which naturally has a
matrix representation.

3.7.2 Poynting’s theorem (prerequisites.)

Poynting’s theorem is a set of conservation relationships between relating
space and time change of energy density and momentum density, or more
generally between related components of the energy momentum tensor.
The most powerful way of stating Poynting’s theorem using geometric
algebra requires a few new concepts, differential operator valued linear
functions, and the adjoint.

Definition 3.7: Operator valued multivector functions.

Given a multivector valued linear functions of the form f (x) = AxB,
where A, B, x are multivectors, and a linear operator D such as ∇, ∂t,
or ∇+ (1/c)∂t, the operator valued linear function f (D) is defined as

f (D) = A
↔

D B = (A
←

D)B+ A(
→

D B),

where
↔

D indicates that D is acting bidirectionally to the left and to
the right.

Perhaps counter intuitively, using operator valued parameters for the
energy momentum tensor T or the Maxwell stress tensor T will be par-
ticularly effective to express the derivatives of the tensor. There are a few
cases of interest, all related to evaluation of the tensor with a parameter
value of the spacetime gradient.
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Theorem 3.9: Energy momentum tensor operator parameters.

T ((1/c)∂t) =
1
c
∂T (1)
∂t
=

1
c
∂

∂t

(
E +

S
c

)
⟨T (∇)⟩ = −∇ ·

S
c

⟨T (∇)⟩1 = T(∇) =
3∑

k=1

(∇ ·T(ek)) ek.

Proof. We will proceed to prove each of the results of theorem 3.9 in
sequence, starting with the time partial, which is a scalar operator

T (∂t) =
ϵ

2
F
↔

∂t F†

=
ϵ

2

(
(∂tF)F† + F(∂tF†)

)
=
ϵ

2
∂tFF†

= ∂tT (1).

(3.126)

To evaluate the tensor at the gradient we have to take care of order.
This is easiest in a scalar selection where we may cyclically permute any
multivector factors

⟨T (∇)⟩ =
ϵ

2

〈
F
↔

∇ F†
〉

=
ϵ

2

〈
∇F†F

〉
=
ϵ

2
∇
〈
F†F

〉
1
,

(3.127)

but

F†F = (E − IηH) (E + IηH)

= E2 + η2H2 + Iη (EH −HE)
= E2 + η2H2 − 2ηE ×H.

(3.128)

Plugging eq. (3.128) into eq. (3.127) proves the result.
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Finally, we want to evaluate the Maxwell stress tensor of the gradient

T(∇) =
3∑

k=1

ek (T(∇)) · ek

=

3∑
k,m=1

ek∂m (T(em) · ek)

=

3∑
k,m=1

ek∂m (T(ek) · em)

=

3∑
k=1

ek (∇ ·T(ek)) ,

(3.129)

as claimed.

Will want to integrate T(∇) over a volume, which is essentially a diver-
gence operation.

Theorem 3.10: Divergence integral for the Maxwell stress tensor.

∫
V

dV T(∇) =
∫
∂V

dA T(n̂).

Proof. To prove theorem 3.10, we make use of the symmetric property of
the Maxwell stress tensor∫

V
dV T(∇) =

∑
k

∫
V

dV ek∇ ·T(ek)

=
∑

k

∫
∂V

dA ekn̂ ·T(ek)

=
∑
k,m

∫
∂V

dA eknmT(ek) · em

=
∑
k,m

∫
∂V

dA eknmT(em) · ek

=
∑

k

∫
∂V

dA ekT(n̂) · ek

=

∫
∂V

dA T(n̂),

(3.130)
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as claimed.

Finally, before stating Poynting’s theorem, we want to introduce the
concept of an adjoint.

Definition 3.8: Adjoint.

The adjoint A(x) of a linear operator A(x) is defined implicitly by the
scalar selection〈

yA(x)
〉
= ⟨xA(y)⟩.

The adjoint of the energy momentum tensor is particularly easy to calcu-
late.

Theorem 3.11: Adjoint of the energy momentum tensor.

The adjoint of the energy momentum tensor is

T (x) =
ϵ

2
F†xF.

The adjoint T and T satisfy the following relationships〈
T (1)

〉
= ⟨T (1)⟩ = E〈

T (1)
〉

1
= −⟨T (1)⟩1 = −

S
c〈

T (a)
〉
= −⟨T (a)⟩ = a ·

S
c〈

T (a)
〉

1
= ⟨T (a)⟩1 = T(a).

Proof. Using the cyclic scalar selection permutation property ⟨ABC⟩ =
⟨CAB⟩ we form

⟨xT (y)⟩ =
ϵ

2

〈
xFyF†

〉
=
ϵ

2

〈
yF†xF

〉
.

(3.131)

Referring back to definition 3.8 we see that the adjoint must have the
stated form. Proving the grade selection relationships of eq. (3.131) has
been left as an exercise for the reader. A brute force symbolic algebra
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proof using Mathematica is also available in stressEnergyTensorValues.nb.

As in theorem 3.9, the adjoint may also be evaluated with differential
operator parameters.

Theorem 3.12: Adjoint energy-momentum tensor.

〈
T ((1/c)∂t)

〉
=

1
c
∂T (1)
∂t
=

1
c
∂E

∂t〈
T ((1/c)∂t)

〉
1
= −

1
c2

∂S
∂t〈

T (∇)
〉
= ∇ ·

S
c〈

T (∇)
〉

1
= T(∇).

Proof. The proofs of each of the statements in theorem 3.12 are all fairly
simple

T ((1/c)∂t) =
1
c
ϵ

2
∂

∂t

(
F†F

)
=

1
c
∂

∂t

(
E −

S
c

)
.

(3.132)

〈
T (∇)

〉
=

〈
1T (∇)

〉
= ⟨∇T (1)⟩

= ∇ · ⟨T (1)⟩1

= ∇ ·
S
c
.

(3.133)
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〈
T (∇)

〉
1
=

∑
k

ek
(
ek ·

〈
T (∇)

〉
1

)
=

∑
k

ek
〈
ekT (∇)

〉
=

∑
k

ek⟨∇T (ek)⟩

=
∑

k

ek∇ · ⟨T (ek)⟩1

=
∑

k

ek∇ ·T(ek)

= T(∇).

(3.134)

3.7.3 Poynting theorem.

All the prerequisites for stating Poynting’s theorem are now finally com-
plete.

Theorem 3.13: Poynting’s theorem (differential form.)

The adjoint energy momentum tensor of the spacetime gradient sat-
isfies the following multivector equation

T (∇ + (1/c)∂t) =
ϵ

2

(
F†J + J†F

)
.

The multivector F†J + J†F can only have scalar and vector grades,
since it equals its reverse. This equation can be put into a form that
is more obviously a conservation law by stating it as a set of scalar
grade identities

∇ · ⟨T (a)⟩1 +
1
c
∂

∂t
⟨T (a)⟩ =

ϵ

2

〈
a(F†J + J † F)

〉
,
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or as a pair of scalar and vector grade conservation relationships

1
c
∂E

∂t
+∇ ·

S
c
= −

1
c
(E · J +H ·M)

−
1
c2

∂S
∂t
+T(∇) = ρE + ϵE ×M + ρmH + µJ ×H.

Conventionally, only the scalar grade relating the time rate of change
of the energy density to the flux of the Poynting vector, is called
Poynting’s theorem. Here the more general multivector (adjoint) re-
lationship is called Poynting’s theorem, which includes conserva-
tion laws relating for the field energy and momentum densities and
conservation laws relating the Poynting vector components and the
Maxwell stress tensor.

Proof. The conservation relationship of theorem 3.13 follows from

F†
(
↔

∇ +
1
c

↔

∂t

)
F =

((
∇ +

1
c
∂t

)
F
)†

F + F†
((
∇ +

1
c
∂t

)
F
)

= J†F + F†J.

(3.135)

The scalar form of theorem 3.13 follows from〈
aT (∇ + (1/c)∂t)

〉
= ⟨(∇ + (1/c)∂t)T (a)⟩

= ∇ · ⟨T (a)⟩1 +
1
c
∂

∂t
⟨T (a)⟩.

(3.136)

We may use the scalar form of the theorem to extract the scalar grade,
by setting a = 1, for which the right hand side can be reduced to a single
term since scalars are reversion invariant〈

F†J
〉
=

〈
F†J

〉†
=

〈
J†F

〉
, (3.137)

so

∇ · ⟨T (1)⟩1 +
1
c
∂

∂t
⟨T (1)⟩ = ∇ ·

S
c
+

1
c
∂E

∂t

=
ϵ

2

〈
F†J + J†F

〉
= ϵ

〈
F†J

〉
= ϵ

〈
(E − IηH) (η (cρ − J) + I (cρm −M))

〉
= ϵ (−ηE · J − ηH ·M)

= −
1
c

E · J −
1
c

H ·M,
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(3.138)

which proves the claimed explicit expansion of the scalar grade selection
of Poynting’s theorem.

The left hand side of the vector grade selection follows by linearity
using theorem 3.12〈

T (∇ + (1/c)∂t)
〉

1
=

〈
T (∇) + T ((1/c)∂t)

〉
1

= T(∇) −
1
c2

∂S
∂t
.

(3.139)

The right hand side is a bit messier to simplify. Let’s do this in pieces by
superposition, first considering just electric sources

ϵ

2

〈
ek

(
F†J + J†F

)〉
=
ϵη

2
〈
ek ((E − IηH)(cρ − J) + (cρ − J)(E + IηH))

〉
=

1
2c

ek · ⟨(E − IηH)(cρ − J) + (cρ − J)(E + IηH)⟩1

=
1
c

ek · (cρE + IηH∧ J)

=
1
c

ek · (cρE − ηH × J)

= ek · (ρE + µJ ×H) ,

(3.140)

and then magnetic sources

ϵ

2

〈
ek

(
F†J + J†F

)〉
=
ϵ

2
〈
ek ((E − IηH)I(cρm −M) − I(cρm −M)(E + IηH))

〉
=
ϵ

2
ek · ⟨(IE + ηH)(cρm −M) + (cρm −M)(−IE + ηH)⟩1

= ϵek · (ηcρmH − IE∧M)

= ek · (ρmH + ϵE ×M) .

(3.141)

Jointly, eq. (3.139), eq. (3.140), eq. (3.141) complete the proof.

The integral form of theorem 3.13 submits nicely to physical interpreta-
tion.

Theorem 3.14: Poynting’s theorem (integral form.)
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∂

∂t

∫
V

dV E = −

∫
∂V

dA n̂ · S −
∫

V
dV (J ·E +M ·H)∫

V
dV (ρE + J ×B)

+

∫
V

dV (ρmH − ϵM ×E) = −
∂

∂t

∫
V

dV P +

∫
∂V

dA T(n̂).

Proof of theorem 3.14 is left to the reader, but requires only the divergence
theorem, theorem 3.10, and definition 3.4.

The scalar integral in theorem 3.14 relates the rate of change of total
energy in a volume to the flux of the Poynting through the surface bound-
ing the volume. If the energy in the volume increases(decreases), then in
a current free region, there must be Poynting flux into(out-of) the volume.
The direction of the Poynting vector is the direction that the energy is
leaving the volume, but only the projection of the Poynting vector along
the normal direction contributes to this energy loss.

The right hand side of the vector integral in theorem 3.14 is a contin-
uous representation of the Lorentz force (or dual Lorentz force for mag-
netic charges), the mechanical force on the charges in the volume. This
can be seen by setting J = ρv (or M = ρmM)∫

V
dV (ρE + J ×B) =

∫
V

dV ρ (E + v ×B)

=

∫
V

dq (E + v ×B) .
(3.142)

As the field in the volume is carrying the (electromagnetic) momentum
pem =

∫
V dVP, we can identify the sum of the Maxwell stress tensor

normal component over the bounding integral as time rate of change of
the mechanical and electromagnetic momentum

dpmech

dt
+

dpem

dt
=

∫
∂V

dAT(n̂). (3.143)

3.7.4 Examples: Some static fields.

We’ve found solutions for a number of static charge and current distribu-
tions.
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(a) For constant electric sources along the z-axis (eq. (3.80)) , with cur-
rent J moving with velocity v = ve3, the field had the form F =
Eρ̂ (1 − v/c).

(b) For constant magnetic sources along the z-axis (exercise 3.4) , with
current M moving with velocity v = ve3, the field had the form F =
ηHIρ̂ (1 − v/c).

(c) For constant electric sources in the x-y plane (eq. (3.87)) , with cur-
rent J moving with velocity v = ve1eiθ, i = e12, the field had the form
F = Ee3 (1 − v/c).

(d) For constant magnetic sources in the x-y plane (exercise 3.5) , with
current M moving with velocity v = ve1eiθ, i = e12, the field had the
form F = ηHi (1 − v/c).

In all cases the field has the form F = A(1 − v/c), where A is either a
vector or a bivector that anticommutes with the current velocity v, so the
energy momentum tensor T (1) has the form

T (1) =
ϵ

2
A(1 − v/c)2A†

=
ϵ

2
AA†(1 + v/c)2

=
ϵ

2
AA†

(
1 +

(v
c

)2
+ 2

v
c

)
.

(3.144)

For the electric sources this is

E +
S
c
=
ϵ

2
E2

(
1 +

(v
c

)2
+ 2

v
c

)
, (3.145)

or

E =
ϵ

2
E2

(
1 +

(v
c

)2
)

S = ϵE2v.
(3.146)

For the magnetic sources this is

E +
S
c
=
µ

2
H2

(
1 +

(v
c

)2
+ 2

v
c

)
, (3.147)

or

E =
µ

2
H2

(
1 +

(v
c

)2
)

S = µH2v.
(3.148)
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There are three terms in the multivector (1− v/c)2 = 1+ (v/c)2
+ 2v/c.

For electric sources, the first scalar term is due to the charge distribution,
and provides the electric field contribution to the energy density. The sec-
ond scalar term is due to the current distribution, and provides the mag-
netic field contribution to the energy density. The final vector term, propor-
tional to the current velocity contributes to the Poynting vector, showing
that the field momentum travels along the direction of the current in these
static configurations.

Calculation of the T (ek) tensor components is generally more involved.
Let’s do this calculation for each of the fields above in turn to illustrate.

(a): To calculate T (e3) we can reduce the following products

Fe3F† = E2ρ̂ (1 − v/c) e3 (1 − v/c) ρ̂

= −E2e3ρ̂ (1 − v/c)2 ρ̂

= −E2e3ρ̂
(
1 + v2/c2 − 2v/c

)
ρ̂

= −E2e3ρ̂
2
(
1 + v2/c2 + 2v/c

)
= −E2e3

(
1 + v2/c2 + 2v/c

)
.

(3.149)

Since

T (ek) = −
S
c
· ek +T(ek). (3.150)

This means that S · e3 = ϵE2v, as already found. The vector component
of this tensor element is

T(e3) = −
ϵ

2
E2e3

(
1 + v2/c2

)
. (3.151)

This component of the stress tensor is aligned along the same axis as
the velocity. Calculation of the other stress tensor components is easiest
in cylindrical coordinates. Along the radial direction

ρ̂ (1 − v/c) ρ̂ (1 − v/c) ρ̂ = ρ̂2 (1 + v/c) (1 − v/c) ρ̂

=
(
1 − v2/c2

)
ρ̂,

(3.152)

and along the azimuthal direction

ρ̂ (1 − v/c) θ̂ (1 − v/c) ρ̂ = ρ̂θ̂ (1 + v/c) (1 − v/c) ρ̂

= −θ̂ρ̂2
(
1 − v2/c2

)
= −θ̂

(
1 − v2/c2

)
.

(3.153)
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Since T (a) is a linear operator for any vector parameters a, it cannot
have any grade zero component along any directions e · e3 = 0. No grade
zero component of T (e1),T (e2) implies that the Poynting vector is zero
along the e1 and e2 directions respectively, as we saw above in eq. (3.146).

In summary

T(ρ̂) =
ϵ

2
E2

(
1 − v2/c2

)
ρ̂

T(θ̂) = −
ϵ

2
E2

(
1 − v2/c2

)
θ̂

T(e3) = −
ϵ

2
E2

(
1 + v2/c2

)
e3.

(3.154)

For this field that T(ρ̂) is entirely radial, whereas T(θ̂) is entirely az-
imuthal.

In terms of an arbitrary vector in cylindrical coordinates

a = aρρ̂ + aθθ̂ + aze3, (3.155)

the grade one component of the tensor is

T(a) =
ϵ

2
E2

(
1 − v2/c2

) (
aρρ̂ − aθθ̂

)
−
ϵ

2
E2

(
1 + v2/c2

)
aze3.

(3.156)

(b): For F = ηHIρ̂ (1 − v/c), and v = ve3 we have

FaF† = η2H2Iρ̂ (1 − v/c) a (1 − v/c) ρ̂(−I)

= η2H2ρ̂ (1 − v/c) a (1 − v/c) ρ̂.
(3.157)

We can write the tensor components immediately, since eq. (3.157) has
exactly the same structure as the tensor components computed in part (a)
above. That is

T(a) =
µ

2
H2

(
1 − v2/c2

) (
aρρ̂ − aθθ̂

)
−
µ

2
H2

(
1 + v2/c2

)
aze3.

(3.158)

(c): For F = Ee3 (1 − v/c), and v = vρ̂, we have

FaF† = E2e3 (1 − (v/c)ρ̂) a (1 − (v/c)ρ̂) e3, (3.159)
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so we need the following grade selections

〈
e3 (1 − (v/c)ρ̂) ρ̂ (1 − (v/c)ρ̂) e3

〉
1 =

〈
e3ρ̂ (1 − (v/c)ρ̂)2 e3

〉
1

=
〈
e3ρ̂

(
1 + (v2/c2) − 2(v/c)ρ̂

)
e3

〉
1

=
(
1 + (v2/c2)

)
e3ρ̂e3

= −
(
1 + (v2/c2)

)
ρ̂〈

e3 (1 − (v/c)ρ̂) θ̂ (1 − (v/c)ρ̂) e3
〉

1
=

〈
e3θ̂ (1 + (v/c)ρ̂) (1 − (v/c)ρ̂) e3

〉
1

=
〈
e3θ̂

(
1 − (v2/c2)

)
e3

〉
1

= −
(
1 − (v2/c2)

)
θ̂〈

e3 (1 − (v/c)ρ̂) e3 (1 − (v/c)ρ̂) e3
〉

1 =
〈
(1 + (v/c)ρ̂) (1 − (v/c)ρ̂) e3

〉
1

=
(
1 − (v2/c2)

)
e3.

(3.160)

So the Maxwell stress tensor components of interest are

T(a) = −
ϵ

2
E2

(
1 + (v2/c2)

)
aρρ̂

+
ϵ

2
E2

(
1 − (v2/c2)

) (
aze3 − aθθ̂

)
.

(3.161)

(d): For F = ηHi (1 − v/c) , i = e12, and v = vρ̂, we can use a duality
transformation for the unit bivector i

F = ηHIe3 (1 − v/c) , (3.162)

so

FaF† = η2H2e3 (1 − v/c) a (1 − v/c) e3. (3.163)

Equation (3.163) has the structure found in part (c) above, so

T(a) = −
µ

2
H2

(
1 + (v2/c2)

)
aρρ̂

+
µ

2
H2

(
1 − (v2/c2)

) (
aze3 − aθθ̂

)
.

(3.164)

3.7.5 Complex energy and power.
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Theorem 3.15: Complex power representation.

Given a time domain representation of a phasor based field F = F(ω)

F(t) = Re
(
Fe jωt

)
,

the energy momentum tensor multivector T (1) has the representation

T (1) = E +
S
c
=
ϵ

4
Re

(
F∗F† + FF†e2 jωt

)
.

With the usual definition of the complex Poynting vector

S =
1
2

E ×H∗ =
1
2
(IH∗) ·E,

the energy and momentum components of T (1), for real µ, ϵ are

E =
1
4

(
ϵ|E|2 + µ|H|2

)
+

1
4

Re
((
ϵE2 + µH2

)
e2 jωt

)
S = ReS +

1
2

Re
(
(E ×H) e2 jωt

)
.

Proof. To prove theorem 3.15 we start by expanding the real part opera-
tion explicitly

F(t) = Re
(
Fe jωt

)
=

1
2

(
Fe jωt + F∗e− jωt

)
.

(3.165)

The energy momentum multivector for the field is therefore

1
2
ϵF(t)F(t)† =

ϵ

8

(
Fe jωt + F∗e− jωt

) (
F†e jωt + (F∗)† e− jωt

)
=
ϵ

8

(
FF†e2 jωt +

(
FF†e2 jωt

)∗
+ F∗F† +

(
F∗F†

)∗)
,

(3.166)

so we have

E +
S
c
=

1
2
ϵF(t)F(t)†

=
ϵ

4
Re

(
F∗F† + FF†e2 jωt

)
,

(3.167)

which proves the first part of the theorem.
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Next, we’d like to expand T (1)

1
4
ϵF∗F† =

1
4
ϵ (E∗ + IηH∗) (E − IηH)

=
1
4

(
E∗ϵE + ϵη2H∗H + Iϵη (H∗E −E∗H)

)
=

1
4

(
ϵ|E|2 + µ|H|2 +

I
c
(H∗E −E∗H)

)
.

(3.168)

The scalar terms are already real, but the real part of the vector term is

I
4c

Re (H∗E −E∗H) =
I

8c
(H∗E −E∗H +HE∗ −EH∗)

=
I

8c
(2H∗ ∧E + 2H∧E∗)

=
1
4c

(E ×H∗ +E∗ ×H)

=
1
2c

Re (E ×H∗) .

(3.169)

The ϵFF† factor of e2 jωt above was expanded in eq. (3.121), so the
energy momentum multivector is

E +
S
c
=

1
4

(
ϵ|E|2 + µ|H|2

)
+

1
2c

Re (E ×H∗)

+Re
((

1
4

(
ϵE2 + µH2

)
+

1
2c

E ×H
)

e2 jωt
)
.

(3.170)

Expressing eq. (3.170) in terms of the complex Poynting vector S, com-
pletes the proof.

Observe that averaging over one period T kills any sinusoidal contribu-
tions, so the steady state energy and Poynting vectors are just

1
T

∫ τ+T

τ
E(t)dt =

1
4

(
ϵ|E|2 + µ|H|2

)
1
T

∫ τ+T

τ
S(t)dt = ReS.

(3.171)

3.8 lorentz force .

3.8.1 Statement.

We now wish to express the Lorentz force equation eq. (3.4a) in its geo-
metric algebra form. A few definitions are helpful.
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Definition 3.9: Energy momentum multivector.

For a particle with energy E and momentum p, we define the energy
momentum multivector as

T = E + cp.

Definition 3.10: Multivector charge.

We may define a multivector charge that includes both the magnitude
and velocity (relative to the speed of light) of the charged particle.

Q =
∫

V
JdV,

where J = ρeve,M = ρmvm. For electric charges this is

Q = qe (1 + ve/c) ,

and for magnetic charges

Q = Iqm (1 + vm/c) ,

where qe =
∫

V ρedV, qm =
∫

V ρmdV .

With a multivector charge defined, the Lorentz force equation can be
stated in terms of the total electromagnetic field strength

Theorem 3.16: Lorentz force and power.

The respective power and force experienced by particles with electric
(and/or magnetic) charges is described by definition 3.10 is

1
c

dT
dt
=

〈
FQ†

〉
0,1
=

1
2

(
F†Q + FQ†

)
.

where ⟨dT/dt⟩ = dE/dt is the power and ⟨dT/dt⟩1 = cdp/dt is the
force on the particle, and Q† is the electric or magnetic charge/veloc-
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ity multivector of definition 3.10. The conventional representation of
the Lorentz force/power equations〈

FQ†
〉

1
=

dp
dt
= q (E + v ×B)

c
〈
FQ†

〉
=

dE
dt
= qE · v.

may be recovered by grade selection operations. For magnetic parti-
cles, such a grade selection gives〈

FQ†
〉

1
=

dp
dt
= qm

(
cB −

1
c

vm ×E
)

c
〈
FQ†

〉
=

dE
dt
=

1
η

qmB ·
vm

c
.

Proof. To prove theorem 3.16, we can expand the multivector product
Fq (1 + v/c) into its constituent grades

qF
(
1 +

v
c

)
= q (E + IcB)

(
1 +

v
c

)
= qE + qIBv +

q
c

Ev + qcIB

=
q
c

E · v + q (E + v ×B) + q
(
cIB +

1
c

E∧ v
)
+ q(IB)∧ v.

(3.172)

We see the (c-scaled) particle power relationship eq. (3.4b) in the grade
zero component and the Lorentz force eq. (3.4b) in the grade 1 component.
A substitution q → −Iqm, v → vm, and subsequent grade 0,1 selection
gives〈

−IqmF
(
1 +

vm

c

)〉
0,1
= −Iqm

(
cIB +

1
c

E∧ vm

)
− IqmIB · vm

= qm

(
cB −

1
c

vm ×E
)
+ qmB · vm.

(3.173)

The grade one component of this multivector has the required form for
the dual Lorentz force equation from theorem 3.14. Scaling the grade
zero component by c completes the proof.
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3.8.2 Constant magnetic field.

The Lorentz force equation that determines the dynamics of a charged
particle in an external field F has been restated as a multivector differen-
tial equation, but how to solve such an equation is probably not obvious.
Given a constant external magnetic field bivector F = IcB, the Lorentz
force equation, for small velocities7, is

m
dv
dt
= qF ·

v
c
, (3.174)

or

Ω = −
qF
mc

dv
dt
= v ·Ω,

(3.175)

where Ω is a bivector containing all the constant factors.
This can be solved by introducing a multivector integration factor R

and its reverse R† on the left and right respectively

R
dv
dt

R† = Rv ·ΩR†

=
1
2

R (vΩ −Ωv)R†

=
1
2

RvΩR† −
1
2

RΩvR†,

(3.176)

or

0 = R
dv
dt

R† +
1
2

RΩvR† −
1
2

RvΩR†. (3.177)

Let

Ṙ = RΩ/2. (3.178)

Since Ω is a bivector Ṙ† = −ΩR†/2, so by chain rule

0 =
d
dt

(
RvR†

)
. (3.179)

The integrating factor has solution

R = eΩt/2, (3.180)

7 The (relativistically) correct Lorentz force equation for zero electric field is d(mγv)/dt =
qF · v/c where γ−1 =

√
1 − v2/c2. See [7] for a relativistic approach to this problem.
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a “complex exponential”, so the solution of eq. (3.174) is

v(t) = e−Ωt/2v(0)eΩt/2. (3.181)

The velocity of the charged particle traces out a helical path. Any com-
ponent of the initial velocity v(0)⊥ perpendicular to the Ω plane is un-
touched by this rotation operation, whereas components of the initial ve-
locity v(0)∥ that lie in the Ω plane will trace out a circular path. If Ω̂ is
the unit bivector for this plane, that velocity is

v(0)∥ =
(
v(0) · Ω̂

)
Ω̂−1 = (v(0)∧ B̂) · B̂

v(0)⊥ =
(
v(0)∧ Ω̂

)
Ω̂−1 = (v(0) · B̂)B̂

v(t) = v(0)∥eΩt + v(0)⊥
= v(0)∥ cos(qBt/m) + v(0)∥ × B̂ sin(qBt/m) + v(0)⊥,

(3.182)

where B = BB̂.
A multivector integration factor method for solving the Lorentz force

equation in constant external electric and magnetic fields can be found in
[12]. Other examples, solved using a relativistic formulation of GA, can
be found in [7], [14], and [15].

3.8.2.1 Problems.

Exercise 3.7 Constant magnetic field.

In eq. (3.182), each of
(
v(0) · Ω̂

)
Ω̂−1,

(
v(0)∧ Ω̂

)
Ω̂−1, and v(0)∥eΩt +

v(0)⊥, was expanded by setting Ω̂ = IB̂. Perform those calculations.

3.9 polarization .

3.9.1 Phasor representation.

In a discussion of polarization, it is convenient to align the propagation
direction along a fixed direction, usually the z-axis. Setting k̂ = e3, βz =
k · x in a plane wave representation from theorem 3.3 the field is

F(x, ω) = (1 + e3)Ee− jβz

F(x, t) = Re
(
F(x, ω)e jωt

)
,

(3.183)

where E · e3 = 0 , (i.e. E is an electric field, and not just a free parameter).
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Here the imaginary j has no intrinsic geometrical interpretation, E =
Er + jEi is allowed to have complex values, and all components of E is
perpendicular to the propagation direction (Er · e3 = Ei · e3 = 0). Stated
explicitly, this means that the electric field phasor may have real or com-
plex components in either of the transverse plane basis directions, as in

E = (α1 + jβ1) e1 + (α2 + jβ2) e2. (3.184)

The total time domain field for this general phasor field is easily found to
be

F(x, t)
= (1 + e3) ((α1e1 + α2e2) cos (ωt − βz) − (β1e1 + β2e2) sin (ωt − βz)) .

(3.185)

Different combinations of α1, α2, β1, β2 lead to linear, circular, or ellipti-
cally polarized plane wave states to be discussed shortly. Before doing so,
we want to find natural multivector representations of eq. (3.185). Such
representations are possible using either the pseudoscalar for the trans-
verse plane e12, or the R3 pseudoscalar I.

3.9.2 Transverse plane pseudoscalar.

3.9.2.1 Statement.

In this section the pseudoscalar of the transverse plane, written i = e12, is
used as an imaginary.

Definition 3.11: Phase angle.

Define the total phase as

ϕ(z, t) = ωt − βz.

We seek a representation of the field utilizing complex exponentials of
the phase, instead of signs and cosines. It will be helpful to define the
coordinates of the Jones vector to state that representation.
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Definition 3.12: Jones vectors.

The coordinates of the Jones vector, conventionally defined as a tuple
of complex values (c1, c2), are

c1 = α1 + iβ1

c2 = α2 + iβ2.

In this definition we have used i = e12, the pseudoscalar of the trans-
verse plane, as the imaginary.

We will not use the Jones vector as a tuple, but will use c1, c2 as stated
above.

Theorem 3.17: Circular polarization coefficients.

The time domain representation of the field in eq. (3.185) can be
stated in terms of the total phase as

F = (1 + e3) e1
(
αReiϕ + αLe−iϕ

)
,

where

αR =
1
2
(c1 + ic2)

αL =
1
2
(c1 − ic2)

†
,

where c1, c2 are the 0,2 grade multivector representation of the Jones
vector coordinates from definition 3.12.
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Proof. To prove theorem 3.17, we have only to factor e1 out of eq. (3.185)
and then substitute complex exponentials for the sine and cosine

(α1e1 + α2e2) cos (ϕ) − (β1e1 + β2e2) sin (ϕ)

= e1 ((α1 + α2i) cos (ϕ) − (β1 + β2i) sin (ϕ))

=
e1

2

(
(α1 + α2i)

(
eiϕ + e−iϕ

)
+ (β1 + β2i) i

(
eiϕ − e−iϕ

))
=

e1

2

(
(α1 + iβ1 + i(α2 + iβ2)) eiϕ

+
(
(α1 + iβ1)† + i(α2 + iβ2)†

)
e−iϕ

)
=

e1

2

(
(c1 + ic2) eiϕ + (c1 − ic2)

† e−iϕ
)
.

3.9.2.2 Linear polarization.

Linear polarization is described by

αR =
1
2
∥E∥ ei(ψ+θ)

αL =
1
2
∥E∥ ei(ψ−θ),

(3.186)

so the field is

F = (1 + e3) ∥E∥ e1eiψ cos(ωt − βz + θ). (3.187)

Here θ is an arbitrary initial phase. The electric field E traces out all the
points along the line spanning the points between ±e1eiψ ∥E∥, whereas the
magnetic field H traces out all the points along ±e2eiψ ∥E∥ /η as illustrated
(with η = 1) in fig. 3.9.

3.9.2.3 Circular polarization.

A field for which the change in phase results in the electric field tracing
out a (clockwise,counterclockwise) circle

ER = ∥E∥ (e1 cos ϕ + e2 sin ϕ) = ∥E∥ e1 exp (e12ϕ)

EL = ∥E∥ (e1 cos ϕ − e2 sin ϕ) = ∥E∥ e1 exp (−e12ϕ) ,
(3.188)
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Figure 3.9: Linear polarization.

is referred to as having (right,left) circular polarization, so the choice
αR = ∥E∥ , αL = 0 results in a right polarized wave

F = (1 + e3) ∥E∥ e1ei(ωt−kz), (3.189)

and αL = ∥E∥ , αR = 0 results in a left polarized wave

F = (1 + e3) ∥E∥ e1e−i(ωt−kz), (3.190)

There are different conventions for the polarization orientation, and here
the IEEE antenna convention discussed in [3] are used.

3.9.2.4 Elliptical parameterization.

An elliptical polarized electric field can be parameterized as

E = Eae1 cos ϕ + Ebe2 sin ϕ, (3.191)

which corresponds to circular polarization coefficients with values

αR =
1
2
(Ea − Eb)

αL =
1
2
(Ea + Eb) .

(3.192)

Therefore an elliptically polarized field can be represented as

F =
1
2

(1 + e3)e1
(
(Ea + Eb)eiϕ + (Ea − Eb)e−iϕ

)
. (3.193)
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An interesting variation of the elliptical polarization uses a hyperbolic
parameterization. If a, b are the semi-major/minor axes of the ellipse (i.e.
a > b), and a = ae1eiψ is the vectoral representation of the semi-major
axis (not necessarily placed along e1), and e =

√
1 − (b/a)2 is the eccen-

tricity of the ellipse, then it can be shown ([12]) that an elliptic parameter-
ization can be written in the compact form

r(ϕ) = ea cosh(tanh−1(b/a) + iϕ). (3.194)

When the bivector imaginary i = e12 is used then this parameteriza-
tion is real and has only vector grades, so the electromagnetic field for a
general elliptic wave has the form

F = eEa (1 + e3) e1eiψ cosh (m + iϕ)

m = tanh−1 (Eb/Ea)

e =
√

1 − (Eb/Ea)2,

(3.195)

where Ea(Eb) are the magnitudes of the electric field components lying
along the semi-major(minor) axes, and the propagation direction e3 is or-
thogonal to both the major and minor axis directions. An elliptic electric
field polarization is illustrated in fig. 3.10, where the vectors representing
the major and minor axes are Ea = Eae1eiψ,Eb = Ebe1eiψ. Observe that
setting Eb = 0 results in the linearly polarized field of eq. (3.187).

Figure 3.10: Electric field with elliptical polarization.
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3.9.2.5 Energy and momentum.

Each polarization considered above (linear, circular, elliptical) have the
same general form

F = (1 + e3) e1eiψ f (ϕ), (3.196)

where f (ϕ) is a complex valued function (i.e. grade 0,2). The structure of
eq. (3.196) could be more general than considered so far. For example, a
Gaussian modulation could be added into the mix with f (ϕ) = eiϕ−(ϕ/σ)2/2.
Independent of the form of f , we may compute the energy, momentum
and Maxwell stress tensor for the plane wave given by eq. (3.196).

Theorem 3.18: Plane wave energy momentum tensor components.

The energy momentum tensor components for the plane wave given
by eq. (3.196) are

T (1) = −T (e3) = ϵ (1 + e3) f f †
(
= E +

S
c

)
T (e1) = T (e2) = 0.

Only the propagation direction of a plane wave, regardless of its polariza-
tion (or even whether or not there are Gaussian or other damping factors),
carries any energy or momentum, and only the propagation direction com-
ponent of the Maxwell stress tensor T(a) is non-zero.

Proof. To prove theorem 3.18, we may compute T (a) separately for each
of a = 1, e1, e2, e3. Key to all of these computations is the fact that e3

commutes with scalars and i, and e1, e2 both anticommute with i, and

more generally

e1

e2

 (a + ib) = (a − ib)

e1

e2

. For T (1) we need the product

of the field and its reverse

FF† = (1 + e3)���e1eiψ f f †

scalar

�
��e−iψe1 (1 + e3)

= (1 + e3)
2 f f †

= 2 (1 + e3) f f †,

(3.197)
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so T (1) = ϵ (1 + e3) f f †. For T (e3) we have

Fe3F† = (1 + e3) e1eiψ f e3 f †e−iψe1 (1 + e3)

= − (1 + e3) e3e1eiψ f f †e−iψe1 (1 + e3)

= − (1 + e3) e1eiψ f f †e−iψe1 (1 + e3)

= −2 (1 + e3) f f †,

(3.198)

so T (e3) = −T (1). For T (e1), we have

Fe1F† = (1 + e3) e1eiψ f e1 f †e−iψe1 (1 + e3)

= (1 + e3) e1eiψ f 2eiψe2
1 (1 + e3)

= (1 + e3) e1 f 2e2iψ (1 + e3)

= (1 + e3) e1 (1 + e3) f 2e2iψ

= (1 + e3) (1 − e3) e1 f 2e2iψ

=
(
1 − e2

3

)
e1 f 2e2iψ

= 0.

(3.199)

Clearly Fe2F† = 0 as well, so T (e1) = T (e2) = 0.

Using theorem 3.18 the energy momentum vector for the linearly po-
larized wave of eq. (3.187) is

T (1) =
ϵ

2
(1 + e3) ∥E∥2 cos2(ϕ + θ), (3.200)

and for the circularly polarized wave of eq. (3.189), or eq. (3.190) is

T (1) =
ϵ

2
(1 + e3) ∥E∥2 . (3.201)

A circularly polarized wave carries maximum energy and momentum,
whereas the energy and momentum of a linearly polarized wave oscillates
with the phase angle.

For the elliptically polarized wave of eq. (3.195) we have

f (ϕ) = eEa cosh (m + iϕ) . (3.202)

The absolute value of f is

f f † = e2E2
a cosh (m + iϕ) (cosh (m + iϕ))†

= e2E2
a (cosh(2m) + cos(2ϕ))

= e2E2
a

E2
b

E2
a
+ 2

1 − E2
b

E2
a

 cos2 ϕ


(3.203)
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The simplification above made use of the identity

(1 − (b/a)2) cosh(2 atanh(b/a)) = 1 + (b/a)2. (3.204)

The energy momentum for an elliptically polarized wave is therefore

T (1) =
ϵ

2
(1 + e3) e2E2

a

E2
b

E2
a
+ 2

1 − E2
b

E2
a

 cos2 ϕ

 . (3.205)

As expected, the phase dependent portion of the energy momentum tensor
vanishes as the wave function approaches circular polarization.

3.9.3 Pseudoscalar imaginary.

In this section we use the R3 pseudoscalar as an imaginary. As before,
we seek a representation of the field utilizing complex exponentials of the
phase, instead of signs and cosines, and as before the we wish to define
Jones vector coordinates as a go-between.

Definition 3.13: Jones vectors.

The coordinates of the Jones vector, conventionally defined as a tuple
of complex values (c1, c2), are

c1 = α1 + Iβ1

c2 = α2 + Iβ2.

In this definition we have used the R3 pseudoscalar I as the imagi-
nary.

We will not use the Jones vector as a tuple, but will use c1, c2 as stated
above.

Theorem 3.19: Circular polarization coefficients.

The time domain representation of the field in eq. (3.185) can be
stated in terms of the total phase as

F = (1 + e3) e1
(
αRe−Iϕ + αLeIϕ

)
,
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where

αR =
1
2
(c1 + Ic2)

†

αL =
1
2
(c1 − Ic2) ,

where c1, c2 are the 0,2 grade multivector representation of the Jones
vector coordinates from definition 3.13.

Notice that the signs of the exponentials have flipped for the left and right
handed circular polarizations. It may not obvious that the electric and
magnetic fields in this representation have the desired transverse proper-
ties. To see why that is still the case, and to understand the conjugation
in the complex exponentials, consider the right circular polarization case
with αR = ∥E∥ , αL = 0

F = (1 + e3) e1 ∥E∥ e−Iϕ

= (1 + e3) ∥E∥ (e1 cos ϕ − e23 sin ϕ)

= (1 + e3) ∥E∥ (e1 cos ϕ + e32 sin ϕ) ,

(3.206)

but since (1 + e3) e3 = 1 + e3, we have

F = (1 + e3) ∥E∥ (e1 cos ϕ + e2 sin ϕ) , (3.207)

which has the claimed right circular polarization.

Proof. To prove theorem 3.19 itself, the sine and cosine in eq. (3.185) can
be expanded in complex exponentials

2 (α1e1 + α2e2) cos ϕ − 2 (β1e1 + β2e2) sin ϕ

= (α1e1 + α2e2)
(
eIϕ + e−Iϕ

)
+ (β1e1 + β2e2) I

(
eIϕ − e−Iϕ

)
= (α1e1 − Iα2(Ie2))

(
eIϕ + e−Iϕ

)
+ (β1e1 − Iβ2(Ie2)) I

(
eIϕ − e−Iϕ

)
.

(3.208)

Since the leading 1 + e3 gobbles any e3 factors, its action on the dual of
e2 is

(1 + e3) Ie2 = (1 + e3) e31

= (1 + e3) e1.
(3.209)
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This allows us to unconditionally factor out e1 from eq. (3.208), so the
field is

F =
1
2
(1 + e3) e1

(
(α1 − Iα2)

(
eIϕ + e−Iϕ

)
+ (β1 − Iβ2) I

(
eIϕ − e−Iϕ

))
=

1
2
(1 + e3) e1

(
(α1 + Iβ1 − I (α2 + Iβ2)) eIϕ + (α1 − Iβ1 − I (α2 − Iβ2)) e−Iϕ

)
=

1
2
(1 + e3) e1

(
(c1 − Ic2) eIϕ +

(
c†1 − Ic†2

)
e−Iϕ

)
= (1 + e3) e1

(
αRe−Iϕ + αLe−Iϕ

)
.

(3.210)

Observe that there are some advantages to the pseudoscalar plane wave
form, especially for computing energy momentum tensor components
since I commutes with all grades. For example, we can see practically
by inspection that

T (1) = E +
S
v
= ϵ (1 + e3)

(
|αR|

2 + |αL|
2
)
, (3.211)

where the absolute value is computed using the reverse as the conjugation
operation |z|2 = zz†.

3.10 transverse fields in a waveguide .

We now wish to consider more general solutions to the source free Maxwell’s
equation than the plane wave solutions derived in section 3.4. One way of
tackling this problem is to assume the solution exists, but ask how the field
components that lie strictly along the propagation direction are related to
the transverse components of the field. Without loss of generality, it can
be assumed that the propagation direction is along the z-axis.
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Theorem 3.20: Transverse and propagation field components.

If e3 is the propagation direction, the components of a field F in the
propagation direction and in the transverse plane are respectively

Fz =
1
2
(F + e3Fe3)

Ft =
1
2
(F − e3Fe3) ,
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where F = Fz + Ft.

Proof. To determine the components of the field that lie in the propa-
gation direction and transverse planes, we state the field in the propaga-
tion direction, building it from the electric and magnetic field projections
along the z-axis

Fz = (E · e3) e3 + Iη (H · e3) e3

=
1
2
(Ee3 + e3E) e3 +

1
2

Iη (He3 + e3H) e3

=
1
2
(E + e3Ee3) +

1
2

Iη (H + e3He3)

=
1
2
(F + e3Fe3) .

(3.212)

The difference F − Fz is the transverse component

Ft = F − Fz

= F −
1
2
(F + e3Fe3)

=
1
2
(F − e3Fe3) .

(3.213)

We wish to split the gradient into transverse and propagation direction
components.

Definition 3.14: Transverse and propagation direction gradients.

Define the propagation direction gradient as e3∂z, and transverse
gradient by

∇t = ∇ − e3∂z.

Given this definition, we seek to show that

Theorem 3.21: Transverse and propagation field solutions.

Given a field propagating along the z-axis (either forward or back-
wards), with angular frequency ω, represented by the real part of

F(x, y, z, t) = F(x, y)e jωt∓ jkz,
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the field components that solve the source free Maxwell’s equation
are related by

Ft = j
1

ω
c ∓ ke3

∇tFz

Fz = j
1

ω
c ∓ ke3

∇tFt.

Written out explicitly, the transverse field component expands as

Et =
j

ω
c

2
− k2

(
±k∇tEz +

ωη

c
e3 ×∇tHz

)
ηHt =

j
ω
c

2
− k2

(
±kη∇tHz −

ω

c
e3 ×∇tEz

)
.

Proof. To prove we first insert the assumed phasor representation into
Maxwell’s equation, which gives(

∇t + j
(
ω

c
∓ ke3

))
F(x, y) = 0. (3.214)

Dropping the x, y dependence for now (i.e. F(x, y) → F, we find a re-
lation between the transverse gradient of F and the propagation direction
gradient of F

∇tF = − j
(
ω

c
∓ ke3

)
F. (3.215)

From this we now seek to determine the relationships between Ft and Fz.
Since ∇t has no x̂, ŷ components, e3 anticommutes with the transverse

gradient

e3∇t = −∇te3, (3.216)

but commutes with 1 ∓ e3. This means that

1
2
(∇tF ± e3 (∇tF) e3) =

1
2
(∇tF ∓∇te3Fe3)

= ∇t
1
2
(F ∓ e3Fe3) ,

(3.217)

or
1
2
(∇tF + e3 (∇tF) e3) = ∇tFt

1
2
(∇tF − e3 (∇tF) e3) = ∇tFz,

(3.218)
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so Maxwell’s equation eq. (3.215) becomes

∇tFt = − j
(
ω

c
∓ ke3

)
Fz

∇tFz = − j
(
ω

c
∓ ke3

)
Ft.

(3.219)

Provided ω2 , (kc)2, these can be inverted. Such an inversion allows an
application of the transverse gradient to whichever one of Fz, Ft is known,
to compute the other, as stated in theorem 3.21.

The relation for Ft in theorem 3.21 is usually stated in terms of the elec-
tric and magnetic fields. To perform that expansion, we must first evaluate
the multivector inverse explicitly

Fz = j
ω
c ± ke3(
ω
c

)2
− k2
∇tFt

Ft = j
ω
c ± ke3(
ω
c

)2
− k2
∇tFz.

(3.220)

so that we are in position to expand most of the terms in the numerator(
ω

c
± ke3

)
∇tFz = −

(
e3
ω

c
± k

)
∇te3Fz

=

(
±k − e3

ω

c

)
∇t (Ez + IηHz)

=

(
±k∇tEz +

ωη

c
e3 ×∇tHz

)
+ I

(
±kη∇tHz −

ω

c
e3 ×∇tEz

)
,

(3.221)

from which the transverse electric and magnetic fields stated in theo-
rem 3.21 can be read off.

A similar expansion for Ez,Hz in terms of Et,Ht is left to the reader.

Exercise 3.8 Transverse electric and magnetic field components.

Fill in the missing details in the steps of eq. (3.221).

Exercise 3.9 Propagation direction components.

Perform an expansion like eq. (3.221) to find Ez,Hz in terms of Et,Ht.
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3.11 multivector potential .

3.11.1 Definitions.

We know from conventional electromagnetism (given no fictitious mag-
netic sources) that we can represent the six components of the electric
and magnetic fields in terms of four scalar fields

E = −∇ϕ −
∂A
∂t

H =
1
µ
∇ ×A.

(3.222)

where

1. ϕ is the scalar potential V (Volts), and

2. A is the vector potential W/m (Webers/meter).

The conventional way of constructing these potentials makes use of the
identities,

∇ · (∇ ×A) = 0

∇ × (∇ϕ) = 0,
(3.223)

which are special cases of ∇ ∧∇ ∧ χ = 0 (for blades χ.) Applying those
to the source free Maxwell’s equations to find representations of E,H that
automatically satisfy those equations. For that conventional analysis, see
§18-6 [9], §10.1 [11], or §6.4 [17]. We can also find such a potential rep-
resentation using geometric algebra methods that are cross product free
(exercise 3.10.)

For Maxwell’s equations with fictitious magnetic sources, it can be
shown that a potential representation of the field

H = −∇ϕm −
∂F
∂t

E = −
1
ϵ
∇ × F.

(3.224)

satisfies the source-free grades of Maxwell’s equation. Here

1. ϕm is the scalar potential for (fictitious) magnetic sources A (Am-
peres), and
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2. F is the vector potential for (fictitious) magnetic sources C (Coulombs).

See [4], and [22] for such derivations. As with the conventional source
potentials, we can also apply our geometric algebra toolbox to easily find
these results (exercise 3.11.)

In eq. (3.222), and eq. (3.224) we have a mix of time partials and curls
that is reminiscent of Maxwell’s equation itself. It’s obvious to wonder
whether there is a more coherent integrated form for the potential. This is
in fact the case.

Lemma 3.1: Multivector potentials.

For Maxwell’s equation with electric sources, the total field F ex-
pressed in terms of the potentials of eq. (3.222) can be expressed in
multivector potential form

F =
〈(
∇ −

1
c
∂

∂t

)
(−ϕ + cA)

〉
1,2
. (3.225)

For Maxwell’s equation with only fictitious magnetic sources, the
total field F expressed in terms of the potentials of eq. (3.224) can
be expressed in multivector form

F =
〈(
∇ −

1
c
∂

∂t

)
Iη (−ϕm + cF)

〉
1,2
. (3.226)

The reader should try to verify this themselves (exercise 3.12.)
Using superposition, we can form a multivector potential that includes

all grades.

Definition 3.15: Multivector potential.

We call A, a multivector with all grades, the multivector potential,
defining the total field as

F =
〈(
∇ −

1
c
∂

∂t

)
A
〉

1,2

=

(
∇ −

1
c
∂

∂t

)
A −

〈(
∇ −

1
c
∂

∂t

)
A
〉

0,3
.

(3.227)
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Imposition of the constraint〈(
∇ −

1
c
∂

∂t

)
A
〉

0,3
= 0, (3.228)

is called the Lorentz gauge condition, and allows us to express F in
terms of the potential without any grade selection filters.

Lemma 3.2: Conventional multivector potential.

Let

A = −ϕ + cA + Iη (−ϕm + cF) . (3.229)

With definition 3.15, this results in the conventional potential repre-
sentation of the electric and magnetic fields

E = −∇ϕ −
∂A
∂t
−

1
ϵ
∇ × F

H = −∇ϕm −
∂F
∂t
+

1
µ
∇ ×A.

(3.230)

In terms of potentials, the Lorentz gauge condition eq. (3.228) takes
the form

0 =
1
c
∂ϕ

∂t
+∇ · (cA)

0 =
1
c
∂ϕm

∂t
+∇ · (cF).

(3.231)

Proof. See exercise 3.13.

Theorem 3.22: The potential wave equations.
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The potentials are related to the sources by

□ϕ = −
ρ

ϵ
−
∂

∂t

(
∇ ·A +

1
c2

∂ϕ

∂t

)
□A = −µJ +∇

(
∇ ·A +

1
c2

∂ϕ

∂t

)
□F = −ϵM +∇

(
∇ · F +

1
c2

∂ϕm

∂t

)
□ϕm = −

ρm

µ
−
∂

∂t

(
∇ · F +

1
c2

∂ϕm

∂t

)
.

Reminder: (□: see definition 2.11)

Proof. See exercise 3.14.

3.11.2 Gauge transformations.

Clearly it is desirable if potentials can be found for which∇ ·A+ (1/c2)∂tϕ =

∇ · F + (1/c2)∂tϕm = 0. Finding such potentials relies on the fact that the
potential representation is not unique. In particular, we have the freedom
to add any spacetime gradient of any scalar or pseudoscalar potential with-
out changing the field.

Theorem 3.23: Gauge invariance.

The spacetime gradient of a grade (0, 3)-multivector Ψ may be added
to a multivector potential

A′ = A +
(
∇ +

1
c
∂

∂t

)
Ψ,

without changing the field. That is

F =
〈(
∇ −

1
c
∂

∂t

)
A
〉

1,2
=

〈(
∇ −

1
c
∂

∂t

)
A′

〉
1,2
.

Proof. To prove theorem 3.23 let

A′ = A +
(
∇ +

1
c
∂

∂t

)
(ψ + Iϕ), (3.232)
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where ψ and ϕ are scalar functions. The field for potential A′ is

F′ =
〈(
∇ −

1
c
∂

∂t

)
A′

〉
1,2

=

〈(
∇ −

1
c
∂

∂t

) (
A +

(
∇ +

1
c
∂

∂t

)
(ψ + Iϕ)

)〉
1,2

=

〈(
∇ −

1
c
∂

∂t

)
A
〉

1,2
+

〈(
∇ −

1
c
∂

∂t

) (
∇ +

1
c
∂

∂t

)
(ψ + Iϕ)

〉
1,2

= F + ⟨□(ψ + Iϕ)⟩1,2,

(3.233)

which is just F since the d’Alembertian operator □ is a scalar operator
and ψ + Iϕ has no vector nor bivector grades.

We say that we are working in the Lorenz gauge, if the 0,3 grades of(
∇ − 1

c
∂
∂t

)
A are zero, or a transformation that kills those grades is made.

Theorem 3.24: Lorentz gauge transformation.

Given any multivector potential A solution of Maxwell’s equation,
the transformation

A′ = A −
(
∇ +

1
c
∂

∂t

)
Ψ,

where

□Ψ =
〈(
∇ −

1
c
∂

∂t

)
A
〉

0,3
,

allows Maxwell’s equation to be written in wave equation form

□A′ = J.

A potential satisfying this wave equation is said to be in the Lorentz
gauge.

Proof. To prove theorem 3.24, let

A = A′ +
(
∇ +

1
c
∂

∂t

)
Ψ, (3.234)
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so Maxwell’s equation becomes

J =
(
∇ +

1
c
∂

∂t

) 〈(
∇ −

1
c
∂

∂t

)
A
〉

1,2

= □A −
(
∇ +

1
c
∂

∂t

) 〈(
∇ −

1
c
∂

∂t

)
A
〉

0,3

= □A′ +□
(
∇ +

1
c
∂

∂t

)
Ψ −

(
∇ +

1
c
∂

∂t

) 〈(
∇ −

1
c
∂

∂t

)
A
〉

0,3

= □A′ +
(
∇ +

1
c
∂

∂t

) □Ψ −
〈(
∇ −

1
c
∂

∂t

)
A
〉

0,3

 .
(3.235)

Requiring

□Ψ =
〈(
∇ −

1
c
∂

∂t

)
A
〉

0,3
, (3.236)

completes the proof.

Observe that Ψ has only grades 0,3 as required of a gauge function.
Such a transformation completely decouples Maxwell’s equation, pro-

viding one scalar wave equation for each grade of □A′ = J, relating each
grade of the potential A′ to exactly one grade of the source multivector cur-
rent J. We are free to immediately solve for A′ using the (causal) Green’s
function for the d’Alembertian

A′(x, t) = −
∫

dV ′dt′
δ(|x − x′| − c(t − t′)

4π ∥x − x′∥
J(x′, t′)

= −
1

4π

∫
dV ′

J(x′, t − 1
c ∥x − x′∥)

∥x − x′∥
,

(3.237)

which is the sum of all the current contributions relative to the point x at
the retarded time tr = t − (1/c) ∥x − x′∥. The field follows immediately by
differentiation and grade selection

F =
〈(
∇ −

1
c
∂

∂t

)
A′

〉
1,2
. (3.238)

Again, using the Green’s function for the d’Alembertian, the explicit
form of the gauge function Ψ is

Ψ = −
1

4π

∫
dV ′

〈(
∇ − 1

c
∂
∂t

)
A(x′, tr)

〉
0,3

∥x − x′∥
, (3.239)

however, we don’t actually need to compute this. Instead, we only have
to know we are free to construct a field from any solution A′ of □A′ = J
using eq. (3.238).
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3.11.3 Far field.

Theorem 3.25: Far field magnetic vector potential.

Given a vector potential with a radial spherical wave representation

A =
e− jkr

r
A(θ, ϕ),

the far field (r ≫ 1) electromagnetic field is

F = − jω (1 + r̂) (r̂∧A) .

If A⊥ = r̂ (r̂∧A) represents the non-radial component of the poten-
tial, the respective electric and magnetic field components are

E = − jωA⊥

H =
1
η

r̂ ×E.

Proof. To prove theorem 3.25, we will utilize a spherical representation
of the gradient

∇ = r̂∂r +∇⊥

∇⊥ =
θ̂

r
∂θ +

ϕ̂

r sin θ
∂ϕ.

(3.240)

The gradient of the vector potential is

∇A = (r̂∂r +∇⊥)
e− jkr

r
A

= r̂
(
− jk −

1
r

)
e− jkr

r
A +

e− jkr

r
∇⊥A

= −

(
jk +

1
r

)
r̂A +O(1/r2)

≈ − jkr̂A.

(3.241)

Here, all the O(1/r2) terms, including the action of the non-radial com-
ponent of the gradient on the 1/r potential, have been neglected. From
eq. (3.241) the far field divergence and the (bivector) curl of A are

∇ ·A = − jkr̂ ·A
∇∧A = − jkr̂∧A.

(3.242)
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Finally, the far field gradient of the divergence of A is

∇ (∇ ·A) = (r̂∂r +∇⊥) (− jkr̂ ·A)

≈ − jkr̂∂r (r̂ ·A)

= − jkr̂
(
− jk −

1
r

)
(r̂ ·A)

≈ −k2r̂ (r̂ ·A) ,

(3.243)

again neglecting any O(1/r2) terms. The field is

F = − jωA − j
c2

ω
∇ (∇ ·A) + c∇∧A

= − jωA + jωr̂ (r̂ ·A) − jkcr̂∧A
= − jω (A − r̂ (r̂ ·A)) − jωr̂∧A
= − jωr̂ (r̂∧A) − jωr̂∧A
= − jω (r̂ + 1) (r̂∧A) ,

(3.244)

which completes the first part of the proof. Extraction of the electric and
magnetic fields can be done by inspection and is left to the reader to prove.

One interpretation of this is that the (bivector) magnetic field is repre-
sented by the plane perpendicular to the direction of propagation, and the
electric field by a vector in that plane.

Theorem 3.26: Far field electric vector potential.

Given a vector potential with a radial spherical wave representation

F =
e− jkr

r
F(θ, ϕ),

the far field (r ≫ 1) electromagnetic field is

F = − jωηI (r̂ + 1) (r̂∧ F) .
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If F⊥ = r̂ (r̂∧ F) represents the non-radial component of the poten-
tial, the respective electric and magnetic field components are

E = jωηr̂ × F
H = − jωF⊥.

The proof of theorem 3.26 is left to the reader.

Example 3.1: Vertical dipole potential.

We will calculate the far field along the propagation direction vector
k̂ in the z-y plane

k̂ = e3eiθ

i = e32,
(3.245)

for the infinitesimal dipole potential

A =
e3µI0l

4πr
e− jkr, (3.246)

as illustrated in fig. 3.11.

Figure 3.11: Vertical infinitesimal dipole and selected propagation direc-
tion.
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The wedge of k̂ with A is proportional to

k̂∧ e3 =
〈
k̂e3

〉
2

=
〈
e3eiθe3

〉
2

=
〈
e2

3e−iθ
〉

2

= −i sin θ,

(3.247)

so from theorem 3.26 the field is

F = jω
(
1 + e3eiθ

)
i sin θ

µI0l
4πr

e− jkr. (3.248)

The electric and magnetic fields can be found from the respective
vector and bivector grades of eq. (3.248)

E =
jωµI0l
4πr

e− jkre3eiθi sin θ

=
jωµI0l
4πr

e− jkre2eiθ sin θ

=
jkηI0l sin θ

4πr
e− jkr (e2 cos θ − e3 sin θ) ,

(3.249)

and

H =
1
Iη

jωi sin θ0
µI0l
4πr

e− jkr

=
1
η

e321e32 jω sin θ0
µI0l
4πr

e− jkr

= −e1
jk sin θ0I0l

4πr
e− jkr.

(3.250)

The multivector electrodynamic field expression eq. (3.248) for
F is more algebraically compact than the separate electric and mag-
netic field expressions, but this comes with the complexity of dealing
with different types of imaginaries. There are two explicit unit imag-
inaries in eq. (3.248), the scalar imaginary j used to encode the time
harmonic nature of the field, and i = e32 used to represent the plane
that the far field propagation direction vector lay in. Additionally,
when the magnetic field component was extracted, the pseudoscalar
I = e123 entered into the mix. Care is required to keep these all sepa-
rate, especially since I, j commute with all grades, but i does not.
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3.11.4 Problems.

Exercise 3.10 Potentials for no-fictitious sources.

Starting with Maxwell’s equation with only conventional electric sources

(
∇ +

1
c
∂

∂t

)
F = ⟨J⟩0,1. (3.251)

Show that this may be split by grade into three equations〈(
∇ +

1
c
∂

∂t

)
F
〉

0,1
= ⟨J⟩0,1

∇∧E +
1
c
∂

∂t
(IηH) = 0

∇∧ (IηH) = 0.

(3.252)

Then use the identities ∇ ∧∇ ∧A = 0, for vector A and ∇ ∧∇ϕ = 0, for
scalar ϕ to find the potential representation eq. (3.222).

Exercise 3.11 Potentials for fictitious sources.

Starting with Maxwell’s equation with only fictitious magnetic sources

(
∇ +

1
c
∂

∂t

)
F = ⟨J⟩2,3, (3.262)

show that this may be split by grade into three equations〈(
∇ +

1
c
∂

∂t

)
IF

〉
0,1
= I⟨J⟩2,3

−η∇∧H +
1
c
∂(IE)
∂t
= 0

∇∧ (IE) = 0.

(3.263)

Then use the identities ∇∧∇∧ F = 0, for vector F and ∇∧∇ϕm = 0, for
scalar ϕm to find the potential representation eq. (3.224).

Exercise 3.12 Total field in terms of potentials.

Prove lemma 3.1, either by direct expansion, or by trying to discover
the multivector form of the field by construction.
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Exercise 3.13 Fields in terms of potentials.

Prove lemma 3.2.

Exercise 3.14 Potential wave equations.

Prove theorem 3.22.

3.12 dielectric and magnetic media .

3.12.1 Statement.

Without imposing the constitutive relationships eq. (3.2) the geometric
algebra form of Maxwell’s equations requires a pair of equations, multi-
vector fields, and multivector sources, instead of one of each.

Theorem 3.27: Maxwell’s equations in media.

Maxwell’s equations in media are〈(
∇ +

1
c
∂

∂t

)
F
〉

0,1
= Je〈(

∇ +
1
c
∂

∂t

)
G
〉

2,3
= IJm,

where c is the group velocity of F,G in the medium, the fields are
grade (1, 2)-multivectors

F = D +
I
c

H

G = E + IcB,

and the sources are grade (0, 1)-multivectors

Je = ρ −
1
c

J

Jm = cρm −M.
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Proof. To prove theorem 3.27 we may simply expand the spacetime gra-
dients and grade selection operations, and compare to eq. (3.1), the con-
ventional representation of Maxwell’s equations. For F we have

ρ −
J
c
=

〈(
∇ +

1
c
∂

∂t

)
F
〉

0,1

=

〈(
∇ +

1
c
∂

∂t

) (
D +

I
c

H
)〉

0,1

=

〈
∇ ·D +∇∧D +

I
c
∇ ·H +

I
c
∇∧H +

1
c
∂D
∂t
+ I

1
c2

∂H
∂t

〉
0,1

= ∇ ·D +
1
c
∂D
∂t
−

1
c
∇ ×H,

(3.278)

and for G

I (cρm −M) =

〈(
∇ +

1
c
∂

∂t

)
G
〉

2,3

=

〈(
∇ +

1
c
∂

∂t

)
(E + IcB)

〉
2,3

=

〈
∇ ·E +∇∧E + Ic∇ ·B + Ic∇∧B +

1
c
∂E
∂t
+ I

∂B
∂t

〉
2,3

= ∇∧E + Ic∇ ·B + I
∂B
∂t

= I
(
∇ ×E + c∇ ·B +

∂B
∂t

)
.

(3.279)

Applying further grade selection operations, rescaling (cancelling all fac-
tors of c and I), and a bit of rearranging, gives

∇ ·D = ρ

∇ ×H = J +
∂D
∂t

∇ ·B = ρm

∇ ×E = −M −
∂B
∂t
,

(3.280)

which are Maxwell’s equations.
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Exercise 3.15 Maxwell’s equations in media.

The proof above is somewhat unfriendly, as it works backwards from
the answer. No motivation was given for why the particular multivector
fields were chosen, nor why grade selection operations were required. To
obtain some insight on why this works, prove theorem 3.27 from eq. (3.2)
directly as follows:

1. Eliminate cross products using ∇ × f = I(∇∧ f).

2. Introduce a scalar constant c with dimensions of velocity and red-
imensionalize any time derivatives ∂f/∂t = (1/c)∂(cf)/∂t, so that
[(1/c)∂/∂t] = [∇].

3. If required, multiply each of Maxwell’s equations by a factor of I,
to obtain a scalar and vector equation for D,H, and a bivector and
pseudoscalar equation for E,B.

4. Sum the pairs of equations to form a multivector equation for each
of D,H and E,B.

5. Factor the terms in each equation into a product of the spacetime
gradient and the respective fields F,G, and show the result may be
simplified by grade selection.

3.12.2 Alternative form.

Theorem 3.28: Grade selection free equations.

Given multivector solutions F′,G′ to

Je =

(
∇ +

1
c
∂

∂t

)
F′

IJm =

(
∇ +

1
c
∂

∂t

)
G′,

these can be related to solutions F,G of Maxwell’s equations given
by theorem 3.27 by

F =
〈
F′

〉
1,2

G =
〈
G′

〉
1,2,
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if 〈(
∇ +

1
c
∂

∂t

) 〈
F′

〉〉
0,1
= 0〈(

∇ +
1
c
∂

∂t

) 〈
G′

〉
3

〉
2,3
= 0.

Proof. To prove we select the grade 0,1 and grade 2,3 components from
space time gradient equations of theorem 3.28. For the electric sources,
this gives

Je =

〈(
∇ +

1
c
∂

∂t

)
F′

〉
0,1

=

〈(
∇ +

1
c
∂

∂t

) 〈
F′

〉
1,2

〉
0,1
+

〈(
∇ +

1
c
∂

∂t

) 〈
F′

〉〉
0,1
+

〈(
∇ +

1
c
∂

∂t

) 〈
F′

〉
3

〉
0,1
,

(3.281)

however
(
∇ + 1

c
∂
∂t

)
⟨F′⟩3 has only grade 2,3 components, leaving just

Je =

〈(
∇ +

1
c
∂

∂t

) 〈
F′

〉
1,2

〉
0,1
+

〈(
∇ +

1
c
∂

∂t

) 〈
F′

〉〉
0,1
, (3.282)

as claimed. For the magnetic sources, we have

IJm =

〈(
∇ +

1
c
∂

∂t

)
G′

〉
2,3

=

〈(
∇ +

1
c
∂

∂t

) 〈
G′

〉
1,2

〉
2,3
+

〈(
∇ +

1
c
∂

∂t

) 〈
G′

〉〉
2,3

+

〈(
∇ +

1
c
∂

∂t

) 〈
G′

〉
3

〉
2,3
,

(3.283)

however
(
∇ + 1

c
∂
∂t

)
⟨G′⟩0 has only grade 0,1 components, leaving just

IJm =

〈(
∇ +

1
c
∂

∂t

) 〈
G′

〉
1,2

〉
2,3
+

〈(
∇ +

1
c
∂

∂t

) 〈
G′

〉〉
2,3
. (3.284)

Theorem 3.28 is probably a more effect geometric algebra form for so-
lution of Maxwell’s equations in matter, as the grade selection free space-
time gradients can be solved for F′,G′ directly using Green’s function
convolution. However, we have an open question of how to impose a zero
scalar grade constraint on F′ and a zero pseudoscalar grade constraint on
G′.
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Question: Is the solution as simple as grade selection of the convolu-
tion?

F =
∫

dt′dV ′
〈
G(x − x′, t − t′)Je

〉
1,2

G =
∫

dt′dV ′
〈
G(x − x′, t − t′)IJm

〉
1,2,

(3.285)

where G(x − x′, t − t′), is the Green’s function for the space time gradient
theorem 2.19, not to be confused with G = E + IcB,

3.12.3 Gauge like transformations.

Because of the grade selection operations in theorem 3.27, we cannot sim-
ply solve for F,G using the Green’s function for the spacetime gradient.
However, we may make a gauge-like transformation of the fields. Addi-
tional exploration is required to determine if such transformations can be
utilized to solve theorem 3.27.

Theorem 3.29: Multivector transformation of the fields.

If F,G are solutions to theorem 3.27, then so are

F′ = F +
〈(
∇ −

1
c
∂

∂t

)
Ψ2,3

〉
1,2

G′ = G +
〈(
∇ −

1
c
∂

∂t

)
Ψ0,1

〉
1,2
,

where Ψ2,3 is any multivector with grades 2,3 and Ψ0,1 is any multi-
vector with grades 0,1.

Proof. To prove theorem 3.29 we need to show that〈(
∇ +

1
c
∂

∂t

)
F′

〉
0,1
=

〈(
∇ +

1
c
∂

∂t

)
F
〉

0,1〈(
∇ +

1
c
∂

∂t

)
G′

〉
2,3
=

〈(
∇ +

1
c
∂

∂t

)
G
〉

2,3
.

(3.286)
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Let’s start with F〈(
∇ +

1
c
∂

∂t

)
F′

〉
0,1

=

〈(
∇ +

1
c
∂

∂t

)
F
〉

0,1
+

〈(
∇ +

1
c
∂

∂t

) 〈(
∇ −

1
c
∂

∂t

)
Ψ2,3

〉
1,2

〉
0,1

=

〈(
∇ +

1
c
∂

∂t

)
F
〉

0,1
+

〈
□Ψ2,3

〉
0,1 −

〈(
∇ +

1
c
∂

∂t

) 〈(
∇ −

1
c
∂

∂t

)
Ψ2,3

〉
0,3

〉
0,1

.

(3.287)

The second term is killed since Ψ2,3 has no grade 0,1 components by
definition, so neither does □Ψ2,3. To see that the last term is zero, note
that

(
∇ − 1

c
∂
∂t

)
Ψ2,3 can have only grades 1,2,3, so

〈(
∇ − 1

c
∂
∂t

)
Ψ2,3

〉
0,3

is

a trivector. This means that
(
∇ + 1

c
∂
∂t

) 〈(
∇ − 1

c
∂
∂t

)
Ψ2,3

〉
0,3

has only grades
2,3, which are obliterated by the final grade 0,1 selection operation, leav-
ing just

〈(
∇ + 1

c
∂
∂t

)
F
〉

0,1
. For G we have〈(

∇ +
1
c
∂

∂t

)
G′

〉
2,3

=

〈(
∇ +

1
c
∂

∂t

)
G
〉

2,3
+

〈(
∇ +

1
c
∂

∂t

) 〈(
∇ −

1
c
∂

∂t

)
Ψ0,1

〉
1,2

〉
2,3

=

〈(
∇ +

1
c
∂

∂t

)
G
〉

2,3
+

〈
□Ψ0,1

〉
2,3

−

〈(
∇ +

1
c
∂

∂t

) 〈(
∇ −

1
c
∂

∂t

)
Ψ0,1

〉
0,3

〉
2,3

.

(3.288)

As before the d’Alembertian term is killed as it has no grades 2,3. To see
that the last term is zero, note that

(
∇ − 1

c
∂
∂t

)
Ψ0,1 can have only grades

0,1,2, so
〈(
∇ − 1

c
∂
∂t

)
Ψ0,1

〉
0,3

is a scalar. This means that(
∇ +

1
c
∂

∂t

) 〈(
∇ −

1
c
∂

∂t

)
Ψ0,1

〉
0,3
, (3.289)

has only grades 0,1, which are obliterated by the final grade 2,3 selection
operation, leaving

〈(
∇ + 1

c
∂
∂t

)
G
〉

2,3
, completing the proof.

An additional variation of theorem 3.29 is also possible.
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Theorem 3.30: Multivector transformation of the fields.

If F,G are solutions to theorem 3.27, then so are

F′ = F +
(
∇ −

1
c
∂

∂t

)
Ψ2,3

G′ = G +
(
∇ −

1
c
∂

∂t

)
Ψ0,1

where Ψ2,3 is any multivector with grades 2,3 and Ψ0,1 is any multi-
vector with grades 0,1.

Proof. Theorem 3.30 can be proven by direct substitution. For F〈(
∇ +

1
c
∂

∂t

) (
F +

(
∇ −

1
c
∂

∂t

)
Ψ2,3

)〉
0,1
=

〈(
∇ +

1
c
∂

∂t

)
F +□Ψ2,3

〉
0,1

=

〈(
∇ +

1
c
∂

∂t

)
F
〉
,

and for G〈(
∇ +

1
c
∂

∂t

) (
G +

(
∇ −

1
c
∂

∂t

)
Ψ0,1

)〉
2,3
=

〈(
∇ +

1
c
∂

∂t

)
G +□Ψ0,1

〉
2,3

=

〈(
∇ +

1
c
∂

∂t

)
G
〉
.

which completes the proof.

3.12.4 Boundary value conditions.

Theorem 3.31: Boundary value relations.

The difference in the normal and tangential components of the elec-
tromagnetic field spanning a surface on which there are a surface cur-
rent or surface charge or current densities Je = Jesδ(n), Jm = Jmsδ(n)
can be related to those surface sources as follows

⟨n̂(F2 − F1)⟩0,1 = Jes

⟨n̂(G2 −G1)⟩2,3 = IJms,
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where Fk = Dk + IHk/c,Gk = Ek + IcBk, k = 1, 2 are the fields in
the where n̂ = n̂2 = −n̂1 is the outwards facing normal in the second
medium. In terms of the conventional constituent fields, these may
be written

n̂ · (D2 −D1) = ρs

n̂ × (H2 −H1) = Js

n̂ · (B2 −B1) = ρms

n̂ × (E2 −E1) = −Ms.

Figure 3.12 illustrates a surface where we seek to find the fields above
the surface (region 2), and below the surface (region 1). These fields will
be determined by integrating Maxwell’s equation over the pillbox config-
uration, allowing the height n of that pillbox above or below the surface
to tend to zero, and the area of the pillbox top to also tend to zero.

Figure 3.12: Pillbox integration volume.

Proof. We will work with theorem 3.27, Maxwell’s equations in media,
in their frequency domain form

⟨∇F⟩0,1 + jkD = Jesδ(n)

⟨∇G⟩2,3 + jkIcB = IJmsδ(n),
(3.290)
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and integrate these over the pillbox volume in the figure. That is∫
dV ⟨∇F⟩0,1 + jk

∫
dV D =

∫
dndA Jesδ(n)∫

dV ⟨∇G⟩2,3 + jkIc
∫

dV B = I
∫

dndA Jmsδ(n).
(3.291)

The gradient integrals can be evaluated with theorem 2.11. Evaluating the
delta functions picks leaves an area integral on the surface. Additionally,
we assume that we are making the pillbox volume small enough that we
can employ the mean value theorem for the D,B integrals∫

∂V
dA ⟨n̂F⟩0,1 + jk∆A

(
n1D̃1 + n2D̃2

)
= ∆AJes∫

∂V
dA ⟨n̂G⟩2,3 + jkIc∆A

(
n1B̃1 + n2B̃2

)
= I∆AJms.

(3.292)

We now let n1, n2 tend to zero, which kills off the D,B contributions, and
also kills off the side wall contributions in the first pillbox surface integral.
This leaves

⟨n̂2F2⟩0,1 + ⟨n̂1F1⟩0,1 = Jes

⟨n̂2G2⟩2,3 + ⟨n̂1G1⟩2,3 = Jms.
(3.293)

Inserting n̂ = n̂2 = −n̂1 completes the first part of the proof.
Expanding the grade selection operations, we find

n̂ · (D2 −D1) = ρs

In̂∧ (H2/c −H1/c) = −Js/c

n̂∧ (E2 −E1) = −IMs

Icn̂ · (B2 −B1) = Icρms,

(3.294)

and expansion of the wedge’s as cross’s using eq. (1.81) completes the
proof.

In the special case where there are surface charge and current densities
along the interface surface, but the media is uniform (ϵ1 = ϵ2, µ1 = µ2),
then the field and current relationship has a particularly simple form [6]

n̂(F2 − F1) = Js. (3.295)

Exercise 3.16 Uniform media with currents and densities.

Prove that eq. (3.295) holds when ϵ1 = ϵ2, µ1 = µ2.
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3.13 problem solutions

Answer for Exercise 3.2

∇b =
3∑

i j=1

(
ei
∂

∂xi

)
(e jb j)

=

3∑
i j=1

eie j
∂b j

∂xi

=

3∑
i=1

eiei
∂bi

∂xi
+

∑
i, j

eie j
∂b j

∂xi
.

(3.11)

Here we’ve decomposed the sum into symmetric and antisymmetric con-
tributions. The symmetric part reduces easily to the divergence

3∑
i=1

eiei
∂bi

∂xi
=

3∑
i=1

∂bi

∂xi
= ∇ · b. (3.12)

Because, for i , j, eie j = ei ∧ e j = I (ei × e j), and both the wedge and
dot products are zero for i = j, we can reintroduce the sum over all i, j
indexes∑

i, j

eie j
∂b j

∂xi
= I

∑
i, j

ei × e j
∂b j

∂xi

= I
3∑

i j=1

ei × e j
∂b j

∂xi

= I
3∑

i j=1

(
ei
∂

∂xi

)
× (e jb j)

= I (∇ × b) .

(3.13)

We’ve demonstrated the desired result, showing that our Laissez-faire sub-
stitution a = ∇ in ab = a · b+ I (a × b) was justified, despite the operator
nature of the gradient.
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Answer for Exercise 3.3

Our grade selection operators yield the following four equations

⟨∇E⟩ = ηcρ〈
1
c
∂E
∂t
+∇IηH

〉
1
= −ηJ〈

∇E +
1
c
∂IηH
∂t

〉
2
= −IM

⟨∇IηH⟩3 = Icρm

(3.14)

Observe that ηc = 1/ϵ, so the first equation recovers Gauss’s law

∇ ·E =
ρ

ϵ
. (3.15)

Dividing the vector equation through by −η, we have

−1
cη

∂E
∂t
− I (∇∧H) = J, (3.16)

or

−
∂ϵE
∂t
+∇ ×H = J, (3.17)

the Ampére-Maxwell equation (with D = ϵE, and H = B/µ.) Multiplying
the bivector equation through by −I, and noting that η/c = µ, we convert
it to a vector equation

−I2 (∇ ×E) − I2 ∂µH
∂t
= I2M, (3.18)

which is the Maxwell-Faraday equation (augmented with the fictious mag-
netic current density.) Finally, dividing the pseudoscalar equation through
by Ic, we find

ρm =
η

c
∇ ·H = ∇ · (µH) , (3.19)

which is Gauss’s law for magnetism (with the fictious “engineering” mag-
netic charge density term.)

Answer for Exercise 3.10
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Taking grade(0,1) and (2,3) selections of Maxwell’s equation, we split
our equations into source dependent and source free equations〈(

∇ +
1
c
∂

∂t

)
F
〉

0,1
= ⟨J⟩0,1, (3.253)

〈(
∇ +

1
c
∂

∂t

)
F
〉

2,3
= 0. (3.254)

In terms of F = E + IηH, the source free equation expands to

0 =
〈(
∇ +

1
c
∂

∂t

)
(E + IηH)

〉
2,3

= ⟨∇E⟩2 + ⟨Iη∇H⟩3 + Iη
1
c
∂H
∂t

= ∇∧E +∇∧ (IηH) + Iη
1
c
∂H
∂t
,

(3.255)

which can be further split into a bivector and trivector equation

0 = ∇∧E + Iη
1
c
∂H
∂t

(3.256)

0 = ∇∧ (IηH) . (3.257)

It’s clear that we want to write the magnetic field as a (bivector) curl, so
we let

IηH = IcB = c∇∧A, (3.258)

or

H =
1
µ
∇ ×A. (3.259)

Equation (3.256) is reduced to

0 = ∇∧E + Iη
1
c
∂H
∂t

= ∇∧E +
1
c
∂

∂t
∇∧ (cA)

= ∇∧

(
E +

∂A
∂t

)
.

(3.260)
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We can now let

E +
∂A
∂t
= −∇ϕ. (3.261)

We sneakily adjust the sign of the gradient so that the result matches the
conventional representation.

Answer for Exercise 3.11

We multiply eq. (3.262) by I to find(
∇ +

1
c
∂

∂t

)
IF = I⟨J⟩2,3, (3.264)

which can be split into〈(
∇ +

1
c
∂

∂t

)
IF

〉
1,2
= I⟨J⟩2,3〈(

∇ +
1
c
∂

∂t

)
IF

〉
0,3
= 0.

(3.265)

We expand the source free equation in terms of IF = IE − ηH, to find

0 =
〈(
∇ +

1
c
∂

∂t

)
(IE − ηH)

〉
0,3

= ∇∧ (IE) +
1
c
∂(IE)
∂t
− η∇∧H,

(3.266)

which has the respective bivector and trivector grades

0 = ∇∧ (IE) (3.267)

0 =
1
c
∂(IE)
∂t
− η∇∧H. (3.268)

We can clearly satisfy eq. (3.267) by setting

IE = −
1
ϵ
∇∧ F, (3.269)

or

E = −
1
ϵ
∇ × F. (3.270)
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Here, once again, the sneaky inclusion of a constant factor −1/ϵ is to
make the result match the conventional. Inserting this value for IE into
our bivector equation yields

0 = −
1
ϵ

1
c
∂

∂t
(∇∧ F) − η∇∧H

= −η∇∧

(
∂F
∂t
+H

)
,

(3.271)

so we set

∂F
∂t
+H = −∇ϕm, (3.272)

and have a field representation that automatically satisfies the source free
equations.

Answer for Exercise 3.12

Proof by expansion is straightforward, and left to the reader. Here we
will start with eq. (3.222), and eq. (3.224), and form the respective total
electromagnetic field F = E + IηH for each case.

Starting with eq. (3.222), we find

F = E + IηH

= −∇ϕ −
∂A
∂t
+ I

η

µ
∇ ×A

= −∇ϕ −
1
c
∂(cA)
∂t
+∇∧ (cA)

=

〈
−∇ϕ −

1
c
∂(cA)
∂t
+∇∧ (cA)

〉
1,2

=

〈
−∇ϕ −

1
c
∂(cA)
∂t
+∇(cA)

〉
1,2

=

〈
∇ (−ϕ + cA) −

1
c
∂(cA)
∂t

〉
1,2

=

〈(
∇ −

1
c
∂

∂t

)
(−ϕ + cA)

〉
1,2
.

(3.273)
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For the field for the fictitious source case, we start with eq. (3.224), and
compute the result in the same way, inserting a no-op grade selection to
allow us to simplify. We find

F = E + IηH

= −
1
ϵ
∇ × F + Iη

(
−∇ϕm −

∂F
∂t

)
=

1
ϵc

I (∇∧ (cF)) + Iη
(
−∇ϕm −

1
c
∂(cF)
∂t

)
= Iη

(
∇∧ (cF) +

(
−∇ϕm −

1
c
∂(cF)
∂t

))
= Iη

〈
∇∧ (cF) +

(
−∇ϕm −

1
c
∂(cF)
∂t

)〉
1,2

= Iη
〈
∇(cF) −∇ϕm −

1
c
∂(cF)
∂t

〉
1,2

= Iη
〈
∇(−ϕm + cF) −

1
c
∂(cF)
∂t

〉
1,2

= Iη
〈(
∇ −

1
c
∂

∂t

)
(−ϕm + cF)

〉
1,2
.

(3.274)

Answer for Exercise 3.13

We start by expanding (∇ − (1/c)∂t)A and then group by grade to find(
∇ −

1
c
∂

∂t

)
A =

(
∇ −

1
c
∂

∂t

)
(−ϕ + cA + ηI (−ϕm + cF))

= −∇ϕ + c∇ ·A + c∇∧A +
1
c
∂ϕ

∂t
−
∂A
∂t

+ Iη
(
−∇ϕm + c∇ · F + c∇∧ F +

1
c
∂ϕm

∂t
−
∂F
∂t

)
= c∇ ·A +

1
c
∂ϕ

∂t

+ −∇ϕ −
∂A
∂t
−

1
ϵ
∇ × F

E

+ Iη
(
−∇ϕm −

∂F
∂t
+

1
µ
∇ ×A

)
IηH

+ Iη
(
c∇ · F +

1
c
∂ϕm

∂t

)
,
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(3.275)

which shows the claimed field split.
Observing that F =

〈
(∇ − (1/c)∂/∂t) A

〉
1,2 = E + IηH, completes the

problem. We may write just F = (∇ − (1/c)∂/∂t) A, if the Lorentz gauge
condition is assumed, as the scalar and pseudoscalar components above
are obliterated.

Answer for Exercise 3.14

In terms of the potentials Maxwell’s equation
(
∇ + 1

c
∂
∂t

)
F = J is(

∇ +
1
c
∂

∂t

) 〈(
∇ −

1
c
∂

∂t

)
A
〉

1,2
= J, (3.276)

or

□A = J +
(
∇ +

1
c
∂

∂t

) 〈(
∇ −

1
c
∂

∂t

)
A
〉

0,3
. (3.277)

This is almost a wave equation. Inserting eq. (3.275) into eq. (3.277) and
selecting each grade gives four almost-wave equations

−□ϕ =
ρ

ϵ
+

1
c
∂

∂t

(
c∇ ·A +

1
c
∂ϕ

∂t

)
c□A = −ηJ +∇

(
c∇ ·A +

1
c
∂ϕ

∂t

)
ηcI□F = −IM +∇ ·

(
Iη

(
c∇ · F +

1
c
∂ϕm

∂t

))
−Iη□ϕm = Icρm +

1
c
∂

∂t
Iη

(
c∇ · F +

1
c
∂ϕm

∂t

)
Using η = µc, ηcϵ = 1, and ∇ · (Iψ) = I∇ψ for scalar ψ, a bit of rearrange-
ment completes the proof.
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Theorem A.1: K-vector dot and wedge product relations.

Given a k-vector B and a vector a, the dot and wedge products have
the following commutation relationships

B · a = (−1)k−1a · B
B∧ a = (−1)ka∧ B,

(A.1)

and can be expressed as symmetric and antisymmetric sums depend-
ing on the grade of the blade

a∧ B =
1
2

(
aB+ (−1)kBa

)
a · B =

1
2

(
aB− (−1)kBa

)
.

(A.2)

For example, if B and a are both vectors, we recover theorem 1.14. As
an other example, if B is a 2-vector, then

2(a∧ B) = aB+ Ba
2(a · B) = aB− Ba.

(A.3)

Observe that the dot(wedge) of two vectors is a (anti)symmetric sum
of products, whereas the wedge(dot) of a vector and a bivector is an
(anti)symmetric sum.

Proof. To prove theorem A.1, split the blade into components that inter-
sect with and are disjoint from a as follows

B =
1
a

n1n2 · · · nk−1 +m1m2 · · ·mk, (A.4)
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where ni orthogonal to a and each other, and where mi are all orthogonal.
The products of B with a are

aB = a
1
a

n1n2 · · · nk−1 + am1m2 · · ·mk

= n1n2 · · · nk−1 + am1m2 · · ·mk,
(A.5)

and

Ba =
1
a

n1n2 · · · nk−1a +m1m2 · · ·mka

= (−1)k−1n1n2 · · · nk−1 + (−1)kam1m2 · · ·mk

= (−1)k (−n1n2 · · · nk−1 + am1m2 · · ·mk) ,

(A.6)

or

(−1)kBa = −n1n2 · · · nk−1 + am1m2 · · ·mk. (A.7)

Respective addition and subtraction of eq. (A.5) and eq. (A.7) gives

aB+ (−1)kBa = 2am1m2 · · ·mk

= 2a∧ B,
(A.8)

and

aB− (−1)kBa = 2n1n2 · · · nk−1

= 2a · B,
(A.9)

proving eq. (A.2). Grade selection from eq. (A.7) gives

(−1)kB · a = −n1n2 · · · nk−1

= −a · B,
(A.10)

and

(−1)kB∧ a = am1m2 · · ·mk

= a∧ B,
(A.11)

which proves eq. (A.1).

Theorem A.2: Vector-trivector dot product.
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Given a vector a and a blade b ∧ c ∧ d formed by wedging three
vectors, the dot product of the two can be expanded as bivectors like

a· (b∧ c∧ d)
= (b∧ c∧ d) · a
= (a · b)(c∧ d) − (a · c)(b∧ d) + (a · d)(b∧ c).

(A.12)

Proof. The proof follows by expansion in coordinates

a · (b∧ c∧ d) =
∑
j,k,l

aib jckdl
〈
eie jekel

〉
2
. (A.13)

The products within the grade two selection operator can be of either
grade two or grade four, so only the terms where one of i = j, i = k,
or i = l contributes. Repeated anticommutation of the orthogonal unit
vectors can put each such pair adjacent, where they square to unity. Those
are respectively

⟨eieiekel⟩2 = ekel〈
eie jeiel

〉
2
= −

〈
e jeieiel

〉
2
= −e jel〈

eie jekei
〉

2
= −

〈
e jeiekei

〉
2
= +

〈
e jekeiei

〉
2
= e jek.

(A.14)

Substitution back into eq. (1.117) gives

a· (b∧ c∧ d)

=
∑
j,k,l

aib jckdl (ei · e j(ekel) − ei · ek(e jel) + ei · el(e jek))

= (a · b)(c∧ d) − (a · c)(b∧ d) + (a · d)(b∧ c).

(A.15)

Theorem A.2 is a specific case of the more general identity

Theorem A.3: Vector blade dot product distribution.

A vector dotted with a n − blade distributes as

x· (y1 ∧ y2 ∧ · · · ∧ yn)

=

n∑
i=1

(−1)i(x · yi) (y1 ∧ · · · ∧ yi−1 ∧ yi+1 ∧ · · · ∧ yn) .
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This dot product is symmetric(antisymmetric) when the grade of
the blade the vector is dotted with is odd(even).

For a proof of theorem A.3 (valid for all metrics) see [7].

Theorem A.4: Distribution of inner products

Given two blades As, Br with grades subject to s > r > 0, and a
vector b, the inner product distributes according to

As · (b∧ Br) = (As · b) · Br.

Proof. The proof is straightforward, relying primarily on grade selection,
but also mechanical. Start by expanding the wedge and dot products within
a grade selection operator

As · (b∧ Br) = ⟨As(b∧ Br)⟩s−(r+1)

=
1
2
〈
As (bBr + (−1)rBrb)

〉
s−(r+1).

(A.16)

Solving for Brb in

2b · Br = bBr − (−1)rBrb, (A.17)

we have

As · (b∧ Br) =
1
2
〈
AsbBr + As (bBr − 2b · Br)

〉
s−(r+1)

= ⟨AsbBr⟩s−(r+1) −(((((((((〈
As (b · Br)

〉
s−(r+1).

(A.18)

The last term above is zero since we are selecting the s − r − 1 grade
element of a multivector with grades s− r + 1 and s+ r − 1, which has no
terms for r > 0. Now we can expand the Asb multivector product, for

As · (b∧ Br) =
〈
(As · b + As ∧ b) Br

〉
s−(r+1). (A.19)

The latter multivector (with the wedge product factor) above has grades
s+ 1− r and s+ 1+ r, so this selection operator finds nothing. This leaves

As · (b∧ Br) =
〈
(As · b) · Br + (As · b) ∧ Br

〉
s−(r+1). (A.20)

The first dot products term has grade s − 1 − r and is selected, whereas
the wedge term has grade s − 1 + r , s − r − 1 (for r > 0).
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T H E O R E M O F G E O M E T R I C C A L C U L U S .

We start with expanding the hypervolume integral, by separating the ge-
ometric product of the volume element and vector derivative direction
vectors into dot and wedge contributions∫

V
Fdkx

↔

∂ G =
∑

i

∫
V

dkuFIkxi ↔
∂ i G

=
∑

i

∫
V

dkuF
(
Ik · xi + Ik ∧ xi

) ↔
∂ i G.

(B.1)

Because xi lies in span
{
x j

}
, the wedge product above is zero, leaving∫

V
Fdkx

↔

∂ G =
∑

i

∫
V

dkuF
(
Ik · xi

) ↔
∂ i G

=
∑

i

∫
V

dku(∂iF)Ik · xiG +
∑

i

∫
V

dkuF
(
Ik · xi

)
(∂iG)

=
∑

i

∫
V

dku∂i
(
F

(
Ik · xi

)
G
)
−

∫
V

dkuF

∑
i

∂i
(
Ik · xi

)G.

(B.2)

The sum in the second integral turns out to be zero, but is somewhat
messy to show in general. The k = 1 is a special case, as it is trivial

∂1(x1 · x1) = ∂11 = 0. (B.3)

The k = 2 case is illustrative

2∑
i=1

∂i
(
I3 · xi

)
= ∂1((x1 ∧ x2) · x1) + ∂2((x1 ∧ x2) · x2)

= ∂1(−x2) + ∂2x1

= −
∂2x
∂u1∂2

+
∂2x
∂u2∂1

,

(B.4)
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which is zero by equality of mixed partials. To show that this sums to
zero in general observe that cyclic permutation of the wedge factors in
the pseudoscalar only changes the sign

x1 ∧ x2 ∧ · · · ∧ xk = x2 ∧ x3 ∧ · · · ∧ xk ∧ x1(−1)1(k−1)

= x3 ∧ x4 ∧ · · · ∧ xk ∧ x1 ∧ x2(−1)2(k−1)

= xi+1 ∧ xi+2 ∧ · · · ∧ xk ∧ x1 ∧ x2 ∧ · · · ∧ xi(−1)i(k−1).

(B.5)

The pseudoscalar dot product Ik · xi is therefore

Ik · xi = (x1 ∧ x2 ∧ · · · ∧ xk) · xi

= xi+1 ∧ xi+2 ∧ · · · ∧ xk ∧ x1 ∧ x2 ∧ · · · ∧ xi−1(−1)i(k−1),
(B.6)

and the sum is∑
i

∂i
(
Ik · xi

)
= (∂i,i+1x)∧ xi+2 ∧ · · · ∧ xk ∧ x1 ∧ x2 ∧ · · · ∧ xi−1(−1)i(k−1)

+ xi+1 ∧ (∂i,i+2x)∧ · · · ∧ xk ∧ x1 ∧ x2 ∧ · · · ∧ xi−1(−1)i(k−1)

+

...

+ xi+1 ∧ xi+2 ∧ · · · ∧ xk ∧ x1 ∧ x2 ∧ · · · ∧ (∂i,i−1x)(−1)i(k−1).

(B.7)

For each i , j there will be one partial ∂i, jx and one partial ∂ j,ix in this
sum. Consider, for example, the 1, 2 case which come from the i = 1, 2
terms in the sum

∂1(x2 ∧ x3 ∧ · · · ∧ xk−1 ∧ xk)(−1)1(k−1)

+ ∂2(x3 ∧ x4 ∧ · · · ∧ xk ∧ x1)(−1)2(k−1)

= (∂1,2x)∧ x3 ∧ · · · ∧ xk−1 ∧ xk)(−1)1(k−1)

+ x3 ∧ x4 ∧ · · · ∧ xk ∧ (∂2,1x)(−1)2(k−1) + · · ·

= (−1)k−1(x3 ∧ · · · ∧ xk−1 ∧ xk)∧
(
(−1)k−2∂1,2x + (−1)k−1∂2,1x

)
+ · · ·

= (x3 ∧ · · · ∧ xk−1 ∧ xk)∧
(
−

∂2x
∂u1∂u2

+
∂2x

∂u2∂u1

)
+ · · ·

(B.8)

By equality of mixed partials this difference of 1, 2 partials are killed. The
same argument holds for all other indexes, proving that

∑
i ∂i

(
Ik · xi

)
= 0.
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Equation (B.2) is left with a sum of perfect differentials, each separately
integrable∫

V
Fdkx

↔

∂ G =
∑

i

∫
∂V

dk−1ui

∫
∆ui

dui
∂

∂ui

(
F

(
Ik · xi

)
G
)

=
∑

i

∫
∂V

dk−1ui
(
F

(
Ik · xi

)
G
)∣∣∣∣

∆ui
,

(B.9)

which completes the sketch of the proof.
While much of the theoretical heavy lifting was carried by the recip-

rocal frame vectors, the final result does not actually require computing
those vectors. When k equals the dimension of the space, as in R3 volume
integrals, the vector derivative ∂ is identical to the ∇, in which case we do
not even require the reciprocal frame vectors to express the gradient.

For a full proof of theorem 2.3, additional mathematical subtleties must
be considered. Issues of connectivity of the hypervolumes (and integra-
tion theory in general) are covered very nicely in [21]. For other general
issues required for a complete proof, like the triangulation of the volume
and its boundary, please see [16], [7], and [25].





CG R E E N ’ S F U N C T I O N S .

c.1 helmholtz operator .

The goal. The Helmholtz equation to solve is(
∇

2 + k2
)

f (x) = u(x). (C.1)

To solve using the Green’s function of theorem 2.17, we require(
∇

2 + k2
)
G(x, x′) = δ3(x − x′). (C.2)

Verifying this requires two steps, first considering points x , x′, and
then considering an infinitesimal neighborhood around x′.

Case I. x , x′. We will absorb the sign associated with the causal and
acausal Green’s function variations by writing i = ± j, so that for points
x , x′, (i.e. r = ∥x − x′∥ , 0), working in spherical coordinates, we find

−4π
(
∇

2 + k2
)
G(x, x′) =

1
r2

(
r2G′

)′
− 4πk2G

=
1
r2

d
dr

(
r2

(
ikr
r
−

1
r2

)
eikr

)
+

k2

r
eikr

=
1
r2

d
dr

(
(rik − 1) eikr

)
+

k2

r
eikr

=
1
r2 (��ik + (rik − �1) ik) eikr +

k2

r
eikr

=
1
r2

(
−rk2

)
eikr + k2 eikr

r
= 0.

(C.3)

Case II. In the neighborhood of ∥x − x′∥ < ϵ Having shown that we end
up with zero everywhere that x , x′ we are left to consider an infinitesi-
mal neighborhood of the volume surrounding the point x in our integral.
Following the Coulomb treatment in §2.2 of [23] we use a spherical vol-
ume element centered around x of radius ϵ, and then convert a divergence
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to a surface area to evaluate the integral away from the problematic point.

∫ (
∇

2 + k2
)
G(x, x′) f (x′)dV ′

= −
1

4π

∫
∥x−x′∥<ϵ

(
∇

2 + k2
) eik∥x−x′∥

∥x − x′∥
f (x′)dV ′

= −
1

4π

∫
∥x′′∥<ϵ

f (x + x′′)
(
∇

2 + k2
) eik∥x′′∥

∥x′′∥
dV ′′,

(C.4)

where a change of variables x′′ = x′ − x, as illustrated in fig. C.1, has been
performed.

Figure C.1: Neighborhood ∥x − x′∥ < ϵ.

We assume that f (x) is sufficiently continuous and “well behaved” that
it can be pulled it out of the integral, replaced with a mean value f (x∗) in
the integration neighborhood around x′′ = 0.∫ (
∇

2 + k2
)
G(x, x′) f (x′)dV ′ = lim

ϵ→0
−

f (x∗)
4π

∫
∥x′′∥<ϵ

(
∇

2 + k2
) eik∥x′′∥

∥x′′∥
dV ′′.
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(C.5)

The k2 term of eq. (C.5) can be evaluated with a spherical coordinate
change of variables∫

∥x′′∥<ϵ
k2 eik∥x′′∥

∥x′′∥
dV ′′ =

∫ ϵ

r=0

∫ π

θ=0

∫ 2π

ϕ=0
k2 eikr

r
r2dr sin θdθdϕ

= 4πk2
∫ ϵ

r=0
reikrdr

= 4π
∫ kϵ

u=0
ueiudu

= 4π (−iu + 1)eiu
∣∣∣kϵ
0

= 4π
(
(−ikϵ + 1)eikϵ − 1

)
.

(C.6)

To evaluate the Laplacian term of eq. (C.5), we can make a change of
variables for the Laplacian

∇
eik∥x′′∥

∥x′′∥
= ∇2

x′′
eik∥x′′∥

∥x′′∥
= ∇x′′ ·

(
∇x′′

eik∥x′′∥

∥x′′∥

)
, (C.7)

and then employ the divergence theorem∫
∥x′′∥<ϵ

∇
2 eik∥x′′∥

∥x′′∥
dV ′′ =

∫
∥x′′∥<ϵ

∇x′′ ·

(
∇x′′

eik∥x′′∥

∥x′′∥

)
dV ′′

=

∫
∂V

(
∇x′′

eik∥x′′∥

∥x′′∥

)
· n̂dA′′,

(C.8)

where ∂V represents the surface of the ∥x′′∥ < ϵ neighborhood, and n̂ is
the unit vector directed along x′′ = x′ − x. To evaluate this surface integral
we will require only the radial portion of the gradient. With r = ∥x′′∥, that
is (

∇x′′
eik∥x′′∥

∥x′′∥

)
· n̂ =

(
n̂
∂

∂r
eikr

r

)
· n̂

=
∂

∂r
eikr

r

=

(
ik

1
r
−

1
r2

)
eikr

= (ikr − 1)
eikr

r2 .

(C.9)
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Using a spherical area element dA′′ = r2 sin θdθdϕ, we obtain∫
∥x′′∥<ϵ

∇
2 eik∥x′′∥

∥x′′∥
dV ′′

=

∫ π

θ=0

∫ 2π

ϕ=0
(ikr − 1)

eikr

r2 r2 sin θdθdϕ

∣∣∣∣∣∣
r=ϵ

= 4π (ikϵ − 1) eikϵ .

(C.10)

Putting everything back together we have

−
1

4π

∫ (
∇

2 + k2
) eik∥x−x′∥

∥x − x′∥
f (x′)dV ′

= lim
ϵ→0
− f (x∗)

(
(−ikϵ + 1)eikϵ − 1 + (ikϵ − 1) eikϵ

)
= lim

ϵ→0
− f (x∗)

(
(−ikϵ + 1 + ikϵ − 1)eikϵ − 1

)
= lim

ϵ→0
f (x∗).

(C.11)

Observe the perfect cancellation of all the explicitly ϵ dependent terms.
The mean value point x∗ is also ϵ dependent, but tends to x in the limit,
leaving

f (x) = −
1

4π

∫ (
∇

2 + k2
) eik∥x−x′∥

∥x − x′∥
f (x′)dV ′. (C.12)

This proves the delta function property that we claimed the Green’s
function had.

c.2 delta function derivatives .

The Green’s function for the spacetime gradient ends up with terms like

d
dr
δ(−r/c + t − t′)

d
dt
δ(−r/c + t − t′),

(C.13)

where t′ is the integration variable of the test function that the delta func-
tion will be applied to. If these were derivatives with respect to the inte-
gration variable, then we could use∫ ∞

−∞

(
d

dt′
δ(t′)

)
ϕ(t′) = −ϕ′(0), (C.14)
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which follows by chain rule, and an assumption that ϕ(t′) is well behaved
at the points at infinity. It is not clear that how, if at all, this could be
applied to either of eq. (C.13).

Let’s go back to square one, and figure out the meaning of these delta
functions by their action on a test function. We wish to compute∫ ∞

−∞

d
du
δ(au + b − t′) f (t′)dt′. (C.15)

Let’s start with a change of variables t′′ = au+ b− t′, for which we find

t′ = au + b − t′′

dt′′ = −dt′

d
du
=

dt′′

du
d

dt′′
= a

d
dt′′

.

(C.16)

Substitution back into eq. (C.15) gives

a
∫ −∞

∞

(
d

dt′′
δ(t′′)

)
f (au + b − t′′)(−dt′′)

= a
∫ ∞

−∞

(
d

dt′′
δ(t′′)

)
f (au + b − t′′)dt′′

= aδ(t′′) f (au + b − t′′)
∣∣∣∞
−∞

− a
∫ ∞

−∞

δ(t′′)
d

dt′′
f (au + b − t′′)dt′′

= −a
d

dt′′
f (au + b − t′′)

∣∣∣∣∣
t′′=0

= a
d
ds

f (s)
∣∣∣∣∣
s=au+b

.

(C.17)

This shows that the action of the derivative of the delta function (with
respect to a non-integration variable parameter u) is

d
du
δ(au + b − t′) ∼ a

d
ds

∣∣∣∣∣
s=au+b

. (C.18)





DL I T E R AT U R E VA R I AT I O N S .

The notation and nomenclature used to express Maxwell’s equation in
the GA literature, much of which has a relativistic focus, has not been
standardized. Here is an overview of some of the variations that will be
encountered in readings.

Space Time Algebra (STA). [7] Maxwell’s equation is written

∇F = J

F = E + IB
I = γ0γ1γ2γ3

J = γµJµ = γ0 (ρ − J)
∇ = γµ∂µ = γ0 (∂t +∇) .

(D.1)

STA uses a relativistic basis
{
γµ

}
and its dual {γµ} for which γ2

0 =

−γ2
k = 1, k ∈ 1, 2, 3, and γµ · γν = δµν. Spatial vectors are expressed

in terms of the Pauli basis σi = γiγ0, which are bivectors that behave as
Euclidean basis vectors (squaring to unity, and all mutually anticommuta-
tive). F is called the electromagnetic field strength (and is not a grade
(1, 2)-multivector, but a bivector), ∇ is called the vector derivative op-
erator, ∇ called the three-dimensional vector derivative operator, and J
is called the spacetime current (and is a vector, not a multivector). The
physicist’s “natural units” c = ϵ0 = µ0 are typically used in STA. The
d’Alembertian in STA is □ = ∇2 = ∂2

t −∇
2, although the earliest formu-

lation of STA [13] used □ for the vector derivative. Only spatial vectors
are in bold, and all other multivectors are non-bold. STA is inherently rel-
ativistic, and can be used to obtain many of the results in this book more
directly. STA can easily be related to the tensor formulation of electrody-
namics.

Maxwell’s equations as expressed in theorem 3.1 can be converted to
their STA form (in SI units) by setting ei = γiγ0 and by left multiplying
both sides by γ0.
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Algebra of Physical Space (APS). [5] Maxwell’s equation is written as

∂F =
1
ϵ0c

ȷ

F = E + icB
i = e123

∂ =
1
c
∂t −∇

j =
1
ϵ0c

(ρc + j) .

(D.2)

F is called the Faraday, ∂ the gradient, j the current density, and grade
(0, 1)-multivectors are called paravectors. A scalar e0 = 1 is used as the
time-like basis “vector”, with an Euclidean basis {e1, e2, e3} for the spatial
components. In APS, where e0 = 1 is not a vector grade object, a standard
GA dot product for which eµ · eν = δµν to express proper length. APS uses
inner products based on grade selection from the multivector zz, where z
is the Clifford conjugation operation that changes the sign of any vector
and bivector grades of a multivector z. This conjugation operation is also
used to express Lorentz transformations, and is seen in Maxwell’s equa-
tion, operating on the current density and gradient. The d’Alembertian
is written as □ = ∂∂ = (1/c2)∂2

t − ∇
2. While APS is only cosmetically

different than theorem 3.1 the treatment in [5] is inherently relativistic.

Jancewicz. [18] Maxwell’s equation in linear isotropic media is written
as

D f + eD ln
√
ϵ + b̂D ln

√
µ = ȷ̃

D = ∇ +
√
ϵµ

∂

∂t
f = e + b̂
e =
√
ϵE

b̂ =
1
√
µ

IB

I = e123

ȷ̃ =
1
√
ϵ
ρ −
√
µj.

(D.3)

Jancewicz works with fields that have been re-dimensionalized to the
same units, uses an overhat bold notation for bivectors (which are some-
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times called volutors). D is called the cliffor differential operator, f the
electromagnetic cliffor, and ȷ̃ the density of electric sources. In media that
for which µ, ϵ are constant in space and time, his Maxwell equation re-
duces to D f = ȷ̃. The d’Alembertian is written as □ = D∗D = ∇2 − ϵµ∂2

t ,
where D∗ = ∇ −

√
ϵµ∂t. Unlike Baylis, which uses a “paravector” ap-

proach extensively for his relativistic treatment, this book ends with a
relativistic treatment using STA.





EE N E R G Y M O M E N T U M T E N S O R ( V E C T O R . )

Did you cry cheater because of the reliance on brute force computer as-
sisted symbolic algebra to find the T (a) relations of eq. (3.124)? Or did
you try this as a problem, and need some assistance?

If so, here is an expansion of the energy momentum tensor for vector
parameters. We start with

Fei = (E + IηH) ei

= Ei +E∧ ei + Iη (Hi +H∧ ei) .
(E.1)

To show that the scalar grades are related to the Poynting vector as
⟨T (ei)⟩ = −S · ei/c, we need the scalar grades of the tensor for vector
parameters
ϵ

2

〈
FeiF†

〉
=
ϵ

2

〈
��EiE + Iη (H∧ ei)E +������

(E∧ ei) ·E +����IηHiE
〉

+
ϵ

2
η
〈
−���EiIH +(((((((

η (H∧ ei) ·H − (E∧ ei) IH +���ηHiH
〉

=
ϵ

2

〈
I2η (H × ei)E − η (E × ei) I2H

〉
= − (E ×H) · ei/c,

(E.2)

which is the Poynting relationship that was asserted. For the vector grades
we have〈

FeiF†
〉

1

=
〈
(Ei + Iη (H∧ ei) +E∧ ei + IηHi) (E − IηH)

〉
1

=
〈
EiE +((((((Iη (H∧ ei)E + (E∧ ei) ·E +����IηHiE

〉
1

+ η
〈
−���EiIH + η (H∧ ei) ·H −������

(E∧ ei) IH + ηHiH
〉

1

= EiE +EEi −E2ei + η
2HHi − η

2H2ei + η
2HiH

= 2EiE −E2ei + η
2
(
2HiH −H2ei

)
.

(E.3)

Assembling all the results, we have

⟨T (ei)⟩1 · e j =
ϵ

2

(
2EiE j −E2δi j + η

2
(
2HiH j −H2δi j

))
, (E.4)

which proves that ⟨T (ei)⟩1 · e j = −Θi j as stated in definition 3.5.





FD I F F E R E N T I A L F O R M S C O M PA R I S O N .

It is likely that a student of electromagnetism will encounter differential
forms in their studies. As with geometric algebra, Maxwell’s equations
also have a compact representation in differential forms. That formal-
ism requires recasting the scalars or vectors of Maxwell’s equations as
1-forms (differentials), 2-forms, or 3-forms

(F.1)

E→ Ex dxcdt + Ey dycdt + Ez dzcdt,

B→ Bx dydz + By dzdx + Bz dxdy,

H→ −Hx dxcdt − Hy dycdt − Hz dzcdt,

J→ Jx dydzcdt + Jy dzdxcdt + Jz dxdycdt,

ρ→ −ρ dxdydz.

This appendix is not intended to teach differential forms, nor electrody-
namics using differential forms1. Instead, this appendix assumes some
passing familiarity with differential forms, and provides an example that
illustrates how differential forms and geometric calculus can be related.

The key to relating the two formalisms is the introduction of a param-
eterization. To consider these relations, consider a vector surface those
span is controlled by two parameters

(F.2)x = x(a, b).

In geometric calculus we introduce differentials that span the tangent
plane at the point of evaluation

(F.3)
dxa =

∂x
∂a

da

dxb =
∂x
∂b

db,

so the area element for this parameterization is

(F.4)
d2x = dxa ∧ dxb

=
∂x
∂a
∧
∂x
∂b

dadb.

1 The interested reader is referred to [10] for an introduction to both differential forms, and
an introduction to their application to electrodynamics.
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To relate this to differential forms, introduce an orthonormal basis ek · e j =

0, e2
k = 1. In this basis, the coordinate expansion (summation implied) of

the vector x is
(F.5)x = ekxk.

The coordinate expansion of the geometric area element is

(F.6)

d2x =
∂xk

∂a
∂x j

∂b
ek ∧ e j dadb

=
∑
µ<ν

(
∂xk

∂a
∂x j

∂b
−
∂x j

∂a
∂xk

∂b

)
ek ∧ e j dadb

=
∑
µ<ν

eke j

∣∣∣∣∣∣∣
∂xk
∂a

∂x j
∂a

∂xk
∂b

∂x j
∂b

∣∣∣∣∣∣∣ dadb

=
∑
µ<ν

eke j
∂(xk, x j)
∂(a, b)

dadb.

Each element of this sum includes a product of a pseudoscalar, a Jacobian
determinant, and a scalar two parameter differential.

Now consider a two parameter differential for the same vector. Recall
that a differential (1-form) of a scalar function, again assuming two pa-
rameters, has the characteristic

(F.7)d f =
∂ f
∂a

da +
∂ f
∂b

db.

In particular, we may compute the differentials of the coordinate functions

(F.8)
dxk =

∂xk

∂a
da +

∂xk

∂b
db

dx j =
∂x j

∂a
da +

∂x j

∂b
db,

from which we can compute a 2-form

(F.9)

dxk ∧ dx j =

(
∂xk

∂a
da +

∂xk

∂b
db

)
∧

(
∂x j

∂a
da +

∂x j

∂b
db

)
=
∂xk

∂a
∂x j

∂b
da ∧ db +

∂xk

∂b
∂x j

∂a
db ∧ da

=

∣∣∣∣∣∣∣
∂xk
∂a

∂x j
∂a

∂xk
∂b

∂x j
∂b

∣∣∣∣∣∣∣ da ∧ db

=
∂(xk, x j)
∂(a, b)

da ∧ db.
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We have almost the same structure as with geometric algebra, however,
in differential forms, the antisymmetry of the surface area element is en-
coded in the 2-form da ∧ db whereas in geometric calculus the required
antisymmetry is encoded in a unit bivector.

Should we restrict our attention to a strictly planar subspace, the map-
ping between the two formalisms becomes more striking. We now have

(F.10)
d2x = e1e2

∂(x1, x2)
∂(a, b)

dadb

dx1 ∧ dx2 =
∂(x1, x2)
∂(a, b)

da ∧ db.

That is, we can relate the formalisms by the mapping

(F.11)e1e2 dadb↔ da ∧ db.

The 1-form has an intrinsic vectorial nature, the 2-form has a bivector
nature, and a 3-form has a trivector nature.





GH E L P F U L F O R M U L A S .

g.1 vector relations .

For vectors a,b, c,d

ab = a · b + a∧ b
= a · b + I (a × b) (R3)

(G.1)

a · b =
1
2
(ab + ba)

a∧ b =
1
2
(ab − ba)

(G.2)

ba = −ab + 2a · b (G.3)

a∧ b =
∑
i< j

∣∣∣∣∣∣∣ai a j

bi b j

∣∣∣∣∣∣∣ eie j (G.4)

a · (b∧ c) = (c∧ b) · a = (a · b)c − (a · c)b
= (b × c) × a (R3)

(G.5)

(a∧ b) · (c∧ d) = ((a∧ b) · c) · d = (b · c)(a · d) − (a · c)(b · d)

= −(a × b) · (c × d) (R3)
(G.6)

a = (a · b)
1
b
+ (a∧ b)

1
b
= Projb(a) +Rejb (a)

=
(
a · b̂

)
b̂ +

(
a∧ b̂

)
b̂ (RN)

=
(
a · b̂

)
b̂ + b̂ ×

(
a × b̂

)
(R3)

(G.7)
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a−1 =
a
∥a∥2

(G.8)

a· (b∧ c∧ d)
= (b∧ c∧ d) · a
= (a · b)(c∧ d) − (a · c)(b∧ d) + (a · d)(b∧ c)

(G.9)

a· (b1 ∧ b2 ∧ · · · ∧ bn)

=

n∑
i=1

(−1)i(a · bi) (b1 ∧ · · · ∧ bi−1 ∧ bi+1 ∧ · · · ∧ bn)
(G.10)

a∧ b∧ c =
∑

i< j<k

∣∣∣∣∣∣∣∣∣∣∣
ai a j ak

bi b j bk

ci c j ck

∣∣∣∣∣∣∣∣∣∣∣ eie jek

= (a · (b × c)) I (R3)

(G.11)

g.2 blades .

For k-blade Ak = a1a2 · · · ak, j-blade B j = a1a2 · · · a j, vector a

A†k = (−1)k(k−1)/2Ak (G.12)

Ak · a = (−1)k−1a · Ak

Ak ∧ a = (−1)ka∧ Ak
(G.13)

a∧ Ak =
1
2

(
aAk + (−1)kAka

)
a · Ak =

1
2

(
aAk − (−1)kAka

) (G.14)

Ak · (a∧ B j) = (Ak · a) · B j k > j > 0
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g.3 multivectors .

A · B ≡
N∑

i, j=0

〈
AiB j

〉
|i− j|

A∧ B ≡
N∑

i, j=0

〈
AiB j

〉
i+ j

(G.15)

A⌋B =
N∑

i, j=0

〈
AiB j

〉
j−i

A⌊B =
N∑

i, j=0

〈
AiB j

〉
i− j

A∗B =
N∑

i, j=0

〈
AiB j

〉
(G.16)

g.4 vector calculus identities .

Blade A,

∇∧ (∇∧ A) = 0 (G.17)

R3, scalar f , vector f

∇ × (∇ f ) = 0

∇ · (∇ × f) = 0
(G.18)

∇ (a · b) = (a ·∇) b + (b ·∇) a + (∇∧ b) · a + (∇∧ a) · b
= (a ·∇) b + (b ·∇) a + a × (∇ × b) + b × (∇ × a) (R3)

(G.19)

∇ · (a∧ b) = b (∇ · a) − a (∇ · b) − (b ·∇) a + (a ·∇) b
= −∇ × (a × b) (R3)

(G.20)

∇∧ ( f (∇g∧∇h)) = ∇ f ∧∇g∧∇h (G.21)
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For R3

∇ · ( f (∇g ×∇h)) = ∇ f · (∇g ×∇h) (G.22)

∇∧ (a∧ b) = b∧ (∇∧ a) − a∧ (∇∧ b) (G.23)

For R3

∇ · (a × b) = b · (∇ × a) − a · (∇ × b) (G.24)



HM AT H E M AT I C A N OT E B O O K S .

These Mathematica notebooks, some just trivial ones used to generate
figures, others more elaborate, and perhaps some even polished, can be
found in

https://github.com/peeterjoot/mathematica/tree/master/GAelectrodynamics/.
The free Wolfram CDF player, is capable of read-only viewing these

notebooks to some extent.

• Dec 18, 2016 projectionAndRejectionDiagram.nb

Figure illustrating projection and rejection.

• Dec 19, 2016 oneParameterDifferentialFig.nb

One parameter differential figure.

• Dec 20, 2016 twoParameterDifferentialFig.nb

Two parameter differential figure, black and white versions.

• Aug 10, 2017 orientedAreasVarietyFigures.nb

Oriented areas of different shapes representing bivectors.

• Sep 26, 2017 parallelograms.nb

Overlapping parallelograms with fixed areas. Figure: parrallelograms-
Fig1.eps.

• Sep 26, 2017 parallelogram.nb

This is the notebook for two rotation figures. One is for a rotation
of a vector lying in a plane (but that plane is viewed from a 3D
vantage point), and the other is for a rotation with respect to a plane
through an angle, and applied to a vector out of the plane.

• Oct 23, 2017 circularLineChargeDensity.nb

Some messy evaluation of integrals that end up expressed in terms
of elliptic E() and F() functions. Was associated with the evaluation
of the charge of a circular segment of line charge.

https://github.com/peeterjoot/mathematica/tree/master/GAelectrodynamics/
http://www.wolfram.com/cdf-player/
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/projectionAndRejectionDiagram.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/oneParameterDifferentialFig.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/twoParameterDifferentialFig.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/orientedAreasVarietyFigures.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/parallelograms.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/parallelogram.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/circularLineChargeDensity.nb
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• Oct 23, 2017 LineChargeIntegralsAndFigure.nb

Integrals for Line charge problem, including some of the special
angle cases that seem to require separate evaluation. Also has a
plot linechargeFig1.eps, and some plots (not in the book) of the
integrands.

• Nov 2, 2017 lineChargeArcFigure.nb

Figure for circular arc of line charge. One arc of charge on the x-y
plane at a fixed radius. Field point, azimuthal angles for the range
of the line charge.

• Nov 19, 2017 zcapPotential.nb

Figure for (magnetic) vector potential: vectorPotentialFig1.eps.

• Nov 19, 2017 gaToroid.nb

Cool toroidal segment figure for the book. toroidFig1.eps

• Nov 19, 2017 pillboxIntegrationVolumeFig1.nb

This is the figure for pillbox integration volume that was used in the
boundary value analysis of Maxwell’s equations.

• Nov 23, 2017 circularBasisCoordinatesInTermsOfJonesVector.nb

Verify hand calculation from polarization.tex (also set as a prob-
lem). Got my hand calculation wrong. Try this with Mathematica
instead. Has some additional checking of the solution.

• Nov 23, 2017 ellipticalPolarizationFig1.nb

A plot of a rotated ellipse showing the major and minor axes, and
the angle of rotation. This was related to an elliptically polarized
plane wave.

• Nov 23, 2017 linearPolarizationFig1.nb

Figure (linearPolarizationFig1.eps) showing the electric and mag-
netic field directions for a linearly polarized field propagating at a
fixed angle to the horizontal in the transverse plane.

• Nov 24, 2017 pseudoscalarPolarizedRelationtoJones.nb

Jones vector related calculations for GA representation of plane
wave.

https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/LineChargeIntegralsAndFigure.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/lineChargeArcFigure.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/zcapPotential.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/gaToroid.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/pillboxIntegrationVolumeFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/circularBasisCoordinatesInTermsOfJonesVector.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/ellipticalPolarizationFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/linearPolarizationFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/pseudoscalarPolarizedRelationtoJones.nb
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• Nov 28, 2017 vectorOrientationAndAdditionFigures.nb

Vector addition and vector (and scalar) sign figures: VectorsWith-
OppositeOrientationFig1.eps, vectorAdditionFig1.eps, scalarOrien-
tationFig1.eps.

• Dec 3, 2017 ellipticalPolarizationEnergyMomentumSimplification.nb

Hyperbolic cosine and arctan double angle reductions. Probably for
cosh parameterization of an ellipse.

• Dec 3, 2017 amperesLawMultiplePoints.nb

Figure for amperesLawBetweenTwoCurrents.eps. Circles surround-
ing two currents, with respective phicap vectors around those sources.

• Dec 5, 2017 stressEnergyTensorValues.nb

Uses my GA30.m package to compute the values of the energy mo-
mentum tensor multivectors, and relate those to the conventional
tensor description of the same. Calculates the expansion of the ad-
joint of the energy momentum tensor, and also the expansion of
some of the adjoint energy momentum tensor terms for the Poynt-
ing vector.

• Dec 13, 2017 planeCurrentIntegrals.nb

Simple integrals for plane current distributions.

• Dec 14, 2017 ringIntegral2.nb

Elliptic integrals for charge and current distribution on a ring.

• Dec 14, 2017 currentRingIntegrals.nb

Some integrals related to circular current/charge distributions. A
Manipulate that plots the magnitude of one of the integrands. A
plot (chargeAndCurrentOnRingFig1.eps) that shows the geometric
of the current ring and coordinate system used to solve or express
the problem.

• Dec 17, 2017 cylinderFieldIntegrals.nb

Symbolic evaluation of integrals for a cylindrical field distribution
of finite and infinite length.

https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/vectorOrientationAndAdditionFigures.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/ellipticalPolarizationEnergyMomentumSimplification.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/amperesLawMultiplePoints.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/stressEnergyTensorValues.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/planeCurrentIntegrals.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/ringIntegral2.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/currentRingIntegrals.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/cylinderFieldIntegrals.nb
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• Dec 17, 2017 ringFieldEllipticIntegralEquivalents.nb

This notebook has transformation techniques to translate a couple
of circular charge distribution integrals into their elliptic integral
form. It also has plots of some of the electric and magnetic fields
obtained from solving one such problem.

• Jan 24, 2018 stressTensorSymmetricDemo.nb

A CliffordBasic calculation of the strain portion of the stress tensor,
and an explicit demonstration that it is symmetric.

• Jan 28, 2018 exponentialFormOfVectorProductInR3.nb

A somewhat random seeming complex exponential evaluation us-
ing CliffordBasic, and an R3 bivector argument.

• Jan 28, 2018 exponentialFormOfVectorProductInR2.nb

Some R2 complex exponential calculations using CliffordBasic.

• Jan 28, 2018 compositionOfExponentials.nb

This is a figure that has an equilateral triangle in the corner of the
first quadrant. This was used to illustrate that the product of two
complex exponentials is another complex exponential (in R3), but
the bivector argument for that resulting exponential describes (in
general) a different plane.

• Jan 29, 2018 radialVectorCylindricalFig1.nb

Figure: radialVectorCylindricalFig1.eps. Notebook uses a dynamic
(Manipulate) to generate the figure at a desirable angle and radius.

• Feb 1, 2018 dualityInR3Fig1.nb

Figure (dualityInR3Fig1.eps) showing the R3 dual plane to a vector
graphically. The scaling of the dual plane was only for illustration
purposes and did not match the length of the vector.

• Feb 3, 2018 factorizationProblemVerification.nb

Verify answers for normal factorization problem. 2.16

• Feb 3, 2018 bivectorFactorizationFigures.nb

Figures that illustrate two rectangular factorizations of a bivector in
R3.

https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/ringFieldEllipticIntegralEquivalents.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/stressTensorSymmetricDemo.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/exponentialFormOfVectorProductInR3.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/exponentialFormOfVectorProductInR2.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/compositionOfExponentials.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/radialVectorCylindricalFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/dualityInR3Fig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/factorizationProblemVerification.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/bivectorFactorizationFigures.nb
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• Feb 5, 2018 neighbourhoodFig1.nb

A nice little figure illustrating an infinitesimal neighbourhood around
a given point. This was used as a figure in the somewhat tedious ver-
ification of a Green’s function, done in one of the appendixes.

• Feb 14, 2018 FourierTransformMathematicaParamsExploration.nb

The purpose of this notebook is to show (i.e. decode) the mean-
ing visually of the various Mathematica FourierTransform Fourier-
Parameters options available. Shows all the conventions (modern
physics, pure math, signal processing, classical physics).

• Feb 20, 2018 ellipticalContoursFigures.nb

Hyperbolic parameterization of an ellipse, and contours for the as-
sociated curvilinear coordinates. ellipticalContoursFig1.eps, and el-
lipticalContoursFig1.eps figures.

• Feb 22, 2018 2dmanifoldPlot.nb

Figure: 2dmanifoldFig1.eps. CliffordBasic calculation of the basis
elements above and the area element. Same calculation using my
GA30.m package. Generation of mmacell text for the book showing
the input and output cells for the CliffordBasic calculation.

• Feb 24, 2018 reciprocalBasicCalculationFromFigure.nb

Reciprocal basis computation with conventional vector algebra. Same
calculation using bivectors. Display the cells for the book latex.

• Feb 24, 2018 linearSystemR4.nb

A CliffordBasic solution to an R4 linear system a x + b y = c, using
wedge products to solve. Also includes mmacell output to embed
the solution in the book as Mathematica input and output.

• Feb 24, 2018 reflectionFigureGAcalculation.nb

CliffordBasic calculations for Figure 1.20 reflection (reflectionFig1.eps),
but not the figure itself. Also has mmacell output for the input and
output cells for this calculation.

• Feb 24, 2018 curvilinearPolarFig1.nb

Plot (curvilinearPolarFig1.eps) that shows a 2d vector in polar co-
ordinates, the radial vector, and the angle relative to the horizon.

https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/neighbourhoodFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/FourierTransformMathematicaParamsExploration.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/ellipticalContoursFigures.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/2dmanifoldPlot.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/reciprocalBasicCalculationFromFigure.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/linearSystemR4.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/reflectionFigureGAcalculation.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/curvilinearPolarFig1.nb


316 mathematica notebooks .

• Feb 25, 2018 sphericalPolar.nb

Spherical polar basis and volume element. Calcuation of the curvi-
linear basis elements done with conventional vector algebra, and
CliffordBasic. Also includes mmacell output for the book.

• Feb 28, 2018 orientedAreas.nb

Bivector square and parallelogram figures, Figures for 90 degree
rotations. Figure for line intersection. Figure for vector addition,
showing scaled multiples of orthonormal bases elements.

• Feb 28, 2018 unitBivectorsFig.nb

Unit bivectors figures in R3. unitBivectorsFig1.eps, unitBivectors-
Fig2.eps.

• Feb 28, 2018 bivectorAddition.nb

Pictoral addition of different size and shape bivectors.

• Feb 28, 2018 unitBivectorAreaRepresentationsFig.nb

A figure that shows different shape representations of unit bivec-
tors in R2. Includes parallelogram, square, circle and ellipse rep-
resentations. Also includes inscribed arc to show the orientation
of the bivectors. That was done using Arrow in combination with
BSplineCurve, where the points on the curve come from evaluating
CirclePoints.

• Feb 28, 2018 circularBivectorsIn3DFig1.nb

This is the notebook for a few bivector related illustrations. The
first is two circular representations of a bivector viewed from a 3D
vantage point. Another is a bivector addition figure, with two bivec-
tors summed in 3D. That figure was confusing (but cool), and has
been left out of the book. The last figure separates the space be-
tween those bivectors summed in the second figure showing the
summands and the sum all distinct. The current draft of the book
includes this figure, but it is still a bit confusing.

• Apr 2, 2018 polarizationCircular.nb

A hand calculation seemed to show that I had the wrong expressions
for alphaL, alphaR in my polarization notes. Here’s a check of the
correction of those expressions

https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/sphericalPolar.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/orientedAreas.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/unitBivectorsFig.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/bivectorAddition.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/unitBivectorAreaRepresentationsFig.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/circularBivectorsIn3DFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/polarizationCircular.nb
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• Jul 26, 2018 sphericalPolarGA30.nb

Uses geometric algebra to calculate the spherical polar position vec-
tor, and then take derivatives to find the trivector volume element
(Jacobian).

• Feb 2, 2019 obliqueReciprocal.nb

figure in reciprocal.tex

• Feb 10, 2019 bivectorAdditionIllustrated3D.nb

This is a graphical illustration of bivector addition, connecting the
normals of the bivectors head to tail like vector addition. The mag-
nitudes of the bivectors are represented by the unit normals scaled
by the area of the bivector representations. The notebook includes
a Manipulate expression that can be used to interactively examine
the effect of changing the size of each of the summed bivectors.

• Jan 30, 2020 distanceToLine.nb

Illustration of distance from a point to a line.

• Jul 26, 2020 2dReciprocal.nb

This does a 2D calculation of the reciprocal frame vectors (two dif-
ferent ways), and plots orthonormal and oblique grids with sample
vectors using those bases.

• Aug 3, 2020 stickfig.nb

Stick figure generation module and a couple of linear force dia-
grams.

• Nov 20, 2020 twoParameterDifferentialCov.nb

Two parameter differential figure, a covariant labelling variation.

• Nov 22, 2020 twoParameterDifferentialColorFig.nb

Two parameter differential figure, color variation.

• Nov 22, 2020 MathematicaColorToLatexRGB.nb

helper code to convert named Mathematica colors to RGB html and
latex values.

https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/sphericalPolarGA30.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/obliqueReciprocal.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/bivectorAdditionIllustrated3D.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/distanceToLine.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/2dReciprocal.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/stickfig.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/twoParameterDifferentialCov.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/twoParameterDifferentialColorFig.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/GAelectrodynamics/MathematicaColorToLatexRGB.nb
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Jes, 273
Jms, 273
A · B, 43
A∗B, 44
A⌊B, 44
A⌋B, 44
A∧ B, 50
A†, 40
F, 186, 267
Ft, 251
Fz, 251
G, 267
I, 21
J, 187
Je, 267
Jm, 267
M∗, 29
Q, 238
T (∂t), 223
T (∇), 223
T (a), 220
T , 237
Ti j, 219
A, 256
B, 183
D, 183
E, 183
Et,Ez, 253
F, 256
H, 183
Ht,Hz, 253
J, 183
Js, 273

M, 183
Ms, 273
S, 218
T(a), 220
T(∇), 223
a · b, 31
a × b, 33
a∧ b, 33
e1, e2, · · ·, 8
ei j, ei jk, · · ·, 20
k, 192
p, 185, 237
pem, 231
pmech, 231
xϕ

polar, 112
spherical, 116

xρ

polar, 112
xθ

spherical, 116
xi, 93
xr

spherical, 116
x−1, 57
xi, 106
Θµν, 219
αR, αL, 242, 249
R, 1
P, 218∧k, 40
∂, 109
E, 185, 218, 237



□, 166
ϵ, 184
ϵ0, 184
ϵr, 184
η, 186
⟨M⟩, 19
⟨M⟩k, 19
k̂, 192
←

∂, 127
↔

T, 219
↔

∂, 127
↔

∇

′

, 162
←

∇

′

, 161
µ, 184
µ0, 184
µr, 184
ω, 192
A(x), 226
T (x), 227
∂i, 109
ϕ, 242, 256
ϕm, 256
ϕ̂

spherical, 116
∝, 213
→

∂, 127
r̂

spherical, 116
ρ, 183
ρm, 183
ρs, 273
ρms, 273
→

∇

′

, 161
∇′, 161
∇, 109
∇t, 253
θ̂

spherical, 116
c, 186
c1, c2, 242, 249
dkx, 106
i, 21
qe, 238
qm, 238
δi

j, 93
RN , 4
0-vector, 10
1-vector, 10
2-vector, 11
3-vector, 13

anticommutation, 17
antisymmetric sum, 65
area element, 124

basis, 6
bivector, 11
blade, 40
boundary values, 273

circular polarization, 244
colinear vectors

wedge, 39
commutation, 17, 62
complex exponential, 24
complex imaginary, 21, 41
complex plane, 205
complex power, 235
conjugation, 62
convolution, 169
Cramer’s rule, 71
cross product, 37
curvilinear bases, 102, 106, 110,

114

delta function, 169
determinant



wedge product, 36
differential form, 119, 121, 124,

139
dimension, 6
divergence theorem, 145
dot product, 7, 33, 49
dual, 29

electric charge density, 183
electric current density, 183
energy density, 218
energy flux, 218
energy momentum tensor, 219
Euler’s formula, 24

far field, 262
Fourier transform, 154
frequency domain, 154
fundamental theorem of geomet-

ric calculus, 128

gauge transformation, 259
grade, 14, 40
grade selection, 19, 31
gradient

spherical, 116
Gradient of the coordinates., 112
Green’s function, 155, 159

Helmholtz, 162
Laplacian, 163

Helmholtz
Green’s function, 162

Helmholtz operator, 159
Helmholtz’s theorem, 168

Jones vector, 242, 249

k-vector, 14

Laplacian, 170

Green’s function, 163
left circular polarization, 244
length, 7
line charge, 202, 209
linear combination, 5
linear dependence, 5
linear independence, 6
linear system, 69
Lorenz gauge, 260

magnetic charge density, 183
magnetic current density, 183
Mathematica, 311
Maxwell stress tensor, 219
Maxwell’s equation, 186
momentum density, 218
multivector, 14
multivector dot product, 43
multivector space, 15
multivector wedge product, 50

oriented volume element, 106
orthogonal, 7
orthonormal, 8

parallelogram, 60
plane wave, 241
polar coordinates, 110
polar representation, 35
polarization, 241
Poynting vector, 218
projection, 53
pseudoscalar, 20, 22, 23, 41

quaternion, 42

reciprocal basis
polar, 112

reciprocal frame, 93, 101
reflection, 67



rejection, 53
reverse, 40
right circular polarization, 244
rotation, 23, 64

scalar, 10
scalar selection, 49
span, 6
spherical coordinates, 114, 121,

209
standard basis, 8
subspace, 6
symmetric sum, 65

tangent space, 106
time harmonic, 154
toroid, 119
trivector, 13

unit pseudoscalar, 20
unit vector, 7

vector, 10
vector derivative, 109
vector inverse, 57
vector product, 31
vector space, 4
volume element, 106, 139
volume parameterization, 139

wedge factorization, 58
wedge product, 33

linear solution, 69
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