## Peeter Joot <br> peeterjoot@pm.me

## A complex-pair representation of GA(2,0).

### 1.1 Motivation.

Suppose that we want to represent GA( 2,0 ) (Euclidean) multivectors as a pair of complex numbers, with a structure like

$$
\begin{equation*}
M=\left(m_{1}, m_{2}\right), \tag{1.1}
\end{equation*}
$$

where

$$
\begin{align*}
\langle M\rangle_{0,2} & \sim m_{1}  \tag{1.2}\\
\langle M\rangle_{1} & \sim m_{2} .
\end{align*}
$$

Specifically

$$
\begin{align*}
\langle M\rangle_{0} & =\operatorname{Re}\left(m_{1}\right) \\
\langle M\rangle_{1} \cdot \mathbf{e}_{1} & =\operatorname{Re}\left(m_{2}\right)  \tag{1.3}\\
\langle M\rangle_{1} \cdot \mathbf{e}_{2} & =\operatorname{Im}\left(m_{2}\right) \\
\langle M\rangle_{2} i^{-1} & =\operatorname{Im}\left(m_{1}\right),
\end{align*}
$$

where $i \sim \mathbf{e}_{1} \mathbf{e}_{2}$.
1.2 Multivector product representation.

Let's figure out how we can represent the various GA products, starting with the geometric product. Let

$$
\begin{align*}
M & =\langle M\rangle_{0,2}+\langle M\rangle_{1}=\left(m_{1}, m_{2}\right)=\left(m_{11}+m_{12} i, m_{21}+m_{22} i\right) \\
N & =\langle N\rangle_{0,2}+\langle N\rangle_{1}=\left(n_{1}, n_{2}\right)=\left(n_{11}+n_{12} i, n_{21}+n_{22} i\right), \tag{1.4}
\end{align*}
$$

so

$$
\begin{align*}
M N= & \langle M\rangle_{0,2}\langle N\rangle_{0,2}+\langle M\rangle_{1}\langle N\rangle_{1} \\
& +\langle M\rangle_{1}\langle N\rangle_{0,2}+\langle M\rangle_{0,2}\langle N\rangle_{1} \tag{1.5}
\end{align*}
$$

The first two terms have only even grades, and the second two terms are vectors. The complete representation of the even grade components of this multivector product is

$$
\begin{equation*}
\langle M N\rangle_{0,2} \sim\left(m_{1} n_{1}+\operatorname{Re}\left(m_{2} n_{2}^{*}\right)-i \operatorname{Im}\left(m_{2} n_{2}^{*}\right), 0\right), \tag{1.6}
\end{equation*}
$$

or

$$
\begin{align*}
\langle M N\rangle_{0} & =\operatorname{Re}\left(m_{1} n_{1}+m_{2} n_{2}^{*}\right) \\
\langle M N\rangle_{2} i^{-1} & =\operatorname{Im}\left(m_{1} n_{1}-m_{2} n_{2}^{*}\right) . \tag{1.7}
\end{align*}
$$

For the vector components we have

$$
\begin{align*}
\langle M N\rangle_{1} & =\langle M\rangle_{1}\langle N\rangle_{0}+\langle M\rangle_{0}\langle N\rangle_{1}+\langle M\rangle_{1}\langle N\rangle_{2}+\langle M\rangle_{2}\langle N\rangle_{1}  \tag{1.8}\\
& =\langle M\rangle_{1} n_{11}+m_{11}\langle N\rangle_{1}+\langle M\rangle_{1} i_{12}+i_{12}\langle N\rangle_{1} .
\end{align*}
$$

For these,

$$
\begin{equation*}
\langle M\rangle_{1} i=\left(m_{21} \mathbf{e}_{1}+m_{22} \mathbf{e}_{2}\right) \mathbf{e}_{12}=-m_{22} \mathbf{e}_{1}+m_{21} \mathbf{e}_{2}, \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
i\langle N\rangle_{1}=\mathbf{e}_{12}\left(n_{21} \mathbf{e}_{1}+n_{22} \mathbf{e}_{2}\right)=n_{22} \mathbf{e}_{1}-n_{21} \mathbf{e}_{2} . \tag{1.10}
\end{equation*}
$$

Comparing to

$$
\begin{equation*}
i(a+i b)=-b+i a, \tag{1.11}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\langle M N\rangle_{1} \sim\left(0, n_{11} m_{2}+m_{11} n_{2}+n_{12} i m_{2}-m_{12} i n_{2}\right) . \tag{1.1}
\end{equation*}
$$

If we want the vector coordinates, those are

$$
\begin{align*}
& \langle M N\rangle_{1} \cdot \mathbf{e}_{1}=\operatorname{Re}\left(n_{11} m_{2}+m_{11} n_{2}+n_{12} i m_{2}-m_{12} i n_{2}\right)  \tag{1.13}\\
& \langle M N\rangle_{1} \cdot \mathbf{e}_{2}=\operatorname{Im}\left(n_{11} m_{2}+m_{11} n_{2}+n_{12} i m_{2}-m_{12} i n_{2}\right) .
\end{align*}
$$

### 1.3 Summary.

$$
\begin{equation*}
M N \sim\left(m_{1} n_{1}+\operatorname{Re}\left(m_{2} n_{2}^{*}\right)-i \operatorname{Im}\left(m_{2} n_{2}^{*}\right), n_{11} m_{2}+m_{11} n_{2}+n_{12} i m_{2}-m_{12} i n_{2}\right) . \tag{1.14}
\end{equation*}
$$

A sample Mathematica implementation is available, as well as an example notebook (that also doubles as a test case.)

### 1.4 Clarification.

I skipped a step above, showing the correspondances to the dot and wedge product.
Let $z=a+b i$, and $w=c+d i$. Then:

$$
\begin{align*}
z w^{*} & =(a+b i)(c-d i) \\
& =a c+b d-i(a d-b c) . \tag{1.15}
\end{align*}
$$

Compare that to the geometric product of two vectors $\mathbf{x}=a \mathbf{e}_{1}+b \mathbf{e}_{2}$, and $\mathbf{y}=c \mathbf{e}_{1}+d \mathbf{e}_{2}$, where we have

$$
\begin{align*}
\mathbf{x y} & =\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \wedge \mathbf{y} \\
& =\left(a \mathbf{e}_{1}+b \mathbf{e}_{2}\right)\left(c \mathbf{e}_{1}+d \mathbf{e}_{2}\right)  \tag{1.16}\\
& =a c+b d+\mathbf{e}_{1} \mathbf{e}_{2}(a d-b c) .
\end{align*}
$$

So we have

$$
\begin{align*}
a b+c d & =\mathbf{x} \cdot \mathbf{y}=\operatorname{Re}\left(z w^{*}\right)  \tag{1.17}\\
a d-b c & =(\mathbf{x} \wedge \mathbf{y}) \mathbf{e}_{12}^{-1}=-\operatorname{Im}\left(z w^{*}\right) .
\end{align*}
$$

We see that $\left(z w^{*}\right)^{*}=z^{*} w$ can be used as a representation of the geometric product (setting $i=\mathbf{e}_{1} \mathbf{e}_{2}$ as usual.)
1.5 Another simplification.

We have sums of the form

$$
\begin{equation*}
\operatorname{Re}(z) w \pm \operatorname{Im}(z) i w \tag{1.18}
\end{equation*}
$$

above. Let's see if those can be simplified. For the positive case we have

$$
\begin{align*}
\operatorname{Re}(z) w+\operatorname{Im}(z) i w & =\frac{1}{2}\left(z+z^{*}\right) w+\frac{1}{2}\left(z-z^{*}\right) w  \tag{1.19}\\
& =z w
\end{align*}
$$

and for the negative case, we have

$$
\begin{align*}
\operatorname{Re}(z) w-\operatorname{Im}(z) i w & =\frac{1}{2}\left(z+z^{*}\right) w-\frac{1}{2}\left(z-z^{*}\right) w  \tag{1.20}\\
& =z^{*} w .
\end{align*}
$$

This, with the vector-vector product simplification above, means that we can represent the full multivector product in this representation as just

$$
\begin{equation*}
M N \sim\left(m_{1} n_{1}+m_{2}^{*} n_{2}, m_{2} n_{1}+m_{1}^{*} n_{2}\right) \tag{1.21}
\end{equation*}
$$

