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Circular and spherical area, volume, and boundary integrals.

1.1 Motivation

Maverick posed the following question on the bivector discord
“I saw your blog post on curvilinear coordinates in geometric calculus. I saw your derivation of the

volume of a sphere using this technique and decided for practice by doing a surface integral to calculate
the area of sphere using the quantity ∂θ ∧ ∂ϕ dA is there a way to integrate this without simply taking
the magnitude of this quantity and then integrating or are we limited to only integrating quantities that
are 1 dimensional like scalars and pseudoscalars”.

My initial response was that, sure, we should be able to compute bivector and trivector valued inte-
grals. However, in retrospect, the reality is a bit more subtle.

We aren’t limited to using the magnitudes of the differential forms, but not all multivector integral are
interesting. In the original blog post, I must have computed the area of the circle using a bivector valued
area element, or the volume of a sphere using a trivector valued volume element. However, if I did
the volume that way, I probably cheated and computed 8 times the value of the first quadrant volume
(which is positive), vs. the entire integral, which is zero.

Let’s compute the circular area and circumference, and the spherical volume and surface area using
multivector valued integrals, and see where we end up having to resort to scalar integrals.

1.2 Circular example.

The polar parameterization of points in circular region is

x = re1eiθ , (1.1)

where i = e1e2. Our differentials are
dxr = e1eiθ dr

dxθ = re2eiθ dθ.
(1.2)
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Our “volume” element, is a 2D pseudoscalar

dA = dxr ∧ dxθ

= r
〈

e1eiθe2eiθ
〉

2
drdθ

= r
〈

e1e2e−iθeiθ
〉

2
drdθ

= ri drdθ.

(1.3)

This, as I probably pointed out in my previous blog post, can be integrated to find the area of the circle

A =
∫ R

r=0

∫ 2π

θ=0
ri drdθ

=
R2

2
2πi

= πR2i.

(1.4)

However, we got lucky, as the two-form area element was strictly positive (i.e.: the Jacobean for a polar
change of coordinates is strictly positive.)

However, we can’t find the circumference of a circle my integrating dxθ around that circular path,
because dxθ has an orientation, and we will get zero (given the symmetry of the problem) if we integrate
all the way around ∫ 2π

θ=0
dxθ =

∫ 2π

θ=0
re2eiθ dθ

= re2
eiθ

i

∣∣∣∣2π

0

=
re2

i
× 0.

(1.5)

If we want the circumference of a circle, we have to sum all the contributions of dxθ that are colinear with
θ̂ = e2eiθ

C =
∫ 2π

θ=0
θ̂ · dxθ

=
∫ 2π

θ=0
θ̂ ·

(
rθ̂ dθ

)
= 2πr.

(1.6)

This is a plain old boring scalar integral, because the vector valued path integral isn’t terribly interesting.

1.3 Spherical example.

For a spherical parameterization, our position vector is

x = re1eiϕ sin θ + re3 cos θ, (1.7)
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so the differentials are
dxr =

(
e1eiϕ sin θ + e3 cos θ

)
dr = r̂ dr

dxθ =
(

re1eiϕ cos θ − re3 sin θ
)

dθ = rθ̂ dθ

dxϕ = re2eiϕ sin θ dϕ = r sin θϕ̂.

(1.8)

The oriented area element on the surface of the sphere is

dA = dxθ ∧ dxϕ

= r2
〈(

e1eiϕ cos θ − e3 sin θ
)

e2eiϕ sin θ
〉

2
dθdϕ

= r2 sin θ
(

i cos θ − e32eiϕ sin θ
)

dθdϕ.

(1.9)

Integrating this over the surface will give us zero, with the first integrand killed by the θ integral, and the
second by the ϕ integral. As pointed out in the original question, we must integrate the absolute value
of this two-form in order to find the surface area of the sphere, just as we had to integrate the absolute
value of dxθ for the circle to find the circumference.

Let’s perform that integration to verify that we get the expected result. We will first simplify our
bivector valued oriented area element. Observe that dA ∧ r̂ = dAr̂ ∝ I, so dA ∝ r̂I. We should be able to
simplify our expression for dA by factoring out an r̂ term

dA = r2 sin θ
(

e1233 cos θ − e1132eiϕ sin θ
)

dθdϕ

= r2 sin θ I
(

e3 cos θ + e1eiϕ sin θ
)

dθdϕ

= r2 sin θ I r̂ dθdϕ.

(1.10)

The spherical scalar area is

A =
∫ π

θ=0

∫ 2π

ϕ=0

∣∣r2 sin θ I r̂
∣∣ dθdϕ

= r2
∫ π

θ=0

∫ 2π

ϕ=0
|sin θ| dθdϕ

= 2r2
∫ π/2

θ=0

∫ 2π

ϕ=0
sin θ dθdϕ

= 2r2 (2π)

= 4πr2.

(1.11)

Observe that to find the volume of the sphere, we also cannot just integrate the trivector valued volume
element directly either. That oriented volume element is

dV = dxr ∧ dA
= r̂ drdA

= r2 sin θ I drdθdϕ.

(1.12)
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This integrand is positive above the azimuthal plane, and negative below, so will give us zero if we
integrate over the entire θ ∈ [0, π] region. So, if we want to find the volume of a sphere, we also must
use an absolute integrand.

V =
∫ R

r=0

∫ π

θ=0

∫ 2π

ϕ=0

∣∣r2 sin θ I
∣∣ drdθdϕ

= 2
∫ R

r=0

∫ π/2

θ=0

∫ 2π

ϕ=0
r2 sin θ drdθdϕ

= 2
R3

3
(2π)

=
4
3

πR3.

(1.13)

Had the sign of our volume element been invariant over the entire integration region, as it was for the
circular area computation (but not the circular boundary computation), we could have computed this as
a pseudoscalar integral. For example, if we wanted to know what the oriented volume of the first octant
of the sphere was, we could compute that directly, as

V1 =
∫ R

r=0

∫ π/2

θ=0

∫ π/2

ϕ=0
r2 sin θ I drdθdϕ

=
1
6

πR3 I,

(1.14)

but if this volume integral is extended to the entire spherical region, the result is zero, not (4/3)πR3 I.
Only when our multivector integrand doesn’t change sign over the integration region, can we directly

integrate without taking absolute values. Again, this should not be too surprising. This is why, in con-
ventional scalar calculus, we generally must take the absolute value of our change of variable Jacobians,
when we compute area or volume computations.
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