Peeter Joot
 peeterjoot@pm.me

Complex-pair representation of GA(2,0) multivectors

We found previously that a complex pair representation of a GA(2,0) multivector had a compact geometric product realization. Now that we know the answer, let's work backwards from that representation to verify that everything matches our expectations.

We are representing a multivector of the form

$$
\begin{equation*}
M=a+b \mathbf{e}_{1} \mathbf{e}_{2}+x \mathbf{e}_{1}+y \mathbf{e}_{2}, \tag{1.1}
\end{equation*}
$$

as the pair of complex numbers

$$
\begin{equation*}
M \sim(a+i b, x+i y) \tag{1.2}
\end{equation*}
$$

Given a pair of multivectors with this complex representation

$$
\begin{align*}
M & =\left(z_{1}, z_{2}\right) \tag{1.3}\\
N & =\left(q_{1}, q_{2}\right),
\end{align*}
$$

we found that our geometric product representation was

$$
\begin{equation*}
M N \sim\left(z_{1} q_{1}+z_{2}^{*} q_{2}, z_{2} q_{1}+z_{1}^{*} q_{2}\right) \tag{1.4}
\end{equation*}
$$

Our task is now to verify that this is correct. Let's set

$$
\begin{align*}
& z_{1}=a+i b \\
& q_{1}=a^{\prime}+i b^{\prime} \tag{1.5}\\
& z_{2}=x+i y \\
& q_{2}=x^{\prime}+i y^{\prime},
\end{align*}
$$

and proceed with an expansion of the even grade components

$$
\begin{align*}
z_{1} q_{1}+z_{2}^{*} q_{2} & =(a+i b)\left(a^{\prime}+i b^{\prime}\right)+(x-i y)\left(x^{\prime}+i y^{\prime}\right) \\
& =a a^{\prime}-b b^{\prime}+x x^{\prime}+y y^{\prime}+i\left(b a^{\prime}+a b^{\prime}+x y^{\prime}-y x^{\prime}\right) \tag{1.6}\\
& =x x^{\prime}+y y^{\prime}+i\left(x y^{\prime}-y x^{\prime}\right)+a a^{\prime}-b b^{\prime}+i\left(b a^{\prime}+a b^{\prime}\right) .
\end{align*}
$$

The first terms is clearly the geometric product of two vectors

$$
\begin{equation*}
\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}\right)\left(x^{\prime} \mathbf{e}_{1}+y^{\prime} \mathbf{e}_{2}\right)=x x^{\prime}+y y^{\prime}+i\left(x y^{\prime}-y x^{\prime}\right) \tag{1.7}
\end{equation*}
$$

and we are able to verify that the second parts can be factored too

$$
\begin{equation*}
(a+b i)\left(a^{\prime}+b^{\prime} i\right)=a a^{\prime}-b b^{\prime}+i\left(b a^{\prime}+a b^{\prime}\right) . \tag{1.8}
\end{equation*}
$$

This leaves us with

$$
\begin{equation*}
\langle M N\rangle_{0,2}=\langle M\rangle_{1}\langle N\rangle_{1}+\langle M\rangle_{0,2}\langle N\rangle_{0,2} \tag{1.9}
\end{equation*}
$$

as expected. This part of our representation checks out.
Now, let's look at the vector component of our representation. First note that to convert from our complex representation of our vector $z=x+i y$ to the standard basis representation of our vector, we need only multiply by \mathbf{e}_{1} on the left, for example:

$$
\begin{equation*}
\mathbf{e}_{1}(x+i y)=\mathbf{e}_{1} x+\mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} y=\mathbf{e}_{1} x+\mathbf{e}_{2} y . \tag{1.10}
\end{equation*}
$$

So, for the vector component of our assumed product representation, we have

$$
\begin{align*}
\mathbf{e}_{1}\left(z_{2} q_{1}+z_{1}^{*} q_{2}\right) & =\mathbf{e}_{1}(x+i y)\left(a^{\prime}+i b^{\prime}\right)+\mathbf{e}_{1}(a-i b)\left(x^{\prime}+i y^{\prime}\right) \\
& =\mathbf{e}_{1}(x+i y)\left(a^{\prime}+i b^{\prime}\right)+(a+i b) \mathbf{e}_{1}\left(x^{\prime}+i y^{\prime}\right) \tag{1.11}\\
& =\langle M\rangle_{1}\langle N\rangle_{0,2}+\langle M\rangle_{0,2}\langle N\rangle_{1},
\end{align*}
$$

as expected.
Our complex-pair realization of the geometric product checks out.

