
peeter joot

C L A S S I C A L M E C H A N I C S





C L A S S I C A L M E C H A N I C S

peeter joot

Independent study and phy354 notes and problems

August 2023 – version V0.1.17-1



Peeter Joot: Classical Mechanics, Independent study and phy354 notes
and problems,© August 2023



C O P Y R I G H T

Copyright©2023 Peeter Joot All Rights Reserved
This book may be reproduced and distributed in whole or in part, with-

out fee, subject to the following conditions:

• The copyright notice above and this permission notice must be pre-
served complete on all complete or partial copies.

• Any translation or derived work must be approved by the author in
writing before distribution.

• If you distribute this work in part, instructions for obtaining the
complete version of this document must be included, and a means
for obtaining a complete version provided.

• Small portions may be reproduced as illustrations for reviews or
quotes in other works without this permission notice if proper cita-
tion is given.

Exceptions to these rules may be granted for academic purposes: Write
to the author and ask.

Disclaimer: I confess to violating somebody’s copyright when I copied
this copyright statement.





D O C U M E N T V E R S I O N

Version V0.1.17-1
Sources for this notes compilation can be found in the github repository
https://github.com/peeterjoot/classicalmechanics
The last commit (Aug/24/2023), associated with this pdf was
097af4ffcae6bd7e4869a2d94ba4af829aa6126f
Should you wish to actively contribute typo fixes (or even more signifi-

cant changes) to this book, you can do so by contacting me, or by forking
your own copy of the associated git repositories and building the book pdf
from source, and submitting a subsequent merge request.

#!/bin/bash

git clone git@github.com:peeterjoot/latex-notes-

compilations.git peeterjoot

cd peeterjoot

submods= " f i g u r e s / c l a s s i c a l m e c h a n i c s
c l a s s i c a l m e c h a n i c s ma thema t i ca l a t e x "

for i in $submods ; do

git submodule update --init $i

(cd $i && git checkout master)

done

export PATH=‘pwd‘/latex/bin:$PATH

cd classicalmechanics

make �
I reserve the right to impose dictatorial control over any editing and

content decisions, and may not accept merge requests as-is, or at all. That
said, I will probably not refuse reasonable suggestions or merge requests.

https://github.com/peeterjoot/classicalmechanics




Dedicated to:
Aurora and Lance, my awesome kids, and

Sofia, who not only tolerates and encourages my studies, but is also
awesome enough to think that math is sexy.





P R E FAC E

This book contains a large quantity of solved problems and study notes
for classical mechanics.

• A collection of miscellaneous notes and problems for my personal
(independent) classical mechanics studies. A fair amount of those
notes were originally in my collection of Geometric (Clifford) Alge-
bra related material so may assume some knowledge of that subject.

• My notes for some of the PHY354 lectures I attended. That class
was taught by Prof. Erich Poppitz. I audited some of the Wednesday
lectures since the timing was convenient. I took occasional notes,
did the first problem set, and a subset of problem set 2.

These notes, when I took them, likely track along with the Profes-
sor’s hand written notes very closely, since his lectures follow his
notes very closely. The text for PHY354 is [16]. I’d done my inde-
pendent study from [4], also a great little book.

• Some assigned problems from the PHY354 course, ungraded (not
submitted since I did not actually take the course). I ended up only
doing the first problem set and two problems from the second prob-
lem set.

• Miscellaneous worked problems from other sources.

Peeter Joot peeterjoot@pm.me





C O N T E N T S

Preface xi
1 potential and kinetic energy. 1

1.1 Potential and Kinetic Energy. 1
1.1.1 Work with a specific example. Newtonian gravi-

tational force. 2
2 calculus of variations . 5

2.1 Solutions. 5
3 special relativity. 13
4 action and euler-langrange equations . 15

4.1 Scalar form of Euler-Lagrange equations. 15
4.1.1 Some comparison to the Goldstein approach. 16

4.2 Problems. 17
4.3 Solutions. 21

5 constraints . 61
5.1 Solutions. 62

6 space time algebra (sta .) 77
6.1 Overview. 77

6.1.1 Conventions. 77
6.1.2 Space Time Algebra (STA.) 77

6.2 Solutions. 82
6.3 Lorentz transformations in STA. 84

6.3.1 Motivation. 84
6.3.2 Lorentz transformations. 84
6.3.3 Problems. 89

6.4 Curvilinear coordinates, gradient, and reciprocal frames. 89
6.4.1 Motivation. 89
6.4.2 Basis and coordinates. 90
6.4.3 Derivative operators. 92
6.4.4 Curvilinear bases. 93
6.4.5 More examples. 105
6.4.6 Parameterization of a general linear transforma-

tion. 105
6.5 Fundamental theorem of geometric calculus. 108

6.5.1 Motivation. 108



6.5.2 Multivector line integrals. 109
6.5.3 Perfect differentials. 110

6.6 Relativistic multivector surface integrals. 115
6.6.1 Fundamental theorem for surfaces. 116

7 relativistic action . 121
7.1 In this chapter. 121
7.2 Euler-Lagrange equations. 121
7.3 Lorentz force equation. 123
7.4 Solutions. 128

8 noether’s theorem . 147
8.0.1 Noether’s theorem. 147

8.1 Vector formulation of Euler-Lagrange equations. 150
8.1.1 Simple case. Unforced purely kinetic Lagrangian. 150
8.1.2 Position and velocity gradients in the configura-

tion space. 151
8.2 Example applications of Noether’s theorem. 153

8.2.1 Angular momentum in a radial potential. 153
8.2.2 Hamiltonian. 155
8.2.3 Covariant Lorentz force Lagrangian. 157

8.3 Appendix. 158
8.3.1 Noether’s equation derivation, multivariable case. 158

9 hamiltonian mechanics . 161
9.1 Motivation. 161
9.2 Hamiltonian as a conserved quantity. 161
9.3 Some syntactic sugar. In vector form. 162
9.4 The Hamiltonian principle. 163
9.5 Examples. 165

9.5.1 Force free motion. 165
9.5.2 Linear potential (surface gravitation). 167
9.5.3 Harmonic oscillator (spring potential). 168
9.5.4 Harmonic oscillator (change of variables.) 171
9.5.5 Force free system dependent on only differences. 174
9.5.6 Gravitational potential. 177
9.5.7 Pendulum. 180
9.5.8 Spherical pendulum. 184
9.5.9 Double and multiple pendulums, and general quadratic

velocity dependence. 188
9.5.10 Non-covariant Lorentz force. 203



9.6 Solutions. 207
10 routhian procedure . 209

10.1 Motivation. 209
10.2 Spherical pendulum example. 209
10.3 Simpler planar example. 211
10.4 Polar form example. 212

11 rigid body motion . 217
11.1 Rigid body motion. 217

11.1.1 Setup. 217
11.1.2 Degrees of freedom. 218

11.2 Kinetic energy. 221
12 euler angles . 225

12.1 Pictorially. 225
12.2 Relating the two pairs of coordinate systems. 227

13 parallel axis theorem . 231
14 phase space and trajectories . 241

14.1 Phase space and phase trajectories. 241
14.1.1 Applications of H. 242
14.1.2 Poisson brackets. 242

14.2 Adiabatic changes in phase space and conserved quanti-
ties. 244

14.3 Appendix I. Poisson brackets of angular momentum. 246
14.4 Appendix II. EOM for the variable length pendulum. 246

15 conserved quantities . 249
15.1 Runge-Lenz vector conservation. 249

15.1.1 Motivation. 249
15.1.2 Motivation: The Kepler problem. 249
15.1.3 Runge-Lenz vector. 249

15.2 Solutions. 254
16 field lagrangians . 255

16.1 Field action. 255
16.2 Maxwell’s equation. 257
16.3 Solutions. 259

17 review: field lagrangians . 265
17.1 Solutions. 268

18 noether’s theorem for fields . 269
18.1 Noether’s theorem. 269

18.1.1 Derivation. 269



18.1.2 Examples. 271
18.1.3 Multivariable derivation. 275

18.2 Translation and rotation Noether field currents. 277
18.2.1 Motivation. 277
18.2.2 Field Euler-Lagrange equations. 277
18.2.3 Field Noether currents. 279
18.2.4 Spacetime translation symmetries and Noether cur-

rents. 280
18.2.5 Noether current, infinitesimal Lorentz transforma-

tion. 287
18.3 Solutions. 292

a mathematica notebooks . 293
b spherical n-pendulum problem . 295
b.1 Introduction. 295
b.2 Diving right in. 296

b.2.1 Single spherical pendulum. 296
b.2.2 Spherical double pendulum. 297
b.2.3 N spherical pendulum. 300

b.3 Evaluating the Euler-Lagrange equations. 301
b.4 Summary. 305

c direct variation of maxwell equations . 307
c.1 Motivation, definitions and setup. 307

c.1.1 Tensor form of the field. 307
d lorentz invariance of maxwell lagrangian . 309
d.1 Working in multivector form. 309

d.1.1 Lorentz boost of field Lagrangian. 309
d.1.2 Lorentz boost applied to the Lorentz force La-

grangian. 311
d.2 Repeat in tensor form. 311

d.2.1 Translating versors to matrix form. 311
d.3 Translating versors tensor form. 313

d.3.1 Tensor form of vector Lorentz transform. 313
d.3.2 Misc notes. 314
d.3.3 Expressing bivector Lorentz transform in tensor

form. 315
e lorentz transform noether current ( interaction la-
grangian). 317
e.1 Motivation. 317



e.2 Covariant result. 317
e.3 Expansion in observer frame. 319
e.4 In tensor form. 320

f canonical energy momentum tensor and translation . 323
f.1 Motivation and direction. 323
f.2 On translation and divergence symmetries. 324

f.2.1 Symmetry due to total derivative addition to the
Lagrangian. 324

f.2.2 Some examples adding a divergence. 325
f.2.3 Symmetry for Wave equation under spacetime trans-

lation. 330
f.2.4 Symmetry condition for arbitrary linearized space-

time translation. 331
f.3 Noether current. 333

f.3.1 Vector parametrized Noether current. 333
f.3.2 Comment on the operator above. 335
f.3.3 In tensor form. 336
f.3.4 Multiple field variables. 336
f.3.5 Spatial Noether current. 337

f.4 Field Hamiltonian. 337
f.5 Wave equation. 338

f.5.1 Tensor components and energy term. 338
f.5.2 Conservation equations. 339
f.5.3 Invariant length. 340
f.5.4 Diagonal terms of the tensor. 341
f.5.5 Momentum. 343

f.6 Wave equation. GA form for the energy momentum ten-
sor. 343
f.6.1 Calculate GA form. 343
f.6.2 Verify against tensor expression. 344
f.6.3 Invariant length. 345
f.6.4 Energy and Momentum split (again). 345

f.7 Scalar Klein Gordon. 347
f.8 Complex Klein Gordon. 347

f.8.1 Tensor in GA form. 347
f.8.2 Tensor in index form. 348
f.8.3 Invariant Length? 348
f.8.4 Divergence relation. 349



f.8.5 TODO. 350
f.9 Electrostatics Poisson Equation. 350

f.9.1 Lagrangian and spatial Noether current. 350
f.9.2 Energy momentum tensor. 351
f.9.3 Divergence and adjoint tensor. 351

f.10 Schrödinger equation 352
f.11 Maxwell equation. 354

f.11.1 Lagrangian. 354
f.11.2 Energy momentum tensor. 355
f.11.3 Index form of tensor. 356
f.11.4 Adjoint. 356

f.12 Nomenclature. Linearized spacetime translation. 358

index 359

bibliography 361



L I S T O F F I G U R E S

Figure 4.1 Dipole moment coordinates. 21
Figure 5.1 Coupled hoop and spring system. 62
Figure 6.1 Projection and rejection geometry. 86
Figure 6.2 One and two parameter curves, with illustration

of tangent spaces. 94
Figure 6.3 Two parameter surface. 95
Figure 6.4 Tangent space direction vectors. 98
Figure 6.5 “Cylindrical” boost parameterization. 106
Figure 6.6 Tangent perpendicularity in mixed metric. 111
Figure 6.7 Spacetime plane. 115
Figure 6.8 Line integral orientation. 120
Figure 11.1 Rigid body of point masses. 217
Figure 11.2 Rigid solid body of continuous mass. 217
Figure 11.3 Body local coordinate system with vector to a

fixed point in the body. 218
Figure 11.4 Rotation angle and normal in the body. 219
Figure 11.5 A point in the body relative to the center of mass. 219
Figure 11.6 circular motion. 220
Figure 11.7 Two points in a rigid body. 220
Figure 11.8 Kinetic energy setup relative to point A in the

body. 222
Figure 12.1 Initial frame. 225
Figure 12.2 Rotation by ϕ around z axis. 225
Figure 12.3 Rotation of θ around (new) x axis. 226
Figure 12.4 Rotation of ψ around (new) z axis. 226
Figure 12.5 All three rotations superimposed. 226
Figure 12.6 A point in two coordinate systems. 227
Figure 13.1 Volume element for continuous mass distribu-

tion. 231
Figure 13.2 Shift of origin. 232
Figure 13.3 Infinite rolling cylinder on plane. 233
Figure 13.4 Coordinates for infinite cylinder. 234
Figure 13.5 Displaced CM for infinite cylinder. 235
Figure 13.6 Hollow tube with blob. 235



Figure 13.7 Hollow tube with cylindrical blob. 236
Figure 13.8 general body coordinates. 236
Figure 13.9 Cone on rod. 237
Figure 13.10 Momentary axes of rotation. 238
Figure 13.11 Cone from above. 238
Figure 13.12 Momentary axes of rotation for cone on stick. 239
Figure 13.13 Coordinates. 239
Figure 14.1 Harmonic oscillator phase space trajectory. 241
Figure 14.2 Variable length pendulum. 245
Figure 14.3 Particle constrained by slowly moving walls. 245
Figure 14.4 phaseSpaceAndTrajectoriesFig4. 247



1P OT E N T I A L A N D K I N E T I C E N E R G Y.

1.1 potential and kinetic energy.

Attempting some Lagrangian calculation problems I found I got all the
signs of my potential energy terms wrong. Here is a quick step back to
basics to clarify for myself what the definition of potential energy is, and
thus implicitly determine the correct signs.

Starting with kinetic energy, expressed in vector form:

K =
1
2

mr′ · r′ =
1
2

p · r′, (1.1)

one can calculate the rate of change of that energy:

dK
dt
=

1
2
(p′ · r′ + p · r′′)

=
1
2
(p′ · r′ + r′ · p′)

= p′ · r′.

(1.2)

Note that the mass has been assumed constant above.
Integrating this time rate of change of kinetic energy produces a force

line integral:

K2 − K1 =

∫ t2

t1

dK
dt

dt

=

∫ t2

t1
p′ · r′dt

=

∫ t2

t1
p′ ·

dr′

dt
dt

=

∫ r2

r1

F · dr.

(1.3)



2 potential and kinetic energy.

For the path integral to depend on only the end points or the corresponding
end times requires a conservative force that can be expressed as a gradient.
Let us say that F = ∇ f , then integrating:

K2 − K1 =

∫ r2

r1

F · dr

=

∫ r2

r1

∇ f · dr

= limitϵ→0

∫ r1+ϵr̂

r1

(
r̂

f (r + ϵr̂)
ϵ

)
· dr

= handwaving

= f (r2) − f (r1).

(1.4)

Assembling the quantities for times 1, and 2, we have

K2 − f (r2) = K1 − f (r1) = constant. (1.5)

This constant is what we give the name Energy. The quantities − f (ri) we
label potential energy Vi, and finally write the total energy as the sum of
the kinetic and potential energies for a particle at a point in time and space:

K2 + V2 = K1 + V1 = E, (1.6)

F = −∇V. (1.7)

1.1.1 Work with a specific example. Newtonian gravitational force.

Take the gravitational force:

F = −
GmM

r2 r̂. (1.8)

The rate of change of kinetic energy with respect to such a force (FIXME:
think though signs ... with or against?), is:

dK
dt
= p′ · r′

= −
GmM

r2 r̂ ·
dr
dt

= −
GmM

r3 r ·
dr
dt
.

(1.9)



1.1 potential and kinetic energy. 3

The vector dot products above can be eliminated with the standard trick:

dr2

dt
=

r · r
dt

= 2
dr
dt
· r.

(1.10)

Thus,

dK
dt
= −

GmM
2r3

dr2

dt

= −
GmM

r2

dr
dt

=
d
dt

(GmM
r

)
.

(1.11)

This can be integrated to find the kinetic energy difference associated with
a change of position in a gravitational field:

K2 − K1 =

∫ t2

t1

d
dt

(GmM
r

)
dt

= GmM
(

1
r2
−

1
r1

)
.

(1.12)

Rearranging

K2 −
GmM

r2
= K1 −

GmM
r1
= E. (1.13)

Taking gradients of this negative term:

∇

(
−

GmM
r

)
= r̂

∂

∂r

(
−

GmM
r

)
= r̂

GmM
r2 ,

(1.14)

returns the negation of the original force, so if we write V = −GmM/r, it
implies the force is:

F = −∇V. (1.15)

By this example we see how one arrives at the negative sign convention
for the potential energy. Our Lagrangian in a gravitational field is thus:

L =
1
2

mv2 +
GmM

r
. (1.16)



4 potential and kinetic energy.

Now, we have seen strictly positive terms mgh in the Lagrangian in the
Tong and Goldstein examples. We can account for this by Taylor expand-
ing this potential in the vicinity of the surface R of the Earth:

GmM
r
=

GmM
R + h

=
GmM

R(1 + h/R)

≈
GmM

R
(1 − h/R).

(1.17)

The Lagrangian is thus:

L ≈
1
2

mv2 +
GmM

R
−

GmM
R2 h. (1.18)

but the constant term will not change the EOM, so can be dropped from
the Lagrangian, and with g = GM

R2 we have:

L′ =
1
2

mv2 − gmh. (1.19)

Here the potential term of the Lagrangian is negative, but in the Goldstein
and Tong examples the reference point is up, and the height is measured
down from that point. Put another way, if the total energy is

E = V0. (1.20)

when the mass is unmoving in the air, and then drops gaining Kinetic
energy, an unchanged total energy means that potential energy must be
counted as lost, in proportion to the distance fallen:

E = V0 = K1 + V1 =
1
2

mv2 −mgh. (1.21)

So, one can write

V = −mgh, (1.22)

and

L′ =
1
2

mv2 + gmh. (1.23)

BUT. Here the height h is the distance fallen from the reference point,
compared to eq. (1.19), where h was the distance measured up from the
surface of the Earth (or other convenient local point where the gravita-
tional field can be linearly approximated)!

Care must be taken here because it is all too easy to get the signs wrong
blindly plugging into the equations without considering where they come
from and how exactly they are defined.



2C A L C U L U S O F VA R I AT I O N S .

Exercise 2.1 Shortest curve variational problem. ([4] 2.1)

Prove that the shortest length curve between two points in space is a
straight line.

Exercise 2.2 Geodesics on sphere. ([4] 2.2)

Prove that the geodesics (shortest length paths) on a spherical surface
are great circles.

Exercise 2.3 Euler-Lagrange equations for second order systems. ([4] 2.4)

For f = f (y, ẏ, ÿ, x), find the equations for extreme values of

I =
∫ b

a
f dx.

2.1 solutions .

Answer for Exercise 2.1

In a first attempt of this I used:

ds =
√

1 + (dy/dx)2 + (dz/dx)2dx. (2.1)

Application of the Euler-Lagrange equations does show that one ends up
with a linear relation between the y and z coordinates, but no mention
of x. Rather than write that up, consider instead a parametrization of the
coordinates:

x = x1(λ)

y = x2(λ)

z = x3(λ),

(2.2)



6 calculus of variations .

in terms of this arbitrary parametrization we have a segment length of:

ds =

√∑(
dxi

dλ

)2

dλ = f (xi) dλ. (2.3)

Application of the Euler-Lagrange equation to f we have:

∂ f
∂xi
= 0

=
d

dλ
∂

∂ẋi

√∑
ẋ2

j

=
d

dλ
ẋi√∑

ẋ2
j

.

(2.4)

Therefore each of these quotients can be equated to a constant:

ẋi√∑
ẋ2

j

= ci
−2

ci
2 ẋ2

i =
∑

ẋ2
j

(ci
2 − 1)ẋ2

i =
∑
j,i

ẋ2
j

(1 − ci
2)ẋ2

i +
∑
j,i

ẋ2
j = 0.

(2.5)

This last form shows explicitly that not all of these squared derivative
terms can be linearly independent. In particular, we have a zero determi-
nant:

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − c2
1 1 1 1 . . .

1 1 − c2
2 1 1

...

1 1 1 − c2
3 1

. . .

1 − cn
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.6)



2.1 solutions . 7

Now, expanding this for a couple specific cases is not too hard. For n = 2
we have:

0 = (1 − c2
1)(1 − c2

2) − 1

c2
1 + c2

2 = c2
1c2

2

c2
1 =

c2
2

c2
2 − 1

c2
2 − 1 =

c2
2

c2
1

.

(2.7)

This can be substituted back into one our c2
2 equation:

(c2
2 − 1)ẋ2

2 = ẋ2
1

c2
2

c2
1

ẋ2
2 = ẋ2

1

±
c2

c1
ẋ2 = ẋ1

±
c2

c1
x2 = x1 + κ.

(2.8)

This is precisely the straight line that was desired, but we have setup for
proving that consideration of all path variations from two points in RN

space has the shortest distance when that path is a straight line. Despite
the general setup, I am going to chicken out and show this only for the R3

case. In that case our determinant expands to:

c2
1 + c2

2 + c2
3 = c2

1c2
2c2

3. (2.9)

Since not all of the ẋ2
i can be linearly independent, one can be eliminated:

(1 − c2
1)ẋ2

1 + ẋ2
2 + ẋ2

3 = 0

(1 − c2
2)ẋ2

2 + ẋ2
3 + ẋ2

1 = 0

(1 − c2
3)ẋ2

3 + ẋ2
1 + ẋ2

2 = 0.

(2.10)

Let us pick ẋ2
1 to eliminate, and subst 2 into 3:

(1 − c2
3)ẋ2

3 + (−(1 − c2
2)ẋ2

2 − ẋ2
3) + ẋ2

2 = 0 =⇒

−c2
3 ẋ2

3 + c2
2 ẋ2 = 0

±c3 ẋ3 = c2 ẋ2.

(2.11)



8 calculus of variations .

Since these equations are symmetric, we can do this for all, with the result:

±c3 ẋ3 = c2 ẋ2

±c3 ẋ3 = c1 ẋ1

±c2 ẋ2 = c1 ẋ1.

(2.12)

Since the ci constants are arbitrary, then we can for example pick the
negative sign for ±c2, and the positive for the rest, then add all of these,
and scale by two:

c3 ẋ3 − c2 ẋ2 = c1 ẋ1, (2.13)

and integrating:

c3x3 − c2x2 = c1x1 + κ. (2.14)

Again, we have the general equation of a line, subject to the desired con-
straints on the end points. In the end we did not need to evaluate the
determinant after all, as done in the R2 case.

Answer for Exercise 2.2

As a variational problem, the first step is to formulate an element of
length on the surface. If we write our vector in spherical coordinates (ϕ
on the equator, and θ measuring from the north pole) we have:

r = (x, y, z) = R(sin θcosϕ, sin θ sin ϕ, cos θ). (2.15)

A differential vector element on the surface is (set R = 1 without loss of
generality) :

dr =
dr
dθ

dθ
dλ

dλ +
dr
dϕ

dϕ
dλ

dλ

= (cos θ cos ϕ, cos θ sin ϕ,− sin θ)θ̇dλ + (− sin θ sin ϕ, sin θ cos ϕ, 0)ϕ̇dλ

= (cos θ cos ϕθ̇ − sin θ sin ϕϕ̇, cos θ sin ϕθ̇ + sin θ cos ϕϕ̇,− sin θθ̇)dλ.
(2.16)

Calculation of the length ds of this vector yields:

ds = |dr| =
√
θ̇2 + (sin θ)2ϕ̇2dλ. (2.17)



2.1 solutions . 9

This completes the setup for the minimization problem, and we want to
minimize:

s =
∫ √

θ̇2 + (ϕ̇ sin θ)2dλ, (2.18)

and can therefore apply the Euler-Lagrange equations to the function

f (θ, ϕ, θ̇, ϕ̇, λ) =
√
θ̇2 + (ϕ̇ sin θ)2. (2.19)

The ϕ is cyclic, and we have:

∂ f
∂ϕ
= 0 =

d
dλ

ϕ̇ sin2 θ

f
. (2.20)

Thus we have:

ϕ̇2 sin4 θ = K2
(
θ̇2 + (ϕ̇ sin θ)2)

ϕ̇2 sin2 θ
(
sin2 θ − K2

)
= K2θ̇2

ϕ̇2 =
K2θ̇2

sin2 θ
(
sin2 θ − K2

)
ϕ̇ =

Kθ̇

sin θ
√

sin2 θ − K2
.

(2.21)

This is in a nicely separated form, but it is not obvious that this describes
paths that are great circles. Let us have a look at the second equation.

∂ f
∂θ
=

d
dλ

∂ f
∂θ̇

sin θ cos θϕ̇2

f
=

d
dλ

θ̇

f

=
θ̈

f
−

1
2

(
θ̇2 + (ϕ̇ sin θ)2)′

f 3

=
θ̈

f
−
θ̇θ̈ + ϕ̇ sin θ (ϕ̈ sin θ + ϕ̇ cos θθ̇)

f 3 .

(2.22)

This implies

− sin θ cos θϕ̇2
(
θ̇2 + (ϕ̇ sin θ)2)

= −θ̈
(
θ̇2 + (ϕ̇ sin θ)2)

+ θ̇θ̈ + ϕ̇ sin θ (ϕ̈ sin θ + ϕ̇ cos θθ̇) ,
(2.23)



10 calculus of variations .

or,

0 = −θ̈θ̇2 − θ̈ϕ̇2 sin2 θ + θ̇θ̈

+ ϕ̇ϕ̈ sin2 θ + ϕ̇2θ̇ sin θ cos θ + ϕ̇2θ̇2 sin θ cos θ + ϕ̇4 sin3 θ cos θ.
(2.24)

What a mess! I do not feel inclined to try to reduce this at the moment. I
will come back to this problem later. Perhaps there is a better parametriza-
tion? Did come back to this later, in [12], but still did not get the problem
fully solved. Maybe the third time, some time later, will be the charm.

Answer for Exercise 2.3

Here we want y and ẏ fixed at the end points. Following the first deriva-
tive derivation write the functions in terms of the desired extremum func-
tions plus a set of arbitrary functions:

y(x, α) = y(x, 0) + αn(x)

ẏ(x, α) = ẏ(x, 0) + αm(x).
(2.25)

Here we specify that these arbitrary variational functions vanish at the
endpoints:

n(a) = n(b) = m(a) = m(b) = 0. (2.26)

The functions y(x, 0), and ẏ(x, 0) are the functions we are looking for as
solutions to the min/max problem. Calculating derivatives we have:

dI
dα
=

∫ (
∂ f
∂y

∂y
∂α
+
∂ f
∂ẏ

∂ẏ
∂α
+
∂ f
∂ÿ

∂ÿ
∂α

)
dx. (2.27)

Assuming sufficient continuity look at the second term where we have:

∂ẏ
∂α
=

∂

∂α

∂y
∂x

=
∂

∂x
∂y
∂α

=
∂

∂x
n(x)

=
d
dx

n(x)

=
d
dx

∂y
∂α
.

(2.28)
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Similarly for the third term we have:

∂ẏ
∂α
=

d
dx

∂ẏ
∂α
, (2.29)

dI
dα
=

∫
∂ f
∂y

∂y
∂α

dx +
∂ f
∂ẏ

d
dx

∂y
∂α

uv′ = (uv)′ − u′v

dx +
∂ f
∂ÿ

d
dx

∂ẏ
∂α

dx. (2.30)

Now integrating by parts:

dI
dα
=

∫
∂ f
∂y

∂y
∂α

dx +
∫

∂ f
∂ẏ

d
dx

∂y
∂α

dx +
∫

∂ f
∂ÿ

d
dx

∂ẏ
∂α

dx

dI
dα
=

∫
∂ f
∂y

∂y
∂α

dx +
∂ f
∂ẏ

∂y
∂α

∣∣∣∣∣b
a

n(x)

−

∫
∂y
∂α

d
dx

∂ f
∂ẏ

dx

+
∂ f
∂ÿ

∂ẏ
∂α

∣∣∣∣∣b
a

m(x)

−

∫
∂ẏ
∂α

d
dx

∂ f
∂ÿ

dx.

(2.31)

Because m(a) = m(b) = n(a) = n(b) the non-integral terms are all zero,
leaving:

dI
dα
=

∫
∂ f
∂y

∂y
∂α

dx −
∫

∂y
∂α

d
dx

∂ f
∂ẏ

dx −
∫

∂ẏ
∂α

d
dx

∂ f
∂ÿ

dx. (2.32)

Now consider just this last integral, which we can again integrate by parts:

∫
∂ẏ
∂α

d
dx

∂ f
∂ÿ

dx =
∫

d
dx

∂y
∂α

u′

d
dx

∂ f
∂ÿ

v

dx

=
∂y
∂α

n(x)

d
dx

∂ f
∂ÿ

∣∣∣∣∣b
a
−

∫
∂y
∂α

d
dx

d
dx

∂ f
∂ÿ

dx

= −

∫
∂y
∂α

d2

dx2

∂ f
∂ÿ

dx.

(2.33)
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This gives:

dI
dα
=

∫
∂ f
∂y

∂y
∂α

dx −
∫

∂y
∂α

d
dx

∂ f
∂ẏ

dx +
∫

∂y
∂α

d2

dx2

∂ f
∂ÿ

dx

dI
dα
=

∫
dx
∂y
∂α

(
∂ f
∂y
−

d
dx

∂ f
∂ẏ
+

d2

dx2

∂ f
∂ÿ

)
=

∫
dxn(x)

(
∂ f
∂y
−

d
dx

∂ f
∂ẏ
+

d2

dx2

∂ f
∂ÿ

)
.

(2.34)

So, if we want this derivative to equal zero for any n(x) we require the
inner quantity to by zero:

∂ f
∂y
−

d
dx

∂ f
∂ẏ
+

d2

dx2

∂ f
∂ÿ
= 0. (2.35)

Question. Goldstein writes this in total differential form instead of a deriva-
tive:

dI =
dI
dα

dα

=

∫
dx

(
∂y
∂α

dα
) (
∂ f
∂y
−

d
dx

∂ f
∂ẏ
+

d2

dx2

∂ f
∂ÿ

)
.

(2.36)

and then calls this quantity ∂y
∂αdα = δy, the variation of y. There must be a

mathematical subtlety which motivates this but it is not clear to me what
that is. Since the variational calculus texts go a different route, with norms
on functional spaces and so forth, perhaps understanding that motivation
is not worthwhile. In the end, the conclusion is the same, namely that the
inner expression must equal zero for the extremum condition.
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4AC T I O N A N D E U L E R - L A N G R A N G E E Q UAT I O N S .

4.1 scalar form of euler-lagrange equations .

[17] presents a multivector Lagrangian treatment. To preparation for un-
derstanding that I have gone back and derived the scalar case myself. As
in my recent field Lagrangian derivations Feynman’s [3] simple action
procedure will be used. Write

L = L(qi, q̇i, λ)

qi = qi + ni

S =
∫
∂λ

Ldλ.

(4.1)

Here qi are the desired optimal solutions, and the functions ni are all zero
at the end points of the integration range ∂λ.

A multivariable function f (ai) = f (a1, a2, · · · , an) may be expanded, to
first order, in Taylor series

f (ai + xi) ≈ f (ai) +
∑

i

(ai + xi)
∂ f
∂xi

∣∣∣∣∣
xi=ai

. (4.2)

In this case the xi take the values qi, and q̇i, so the first order Lagrangian
approximation requires summation over differential contributions for both
sets of terms

L(qi, q̇i, λ) ≈ L(qi, q̇
i
, λ)+

∑
i

(qi + ni)
∂L
∂qi

∣∣∣∣∣∣
qi=qi

+
∑

i

(q̇
i
+ ṅi)

∂L
∂q̇i

∣∣∣∣∣∣
qi=qi

.

(4.3)
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Now form the action, and group the terms in fixed and variable sets

S =
∫

Ldλ

≈

∫
dλ

L(qi, q̇
i
, λ) +

∑
i

qi ∂L
∂qi

∣∣∣∣∣∣
qi=qi

+
∑

i

q̇
i ∂L
∂q̇i

∣∣∣∣∣∣
qi=qi



+
∑

i

∫
dλ

ni ∂L
∂qi

∣∣∣∣∣∣
qi=qi

+ ṅi ∂L
∂q̇i

∣∣∣∣∣∣
qi=qi


δS

.

(4.4)

For the optimal solution we want δS = 0 for all possible paths ni. Now do
the integration by parts writing u′ = ṅi, and v = ∂L/∂q̇i∫

u′v = uv −
∫

uv′. (4.5)

The action variation is then

δS = +
∑

i

(
ni ∂L
∂q̇i

)∣∣∣∣∣∣
∂λ

+
∑

i

∫
dλni

 ∂L
∂qi

∣∣∣∣∣∣
qi=qi

−
d

dλ
∂L
∂q̇i

∣∣∣∣∣∣
qi=qi

 . (4.6)

The non-integral term is zero since by definition ni = 0 on the boundary
of the desired integration region, so for the total variation to equal zero
for all possible paths ni one must have

∂L
∂qi −

d
dλ

∂L
∂q̇i = 0. (4.7)

Evaluation of these derivatives at the optimal desired paths has been sup-
pressed since these equations now define that path.

4.1.1 Some comparison to the Goldstein approach.

[4] calls the quantity eq. (4.7) the functional derivative

δS
δqi =

∂L
∂qi −

d
dλ

∂L
∂q̇i . (4.8)

(with higher order derivatives if the Lagrangian has dependencies on more
than generalized position and velocity terms). Goldstein’s approach is
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also harder to follow than Feynman’s (Goldstein introduces a parameter
ϵ, writing

qi = qi + ϵni. (4.9)

He then takes derivatives under the integral sign for the end result.
While his approach is a bit harder to follow initially, that additional ϵ

parametrization of the variation path also fits nicely with this linearization
procedure. After the integration by parts and subsequent differentiation
under integral sign nicely does the job of discarding all the “fixed” qi

contributions to the action leaving:

dS
dϵ
=

∫
dλ

∑
i

ni δS
δqi

∣∣∣∣∣∣
qi=qi

. (4.10)

Introducing this idea does firm things up, eliminating some hand waving.
To obtain the extremal solution it does make sense to set the derivative of
the action equal to zero, and introducing an additional scalar variational
control in the paths from the optimal solution provides that something to
take derivatives with respect to.

Goldstein also writes that this action derivative is then evaluated at ϵ =
0. This really says the same thing as Feynman... toss all the higher order
terms, since factors of epsilon will be left associated with of these. With
my initial read of Goldstein this was not the least bit clear... it was really
yet another example of the classic physics approach of solving something
with a first order linear approximation.

4.2 problems .

Exercise 4.1 Lorentz force Lagrangian. (’12 phy356 ps1.1)

1. For the non-covariant electrodynamic Lorentz force Lagrangian.

L =
1
2

mv2 + qv ·A − qϕ, (4.11)

derive the Lorentz force equation

F = q(E + v ×B)

E = −∇ϕ −
∂A
∂t

B = ∇ ×A.

(4.12)
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2. With a gauge transformation of the form:

ϕ→ ϕ +
∂χ

∂t
A→ A −∇χ,

(4.13)

show that the Lagrangian is invariant.

Exercise 4.2 Find trajectory using action. (’12 phy356 ps1.2.)

For a ball thrown upward, guess a solution for the height y of the form
y(t) = a2t2 + a1t + a0. Assuming that y(0) = y(T ) = 0, this quickly be-
comes y(t) = a2(t2 − Tt). Calculate the action (to do that, you need to first
write the Lagrangian, of course) between t = 0 and t = T , and show that
it is minimized when a2 = −g/2.

Exercise 4.3 Change of coordinates. (’12 phy356 ps1.3)

Consider a Lagrangian L(q, q̇) ≡ L(q1, · · · , qN , q̇1, · · · q̇N). Now change
the coordinates to some new ones, e.g. let qi = qi(x1, · · · , xN), i = 1 · · ·N,
or in short qi = qi(x). This defines a new Lagrangian:

L̃(x, ẋ) = L(q1(x), · · · qN(x),
d
dt

q1(x), · · ·
d
dt

qN(x)), (4.32)

which is now a function of xi and ẋi. Show that the Euler-Lagrange equa-
tions for L(q, q̇):

∂L(q, q̇)
∂qi

=
d
dt
∂L(q, q̇)
∂q̇i

, (4.33)

imply that the Euler-Lagrange equations for L̃(x, ẋ) hold (provided the
change of variables q→ x is nonsingular):

∂L̃(x, ẋ)
∂xi

=
d
dt
∂L̃(x, ẋ)
∂ẋi

. (4.34)

The moral is that the action formalism is very convenient: one can write
the Lagrangian in any set of coordinates; the Euler-Lagrange equations
for the new coordinates can then be obtained by using the Lagrangian
expressed in these coordinates.

Hint: Solving this problem only requires repeated use of the chain rule.

Exercise 4.4 Symmetries and conservation (E.M.) (’12 phy356 ps2.1)
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Let us continue studying the Lagrangian of Problem 1 of Homework 1,
namely, its symmetries, and the relevant conserved quantities. To this end,
we will consider various cases of external scalar and vector potentials.

1. Consider first the case of time-independent A and ϕ. Find the ex-
pression for the conserved energy, E, of the particle.

2. For external A and ϕ dependent on time, find dE/dt.

3. Let now A and ϕ be spatially homogeneous, i.e. x-independent.
Find the conserved momentum. Is it equal to the usual mv?

4. Consider motion in the field of an electrostatic source (creating an
external static ϕ(x)). Find the angular momentum of the particle.
Is it conserved for all ϕ(x)?

Exercise 4.5 Angular momentum, non-rectangular. (’12 phy356 ps2.5)

1. Find Mx,My,Mz,M2 in spherical coordinates (r, θ, ϕ).

2. Find Mx,My,Mz,M2 in cylindrical coordinates (r, ϕ, z).

Exercise 4.6 Angular momentum, three particle system. ([4] 1.8)

A system is composed of three particles of equal mass m. Between any
two of them there are forces derivable from a potential

V = −ge−µr, (4.105)

where r is the distance between the two particles. In addition, two of the
particles each exert a force on the third which can be obtained from a
generalized potential of the form

U = − f v · r, (4.106)

v being the relative velocity of the interacting particles and f a constant.
Set up the Lagrangian for the system, using as coordinates the radius vec-
tor R of the center of mass and the two vectors

ρ1 = r1 − r3

ρ2 = r2 − r3.
(4.107)

Is the total angular momentum of the system conserved?

Exercise 4.7 Kinetic energy for barbell shaped object. ([4] 1.6)
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Two points of mass m are joined by a rigid weightless rod of length l,
the center of which is constrained to move on a circle of radius a. Set up
the kinetic energy in generalized coordinates.

Exercise 4.8 Purely kinetic system.) ([24] p1)

Derive the Euler-Lagrange equations for

L =
1
2

∑
gab(qc)q̇aq̇b. (4.145)

Exercise 4.9 Alternate Lagrangian. ([24] p2.)

L =
1
12

m2 ẋ4 +mẋ2V − V2. (4.155)

Exercise 4.10 Relativistic EOM. ([24] p3.)

Derive the relativistic equations of motion for a point particle in a posi-
tion dependent potential:

L = −mc2
√

1 − v2/c2 − V(r). (4.162)

Exercise 4.11 Double pendulum. ([24] p4.)

Derive the Lagrangian for a double pendulum.

Exercise 4.12 Lorentz force Lagrangian. ([24] p6.)

Various non-orthogonal coordinate treatments of the Lorentz force La-
grangian

L =
1
2

mv2 − qϕ + qv/c ·A,

Exercise 4.13

In [7], the non-covariant Lagrangian for the Lorentz equation is given
as

L = −mc2
√

1 − u2/c2 +
e
c

u ·A − eϕ. (4.224)

Evaluate this to show that this produces the Lorentz force law.
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Exercise 4.14 Dipole Moment induced by a constant electric field.

In [6] it is stated that the force per unit angle on a dipole system as
illustrated in fig. 4.1 is

Fθ = −pE sin θ, (4.233)

where p = qr. The text was also referring to torques, and it wasn’t clear
to me if the result was the torque or the force. Derive the result to resolve
any doubt (in retrospect dimensional analysis would also have worked).

Figure 4.1: Dipole moment coordinates.

4.3 solutions .

Answer for Exercise 4.1

Solution Part 1. Evaluate the Euler-Lagrange equations. In coordinates,
employing summation convention, this Lagrangian is

L =
1
2

mẋ j ẋ j + qẋ jA j − qϕ. (4.14)

Taking derivatives

∂L
∂ẋi
= mẋi + qAi, (4.15)



22 action and euler-langrange equations .

d
dt
∂L
∂ẋi
= mẍi + q

∂Ai

∂t
+ q

∂Ai

∂x j

dx j

dt

= mẍi + q
∂Ai

∂t
+ q

∂Ai

∂x j
ẋ j.

(4.16)

This must equal

∂L
∂xi
= qẋ j

∂A j

∂xi
− q

∂ϕ

∂xi
, (4.17)

so we have

mẍi = −q
∂Ai

∂t
− q

∂Ai

∂x j
ẋ j + qẋ j

∂A j

∂xi
− q

∂ϕ

∂xi

= −q
(
∂Ai

∂t
−
∂ϕ

∂xi

)
+ qv j

(
∂A j

∂xi
−
∂Ai

∂x j

)
.

(4.18)

The first term is just Ei. If we expand out (v ×B)i we see that matches

(v ×B)i = vaBbϵabi

= va∂rAsϵrsbϵabi

= va∂rAsδ
[ia]
rs

= va(∂iAa − ∂aAi).

(4.19)

A a → j substitution, and comparison of this with the Euler-Lagrange
result above completes the exercise.

Solution Part 2. Gauge invariance. We really only have to show that

v ·A − ϕ, (4.20)

is invariant. Making the transformation we have

v ·A − ϕ→ v j (A j − ∂ jχ) −

(
ϕ +

∂χ

∂t

)
= v jA j − ϕ − v j∂ jχ −

∂χ

∂t

= v ·A − ϕ −
(
dx j

dt
∂χ

∂x j
+
∂χ

∂t

)
= v ·A − ϕ −

dχ(x, t)
dt

.

(4.21)
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We see then that the Lagrangian transforms as

L→ L +
d
dt

(−qχ) , (4.22)

and differs only by a total derivative. With the lemma from the lecture,
we see that this gauge transformation does not have any effect on the end
result of applying the Euler-Lagrange equations.

Answer for Exercise 4.2

We are told to guess at a solution

y = a2t2 + a1t + a0, (4.23)

for the height of a particle thrown up into the air. With initial condition
y(0) = 0 we have

a0 = 0, (4.24)

and with a final condition of y(T ) = 0 we also have

0 = a2T 2 + a1T

= T (a2T + a1),
(4.25)

so have

y(t) = a2t2 − a2Tt = a2
(
t2 − Tt

)
ẏ(t) = a2(2t − T ).

(4.26)

So our Lagrangian is

L =
1
2

ma2
2 (2t − T )2

−mga2
(
t2 − Tt

)
, (4.27)

and our action is

S =
∫ T

0
dt

(
1
2

ma2
2 (2t − T )2

−mga2
(
t2 − Tt

))
. (4.28)

To minimize this action with respect to a2 we take the derivative

∂S
∂a2
=

∫ T

0

(
ma2 (2t − T )2

−mg
(
t2 − Tt

))
. (4.29)
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Integrating we have

0 =
∂S
∂a2

=

(
1
6

ma2 (2t − T )3
−mg

(
1
3

t3 −
1
2

Tt2
))∣∣∣∣∣∣T

0

=
1
6

ma2T 3 −mg
(
1
3

T 3 −
1
2

T 3
)
−

1
6

ma2(−T )3

= mT 3
(
1
3

a2 − g
(
1
3
−

1
2

))
=

1
3

mT 3
(
a2 − g

(
1 −

3
2

))
.

(4.30)

or

a2 + g/2 = 0, (4.31)

which is the result we are required to show.

Answer for Exercise 4.3

Here we want to show that after a change of variables, provided such
a transformation is non-singular, the Euler-Lagrange equations are still
valid.

Let us write

ri = ri(q1, q2, · · · qN). (4.35)

Our “velocity” variables in terms of the original parametrization qi are

ṙ j =
dr j

dt
=
∂r j

∂qi

∂qi

∂t
= q̇i

∂r j

∂qi
, (4.36)

so we have

∂ṙ j

∂q̇i
=
∂r j

∂qi
. (4.37)

Computing the LHS of the Euler Lagrange equation we find

∂L
∂qi
=
∂L
∂r j

∂r j

∂qi
+
∂L
∂ṙ j

∂ṙ j

∂qi
. (4.38)
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For our RHS we start with

∂L
∂q̇i
=
∂L
∂r j

∂r j

∂q̇i
+
∂L
∂ṙ j

∂ṙ j

∂q̇i
=
∂L
∂r j

∂r j

∂q̇i
+
∂L
∂ṙ j

∂r j

∂qi
, (4.39)

but ∂r j/∂q̇i = 0, so this is just

∂L
∂q̇i
=
∂L
∂r j

∂r j

∂q̇i
+
∂L
∂ṙ j

∂ṙ j

∂q̇i
=
∂L
∂ṙ j

∂r j

∂qi
. (4.40)

The Euler-Lagrange equations become

0 =
∂L
∂r j

∂r j

∂qi
+
∂L
∂ṙ j

∂ṙ j

∂qi
−

d
dt

(
∂L
∂ṙ j

∂r j

∂qi

)
=
∂L
∂r j

∂r j

∂qi
+

�
�
��∂L

∂ṙ j

∂ṙ j

∂qi
−

(
d
dt
∂L
∂ṙ j

)
∂r j

∂qi
−

�
�

�
��∂L

∂ṙ j

d
dt
∂r j

∂qi

=

(
∂L
∂r j
−

d
dt
∂L
∂ṙ j

)
∂r j

∂qi
.

(4.41)

Since we have an assumption that the transformation is non-singular, we
have for all j

∂r j

∂qi
, 0, (4.42)

so we have the Euler-Lagrange equations for the new abstract coordinates
as well

0 =
∂L
∂r j
−

d
dt
∂L
∂ṙ j

. (4.43)

Answer for Exercise 4.4

Solution Part 1. Conserved energy. Recall the argument for energy con-
servation, the result of considering time dependence of the Lagrangian.
We have

d
dt

L(qi, q̇i, t) =
∂L
∂qi

∂qi

∂t
+
∂L
∂q̇i

∂q̇i

∂t
∂L
∂t

=

(
d
dt
∂L
∂q̇i

)
∂qi

∂t
+
∂L
∂q̇i

∂q̇i

∂t
+
∂L
∂t

=
d
dt

(
∂L
∂q̇i

∂qi

∂t

)
+
∂L
∂t
.

(4.44)



26 action and euler-langrange equations .

Rearranging we have the conservation equation

d
dt

(
∂L
∂q̇i

q̇i − L
)
+
∂L
∂t
= 0. (4.45)

We define the energy as

E =
∂L
∂q̇i

q̇i − L, (4.46)

so that the when the Lagrangian is independent of time E is conserved,
and in general

dE
dt
= −

∂L
∂t
. (4.47)

Application to this problem where our Lagrangian is

L =
1
2

mv2 + qv ·A − qϕ, (4.48)

we have
∂L
∂v
= mv + qA. (4.49)

so the energy is

E = (mv +��qA) · v −
(
1
2

mv2 +���qv ·A − qϕ
)

=
1
2

mv2 + qϕ,
(4.50)

with an end result of

E =
1
2

mv2 + qϕ. (4.51)

Solution Part 2. Find dE/dt.

With direct computation. There are two ways we can try this. One is
with direct computation of the derivative from eq. (4.50)

dE
dt
= v · (ma) + q

dϕ
dt

= v · (qE + qv ×B) + q
(
∂ϕ

∂t
+ v ·∇ϕ

)
= qv · (E +∇ϕ) + q�����v · (v ×B) + q

∂ϕ

∂t

= qv ·
(
−��∇ϕ −

∂A
∂t
+��∇ϕ

)
+ q

∂ϕ

∂t
.

(4.52)
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So our end result is

dE
dt
= −qv ·

∂A
∂t
+ q

∂ϕ

∂t
. (4.53)

Using the Lagrangian time partial. Doing it explicitly as above is the
hard way. We can do it from the conservation identity eq. (4.47) instead

dE
dt
= −

∂L
∂t

= −
∂

∂t

(
1
2

mv2 + qv ·A − qϕ
)

= −qv ·
∂A
∂t
+ q

∂ϕ

∂t
,

(4.54)

as before.

Aside: Why not the “expected” qv ·E result? From the relativistic treat-
ment I expected

dE
dt

?
= qv ·E, (4.55)

but that’s not what we got. With E = mv2/2 + qϕ, it appears that we get a
similar result considering just the Kinetic portion of the energy

1
2

mv2 = E − qϕ. (4.56)

Computing the derivative from above we have

d
dt

(
1
2

mv2
)
= −qv ·

∂A
∂t
+ q

∂ϕ

∂t
− q

dϕ
dt

= −qv ·
∂A
∂t
+
�
��q
∂ϕ

∂t
−
�
��q
∂ϕ

∂t
− qv ·∇ϕ

= qv ·
(
−∇ϕ −

∂A
∂t

)
,

(4.57)

or

d
dt

(
1
2

mv2
)
=

d
dt

(E − qϕ) = qv ·E. (4.58)

Looking back to what we did in the relativistic treatment, I see that my
confusion was due to the fact that we actually computed

dEkin

dt
= qv ·E, (4.59)
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where Ekin = γmc2. To first order, removing an additive constant, we have
γmc2 ≈ mv2/2, so everything checks out.

Solution Part 3. Conserved momentum. The conserved momentum fol-
lowed from a Noether’s argument where we compute

dL′

dϵ
=
∂L′

∂qi

∂qi

∂ϵ
+
∂L′

∂q̇′i

∂q̇′i
∂ϵ

=

(
d
dt
∂L′

∂q̇i

)
∂qi

∂ϵ
+
∂L′

∂q̇′i

∂q̇′i
∂ϵ

=
d
dt

(
∂L′

∂q̇′i

∂q′i
∂ϵ

)
,

(4.60)

where it has been assumed that a perturbed Lagrangian

L′(ϵ) = L(q′i(ϵ), q̇
′
i(ϵ), t), (4.61)

also satisfies the Euler Lagrange equations using the transformed coordi-
nates. With the coordinates transformed by a shift along some constant
direction a as in

x′ = x + ϵa, (4.62)

we have ∂x′/∂ϵ = a, so eq. (4.60) takes the form

dL′

dϵ
=

d
dt

(
∂L′

∂ẋi
ai

)
. (4.63)

Our shifted Lagrangian for spatially homogeneous potentials ϕ′ = ϕ and
A′ = A is

L′ =
1
2

mv′2 + qv′ ·A − qϕ = L, (4.64)

but v′ = v, so we’ve just got our canonical momentum M = ∂L/∂ẋi within
the time derivative, and must have for all a

dM
dt
· a = 0. (4.65)

The conserved momentum is then just

M = mv + qA. (4.66)
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Solution Part 4. Conserved angular momentum. Does the conserved
angular momentum take the same from as x ×M as we had in a non-
velocity dependent Lagrangian? We can check using the same Noether
arguments using the following coordinate transformation

x′ = e−ϵ j/2xeϵ j/2, (4.67)

where j = û ∧ v̂ is the geometric product of two perpendicular unit vec-
tors, and ϵ is the magnitude of the rotation. This gives us

dx′

dϵ
= −

j
2

e−ϵ j/2xeϵ j/2 + e−ϵ j/2xeϵ j/2 j
2

=
1
2
(x′ j − jx′)

= x′ · j.

(4.68)

The Noether conservation statement is then

dL′

dϵ
=

d
dt

(
∂L′

∂ẋi
ei · (x′ · j)

)
. (4.69)

With a static scalar potential ϕ(x) is our Lagrangian rotation invariant? We
have

L′ =
1
2

v′2 − qϕ(x′)

=
1
2

v2 − qϕ(x′).
(4.70)

With zero vector potential, our kinetic term is invariant since the squared
velocity is invariant, but we require ϕ(x′) = ϕ(x) for total Lagrangian
invariance. We have that if ϕ(x) = ϕ(|x|). Evaluating the conservation
identity eq. (4.69) at ϵ = 0 we have

0 =
d
dt

(M · (x · j)) . (4.71)
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We are used to seeing this in dual form using the cross product

M · (x · j) = ⟨M(x · j)⟩

=
1
2
⟨Mx j −M jx⟩

=
1
2
⟨Mx j − xM j⟩

=
1
2
⟨M∧ x − x∧M⟩ · j

=
1
2
〈
(M∧ x − x∧M) · j

〉
= (M∧ x) · j

= I(M × x) · j.

(4.72)

We are left with

0 = I
d
dt

(x ×M) · j, (4.73)

but since j can be arbitrarily oriented, we have a requirement that

0 =
d
dt

(x ×M). (4.74)

This verifies that the our angular momentum is conserved, provided that
ϕ(x) = ϕ(|x|), and A = 0. With A = 0, so that M = mv + qA = mv this is
just

x ×M = mx × v. (4.75)

Note that the dependency on geometric algebra in the Noether’s argument
above can probably be eliminated by utilizing a rotational transformation
of the form

x′ = x + n̂ × x. (4.76)

I’d guess (or perhaps recall if I attended that class), that this was the ap-
proach used.

Answer for Exercise 4.5

Solution Part 1. Spherical coordinates. In Cartesian coordinates our
angular momentum is

M = r × (mv)

= m(yvz − zvy)x̂ +m(zvx − xvz)ŷ +m(xvy − yvx)ẑ.
(4.77)
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Substituting x, y, z is easy since we have
x

y

z

 = r


sin θ cos ϕ

sin θ sin ϕ

cos θ

 , (4.78)

but the v substitution requires more work. We have

v =
dr
dt

=
d
dt

(rr̂)

= ṙr̂ + r
dr̂
dt
.

(4.79)

dr̂
dt
=

d
dt


sin θ cos ϕ

sin θ sin ϕ

cos θ


=


cos θ cos ϕθ̇ − sin θ sin ϕϕ̇

cos θ sin ϕθ̇ + sin θ cos ϕϕ̇

− sin θθ̇

 .
(4.80)

So we have

v =


ṙ sin θ cos ϕ + r cos θ cos ϕθ̇ − r sin θ sin ϕϕ̇

ṙ sin θ sin ϕ + r cos θ sin ϕθ̇ + r sin θ cos ϕϕ̇

ṙ cos θ − r sin θθ̇

 , (4.81a)

M
mr
=


sin θ sin ϕvz − cos θvy

cos θvx − sin θ cos ϕvz

sin θ cos ϕvy − sin θ sin ϕvx

 . (4.81b)

Expanding this is a bit of a mess, but it eventually simplifies. We start
with

S θS ϕ(ṙCθ − rS θθ̇) −Cθ(ṙS θS ϕ + rCθS ϕθ̇ + rS θCϕϕ̇)

Cθ(ṙS θCϕ + rCθCϕθ̇ − rS θS ϕϕ̇) − S θCϕ(ṙCθ − rS θθ̇)

S θCϕ(ṙS θS ϕ + rCθS ϕθ̇ + rS θCϕϕ̇) − S θS ϕ(ṙS θCϕ + rCθCϕθ̇ − rS θS ϕϕ̇)

 ,
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(4.82)

then  ����ṙCθS θS ϕ−rθ̇S 2
θS ϕ−����ṙS θCθS ϕ−rθ̇C2

θS ϕ−rϕ̇S θCθCϕ

����ṙS θCθCϕ+rθ̇C2
θCϕ−rϕ̇S θCθS ϕ−����ṙCθS θCϕ+rθ̇S 2

θCϕ

����ṙS 2
θS ϕCϕ+�����rθ̇CθS θCϕS ϕ+rϕ̇S 2

θC
2
ϕ−����ṙS 2

θS ϕCϕ−�����rθ̇CθS θS ϕCϕ+rϕ̇S 2
θS 2

ϕ

, (4.83)

and finally
−rθ̇S ϕ − rϕ̇S θCθCϕ

+rθ̇Cϕ − rϕ̇S θCθS ϕ

+rϕ̇S 2
θ

 . (4.84)

In matrix form, we have (and can read off Mx,My,Mz)

M =
1
2

mr2


−2 sin ϕ − sin(2θ) cos ϕ

2 cos ϕ − sin(2θ) sin ϕ

0 1 − cos(2θ)


θ̇
ϕ̇

 . (4.85)

We have also been asked to find M2 and can write this as a quadratic form

M2 =
1
4

m2r4
[
θ̇ ϕ̇

]  −2 sin ϕ 2 cos ϕ 0

− sin(2θ) cos ϕ − sin(2θ) sin ϕ 1 − cos(2θ)

×
−2 sin ϕ − sin(2θ) cos ϕ

2 cos ϕ − sin(2θ) sin ϕ

0 1 − cos(2θ)


θ̇
ϕ̇


=

1
4

m2r4
[
θ̇ ϕ̇

] 4 0

0 2(1 − cos(2θ))


θ̇
ϕ̇

 .
(4.86)

This simplifies surprisingly, leaving only

M2 = m2r4
(
θ̇2 + sin2 θϕ̇2

)
. (4.87)

Solution Part 1. Spherical coordinates - a smarter way. Observe that
we have no ṙ factors in the angular momentum. This makes sense when
we consider that the total angular momentum is

M = mrr̂ × v, (4.88)
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so the ṙr̂ term of the velocity is necessarily killed. Let us do that simplifi-
cation first. We want our velocity completely specified in a {r̂, θ̂, ϕ̂} basis,
and note that our basis vectors are

r̂ =


sin θ cos ϕ

sin θ sin ϕ

cos θ


θ̂ =


cos θ cos ϕ

cos θ sin ϕ

− sin θ


ϕ̂ =


− sin ϕ

cos ϕ

0

 .

(4.89)

We wish to rewrite

dr̂
dt
=


cos θ cos ϕ − sin θ sin ϕ

cos θ sin ϕ sin θ cos ϕ

− sin θ 0


θ̇
ϕ̇

 , (4.90)

in terms of these spherical unit vectors and find

dr̂
dt
· r̂ = r̂T dr̂

dt
= 0

dr̂
dt
· θ̂ = θ̂

T dr̂
dt
= θ̇

dr̂
dt
· ϕ̂ = ϕ̂

T dr̂
dt
= ϕ̇ sin θ.

(4.91)

So our velocity is

v = ṙr̂ + r
(
θ̇θ̂ + ϕ̇ sin θϕ̂

)
. (4.92)

As an aside, now that we know the Euler-Lagrange methods, we could
also compute this velocity from the spherical free particle Lagrangian by
writing out the canonical momentum in vector form. We have

L =
1
2

m
(
ṙ2 + r2θ̇2 + r2ϕ̇2 sin2 θ

)
. (4.93)
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We expect our canonical momentum in vector form to be

P =
∂L
∂ṙ

r̂ +
∂L
∂θ̇

θ̂

r
+
∂L
∂ϕ̇

ϕ̂

r sin θ

= mṙr̂ +mr2θ̇
θ̂

r
+mr2 sin2 θϕ̇

ϕ̂

r sin θ
= m

(
ṙr̂ + rθ̇θ̂ + r sin θϕ̇ϕ̂

)
= mv.

(4.94)

This is consistent with eq. (4.92) calculated hard way, and is a nice ver-
ification that the canonical momentum matches the expectation of being
nothing more than how to express the momentum in different coordinate
systems. Returning to the angular momentum calculation we have

r̂ × v = rr̂ ×
(
θ̇θ̂ + ϕ̇ sin θϕ̂

)
= r

(
θ̇ϕ̂ − ϕ̇ sin θθ̂

)
.

(4.95)

Our total angular momentum in vector form is

M = mr2
(
θ̇ϕ̂ − ϕ̇ sin θθ̂

)
. (4.96)

Now, should we wish to extract coordinates with respect to x, y, z we just
have to write our vectors ϕ̂ and θ̂ in the {e1, e2, e3} basis and have

M = mr2
[
ϕ̂ − sin θθ̂

] θ̇
ϕ̇


= mr2


− sin ϕ − sin θ(cos θ cos ϕ)

cos ϕ − sin θ(cos θ sin ϕ)

0 sin2 θ


θ̇
ϕ̇

 .
(4.97)

This matches eq. (4.85), but all the messy trig is isolated to the calculation
of v in the spherical polar basis.

Solution Part 2. Cylindrical coordinates. This one should be easier. To
start our position vector is

r =


ρ cos ϕ

ρ sin ϕ

z

 = ρρ̂ + zẑ. (4.98)
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Our velocity is

v = ρ̇ρ̂ + ρ
dρ̂
dt
+ żẑ

= ρ̇ρ̂ + ρ
d
dt

(
e1eiϕ

)
+ żẑ

= ρ̇ρ̂ + ρϕ̇e2eiϕ + żẑ
= ρ̇ρ̂ + ρϕ̇ϕ̂ + żẑ.

(4.99)

Here, I have used the Clifford algebra representation of ρ̂ with the plane
bivector i = e1e2. In coordinates we have

ϕ̂ = e2 (cos ϕ + e1e2 sin ϕ) = −e1 sin ϕ + e2 cos ϕ, (4.100)

so our velocity in matrix form is

v = ρ̇


cos ϕ

sin ϕ

0

 + ρϕ̇

− sin ϕ

cos ϕ

0

 + ż


0

0

1


=


ρ̇ cos ϕ − ρϕ̇ sin ϕ

ρ̇ sin ϕ + ρϕ̇ cos ϕ

ż

 .
(4.101)

For our angular momentum we get

M = r × (mv)

= m


ρ sin ϕż − z (ρ̇ sin ϕ + ρϕ̇ cos ϕ)

z (ρ̇ cos ϕ − ρϕ̇ sin ϕ) − ρ cos ϕż

ρ cos ϕ (����ρ̇ sin ϕ + ρϕ̇ cos ϕ) − ρ sin ϕ (����ρ̇ cos ϕ − ρϕ̇ sin ϕ)

 .
(4.102)

We can now read off Mx,My,Mz by inspection

M = m


(ρż − zρ̇) sin ϕ − zρϕ̇ cos ϕ

(zρ̇ − ρż) cos ϕ − zρϕ̇ sin ϕ

ρ2ϕ̇

 . (4.103)

We also want the (squared) magnitude, which is

M2 = m2
(
(ρż − zρ̇)2 + ρ2ϕ̇2(z2 + ρ2)

)
. (4.104)
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Answer for Exercise 4.6

The center of mass vector is:

R =
1
3

(r1 + r2 + r3). (4.108)

This can be used to express each of the position vectors in terms of the ρi
vectors:

3mR = m(ρ1 + r3) +m(ρ2 + r3) +mr3

= 2m(ρ1 + ρ2) + 3mr3

r3 = R −
1
3

(ρ1 + ρ2)

r2 = ρ2 + r3 = ρ2 + r3 =
2
3
ρ2 −

1
2
ρ1 +R

r1 = ρ1 + r3 =
2
3
ρ1 −

1
2
ρ2 +R.

(4.109)

Now, that is enough to specify the part of the Lagrangian from the poten-
tials that act between all the particles

LV =
∑
−Vi j = g

(
e−µ|ρ1| + e−µ|ρ2| + e−µ|ρ1−ρ2|

)
. (4.110)

Now, we need to calculate the two U potential terms. If we consider with
positions r1, and r2 to be the ones that can exert a force on the third, the
velocities of those masses relative to r3 are:

(r3 − rk)′ = ρ̇k. (4.111)

So, the potential parts of the Lagrangian are

LU+V = g
(
e−µ|ρ1| + e−µ|ρ2| + e−µ|ρ1−ρ2|

)
+ f

(
R −

1
3

(ρ1 + ρ2)
)
· (ρ̇1 + ρ̇2) .

(4.112)

The kinetic part (omitting the m/2 factor), in terms of the CM and relative
vectors is

(v1)2 + (v2)2 + (v3)2 =

(
2
3
ρ̇1 −

1
2
ρ̇2 + Ṙ

)2

+

(
2
3
ρ̇2 −

1
2
ρ̇1 + Ṙ

)2

+

(
Ṙ −

1
3

(ρ̇1 + ρ̇2)
)2

= 3Ṙ2 + (5/9 + 1/4)((ρ̇1)2 + (ρ̇2)2)

+ 2(−2/3 + 1/9)ρ̇1 · ρ̇1 + 2(1/3 − 1/2)(ρ̇1 + ρ̇2) · Ṙ.

(4.113)
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So the kinetic part of the Lagrangian is

LK =
3m
2

Ṙ2 +
29m
72

((ρ̇1)2 + (ρ̇2)2)−
5m
9
ρ̇1 · ρ̇2 −

m
6

(ρ̇1 + ρ̇2) · Ṙ. (4.114)

and finally, the total Lagrangian is

L =
3m
2

Ṙ2 +
29m
72

((ρ̇1)2 + (ρ̇2)2) −
5m
9
ρ̇1 · ρ̇2 −

m
6

(ρ̇1 + ρ̇2) · Ṙ

+ g
(
e−µ|ρ1| + e−µ|ρ2| + e−µ|ρ1−ρ2|

)
+ f

(
R −

1
3

(ρ1 + ρ2)
)
· (ρ̇1 + ρ̇2) .

(4.115)

Angular momentum conservation? How about the angular momentum
conservation question? How to answer that? One way would be to com-
pute the forces from the Lagrangian, and take cross products but is that
really the best way? Perhaps the answer is as simple as observing that
there are no external torque’s on the system, thus dL/dt = 0, or angular
momentum for the system is constant (conserved). Is that actually the case
with these velocity dependent potentials? It was suggested to me on PF
that I should look at how this Lagrangian transforms under rotation, and
use Noether’s theorem. The Goldstein book does not explicitly mention
this theorem that I can see, and I do not think it was covered yet if it did.
Suppose we did know about Noether’s theorem for this problem (as I now
do with in this revisiting of this problem to complete it), we would have
to see if the Lagrangian is invariant under rotation. Suppose that a rigid
rotation is introduced, which we can write in GA formalism using dual
sided quaternion products

x→ x′ = e−in̂α/2xein̂α/2. (4.116)

(could probably also use a matrix formulation, but the parametrization is
messier). For all the relative vectors ρk we have∣∣∣ρ′k∣∣∣ = ∣∣∣ρk

∣∣∣. (4.117)

So all the V potential interactions are invariant. Since the rotation quater-
nion here is a fixed non-time dependent quantity we have

ρ̇′k = e−in̂α/2ρ̇kein̂α/2, (4.118)
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so for the dot product in the remaining potential term we have(
R′ −

1
3
(ρ′1 + ρ

′
2)

)
· (ρ̇′1 + ρ̇

′
2)

=

(
e−in̂α/2

(
R −

1
3
(ρ1 + ρ2)

)
ein̂α/2

)
·
(
e−in̂α/2ρ̇1 + ρ̇2ein̂α/2

)
=

〈
e−in̂α/2

(
R −

1
3
(ρ1 + ρ2)

)
ein̂α/2e−in̂α/2ρ̇1 + ρ̇2ein̂α/2

〉
=

〈
e−in̂α/2

(
R −

1
3
(ρ1 + ρ2)

)
(ρ̇1 + ρ̇2) ein̂α/2

〉
=

〈
ein̂α/2e−in̂α/2

(
R −

1
3
(ρ1 + ρ2)

)
(ρ̇1 + ρ̇2)

〉
=

〈(
R −

1
3
(ρ1 + ρ2)

)
(ρ̇1 + ρ̇2)

〉
=

(
R −

1
3
(ρ1 + ρ2)

)
· (ρ̇1 + ρ̇2) .

(4.119)

So, presuming I interpreted the r in v · r correctly, all the vector quantities
in the Lagrangian are rotation invariant, and by Noether’s we should have
system angular momentum conservation.

Application of Noether’s. Invoking Noether’s here seems like cheating,
at least without computing the conserved current, so let us do this. To
make this easier, suppose we generalize the Lagrangian slightly to get rid
of all the peculiar and specific numerical constants. Let ρ3 = R, then our
Lagrangian has the functional form

L = αi jρ̇i · ρ̇ j + gie−µ|ρi| + gi je−µ
∣∣∣ρi−ρ j

∣∣∣
+ f iρi · (ρ̇1 + ρ̇2). (4.120)

We can then pick specific αi j, f i, and gi j (not all non-zero), to match the
Lagrangian of this problem. This could be expanded in terms of coor-
dinates, producing nine generalized coordinates and nine corresponding
velocity terms, but since our Lagrangian transformation is so naturally ex-
pressed in vector form this does not seem like a reasonable thing to do.
Let us step up the abstraction one more level instead and treat the Noether
symmetry in the more general case, supposing that we have a Lagrangian
that is invariant under the same rotational transformation applied above,
but has the following general form with explicit vector parametrization,
where as above, all our vectors come in functions of the dot products (ei-
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ther explicit or implied by absolute values) of our vectors or their time
derivatives

L = f (xk · x j, xk · ẋ j, ẋk · ẋ j). (4.121)

Having all the parametrization being functions of dot products gives the
desired rotational symmetry for the Lagrangian. This must be however,
not a dot product with an arbitrary vector, but one of the generalized
vector parameters of the Lagrangian. Something like the A · v term in
the Lorentz force Lagrangian does not have this invariance since A does
not transform along with v. Also Note that the absolute values of the ρk
vectors are functions of dot products. Now we are in shape to compute
the conserved “current” for a rotational symmetry. Our vectors and their
derivatives are explicitly rotated

x′k = e−in̂α/2xkein̂α/2

ẋ′k = e−in̂α/2ẋkein̂α/2,
(4.122)

and our Lagrangian is assumed, as above with all vectors coming in dot
product pairs, to have rotational invariance when all the vectors in the
system are rotated

L→ L′(x′k, ẋ
′
j) = L(xk, ẋ j). (4.123)

The essence of Noether’s theorem was applied chain rule, looking at how
the transformed Lagrangian changes with respect to the transformation.
In this case we want to calculate

dL′

dα

∣∣∣∣∣
α=0

. (4.124)

First seeing the Noether’s derivation, I did not understand why the evalu-
ation at α = 0 was required, even after doing this derivation for myself in
8 (after an initial botched attempt), but the reason for it actually became
clear with this application, as writing it up will show. Anyways, back to
the derivative. One way to evaluate this would be in terms of coordinates,
writing x′k = emx′km,

dL′

dα
(x′k, ẋ

′
j) =

∑
k,m

∂L′

∂x′km

∂x′km

∂α
+
∂L′

∂ẋ′km

∂ẋ′km

∂α
. (4.125)
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This is a bit of a mess however, and begs for some shorthand. Let us write

∇x′k L′ = em ∂L′

∂x′km

∇ẋ′k L′ = em ∂L′

∂ẋ′km
.

(4.126)

Then the chain rule application above becomes

dL′

dα
(x′k, ẋ

′
j) =

∑
k

(
∇x′k L′

)
·
∂x′k
∂α
+

(
∇ẋ′k L′

)
·
∂ẋ′k
∂α

. (4.127)

Now, while this notational sugar unfortunately has an obscuring effect, it
is also practical since we can now work with the transformed position and
velocity vectors directly

∂x′k
∂α
= (−in̂/2)e−in̂α/2xkein̂α/2 + e−in̂α/2xkein̂α/2(in̂/2)

= (−in̂/2)x′k + x′k(in̂/2)

= i(n̂∧ x′k).

(4.128)

So we have

dL′

dα
(x′k, ẋ

′
j) =

∑
k

(
∇x′k L′

)
· (i(n̂∧ x′k))+

∑
k

(
∇ẋ′k L′

)
· (i(n̂∧ ẋ′k)) . (4.129)

Next step is to reintroduce the notational sugar noting that we can vector-
ize the Euler-Lagrange equations by writing

∇xk L =
d
dt
∇ẋk L. (4.130)

We have now a three fold reduction in the number of Euler-Lagrange
equations. For each of the generalized vector parameters, we have the
Lagrangian gradient with respect to that vector parameter (a generalized
force) equals the time rate of change of the velocity gradient. Inserting
this we have

dL′

dα
(x′k, ẋ

′
j) =

∑
k

(
d
dt
∇ẋ′k L′

)
· (i(n̂∧ x′k)) +

∑
k

(
∇ẋ′k L′

)
· (i(n̂∧ ẋ′k)) .

(4.131)
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Now we can drop the primes in gradient terms because of the Lagrangian
invariance for this symmetry, and are left almost with a perfect differential

dL′

dα
(x′k, ẋ

′
j) =

∑
k

(
d
dt
∇ẋk L

)
· (i(n̂∧ x′k)) +

∑
k

(∇ẋk L) · (i(n̂∧ ẋ′k)) .

(4.132)

Here is where the evaluation at α = 0 comes in, since x′k(α = 0) = xk, and
we can now antidifferentiate

dL′

dα
(x′k, ẋ

′
j)
∣∣∣∣∣
α=0
=

∑
k

(
d
dt
∇ẋk L

)
· (i(n̂∧ xk)) +

∑
k

(∇ẋk L) · (i(n̂∧ ẋk))

=
∑

k

d
dt

((∇ẋk L) · (i(n̂∧ xk)))

=
∑

k

d
dt

〈
(∇ẋk L) i(n̂∧ xk)

〉
=

∑
k

d
dt

1
2
〈
(∇ẋk L) i(n̂xk − xkn̂)

〉
=

∑
k

d
dt

1
2
〈
n̂i (xk (∇ẋk L) − (∇ẋk L) xk)

〉
=

∑
k

d
dt

1
2
〈
n̂i (xk (∇ẋk L) − (∇ẋk L) xk)

〉
=

∑
k

d
dt

〈
n̂i (xk ∧ (∇ẋk L))

〉
=

∑
k

d
dt

〈
n̂i2 (xk × (∇ẋk L))

〉
=

∑
k

d
dt
− n̂ · (xk × (∇ẋk L)) .

(4.133)

Because of the symmetry this entire derivative is zero, so we have

n̂ ·
∑

k

(xk × (∇ẋk L)) = constant. (4.134)

The Lagrangian velocity gradient can be identified as the momentum (ie:
the canonical momentum conjugate to xk)

pk ≡ ∇ẋk L. (4.135)
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Also noting that this is constant for any n̂, we finally have the conserved
“current” for a rotational symmetry of a system of particles∑

k

xk × pk = constant. (4.136)

This digression to Noether’s appears to be well worth it for answering the
angular momentum question of the problem. Glibly saying “yes angular
momentum is conserved”, just because the Lagrangian has a rotational
symmetry is not enough. We have seen in this particular problem that the
Lagrangian, having only dot products has the rotational symmetry, but
because of the velocity dependent potential terms f iρ̇k · ρ̇ j, the normal Ki-
netic energy momentum vectors are not equal to the canonical conjugate
momentum vectors. Only when the angular momentum is generalized,
and written in terms of the canonical conjugate momentum is the total
system angular momentum conserved. Namely, the generalized angular
momentum for this problem is conserved∑

k

xk × (∇ẋk L) = constant. (4.137)

but the “traditional” angular momentum
∑

k xk ×mẋk, is not.

Answer for Exercise 4.7

Barbell shape, equal masses. center of rod between masses constrained
to circular motion. Assuming motion in a plane, the equation for the center
of the rod is:

c = aeiθ, (4.138)

and the two mass points positions are:

q1 = c + (l/2)eiα

q2 = c − (l/2)eiα.
(4.139)

taking derivatives:

q̇1 = aiθ̇eiθ + (l/2)iα̇eiα

q̇2 = aiθ̇eiθ − (l/2)iα̇eiα.
(4.140)

and squared magnitudes:

q̇± =
∣∣∣aθ̇ ± (l/2)α̇ei(α−θ)

∣∣∣2
=

(
aθ̇ ±

1
2

lα̇ cos(α − θ)
)2

+

(
1
2

lα̇ sin(α − θ)
)2

.
(4.141)
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Summing the kinetic terms yields

K = m (aθ̇)2
+m

(
1
2

lα̇
)2

. (4.142)

Summing the potential energies, presuming that the motion is vertical, we
have:

V = mg(l/2) cos θ −mg(l/2) cos θ, (4.143)

so the Lagrangian is just the Kinetic energy.
Taking derivatives to get the EOMs we have:(

ma2θ̇
)′
= 0(

1
4

ml2α̇
)′
= 0.

(4.144)

This is surprising seeming. Is this correct?

Answer for Exercise 4.8

I found it helpful to clarify for myself what was meant by gab(qc). This
is a function of all the generalized coordinates:

gab(qc) = gab(q1, q2, . . . , qN) = gab(q). (4.146)

So I think that a vector parameter reminder is helpful.

L =
1
2

∑
gbc(q)q̇bq̇c, (4.147)

∂L
∂qa =

1
2

∑
q̇bq̇c ∂gbc(q)

∂qa . (4.148)

Now, proceed to calculate the generalize momentums:

∂L
∂q̇a =

1
2

∑
gbc(q)

∂
(
q̇bq̇c

)
∂q̇a

=
1
2

∑
gac(q)q̇c + gba(q)q̇b

=
∑

gab(q)q̇b.

(4.149)
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For

d
dt
∂L
∂q̇a =

∑ ∂gab

∂qd q̇dq̇b + gbaq̈b. (4.150)

Taking the difference of eq. (4.148) and eq. (4.150) we have:

0 =
∑ 1

2
q̇bq̇c ∂gbc

∂qa −
∂gab

∂qd q̇dq̇b − gbaq̈b

=
∑

q̇bq̇c
(
1
2
∂gbc

∂qa −
∂gab

∂qc

)
− gbaq̈b

=
∑

q̇bq̇c
(
−

1
2
∂gbc

∂qa +
1
2
∂gab

∂qc +
1
2
∂gab

∂qc

)
+ gbaq̈b

=
∑ 1

2
q̇bq̇c

(
−
∂gbc

∂qa +
∂gab

∂qc +
∂gac

∂qb

)
+ gbaq̈b.

(4.151)

Here a split of the symmetric expression

X =
∑

q̇bq̇c ∂gab

∂qc =
1
2

(X + X), (4.152)

was used, and then an interchange of dummy indices b, c. Now multiply
this whole sum by gba, and sum to remove the metric term from the gen-
eralized acceleration∑

gdagbaq̈b = −
1
2

∑
q̇bq̇cgda

(
−
∂gbc

∂qa +
∂gab

∂qc +
∂gac

∂qb

)
∑

δd
bq̈b =

q̈d =

(4.153)

Swapping a, and d indices to get form stated in the problem we have

0 = q̈a +
1
2

∑
q̇bq̇cgad

(
−
∂gbc

∂qd +
∂gdb

∂qc +
∂gdc

∂qb

)
= q̈a +

∑
q̇bq̇cΓa

bc

Γa
bc =

1
2

gad
(
−
∂gbc

∂qd +
∂gdb

∂qc +
∂gdc

∂qb

)
.

(4.154)

Answer for Exercise 4.9
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Digging in

∂L
∂x
=

d
dt
∂L
∂ẋ

mẋ2Vx − 2VVx =
d
dt

(
1
3

m2 ẋ3 + 2mẋV
)
.

(4.156)

When taking the time derivative of V , dV/dt , 0, despite no explicit time
dependence. Take an example, such as V = mgx, where the positional
parameter is dependent on time, so the chain rule is required:

dV
dt
=

dV
dx

dx
dt
= ẋVx. (4.157)

Perhaps that is obvious, but I made that mistake first doing this problem
(which would have been harder to make if I had used an example po-
tential) the first time. I subsequently constructed an alternate Lagrangian(
L = 1

12 m2 ẋ4 −mẋ2V + V2
)

that worked when this mistake was made, and
emailed the author suggesting that I believed he had a sign typo in his
problem set. Anyways, continuing with the calculation:

mẋ2Vx − 2VVx = m2 ẋ2 ẍ + 2mẍV + 2mẋ2Vx

mẋ2Vx − 2VVx − 2mẋ2Vx = mẍ
(
mẋ2 + 2V

)
−

(
2V +mẋ2

)
Vx =

(4.158)

Canceling left and right common factors, which perhaps not coinciden-
tally equal 2E = V + 1

2 mv2 we have:

mẍ = −Vx. (4.159)

This is what we would get for our standard kinetic and position dependent
Lagrangian too:

L =
1
2

mẋ2 − V. (4.160)

∂L
∂x
=

d
dt
∂L
∂ẋ

−Vx =
d(mẋ)

dt
−Vx = mẍ.

(4.161)
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Answer for Exercise 4.10

The first thing to observe here is that for |v| << c, this is our familiar
kinetic energy Lagrangian

L = −mc2
(
1 −

1
2

v2/c2 +
1
2

1
−2

1
2!

(v/c)4 + · · ·

)
− V(r)

≈ −mc2 +
1
2

mv2 − V(r).
(4.163)

The constant term −mc2 will not change the equations of motion and we
can perhaps think of this as an additional potential term (quite large as we
see from atomic fusion and fission). For small v we recover the Newtonian
Kinetic energy term, and therefore expect the results will be equivalent to
the Newtonian equations in that limit. Moving on to the calculations we
have:

∂L
∂xi =

d
dt
∂L
∂ẋi

−
∂V
∂xi = −c2 d

dt
m
∂L
∂ẋi

√
1 −

∑
(ẋ j)2

/c2

= −c2 d
dt

m
1
2

1√
1 − v2/c2

∂L
∂ẋi

(
1 −

∑(
ẋ j

)2
/c2

)
= −c2 d

dt
m

1
2

1√
1 − v2/c2

(−2)ẋi/c2

=
d
dt

m
1√

1 − v2/c2
ẋi

=
d
dt

mγẋi

=⇒

−

(∑
ei
∂

∂xi

)
V =

d
dt

mγ
∑

ei ẋi

−∇V =
d(mγv)

dt
.

(4.164)

For v << c, gamma ≈ 1, so we get our Newtonian result in the limit-
ing case. Now, I found this result very impressive result, buried in a cou-
ple line problem statement. I subsequently used this as the starting point
for guessing about how to formulate the Lagrange equations in a proper
time form, as well as a proper velocity form for this Kinetic and potential
term. Those turn out to make it possible to express Maxwell’s law and the
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Lorentz force law together in a particularly nice compact covariant form.
This catches me a up a bit in terms of my understanding and think that I
am now at least learning and rediscovering things known since the early
1900s;)

Answer for Exercise 4.11

First consider a single pendulum (fixed length l).

x = l exp(iθ)

ẋ = liθ̇ exp(iθ)

|ẋ|2 = l2θ̇2.

(4.165)

Now, if θ = 0 represents the downwards position at rest, the height above
that rest point is h = l − l cos θ. Therefore the Lagrangian is:

L =
1
2

mv2 −mgh

=
1
2

ml2θ̇2 −mgl(1 − cos θ).
(4.166)

The constant term can be dropped resulting in the equivalent Lagrangian:

L′ =
1
2

ml2θ̇2 +mgl cos θ. (4.167)

This amounts to a difference in the reference point for the potential energy,
so instead of measuring the potential energy V = mgh from a reference
position below the mass, one could consider that the potential has a max-
imum of zero at the highest position, and decreases from there as:

V ′ = 0 −mgl cos θ. (4.168)

Moving back to the EOMs that result from either form of Lagrangian, we
have after taking our derivatives:

−mgl sin θ =
d
dt

ml2θ̇ = ml2θ̈. (4.169)

Dividing out the ml2 we are left with

θ̈ = −g/l sin θ. (4.170)
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This is consistent with our expectations, and recovers the familiar small
angle SHM equation:

θ̈ ≈ −g/lθ. (4.171)

Now, move on to the double pendulum, and compute the Kinetic energies
of the two particles:

x1 = l1 exp(iθ1)

ẋ1 = l1iθ̇1 exp(iθ1)

|ẋ1|
2 = l12θ̇2

1,

(4.172)

x2 = x1 + l2 exp(iθ2)

ẋ2 = ẋ1 + l2iθ̇2 exp(iθ2)

= l1iθ̇1 exp(iθ1) + l2iθ̇2 exp(iθ2)

|ẋ2|
2 = (l1θ̇1)2 + (l2θ̇2)2 + l1iθ̇1 exp(iθ1)l2(−i)θ̇2 exp(−iθ2)

+ l1(−i)θ̇1 exp(−iθ1)l2iθ̇2 exp(iθ2)

= (l1θ̇1)2 + (l2θ̇2)2 + l1l2θ̇1θ̇2 (exp(i(θ1 − θ2)) + exp(−i(θ1 − θ2)))

= (l1θ̇1)2 + (l2θ̇2)2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2).
(4.173)

Now calculate the potential energies for the two masses. The first has
potential of

V1 = m1gl1(1 − cos θ1). (4.174)

and the potential energy of the second mass, relative to the position of the
first mass is:

V ′2 = m2gl2(1 − cos θ2). (4.175)

But that is the potential only if the first mass is at rest. The total difference
in height from the dual rest position is:

l1(1 − cos θ1) + l2(1 − cos θ2). (4.176)

So, the potential energy for the second mass is:

V2 = m2g (l1(1 − cos θ1) + l2(1 − cos θ2)) . (4.177)
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Dropping constant terms the total Lagrangian for the system is:

L =
1
2

m1v1
2 +

1
2

m2v2
2 +m1gl1 cos θ1 +m2g (l1 cos θ1 + l2 cos θ2)

=
1
2

m1l12θ̇2
1 +

1
2

m2
(
(l1θ̇1)2 + (l2θ̇2)2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2)

)
+m1gl1 cos θ1 +m2g (l1 cos θ1 + l2 cos θ2) .

(4.178)

Again looking at the resulting Lagrangian, we see that it would have been
more natural to measure the potential energy from a reference point of
zero potential at the horizontal position, and measure downwards from
there:

V ′1 = 0 −m1gl1 cos θ1

V ′2 = 0 −m2g (l1 cos θ1 + l2 cos θ2) .
(4.179)

N coupled pendulums. Now, with just two masses it is not too messy
to expand out those kinetic energy terms, but for more the trig gets too
messy. With the K2 term of the Lagrangian in complex form we have:

L =
1
2

m1l12θ̇2
1 +

1
2

m2
∣∣∣l1θ̇1 + l2θ̇2 exp(i(θ2 − θ1))

∣∣∣2
+m1gl1 cos θ1 +m2g (l1 cos θ1 + l2 cos θ2)

=
1
2

m1
∣∣∣l1θ̇1 exp(iθ1)

∣∣∣2 + 1
2

m2
∣∣∣l1θ̇1 exp(iθ1) + l2θ̇2 exp(iθ2)

∣∣∣2
+m1gl1 cos θ1 +m2g (l1 cos θ1 + l2 cos θ2) .

(4.180)

By inspection we can also write the Lagrangian for the N particle variant:

L =
1
2

N∑
j=1

m j

∣∣∣∣∣∣∣
j∑

k=1

lkθ̇k exp(iθk)

∣∣∣∣∣∣∣
2

+ g
N∑

j=1

l j cos θ j

N∑
k= j

mk. (4.181)

Can this be used to derive the wave equation? If each of the N masses
is a fraction m j = ∆m = M/N of the total mass, and the lengths are
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all uniformly divided into segments of length l j = ∆l = L/N, then the
Lagrangian becomes:

L =
∆l
2g

N∑
j=1

∣∣∣∣∣∣∣
j∑

k=1

θ̇k exp(iθk)

∣∣∣∣∣∣∣
2

+

N∑
j=1

cos θ j

N∑
k= j

1

=
∆l
2g

N∑
j=1

∣∣∣∣∣∣∣
j∑

k=1

θ̇k exp(iθk)

∣∣∣∣∣∣∣
2

+ (N − j + 1)
N∑

j=1

cos θ j.

(4.182)

FIXME: return to this later?

Double pendulum. First consider a single pendulum (fixed length l).

x = l exp(iθ)

ẋ = liθ̇ exp(iθ)

|ẋ|2 = l2θ̇2.

(4.183)

Now, if θ = 0 represents the downwards position at rest, the height above
that rest point is h = l − l cos θ. Therefore the Lagrangian is:

L =
1
2

mv2 −mgh

=
1
2

ml2θ̇2 −mgl(1 − cos θ).
(4.184)

The constant term can be dropped resulting in the equivalent Lagrangian:

L′ =
1
2

ml2θ̇2 +mgl cos θ. (4.185)

This amounts to a difference in the reference point for the potential energy,
so instead of measuring the potential energy V = mgh from a reference
position below the mass, one could consider that the potential has a max-
imum of zero at the highest position, and decreases from there as:

V ′ = 0 −mgl cos θ. (4.186)

Moving back to the EOMs that result from either form of Lagrangian, we
have after taking our derivatives:

−mgl sin θ =
d
dt

ml2θ̇ = ml2θ̈. (4.187)



4.3 solutions . 51

Dividing out the ml2 we are left with

θ̈ = −g/l sin θ. (4.188)

This is consistent with our expectations, and recovers the familiar small
angle SHM equation:

θ̈ ≈ −g/lθ. (4.189)

Now, move on to the double pendulum, and compute the Kinetic energies
of the two particles:

x1 = l1 exp(iθ1)

ẋ1 = l1iθ̇1 exp(iθ1)

|ẋ1|
2 = l12θ̇2

1.

(4.190)

x2 = x1 + l2 exp(iθ2)

ẋ2 = ẋ1 + l2iθ̇2 exp(iθ2)

= l1iθ̇1 exp(iθ1) + l2iθ̇2 exp(iθ2)

|ẋ2|
2 = (l1θ̇1)2 + (l2θ̇2)2 + l1iθ̇1 exp(iθ1)l2(−i)θ̇2 exp(−iθ2)

+ l1(−i)θ̇1 exp(−iθ1)l2iθ̇2 exp(iθ2)

= (l1θ̇1)2 + (l2θ̇2)2 + l1l2θ̇1θ̇2 (exp(i(θ1 − θ2)) + exp(−i(θ1 − θ2)))

= (l1θ̇1)2 + (l2θ̇2)2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2).
(4.191)

Now calculate the potential energies for the two masses. The first has
potential of

V1 = m1gl1(1 − cos θ1). (4.192)

and the potential energy of the second mass, relative to the position of the
first mass is:

V ′2 = m2gl2(1 − cos θ2). (4.193)

But that is the potential only if the first mass is at rest. The total difference
in height from the dual rest position is:

l1(1 − cos θ1) + l2(1 − cos θ2). (4.194)
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So, the potential energy for the second mass is:

V2 = m2g (l1(1 − cos θ1) + l2(1 − cos θ2)) . (4.195)

Dropping constant terms the total Lagrangian for the system is:

L =
1
2

m1v1
2 +

1
2

m2v2
2 +m1gl1 cos θ1 +m2g (l1 cos θ1 + l2 cos θ2)

=
1
2

m1l12θ̇2
1 +

1
2

m2
(
(l1θ̇1)2 + (l2θ̇2)2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2)

)
+m1gl1 cos θ1 +m2g (l1 cos θ1 + l2 cos θ2) .

(4.196)

Again looking at the resulting Lagrangian, we see that it would have been
more natural to measure the potential energy from a reference point of
zero potential at the horizontal position, and measure downwards from
there:

V ′1 = 0 −m1gl1 cos θ1

V ′2 = 0 −m2g (l1 cos θ1 + l2 cos θ2) .
(4.197)

Answer for Exercise 4.12

Cylindrical Polar Coordinates. The next two parts of question 6 require
cylindrical polar coordinates. I found a digression was useful (or at least
interesting), to see if the gradient followed from the Lagrangian as was the
case with non-orthonormal constant frame basis vectors. The first step re-
quired for this calculation (and the later parts of the problem) is to express
the KE in terms of the polar coordinates. We need the velocity to do so:

r = e3z + e1reiθ

ṙ = e3ż + e1(ṙ + rθ̇i)eiθ

|ṙ| = ż2 +
∣∣∣ṙ + rθ̇i

∣∣∣2
= ż2 + ṙ2 + (rθ̇)2

.

(4.198)

Now, form the Lagrangian of a point particle with a non-velocity depen-
dent potential:

L =
1
2

m
(
ż2 + ṙ2 + (rθ̇)2)

− ϕ. (4.199)
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and calculate the equations of motion:

∂L
∂z
=

(
∂L
∂ż

)′
−
∂ϕ

∂z
= (mż)′ .

(4.200)

∂L
∂r
=

(
∂L
∂ṙ

)′
−
∂ϕ

∂r
+mrθ̇2 = (mṙ)′ .

(4.201)

∂L
∂θ
=

(
∂L
∂θ̇

)′
−
∂ϕ

∂θ
=

(
mr2θ̇

)′
.

(4.202)

There are a few things to observe about these equations. One is that we
can assign physically significance to an expression such as mr2θ̇. If the
potential has no θ dependence this is a conserved quantity (angular mo-
mentum). The other thing to observe here is that the dimensions for the
θ coordinate equation result has got an extra length factor in the numera-
tor. Thus we can not multiply these with our respective frame vectors and
sum. We can however scale that last equation by a factor of 1/r and then
sum:

ẑ(mż)′ + r̂
(
(mṙ)′ −mrθ̇2

)
+

1
r

(mr2θ̇)′ = −
(
ẑ
∂

∂z
+ r̂

∂

∂r
+

1
r
∂

∂θ

)
ϕ. (4.203)

For constant mass this is:

m
(
ẑz̈ + r̂

(
r̈ − rθ̇2

)
+

1
r

(
2rṙθ̇ + r2θ̈

))
= −

(
ẑ
∂

∂z
+ r̂

∂

∂r
+

1
r
θ̂
∂

∂θ

)
ϕ. (4.204)

However, is such a construction have a meaningful physical quantity? One
can easily imagine more complex generalized coordinates where guessing
scale factors in this fashion would not be possible. Let us compare this to
a calculation of acceleration in cylindrical coordinates.

r̈ = e3z̈ + e1 (r̈ + rθ̈i + ṙθ̇i + (ṙ + rθ̇i) iθ̇) eiθ

= e3z̈ + e1
(
r̈ + rθ̈i + 2ṙθ̇i − rθ̇2

)
eiθ

= ẑz̈ + r̂
(
r̈ − rθ̇2

)
+ θ̂ (rθ̈ + 2ṙθ̇) .

(4.205)
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Sure enough, the ad-hoc vector that was constructed matches the acceler-
ation vector for the constant mass case, so the right hand side must also
define the gradient in cylindrical coordinates.

∇ = ẑ
∂

∂z
+ r̂

∂

∂r
+

1
r
θ̂
∂

∂θ

= ẑ
∂

∂z
+ r̂

(
∂

∂r
+

i
r
∂

∂θ

)
.

(4.206)

Very cool result. Seeing this I finally understand when and where state-
ments like "angular momentum is conserved" is true. Specifically it re-
quires a potential that has no angular dependence (ie: like gravity acting
between two point masses.) I never found that making such an angular
momentum conservation "law" statement to be obvious, even once the ac-
celeration was expressed in a radial decomposition. This is something that
can be understood without the Lagrangian formulation. To do so the miss-
ing factor is that before a conservation statement like this can be claimed
one has to first express the gradient in cylindrical form, and then look
at the coordinates with respect to the generalized frame vectors. Conser-
vation of angular momentum depends on an appropriately well behaved
potential function! Intuitively, I understood that something else was re-
quired to make this statement, but it took the form of an unproven axiom
in most elementary texts. FIXME: generalize this and prove to myself that
angular momentum is conserved in a N-body problem and/or with a rigid
body rotation constraint on N − 1 of the masses.

(i). The Lagrangian for this problem is:

L =
1
2

mv2 − eA · v. (4.207)

Given a cylindrical decomposition, our velocity is:

r = zẑ + rr̂
ṙ = żẑ + r ˙̂r + ṙr̂
= żẑ + r̂ (ṙ + rθ̇i)

= żẑ + ṙr̂ + rθ̇θ̂.

(4.208)

The specific potential for the problem, using (z, θ, r) coordinates is:

A = θ̂
f (r)
r
. (4.209)
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Therefore the Lagrangian is:

L =
1
2

m
(
ż2 + ṙ2 + (rθ̇)2)

− e
f (r)
r

rθ̇. (4.210)

so the equations of motion for the z, θ, and r coordinates (respectively)
are:

(mż)′ = 0

(mr2θ̇ − e f (r))′ = 0

(mṙ)′ = mrθ̇2 − e f ′(r)θ̇.

(4.211)

From second of these equations we have:

mr2θ̇ − e f (r) = K. (4.212)

In particular this is true for r = r(t0) = r0, so

mr0
2θ̇0 − e f (r0) = K. (4.213)

Equating K’s and rearranging, we have

θ̇(t) −
(r0

r

)2
θ̇(t0) =

e
mr2 ( f (r) − f (r0)) . (4.214)

Now, the problem is to show that

θ̇ =
e

mr2 ( f (r) − f (r0)) . (4.215)

I do not see how that follows? Ah, I see, the velocity is in the (r, z) plane
for t = 0, so θ̇(t0) = 0.

(ii). The potential for this problem is

A = rg(z)θ̂. (4.216)

Therefore the Lagrangian is:

L =
1
2

m
(
ż2 + ṙ2 + (rθ̇)2

)
− er2g(z)θ̇. (4.217)

Taking θ, r, z derivatives:

0 =
(
mr2θ̇ − er2g(z)

)′
(4.218)
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mrθ̇2 − 2erg(z)θ̇ = (mṙ)′ (4.219)

−er2g′θ̇ = (mż)′. (4.220)

One constant of motion is:

mr2θ̇ − er2g(z) = K. (4.221)

Looking at Tong’s solutions another is the Hamiltonian.

θ̇ = (e/m)g(z) + (r0/r)2 (θ̇0 − (e/m)g(z0)) . (4.222)

With θ̇0 = 2eg(z0)/m this is:

θ̇ =
e
m

(
g(z) +

(r0

r

)2
g(z0)

)
. (4.223)

Answer for Exercise 4.13

Jackson gives a tip to use the convective derivative (yet another name
for the chain rule), and using this in the Euler-Lagrange equations we
have

∇L =
d
dt
∇uL =

(
∂

∂t
+ u ·∇

)
ea
∂L
∂ẋa . (4.225)

where {ea} is the spatial basis. The first order of business is calculating the
gradient and conjugate momenta. For the latter we have

ea
∂L
∂ẋa = ea

(
−mc2γ

1
2

(−2)ẋa/c2 +
e
c

Aa
)

= mγu +
e
c

A

≡ p +
e
c

A.

(4.226)

Applying the convective derivative we have

d
dt

ea
∂L
∂ẋa =

dp
dt
+

e
c
∂A
∂t
+

e
c

u ·∇A. (4.227)
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For the gradient we have

ea
∂L
∂xa = e

(
1
c

ẋb
∇Ab −∇ϕ

)
. (4.228)

Rearranging eq. (4.225) for this Lagrangian we have

dp
dt
= e

(
−∇ϕ −

1
c
∂A
∂t
−

1
c

u ·∇A +
1
c

ẋb
∇Ab

)
. (4.229)

The first two terms are the electric field

E ≡ −∇ϕ −
1
c
∂A
∂t
. (4.230)

So it remains to be shown that the remaining two equal (u/c) × B =
(u/c)× (∇×A). Using the Hestenes notation using primes to denote what
the gradient is operating on, we have

ẋb
∇Ab − u ·∇A = ∇′u ·A′ − u ·∇A

= −u · (∇∧A)

=
1
2
((∇∧A)u − u(∇∧A))

=
I
2
((∇ ×A)u − u(∇ ×A))

= −I(u∧B)

= −II(u ×B)

= u ×B.

(4.231)

I have used the geometric algebra identities I am familiar with to regroup
things, but this last bit can likely be done with index manipulation too.
The exercise is complete, and we have from the Lagrangian

dp
dt
= e

(
E +

1
c

u ×B
)
. (4.232)

Answer for Exercise 4.14

Let’s put the electric field in the x̂ direction (θ = 0), so that the potential
acting on charge i is given implicitly by

Fi = qiEx̂ = −∇ϕi = −x̂
dϕi

dx
. (4.234)
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or

ϕi = −qi(xi − x0). (4.235)

Our positions, and velocities are

r1,2 = ±
r
2

x̂ex̂ŷθ. (4.236a)

dr1,2

dt
= ±

r
2
θ̇ŷex̂ŷθ. (4.236b)

Our kinetic energy is

T =
1
2

∑
i

mi

(
dri

dt

)2

=
1
2

∑
i

mi

( r
2

)2
θ̇2

=
1
2

(m1 +m2)
( r
2

)2
θ̇2.

(4.237)

For our potential energies we require the x component of the position
vectors, which are

xi = ri · x̂

= ±

〈 r
2

x̂ex̂ŷθx̂
〉

= ±
r
2

cos θ.

(4.238)

Our potentials are

ϕ1 = −q1E
r
2

cos θ + ϕ0. (4.239a)

ϕ2 = q2E
r
2

cos θ + ϕ0. (4.239b)

Our system Lagrangian, after dropping the constant reference potential
that doesn’t effect the dynamics is

L =
1
2

(m1 +m2)
( r
2

)2
θ̇2 + q1E

r
2

cos θ − q2E
r
2

cos θ. (4.240)
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For this problem we had two equal masses and equal magnitude charges
m = m1 = m2 and q = q1 = −q2

L =
1
4

mr2θ̇2 + qrE cos θ. (4.241)

pθ =
∂L
∂θ̇
=

1
2

mr2θ̇. (4.242)

∂L
∂θ
= −qrE sin θ =

dpθ
dt

=
1
2

mr2θ̈.

(4.243)

Putting these together, with p = qr, we have the result stated in the text

Fθ =
dpθ
dt
= −pE sin θ. (4.244)





5C O N S T R A I N T S .

Exercise 5.1 Pendulum on a rotating wheel. ([24] p5.)

Lagrangian and equations of motion for pendulum with pivot moving on
a circle.

Exercise 5.2 Two circular constrained paths. ([24] p7)

Masses connected by a spring.

Exercise 5.3 Masses on string, one dangling. ([24] p8)

Two particles connected by string, one on table, the other dangling.

Exercise 5.4 Pendulum with support moving in circle. ([16] p1.3.)

Attempting a mechanics problem from Landau I get a different answer.
I wrote up my solution to see if I can spot either where I went wrong,
or demonstrate the error, and then posted it to physicsforums . I wasn’t
wrong, but the text wasn’t either. The complete result is given below,
where the problem (§1 problem 3a) of [16] is to calculate the Lagrangian
of a pendulum where the point of support is moving in a circle (figure and
full text for problem in this Google books reference)

Exercise 5.5 Pendulum with support moving in line. ([16] p1.3b.)

This problem like the last, but with the point of suspension moving in
a horizontal line x = a cos γt.

Exercise 5.6 Pendulum with support moving in vertical line. ([16] p1.3c.)

As above, but with the support point moving up and down as a cos γt.

Exercise 5.7 Coupled hoop and spring system.

Find the Langrangian for the system sketched in fig. 5.1, where one
mass is connected between two springs to a bar. That bar moves up and
down as forced by the motion of the other mass along a immovable hoop.

https://www.physicsforums.com/threads/typo-in-landau-mechanics-pendulum-problem.620775/
https://goo.gl/IjqeO
https://goo.gl/IjqeO
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Figure 5.1: Coupled hoop and spring system.

5.1 solutions .

Answer for Exercise 5.1

Express the position of the pivot point on the wheel with:

q1 = Re−iωt. (5.1)

The position of the mass is then:

q2 = Re−iωt − ileiθ. (5.2)

The velocity of the mass is then:

q̇2 = −i(ω̇t +ω)Re−iωt + lθ̇eiθ. (5.3)
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Let ωt = α, we have a Kinetic energy of:

1
2

m|q̇2|
2 =

1
2

m
∣∣∣−iα̇Re−iωt + lθ̇eiθ

∣∣∣2
=

1
2

m
(
R2α̇2 + l2θ̇2 + 2Rlα̇θ̇Re

(
−ie−iα−iθ

))
=

1
2

m
(
R2α̇2 + l2θ̇2 + 2Rlα̇θ̇ cos(−α − θ − π/2)

)
=

1
2

m
(
R2α̇2 + l2θ̇2 − 2Rlα̇θ̇ sin(α + θ)

)
.

(5.4)

The potential energy in the Lagrangian does not depend on the position
of the pivot, only the angle from vertical, so it is thus:

V = mgl(1 − cos θ)

V ′ = 0 −mgl cos θ.
(5.5)

Depending on whether one measures the potential up from the lowest
potential point, or measures decreasing potential from zero at the horizon-
tal. Either way, combining the kinetic and potential terms, and dividing
through by ml2 we have the Lagrangian of:

L =
1
2

(
(R/l)2α̇2 + θ̇2 − 2(R/l)α̇θ̇ sin(α + θ)

)
+ (g/l) cos θ. (5.6)

Digression. Reduction of the Lagrangian. Now, in Tong’s solutions for
this problem (which he emailed me since I questioned problem 2), he had
α̇ = ω = constant, which allows the Lagrangian above to be expressed as:

L =
1
2

(
(R/l)2ω2 + θ̇2

)
+

d
dt

((R/l) cos(ωt+ θ))+ω(R/l) sin(ωt+ θ)+ (g/l) cos θ.

(5.7)

and he made the surprising step of removing that cosine term completely,
with a statement that it would not effect the dynamics because it was a
time derivative. That turns out to be a generalized result, but I had to
prove it to myself. I also asked around on PF about this, and it was not
any named property of Lagrangians, but was a theorem in some texts. First
consider the simple example of a Lagrangian with such a cosine derivative
term added to it:

L′ = L +
d
dt

A cos(ωt + θ). (5.8)
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and compute the equations of motion from this:

0 =
∂L′

∂θ
−

d
dt

(
∂L′

∂θ̇

)
=
∂L
∂θ
−

d
dt

(
∂L
∂θ̇

)
+
∂

∂θ

d
dt

A cos(ωt + θ) −
d
dt

∂

∂θ̇

d
dt

A cos(ωt + θ)

=
∂L
∂θ
−

d
dt

(
∂L
∂θ̇

)
−
∂

∂θ
Aθ̇ sin(ωt + θ) +

d
dt

∂

∂θ̇
Aθ̇ sin(ωt + θ)

=
∂L
∂θ
−

d
dt

(
∂L
∂θ̇

)
−
∂

∂θ
Aθ̇ sin(ωt + θ) +

d
dt

A sin(ωt + θ)

=
∂L
∂θ
−

d
dt

(
∂L
∂θ̇

)
− Aθ̇ cos(ωt + θ) + Aθ̇ cos(ωt + θ)

=
∂L
∂θ
−

d
dt

(
∂L
∂θ̇

)
.

(5.9)

Now consider the general case, altering a Lagrangian by adding the time
derivative of a positional dependent function:

L′ = L +
d f
dt
. (5.10)

and compute the equations of motion from this more generally altered
function:

0 =
∂L′

∂qi −
d
dt

(
∂L′

∂qi

)
=
∂L
∂qi −

d
dt

(
∂L
∂qi

)
+

∂

∂qi

d f
dt
−

d
dt

∂

∂qi

d f
dt
.

(5.11)

Now, if f (q j, q̇ j, t) = f (q j, t) we have:

d f
dt
=

∑ ∂ f
∂q j q̇ j +

∂ f
∂t
. (5.12)

We want to see if the following sums to zero:

∂

∂qi

d f
dt
−

d
dt

∂

∂qi

d f
dt
=

∑ ∂

∂qi

∂ f
∂q j

(
q̇ j +

∂ f
∂t

)
−

d
dt

∂

∂q̇i

(∑ ∂ f
∂q j q̇ j +

∂ f
∂t

)
=

∑ ∂2 f
∂qi∂q j q̇ j +

∂2 f
∂qi∂t

−
d
dt

(∑
δi j

∂ f
∂q j +

∂2 f
∂q̇i∂t

)
=

∑ ∂2 f
∂qi∂q j q̇ j +

∂2 f
∂qi∂t

−
d
dt
∂ f
∂qi

=
∑ ∂2 f

∂qi∂q j q̇ j +
∂2 f
∂qi∂t

−
∑

q̇ j ∂2 f
∂q j∂qi −

∂2 f
∂t∂qi .
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(5.13)

Therefore provided the function is sufficiently continuous that all mixed
pairs of mixed partials are equal, this is zero, and the d f /dt addition does
not change the equations of motion that the Lagrangian generates.

Back to the problem. Now, return to the Lagrangian for this problem,
and compute the equations of motion. Writing µ = R/l, we have:

L =
1
2

(
µ2α̇2 + θ̇2 − 2µα̇θ̇ sin(α + θ)

)
+ (g/l) cos θ. (5.14)

0 =
d
dt
∂−

∂θ̇

∂L
∂θ

=
d
dt

(θ̇ − µα̇ sin(α + θ)) + µα̇θ̇ cos(α + θ) + (g/l) sin θ

= θ̈ − µα̈ sin(α + θ) − µα̇ cos(α + θ)(α̇ + θ̇) + µα̇θ̇ cos(α + θ) + (g/l) sin θ.
(5.15)

Sure enough we have a cancellation of terms for constant ω. In general
we are left with:

θ̈ = µα̈ sin(α + θ) + µα̇2 cos(α + θ) − (g/l) sin θ. (5.16)

This expands to

θ̈ = µ(ω̈t+ 2ω̇) sin(ωt+ θ)+ µ(ω̇t+ω)2 cos(ωt+ θ)− (g/l) sin θ. (5.17)

For constant ω, this is just:

θ̈ = µω2 cos(ωt + θ) − (g/l) sin θ. (5.18)

Answer for Exercise 5.2



66 constraints .

With i = e1 ∧ e2, the paths, (squared) speeds and separation of the
masses can be written:

q1 = e1R1eiθ

q2 = ce3 + e1
(
ai + R2eiα

)
|q̇1|

2 = (R1θ̇)
2

|q̇2|
2 = (R2α̇)

2

d2 = (q1 − q2)
2

= c2 +
∣∣∣ai + R2eiα − R1eiθ

∣∣∣2
= c2 + a2 + R2

2 + R1
2 + ai

(
R2e−iα − R1e−iθ − R2eiα + R1eiθ

)
− R1R2

(
eiαe−iθ + e−iαeiθ

)
= c2 + a2 + R2

2 + R1
2 + 2a(R2 sinα − R1 sin θ) − 2R1R2 cos(α − θ).

(5.19)

With the given potential:

V =
1
2
ω2d2. (5.20)

We have the following Lagrangian (where the constant terms in the sepa-
ration have been dropped) :

L =
1
2

m1(R1θ̇)2 +
1
2

m2(R2α̇)2

+ω2 (a(R2 sinα − R1 sin θ) − R1R2 cos(α − θ)) .
(5.21)

The last part of the problem was to show that there is an additional con-
served quantity when a = 0. The Lagrangian in that case is:

L =
1
2

m1 (R1θ̇)
2
+

1
2

m2 (R2α̇)
2
− R1R2ω

2 cos(α − θ). (5.22)

Evaluating the Lagrange equations, for this condition one has:

−R1R2ω
2 sin(α − θ) =

(
m1R1

2θ̇
)′

R1R2ω
2 sin(α − θ) =

(
m2R2

2α̇
)′
.

(5.23)

Summing these one has:(
m1R1

2θ̇
)′
+

(
m2R2

2α̇
)′
= 0. (5.24)
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Therefore the additional conserved quantity is:

m1R1
2θ̇ +m2R2

2α̇ = K. (5.25)

FIXME: Is there a way to identify such a conserved quantity without eval-
uating the derivatives? Noether’s?

Spring Potential? Small digression. Let us take the gradient of this
spring potential and see if this matches our expectations for a −kx spring
force.

−∇dV = −ω2dd̂ = −ω2d. (5.26)

Okay, this works, ω2 = k, which just expresses the positiveness of this
constant.

Answer for Exercise 5.3

Part (i). The second particle hangs straight down (also Goldstein prob-
lem 9, also example 2.3 in Hestenes NFCM.) First mass m1 on the table,
and second, hanging. The kinetic term for the mass on the table was calcu-
lated above in problem 7, so adding that and the KE term for the dangling
mass we have:

K =
1
2

m1
(
ṙ2 + (rψ̇)2

)
+

1
2

m2ṙ2. (5.27)

Our potential, measuring down is:

V = 0 −m2g(l − r). (5.28)

Combining the KE and PE terms and dropping constant terms we have:

L =
1
2

m1
(
ṙ2 + (rψ̇)2

)
+

1
2

m2ṙ2 −m2gr. (5.29)

The ignorable coordinate is ψ since it has only derivatives in the La-
grangian. EOMs are:

0 =
(
m1r2ψ̇

)′
m1rψ̇2 −m2g = ((m1 +m2)ṙ)′ = Mr̈.

(5.30)

The first equation here is a conservation of angular momentum statement,
whereas the second equation has all the force terms that lie along the string
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(radially above the table, and downwards below). We see the rψ̇2 = rω2

angular acceleration component when calculating radial and non-radial
component of acceleration. Goldstein asks here for the equations of mo-
tion as a second order equation, and to integrate once. We can go all the
way, but only implicitly, as we can write t = t(r), using ṙ as an integrating
factor:

m1r2ψ̇ = m1r0
2ω0 (5.31a)

ψ̇ =
(r0

r

)2
ω0 (5.31b)

m1
r0

4

r3 ω0
2 −m2g = Mr̈ (5.31c)

m1ṙ
r0

4

r3 ω0
2 −m2gṙ = Mṙr̈

−m1r0
2
(

1
r2

)′
ω0

2 −m2gṙ = M
(
ṙ2

)′
K −m1r0

4 1
r2ω0

2 −m2gr = Mṙ2

(5.31d)

K = m1r0
2ω0

2 +m2gr0 +Mṙ2
0. (5.31e)

m1ω0
2r0

2
(
1 −

r0
2

r2

)
+Mṙ2

0 −m2g (r − r0) = Mṙ2 (5.31f)

t =
∫

dr√
m1

M
ω02r02

(
1 −

r02

r2

)
+ ṙ2

0 −
m2

M
g (r − r0)

. (5.31g)
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We can also write ψ = ψ(r), but that does not look like it is any easier to
solve:

ψ̇ =
dψ
dr

dr
dt

=⇒

dψ
dr
=

dt
dr

(r0

r

)2
ω0

ψ =

∫
r0

2ω0dr

r2

√
m1

M
ω02r02

(
1 −

r02

r2

)
+ ṙ2

0 −
m2

M
g (r − r0)

.

(5.32)

(ii). Motion of dangling mass not restricted to straight down. This part
of the problem treats the dangling mass as a spherical pendulum. If θ is
the angle from the vertical and α is the angle in the horizontal plane of
motion, we can describe the coordinate of the dangler (pointing ẑ = ĝ
downwards), as:

q2 = R(sin θ cosα, sin θ sinα, cos θ). (5.33)

and the velocity as:

q̇2 = Ṙ(sin θ cosα, sin θ sinα, cos θ)

+ R(cos θ cosα, cos θ sinα,− sin θ)θ̇

+ R(− sin θ sinα, sin θ cosα, 0)α̇.

(5.34)

and can then attempt to square this mess to get the squared speed that we
need for the kinetic energy term of the Lagrangian. Instead, lets choose
an alternate parametrization:

q2 = R cos θẑ + e1R sin θeiα

q̇2 = (Ṙ cos θ − R sin θθ̇) ẑ + e1eiα (Ṙ sin θ + R cos θθ̇ + R sin θiα̇)

|q̇2|
2 = (Ṙ cos θ − R sin θθ̇)2

+ (Ṙ sin θ + R cos θθ̇)2
+ (R sin θα̇)2

= Ṙ2 + (Rθ̇)2 + (R sin θα̇)2.

(5.35)

Our potential is

V = 0 −m2g(l − r) cos θ, (5.36)
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so, the Lagrangian is therefore:

L =
1
2

m2

(
ṙ2 + (l − r)2

(
θ̇2 + sin θα̇

)2
)
+

1
2

m1
(
ṙ2 + (rψ̇)2)

+m2g(l− r) cos θ.

(5.37)

Answer for Exercise 5.4

The coordinates of the mass are

p = aeiγt + ileiϕ, (5.38)

or in coordinates

p = (a cos γt + l sin ϕ,−a sin γt + l cos ϕ). (5.39)

The velocity is

ṗ = (−aγ sin γt + lϕ̇ cos ϕ,−aγ cos γt − lϕ̇ sin ϕ), (5.40)

and in the square

ṗ2 = a2γ2 + l2ϕ̇2 − 2aγϕ̇ sin γt cos ϕ + 2aγlϕ̇ cos γt sin ϕ

= a2γ2 + l2ϕ̇2 + 2aγlϕ̇ sin(γt − ϕ).
(5.41)

For the potential our height above the minimum is

h = 2a+ l− a(1− cos γt)− l cos ϕ = a(1+ cos γt)+ l(1− cos ϕ). (5.42)

In the potential the total derivative cos γt can be dropped, as can all the
constant terms, leaving

U = −mgl cos ϕ, (5.43)

so by the above the Lagrangian should be (after also dropping the constant
term ma2γ2/2

L =
1
2

m
(
l2ϕ̇2 + 2aγlϕ̇ sin(γt − ϕ)

)
+mgl cos ϕ. (5.44)

This is almost the stated value in the text

L =
1
2

m
(
l2ϕ̇2 + 2aγ2l sin(γt − ϕ)

)
+mgl cos ϕ. (5.45)
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We have what appears to be an innocent looking typo (text putting in a
γ instead of a ϕ̇), but the subsequent text also didn’t make sense. That
referred to the omission of the total derivative mlaγ cos(ϕ − γt), which
isn’t even a term that I have in my result.

In the physicsforums response it was cleverly pointed out by Dickfore
that eq. (5.44) can be recast into a total derivative

malγϕ̇ sin(γt − ϕ)

= malγ(ϕ̇ − γ) sin(γt − ϕ) +malγ2 sin(γt − ϕ)

=
d
dt

(malγ cos(γt − ϕ)) +malγ2 sin(γt − ϕ),

(5.46)

which resolves the conundrum!

Answer for Exercise 5.5

Our mass point has coordinates

p = a cos γt + lie−iϕ

= a cos γt + li(cos ϕ − i sin ϕ)

= (a cos γt + l sin ϕ, l cos ϕ),

(5.47)

so that the velocity is

ṗ = (−aγ sin γt + lϕ̇ cos ϕ,−lϕ̇ sin ϕ). (5.48)

Our squared velocity is

ṗ2 = a2γ2 sin2 γt + l2ϕ̇2 − 2aγlϕ̇ sin γt cos ϕ

=
1
2

a2γ2 d
dt

(
t −

1
2γ

sin 2γt
)
+ l2ϕ̇2 − aγlϕ̇(sin(γt + ϕ) + sin(γt − ϕ)).

(5.49)

In the last term, we can reduce the sum of sines, finding a total derivative
term and a remainder as in the previous problem. That is

ϕ̇(sin(γt + ϕ) + sin(γt − ϕ))

= (ϕ̇ + γ) sin(γt + ϕ) − γ sin(γt + ϕ) + (ϕ̇ − γ) sin(γt − ϕ) + γ sin(γt − ϕ)

=
d
dt

(− cos(γt + ϕ) + cos(γt − ϕ)) + γ(sin(γt − ϕ) − sin(γt + ϕ))

=
d
dt

(− cos(γt + ϕ) + cos(γt − ϕ)) − 2γ cos γt sin ϕ.
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(5.50)

Putting all the pieces together and dropping the total derivatives we have
the stated solution

L =
1
2

m
(
l2ϕ̇2 + 2aγ2l cos γt sin ϕ

)
+mgl cos ϕ. (5.51)

Answer for Exercise 5.6

Our mass point is

p = a cos γt + leiϕ. (5.52)

with velocity

ṗ = −aγ sin γt + liϕ̇eiϕ

= (−aγ sin γt − lϕ̇ sin ϕ, lϕ̇ cos ϕ).
(5.53)

In the square this is

|ṗ|2 = a2γ2 sin2 γt + l2ϕ̇2 sin2 ϕ + 2alγϕ̇ sin γt sin ϕ. (5.54)

Having done the simplification in the last problem in a complicated way,
let’s try it, knowing what our answer is

ϕ̇ sin γt sin ϕ = ϕ̇ sin γt sin ϕ − γ cos γt cos ϕ + γ cos γt cos ϕ

= sin γt
d
dt

(− cos ϕ) +
(

d
dt

(− sin γt)
)

cos ϕ + γ cos γt cos ϕ

= γ cos γt cos ϕ −
d
dt

(sin γt cos ϕ) .

(5.55)

With the height of the particle above the lowest point given by

h = a + l − a cos γt − l cos ϕ, (5.56)

we can write the Lagrangian immediately (dropping all the total derivative
terms)

L =
1
2

m
(
l2ϕ̇2 sin2 ϕ + 2alγ2 cos γt cos ϕ

)
+mgl cos ϕ. (5.57)
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Answer for Exercise 5.7

The Lagrangian can be written by inspection. Writing x = x1, and x2 =

R sin θ, we have

L =
1
2

m1 ẋ2+
1
2

m2R2θ̇2−
1
2

k1x2−
1
2

k2(L+R sin θ− x)2−m1gx−m2g(L+R sin θ).

(5.58)

Evaluation of the Euler-Lagrange equations gives

m1 ẍ = −k1x + k2(L + R sin θ − x) −m1g

m2R2θ̈ = −k2(L + R sin θ − x)R cos θ −m2gR cos θ,
(5.59)

or

ẍ = −x
k1 + k2

m1
+

k2R sin θ
m1

− g +
k2L
m1

θ̈ = −
1
R

(
k2

m2
(L + R sin θ − x) + g

)
cos θ.

(5.60)

Just like any other coupled pendulum system, this one is non-linear. There
is no obvious way to solve this in closed form, but we could determine a
solution in the neighborhood of a point (x, θ) = (x0, θ0). Let us switch
our dynamical variables to ones that express the deviation from the initial
point δx = x − x0, and δθ = θ − θ0, with u = (δx)′, and v = (δθ)′. Our
system then takes the form

u′ = f (x, θ) = −x
k1 + k2

m1
+

k2R sin θ
m1

− g +
k2L
m1

v′ = g(x, θ) = −
1
R

(
k2

m2
(L + R sin θ − x) + g

)
cos θ

(δx)′ = u

(δθ)′ = v.

(5.61)
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We can use a first order Taylor approximation of the form f (x, θ) =
f (x0, θ0)+ fx(x0, θ0)(δx)+ fθ(x0, θ0)(δθ). So, to first order, our system has
the approximation

u′ = −x0
k1 + k2

m1
+

k2R sin θ0

m1

− g +
k2L
m1
− (δx)

k1 + k2

m1
+

k2R cos θ0

m1
(δθ)

v′ = −
1
R

(
k2

m2
(L + R sin θ0 − x0) + g

)
cos θ0 +

k2 cos θ0

m2R
(δx)

−
1
R

(
k2

m2
((L − x0) sin θ0 + R) + g sin θ0

)
(δθ)

(δx)′ = u

(δθ)′ = v.

(5.62)

This would be tidier in matrix form with x = (u, v, δx, δθ)

x′ =


−x0

k1+k2
m1
+

k2R sin θ0
m1

− g + k2L
m1

− 1
R

(
k2
m2

(L + R sin θ0 − x0) + g
)

cos θ0

0

0



+


0 0 −

k1+k2
m1

k2R cos θ0
m1

0 0 k2 cos θ0
m2R − 1

R

(
k2
m2

((L − x0) sin θ0 + R) + g sin θ0
)

1 0 0 0

0 1 0 0


x.

(5.63)

This reduces the problem to the solutions of first order equations of the
form

x′ = a +

0 A

I 0


x = a +Bx,

(5.64)

where a, and A are constant matrices. Such a matrix equation has the
solution

x = eBtx0 + (eBt − I)B−1a, (5.65)
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but the zeros in B should allow the exponential and inverse to be calcu-
lated with less work. That inverse is readily verified to be

B−1 =

 0 I

A−1 0

 . (5.66)

It is also not hard to show that

B2n =

An 0

0 An


B2n+1 =

 0 An+1

An 0

 .
(5.67)

Together this allows for the power series expansion

eBt =

 cosh(t
√

A) sinh(t
√

A)

sinh(t
√

A) 1√
A

cosh(t
√

A)

 . (5.68)

All of the remaining sub matrix expansions should be straightforward to
calculate provided the eigenvalues and vectors of A are calculated. Specif-
ically, suppose that we have

A = U

λ1 0

0 λ2

 U−1. (5.69)

Then all the perhaps non-obvious functions of matrices expand to just

A−1 = U

λ−1
1 0

0 λ−1
2

 U−1

√
A = U


√
λ1 0

0
√
λ2

 U−1

cosh(t
√

A) = U

cosh(t
√
λ1) 0

0 cosh(t
√
λ2)

 U−1

sinh(t
√

A) = U

sinh(t
√
λ1) 0

0 sinh(t
√
λ2)

 U−1

sinh(t
√

A)
1
√

A
= U

sinh(t
√
λ1)/

√
λ1 0

0 sinh(t
√
λ2)/

√
λ2

 U−1.

(5.70)
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6.1 overview.

The STA and geometric algebra ideas used here are not complete to learn
from in isolation. The reader is referred to [2] for a more complete expo-
sition of both STA and geometric algebra.

6.1.1 Conventions.

Definition 6.1: Index conventions.

Latin indexes i, j, k, r, s, t, · · · are used to designate values in the range
{1, 2, 3}. Greek indexes are α, β, µ, ν, · · · are used for indexes of space-
time quantities {0, 1, 2, 3}. The Einstein convention of implied sum-
mation for mixed upper and lower Greek indexes will be used, for
example

xαxα ≡
3∑
α=0

xαxα.

6.1.2 Space Time Algebra (STA.)

In the geometric algebra literature, the Dirac algebra of quantum field
theory has been rebranded Space Time Algebra (STA). The differences
between STA and the Dirac theory that uses matrices (γµ) are as follows

• STA completely omits any representation of the Dirac basis vectors
γµ. In particular, any possible matrix representation is irrelevant.

• STA provides a rich set of fundamental operations (grade selection,
generalized dot and wedge products for multivector elements, rota-
tion and reflection operations, ...)
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• Matrix trace, and commutator and anticommutator operations are
nowhere to be found in STA, as geometrically grounded equivalents
are available instead.

• The “slashed” quantities from Dirac theory, such as �p = γµpµ are
nothing more than vectors in their entirety in STA (where the basis
is no longer implicit, as is the case for coordinates.)

Our basis vectors have the following properties.

Definition 6.2: Standard basis.

Let the four-vector standard basis be designated {γ0, γ1, γ2, γ3}, where
the basis vectors satisfy γ2

0 = −γ
2
i = 1, and γα · γβ = 0,∀α , β.

Exercise 6.1 Commutator properties of the STA basis.

In Dirac theory, the commutator properties of the Dirac matrices is con-
sidered fundamental, namely{

γµ, γν
}
= 2ηµν.

Show that this follows from the axiomatic assumptions of geometric al-
gebra, and describe how the dot and wedge products are related to the
anticommutator and commutator products of Dirac theory.

Definition 6.3: Pseudoscalar.

The pseudoscalar for the space is denoted I = γ0γ1γ2γ3.

Exercise 6.2 Pseudoscalar.

Show that the STA pseudoscalar I defined by definition 6.2 satisfies

Ĩ = I,

where the tilde operator designates reversion. Also show that I has the
properties of an imaginary number

I2 = −1.

Finally, show that, unlike the spatial pseudoscalar that commutes with all
grades, I anticommutes with any vector or trivector, and commutes with
any bivector.



6.1 overview. 79

Definition 6.4: Reciprocal basis.

The reciprocal basis
{
γ0, γ1, γ2, γ3

}
is defined , such that the property

γα · γβ = δ
α
β holds.

Observe that, γ0 = γ0 and γi = −γi.

Theorem 6.1: Coordinates.

Coordinates are defined in terms of dot products with the standard
basis, or reciprocal basis

xα = x · γα

xα = x · γα,

Proof. Suppose that a coordinate representation of the following form is
assumed

x = xαγα = xβγβ. (6.12)

We wish to determine the representation of the xα or xβ coordinates in
terms of x and the basis elements. Taking the dot product with any stan-
dard basis element, we find

x · γµ = (xβγβ) · γµ
= xβδβµ
= xµ,

(6.13)

as claimed. Similarly, dotting with a reciprocal frame vector, we find

x · γµ = (xβγβ) · γµ

= xβδβµ

= xµ.

(6.14)

□

Observe that raising or lowering the index of a spatial index toggles the
sign of a coordinate, but timelike indexes are left unchanged.

x0 = x0

xi = −xi
(6.15)
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Definition 6.5: Spacetime gradient.

The spacetime gradient operator is

∇ = γµ∂µ = γν∂
ν,

where

∂µ =
∂

∂xµ
,

and

∂µ =
∂

∂xµ
.

This definition of gradient is consistent with the Dirac gradient (some-
times denoted �∂).

Definition 6.6: Timelike and spacelike components of a four-vector.

Given a four vector x = γµxµ, that would be designated xµ =
{
x0, x

}
in conventional special relativity, we write

x0 = x · γ0,

and

x = x ∧ γ0,

or

x = (x0 + x)γ0.

The spacetime split of a four-vector x is relative to the frame. In the rela-
tivistic lingo, one would say that it is “observer dependent”, as the same
operations with γ0

′, the timelike basis vector for a different frame, would
yield a different set of coordinates.

While the dot and wedge products above provide an effective mecha-
nism to split a four vector into a set of timelike and spacelike quantities,
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the spatial component of a vector has a bivector representation in STA.
Consider the following coordinate expansion of a spatial vector

x = x ∧ γ0

= (xµγµ) ∧ γ0

=

3∑
k=1

xkγkγ0.

(6.16)

Definition 6.7: Spatial basis.

We designate ei = γiγ0 as the standard basis vectors for R3.

In the literature, this bivector representation of the spatial basis may be
designated σi = γiγ0, as these bivectors have the properties of the Pauli
matrices σi. Because this book a number of purely non-relativistic appli-
cations too, the Pauli notation will not be used here.

Exercise 6.3 Orthonormality of the spatial basis.

Show that the spatial basis {e1, e2, e3}, defined by definition 6.7, is or-
thonormal.

Exercise 6.4 Spatial pseudoscalar.

Show that the STA pseudoscalar I = γ0γ1γ2γ3 equals the spatial pseu-
doscalar I = e1e2e3.

Exercise 6.5 Characteristics of the Pauli matrices.

The Pauli matrices obey the following anticommutation relations:

{σa, σb} = 2δab, (6.19)

and commutation relations:

[σa, σb] = 2iϵabc σc, (6.20)

Show how these relate to the geometric algebra dot and wedge products,
and determine the geometric algebra representation of the imaginary i
above.
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6.2 solutions .

Answer for Exercise 6.1

The anticommutator is defined as symmetric sum of products{
γµ, γν

}
≡ γµγν + γνγµ, (6.1)

but this is just twice the dot product in its geometric algebra form ab =
(ab + ba)/2. Observe that the properties of the basis vectors defined in
definition 6.2 may be summarized as

γµ · γν = ηµν, (6.2)

where ηµν = diag(+,−,−,−) =
[ 1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

]
is the conventional metric

tensor. This means

γµ · γν = ηµν = 2
{
γµ, γν

}
, (6.3)

as claimed.
Similarly, observe that the commutator, defined as the antisymmetric

sum of products

[γµ, γν] ≡ γµγν − γνγµ, (6.4)

is twice the wedge product a ∧ b = (ab − ba)/2. This provides geometric
identifications for the respective anti-commutator and commutator prod-
ucts respectively{

γµ, γν
}
= 2γµ · γν

[γµ, γν] = 2γµ ∧ γν,
(6.5)

Answer for Exercise 6.2

Since γαγβ = −γβγα for any α , β , any permutation of the factors of I
changes the sign once. In particular

I = γ0γ1γ2γ3

= −γ1γ2γ3γ0

= −γ2γ3γ1γ0

= +γ3γ2γ1γ0 = Ĩ.

(6.6)



6.2 solutions . 83

Using this, we have

I2 = I Ĩ

= (γ0γ1γ2γ3)(γ3γ2γ1γ0)

= (γ0)
2 (γ1)

2 (γ2)
2 (γ3)

2

= (+1)(−1)(−1)(−1)

= −1.

(6.7)

To illustrate the anticommutation property with any vector basis element,
consider the following two examples:

Iγ0 = γ0γ1γ2γ3γ0

= −γ0γ0γ1γ2γ3

= −γ0I,

(6.8)

Iγ2 = γ0γ1γ2γ3γ2

= −γ0γ1γ2γ2γ3

= −γ2γ0γ1γ2γ3

= −γ2I.

(6.9)

A total of three sign swaps is required to “percolate” any given γα through
the factors of I, resulting in an overall sign change of −1.

For any bivector basis element α , β

Iγαγβ = −γαIγβ
= +γαγβI.

(6.10)

Similarly for any trivector basis element α , β , σ

Iγαγβγσ = −γαIγβγσ
= +γαγβIγσ
= −γαγβγσI.

(6.11)

Answer for Exercise 6.3

ei · e j =
〈
γiγ0γ jγ0

〉
= −

〈
γiγ j

〉
= −γi · γ j.

(6.17)
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This is zero for all i , j, and unity for any i = j.

Answer for Exercise 6.4

The spatial pseudoscalar, expanded in terms of the STA basis vectors,
is

I = e1e2e3

= (γ1γ0) (γ2γ0) (γ3γ0)

= (γ1γ0) γ2 (γ0γ3) γ0

= (−γ0γ1) γ2 (−γ3γ0) γ0

= γ0γ1γ2γ3 (γ0γ0)

= γ0γ1γ2γ3,

(6.18)

as claimed.
6.3 lorentz transformations in sta .

6.3.1 Motivation.

One of the remarkable features of geometric algebra are the complex ex-
ponential sandwiches that can be used to encode rotations in any dimen-
sion, or rotation like operations like Lorentz transformations in Minkowski
spaces. In this post, we show some examples that unpack the geometric
algebra expressions for Lorentz transformations operations of this sort. In
particular, we will look at the exponential sandwich operations for spatial
rotations and Lorentz boosts in the Dirac algebra, known as Space Time
Algebra (STA) in geometric algebra circles, and demonstrate that these
sandwiches do have the desired effects.

6.3.2 Lorentz transformations.

Theorem 6.2: Lorentz transformation.

The transformation

x→ eBxe−B = x′,
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where B = a∧ b, is an STA 2-blade for any two linearly independent
four-vectors a, b, is a norm preserving, that is

x2 = x′2.

Proof. The proof is disturbingly trivial in this geometric algebra form

(6.21)

x′2 = eBxe−BeBxe−B

= eBxxe−B

= x2eBe−B

= x2.

□

In particular, observe that we did not need to construct the usual infinites-
imal representations of rotation and boost transformation matrices or ten-
sors in order to demonstrate that we have spacetime invariance for the
transformations. The rough idea of such a transformation is that the ex-
ponential commutes with components of the four-vector that lie off the
spacetime plane specified by the bivector B, and anticommutes with com-
ponents of the four-vector that lie in the plane. The end result is that the
sandwich operation simplifies to

(6.22)x′ = x∥e−B + x⊥,

where x = x⊥ + x∥ and x⊥ · B = 0, and x∥ ∧ B = 0. In particular, using
x = xBB−1 = (x · B+ x ∧ B) B−1, we find that

(6.23)
x∥ = (x · B) B−1

x⊥ = (x ∧ B) B−1.

When B is a spacetime plane B = b ∧ γ0, then this exponential has a
hyperbolic nature, and we end up with a Lorentz boost. When B is a spa-
tial bivector, we end up with a single complex exponential, encoding our
plane old 3D rotation. More general B’s that encode composite boosts
and rotations are also possible, but B must be invertible (it should have no
lightlike factors.) The rough geometry of these projections is illustrated
in fig. 6.1, where the spacetime plane is represented by B.

What is not so obvious is how to pick B’s that correspond to specific
rotation axes or boost directions. Let’s consider each of those cases in
turn.
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Figure 6.1: Projection and rejection geometry.

Theorem 6.3: Boost.

The boost along a direction vector v̂ and rapidity α is given by

x′ = e−v̂α/2xev̂α/2,

where v̂ = γk0 cos θk is an STA bivector representing a spatial direc-
tion with direction cosines cos θk.

Proof. We want to demonstrate that this is equivalent to the usual boost
formulation. We can start with decomposition of the four-vector x into
components that lie in and off of the spacetime plane v̂.

(6.24)

x =
(
x0 + x

)
γ0

=
(
x0 + xv̂2

)
γ0

=
(
x0 + (x · v̂) v̂ + (x ∧ v̂) v̂

)
γ0,

where x = x∧γ0. The first two components lie in the boost plane, whereas
the last is the spatial component of the vector that lies perpendicular to the
boost plane. Observe that v̂ anticommutes with the dot product term and
commutes with he wedge product term, so we have

(6.25)
x′ =

(
x0 + (x · v̂) v̂

)
γ0ev̂α/2ev̂α/2 + (x ∧ v̂) v̂γ0e−v̂α/2ev̂α/2

=
(
x0 + (x · v̂) v̂

)
γ0ev̂α + (x ∧ v̂) v̂γ0.
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Noting that v̂2 = 1, we may expand the exponential in hyperbolic func-
tions, and find that the boosted portion of the vector expands as

(6.26)

(
x0 + (x · v̂) v̂

)
γ0ev̂α =

(
x0 + (x · v̂) v̂

)
γ0 (coshα + v̂ sinhα)

=
(
x0 + (x · v̂) v̂

)
(coshα − v̂ sinhα) γ0

=
(
x0 coshα − (x · v̂) sinhα

)
γ0

+
(
−x0 sinhα + (x · v̂) coshα

)
v̂γ0.

We are left with

(6.27)

x′ =
(
x0 coshα − (x · v̂) sinhα

)
γ0

+
(
(x · v̂) coshα − x0 sinhα

)
v̂γ0 + (x ∧ v̂) v̂γ0

=
[
γ0 v̂γ0

]  coshα − sinhα

− sinhα coshα


 x0

x · v̂

 + (x ∧ v̂) v̂γ0,

which has the desired Lorentz boost structure. Of course, this is usually
seen with v̂ = γ10 so that the components in the coordinate column vector
are (ct, x). □

Theorem 6.4: Spatial rotation.

Given two linearly independent spatial bivectors a = akγk0,b =
bkγk0, a rotation of θ radians in the plane of a,b from a towards
b, is given by

x′ = e−iθxeiθ,

where i = (a∧ b)/|a∧ b|, is a unit (spatial) bivector.

Proof. Without loss of generality, we may pick i = âb̂, where â2 = b̂2 =

1, and â · b̂ = 0. With such an orthonormal basis for the plane, we can
decompose our four vector into portions that lie in and off the plane

(6.28)

x =
(
x0 + x

)
γ0

=
(
x0 + xii−1

)
γ0

=
(
x0 + (x · i) i−1 + (x ∧ i) i−1

)
γ0.
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The projective term lies in the plane of rotation, whereas the timelike and
spatial rejection term are perpendicular. That is

(6.29)
x∥ = (x · i) i−1γ0

x⊥ =
(
x0 + (x ∧ i) i−1

)
γ0,

where x∥ ∧ i = 0, and x⊥ · i = 0. The plane pseudoscalar i anticommutes
with x∥, and commutes with x⊥, so

(6.30)x′ = e−iθ/2 (
x∥ + x⊥

)
eiθ/2

= x∥eiθ + x⊥.

However

(6.31)

(x · i) i−1 =
(
x ·

(
â ∧ b̂

))
b̂â

= (x · â) b̂b̂â −
(
x · b̂

)
âb̂â

= (x · â) â +
(
x · b̂

)
b̂,

so

x ∥eiθ =
(
(x · â) â +

(
x · b̂

)
b̂
)
γ0

(
cos θ + âb̂ sin θ

)
= â

(
(x · â) cos θ −

(
x · b̂

)
sin θ

)
γ0 + b̂

(
(x · â) sin θ +

(
x · b̂

)
cos θ

)
γ0,

(6.32)

so

(6.33)x′ =
[
â b̂

] cos θ − sin θ

sin θ cos θ


x · âx · b̂

 γ0 + (x ∧ i) i−1γ0.

Observe that this rejection term can be explicitly expanded to

(6.34)(x ∧ i) i−1γ0 = x − (x · â) âγ0 −
(
x · b̂

)
b̂γ0.

This is the timelike component of the vector, plus the spatial component
that is normal to the plane. This exponential sandwich transformation ro-
tates only the portion of the vector that lies in the plane, and leaves the
rest (timelike and normal) untouched. □
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6.3.3 Problems.

Exercise 6.6 Verify components relative to boost direction.

In eq. (6.24) the vector x was expanded in terms of the spacetime split.
An alternate approach, is to expand as

(6.35)
x = xv̂2

= (x · v̂ + x ∧ v̂) v̂
= (x · v̂) v̂ + (x ∧ v̂) v̂.

Show that

(6.36)(x · v̂) v̂ =
(
x0 + (x · v̂) v̂

)
γ0,

and

(6.37)(x ∧ v̂) v̂ = (x ∧ v̂) v̂γ0.

Exercise 6.7 Rotation transformation components.

Given a unit spatial bivector i = âb̂, where â · b̂ = 0 and i2 = −1, show
that

(6.45)(x · i) i−1 = (x · i) i−1γ0

= (x · â) âγ0 +
(
x · b̂

)
b̂γ0,

and

(6.46)(x ∧ i) i−1 = (x ∧ i) i−1γ0

= x − (x · â) âγ0 −
(
x · b̂

)
b̂γ0.

Also show that i anticommutes with (x · i) i−1 and commutes with (x ∧ i) i−1.

6.4 curvilinear coordinates , gradient, and reciprocal frames .

6.4.1 Motivation.

I started pondering some aspects of spacetime integration theory, and
found that there were some aspects of the concepts of reciprocal frames
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that were not clear to me. In the process of sorting those ideas out for
myself, I wrote up the following notes.

In the notes below, I will introduce the many of the prerequisite ideas
that are needed to express and apply the fundamental theorem of geo-
metric calculus in a 4D relativistic context. The focus will be the Dirac’s
algebra of special relativity, known as STA (Space Time Algebra) in geo-
metric algebra parlance. If desired, it should be clear how to apply these
ideas to lower or higher dimensional spaces, and to plain old Euclidean
metrics.

On notation. In Euclidean space we use bold face reciprocal frame vec-
tors xi · x j = δi

j, which nicely distinguishes them from the generalized
coordinates xi, x j associated with the basis or the reciprocal frame, that is

x = xixi = x jx j. (6.47)

On the other hand, it is conventional to use non-bold face for both the
four-vectors and their coordinates in STA, such as the following standard
basis decomposition

x = xµγµ = xµγµ. (6.48)

If we use non-bold face xµ, xν for the coordinates with respect to a speci-
fied frame, then we cannot also use non-bold face for the curvilinear basis
vectors. To resolve this notational ambiguity, I’ve chosen to use bold face
xµ, xν symbols as the curvilinear basis elements in this relativistic context,
as we do for Euclidean spaces.

6.4.2 Basis and coordinates.

Definition 6.8: Standard Dirac basis.

The Dirac basis elements are {γ0, γ1, γ2, γ3}, satisfying

γ2
0 = 1 = −γ2

k , ∀k = 1, 2, 3,
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and

γµ · γν = 0, ∀µ , ν. (6.49)

A conventional way of summarizing these orthogonality relationships is
γµ ·γν = ηµν, where ηµν are the elements of the metric G = diag(+,−,−,−).

Definition 6.9: Reciprocal basis for the standard Dirac basis.

We define a reciprocal basis
{
γ0, γ1, γ2, γ3

}
satisfying γµ ·γν = δµν,∀µ, ν ∈

0, 1, 2, 3.

Theorem 6.5: Reciprocal basis uniqueness.

This reciprocal basis is unique, and for our choice of metric has the
values

γ0 = γ0, γk = −γk, ∀k = 1, 2, 3.

Proof is left to the reader.

Definition 6.10: Coordinates.

We define the coordinates of a vector with respect to the standard
basis as xµ satisfying

x = xµγµ,

and define the coordinates of a vector with respect to the reciprocal
basis as xµ satisfying

x = xµγµ,

Theorem 6.6: Coordinates.

Given the definitions above, we may compute the coordinates of a
vector, simply by dotting with the basis elements

xµ = x · γµ,
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and

xµ = x · γµ,

Proof. This follows by straightforward computation

(6.50)

x · γµ =
(
xνγν

)
· γµ

= xν
(
γν · γ

µ)
= xνδνµ

= xµ,

and

(6.51)

x · γµ =
(
xνγν

)
· γµ

= xν
(
γν · γµ

)
= xνδνµ
= xµ.

□

6.4.3 Derivative operators.

We’d like to determine the form of the (spacetime) gradient operator. The
gradient can be defined in terms of coordinates directly, but we choose an
implicit definition, in terms of the directional derivative.

Definition 6.11: Directional derivative and gradient.

Let F = F(x) be a four-vector parameterized multivector. The direc-
tional derivative of F with respect to the (four-vector) direction a is
denoted

(a · ∇) F = lim
ϵ→0

F(x + ϵa) − F(x)
ϵ

,

where ∇ is called the space time gradient.

Theorem 6.7: Gradient.

The standard basis representation of the gradient is

∇ = γµ∂µ,
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where

∂µ =
∂

∂xµ
.

Proof. The Dirac gradient pops naturally out of the coordinate represen-
tation of the directional derivative, as we can see by expanding F(x + ϵa)
in Taylor series

(6.52)

F(x + ϵa) = F(x) + ϵ
dF(x + ϵa)

dϵ
+ O(ϵ2)

= F(x) + ϵ
∂F

∂(xµ + ϵaµ)
∂(xµ + ϵaµ)

∂ϵ

= F(x) + ϵ
∂F

∂(xµ + ϵaµ)
aµ.

The directional derivative is

(6.53)

lim
ϵ →0

F(x + ϵa) − F(x)
ϵ

= lim
ϵ→0

aµ
∂F

∂(xµ + ϵaµ)

= aµ
∂F
∂xµ

=
(
aνγν

)
· γµ

∂F
∂xµ

= a ·
(
γµ∂µ

)
F.

□

6.4.4 Curvilinear bases.

Curvilinear bases are the foundation of the fundamental theorem of mul-
tivector calculus. This form of integral calculus is defined over parameter-
ized surfaces (called manifolds) that satisfy some specific non-degeneracy
and continuity requirements.

A parameterized vector x(u, v, · · ·w) can be thought of as tracing out
a hypersurface (curve, surface, volume, ...), where the dimension of the
hypersurface depends on the number of parameters. At each point, a bases
can be constructed from the differentials of the parameterized vector. Such
a basis is called the tangent space to the surface at the point in question.
Our curvilinear bases will be related to these differentials. We will also be
interested in a dual basis that is restricted to the span of the tangent space.
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This dual basis will be called the reciprocal frame, and line the basis of
the tangent space itself, also varies from point to point on the surface.

One and two parameter spaces are illustrated in fig. 6.2, and the tangent
space basis at a specific point of a two parameter surface, x(u0, u1), is also
illustrated in fig. 6.3 . The differential directions that span the tangent
space are

dx0 =
∂x
∂u0 du0

dx1 =
∂x
∂u1 du1,

(6.54)

and the tangent space itself is span {dx0, dx1}. We may form an oriented
surface area element dx0 ∧ dx1 over this surface. Tangent spaces associ-

(a)

(b)

Figure 6.2: One and two parameter curves, with illustration of tangent spaces.

ated with 3 or more parameters cannot be easily visualized in three dimen-
sions, but the idea generalizes algebraically without trouble.
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Figure 6.3: Two parameter surface.

Definition 6.12: Tangent basis and space.

Given a parameterization x = x(u0, · · · , uN), where N < 4, the span
of the vectors

xµ =
∂x
∂uµ

,

is called the tangent space for the hypersurface associated with the
parameterization, and it’s basis is

{
xµ

}
.

Later we will see that parameterization constraints must be imposed, as
not all surfaces generated by a set of parameterizations are useful for inte-
gration theory. In particular, degenerate parameterizations for which the
wedge products of the tangent space basis vectors are zero, or those wedge
products cannot be inverted, are not physically meaningful. We require the
functional form of parameterizations to be differentiable, to provide a one
to one invertible mapping from the parameter space to the vector space.
Properly behaved surfaces of this sort are called manifolds.

Having introduced curvilinear coordinates associated with a parameter-
ization, we can now determine the form of the gradient with respect to a
parameterization of spacetime.
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Theorem 6.8: Gradient, curvilinear representation.

Given a spacetime parameterization x = x(u0, u1, u2, u3), the gradi-
ent with respect to the parameters uµ is

∇ =
∑
µ

xµ
∂

∂uµ
,

where

xµ = ∇uµ.

The vectors xµ are called the reciprocal frame vectors, and the or-
dered set

{
x0, x1, x2, x3

}
is called the reciprocal basis.

It is convenient to define ∂µ ≡ ∂/∂uµ, so that the gradient can be
expressed in mixed index representation

∇ = xµ∂µ.

This introduces some notational ambiguity, since we used ∂µ = ∂/∂xµ

for the standard basis derivative operators too, but we will be careful
to be explicit when there is any doubt about what is intended.

Proof. The proof follows by application of the chain rule.

(6.55)

∇F = γα
∂F
∂xα

= γα
∂uµ

∂xα
∂F
∂uµ

=
(
∇uµ

) ∂F
∂uµ

= xµ
∂F
∂uµ

.

□

Theorem 6.9: Reciprocal relationship.
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The vectors xµ = ∇uµ, and xµ = ∂x/∂uµ satisfy the reciprocal rela-
tionship

xµ · xν = δµν.

Proof.

(6.56)

xµ · xν = ∇uµ ·
∂x
∂uν

=

(
γα
∂uµ

∂xα

)
·

(
∂xβ

∂uν
γβ

)
= δαβ

∂uµ

∂xα
∂xβ

∂uν

=
∂uµ

∂xα
∂xα

∂uν

=
∂uµ

∂uν
= δµν.

□

The following example parameterization scales the proper time parameter,
and uses polar coordinates in the x, y plane.

Exercise 6.8 Compute the curvilinear and reciprocal basis.

Given x(t, ρ, θ, z) = ctγ0 + γ1ρe−iθ + zγ3, where i = γ1γ2, compute the
curvilinear frame vectors and their reciprocals.

Despite being a fairly simple parameterization, it was still fairly diffi-
cult to solve for the gradients when the parameterization introduced cou-
pling between the coordinates. Because all the tangent space vectors are
mutually orthogonal, we didn’t need to go through all this trouble, since
we could have just computed the inverses of all the tangent space vectors

x0 =
1
x0
=

1
cγ0
=

1
c
γ0

x1 =
1
x1
=

1
γ1e−iα =

1
e−iα

1
γ1
= eiαγ1 = γ1e−iα

x2 =
1
x2
=

1
ργ2e−iα =

1
ρ

1
e−iα

1
γ2
=

1
ρ

eiαγ2 =
1
ρ
γ2e−iα

x3 =
1
x3
=

1
γ3
= γ3.

(6.68)
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Figure 6.4: Tangent space direction vectors.

We will not generally be this lucky, and want a less labor intensive strategy
to find the reciprocal frame that works for the general case.

There is one additional special cawe. When we have a full parameteri-
zation of spacetime, then we can do this with nothing more than a matrix
inversion.

Theorem 6.10: Reciprocal frame matrix equations.

Given a spacetime basis {x0, · · · x3}, let [xµ] and [xν] be column ma-
trices with the coordinates of these vectors and their reciprocals, with
respect to the standard basis {γ0, γ1, γ2, γ3}. Let

A =
[
[x0] · · · [x3]

]
, X =

[
[x0] · · · [x3]

]
.

The coordinates of the reciprocal frame vectors can be found by solv-
ing

ATGX = 1,

where G = diag(1,−1,−1,−1) and the RHS is an 4 × 4 identity ma-
trix.

Proof. Let xµ = aµαγα, xν = bνβγβ, so that

(6.69)A =
[
aνµ

]
,
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and

(6.70)X =
[
bνµ

]
,

where µ ∈ [0, 3] are the row indexes and ν ∈ [0,N − 1] are the column
indexes. The reciprocal frame satisfies xµ · xν = δµν, which has the coor-
dinate representation of

(6.71)
xµ · xν =

(
aµαγα

)
·
(
bνβγβ

)
= aµαηαβbνβ

= [ATGB]µ
ν
,

where µ is the row index and ν is the column index. □

Exercise 6.9 Matrix inversion reciprocals.

For the parameterization of exercise 6.8, find the reciprocal frame vectors
by matrix inversion.
There will be circumstances where we parameterize only a subset of space-
time, and are interested in calculating quantities associated with such a
surface. For example, suppose that

(6.78)x(ρ, θ) = γ1ρe−iθ,

where i = γ1γ2 as before. We are now parameterizing only the x− y plane.
We will still find

x1 = γ1e−iθ

x2 = γ2ρe−iθ.
(6.79)

We can compute the reciprocals of these vectors using the gradient method.
It’s possible to state matrix equations representing the reciprocal relation-
ship of theorem 6.9, which, in this case, is XTGY = 1, where the RHS is
a 2 × 2 identity matrix, and X,Y are 4 × 2 matrices of coordinates, with

X =


0 0

C −ρS

S ρC

0 0


. (6.80)
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We no longer have a square matrix problem to solve, and our solution set
is multivalued. In particular, this matrix equation has solutions

x1 = γ1e−iθ + αγ0 + βγ3

x2 =
γ2

ρ
e−iθ + α′γ0 + β′γ3.

(6.81)

where α, α′, β, β′ are arbitrary constants. In the example we considered,
we saw that our ρ, θ parameters were functions of only x1, x2, so taking
gradients could not introduce any γ0, γ3 dependence in x1, x2. It seems
reasonable to assert that we seek an algebraic method of computing a set
of vectors that satisfies the reciprocal relationships, where that set of vec-
tors is restricted to the tangent space. We will need to figure out how to
prove that this reciprocal construction is identical to the parameter gradi-
ents, but let’s start with figuring out what such a tangent space restricted
solution looks like.

Theorem 6.11: Reciprocal frame for two parameter subspace.

Given two vectors, x1, x2, the vectors x1, x2 ∈ span {x1, x2} such that
xµ · xν = δµν are given by

x1 = x2 ·
1

x1 ∧ x2

x2 = −x1 ·
1

x1 ∧ x2
,

provided x1 ∧ x2 , 0 and (x1 ∧ x2)
2
, 0.

Proof. The most general set of vectors that satisfy the span constraint are

x1 = ax1 + bx2

x2 = cx1 + dx2.
(6.82)

We can use wedge products with either x1 or x2 to eliminate the other
from the RHS

x1 ∧ x2 = a (x1 ∧ x2)

x1 ∧ x1 = −b (x1 ∧ x2)

x2 ∧ x2 = c (x1 ∧ x2)

x2 ∧ x1 = −d (x1 ∧ x2) ,

(6.83)
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and then dot both sides with x1 ∧ x2 to produce four scalar equations

(6.84a)
a (x1 ∧ x2)2 =

(
x1 ∧ x2

)
· (x1 ∧ x2)

= (x2 · x1)���x1 · x2 − (x2 · x2)
(
x1 · x1

)
= −x2 · x2

(6.84b)
−b (x1 ∧ x2)2 =

(
x1 ∧ x1

)
· (x1 ∧ x2)

=�
��x1 · x2 (x1 · x1) −

(
x1 · x1

)
(x1 · x2)

= −x1 · x2

(6.84c)
c (x1 ∧ x2)2 =

(
x2 ∧ x2

)
· (x1 ∧ x2)

= (x2 · x1)
(
x2 · x2

)
− (x2 · x2)���x2 · x1

= x2 · x1

(6.84d)
−d (x1 ∧ x2)2 =

(
x2 ∧ x1

)
· (x1 ∧ x2)

= (x1 · x1)
(
x2 · x2

)
− (x1 · x2)���x2 · x1

= x1 · x1.

Putting the pieces together we have

(6.85a)

x1 =
− (x2 · x2) x1 + (x1 · x2) x2

(x1 ∧ x2)2

=
x2 · (x1 ∧ x2)

(x1 ∧ x2)2

= x2 ·
1

x1 ∧ x2

(6.85b)

x2 =
(x1 · x2) x1 − (x1 · x1) x2

(x1 ∧ x2)2

=
−x1 · (x1 ∧ x2)

(x1 ∧ x2)2

= −x1 ·
1

x1 ∧ x2

□
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Lemma 6.1: Distribution identity.

Given k-vectors B,C and a vector a, where the grade of C is greater
than that of B, then

(a∧ B) ·C = a · (B ·C) .

See [15] for a proof.

Theorem 6.12: Higher order tangent space reciprocals.

Given an N parameter tangent space with basis {x0, x1, · · · xN−1}, the
reciprocals are given by

xµ = (−1)µ (x0 ∧ · · · qxµ · · · ∧ xN−1) · I−1
N ,

where the checked term ( qxµ) indicates that all terms are included in
the wedges except the xµ term, and IN = x0 ∧ · · · xN−1 is the pseu-
doscalar for the tangent space.

Proof. I’ll outline the proof for the three parameter tangent space case,
from which the pattern will be clear. The motivation for this proof is a re-
examination of the algebraic structure of the two vector solution. Suppose
we have a tangent space basis {x0, x1}, for which we’ve shown that

x0 = x1 ·
1

x0 ∧ x1
=

x1 · (x0 ∧ x1)

(x0 ∧ x1)
2 . (6.86)

If we dot with x0 and x1 respectively, we find

x0 · x0 = x0 ·
x1 · (x0 ∧ x1)

(x0 ∧ x1)
2 = (x0 ∧ x1) ·

x0 ∧ x1

(x0 ∧ x1)
2 . (6.87)

We end up with unity as expected. Here the “factored” out vector is rein-
corporated into the pseudoscalar using the distribution identity lemma 6.1.
Similarly, dotting with x1, we find

x1 · x0 = x1 ·
x1 · (x0 ∧ x1)

(x0 ∧ x1)
2 = (x1 ∧ x1) ·

x0 ∧ x1

(x0 ∧ x1)
2 . (6.88)
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This is zero, since wedging a vector with itself is zero. We can perform
such an operation in reverse, taking the square of the tangent space pseu-
doscalar, and factoring out one of the basis vectors. After this, division by
that squared pseudoscalar will normalize things.

For a three parameter tangent space with basis {x0, x1, x2}, we can factor
out any of the tangent vectors like so

(6.89)

(x0 ∧ x1 ∧ x2)
2
= x0 · ((x1 ∧ x2) · (x0 ∧ x1 ∧ x2))

= (−1)x1 · ((x0 ∧ x2) · (x0 ∧ x1 ∧ x2))

= (−1)2x2 · ((x0 ∧ x1) · (x0 ∧ x1 ∧ x2)) .

The toggling of sign reflects the number of permutations required to move
the vector of interest to the front of the wedge sequence. Having factored
out any one of the vectors, we can rearrange to find that vector that is it’s
inverse and perpendicular to all the others.

(6.90)

x0 = (−1)0 (x1 ∧ x2) ·
1

x0 ∧ x1 ∧ x2

x1 = (−1)1 (x0 ∧ x2) ·
1

x0 ∧ x1 ∧ x2

x2 = (−1)2 (x0 ∧ x1) ·
1

x0 ∧ x1 ∧ x2
.

□

In the fashion above, should we want the reciprocal frame for all of space-
time given dimension 4 tangent space, we can state it trivially

(6.91)

x0 = (−1)0 (x1 ∧ x2 ∧ x3) ·
1

x0 ∧ x1 ∧ x2 ∧ x3

x1 = (−1)1 (x0 ∧ x2 ∧ x3) ·
1

x0 ∧ x1 ∧ x2 ∧ x3

x2 = (−1)2 (x0 ∧ x1 ∧ x3) ·
1

x0 ∧ x1 ∧ x2 ∧ x3

x3 = (−1)3 (x0 ∧ x1 ∧ x2) ·
1

x0 ∧ x1 ∧ x2 ∧ x3
.

This is probably not an efficient way to compute all these reciprocals,
since we can utilize a single matrix inversion to solve them in one shot.
However, there are theoretical advantages to this construction that will be
useful when we get to integration theory.
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On degeneracy. A small mention of degeneracy was mentioned above.
Regardless of metric, x0 ∧ x1 = 0 means that this pair of vectors are
colinear. A tangent space with such a pseudoscalar is clearly undesirable,
and we must construct parameterizations for which the area element is
non-zero in all regions of interest.

Things get more interesting in mixed signature spaces where we can
have vectors that square to zero (i.e. lightlike). If the tangent space pseu-
doscalar has a lightlike factor, then that pseudoscalar will not be invertible.
Such a degeneracy will will likely lead to many other troubles, and param-
eterizations of this sort should be avoided.

This following problem illustrates an example of this sort of degenerate
parameterization.

Exercise 6.10 Degenerate surface parameterization.

Given a spacetime plane parameterization x(u, v) = ua + vb, where

(6.92)a = γ0 + γ1 + γ2 + γ3,

(6.93)b = γ0 − γ1 + γ2 − γ3,

show that this is a degenerate parameterization, and find the bivector that
represents the tangent space. Are these vectors lightlike, spacelike, or
timelike? Comment on whether this parameterization represents a phys-
ically relevant spacetime surface.

Final notes. There are a few loose ends above. In particular, we haven’t
conclusively proven that the set of reciprocal vectors xµ = ∇uµ are ex-
actly those obtained through algebraic means. For a full parameterization
of spacetime, they are necessarily the same, since both are unique. So we
know that eq. (6.91) must equal the reciprocals obtained by evaluating
the gradient for a full parameterization (and this must also equal the re-
ciprocals that we can obtain through matrix inversion.) We have also not
proved explicitly that the three parameter construction of the reciprocals
in eq. (6.90) is in the tangent space, but that is a fairly trivial observation,
so that can be left as an exercise for the reader dismissal. Some additional
thought about this is probably required, but it seems reasonable to put that
on the back burner and move on to some applications.
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6.4.5 More examples.

new blog post: Here are a few additional examples of reciprocal frame
calculations.

Exercise 6.11 Unidirectional arbitrary functional dependence.

Let

x = a f (u),

where a is a constant vector and f (u) is some arbitrary differentiable func-
tion with a non-zero derivative in the region of interest.

Exercise 6.12 Linear two variable parameterization.

Let x = au + bv, where x ∧ a ∧ b = 0 represents spacetime plane (also
the tangent space.) Find the curvilinear coordinates and their reciprocals.

Exercise 6.13 Quadratic two variable parameterization.

Now consider a variation of the previous problem, with x = au2 + bv2.
Find the curvilinear coordinates and their reciprocals.

Exercise 6.14 Reciprocal frame for generalized cylindrical parameterization.

Let the vector parameterization be x(ρ, θ) = ρe−iθ/2x(ρ0, θ0)eiθ, where
i2 = ±1 is a unit bivector (+1 for a boost, and −1 for a rotation), and where
θ, ρ are scalars. Find the tangent space vectors and their reciprocals.

Note that this is cylindrical parameterization for the rotation case, and
traces out hyperbolic regions for the boost case. The boost case is illus-
trated in fig. 6.5 where hyperbolas in the light cone are found for boosts
of γ0 with various values of ρ, and the spacelike hyperbolas are boosts of
γ1, again for various values of ρ.

6.4.6 Parameterization of a general linear transformation.

Given N parameters u0, u1, · · · uN−1, a general linear transformation from
the parameter space to the vector space has the form

x = aαβγαuβ, (6.116)
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Figure 6.5: “Cylindrical” boost parameterization.

where β ∈ [0, · · · ,N − 1] and α ∈ [0, 3]. For such a general transformation,
observe that the curvilinear basis vectors are

(6.117)

xµ =
∂x
∂uµ

=
∂

∂uµ
aαβγαuβ

= aαµγα.

We find an interpretation of aαµ by dotting xµ with the reciprocal frame
vectors of the standard basis

(6.118)xµ · γν = aαµ
(
γα · γ

ν)
= aνµ,

so

(6.119)x = xµuµ.

We are able to reinterpret eq. (6.116) as a contraction of the tangent space
vectors with the parameters, scaling and summing these direction vectors
to characterize all the points in the tangent plane.

Theorem 6.13: Projecting onto the tangent space.
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Let T represent the tangent space. The projection of a vector onto
the tangent space has the form

ProjT y = (y · xµ) xµ = (y · xµ) xµ.

Proof. Let’s designate a as the portion of the vector y that lies outside of
the tangent space

(6.120)y = yµxµ + a.

If we knew the coordinates yµ, we would have a recipe for the projection.
Algebraically, requiring that a lies outside of the tangent space, is equiv-
alent to stating a · xµ = a · xµ = 0. We use that fact, and then take dot
products

(6.121)y · xν =
(
yµxµ + a

)
· xν

= yν,

so
(6.122)y =

(
y · xµ

)
xµ + a.

Similarly, the tangent space projection can be expressed as a linear com-
bination of reciprocal basis elements

(6.123)y = yµxµ + a.

Dotting with xµ, we have

(6.124)y · xµ =
(
yαxα + a

)
· xµ

= yµ,

so
(6.125)y =

(
y · xµ

)
xµ + a.

We find the two stated ways of computing the projection.
Observe that, for the special case that all of

{
xµ

}
are orthogonal, the

equivalence of these two projection methods follows directly, since

(6.126)

(
y · xµ

)
xµ =

(
y ·

1
xµ

)
1
xµ

=

y · xµ(
xµ

)2

 xµ

(xµ)2

=
(
y · xµ

)
xµ.

□
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6.5 fundamental theorem of geometric calculus .

6.5.1 Motivation.

I’ve been slowly working my way towards a statement of the fundamen-
tal theorem of integral calculus, where the functions being integrated are
elements of the Dirac algebra (space time multivectors in the geometric
algebra parlance.)

This is interesting because we want to be able to do line, surface, 3-
volume and 4-volume space time integrals. We have many R3 integral
theorems∫ B

A
dl ·∇ f = f (B) − f (A), (6.127a)

∫
S

dA n̂ ×∇ f =
�
∂S

dx f , (6.127b)

∫
S

dA n̂ · (∇ × f) =
�
∂S

dx · f, (6.127c)

∫
S

dxdy
(
∂P
∂y
−
∂Q
∂x

)
=



∂S

Pdx + Qdy, (6.127d)

∫
V

dV ∇ f =
∫
∂V

dA n̂ f , (6.127e)

∫
V

dV ∇ × f =
∫
∂V

dA n̂ × f, (6.127f)

∫
V

dV ∇ · f =
∫
∂V

dA n̂ · f, (6.127g)

and want to know how to generalize these to four dimensions and also
make sure that we are handling the relativistic mixed signature correctly.
If our starting point was the mess of equations above, we’d be in trou-
ble, since it is not obvious how these generalize. All the theorems with
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unit normals have to be handled completely differently in four dimensions
since we don’t have a unique normal to any given spacetime plane. What
comes to our rescue is the Fundamental Theorem of Geometric Calculus
(FTGC), which has the form∫

Fdnx
↔

∂ G =
∫

Fdn−1x G, (6.128)

where F,G are multivectors functions (i.e. sums of products of vectors.)
We’ve seen ([19], [15]) that all the identities above are special cases of
the fundamental theorem.

Do we need any special care to state the FTGC correctly for our rel-
ativistic case? It turns out that the answer is no! Tangent and reciprocal
frame vectors do all the heavy lifting, and we can use the fundamental the-
orem as is, even in our mixed signature space. The only real change that
we need to make is use spacetime gradient and vector derivative opera-
tors instead of their spatial equivalents. We will see how this works below.
Note that instead of starting with eq. (6.128) directly, I will attempt to
build up to that point in a progressive fashion that is hopefully does not
require the reader to make too many unjustified mental leaps.

6.5.2 Multivector line integrals.

We want to define multivector line integrals to start with. Recall that in
R3 we would say that for scalar functions f , the integral∫

dx f =
∫

f dx,

is a line integral. Also, for vector functions f we call∫
dx · f =

1
2

∫
dx f + fdx.

a line integral. In order to generalize line integrals to multivector func-
tions, we will allow our multivector functions to be placed on either or
both sides of the differential.

Definition 6.13: Line integral.
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Given a single variable parameterization x = x(u), we write d1x =
xudu, and call∫

Fd1x G,

a line integral, where F,G are arbitrary multivector functions.

We must be careful not to reorder any of the factors in the integrand, since
the differential may not commute with either F or G. Here is a simple
example where the integrand has a product of a vector and differential.

Exercise 6.15 Circular parameterization.

Given a circular parameterization x(θ) = γ1e−iθ, where i = γ1γ2, the
unit bivector for the x, y plane. Compute the line integral

(6.129)
∫ π/4

0
F(θ) d1x G(θ),

where F(θ) = xθ + γ3 + γ1γ0 is a multivector valued function, and G(θ) =
γ0 is vector valued.

Exercise 6.16 Line integral for boosted time direction vector.

Let x = ev̂α/2γ0e−v̂α/2 represent the spacetime curve of all the boosts of
γ0 along a specific velocity direction vector, where v̂ = (v ∧ γ0)/∥v∧ γ0∥

is a unit spatial bivector for any constant vector v. Compute the line inte-
gral

(6.132)
∫

x d1x.

6.5.3 Perfect differentials.

Having seen a couple examples of multivector line integrals, let’s now
move on to figure out the structure of a line integral that has a “perfect”
differential integrand. We can take a hint from the R3 vector result that
we already know, namely

(6.137)
∫ B

A
dl · ∇ f = f (B) − f (A).
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Figure 6.6: Tangent perpendicularity in mixed metric.

It seems reasonable to guess that the relativistic generalization of this is

(6.138)
∫ B

A
dx · ∇ f = f (B) − f (A).

Let’s check that, by expanding in coordinates

(6.139)

∫ B

A
dx · ∇ f =

∫ B

A
dτ

dxµ

dτ
∂µ f

=

∫ B

A
dτ

dxµ

dτ
∂ f
∂xµ

=

∫ B

A
dτ

d f
dτ

= f (B) − f (A).

If we drop the dot product, will we have such a nice result? Let’s see:

(6.140)

∫ B

A
dx∇ f =

∫ B

A
dτ

dxµ

dτ
γµγ

ν∂ν f

=

∫ B

A
dτ

dxµ

dτ
∂ f
∂xµ
+

∫ B

A
dτ

∑
µ,ν

γµγ
ν dxµ

dτ
∂ f
∂xν

.

This scalar component of this integrand is a perfect differential, but the
bivector part of the integrand is a complete mess, that we have no hope of
generally integrating. It happens that if we consider one of the simplest
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parameterization examples, we can get a strong hint of how to generalize
the differential operator to one that ends up providing a perfect differential.
In particular, let’s integrate over a linear constant path, such as x(τ) = τγ0.
For this path, we have

(6.141)

∫ B

A
dx∇ f =

∫ B

A
γ0dτ

(
γ0∂0 + γ

1∂1 + γ
2∂2 + γ

3∂3
)

f

=

∫ B

A
dτ

(
∂ f
∂τ
+ γ0γ

1 ∂ f
∂x1 + γ0γ

2 ∂ f
∂x2 + γ0γ

3 ∂ f
∂x3

)
.

Just because the path does not have any x1, x2, x3 component dependen-
cies does not mean that these last three partials are neccessarily zero. For
example f = f (x(τ)) =

(
x0

)2
γ0 + x1γ1 will have a non-zero contribution

from the ∂1 operator. In that particular case, we can easily integrate f , but
we have to know the specifics of the function to do the integral. However,
if we had a differential operator that did not include any component off
the integration path, we would ahve a perfect differential. That is, if we
were to replace the gradient with the projection of the gradient onto the
tangent space, we would have a perfect differential. We see that the func-
tion of the dot product in eq. (6.138) has the same effect, as it rejects any
component of the gradient that does not lie on the tangent space.
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Definition 6.14: Vector derivative.

Given a spacetime manifold parameterized by x = x(u0, · · · uN−1),
with tangent vectors xµ = ∂x/∂uµ, and reciprocal vectors xµ ∈ span {xν},
such that xµ · xν = δµν, the vector derivative is defined as

∂ =

N−1∑
µ=0

xµ
∂

∂uµ
.

Observe that if this is a full parameterization of the space (N = 4),
then the vector derivative is identical to the gradient. The vector
derivative is the projection of the gradient onto the tangent space
at the point of evaluation.

Furthermore, we designate
↔

∂ as the vector derivative allowed to
act bidirectionally, as follows

R
↔

∂ S = Rxµ
∂S
∂uµ
+
∂R
∂uµ

xµS ,
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where R, S are multivectors, and summation convention is implied.
In this bidirectional action, the vector factors of the vector derivative
must stay in place (as they do not neccessarily commute with R, S ),
but the derivative operators apply in a chain rule like fashion to both
functions.

Noting that xu · ∇ = xu · ∂, we may rewrite the scalar line integral identity
eq. (6.138) as

(6.142)
∫ B

A
dx · ∂ f = f (B) − f (A).

However, as our example hinted at, the fundamental theorem for line inte-
grals has a multivector generalization that does not rely on a dot product to
do the tangent space filtering, and is more powerful. That generalization
has the following form.

Theorem 6.14: Fundamental theorem for line integrals.

Given multivector functions F,G, and a single parameter curve x(u)
with line element d1x = xudu, then∫ B

A
Fd1x

↔

∂ G = F(B)G(B) − F(A)G(A).

Proof. Writing out the integrand explicitly, we find

(6.143)
∫ B

A
Fd1x

↔

∂ G =
∫ B

A
Fdα xαxα

↔

∂

∂α
G

However for a single parameter curve, we have xα = 1/xα, so we are left
with

(6.144)

∫ B

A
Fd1x

↔

∂ G =
∫ B

A
dα

∂(FG)
∂α

= FG|B − FG|A.

□
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6.6 relativistic multivector surface integrals .

We’ve now covered line integrals and the fundamental theorem for line
integrals, so it’s now time to move on to surface integrals.

Definition 6.15: Surface integral.

Given a two variable parameterization x = x(u, v), we write d2x =
xu ∧ xvdudv, and call∫

Fd2x G,

a surface integral, where F,G are arbitrary multivector functions.

Like our multivector line integral, this is intrinsically multivector valued,
with a product of F with arbitrary grades, a bivector d2x, and G, also
potentially with arbitrary grades. Let’s consider an example.

Exercise 6.17 Surface area integral example.

Given the hyperbolic surface parameterization x(ρ, α) = ργ0e−v̂α, where
v̂ = γ20 evaluate the indefinite integral

(6.145)
∫

γ1eγ21αd2x γ2.

Figure 6.7: Spacetime plane.
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6.6.1 Fundamental theorem for surfaces.

For line integrals we saw that dx · ∇ = ⟨dx∂⟩, and obtained the fundamen-
tal theorem for multivector line integrals by omitting the grade selection
and using the multivector operator dx∂ in the integrand directly. We have
the same situation for surface integrals. In particular, we know that the R3

Stokes theorem can be expressed in terms of d2x ·∇

Exercise 6.18 GA form of 3D Stokes’ theorem integrand.

Given an R3 vector field f, show that

(6.148)
∫

dAn̂ · (∇ × f) = −
∫ (

d2x · ∇
)
· f.

The moral of the story is that the conventional dual form of the R3

Stokes’ theorem can be written directly by projecting the gradient onto
the surface area element. Geometrically, this projection operation has a
rotational effect as well, since for bivector B, and vector x, the bivector-
vector dot product B · x is the component of x that lies in the plane B∧ x =
0, but also rotated 90 degrees.

For multivector integration, we do not want an integral operator that in-
cludes such dot products. In the line integral case, we were able to achieve
the same projective operation by using vector derivative instead of a dot
product, and can do the same for the surface integral case. In particular

Lemma 6.2: Projection of gradient onto the tangent space.

Given a curvilinear representation of the gradient with respect to pa-
rameters u0, u1, u2, u3

∇ =
∑
µ

xµ
∂

∂uµ
,

the surface projection onto the tangent space associated with any two
of those parameters, satisfies

d2x · ∇ =
〈
d2x∂

〉
1
.
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Proof. Without loss of generality, we may pick u0, u1 as the parameters
associated with the tangent space. The area element for the surface is

(6.150)d2x = x0 ∧ x1 du0du1.

Dotting this with the gradient gives

(6.151)

d2x · ∇ = du0du1 (x0 ∧ x1) · xµ
∂

∂uµ

= du0du1 (
x0

(
x1 · xµ

)
− x1

(
x0 · xµ

)) ∂

∂uµ

= du0du1
(
x0

∂

∂u1 − x0
∂

∂u1

)
.

On the other hand, the vector derivative for this surface is

(6.152)∂ = x0 ∂

∂u0 + x1 ∂

∂u1 ,

so

(6.153)

〈
d2x∂

〉
1
= du0du1 (x0 ∧ x1) ·

(
x0 ∂

∂u0 + x1 ∂

∂u1

)
= du0du1

(
x0

∂

∂u1 − x1
∂

∂u0

)
.

□

We now want to formulate the geometric algebra form of the fundamental
theorem for surface integrals.

Theorem 6.15: Fundamental theorem for surface integrals.

Given multivector functions F,G, and surface area element d2x =
(xu ∧ xv) dudv, associated with a two parameter curve x(u, v), then∫

S
Fd2x

↔

∂ G =
∫
∂S

Fd1xG,

where S is the integration surface, and ∂S designates its boundary,
and the line integral on the RHS is really short hand for∫

(F(−dxv)G)
∣∣∣
∆u +

∫
(F(dxu)G)

∣∣∣
∆v,
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which is a line integral that traverses the boundary of the surface with
the opposite orientation to the circulation of the area element.

Proof. The vector derivative for this surface is

(6.154)∂ = xu ∂

∂u
+ xv ∂

∂v
,

so

(6.155)Fd2x
↔

∂ G =
∂

∂u

(
Fd2x xuG

)
+
∂

∂v

(
Fd2x xvG

)
,

where d2x xu is held constant with respect to u, and d2x xv is held constant
with respect to v (since the partials of the vector derivative act on F,G, but

not on the area element, nor on the reciprocal vectors of
↔

∂ itself.) Note
that

d2x∧ xu = dudv (xu ∧ xv) ∧ xu = 0, (6.156)

since xu ∈ span {xu xv}, so

(6.157)

d2x xu = d2x · xu + d2x ∧ xu

= d2x · xu

= dudv (xu ∧ xv) · xu

= −dudv xv.

Similarly

(6.158)
d2x xv = d2x · xv

= dudv (xu ∧ xv) · xv

= dudv xu.

This leaves us with

(6.159)Fd2x
↔

∂ G = −dudv
∂

∂u
(FxvG) + dudv

∂

∂v
(FxuG) ,

where xv, xu are held constant with respect to u, v respectively. Fortu-
itously, this constant condition can be dropped, since the antisymmetry
of the wedge in the area element results in perfect cancellation. If these
line elements are not held constant then
∂

∂u
(FxvG) −

∂

∂v
(FxuG) = F

(
∂xu

∂v
−
∂xv

∂u

)
G +

(
∂F
∂u

xvG + Fxv
∂G
∂u

)
+

(
∂F
∂v

xuG + Fxu
∂G
∂v

)
,

(6.160)
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but the mixed partial contribution is zero

∂xu

∂v
−
∂xv

∂u
=

∂

∂v
∂x
∂u
−
∂

∂u
∂x
∂v
= 0, (6.161)

by equality of mixed partials. We have two perfect differentials, and can
evaluate each of these integrals

(6.162)

∫
Fd2x

↔

∂ G = −
∫

dudv
∂

∂u
(FxvG) +

∫
dudv

∂

∂v
(FxuG)

= −

∫
dv (FxvG)|∆u +

∫
du (FxuG)|∆v

=

∫
(F(−dxv)G)|∆u +

∫
(F(dxu)G)|∆v.

We use the shorthand d1x = dxu − dxv to write

(6.163)
∫

S
Fd2x

↔

∂ G =
∫
∂S

Fd1xG,

with the understanding that this is really instructions to evaluate the line
integrals in the last step of eq. (6.162). □

Exercise 6.19 Integration in the t,y plane.

Let x(t, y) = ctγ0 + yγ2. Write out both sides of the fundamental theorem
explicitly.

Exercise 6.20 A cylindrical hyperbolic surface.

Generalizing the example surface integral from exercise 6.17, let

(6.170)x(ρ, α) = ρe−v̂α/2x(0, 1)ev̂α/2,

where ρ is a scalar, and v̂ = cos θkγk0 is a unit spatial bivector, and cos θk

are direction cosines of that vector. This is a composite transformation,
where the α variation boosts the x(0, 1) four-vector, and the ρ parameter
contracts or increases the magnitude of this vector, resulting in x spanning
a hyperbolic region of spacetime.

Compute the tangent and reciprocal basis, the area element for the sur-
face, and explicitly state both sides of the fundamental theorem.

Exercise 6.21 Non-orthogonal tangent space example.

Let x(u, v) = ua + vb, where u, v are scalar parameters, and a, b are non-
null and non-colinear constant four-vectors. Write out the fundamental
theorem for surfaces with respect to this parameterization.
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Figure 6.8: Line integral orientation.



7R E L AT I V I S T I C AC T I O N .

7.1 in this chapter .

This chapter will cover

• derivation of the relativistic form of the Euler-Lagrange equations
from the covariant form of the action,

• relationship of the STA form of the Euler-Lagrange equations to
their tensor equivalents,

• derivation of the Lorentz force equation from the STA Lorentz force
Lagrangian,

• relationship of the STA Lorentz force equation to its equivalent in
the tensor formalism,

• relationship of the STA Lorentz force equation to the traditional
vector form.

Note that some of the prerequisite ideas and auxiliary details are presented
as problems with solutions, all of which the reader is encouraged to try
before looking at the solutions.

7.2 euler-lagrange equations .

I’ll start at ground zero, with the derivation of the relativistic form of
the Euler-Lagrange equations from the action. A relativistic action for a
single particle system has the form

S =
∫

dτL(x, ẋ), (7.1)

where x is the spacetime coordinate, ẋ = dx/dτ is the four-velocity, and τ
is proper time.
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Theorem 7.1: Relativistic Euler-Lagrange equations.

Let x → x + δx be any variation of the Lagrangian four-vector coor-
dinates, where δx = 0 at the boundaries of the action integral. The
variation of the action is

δS =
∫

dτδx · δL(x, ẋ),

where

δL = ∇L −
d
dτ

(∇vL),

where ∇ = γµ∂µ (per definition 6.5), and where we construct a sim-
ilar velocity-gradient with respect to the proper-time derivatives of
the coordinates ∇v = γ

µ∂/∂ẋµ.
The action is extremized when δS = 0, or when δL = 0. This latter

condition is called the Euler-Lagrange equations.

Proof. Let ϵ = δx, and expand the Lagrangian in Taylor series to first
order

S → S + δS

=

∫
dτL(x + ϵ, ẋ + ϵ̇)

=

∫
dτ (L(x, ẋ) + ϵ · ∇L + ϵ̇ · ∇vL) .

(7.2)

Subtracting off S and integrating by parts, leaves

δS =
∫

dτϵ ·
(
∇L −

d
dτ
∇vL

)
+

∫
dτ

d
dτ

(∇vL) · ϵ. (7.3)

The boundary integral∫
dτ

d
dτ

(∇vL) · ϵ = (∇vL) · ϵ|∆τ = 0, (7.4)

is zero since the variation ϵ is required to vanish on the boundaries. So, if
δS = 0, we must have

0 =
∫

dτϵ ·
(
∇L −

d
dτ
∇vL

)
, (7.5)



7.3 lorentz force equation . 123

for all variations ϵ. Clearly, this requires that

δL = ∇L −
d
dτ

(∇vL) = 0, (7.6)

or

∇L =
d
dτ

(∇vL), (7.7)

which is the coordinate free statement of the Euler-Lagrange equations.
□

Exercise 7.1 Coordinate form of the Euler-Lagrange equations.

Working in coordinates, use the action argument show that the Euler-
Lagrange equations have the form

∂L
∂xµ
=

d
dτ

∂L
∂ẋµ

Observe that this is identical to the statement of theorem 7.1 after contrac-
tion with γµ.

7.3 lorentz force equation .

Theorem 7.2: Lorentz force.

The relativistic Lagrangian for a charged particle is

L =
1
2

mv2 + qA · v/c.

Application of the Euler-Lagrange equations to this Lagrangian yields
the Lorentz-force equation

dp
dτ
= qF · v/c,

where p = mv is the proper momentum, F is the Faraday bivector
F = ∇∧ A, and c is the speed of light.
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Proof. To make life easier, let’s take advantage of the linearity of the
Lagrangian, and break it into the free particle Lagrangian L0 = (1/2)mv2

and a potential term L1 = qA · v/c. For the free particle case we have

δL0 = ∇L0 −
d
dτ

(∇vL0)

= −
d
dτ

(mv)

= −
dp
dτ
.

(7.11)

For the potential contribution we have

δL1 = ∇L1 −
d
dτ

(∇vL1)

=
q
c

(
∇(A · v) −

d
dτ

(∇v(A · v))
)

=
q
c

(
∇(A · v) −

dA
dτ

)
.

(7.12)

The proper time derivative can be evaluated using the chain rule

dA
dτ
=
∂xµ

∂τ
∂µA

= (v · ∇)A.
(7.13)

Putting all the pieces back together we have

0 = δL

= −
dp
dτ
+

q
c
(∇(A · v) − (v · ∇)A)

= −
dp
dτ
+

q
c
(∇∧ A) · v.

(7.14)

□

Exercise 7.2 Gradient of a squared position vector.

Show that

∇(a · x) = a,

and

∇x2 = 2x.
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It should be clear that the same ideas can be used for the velocity gradient,
where we obtain ∇v(v2) = 2v, and ∇v(A · v) = A, as used in the derivation
above.

It is desirable to put this relativistic Lorentz force equation into the
usual vector and tensor forms for comparison.

Theorem 7.3: Tensor form of the Lorentz force equation.

The tensor form of the Lorentz force equation is

dpµ

dτ
=

q
c

Fµνvν,

where the antisymmetric Faraday tensor is defined as Fµν = ∂µAν −
∂νAµ.

Proof. We have only to dot both sides with γµ. On the left we have

γµ ·
dp
dτ
=

dpµ

dτ
. (7.17)

On the right, we have

γµ ·
(q

c
F · v

)
=

q
c

((∇∧ A) · v) · γµ

=
q
c

(∇(A · v) − (v · ∇)A) · γµ

=
q
c
((∂µAν)vν − vν∂νAµ)

=
q
c

Fµνvν.

(7.18)

□

Exercise 7.3 Tensor expansion of F.

An alternate way to demonstrate theorem 7.3 is to first expand F = ∇∧ A
in terms of coordinates, an expansion that can be expressed in terms of
a second rank tensor antisymmetric tensor Fµν. Find that expansion, and
re-evaluate the dot products of eq. (7.18) using that.

Exercise 7.4 Lorentz force direct tensor derivation.
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Instead of using the geometric algebra form of the Lorentz force equation
as a stepping stone, we may derive the tensor form from the Lagrangian
directly, provided the Lagrangian is put into tensor form

L =
1
2

mvµvµ + qAµvµ/c.

Evaluate the Euler-Lagrange equations in coordinate form and compare
to theorem 7.3.

Theorem 7.4: Vector Lorentz force equation.

Relative to a fixed observer’s frame, the Lorentz force equation of
theorem 7.2 splits into a spatial rate of change of momentum, and
(timelike component) rate of change of energy, as follows

d(γmv)
dt

= q (E + v ×B)

d(γmc2)
dt

= qv ·E,

where F = E + IcB, γ = 1/
√

1 − v2/c2.

Proof. The first step is to eliminate the proper time dependencies in the
Lorentz force equation. Consider first the coordinate representation of an
arbitrary position four-vector x

x = ctγ0 + xkγk. (7.27)

The corresponding four-vector velocity is

v =
dx
dτ
= c

dt
dτ
γ0 +

dt
dτ

dxk

dt
γk. (7.28)

By construction, v2 = c2 is a Lorentz invariant quantity (this is one of
the relativistic postulates), so the LHS of eq. (7.28) must have the same
square. That is

c2 =

(
dt
dτ

)2 (
c2 − v2

)
, (7.29)

where v = v∧ γ0. This shows that we may make the identification

γ =
dt
dτ
=

1
1 − v2/c2 , (7.30)
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and

d
dτ
=

dt
dτ

d
dt
= γ

d
dt
. (7.31)

We may now factor the four-velocity v into its spacetime split

v = γ (c + v) γ0. (7.32)

In particular the LHS of the Lorentz force equation can be rewritten as

dp
dτ
= γ

d
dt

(γ (c + v)) γ0, (7.33)

and the RHS of the Lorentz force equation can be rewritten as

q
c

F · v =
γq
c

F · ((c + v)γ0) . (7.34)

Equating timelike and spacelike components leaves us

d(mγc)
dt

=
q
c
(F · ((c + v)γ0)) · γ0, (7.35a)

d(mγv)
dt

=
q
c
(F · ((c + v)γ0)) ∧ γ0, (7.35b)

Evaluating these products requires some care, but is an essentially manual
process. The reader is encouraged to do so once, but the end result may
also be obtained easily using software (see lorentzForce.nb in [13]). One
finds

F = E+ IcB = E1γ10 + E2γ20 + E3γ30 − cB1γ23 − cB2γ31 − cB3γ12,

(7.36a)

q
c
(F · ((c + v)γ0)) · γ0 =

q
c

E · v, (7.36b)

q
c
(F · ((c + v)γ0)) ∧ γ0 = q (E + v ×B) . (7.36c)

□
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Exercise 7.5 Algebraic spacetime split of the Lorentz force equation.

Derive the results of eq. (7.36) algebraically.

Exercise 7.6 Spacetime split of the Lorentz force tensor equation.

Show that theorem 7.4 also follows from the tensor form of the Lorentz
force equation (theorem 7.3) provided we identify

Fk0 = Ek, (7.43a)

and

Frs = −ϵrstBt. (7.43b)

Also verify that the identification eq. (7.43) is consistent with the geo-
metric algebra Faraday bivector F = E + IcB, and the associated coordi-
nate expansion of the field F = (1/2)(γµ ∧ γν)Fµν.

Exercise 7.7 Lorentz force gauge transformation.

Show that the gauge transformation A → A + ∇ψ applied to the Lorentz
force Lagrangian

(7.44)L =
1
2

mv2 + qA · v/c,

does not change the equations of motion.

7.4 solutions .

Answer for Exercise 6.6

Let x = xµγµ, so that

(6.38)
x · v̂ =

〈
xµγµ cos θbγb0

〉
1

= xµ cos θb
〈
γµγb0

〉
1
.

The µ = 0 component of this grade selection is

(6.39)⟨γ0γb0⟩1 = −γb,

and for µ = a , 0, we have

(6.40)⟨γaγb0⟩1 = −δabγ0,



7.4 solutions . 129

so we have

(6.41)
x · v̂ = x0 cos θb(−γb) + xa cos θb(−δabγ0)
= −x0v̂γ0 − xb cos θbγ0

= −
(
x0v̂ + x · v̂

)
γ0,

where x = x ∧ γ0 is the spatial portion of the four vector x relative to the
stationary observer frame. Since v̂ anticommutes with γ0, the component
of x in the spacetime plane v̂ is

(6.42)(x · v̂) v̂ =
(
x0 + (x · v̂) v̂

)
γ0,

as expected.
For the rejection term, we have

(6.43)x ∧ v̂ = xµ cos θs
〈
γµγs0

〉
3
.

The µ = 0 term clearly contributes nothing, leaving us with:

(6.44)

(x ∧ v̂) v̂ = (x ∧ v̂) · v̂
= xr cos θs cos θt ((γr ∧ γs) γ0) · (γt0)
= xr cos θs cos θt⟨(γr ∧ γs) γ0γt0⟩1
= −xr cos θs cos θt (γr ∧ γs) · γt

= −xr cos θs cos θt (−γrδst + γsδrt)
= xr cos θt cos θtγr − xt cos θs cos θtγs

= xγ0 − (x · v̂)v̂γ0

= (x ∧ v̂) v̂γ0,

as expected. Is there a clever way to demonstrate this without resorting to
coordinates?

Answer for Exercise 6.7

This problem is left for the reader, as I don’t feel like typing out my
solution.

The first part of this problem can be done in the tedious coordinate
approach used above, but hopefully there is a better way.

For the last (commutation) part of the problem, here is a hint. Let x∧ i =
ni, where n · i = 0. The result then follows easily.
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Answer for Exercise 6.8

The frame vectors are all easy to compute

x0 =
∂x
∂t
= cγ0

x1 =
∂x
∂ρ
= γ1e−iθ

x2 =
∂x
∂θ
= −ργ1γ1γ2e−iθ = ργ2e−iθ

x3 =
∂x
∂z
= γ3.

(6.57)

The x1 vector is radial, x2 is perpendicular to that tangent to the same unit
circle, as plotted in fig. 6.4. All of these particular frame vectors happen
to be mutually perpendicular, something that will not generally be true for
a more arbitrary parameterization.

To compute the reciprocal frame vectors, we must express our parame-
ters in terms of xµ coordinates, and use implicit integration techniques to
deal with the coupling of the rotational terms. First observe that

(6.58)γ1e−iθ = γ1 (cos θ − γ1γ2 sin θ)
= γ1 cos θ + γ2 sin θ,

so x = xµγµ = ctγ0 + γ1ρe−iθ + zγ3 is equivalent to the following set of
coordinate equations

x0 = ct

x1 = ρ cos θ

x2 = ρ sin θ

x3 = z.

(6.59)

We can easily evaluate the t, z gradients

∇t =
γ1

c
∇z = γ3,

(6.60)

but the ρ, θ gradients are not as easy. First writing

(6.61)ρ2 =
(
x1

)2
+

(
x2

)2
,
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we find

(6.62)

2ρ∇ρ = 2
(
x1∇x1 + x2∇x2

)
= 2ρ

(
cos θγ1 + sin θγ2

)
= 2ργ1

(
cos θ + γ1γ

2 sin θ
)

= 2ργ1e−iθ,

so

(6.63)∇ρ = γ1e−iθ.

For the θ gradient, we can write

(6.64)tan θ =
x2

x1 ,

so

(6.65)

1
cos2 θ

∇θ =
γ2

x1 − x2 γ1(
x1)2

=
1(

x1)2

(
γ2x1 − γ1x2

)
=

ρ

ρ2 cos2 θ

(
γ2 cos θ − γ1 sin θ

)
=

1
ρ cos2 θ

γ2
(
cos θ − γ2γ

1 sin θ
)

=
γ2e−iθ

ρ cos2 θ
,

or

(6.66)∇θ =
1
ρ
γ2e−iθ.

In summary,

x0 =
γ0

c
x1 = γ1e−iθ

x2 =
1
ρ
γ2e−iθ

x3 = γ3.

(6.67)
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Answer for Exercise 6.9

We expanded x1 explicitly in eq. (6.58). Doing the same for x2, we have

(6.72)
x2 = ργ2eiθ

= ργ2 (cos θ − γ1γ2 sin θ)
= ρ (γ2 cos θ − γ1 sin θ) .

Reading off the coordinates of our frame vectors, we have

(6.73)X =


c 0 0 0

0 C −ρS 0

0 S ρC 0

0 0 0 1


,

where C = cos θ and S = sin θ. We want

Y =


c 0 0 0

0 −C −S 0

0 ρS −ρC 0

0 0 0 −1



−1

=



1
c 0 0 0

0 −C S
ρ 0

0 −S −C
ρ 0

0 0 0 −1


. (6.74)

We can read off the coordinates of the reciprocal frame vectors

x0 =
1
c
γ0

x1 = − cos θγ1 − sin θγ2

x2 =
1
ρ
(sin θγ1 + cos θγ2)

x3 = −γ3.

(6.75)

Factoring out γ1 from the x1 terms, we find

(6.76)
x1 = − cos θγ1 − sin θγ2

= γ1 (cos θ − γ1γ2 sin θ)
= γ1e−iθ.
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Similarly for x2,

(6.77)

x2 =
1
ρ

(sin θγ1 − cos θγ2)

=
γ2

ρ
(sin θγ2γ1 + cos θ)

=
γ2

ρ
e−iθ.

This matches eq. (6.67), as expected, but required only algebraic work to
compute.

Answer for Exercise 6.10

To characterize the vectors, we square them

a2 = b2 = γ2
0 + γ

2
1 + γ

2
2 + γ

2
3 = 1 − 3 = −2, (6.94)

so a, b are both spacelike vectors. The tangent space is clearly just span {a, b} =
span {e, f } where

e = γ0 + γ2

f = γ1 + γ3.
(6.95)

Observe that a = e + f , b = e − f , and e is lightlike (e2 = 0), whereas f
is spacelike ( f 2 = −2), and e · f = 0, so e f = − f e. The bivector for the
tangent plane is

(6.96)
⟨ab⟩2 = ⟨(e + f )(e − f )⟩2

=
〈
e2 − f 2 − 2e f

〉
2

= −2e f ,

where

(6.97)e f = γ01 + γ21 + γ23 + γ03.

Because e is lightlike (zero square), and e f = − f e, the bivector e f squares
to zero

(e f )2
= −e2 f 2 = 0, (6.98)

which shows that the parameterization is degenerate.
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This parameterization can also be expressed as

(6.99)x(u, v) = u(e + f ) + v(e − f )
= (u + v)e + (u − v) f ,

a linear combination of a lightlike and spacelike vector. Intuitively, we ex-
pect that a physically meaningful spacetime surface involves linear combi-
nations spacelike vectors, or combinations of a timelike vector with space-
like vectors. This beastie is something entirely different.

Answer for Exercise 6.11

Here we have just a single tangent space direction (a line in spacetime)
with tangent vector

(6.100)xu = a
∂ f
∂u

= a fu,

so we see that the tangent space vectors are just rescaled values of the
direction vector a. This is a simple enough parameterization that we can
compute the reciprocal frame vector explicitly using the gradient. We ex-
pect that xu = 1/xu, and find

(6.101)
1
a
· x = f (u),

but for constant a, we know that ∇a · x = a, so taking gradients of both
sides we find

1
a
= ∇ f =

∂ f
∂u
∇u, (6.102)

so the reciprocal vector is

xu = ∇u =
1

a fu
, (6.103)

as expected.

Answer for Exercise 6.12

The frame vectors are easy to compute, as they are just

xu =
∂x
∂u
= a

xv =
∂x
∂v
= b.

(6.104)
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This is an example of a parametric equation that we can easily invert, as
we have

x ∧ a = −v (a∧ b)

x ∧ b = u (a∧ b) ,
(6.105)

so

u =
1

a∧ b
· (x ∧ b)

=
1

(a∧ b)2 (a∧ b) · (x ∧ b)

=
(b · x) (a · b) − (a · x) (b · b)

(a∧ b)2

(6.106)

v = −
1

a∧ b
· (x ∧ a)

= −
1

(a∧ b)2 (a∧ b) · (x ∧ a)

= −
(b · x) (a · a) − (a · x) (a · b)

(a∧ b)2

(6.107)

Recall that ∇ (a · x) = a, if a is a constant, so our gradients are just

∇u =
b (a · b) − a (b · b)

(a∧ b)2

= b ·
1

a∧ b
,

(6.108)

and

∇v = −
b (a · a) − a (a · b)

(a∧ b)2

= −a ·
1

a∧ b
.

(6.109)

Expressed in terms of the frame vectors, this is just

xu = xv ·
1

xu ∧ xv

xv = −xu ·
1

xu ∧ xv
,

(6.110)
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so we were able to show, for this special two parameter linear case, that
the explicit evaluation of the gradients has the exact structure that we
intuited that the reciprocals must have, provided they are constrained to
the spacetime plane a ∧ b. It is interesting to observe how this structure
falls out of the linear system solution so directly. Also note that these
reciprocals are not defined at the origin of the (u, v) parameter space.

Answer for Exercise 6.13

xu =
∂x
∂u
= 2ua

xv =
∂x
∂v
= 2vb.

(6.111)

Our tangent space is still the a ∧ b plane (as is the surface itself), but the
spacing of the cells starts getting wider in proportion to u, v. Utilizing the
work from the previous problem, we have

2u∇u = b ·
1

a∧ b

2v∇v = −a ·
1

a∧ b
.

(6.112)

A bit of rearrangement, shows that we recover eq. (6.110) easily. This is a
second demonstration that the gradient and the algebraic formulations for
the reciprocals match, at least for these special cases of linear non-coupled
parameterizations.

Answer for Exercise 6.14

The tangent space vectors are

(6.113)xρ =
x
ρ
,

and

(6.114)xθ = −
i
2

x + x
i
2

= x · i.
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Recall that x · i lies perpendicular to x (in the plane i), as illustrated in
fig. 6.1. This means that xρ and xθ are orthogonal, so we can find the
reciprocal vectors by just inverting them

xρ =
ρ

x

xθ =
1

x · i
.

(6.115)

Answer for Exercise 6.15

The tangent vector for the curve is

xθ = −γ1γ1γ2e−iθ = γ2e−iθ, (6.130)

with reciprocal vector xθ = eiθγ2. The differential element is d1x = γ2e−iθdθ,
so the integrand is∫ π/4

0

(
xθ + γ3 + γ1γ0

)
d1x γ0 =

∫ π/4

0

(
eiθγ2 + γ3 + γ1γ0

)
γ2e−iθdθ γ0

=
π

4
γ0 + (γ32 + γ102)

1
−i

(
e−iπ/4 − 1

)
γ0

=
π

4
γ0 +

1
√

2
(γ32 + γ102) γ120 (1 − γ12)

=
π

4
γ0 +

1
√

2
(γ310 + 1) (1 − γ12) .

(6.131)

Observe how care is required not to reorder any terms. This particular end
result is a multivector with scalar, vector, bivector, and trivector grades,
but no pseudoscalar component. The grades in the end result depend on
both the function in the integrand and on the path. For example, had we
integrated all the way around the circle, the end result would have been the
vector 2πγ0 (i.e. a γ0 weighted unit circle circumference), as all the other
grades would have been killed by the complex exponential integrated over
a full period.

Answer for Exercise 6.16

Observe that v̂ and γ0 anticommute, so we may write our boost as a one
sided exponential

x(α) = γ0e−v̂α = ev̂αγ0 = (coshα + v̂ sinhα) γ0. (6.133)
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The tangent vector is just

xα =
∂x
∂α
= ev̂αv̂γ0. (6.134)

Let’s get a bit of intuition about the nature of this vector. It’s square is

(6.135)
x2
α = ev̂αv̂γ0ev̂αv̂γ0

= −ev̂αv̂e−v̂αv̂(γ0)2

= −1,

so we see that the tangent vector is a spacelike unit vector. As the vector
representing points on the curve is necessarily timelike (due to Lorentz
invariance), these two must be orthogonal at all points. Let’s confirm this
algebraically

(6.136)

x · xα =
〈
ev̂αγ0ev̂αv̂γ0

〉
=

〈
e−v̂αev̂αv̂(γ0)2

〉
= ⟨v̂⟩
= 0.

Here we used ev̂αγ0 = γ0e−v̂α, and ⟨AB⟩ = ⟨BA⟩. Geometrically, we
have the curious fact that the direction vectors to points on the curve are
perpendicular (with respect to our relativistic dot product) to the tangent
vectors on the curve, as illustrated in fig. 6.6.

Answer for Exercise 6.17

We have xρ = γ0e−v̂α and xα = ργ2e−v̂α, so

(6.146)
d2x = (xρ ∧ xα)dρdα

=
〈
γ0e−v̂αργ2e−v̂α

〉
2
dρdα

= ργ02dρdα,

so the integral is

(6.147)

∫
ργ1eγ21αγ022dρdα = −

1
2
ρ2

∫
γ1eγ21αγ0dα

=
γ01

2
ρ2

∫
eγ21αdα

=
γ01

2
ρ2γ12eγ21α

=
ρ2γ20

2
eγ21α.
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Because F and G were both vectors, the resulting integral could only have
been a multivector with grades 0,2,4. As it happens, there were no scalar
nor pseudoscalar grades in the end result, and we ended up with the space-
time plane between γ0, and γ2eγ21α, which are rotations of γ2 in the x,y
plane. This is illustrated in fig. 6.7 (omitting scale and sign factors.)

Answer for Exercise 6.18

Let d2x = In̂dA, implicitly fixing the relative orientation of the bivector
area element compared to the chosen surface normal direction.

(6.149)

∫ (
d2x · ∇

)
· f =

∫
dA⟨In̂∇⟩1 · f

=

∫
dA (I (n̂ ∧ ∇)) · f

=

∫
dA

〈
I2 (n̂ × ∇) f

〉
= −

∫
dA (n̂ × ∇) · f

= −

∫
dAn̂ · (∇ × f) .

Answer for Exercise 6.19

Let’s designate the tangent basis vectors as

x0 =
∂x
∂t
= cγ0, (6.164)

and

x2 =
∂x
∂y
= γ2, (6.165)

so the vector derivative is

(6.166)∂ =
1
c
γ0 ∂

∂t
+ γ2 ∂

∂y
,

and the area element is

(6.167)d2x = cγ0γ2.
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The fundamental theorem of surface integrals is just a statement that∫ t1

t0
cdt

∫ y1

y0

dyFγ0γ2

(
1
c
γ0 ∂

∂t
+ γ2 ∂

∂y

)
G =

∫
F (cγ0dt − γ2dy) G,

(6.168)

where the RHS, when stated explicitly, really means∫
F (cγ0dt − γ2dy) G =

∫ t1

t0
cdt (F(t, y1)γ0G(t, y1) − F(t, y0)γ0G(t, y0))

−

∫ y1

y0

dy (F(t1, y)γ2G(t1, y)

− F(t0, y)γ0G(t0, y)) .
(6.169)

In this particular case, since x0 = cγ0, x2 = γ2 are both constant functions
that depend on neither t nor y, it is easy to derive the full expansion of
eq. (6.169) directly from the LHS of eq. (6.168).

Answer for Exercise 6.20

For the tangent basis vectors we have

xρ =
∂x
∂ρ
= e−v̂α/2x(0, 1)ev̂α/2 =

x
ρ
, (6.171)

and

xα =
∂x
∂α
= (−v̂/2) x + x (v̂/2) = x · v̂. (6.172)

These vectors xρ, xα are orthogonal, as x · v̂ is the projection of x onto the
spacetime plane x ∧ v̂ = 0, but rotated so that x · (x · v̂) = 0. Because of
this orthogonality, the vector derivative for this tangent space is

(6.173)∂ =
1

x · v̂
∂

∂α
+
ρ

x
∂

∂ρ
.

The area element is

(6.174)
d2x = dρdα

x
ρ
∧ (x · v̂)

=
1
ρ

dρdα x (x · v̂) .
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The full statement of the fundamental theorem for this surface is∫
S

dρdα F
(
1
ρ

x (x · v̂)
) (

1
x · v̂

∂

∂α
+
ρ

x
∂

∂ρ

)
G =

∫
∂S

F
(
dρ

x
ρ
− dα (x · v̂)

)
G.

(6.175)

As in the previous example, due to the orthogonality of the tangent basis
vectors, it’s easy to show find the RHS directly from the LHS.

Answer for Exercise 6.21

The tangent basis vectors are just xu = a, xv = b, with reciprocals

xu = xv ·
1

xu ∧ xv
= b ·

1
a∧ b

, (6.176)

and

xv = −xu ·
1

xu ∧ xv
= −a ·

1
a∧ b

. (6.177)

The fundamental theorem, with respect to this surface, when written out
explicitly takes the form

(6.178)
∫

F dudv (a ∧ b)
1

a ∧ b
·

(
a
∂

∂u
− b

∂

∂v

)
G =

∫
F (adu − bdv) G.

This is a good example to illustrate the geometry of the line integral cir-
culation. Suppose that we are integrating over u ∈ [0, 1], v ∈ [0, 1]. In this
case, the line integral really means∫

F (adu−bdv) G =+
∫

F(u, 1)(+adu)G(u, 1)+
∫

F(u, 0)(−adu)G(u, 0)

+

∫
F(1, v)(−bdv)G(1, v)

+

∫
F(0, v)(+bdv)G(0, v),

(6.179)

which is a path around the spacetime parallelogram spanned by u, v, as
illustrated in fig. 6.8, which illustrates the orientation of the bivector area
element with the arrows around the exterior of the parallelogram: 0 →
a→ a + b→ b→ 0.
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Answer for Exercise 7.1

In terms of coordinates, the first order Taylor expansion of the action is

S → S + δS

=

∫
dτL(xα + ϵα, ẋα + ϵ̇α)

=

∫
dτ

(
L(xα, ẋα) + ϵµ

∂L
∂xµ
+ ϵ̇µ

∂L
∂ẋµ

)
.

(7.8)

As before, we integrate by parts to separate out a pure boundary term

δS =
∫

dτϵµ
(
∂L
∂xµ
−

d
dτ

∂L
∂ẋµ

)
+

∫
dτ

d
dτ

(
ϵµ
∂L
∂ẋµ

)
. (7.9)

The boundary term is killed since ϵµ = 0 at the end points of the action
integral. We conclude that extremization of the action (δS = 0, for all ϵµ)
requires

∂L
∂xµ
−

d
dτ

∂L
∂ẋµ
= 0. (7.10)

Answer for Exercise 7.2

The first identity follows easily by expansion in coordinates

∇(a · x) = γµ∂µaαxα

= γµaαδαµ
= γµaµ
= a.

(7.15)

The second identity follows by linearity of the gradient

∇x2 = ∇(x · x)

= (∇(x · a))
∣∣∣
a=x + (∇(b · x))

∣∣∣
b=x

= a|a=x + b|b=x

= 2x.

(7.16)
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Answer for Exercise 7.3
F = ∇∧ A

= (γµ∂
µ) ∧ (γνAν)

= (γµ ∧ γν) ∂
µAν.

(7.19)

To this we can use the usual tensor trick (add self to self, change indexes,
and divide by two), to give

F =
1
2
((γµ ∧ γν) ∂

µAν + (γν ∧ γµ) ∂νAµ)

=
1
2
(γµ ∧ γν) (∂

µAν − ∂νAµ) ,
(7.20)

which is just

F =
1
2
(γµ ∧ γν) Fµν. (7.21)

Now, let’s expand (F · v) · γµ to compare to the earlier expansion in terms
of ∇ and A.

(F · v) · γµ =
1
2

Fαν
(
(γα ∧ γν) ·

(
γβvβ

))
· γµ

=
1
2

Fανvβ
(
δν
βγα

µ − δα
βγν

µ
)

=
1
2

(
Fµβvβ − Fβµvβ

)
= Fµνvν.

(7.22)

This alternate expansion illustrates some of the connectivity between the
geometric algebra approach and the traditional tensor formalism.

Answer for Exercise 7.4

Let δµL = γµ · δL, so that we can write the Euler-Lagrange equations as

0 = δµL =
∂L
∂xµ
−

d
dτ

∂L
∂ẋµ

. (7.23)

Operating on the kinetic term of the Lagrangian, we have

δµL0 = −
d
dτ

mvµ. (7.24)
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For the potential term

δµL1 =
q
c

(
vν
∂Aν

∂xµ
−

d
dτ

Aµ

)
=

q
c

(
vν
∂Aν

∂xµ
−

dxα
dτ

∂Aµ
∂xα

)
=

q
c

vν (∂µAν − ∂νAµ)

=
q
c

vνFµν.

(7.25)

Putting the pieces together gives

d
dτ

(mvµ) =
q
c

vνFµν, (7.26)

which is identical1 to the tensor form that we found by expanding the
geometric algebra form of Maxwell’s equation in coordinates.

Answer for Exercise 7.5

First calculate the field velocity product in terms of electric and magnetic
components. In this new frame of reference write the proper velocity of
the charged particle as v = γµ ẋµ

F · v = (E + IcB) · v

= (Eiγi0 − ϵi jkcBkγi j) · γµ ẋµ

= Ei ẋ0γi0 · γ0 + Ei ẋ jγi0 · γ j − ϵi jkcBk ẋmγi j · γm.

(7.37)

We apply a γ0 wedge to determine this observer dependent expression of
the force.

γ−1(F · v)∧ γ0 =
(
Ei ẋ0(γi0 · γ0) + Ei ẋ j(γi0 · γ j) − ϵi jkcBk ẋmγi j · γm

)
∧ γ0

= Ei ẋ0γi0 − ϵi jkcBk ẋm(γi)2(γiδ jm − γ jδim)∧ γ0

=
(
Ei ẋ0γi0 + ϵi jkcBk

(
ẋ jγi0 − ẋiγ j0

))
,

(7.38)

where γ = dt/dτ. This wedge application has discarded the timelike com-
ponents of the force equation with respect to this observer rest frame. In-
troduce the basis {ei = γi ∧ γ0} for this observers’ Euclidean space. These

1 Some minor index raising and lowering gymnastics are required.
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spacetime bivectors square to unity, and thus behave in every respect like
Euclidean space vector basis vectors. Writing E = Eiei, B = Biei, and
v = eidxi/dt we have

γ−1(F · v)∧ γ0 = c
(
E + ϵi jkBk

(
dx j

dt
ei −

dxi

dt
e j

))
. (7.39)

This inner antisymmetric sum is just the cross product. This can be ob-
served by expanding the determinant

a × b =

∣∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣
= e1(a2b3 − a3b2) + e2(a3b1 − a1b3) + e3(a1b2 − a2b1)

= eia jbkϵi jk.

(7.40)

This leaves

q(F · v/c)∧ γ0 = γq (E + v ×B) . (7.41)

Plugging back into eq. (7.35b) gives
d
dt

(mγv) = q (E + v ×B) . (7.42)

Answer for Exercise 7.7
The gauge transformed Lagrangian is

(7.45)L =
1
2

mv2 + qA · v/c +
qv
c
· ∇ϕ.

Observe that

(7.46)
v · ∇ϕ =

dxµ

dτ
∂ϕ

∂xµ

=
dϕ
dτ
,

which means that the action is transformed to

(7.47)
S → S +

q
c

∫
dτ

dϕ
dτ

= S +
q
c
ϕ|∆τ.

As the action is evaluated over the fixed interval ∆τ, the gauge transfor-
mation only changes the action by a constant, so the equations of motion
are unchanged.
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8.0.1 Noether’s theorem.

Also covered in [2] is Noether’s theorem in multivector form. This is used
to calculate the conserved quantity the Hamiltonian for Lagrangian’s with
no time dependence. Lets try something similar for the scalar variable
case, after which the multivector case may make more sense.

At its heart Noether’s theorem appears to describe change of variables
in Lagrangians.

Given a Lagrangian dependent on generalized coordinates qi, and their
first order derivatives, as well as the path parameter λ.

L = L(qi, q̇i, λ)

qi = qi(ri(λ), α).
(8.1)

One example of such a change of variables would be the Galilean trans-
formation qi = xi(t) + vt, with λ = t.

Application of the chain rule shows how to calculate the first order
change of the Lagrangian with respect to the new parameter α.

dL
dα
=
∂L
∂qi

∂qi

∂α
+
∂L
∂q̇i

∂q̇i

∂α
. (8.2)

If qi, and q̇i satisfy the Euler-Lagrange equations eq. (4.7), then this can
be written

dL
dα
=

(
d

dλ
∂L
∂q̇i

)
∂qi

∂α
+
∂L
∂q̇i

∂q̇i

∂α
. (8.3)

If one additionally has

∂2qi

(∂α)2 =
∂2q̇i

(∂α)2 = 0, (8.4)

so that ∂qi/∂α, and ∂q̇i/∂α are dependent only on λ, then eq. (8.3) can be
written as a total derivative

dL
dα
=

d
dλ

(
∂L
∂q̇i

∂qi

∂α

)
. (8.5)
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If there is an α dependence in these derivatives a weaker total derivative
statement is still possible, by evaluating the Lagrangian derivative and
∂qi/∂α at some specific constant value of α. This is

dL
dα

∣∣∣∣∣
α=α0

=
d

dλ

 ∂L
∂q̇i

∂qi

∂α

∣∣∣∣∣∣
α=α0

 . (8.6)

8.0.1.1 Hamiltonian.

Hmm, the above equations do not much like the Noether’s equation in [2].
However, in this form, we can get at the Hamiltonian statement without
any trouble. Let us do that first, then return to Noether’s

Of particular interest is when the change of variables for the general-
ized coordinates is dependent on the parameter α = λ. Given this type of
transformation we can write eq. (8.5) as

dL
dλ
=

d
dλ

(
∂L
∂q̇i

∂qi

∂λ

)
. (8.7)

For this to be valid in this α = λ case, note that the Lagrangian itself may
not be explicitly dependent on the parameter λ. Such a dependence would
mean that eq. (8.2) would require an additional ∂L/∂λ term.

The difference of the eq. (8.7) terms is called the Hamiltonian H

dH
dλ
=

d
dλ

(
∂L
∂q̇i q̇i −

dL
dλ

)
= 0. (8.8)

Up to a constant

H =
∂L
∂q̇i q̇i −

dL
dλ
, (8.9)

the Hamiltonian is a conserved quantity when the Lagrangian has no ex-
plicit λ dependence.

8.0.1.2 Noether’s take II.

Noether’s theorem is about conserved quantities under symmetry transfor-
mations. Let us revisit the attempt at derivation once more cutting down
the complexity even further, considering a transformation of a single gen-
eralized coordinate and the corresponding change to the Lagrangian under
such a transformation.
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Write

q→ q′ = f (q, α)

L(q, q̇, λ)→ L′ = L(q′, q̇′, λ) = L( f , ḟ , λ).
(8.10)

Now as before consider the derivative

dL′

dα
=
∂L
∂ f

∂ f
∂α
+
∂L
∂ ḟ

∂ ḟ
∂α
. (8.11)

In terms of the transformed coordinates the Euler-Lagrange equations re-
quire

∂L
∂ f
=

d
dλ

∂L
∂ ḟ
, (8.12)

and back-substitution into eq. (8.11) gives

dL′

dα
=

d
dλ

(
∂L
∂ ḟ

)
∂ f
∂α
+
∂L
∂ ḟ

∂ ḟ
∂α
. (8.13)

This can be written as a total derivative if

∂ ḟ
∂α
=

d
dλ

∂ f
∂α

∂

∂α

d f
dλ
=

∂2 f
∂q∂α

q̇ +
∂2 f

(∂α)2 α̇

∂

∂α

(
∂ f
∂q

q̇ +
∂ f
∂α
α̇

)
=

∂2 f
∂α∂q

q̇ +
∂2 f

(∂α)2 α̇ +
∂ f
∂α

∂α̇

∂α
=

(8.14)

Thus given a constraint of sufficient continuity

∂2 f
∂α∂q

=
∂2 f
∂q∂α

, (8.15)

and also that α̇ is not a function of α

∂α̇

∂α
= 0, (8.16)

we have from eq. (8.13)

dL′

dα
=

d
dλ

(
∂L
∂ ḟ

∂ f
∂α

)
. (8.17)
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This is
dL′

dα
=

d
dλ

(
∂L
∂q̇′

∂q′

∂α

)
. (8.18)

The details of generalizing this to multiple variables are almost the same,
but does not really add anything to the understanding. This generalization
is included as an appendix below for completeness, but the end result is

dL′

dα
=

d
dλ

∑
i

∂L

∂q̇′i
∂qi′

∂α

 . (8.19)

In words, when the transformed Lagrangian is symmetric (not a function
of α) under coordinate transformation then this inner quantity, a general-
ized momentum velocity product, is constant (conserved)∑

i

∂L

∂q̇′i
∂qi′

∂α
= constant. (8.20)

Transformations that leave the Lagrangian unchanged have this associated
conserved quantity, which dimensionally, assuming a time parametriza-
tion, has units of energy (mv2).

FIXME: The ∂α̇/∂α = 0 requirement is what is removed by evaluation
at α = α0. This statement seems somewhat handwaving like. Firm it up
with an example and concrete justification.

Note that it still does not quite match the multivector result from [2],
equation 12.10

dL′

dα

∣∣∣∣∣
α=0
=

d
dt

n∑
i=1

(
∂X′i
∂α
∗∂Ẋi

L
)
. (8.21)

I believe there is a missing prime there, and it should read

dL′

dα

∣∣∣∣∣
α=0
=

d
dt

n∑
i=1

(
∂X′i
∂α
∗∂Ẋ′i

L
)
. (8.22)

8.1 vector formulation of euler-lagrange equations .

8.1.1 Simple case. Unforced purely kinetic Lagrangian.

Before considering multivector Lagrangians, a step back to the simplest
vector Lagrangian is in order

L =
1
2

mẋ · ẋ. (8.23)
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Writing x(λ) = x + ϵn, and using the variational technique directly the
equation of motion for this unforced path should follow directly in vector
form

S =
∫

dλ
1
2

mẋ2
+

∫
mdλϵẋ · ṅ +

∫
dλ

1
2

mϵ2ṅ2
. (8.24)

Integration by parts operating directly on the vector function we have

dS
dϵ

∣∣∣∣∣
ϵ=0
= mẋ · n

∣∣∣
∂λ
−

∫
mdλẍ · n

= −

∫
mdλẍ · n.

(8.25)

Introducing shorthand δS/δx, for a vector functional derivative, we have

dS
dϵ

∣∣∣∣∣
ϵ=0
=

∫
dλn ·

δS
δx
, (8.26)

where the extremal condition is

δS
δx
= −mẍ = 0. (8.27)

Here the expected and desired Euler Lagrange equation for the Lagrangian
(constant velocity in some direction dependent on initial conditions) is ar-
rived at directly in vector form without dropping down to coordinates and
reassembling them to get back the vector expression.

8.1.2 Position and velocity gradients in the configuration space.

Having tackled the simplest case, to generalize this we need a construct
to do first order Taylor series expansion in the neighborhood of a vector
position. The (multivector) gradient is the obvious candidate operator to
do the job. Before going down that road consider the scalar Lagrangian
case once more, where we will see that it is natural to define position and
velocity gradients in the configuration space. It will also be observed that
the chain rule essentially motivates the initially somewhat odd seeming
reciprocal basis used to express the gradient when operating in a non-
orthonormal frame.

In eq. (4.3), the linear differential increment in the neighborhood of the
optimal solution had the form

∆L = +
∑

i

(qi + ni)
∂L
∂qi

∣∣∣∣∣∣
qi=qi

+
∑

i

(q̇
i
+ ṅi)

∂L
∂q̇i

∣∣∣∣∣∣
qi=qi

. (8.28)
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If one defines a configuration space position and velocity gradients respec-
tively as

∇q =

(
∂

∂q1 ,
∂

∂q2 , · · · ,
∂

∂qn

)
= fk

∂

∂qk

∇q̇ =

(
∂

∂q̇1 ,
∂

∂q̇2 , · · · ,
∂

∂q̇n

)
= fk

∂

∂q̇k .

(8.29)

and forms a configuration space vector with respect to some linearly inde-
pendent, but not necessarily orthonormal, basis

q = qiei. (8.30)

then the chain rule dictates the relationship between the configuration vec-
tor basis and the basis with which the gradient must be expressed. In par-
ticular, if we wish to write eq. (8.28) in terms of the configuration space
gradients

∆L = (q + n) · ∇qL
∣∣∣q=q + (q̇ + ṅ) · ∇q̇L

∣∣∣q̇=q̇ . (8.31)

Then we must have a reciprocal relationship between the basis vector for
the configuration space vectors ei, and the corresponding vectors from
which the gradient was formed

ei · f j = δi j

=⇒

f j = e j.

(8.32)

This gives us the position and velocity gradients in the configuration space

∇q = ek ∂

∂qk

∇q̇ = ek ∂

∂q̇k .

(8.33)

Note also that the size of this configuration space does not have to be
the same space as the problem. With this definitions completion of the
integration by parts yields the Euler-Lagrange equations in a hybrid con-
figuration space vector form

∇qL =
d

dλ
∇q̇L. (8.34)
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When the configuration space equals the geometrical space being oper-
ated in (ie: generalized coordinates are regular old coordinates), this pro-
vides a nice explanation for why we must have the funny pairing of upper
index coordinates in the partials of the gradient and reciprocal frame vec-
tors multiplying all these partials. Contrast to a text like [2] where the
gradient (and spacetime gradient) are defined in this fashion instead, and
one gradually sees that this does in fact work out.

That said, the negative side of this vector notation is that it obscures
somewhat the Euler-Lagrange equations, which are not terribly compli-
cated to begin with. However, since this appears to be the form of the
multivector form of the Euler-Lagrange equations it is likely worthwhile
to see how this also expresses the simpler familiar scalar case too.

8.2 example applications of noether’s theorem .

Linear translation and rotational translation appear to be the usual first
example applications. [26] does this, as does the wikipedia article. Read-
ing about those without actually working through it myself never made
complete sense (esp. want to do the angular momentum example).

Noether’s theorem is not really required to see that in the case of un-
forced motion eq. (8.23), translation of coordinates x → x + a will not
change the equation of motion. This is the conservation of linear momen-
tum result so familiar from high school physics.

8.2.1 Angular momentum in a radial potential.

The conservation of angular momentum case is more interesting.
Suppose that one has a radial potential applied to a point particle

L =
1
2

mẋ2 − ϕ(|x|k). (8.35)

and apply a rotational transformation to the coordinates

x→ exp(iθ/2)x exp(−iθ/2). (8.36)
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Provided that this is a fixed rotation with i, and θ constant (not functions
of time), the transformed squared velocity is:

ẋ′ · ẋ′ =
〈
exp(iθ/2)ẋ exp(−iθ/2) exp(iθ/2)ẋ exp(−iθ/2)

〉
=

〈
exp(iθ/2)ẋẋ exp(−iθ/2)

〉
= ẋ2〈exp(iθ/2) exp(−iθ/2)

〉
= ẋ2.

(8.37)

Since |x′| = |x| the transformed Lagrangian is unchanged by any rotation
of coordinates.

Noether’s equation eq. (8.19) takes the form

∂L′

∂θ
=

d
dt

(
∂x′

∂θ
·∇v′L

)
. (8.38)

Here the configuration space gradient is used to express the chain rule
terms, picking the R3 standard basis vectors to express that gradient.

The velocity term can be expanded as

∂x′

∂θ
=

∂

∂θ
(exp(iθ/2)x exp(−iθ/2))

=
1
2

(ix′ − x′i)

= i · x′.

(8.39)

The transformed conjugate momentum is

∇v′
1
2

mv′2 = mv′ = p′. (8.40)

so the conserved quantity is

(i · x′) · p′ = constant. (8.41)

Temporarily expressing the bivector for the rotational plane in terms of a
dual relationship, i = In, where n is a unit normal to the plane we have

(i · x′) · p′ = ((In) · x′) · p′

=
1
2

(Inx′ − x′In) · p′

=
1
2
〈
I(nx′ − x′n)p′

〉
=

1
2
〈
Inx′p

〉
−

〈
Inp′x′

〉
=

1
2
(
〈
i(x′ ∧ p′)

〉
−

〈
i(p′ ∧ x′)

〉
)

= i · (x′ ∧ p′).

(8.42)
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Since i is a constant bivector we have angular momentum (dropping primes),
by virtue of Lagrangian transformational symmetry and Noether’s theo-
rem the angular momentum

x∧ p = constant, (8.43)

is a constant of motion for a point particle Lagrangian in a radial potential
field.

This is typically expressed in terms of the dual relationship using cross
products

x × p = constant. (8.44)

Also observe the time derivative of the angular momentum in eq. (8.43)

d
dt

(x∧ p) = p/m∧ p + x∧ ṗ

= x∧ ṗ
= 0.

(8.45)

Which says that the torque on a particle in a radial potential is zero. This
finally supplies the rational for texts like [18], which while implicitly talk-
ing about motion in a (radial) gravitational potential, says something to
the effect of “in the absence of external torques the angular momentum is
conserved”!

What other more general non-radial potentials, if any, allow for this
conservation statement? I had guess that something like the Lorentz force
with velocity dependence in the potential will explicitly not have this con-
servation of angular momentum. [26] and [4] both cover Lagrangian trans-
formation, and specifically cover this angular momentum issue, but blun-
dering through it myself as done here was required to really see where it
was coming from and to apply the idea.

8.2.2 Hamiltonian.

Consider a general kinetic form and a possibly velocity dependent poten-
tial

L = K − ϕ =
1
2

∑
i j

gi jq̇iq̇ j − ϕ, (8.46)
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and form the Hamiltonian. First calculate

∂L
∂q̇i = m

∑
j

gi jq̇ j −
∂ϕ

∂q̇i

=⇒∑
i

q̇i ∂L
∂q̇i = m

∑
i j

gi jq̇iq̇ j −
∑

i

q̇i ∂ϕ

∂q̇i

= 2K −
∑

i

q̇i ∂ϕ

∂q̇i

.

(8.47)

So, the Hamiltonian is

H = K −
∑

i

q̇i ∂ϕ

∂q̇i + ϕ. (8.48)

For the less general case where v2 = gi jq̇iq̇ j, this is

H = K − v ·∇vϕ + ϕ, (8.49)

a conserved quantity with respect to the time derivative.
Similarly, for squared proper velocity v2 = gi jq̇iq̇ j, and derivatives with

respect to proper time

H = K − v · ∇vϕ + ϕ, (8.50)

is conserved with respect to proper time.
As an example, consider the Lorentz force Lagrangian. For proper ve-

locity v, four potential A, and positive time metric signature (γ0)2 = 1, the
Lorentz force Lagrangian is

L =
1
2

mv · v + qA · v/c. (8.51)

We therefore have

0 =
d
dτ

(
1
2

mv2 + v · ∇v(qA · v/c) − qA · v/c
)
. (8.52)

Or

1
2

mv2 + v · ∇v(qA · v/c) − qA · v/c = κ. (8.53)
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Where κ is some constant. Since ∇vAµ = 0, we have ∇vA · v = A, and

κ =
1
2

mv2 + v · (qA/c) − qA · v/c

=
1
2

mv2.

(8.54)

At a glance this does not look terribly interesting, since by definition of
proper time we already know that 1

2 mv2 = 1
2 mc2 is a constant.

However, suppose that one did not assume proper time to start with,
and instead considered an arbitrarily parametrized coordinate worldline
and their corresponding solutions

x = x(λ)

L =
1
2

m
dx
dλ
·

dx
dλ
+ qA ·

dx
dλ
/c

∂L
∂λ
=

d
dλ

∂L
∂λ
.

(8.55)

The Hamiltonian conservation with respect to this parametrization then
implies

d
dλ

(
1
2

m
dx
dλ
·

dx
dλ

)
= 0. (8.56)

So that, independent of the parametrization, the quantity 1
2 m dx

dλ ·
dx
dλ is a

constant. This then follows as a consequence of Noether’s theorem in-
stead of by definition. Proper time then becomes that particular worldline
parametrization λ = τ such that 1

2 m dx
dτ ·

dx
dτ =

1
2 mc2.

8.2.3 Covariant Lorentz force Lagrangian.

The Hamiltonian was used above to extract v2 invariance from the Lorentz
force Lagrangian under changes of proper time. The next obvious Noether’s
application is for a Lorentz transformation of the interaction Lagrangian.
This was interesting enough seeming in its own right to treat separately
and has been moved to E.
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8.3 appendix .

8.3.1 Noether’s equation derivation, multivariable case.

Employing a couple judicious regular expressions starting from the text
for the single variable treatment, plus some minor summation sign addi-
tion does the job.

qi → qi′ = f i(qi, α)

L(qi, q̇i, λ)→ L′ = L(qi′, q̇′i, λ) = L( f i, ḟ i, λ).
(8.57)

Now as before consider the derivative

dL′

dα
=

∑
i

∂L
∂ f i

∂ f i

∂α
+
∂L
∂ ḟ i

∂ ḟ i

∂α
. (8.58)

In terms of the transformed coordinates the Euler-Lagrange equations re-
quire

∂L
∂ f i =

d
dλ

∂L
∂ ḟ i

. (8.59)

and backsubstitution into eq. (8.58) gives

dL′

dα
=

∑
i

d
dλ

(
∂L
∂ ḟ i

)
∂ f i

∂α
+
∂L
∂ ḟ i

∂ ḟ i

∂α
. (8.60)

This can be written as a total derivative if

∂ ḟ i

∂α
=

d
dλ

∂ f i

∂α

∂

∂α

d f
dλ
=

∑
j

∂2 f i

∂q j∂α
q̇ j +

∂2 f i

(∂α)2 α̇

∂

∂α

∑
j

∂ f i

∂q j q̇ j +
∂ f i

∂α
α̇

 =∑
j

∂2 f i

∂α∂q j q̇ j +
∂2 f i

(∂α)2 α̇ +
∂ f i

∂α

∂α̇

∂α
=

(8.61)

Thus given constraints of sufficient continuity

∂2 f i

∂α∂q j =
∂2 f i

∂q j∂α
. (8.62)
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and also that α̇ is not a function of α

∂α̇

∂α
= 0. (8.63)

we have from eq. (8.60)

dL′

dα
=

d
dλ

∑
i

∂L
∂ ḟ i

∂ f i

∂α

 . (8.64)

QED.





9H A M I LT O N I A N M E C H A N I C S .

9.1 motivation .

I have now seen Hamiltonian’s used, mostly in a Quantum context, and
think that I understand at least some of the math associated with the
Hamiltonian and the Hamiltonian principle. I have, however, not used
either of these enough that it seems natural to do so.

Here I attempt to summarize for myself what I know about Hamilto-
nian’s, and work through a number of examples. Some of the examples
considered will be ones already treated with the Lagrangian formalism
4.2.

Some notation will be invented along the way as reasonable, since I
had like to try to also relate the usual coordinate representation of the
Hamiltonian, the Hamiltonian principle, and the Poisson bracket, with the
bivector representation of the 2N complex configuration space introduced
in [2]. (NOT YET DONE).

9.2 hamiltonian as a conserved quantity.

Starting with the Lagrangian formalism the Hamiltonian can be found as a
conserved quantity associated with time translation when the Lagrangian
has no explicit time dependence. This follows directly by considering the
time derivative of the Lagrangian L = L(qi, q̇i).

dL
dt
=
∂L
∂qi

dqi

dt
+
∂L
∂q̇i

dq̇i

dt

= q̇i d
dt
∂L
∂q̇i +

∂L
∂q̇i

dq̇i

dt

=
d
dt

(
q̇i ∂L
∂q̇i

)
.

(9.1)

We can therefore form the difference

d
dt

(
q̇i ∂L
∂q̇i − L

)
= 0, (9.2)



162 hamiltonian mechanics .

and find that this quantity, labeled H, is a constant of motion for the system

H ≡ q̇i ∂L
∂q̇i − L = constant. (9.3)

We will see later that this constant is sometimes the total energy of the
system.

The q̇i partials of the Lagrangian are called the canonical momentum
conjugate to qi. Quite a mouthful, so just canonical momenta seems like
a good compromise. We will write (reserving pi = mqi for the non-
canonical momenta)

Pi ≡
∂L
∂q̇i . (9.4)

and note that these are the coordinates of a sort of velocity gradient of
the Lagrangian. We have seen these canonical momenta in velocity gra-
dient form previously where it was noted that we could write the Euler-
Lagrange equations in vector form in an orthonormal reciprocal frame
space as

∇L =
d
dt
∇vL. (9.5)

where ∇v = ei∂L/∂ẋi = eiPi, ∇ = ei∂/∂xi, and x = eixi.

9.3 some syntactic sugar . in vector form .

Following Jackson [7] (section 12.1, relativistic Lorentz force Hamilto-
nian), this can be written in vector form if the velocity gradient, the vector
sum of the momenta conjugate to the qi’s is given its own symbol P. He
writes

H = v · P − L. (9.6)

This makes most sense when working in orthonormal coordinates, but can
be generalized. Suppose we introduce a pair of reciprocal frame basis for
the generalized position and velocity coordinates, writing as vectors in
configuration space

q = eiqi

v = fiq̇i.
(9.7)
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Following [2] (who use this for their bivector complexification of the con-
figuration space), we have the freedom to impose orthonormal constraints
on this configuration space basis

ei · e j = δ
i
j

f i · f j = δ
i
j

ei · f j = δ
i
j.

(9.8)

We can now define configuration space position and velocity gradients

∇ ≡ ei ∂

∂qi

∇v ≡ f i ∂

∂q̇i ,

(9.9)

so the conjugate momenta in vector form is now

P ≡ ∇vL = f i ∂L
∂q̇i . (9.10)

Our Hamiltonian takes the form

H = v · P − L. (9.11)

9.4 the hamiltonian principle .

We want to take partials of eq. (9.3) with respect to Pi and qi. In terms of
the canonical momenta we want to differentiate

H ≡ q̇iPi − L(qi, q̇i, t), (9.12)

for the Pi partial we have

∂H
∂Pi
= q̇i, (9.13)

and for the qi partial

∂H
∂qi = −

∂L
∂qi

= −
d
dt
∂L
∂q̇i .

(9.14)
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These two results taken together form what I believe is called the Hamil-
tonian principle

∂H
∂Pi
= q̇i

∂H
∂qi = −Ṗi

Pi =
∂L
∂q̇i .

(9.15)

A set of 2N first order equations equivalent to the second order Euler-
Lagrange equations. These appear to follow straight from the definitions.
Given that I am curious why the more complex method of derivation is
chosen in [4]. There the total differential of the Hamiltonian is computed

dH = q̇idPi + dq̇iPi − dqi ∂L
∂qi − dq̇i ∂L

∂q̇i − dt
∂L
∂t

= q̇idPi + dq̇i
(
Pi −

∂L
∂q̇i

)
− dqi ∂L

∂qi − dt
∂L
∂t

= q̇idPi − dqi ∂L
∂qi

= dPi/dt

− dt
∂L
∂t
.

(9.16)

A term by term comparison to the total differential written out explicitly

dH =
∂H
∂qi dqi +

∂H
∂Pi

dPi +
∂H
∂t

dt, (9.17)

allows the Hamiltonian equations to be picked off.

∂H
∂Pi
= q̇i

∂H
∂qi = −Ṗi

∂H
∂t
= −

∂L
∂t
.

(9.18)

I guess that is not that much more complicated and it does yield a relation
between the Hamiltonian and Lagrangian time derivatives.
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9.5 examples .

Now, that is just about the most abstract way we can start things off is
not it? Getting some initial feel for this constant of motion can be had by
considering a sequence of Lagrangians, starting with the very simplest.

9.5.1 Force free motion.

Our very simplest Lagrangian is that of one dimensional purely kinetic
motion

L =
1
2

mv2 =
1
2

mẋ2. (9.19)

Our Hamiltonian is in this case just

H = ẋmẋ −
1
2

mẋ =
1
2

mv2. (9.20)

The Hamiltonian is just the kinetic energy. The canonical momentum in
this case is also equal to the momentum, so eliminating v to apply the
Hamiltonian equations we have

H =
1

2m
p2. (9.21)

We have then

∂H
∂p
=

p
m
= ẋ

∂H
∂x
= 0 = −ṗ.

(9.22)

Just for fun we can put this simple linear system in matrix form

d
dt

p

x

 = 1
m

0 0

1 0


p

x

 . (9.23)

A linear system of this form y′ = Ay can be solved by exponentiation with
solution

y = eAty0. (9.24)

In this case our matrix is nilpotent degree 2 so we can exponentiate only
requiring up to the first order power

eAt = I + At. (9.25)
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Specificallyp

x

 =
1 0

t
m 1


p0

x0

 . (9.26)

Written out in full this is just

p = p0

x =
p0

m
t + x0.

(9.27)

Since the canonical momentum is the regular momentum p = mv in this
case, we have the usual constant rate change of position x = v0t + x0 that
we could have gotten in many easier ways. I had hazard a guess that any
single variable Lagrangian that is at most quadratic in position or velocity
will yield a linear system.

The generalization of this Hamiltonian to three dimensions is straight-
forward, and we get

H =
1
m

p2. (9.28)

d
dt



px

x

py

y

pz

z


=

1
m



0 0

1 0

0 0

1 0

0 0

1 0





px

x

py

y

pz

z


. (9.29)

Since there is no coupling (nilpotent matrices down the diagonal) between
the coordinates this can be treated as three independent sets of equations
of the form eq. (9.23), and we have

pi(t) = pi(0)

xi(t) =
pi(0)

m
t + xi(0).

(9.30)

Or just

p(t) = p(0)

x(t) =
p(0)
m

t + x(0).
(9.31)
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9.5.2 Linear potential (surface gravitation).

For the gravitational force F = −mgẑ = −∇ϕ, we have ϕ = mgz, and a
Lagrangian of

L =
1
2

mv2 − ϕ =
1
2

mv2 −mgz. (9.32)

Without velocity dependence the canonical momentum is the momentum
mv, and our Hamiltonian is

H =
1

2m
p2 +mgz. (9.33)

The Hamiltonian equations are

∂H
∂pi
= ẋi =

1
m

pi

σi
∂H
∂xi
= −σi ṗi =


0

0

mg

 .
(9.34)

In matrix form we have

d
dt



px

x

py

y

pz

z


=

1
m



0 0

1 0

0 0

1 0

0 0

1 0





px

x

py

y

pz

z


+



0

0

0

0

−mg

0


. (9.35)

So our problem is now reduced to solving a linear system of the form

y′ = Ay + b. (9.36)

That extra little term b throws a wrench into things and I am no longer
sure how to integrate by inspection. What can be noted is that we really
only have to consider the z components since we have solved the problem
for the x and y coordinates in the force free case. That leaves

d
dt

pz

z

 = 1
m

0 0

1 0


pz

z

 +
−mg

0

 . (9.37)
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Is there any reason that we have to solve in matrix form? Except for a
coolness factor, not really, and we can integrate each equation directly.
For the momentum equation we have

pz = −mgt + pz(0). (9.38)

This can be substituted into the position equation for

ż =
1
m

(pz(0) −mgt). (9.39)

Direct integration is now possible for the final solution

z =
1
m

(pz(0)t −mgt2/2) + z0

=
pz(0)

m
t −

g
2

t2 + z0.

(9.40)

Again something that we could have gotten in many easier ways. Using
the result we see that the solution to eq. (9.37) in matrix form, again with
A = 1

m [
0 0
1 0 ], ispz

z

 = eAt

pz(0)

z(0)

 −mg

 t
1

2m t2

 . (9.41)

I thought if I wrote this out how to solve eq. (9.36) may be more obvious,
but that path is still unclear. If A were invertible, which it is not, then
writing b = Ac would allow for a change of variables. Does this matter
for consideration of a physical problem. Not really, so I will fight the urge
to play with the math for a while and perhaps revisit this later separately.

9.5.3 Harmonic oscillator (spring potential).

Like the free particle, the harmonic oscillator is very tractable in a phase
space representation. For a restoring force F = −kxx̂ = −∇ϕ, we have
ϕ = kx2/2, and a Lagrangian of

L =
1
2

mv2 −
1
2

kx2. (9.42)

Our Hamiltonian is again just the total energy

H =
1

2m
p2 +

1
2

kx2. (9.43)
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Evaluating the Hamiltonian equations we have

∂H
∂pi
= ẋi = pi/m

∂H
∂xi
= − ṗi = kxi.

(9.44)

Considering just the x dimension (the others have the free particle behav-
ior), our matrix phase space representation is

d
dt

p

x

 =
 0 −k

1/m 0


p

x

 . (9.45)

So with

A =

 0 −k

1/m 0

 . (9.46)

Our solution isp

x

 = eAt

p0

x0

 . (9.47)

The stateful nature of the phase space solution is interesting. Provided we
can make a simultaneous measurement of position and momentum, this
initial state determines a next position and momentum state at a new time
t = t0 + ∆t1, and we have a trajectory through phase space of discrete
transitions from one state to anotherp

x


i+1

= eA∆ti+1

p

x


i

. (9.48)

Or p

x


i+1

= eA∆ti+1eA∆ti · · · eA∆t1

p

x


0

. (9.49)

As for solving the system, we require again the exponential of our ma-
trix. This matrix being antisymmetric, has complex eigenvalues and again
cannot be exponentiated easily by diagonalization. However, this antisym-
metric matrix is very much like the complex imaginary and its square is
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a negative scalar multiple of identity, so we can proceed directly forming
the power series

A2 =

 0 −k

1/m 0


 0 −k

1/m 0

 = − k
m

I. (9.50)

The first few powers are

A2 = −
k
m

I

A3 = −
k
m

A

A4 =

(
k
m

)2

I

A5 =

(
k
m

)2

A.

(9.51)

So exponentiating we can collect cosine and sine terms

eAt = I

1 − k
m

t2

2!
+

(
k
m

)2 t4

4!
+ · · ·


+ A

√
m
k


√

k
m
−

√ k
m

3
t3

3!
+

√ k
m

5
t5

5!


= I cos

√ k
m

t

 + √
m
k

A sin

√ k
m

t

 .
(9.52)

As a check it is readily verified that this satisfies the desired d(eAt)/dt =
AeAt property.

The full solution in phase space representation is thereforep

x

 =
p0

x0

 cos

√ k
m

t

 + √
m
k

−kx0

p0/m

 sin

√ k
m

t

 . (9.53)

Written out separately this is clearer

p = p0 cos

√ k
m

t

 − √
m
k

kx0 sin

√ k
m

t


x = x0 cos

√ k
m

t

 + √
m
k

p0

m
sin

√ k
m

t

 .
(9.54)
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One can readily verify that mẋ = p, and mẍ = −kx as expected.
Let us pause before leaving the harmonic oscillator to see if eq. (9.54)

seems to make sense. Consider the position solution. With only initial po-
sition and no initial velocity p0/m we have oscillation that has no depen-
dence on the mass or spring constant. This is the unmoving mass about
to be let go at the end of a spring case, and since we have no damping
force the magnitude of the oscillation is exactly the initial position of the
mass. If the instantaneous velocity is measured at position zero, it makes
sense in this case that the oscillation amplitude does depend on both the
mass and the spring constant. The stronger the spring (k), the bigger the
oscillation, and the smaller the mass, the bigger the oscillation.

It is definitely no easier to work with the phase space formulation than
just solving the second order system directly. The fact that we have a
linear system to solve, at least in this particular case is kind of nice. Per-
haps this methodology can be helpful considering linear approximation
solutions in a neighborhood of some phase space point for more complex
non-linear systems.

9.5.4 Harmonic oscillator (change of variables.)

It was pointed out to me by Lut that the following rather strange looking
change of variables has nice properties

P = x

√
k
2
+

p
√

2m

Q = x

√
k
2
−

p
√

2m
.

(9.55)

In particular the Hamiltonian is then just

H = P2 + Q2. (9.56)

Part of this change of variables, which rotates in phase space, as well as
scales, looks like just a way of putting the system into natural units. We
do not however, need the rotation to do that. Suppose we write for just the
scaling change of variables

p =
√

2mPs

x =

√
2
k

Qs.
(9.57)
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or p

x

 =

√

2m 0

0

√
2
k


Ps

Qs

 . (9.58)

This also gives the Hamiltonian eq. (9.56), and the Hamiltonian equations
are transformed to

d
dt

Ps

Qs

 =
1/
√

2m 0

0

√
k
2


 0 −k

1/m 0



√

2m 0

0

√
2
k


Ps

Qs


=


0 −

√
k
m√

k
m

0


Ps

Qs

 .
(9.59)

This first change of variables is nice since it groups the two factors k and
m into a reciprocal pair. Since only the ratio is significant to the kinetics it
is nice to have that explicit. Since

√
k/m is in fact the angular frequency,

we can define

ω ≡

√
k
m
, (9.60)

and our system is reduced to

d
dt

Ps

Qs

 = ω
0 −1

1 0


Ps

Qs

 . (9.61)

Solution of this system now becomes particularly easy, especially if one
notes that the matrix factor above can be expressed in terms of the y axis
Pauli matrix σ2. That is

σ2 = i

0 −1

1 0

 . (9.62)

Inverting this, and labeling this matrix I we can write

I ≡

0 −1

1 0

 = −iσ2. (9.63)
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Recalling that σ2
2 = I, we then have I2 = −I, and see that this matrix be-

haves exactly like a unit imaginary. This reduces the Hamiltonian system
to

d
dt

Ps

Qs

 = Iω
Ps

Qs

 . (9.64)

We can now solve the system directly. Writing zs =
[

Ps
Qs

]
, this is just

zs(t) = eIωtzs(0) = (I cos(ωt) +I sin(ωt)) zs(0). (9.65)

With just the scaling giving both the simple Hamiltonian, and a simple
solution, what is the advantage of the further change of variables that
mixes (rotates in phase space by 45 degrees with a factor of two scaling)
the momentum and position coordinates? That second transformation is

P = Qs + Ps

Q = Qs − Ps.
(9.66)

Inverting this we havePs

Qs

 = 1
2

1 −1

1 1


P

Q

 . (9.67)

The Hamiltonian after this change of variables is now

d
dt

P

Q

 = ω

2

 1 1

−1 1


0 −1

1 0


1 −1

1 1


P

Q

 . (9.68)

But multiplying this out one finds that the equations of motion for the
state space vector are unchanged by the rotation, and writing z = ( P

Q ) for
the state vector, the Hamiltonian equations are

z′ = Iωz. (9.69)

This is just as we had before the rotation-like mixing of position and
momentum coordinates. Now it looks like the rotational change of co-
ordinates is related to the raising and lowering operators in the Quantum
treatment of the Harmonic oscillator, but it is not clear to me what the ad-
vantage is in the classical context? Perhaps the point is, that at least for the
classical Harmonic oscillator, we are free to rotate the phase space vector
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arbitrarily and not change the equations of motion. A restriction to the
classical domain is required since squaring the results of this 45 degree
rotation of the phase space vector requires commutation of the position
and momentum coordinates in order for the cross terms to cancel out.

Is there a deeper meaning to this rotational freedom? It seems to me
that one ought to be able to relate the rotation and the quantum ladder
operators in a more natural way, but it is not clear to me exactly how.

9.5.5 Force free system dependent on only differences.

In gravitational and electrostatic problems are forces are all functions of
only the difference in positions of the particles. Lets look at how the purely
kinetic Lagrangian and Hamiltonian change when one or more of the vec-
tor positions is reexpressed in terms of a difference in position change of
variables. In the force free case this is primarily a task of rewriting the
Hamiltonian in terms of the conjugate momenta after such a change of
variables.

The very simplest case is the two particle single dimensional Kinetic
Lagrangian,

L =
1
2

m1ṙ2
1 +

1
2

m2ṙ2
2. (9.70)

With a change of variables

x = r2 − r1

y = r2,
(9.71)

and elimination of r1, and r2 we have

L =
1
2

m1(ẏ − ẋ)2 +
1
2

m2ẏ2. (9.72)

We now need the conjugate momenta in terms of ẋ and ẏ. These are

Px =
∂L
∂ẋ
= −m1(ẏ − ẋ)

Py =
∂L
∂ẏ
= m1(ẏ − ẋ) +m2ẏ.

(9.73)

We must now rewrite the Lagrangian in terms of Px and Py, essentially
requiring the inversion of this which amounts to the inversion of the two
by two linear system of eq. (9.73). That isẋ

ẏ

 =
 m1 −m1

−m1 (m1 +m2)


−1 Px

Py

 . (9.74)
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This isẋ

ẏ

 = 1
m1

1
m2

m1 +m2 m1

m1 m1


Px

Py

 . (9.75)

Of these only ẏ and ẏ− ẋ are of interest and after a bit of manipulation we
find

ẏ =
1

m2
(Px + Py)

ẋ =
1

m1

1
m2

((m1 +m2)Px +m1Py).
(9.76)

From this we find the Lagrangian in terms of the conjugate momenta

L =
1

2m1
Px

2 +
1

2m2
(Px + Py)2. (9.77)

A quick check shows that Px + Py = m2ṙ2, and Px = −m1ṙ1, so we have
agreement with the original Lagrangian. Generalizing to the three dimen-
sional case is straightforward, and we have

L =
1
2

m1ṙ2
1 +

1
2

m2ṙ2
2 − ϕ(x1 − x2). (9.78)

With

x = x1 − x2

y = x2.
(9.79)

The 3D generalization of the above (following by adding indices then
summing) becomes

Px = σ j
∂L
∂ẋ j = −m1(ẏ − ẋ)

Py = σ j
∂L
∂ẏ j = m1(ẏ − ẋ) +m2ẏ.

(9.80)

L =
1

2m1
Px

2 +
1

2m2
(Px + Py)2 − ϕ(x)

H =
1

2m1
Px

2 +
1

2m2
(Px + Py)2 + ϕ(x).

(9.81)
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Finally, evaluation of the Hamiltonian equations we have

σ j
∂H

∂P j
x

= ẋ

= σ j

(
1

m1
P j

x +
1

m2
(P j

x + P j
y)
)

=
1

m1
Px +

1
m2

(Px + Py)

(9.82)

σ j
∂H

∂P j
y

= ẏ

= σ j
1

m2
(P j

x + P j
y)

=
1

m2
(Px + Py)

(9.83)

σ j
∂H
∂x j = −Ṗx

= −σ j
∂ϕ

∂x j

= −∇xϕ(x)

(9.84)

σ j
∂H
∂y j = −Ṗy

= −σ j
∂ϕ

∂y j

= 0.

(9.85)

Summarizing we have four first order equations

ẋ =
(

1
m1
+

1
m2

)
Px +

1
m2

Py

ẏ =
1

m2
(Px + Py)

Ṗx = ∇xϕ(x)

Ṗy = 0.

(9.86)

FIXME: what would we get if using the center of mass position as one of
the variables. A parametrization with three vector variables should also
still work, even if it includes additional redundancy.
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9.5.6 Gravitational potential.

Next I had like to consider a two particle gravitational interaction. How-
ever, to start we need the Lagrangian, and what should the potential term
be in a two particle gravitational Lagrangian? I had guess something with
a 1/x form, but do we need one potential term for each mass or something
interrelated? Whatever the Lagrangian is, we want it to produce the pair
of force relationships

Force on 2 = −Gm1m2
(r2 − r1)
|r2 − r1|

Force on 1 = Gm1m2
(r2 − r1)
|r2 − r1|

.

(9.87)

Guessing that the Lagrangian has a single term for the interaction poten-
tial

ϕ21 = κ
1

|r2 − r1|
. (9.88)

so that we have

L =
1
2

mv1
2 +

1
2

mv2
2 − ϕ21. (9.89)

We can evaluate the Euler-Lagrange equations and see if the result is con-
sistent with the Newtonian force laws of eq. (9.87). Suppose we write the
coordinates of ri as xk

i. There are then six Euler-Lagrange equations

∂L
∂x j

i
=

d
dt
∂L

∂ẋ j
i

−
∂ϕ21

∂x j
i
= mi ẍ

j
i .

(9.90)

Evaluating the potential derivatives separately. Consider the i = 2 deriva-
tive

∂ϕ21

∂x j2
= κ

∂

∂x j2

∑
k

(xk
2 − xk

1)2

−1/2

= −κ
1

|r2 − r1|
3

∑
k

(xk
2 − xk

1)
∂

∂x j2
(xk

2 − xk
1)

= −κ
1

|r2 − r1|
3 (x j

2 − x j
1).

(9.91)



178 hamiltonian mechanics .

Therefore the final result of the Euler-Lagrange equations is

κ
1

|r2 − r1|
3 (x j

2 − x j
1) = m2 ẍ j

2

−κ
1

|r2 − r1|
3 (x j

2 − x j
1) = m1 ẍ j

1.

(9.92)

which confirms the Lagrangian and potential guess and fixes the constant
κ = −Gm1m2. With the sign fixed, our potential, Lagrangian, and Hamil-
tonian are respectively

ϕ21 = −
Gm2m1

|r2 − r1|

L =
1
2

m1v1
2 +

1
2

m2v2
2 − ϕ21

H =
1

2m1
p1

2 +
1

2m2
p2

2 + ϕ21.

(9.93)

There is however an undesirable asymmetry to this expression, in partic-
ular a formulation that extends to multiple particles seems desirable. Let
us write instead a slight variation

ϕi j = −
Gmim j∣∣∣ri − r j

∣∣∣ , (9.94)

and form a scaled by two double summation over all pairs of potentials

L =
∑

i

1
2

mivi
2 −

1
2

∑
i, j

ϕi j. (9.95)

Having established what seems like an appropriate form for the Lagrangian,
we can write the Hamiltonian for the multiparticle gravitational interac-
tion by inspection

H =
∑

i

1
2mi

pi
2 +

1
2

∑
i, j

ϕi j. (9.96)

This leaves us finally in position to evaluate the Hamiltonian equations,
but the result of doing so is rudely nothing more than the Newtonian equa-
tions in coordinate form. We get, for the kth component of the ith particle

∂H
∂pk

i
= ẋk

i =
1
mi

pk
i, (9.97a)
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∂H
∂xk

i
= −ṗk

i = G
∑
j,i

mim j
xk

i − xk
j∣∣∣ri − r j

∣∣∣3 . (9.97b)

The state space vector for this system of equations is brutally ugly, and
could be put into the following form for example

z =



p1
1

p2
1

p3
1

x1
1

x2
1

x3
1

p1
2

p2
2

p3
2

x1
2
...



. (9.98)

Where the Hamiltonian equations take the form of a non-linear function
on such state space vectors We have a somewhat sparse equation of the
form

dz
dt
= A(z). (9.99)

One thing that is possible in such a representation is calculating the first
order approximate change in position and momentum moving from one
time to a small time later

z(t0 + ∆t) = z(t0) + A(z(t0))∆t. (9.100)

One could conceivably calculate the trajectories in phase space using such
increments, and if a small enough time increment is used this can be
thought of as solving the gravitational system. I recall that Feynman did
something like this in his lectures, but set up the problem in a more com-
putationally efficient form (it definitely did not have the redundancy built
into the Hamiltonian equations).
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FIXME: should be able to solve this for an arbitrary ∆t later time if
this was extended to the higher order terms. Need something like the ez·∇

chain rule expansion. Think this through. Will be a little different since
we are already starting with the first order contribution.

What does this system of equations look like with a reduction of order
through center of mass change of variables?

9.5.7 Pendulum.

FIXME: picture. x-axis down, y-axis right. The bob speed for a stiff rod of
length l is (lθ̇)2, and our potential is mgh = mgl(1− cos θ). The Lagrangian
is therefore

L =
1
2

ml2θ̇2 −mgl(1 − cos θ). (9.101)

The constant mgl term can be dropped, and our canonical momentum
conjugate to θ̇ is pθ = ml2θ̇, so our Hamiltonian is

H =
1

2ml2
pθ2 −mgl cos θ. (9.102)

We can now compute the Hamiltonian equations

∂H
∂pθ
= θ̇ =

1
ml2

pθ

∂H
∂q
= −ṗθ = mgl sin θ.

(9.103)

Only in the neighborhood of a particular angle can we write this in matrix
form. Suppose we expand this around θ = θ0 + α. The sine is then

sin θ ≈ sin θ0 + cos θ0α. (9.104)

The linear approximation of the Hamiltonian equations after a change of
variables become

d
dt

pθ
α

 =
 0 −mgl cos θ0

1/ml2 0


pθ
α

 +
−mgl sin θ0

θ̇0

 . (9.105)

A change of variables that scales the factors in the matrix to have equal
magnitude and equivalent dimensions is helpful. Writingpθ

α

 =
a 0

0 1

 z. (9.106)
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one finds

dz
dt
=

 0 −mgl cos θ0/a

a/ml2 0

 z +
1
a

−mgl sin θ0

θ̇0

 . (9.107)

To tidy this up, we want∣∣∣∣∣ a
ml2

∣∣∣∣∣ = ∣∣∣∣∣mgl cos θ0

a

∣∣∣∣∣ (9.108)

Or

a = ml2
√

g
l
|cos θ0|. (9.109)

The result of applying this scaling is quite different above and below the
horizontal due to the sign difference in the cosine. Below the horizontal
where θ0 ∈ (−π/2, π/2) we get

dz
dt
=

√
g
l

cos θ0

0 −1

1 0

 z +
1

ml2
√

g
l

cos θ0

−mgl sin θ0

θ̇0

 . (9.110)

and above the horizontal where θ0 ∈ (π/2, 3π/2) we get

dz
dt
=

√
−

g
l

cos θ0

0 1

1 0

 z +
1

ml2
√
−

g
l

cos θ0

−mgl sin θ0

θ̇0

 . (9.111)

Since ( 0 −1
1 0 ) has the characteristics of an imaginary number (squaring to

the negative of the identity) the homogeneous part of the solution for the
change of the phase space vector in the vicinity of any initial angle in the
lower half plane is trigonometric. Similarly the solutions are necessarily
hyperbolic in the upper half plane since ( 0 1

1 0 ) squares to identity. And
around ±π/2 something totally different (return to this later). The problem
is now reduced to solving a non-homogeneous first order matrix equation
of the form

z′ = Ωz + b. (9.112)

But we have the good fortune of being able to easily exponentiate and
invert this matrix Ω. The homogeneous problem

z′ = Ωz. (9.113)
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has the solution

zh(t) = eΩtzt=0. (9.114)

Assuming a specific solution z = eΩt f (t) for the non-homogeneous equa-
tion, one finds z = Ω−1(eΩt − I)b. The complete solution with both the
homogeneous and non-homogeneous parts is thus

z(t) = eΩtz0 +Ω−1(eΩt − I)b. (9.115)

Going back to the pendulum problem, lets write

ω =

√
g
l
|cos θ0|. (9.116)

Below the horizontal we have

Ω = ω

0 −1

1 0


Ω−1 = −

1
ω

0 −1

1 0


eΩt = cos(ωt)

1 0

0 1

 + sin(ωt)

0 −1

1 0

 .
(9.117)

Whereas above the horizontal we have

Ω = ω

0 1

1 0


Ω−1 =

1
ω

0 1

1 0


eΩt = cosh(ωt)

1 0

0 1

 + sinh(ωt)

0 1

1 0

 .
(9.118)

In both cases we havepθ
α

 =
ml2ω 0

0 1

 z

b =
1
ω

− g
l sin θ0
θ̇0

ml2

 .
(9.119)
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(where the real angle was θ = θ0 + α). Since in this case Ω−1 and eΩt

commute, we have below the horizontal

z(t) = eΩt(z0 −Ω−1b) −Ω−1b

= (cos(ωt)[ 1 0
0 1 ] + sin(ωt)[ 0 −1

1 0 ])

(
z0 +

1
ω
[ 0 −1

1 0 ]b
)
+

1
ω
[ 0 −1

1 0 ]b.

(9.120)

Expanding out the b terms and doing the same for above the horizontal
we have respectively (below and above)

zlow(t) = (cos(ωt)[ 1 0
0 1 ] + sin(ωt)[ 0 −1

1 0 ])

z0 −
1
ω2

 θ̇0
ml2

g
l sin θ0


 − 1

ω2

 θ̇0
ml2

g
l sin θ0


zhigh(t) = (cosh(ωt)[ 1 0

0 1 ] + sinh(ωt)[ 0 1
1 0 ])

z0 +
1
ω2

 θ̇0
ml2

g
l sin θ0


 + 1

ω2

 θ̇0
ml2

g
l sin θ0

 .
(9.121)

The only thing that is really left is re-insertion of the original momentum
and position variables using the inverse relation

z =

1/(ml2ω) 0

0 1


 pθ
θ − θ0

 . (9.122)

Will that final insertion do anything more than make things messier? Ob-
serve that the z0 only has a momentum component when expressed back
in terms of the total angle θ. Also recall that pθ = ml2θ̇, so we have

z =

 θ̇/ω
θ − θ0


z0 =

θ̇t=0/ω

0

 .
(9.123)
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If this is somehow mystically free of all math mistakes then we have the
final solution θ̇(t)/ω
θ(t) − θ0


low

= (cos(ωt)[ 1 0
0 1 ] + sin(ωt)[ 0 −1

1 0 ])

 θ̇(0)
ω

10
 − 1

ω2

 θ̇0
ml2

g
l sin θ0




−
1
ω2

 θ̇0
ml2

g
l sin θ0

 θ̇(t)/ω
θ(t) − θ0


high

= (cosh(ωt)[ 1 0
0 1 ] + sinh(ωt)[ 0 1

1 0 ])

 θ̇(0)
ω

10
 + 1

ω2

 θ̇0
ml2

g
l sin θ0




+
1
ω2

 θ̇0
ml2

g
l sin θ0

 .
(9.124)

A qualification is required to call this a solution since it is only a solution
is the restricted range where θ is close enough to θ0 (in some imprecisely
specified sense). One could conceivably apply this in a recursive fashion
however, calculating the result for a small incremental change, yielding
the new phase space point, and repeating at the new angle.

The question of what the form of the solution in the neighborhood of
±π/2 has also been ignored. That is probably also worth considering but
I do not feel like trying now.

9.5.8 Spherical pendulum.

For the spherical rigid pendulum of length l, we have for the distance
above the lowest point

h = l(1 + cos θ). (9.125)

(measuring θ down from the North pole as conventional). The Lagrangian
is therefore

L =
1
2

ml2(θ̇2 + sin2 θϕ̇2) −mgl(1 + cos θ). (9.126)

We can drop the constant term, using the simpler Lagrangian

L =
1
2

ml2(θ̇2 + sin2 θϕ̇2) −mgl cos θ. (9.127)



9.5 examples . 185

To express the Hamiltonian we need first the conjugate momenta, which
are

Pθ =
∂L
∂θ̇
= ml2θ̇

Pϕ =
∂L
∂ϕ̇
= ml2 sin2 θϕ̇.

(9.128)

We can now write the Hamiltonian

H =
1

2ml2

(
Pθ2 +

1
sin2 θ

Pϕ2
)
+mgl cos θ. (9.129)

Before going further one sees that there is going to be trouble where
sin θ = 0. Curiously, this is at the poles, the most dangling position and
the upright. The south pole is the usual point where we solve the planar
pendulum problem using the harmonic oscillator approximation, so it is
somewhat curious that the energy of the system appears to go undefined
at this point where the position is becoming more defined. It seems al-
most like a quantum uncertainty phenomena until one realizes that the
momentum conjugate to ϕ is itself proportional to sin2 θ. By expressing
the energy in terms of this Pϕ momentum we have to avoid looking at
the poles for a solution to the equations. If we go back to the Lagrangian
and the Euler-Lagrange equations, this point becomes perfectly tractable
since we are no longer dividing through by sin2 θ.

Examining the polar solutions is something to return to. For now, let us
avoid that region. For regions where sin θ is nicely non-zero, we get for
the Hamiltonian equations

∂H
∂Pϕ
= ϕ̇ =

1
ml2 sin2 θ

Pϕ

∂H
∂Pθ
= θ̇ =

1
ml2

Pθ

∂H
∂ϕ
= −Ṗϕ = 0

∂H
∂θ
= −Ṗθ = −

cos θ
ml2 sin3 θ

Pϕ2 −mgl sin θ.

(9.130)

These now expressing the dynamics of the system. The first two equations
are just the definitions of the canonical momenta that we started with
using the Lagrangian. Not surprisingly, but unfortunate, we have a non-
linear system here like the planar rigid pendulum, so despite this being
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one of the most simple systems it does not look terribly tractable. What
would it take to linearize this system of equations?

Write the state space vector for the system as

x =


Pθ
θ

Pϕ
ϕ


. (9.131)

lets also suppose that we are interested in the change to the state vector in
the neighborhood of an initial state

x =


Pθ
θ

Pϕ
ϕ


=


Pθ
θ

Pϕ
ϕ


0

+ z. (9.132)

The Hamiltonian equations can then be written

dz
dt
=



cos θ
ml2 sin3 θ

Pϕ2 +mgl sin θ
1

ml2 Pθ
0

1
ml2 sin2 θ

Pϕ


. (9.133)

Getting away from the specifics of this particular system is temporarily
helpful. We have a set of equations that we wish to calculate a linear
approximation for

dzµ
dt
= Aµ(xν) ≈ Aµ(x0) +

∑
α

∂Aµ
∂xα

∣∣∣∣∣∣x0

zα. (9.134)
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Our linear approximation is thus

dz
dt
≈



cos θ
ml2 sin3 θ

Pϕ2 +mgl sin θ
1

ml2 Pθ
0

1
ml2 sin2 θ

Pϕ


0

+


0 −

Pϕ2(1+2 cos2 θ)
ml2 sin4 θ

+mgl cos θ 2 cos θ
ml2 sin3 θ

Pϕ 0
1

ml2 0 0 0

0 0 0 0

0 −2Pϕ cos θ
ml2 sin3 θ

1
ml2 sin2 θ

0


0

z.

(9.135)

Now, this is what we get blindly trying to set up the linear approximation
of the state space differential equation. We see that the cyclic coordinate
ϕ leads to a bit of trouble since no explicit ϕ dependence in the Hamil-
tonian makes the resulting matrix factor non-invertible. It appears that
we would be better explicitly utilizing this cyclic coordinate to note that
Pϕ = constant, and to omit this completely from the state vector. Our
equations in raw form are now

θ̇ =
1

ml2
Pθ

Ṗθ =
cos θ

ml2 sin3 θ
Pϕ2 +mgl sin θ

ϕ̇ =
1

ml2 sin2 θ
Pϕ.

(9.136)

We can treat the ϕ dependence later once we have solved for θ. That equa-
tion to later solve is just this last

ϕ̇ =
1

ml2 sin2 θ
Pϕ. (9.137)

This integrates directly, presuming θ = θ(t) is known, and we have

ϕ − ϕ(0) =
Pϕ
ml2

∫ t

0

dτ

sin2 θ(τ)
. (9.138)

Now the state vector and its perturbation can be redefined omitting all but
the θ dependence. Namely

x =

Pθ
θ

 . (9.139)
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x =

Pθ
θ

 =
Pθ
θ


0

+ z. (9.140)

We can now write the remainder of this non-linear system as

dz
dt
=

 cos θ
ml2 sin3 θ

Pϕ2 +mgl sin θ
1

ml2 Pθ

 . (9.141)

and make the linear approximation around x0 as

dz
dt
≈

 cos θ
ml2 sin3 θ

Pϕ2 +mgl sin θ
1

ml2 Pθ


0

+

 0 −
Pϕ2(1+2 cos2 θ)

ml2 sin4 θ
+mgl cos θ

1
ml2 0


0

z.

(9.142)

This now looks a lot more tractable, and is in fact exactly the same form
now as the equation for the linearized planar pendulum. The only differ-
ence is the normalization required to switch to less messy dimensionless
variables. The main effect of allowing the trajectory to have a non-planar
component is a change in the angular frequency in the θ dependent motion.
That frequency will no longer be

√
|cos θ0|g/l, but also has a Pϕ and other

more complex trigonometric θ dependencies. It also appears that we can
probably have hyperbolic or trigonometric solutions in the neighborhood
of any point, regardless of whether it is a northern hemispherical point
or a southern one. In the planar pendulum the unambiguous sign of the
matrix terms led to hyperbolic only above the horizon, and trigonometric
only below.

9.5.9 Double and multiple pendulums, and general quadratic velocity
dependence.

In the following section I started off with the goal of treating two con-
nected pendulums moving in a plane. Even setting up the Hamiltonian’s
for this turned out to be a bit messy, requiring a matrix inversion. Tack-
ling the problem in the guise of using a more general quadratic form
(which works for the two particle as well as N particle cases) seemed
like it would actually be simpler than using the specifics from the angular
velocity dependence of the specific pendulum problem. Once the Hamil-
tonian equations were found in this form, an attempt to do the first order
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Taylor expansion as done for the single planar pendulum and the spher-
ical pendulum was performed. This turned out to be a nasty mess and
is seen to not be particularly illuminating. I did not know that is how it
would turn out ahead of time since I had my fingers crossed for some sort
of magic simplification once the final substitution were made. If such a
simplification is possible, the procedure to do so is not obvious.

Although the Hamiltonian equations for a spherical pendulum have
been considered previously, for the double pendulum case it seems pru-
dent to avoid temptation, and to first see what happens with a simpler first
step, a planar double pendulum.

Setting up coordinates x axis down, and y axis to the left with i = x̂ŷ
we have for the position of the first mass m1, at angle θ1 and length l1

z1 = x̂l1eiθ1 . (9.143)

If the second mass, dangling from this is at an angle θ2 from the x axis,
its position is

z2 = z1 + x̂l2eiθ2 . (9.144)

We need the velocities, and their magnitudes. For z1 this is

|ż1|
2 = l12θ̇2

1. (9.145)

For the second mass

ż2 = x̂i
(
l1θ̇1eiθ1 + l2θ̇2eiθ2

)
. (9.146)

Taking conjugates and multiplying out we have

|ż2|
2 = l12θ̇2

1 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2) + l22θ̇2
2. (9.147)

That is all that we need for the Kinetic terms in the Lagrangian. Now
we need the height for the mgh terms. If we set the reference point at
the lowest point for the double pendulum system, the height of the first
particle is

h1 = l2 + l1(1 − cos θ1). (9.148)

For the second particle, the distance from the horizontal is

d = l1 cos θ1 + l2 cos θ2. (9.149)
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So the total distance from the reference point is

h2 = l1(1 − cos θ1) + l2(1 − cos θ2). (9.150)

We now have the Lagrangian

L′ =
1
2

m1l12θ̇2
1 +

1
2

m2
(
l12θ̇2

1 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2) + l22θ̇2
2

)
−m1g(l2 + l1(1 − cos θ1)) −m2g(l1(1 − cos θ1) + l2(1 − cos θ2)).

(9.151)

Dropping constant terms (effectively choosing a difference reference point
for the potential) and rearranging a bit, also writing M = m1+m2, we have
the simpler Lagrangian

L =
1
2

Ml12θ̇2
1 +

1
2

m2l22θ̇2
2 +m2l1l2θ̇1θ̇2 cos(θ1 − θ2)

+Ml1g cos θ1 +m2l2g cos θ2.
(9.152)

The conjugate momenta that we need for the Hamiltonian are

Pθ1 = Ml12θ̇1 +m2l1l2θ̇2 cos(θ1 − θ2)

Pθ2 = m2l22θ̇2 +m2l1l2θ̇1 cos(θ1 − θ2).
(9.153)

Unlike any of the other simpler Hamiltonian systems considered so far,
the coupling between the velocities means that we have a system of equa-
tions that we must first invert before we can even express the Hamiltonian
in terms of the respective momenta.

That isPθ1

Pθ2

 =
 Ml12 m2l1l2 cos(θ1 − θ2)

m2l1l2 cos(θ1 − θ2) m2l22


θ̇1

θ̇2

 . (9.154)

While this is easily invertible, doing so and attempting to substitute it
back, results in an unholy mess (albeit perhaps one that can be simplified).
Is there a better way? A possibly promising way is motivated by observing
that this matrix, a function of the angular difference δ = θ1 − θ2, looks like
it is something like a moment of inertia tensor. If we call this I, and write

Θ ≡

θ1

θ2

 . (9.155)
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Then the relation between the conjugate momenta in vector form

p ≡

Pθ1

Pθ2

 , (9.156)

and the angular velocity vector can be written

p = I(δ)Θ̇. (9.157)

Can we write the Lagrangian in terms of Θ̇? The first Kinetic term is easy,
just

1
2

m1l2θ̇2
1 =

1
2

m1Θ̇
T

l21 0

0 0

 Θ̇. (9.158)

For the second mass, going back to eq. (9.146), we can write

ż2 = x̂i
[
l1eiθ1 l2eiθ2

]
Θ̇. (9.159)

Writing r for this 1x2 matrix, we can utilize the associative property for
compatible sized matrices to rewrite the speed for the second particle in
terms of a quadratic form

|ż2|
2 =

(
rΘ̇

) (
rΘ̇

)
= Θ̇

T (
rTr

)
Θ̇. (9.160)

The Lagrangian kinetic can all now be grouped into a single quadratic
form

Q ≡ m1

l10
 [l1 0

]
+m2

l1eiθ1

l2eiθ2

 [l1e−iθ1 l2e−iθ2
]
. (9.161)

L =
1
2

Θ̇
TQΘ̇ +Ml1g cos θ1 +m2l2g cos θ2. (9.162)

It is also clear that this generalize easily to multiple connected pendulums,
as follows

K =
1
2

Θ̇
T ∑

k

mkQkΘ̇

Qk =
[
lrlsei(θr−θs)

]
r,s≤k

ϕ = −g
∑

k

lk cos θk

N∑
j=k

m j

L = K − ϕ.

(9.163)
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In the expression for Qk above, it is implied that the matrix is zero for any
indices r, s > k, so it would perhaps be better to write explicitly

Q =
∑

k

mkQk =

[∑N
j=max(r,s) m jlrlsei(θr−θs)

]
r,s
. (9.164)

Returning to the problem, it is convenient and sufficient in many cases
to only discuss the representative double pendulum case. For that we can
calculate the conjugate momenta from eq. (9.162) directly

Pθ1 =
∂

∂θ̇1

1
2

Θ̇
TQΘ̇

=
∂

∂θ̇1

1
2

Θ̇
TQ

10
 + 1

2

[
1 0

]
QΘ̇

=
[
1 0

] (1
2

(Q + QT)
)

Θ̇.

(9.165)

Similarly the θ2 conjugate momentum is

Pθ2 =
[
01

] (1
2

(Q + QT)
)

Θ̇. (9.166)

Putting both together, it is straightforward to verify that this recovers
eq. (9.154), which can now be written

p =
1
2

(Q + QT)Θ̇ = IΘ̇. (9.167)

Observing that I = IT, and thus (IT)−1 = I−1, we now have everything
required to express the Hamiltonian in terms of the conjugate momenta

H = pT
(
1
2
I−1QI−1

)
p −Mgl1 cos θ1 −m2l2g cos θ2. (9.168)
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This is now in a convenient form to calculate the first set of Hamiltonian
equations.

θ̇k =
∂H
∂Pθk

=
∂pT

∂Pθk

1
2
I−1QI−1p + pT 1

2
I−1QI−1 ∂pT

∂Pθk

=
[
δk j

]
j

1
2
I−1QI−1p + pT 1

2
I−1QI−1

[
δik

]
i

=
[
δk j

]
j
I−1 1

2
(Q + QT)

I

I−1p

=
[
δk j

]
j
I−1p.

(9.169)

So, when the velocity dependence is a quadratic form as identified in
eq. (9.161), the first half of the Hamiltonian equations in vector form are
just

Θ̇ =
[

∂
∂Pθ1

· · · ∂
∂PθN

]T
H = I−1p. (9.170)

This is exactly the relation we used in the first place to re-express the
Lagrangian in terms of the conjugate momenta in preparation for this cal-
culation. The remaining Hamiltonian equations are trickier, and what we
now want to calculate. Without specific reference to the pendulum prob-
lem, lets do this calculation for the general Hamiltonian for a non-velocity
dependent potential. That is

H = pT
(
1
2
I−1QI−1

)
p + ϕ(Θ). (9.171)
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The remaining Hamiltonian equations are ∂H/∂θa = −Ṗθa , and the tricky
part of evaluating this is going to all reside in the Kinetic term. Diving
right in this is

∂K
∂θa
= pT

(
1
2
∂(I−1)
∂θa

QI−1
)

p + pT
(
1
2
I−1 ∂Q

∂θa
I−1

)
p

+ pT
(
1
2
I−1Q

∂(I−1)
∂θa

)
p

= pT ∂(I−1)
∂θa

1
2

(Q + QT)

= I

I−1p + pT
(
1
2
I−1 ∂Q

∂θa
I−1

)
p

= pT ∂(I−1)
∂θa

p + pT
(
1
2
I−1 ∂Q

∂θa
I−1

)
p.

(9.172)

For the two particle case we can expand this inverse easily enough, and
then take derivatives to evaluate this, but this is messier and intractable for
the general case. We can however, calculate the derivative of the identity
matrix using the standard trick from rigid body mechanics

0 =
∂I
∂θa

=
∂(II−1)
∂θa

=
∂I

∂θa
I−1 +I

∂(I−1)
∂θa

.

(9.173)

Thus the derivative of the inverse (moment of inertia?) matrix is

∂(I−1)
∂θa

= −I−1 ∂I

∂θa
I−1

= −I−1 1
2

(
∂Q
∂θa
+
∂QT

∂θa

)
I−1.

(9.174)

This gives us for the Hamiltonian equation

∂H
∂θa
= −

1
2

pTI−1
(
∂Q
∂θa

)T

I−1p +
∂ϕ

∂θa
. (9.175)

If we introduce a phase space position gradients

∇ ≡

[
∂
∂θ1

· · · ∂
∂θN

]T
. (9.176)
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Then for the second half of the Hamiltonian equations we have the vector
form

−∇H = ṗ =
[

1
2 pTI−1

(
∂Q
∂θr

)T
I−1p

]
r
−∇ϕ. (9.177)

The complete set of Hamiltonian equations for eq. (9.171), in block matrix
form, describing all the phase space change of the system is therefore

d
dt

p
Θ

 =

[

1
2 pTI−1

(
∂Q
∂θr

)T
I−1p

]
r
−∇ϕ

I−1p

 =

[

1
2 Θ̇

(
∂Q
∂θr

)T
Θ̇

]
r
−∇ϕ

Θ̇

 .
(9.178)

This is a very general relation, much more so than required for the original
two particle problem. We have the same non-linearity that prevents this
from being easily solved. If we want a linear expansion around a phase
space point to find an approximate first order solution, we can get that
applying the chain rule, calculating all the ∂/∂θk, and ∂/∂Pθk derivatives
of the top N rows of this matrix.

If we write

z ≡

p
Θ

 −
p
Θ


t=0

. (9.179)

and the Hamiltonian equations eq. (9.178) as

d
dt

[
pΘ

]
= A(p,Θ). (9.180)

Then the linearization, without simplifying or making explicit yet is

ż ≈


[

1
2 Θ̇

(
∂Q
∂θr

)T
Θ̇

]
r
−∇ϕ

Θ̇


t=0

+

[
∂A
∂Pθ1

· · · ∂A
∂PθN

∂A
∂θ1

· · · ∂A
∂θN

]∣∣∣∣∣
t=0

z.

(9.181)

For brevity the constant term evaluated at t = 0 is expressed in terms of
the original angular velocity vector from our Lagrangian. The task is now
evaluating the derivatives in the first order term of this Taylor series. Let
us do these one at a time and then reassemble all the results afterward.

So that we can discuss just the first order terms lets write ∆ for the
matrix of first order derivatives in our Taylor expansion, as in

f (p,Θ) = f (p,Θ)|0 + ∆ f |0z + · · · (9.182)
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First, lets do the potential gradient.

∆(∇ϕ) =
[
0
[
∂2ϕ
∂θr∂θc

]
r,c

]
. (9.183)

Next in terms of complexity is the first order term of Θ̇, for which we
have

∆(I−1p) =
[[
I−1

[
δrc

]
r

]
c

[
∂(I−1)
∂θc

p
]
c

]
. (9.184)

The δ over all rows r and columns c is the identity matrix and we are left
with

∆(I−1p) =
[
I−1

[
∂(I−1)
∂θc

p
]
c

]
. (9.185)

Next, consider just the Pθ dependence in the elements of the row vector[
1
2 pTI−1

(
∂Q
∂θr

)T
I−1p

]
r
. (9.186)

We can take derivatives of this, and exploiting the fact that these elements
are scalars, so they equal their transpose. Also noting that A−1T

= AT−1,
and I = IT, we have

∂

∂Pθc

1
2

pTI−1
(
∂Q
∂θr

)T

I−1p


=
1
2

pTI−1
(
∂Q
∂θr

)T

I−1
[
δrc

]
r
+

1
2

([
δrc

]
r

)T
I−1

(
∂Q
∂θr

)T

I−1p

= pTI−1
(
∂

∂θr

1
2

(
Q + QT

))
I−1

[
δrc

]
r

= pTI−1 ∂I

∂θr
I−1

[
δrc

]
r
.

(9.187)

Since we also have B′B−1 + B(B−1)′ = 0, for invertible matrixes B, this
reduces to

∂

∂Pθc

1
2

pTI−1
(
∂Q
∂θr

)T

I−1p
 = −pT ∂(I−1)

∂θr

[
δrc

]
r
. (9.188)

Forming the matrix over all rows r, and columns c, we get a trailing iden-
tity multiplying from the right, and are left with[

∂
∂Pθc

(
1
2 pTI−1

(
∂Q
∂θr

)T
I−1p

)]
r,c
=

[
−pT ∂(I−1)

∂θr

]
r
=

[
−
∂(I−1)
∂θc

p
]
c
. (9.189)
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Okay, getting closer. The only thing left is to consider the remaining θ

dependence of eq. (9.186), and now want the theta partials of the scalar
matrix elements

∂

∂θc

1
2

pTI−1
(
∂Q
∂θr

)T

I−1p


= pT

 ∂

∂θc

1
2
I−1

(
∂Q
∂θr

)T

I−1

 p

= pT 1
2
I−1 ∂

2QT

∂θc∂θr
I−1p

+ pT 1
2

∂(I−1)
∂θc

(
∂Q
∂θr

)T

I−1 +I−1
(
∂Q
∂θr

)T
∂(I−1)
∂θc

 p

= pT 1
2
I−1 ∂

2QT

∂θc∂θr
I−1p + pT ∂(I−1)

∂θc

∂I

∂θr
I−1p.

(9.190)

There is a slight asymmetry between the first and last terms here that can
possibly be eliminated. Using B−1′ = −B−1B′B−1, we can factor out the
I−1p = Θ̇ terms

∂

∂θc

1
2

pTI−1
(
∂Q
∂θr

)T

I−1p
 = Θ̇

T
(
1
2
∂2QT

∂θc∂θr
−
∂I

∂θc
I−1 ∂I

∂θr

)
Θ̇. (9.191)

Is this any better? Maybe a bit. Since we are forming the matrix over all
r, c indices and can assume mixed partial commutation the transpose can
be dropped leaving us with[

∂
∂θc

(
1
2 pTI−1

(
∂Q
∂θr

)T
I−1p

)]
r,c
=

[
Θ̇

T
(

1
2

∂2Q
∂θc∂θr

− ∂I
∂θc
I−1 ∂I

∂θr

)
Θ̇

]
r,c
. (9.192)

We can now assemble all these individual derivatives

ż ≈


[

1
2 Θ̇

(
∂Q
∂θr

)T
Θ̇

]
r
−∇ϕ

Θ̇


t=0

+


−

[
∂(I−1)
∂θc

p
]
c

[
Θ̇

T
(

1
2

∂2Q
∂θc∂θr

− ∂I
∂θc
I−1 ∂I

∂θr

)
Θ̇ −

∂2ϕ
∂θr∂θc

]
r,c

I−1
[
∂(I−1)
∂θc

p
]
c


t=0

z.

(9.193)
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We have both ∂(I−1)/∂θk and ∂I/∂θk derivatives above, which will com-
plicate things when trying to evaluate this for any specific system. A final
elimination of the derivatives of the inverse inertial matrix leaves us with

ż ≈


[

1
2 Θ̇

(
∂Q
∂θr

)T
Θ̇

]
r
−∇ϕ

Θ̇


t=0

+


[
I−1 ∂I

∂θc
Θ̇

]
c

[
Θ̇

T
(

1
2

∂2Q
∂θc∂θr

− ∂I
∂θc
I−1 ∂I

∂θr

)
Θ̇ −

∂2ϕ
∂θr∂θc

]
r,c

I−1 −

[
I−1 ∂I

∂θc
Θ̇

]
c


t=0

z.

(9.194)

9.5.9.1 Single pendulum verification.

Having accumulated this unholy mess of abstraction, lets verify this first
against the previous result obtained for the single planar pendulum. Then
if that checks out, calculate these matrices explicitly for the double and
multiple pendulum cases. For the single mass pendulum we have

Q = I = ml2

ϕ = −mgl cos θ.
(9.195)

So all the θ partials except that of the potential are zero. For the potential
we have

−
∂2ϕ

∂2θ

∣∣∣∣∣∣
0
= −mgl cos θ0. (9.196)

and for the angular gradient

−∇ϕ|0 =
[
−mgl sin θ0

]
. (9.197)

Putting these all together in this simplest application of eq. (9.194) we
have for the linear approximation of a single point mass pendulum about
some point in phase space at time zero:

ż ≈

−mgl sin θ0

θ̇0

 +
 0 −mgl cos θ0

1
ml2 0

 z. (9.198)

Excellent. Have not gotten into too much trouble with the math so far. This
is consistent with the previous results obtained considering the simple
pendulum directly (it actually pointed out an error in the earlier pendulum
treatment which is now fixed (I had dropped the θ̇0 term)).
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9.5.9.2 Double pendulum explicitly.

For the double pendulum, with δ = θ1 − θ2, and M = m1 +m2, we have

Q =

 Ml12 m2l2l1ei(θ2−θ1)

m2l1l2ei(θ1−θ2) m2l22

 =
 Ml12 m2l2l1e−iδ

m2l1l2eiδ m2l22

 . (9.199)

1
2

Θ̇
T
(
∂Q
∂θ1

)T

Θ̇ =
1
2

m2l1l2iΘ̇T

 0 −e−iδ

eiδ 0


T

Θ̇

=
1
2

m2l1l2iΘ̇T

 eiδθ̇2

−e−iδθ̇1


=

1
2

m2l1l2iθ̇1θ̇2(eiδ − e−iδ)

= −m2l1l2θ̇1θ̇2 sin δ.

(9.200)

The θ2 derivative is the same but inverted in sign, so we have most of the
constant term calculated. We need the potential gradient to complete. Our
potential was

ϕ = −Ml1g cos θ1 −m2l2g cos θ2. (9.201)

So, the gradient is

∇ϕ =
[
Ml1g sin θ1m2l2g sin θ2

]
. (9.202)

Putting things back together we have for the linear approximation of the
two pendulum system

ż =


m2l1l2θ̇1θ̇2 sin(θ1 − θ2)

−1

1

 −g

Ml1 sin θ1

m2l2 sin θ2


θ̇1

θ̇2


t=0

+ Az. (9.203)

Where A is still to be determined (from eq. (9.194)). One of the elements
of A are the matrix of potential derivatives. These are

[
∂∇ϕ
∂θ1

∂∇ϕ
∂θ2

]
=

Ml1g cos θ1 0

0 m2l2g cos θ2

 . (9.204)
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We also need the inertial matrix and its inverse. These are

I =

 Ml12 m2l2l1 cos δ

m2l1l2 cos δ m2l22

 . (9.205)

I−1 =
1

l12l22m2(M −m2 cos2 δ)

 m2l22 −m2l2l1 cos δ

−m2l1l2 cos δ Ml12

 . (9.206)

Since

∂Q
∂θ1
= m2l1l2i

 0 −e−iδ

eiδ 0

 . (9.207)

We have

∂

∂θ1

∂Q
∂θ1
= −m2l1l2

 0 e−iδ

eiδ 0


∂

∂θ2

∂Q
∂θ1
= m2l1l2

 0 e−iδ

eiδ 0


∂

∂θ1

∂Q
∂θ2
= m2l1l2

 0 e−iδ

eiδ 0


∂

∂θ2

∂Q
∂θ2
= −m2l1l2

 0 e−iδ

eiδ 0

 .

(9.208)

and the matrix of derivatives becomes

1
2

Θ̇
T ∂

∂θc

∂Q
∂θr

Θ̇ = m2l1l2θ̇1θ̇2 cos(θ1 − θ2)

−1 1

1 −1

 . (9.209)

For the remaining two types of terms in the matrix A we need I−1∂I/∂θk.
The derivative of the inertial matrix is

∂I

∂θk
= −m2l1l2(δk1 − δk2)

 0 sin δ

sin δ 0

 . (9.210)
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Computing the product

I−1 ∂I

∂θk
=

−m2l1l2(δk1 − δk2)
l12l22m2(M −m2 cos2 δ)

× m2l22 −m2l2l1 cos δ

−m2l1l2 cos δ Ml12


 0 sin δ

sin δ 0


=
−m2l1l2(δk1 − δk2) sin δ
l12l22m2(M −m2 cos2 δ)

−m2l2l1 cos δ m2l22

Ml12 −m2l1l2 cos δ

 .
(9.211)

We want the matrix of I−1∂I/∂θcΘ̇ over columns c, and this is[
I−1∂I/∂θcΘ̇

]
c
=

m2l1l2 sin δ
l12l22m2(M −m2 cos2 δ)

× m2l2l1 cos δθ̇1 −m2l22θ̇2 −m2l2l1 cos δθ̇1 +m2l22θ̇2

−Ml12θ̇1 +m2l1l2 cos δθ̇2 Ml12θ̇1 −m2l1l2 cos δθ̇2

 . (9.212)

Very messy. Perhaps it would be better not even bothering to expand this
explicitly? The last term in the matrix A is probably no better. For that we
want

−
∂I

∂θc
I−1 ∂I

∂θr
=
−m2

2l12l22(δc1 − δc2)(δr1 − δr2) sin2 δ

l12l22m2(M −m2 cos2 δ)

0 1

1 0

×−m2l2l1 cos δ m2l22

Ml12 −m2l1l2 cos δ


=
−m2

2l12l22(δc1 − δc2)(δr1 − δr2) sin2 δ

l12l22m2(M −m2 cos2 δ)

 Ml12 −m2l1l2 cos δ

−m2l2l1 cos δ m2l22

 .
(9.213)

With a sandwich of this between Θ̇
T and Θ̇ we are almost there

−Θ̇
T ∂I

∂θc
I−1 ∂I

∂θr
Θ̇ =

−m2
2l12l22(δc1 − δc2)(δr1 − δr2) sin2 δ

l12l22m2(M −m2 cos2 δ)(
Ml12θ̇2

1 − 2m2l1l2 cos δθ̇1θ̇2 + +m2l22θ̇2
2

)
.

(9.214)

We have a matrix of these scalars over r, c, and that is[
−Θ̇

T ∂I
∂θc
I−1 ∂I

∂θr
Θ̇

]
rc
=

m2
2l12l22 sin2 δ

l12l22m2(M −m2 cos2 δ)
×(

Ml12θ̇2
1 − 2m2l1l2 cos δθ̇1θ̇2 +m2l22θ̇2

2

)
[ −1 1

1 −1 ].
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(9.215)

Putting all the results for the matrix A together is going to make a disgust-
ing mess, so lets summarize in block matrix form

A =

 B C

I−1 −B


t=0

. (9.216)

B =
m2l1l2 sin δ

l12l22m2(M −m2 cos2 δ)
× m2l2l1 cos δθ̇1 −m2l22θ̇2 −m2l2l1 cos δθ̇1 +m2l22θ̇2

−Ml12θ̇1 +m2l1l2 cos δθ̇2 Ml12θ̇1 −m2l1l2 cos δθ̇2

 . (9.217)

C = m2l1l2θ̇1θ̇2 cos δ

−1 1

1 −1


+

m2
2l12l22 sin2 δ

l12l22m2(M −m2 cos2 δ)
×

(
Ml12θ̇2

1 − 2m2l1l2 cos δθ̇1θ̇2 +m2l22θ̇2
2

) −1 1

1 −1


+

Ml1g cos θ1 0

0 m2l2g cos θ2



(9.218)

I−1 =
1

l12l22m2(M −m2 cos2 δ)

 m2l22 −m2l2l1 cos δ

−m2l1l2 cos δ Ml12

 . (9.219)

b =


m2l1l2θ̇1θ̇2 sin(θ1 − θ2)

−1

1

 −g

Ml1 sin θ1

m2l2 sin θ2


θ̇1

θ̇2


, (9.220)

where these are all related by the first order matrix equation

dz
dt
= b|t=0 + A|t=0z. (9.221)
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Wow, even to just write down the equations required to get a linear ap-
proximation of the two pendulum system is horrendously messy, and this
is not even trying to solve it. Numerical and or symbolic computation is
really called for here. If one elected to do this numerically, which looks
pretty much mandatory since the analytic way did not turn out to be sim-
ple even for just the two pendulum system, then one is probably better off
going all the way back to eq. (9.178) and just calculating the increment
for the trajectory using a very small time increment, and do this repeat-
edly (i.e. do a zeroth order numerical procedure instead of the first order
which turns out much more complicated).

9.5.10 Non-covariant Lorentz force.

In [7], the Lagrangian for a charged particle is given as (12.9) as

L = −mc2
√

1 − u2/c2 +
e
c

u ·A − eΦ. (9.222)

Let us work in detail from this to the Lorentz force law and the Hamilto-
nian and from the Hamiltonian again to the Lorentz force law using the
Hamiltonian equations. We should get the same results in each case, and
have enough details in doing so to render the text a bit more comprehen-
sible.

9.5.10.1 Canonical momenta.

We need the conjugate momenta for both the Euler-Lagrange evaluation
and the Hamiltonian, so lets get that first. The components of this are

∂L
∂ẋi
= −

1
2

mc2γ(−2/c2)ẋi +
e
c

Ai

= mγẋi +
e
c

Ai.

(9.223)

In vector form the canonical momenta are then

P = γmu +
e
c

A. (9.224)

9.5.10.2 Euler-Lagrange evaluation.

Completing the Euler-Lagrange equation evaluation is the calculation of

dP
dt
= ∇L. (9.225)
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On the left hand side we have

dP
dt
=

d(γmu)
dt

+
e
c

dA
dt
, (9.226)

and on the right, with implied summation over repeated indices, we have

∇L =
e
c

ek(u · ∂kA) − e∇Φ. (9.227)

Putting things together we have

d(γmu)
dt

= −e
(
∇Φ +

1
c
∂A
∂t
+

1
c

(
∂A
∂xa

∂xa

∂t
− ek(u · ∂kA)

))
= −e

(
∇Φ +

1
c
∂A
∂t
+

1
c

ebua

(
∂Ab

∂xa
−
∂Aa

∂xb

))
.

(9.228)

With

E = −∇Φ −
1
c
∂A
∂t
, (9.229)

the first two terms are recognizable as the electric field. To put some struc-
ture in the remainder start by writing

∂Ab

∂xa
−
∂Aa

∂xb
= ϵ f ab(∇ ×A) f . (9.230)

The remaining term, with B = ∇ ×A is now

−
e
c

ebuaϵ
gabBg =

e
c

eaubϵ
abgBg

=
e
c

u ×B.
(9.231)

We are left with the momentum portion of the Lorentz force law as ex-
pected

d(γmu)
dt

= e
(
E +

1
c

u ×B
)
. (9.232)

Observe that with a small velocity Taylor expansion of the Lagrangian we
obtain the approximation

−mc2
√

1 − u2/c2 ≈ −mc2
(
1 −

1
2

u2/c2
)
=

1
2

mu2. (9.233)
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If that is our starting place, we can only obtain the non-relativistic ap-
proximation of the momentum change by evaluating the Euler-Lagrange
equations

d(mu)
dt

= e
(
E +

1
c

u ×B
)
. (9.234)

That was an exercise previously attempting working the Tong Lagrangian
problem set [24].

9.5.10.3 Hamiltonian.

Having confirmed the by old fashioned Euler-Lagrange equation evalua-
tion that our Lagrangian provides the desired equations of motion, let us
now try it using the Hamiltonian approach. First we need the Hamiltonian,
which is nothing more than

H = P · u − L. (9.235)

However, in the Lagrangian and the dot product we have velocity terms
that we must eliminate in favor of the canonical momenta. The Hamilto-
nian remains valid in either form, but to apply the Hamiltonian equations
we need H = H(P, x), and not H = H(u,P, x).

H = P · u +mc2
√

1 − u2/c2 −
e
c

u ·A + eΦ. (9.236)

Or

H = u ·
(
P −

e
c

A
)
+mc2

√
1 − u2/c2 + eΦ. (9.237)

We can rearrange eq. (9.224) for u

u =
1

mγ

(
P −

e
c

A
)
, (9.238)

but γ also has a u dependence, so this is not complete. Squaring gets us
closer

u2 =
1 − u2/c2

m2

(
P −

e
c

A
)2
, (9.239)

and a bit of final rearrangement yields

u2 =
(cP − eA)2

m2c2 +
(
P − e

c A
)2 . (9.240)
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Writing p = P − eA/c, we can rearrange and find√
1 − u2/c2 =

mc√
m2c2 + p2

. (9.241)

Also, taking roots of eq. (9.240) we must have the directions of u and(
P − e

c A
)

differ only by a rotation. From eq. (9.238) we also know that
these are colinear, and therefore have

u =
cP − eA√

m2c2 +

(
P −

e
c

A
)2
. (9.242)

This and eq. (9.241) can now be substituted into eq. (9.237), for

H =
c

m2c2 + p2

((
P −

e
c

A
)2
+m2c2

)
+ eΦ. (9.243)

Dividing out the common factors we finally have the Hamiltonian in a
tidy form

H =
√

(cP − eA)2 +m2c4 + eΦ. (9.244)

9.5.10.4 Hamiltonian equation evaluation.

Let us now go through the exercise of evaluating the Hamiltonian equa-
tions. We want the starting point to be just the energy expression eq. (9.244),
and the use of the Hamiltonian equations and none of what led up to that.
If we were given only this Hamiltonian and the Hamiltonian principle

∂H
∂Pk
= uk

∂H
∂xk
= −Ṗk,

(9.245a)

How far can we go?
For the particle velocity we have no Φ dependence and get

uk =
c(cPk − eAk)√

(cP − eA)2 +m2c4
. (9.246)

This is eq. (9.242) in coordinate form, one of our stepping stones on the
way to the Hamiltonian, and we recover it quickly with our first set of
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derivatives. We have the gradient part Ṗ = −∇H of the Hamiltonian left
to evaluate

dP
dt
=

e(cPk − eAk)∇Ak√
(cP − eA)2 +m2c4

− e∇Φ. (9.247)

Or

dP
dt
= e

(uk

c
∇Ak −∇Φ

)
. (9.248)

This looks nothing like the Lorentz force law. Knowing that P− eA/c is of
significance (because we know where we started which is kind of a cheat),
we can subtract derivatives of this from both sides, and use the convective
derivative operator d/dt = ∂/∂t + u ·∇ (ie. chain rule) yielding

d
dt

(P − eA/c) = e
(
−

1
c
∂A
∂t
−

1
c

(u ·∇)A +
uk

c
∇Ak −∇Φ

)
. (9.249)

The first and last terms sum to the electric field, and we seen evaluating
the Euler-Lagrange equations that the remainder is uk∇Ak − (u · ∇)A =
u × (∇ ×A). We have therefore gotten close to the familiar Lorentz force
law, and have

d
dt

(P − eA/c) = e
(
E +

u
c
×B

)
. (9.250)

The only untidy detail left is that P − eA/c does not look much like γmu,
what we recognize as the relativistically corrected momentum. We ought
to have that implied somewhere and eq. (9.246) looks like the place. That
turns out to be the case, and some rearrangement gives us this directly

P −
e
c

A =
mu√

1 − u2/c2
. (9.251)

This completes the exercise, and we have now obtained the momentum
part of the Lorentz force law. This is still unsatisfactory from a relativistic
context since we do not have momentum and energy on equal footing. We
likely need to utilize a covariant Lagrangian and Hamiltonian formulation
to fix up that deficiency.

9.6 solutions .
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10.1 motivation .

Attempting study of [4] section 7-2 on Routh’s procedure has been giving
me some trouble. It was not “sinking in”, indicating a fundamental mis-
understanding, or at least a requirement to work some examples. Here I
pick a system, the spherical pendulum, which has the required ignorable
coordinate, to illustrate the ideas for myself with something less abstract.

We see that a first attempt to work such an example leads to the wrong
result and the reasons for this are explored.

10.2 spherical pendulum example .

The Lagrangian for the pendulum is

L =
1
2

mr2
(
θ̇2 + ϕ̇2 sin2 θ

)
−mgr(1 + cos θ), (10.1)

and our conjugate momenta are therefore

pθ =
∂L
∂θ̇
= mr2θ̇

pϕ =
∂L
∂ϕ̇
= mr2 sin2 θϕ̇.

(10.2)

That is enough to now formulate the Hamiltonian H = θ̇pθ + ϕ̇pϕ − L,
which is

H = H(θ, pθ, pϕ) =
1

2mr2 (pθ)2 +
1

2mr2 sin2 θ
(pϕ)2 +mgr(1+ cos θ).

(10.3)

We have got the ignorable coordinate ϕ here, since the Hamiltonian has
no explicit dependence on it. In the Hamiltonian formalism the constant
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of motion associated with this comes as a consequence of evaluating the
Hamiltonian equations. For this system, those are

∂H
∂θ
= − ṗθ

∂H
∂ϕ
= − ṗϕ

∂H
∂pθ
= θ̇

∂H
∂pϕ
= ϕ̇,

(10.4)

These partials are

−ṗθ = −mgr sin θ −
cos θ

2mr2 sin3 θ
(pϕ)2

−ṗϕ = 0

θ̇ =
1

mr2 pθ

ϕ̇ =
1

mr2 sin2 θ
pϕ.

(10.5)

The second of these provides the integration constant, allowing us to write,
pϕ = α. Once this is done, our Hamiltonian example is reduced to one
complete set of conjugate coordinates,

H(θ, pθ, α) =
1

2mr2 (pθ)2 +
1

2mr2 sin2 θ
α2 +mgr(1 + cos θ). (10.6)

Goldstein notes that the behavior of the cyclic coordinate follows by inte-
grating

q̇n =
∂H
∂α

. (10.7)

In this example α = pθ, so this is really just one of our Hamiltonian
equations

ϕ̇ =
∂H
∂pϕ

. (10.8)

Okay, good. First part of the mission is accomplished. The setup for
Routh’s procedure no longer has anything mysterious to it. Now, Gold-
stein defines the Routhian as

R = piq̇i − L, (10.9)
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where the index i is summed only over the cyclic (ignorable) coordinates.
For this spherical pendulum example, this is qi = ϕ, and pi = mr2 sin2 θϕ̇,
for

R =
1
2

mr2
(
−θ̇2 + ϕ̇2 sin2 θ

)
+mgr(1 + cos θ). (10.10)

Now, we should also have for the non-cyclic coordinates, just like the
Euler-Lagrange equations

∂R
∂θ
=

d
dt
∂R
∂θ̇
. (10.11)

Evaluating this we have

mr2 sin θ cos θϕ̇2 −mgr sin θ =
d
dt

(
−mr2θ̇

)
. (10.12)

It would be reasonable now to compare this the θ Euler-Lagrange equa-
tions, but evaluating those we get

mr2 sin θ cos θϕ̇2 +mgr sin θ =
d
dt

(
mr2θ̇

)
. (10.13)

Bugger. We have got a sign difference on the ϕ̇2 term.

10.3 simpler planar example .

Having found an inconsistency with Routhian formalism and the concrete
example of the spherical pendulum which has a cyclic coordinate as de-
sired, let us step back slightly, and try a simpler example, artificially con-
structed

L =
1
2

m(ẋ2 + ẏ2) − V(x). (10.14)

Our Hamiltonian and Routhian functions are

H =
1
2

m(ẋ2 + ẏ2) + V(x)

R =
1
2

m(−ẋ2 + ẏ2) + V(x).
(10.15)

For the non-cyclic coordinate we should have

∂R
∂x
=

d
dt
∂R
∂ẋ
, (10.16)
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which is

V ′(x) =
d
dt

(−mẋ) . (10.17)

Okay, good, that is what is expected, and exactly what we get from the
Euler-Lagrange equations. This looks good, so where did things go wrong
in the spherical pendulum evaluation.

10.4 polar form example .

The troubles appear to come from when there is a velocity coupling in the
Kinetic energy term. Let us try one more example with a simpler velocity
coupling, using polar form coordinates in the plane, and a radial potential.
Our Lagrangian, and conjugate momenta, and Hamiltonian, respectively
are

L =
1
2

m
(
ṙ2 + r2θ̇2

)
− V(r)

pr = mṙ

pθ = mr2θ̇

H =
1

2m

(
(pr)2 +

1
r2 (pθ)2

)
+ V(r).

(10.18)

Evaluation of the Euler-Lagrange equations gives us the equations of mo-
tion

d
dt

(mṙ) = mrθ̇2 − V ′(r)

d
dt

(
mr2θ̇

)
= 0.

(10.19)

Evaluation of the Hamiltonian equations ∂pH = q̇, ∂qH = −ṗ should give
the same results. First for r this gives

1
m

pr = ṙ

−
1

mr3 (pθ)2 + V ′(r) = − ṗr.

(10.20)

The first just defines the canonical momentum (in this case the linear mo-
mentum for the radial aspect of the motion), and the second after some
rearrangement is

mr(θ̇)2 − V ′(r) =
d
dt

(mṙ) , (10.21)
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which is consistent with the Lagrangian approach. For the θ evaluation of
the Hamiltonian equations we get

pθ
mr2 = θ̇

0 = − ṗθ.
(10.22)

The first again, is implicitly, the definition of our canonical momentum
(angular momentum in this case), while the second is the conservation
condition on the angular momentum that we expect associated with this
ignorable coordinate. So far so good. Everything is as it should be, and
there is nothing new here. Just Lagrangian and Hamiltonian mechanics as
usual. But we have two independently calculated results that are the same
and the Routhian procedure should generate the same results.

Now, on to the Routhian. There we have a Hamiltonian like sum of
pq̇ terms over all cyclic coordinates, minus the Lagrangian. Here the θ
coordinate is observed to be that cyclic coordinate, so this is

R = pθθ̇ − L

= mr2θ̇2 −
1
2

m
(
ṙ2 + r2θ̇2

)
+ V(r)

=
1
2

mr2θ̇2 −
1
2

mṙ2 + V(r).

(10.23)

Now, this Routhian can be written in a few different ways. In particular
for the θ̇ dependent term of the kinetic energy we can write

1
2

mr2θ̇2 =
1

2mr2 (pθ)2 =
1
2
θ̇pθ. (10.24)

Looking at the troubles obtaining the correct equations of motion from
the Routhian, it appears likely that this freedom is where things go wrong.
In the Cartesian coordinate description, where there was no coupling be-
tween the coordinates in the kinetic energy we had no such freedom.
Looking back to Goldstein, I see that he writes the Routhian in terms
of a set of explicit variables

R = R(q1, · · · qn, p1, · · · ps, q̇s+1, · · · q̇n, t) =
s∑

i=1

q̇i pi − L. (10.25)
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where q1, · · · qs were the cyclic coordinates. Additionally, taking the dif-
ferential he writes

dR =
s∑

i=1

q̇idpi −

s∑
i=1

∂L
∂qi

dqi −

n∑
i=1

∂L
∂q̇i

dq̇i −
∂L
∂t

dt

=
∂R
∂pi

dpi +
∂R
∂qi

dqi +
∂R
∂q̇i

dq̇i +
∂R
∂t

dt,

(10.26)

with sums implied in the second total differential. It was term by term
equivalence of these that led to the Routhian equivalent of the Euler-
Lagrange equations for the non-cyclic coordinates, from which we should
recover the desired equations of motion. Notable here is that we have no
q̇i for any of the cyclic coordinates qi.

For this planar radial Lagrangian, it appears that we must write the
Routhian, specifically as R = R(r, θ, pθ, ṙ), so that we have no explicit
dependence on the radial conjugate momentum. That is

R =
1

2mr2 (pθ)2 −
1
2

mṙ2 + V(r). (10.27)

As a consequence of eq. (10.26) we should recover the equations of mo-
tion by evaluating δR/δr = 0, and doing so for eq. (10.27) we have

δR
δr
= V ′(r) −

1
mr3 (pθ)2 −

d
dt

(−mṙ) = 0. (10.28)

Good. This agrees with our result from the Lagrangian and Hamiltonian
formalisms. On the other hand, if we evaluate this variational derivative
for

R =
1
2

mr2θ̇2 −
1
2

mṙ2 + V(r), (10.29)

something that is formally identical, but written in terms of the “wrong”
variables, we get a result that is in fact wrong

δR
δr
= mrθ̇2 + V ′(r) −

d
dt

(−mṙ) = 0. (10.30)

Here the term that comes from the θ̇ dependent part of the Kinetic energy
has an incorrect sign. This was precisely the problem observed in the ini-
tial attempt to work the spherical pendulum equations of motion starting
from the Routhian.

What variables to use to express the equations is a rather subtle differ-
ence, but if we do not get that exactly right the results are garbage. Next
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step here is go back and revisit the spherical polar pendulum and verify
that being more careful with the variables used to express R allows the
correct answer to be obtained. That exercise is probably for a different
day, and probably a paper only job.

Now, I note that Goldstein includes no problems for this Routhian for-
malism now that I look, and having worked an example successfully and
seeing how we can go wrong, it is not quite clear what his point including
this was. Perhaps that will become clearer later. I had guess that some of
the value of this formalism could be once one attempts numerical solu-
tions and finds the cyclic coordinates as a result of a linear approximation
of the system equations around the neighborhood of some phase space
point.





11R I G I D B O DY M OT I O N .

11.1 rigid body motion .

11.1.1 Setup.

We will consider either rigid bodies as in the connected by sticks fig. 11.1
or a body consisting of a continuous mass as in fig. 11.2 In the first figure

Figure 11.1: Rigid body of point masses.

Figure 11.2: Rigid solid body of continuous mass.

our mass is made of discrete particles

M =
∑

mi. (11.1)
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whereas in the second figure with mass density ρ(r) and a volume element
d3r, our total mass is

M =
∫

V
ρ(r)d3r. (11.2)

11.1.2 Degrees of freedom.

How many numbers do we need to describe fixed body motion. Consider
fig. 11.3

Figure 11.3: Body local coordinate system with vector to a fixed point in the
body.

We will need to use six different numbers to describe the motion of a
rigid body. We need three for the position of the body RCM as a whole.
We also need three degrees of freedom (in general) for the motion of the
body at that point in space (how our local coordinate system at the body
move at that point), describing the change of the orientation of the body
as a function of time.

Note that the angle ϕ has not been included in any of the pictures be-
cause it is too messy with all the rest. Picture something like fig. 11.4

Let us express the position of the body in terms of that body’s center of
mass

RCM =

∑
i miri∑
j m j

, (11.3)

or for continuous masses

RCM =

∫
V d3r′r′ρ(r′)∫

d3r′′ρ(r′′)
. (11.4)
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Figure 11.4: Rotation angle and normal in the body.

We consider the motion of point P, an arbitrary point in the body as in
fig. 11.5, whos motion consists of

1. displacement of the CM RCM

2. rotation of r around some axis n̂ going through CM on some angle
ϕ. (here n̂ is a unit vector).

Figure 11.5: A point in the body relative to the center of mass.

From the picture we have

ρ = RCM + r (11.5a)

dρ = dRCM + dϕ × r, (11.5b)

where

dϕ = n̂dϕ. (11.6)
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Dividing by dt we have

dρ
dt
=

dRCM

dt
+

dϕ
dt
× r. (11.7)

The total velocity of this point in the body is then

v = VCM = ΩCM × r. (11.8)

where

ΩCM =
dϕ
dt
=

d(n̂ϕ)
dt
= angular velocity of the body. (11.9)

This circular motion is illustrated in fig. 11.6 Note that v is the velocity of

Figure 11.6: circular motion.

the particle with respect to the unprimed system.
We will spend a lot of time figuring out how to express ΩCM.
Now let us consider a second point as in fig. 11.7

Figure 11.7: Two points in a rigid body.

ρ = R + r
ρ = R̃ + r̃
r̃ = r + a.

(11.10)
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we have

vp =
dρ
dt

=
dr
dt
+

dϕ
dt
× r

=
dr
dt
+

dϕ
dt
× (r̃ − a)

=
dr
dt
−

dϕ
dt
× a +

dϕ
dt
× r̃.

(11.11)

vp = VCM −ΩCM × a +ΩCM × r̃. (11.12)

Have another way that we can use to express the position of the point

dρ
dt
=

dR̃
dt
+

dρ̃
dt
× r̃p, (11.13)

or

vp = VA +ΩA × r̃p. (11.14)

Equating with above, and noting that this holds for all r̃p, and noting that
if r̃p = 0

VA = VCM −ΩCM × a, (11.15)

hence

ΩCM × r̃p = ΩA × r̃p. (11.16)

or

ΩCM = ΩA. (11.17)

The moral of the story is that the angular velocity Ω is a characteristic of
the system. It does not matter if it is calculated with respect to the center
of mass or not.

See some examples in the notes.

11.2 kinetic energy.

For all P in the body we have

vp = VA +Ω × rp. (11.18)



222 rigid body motion .

Figure 11.8: Kinetic energy setup relative to point A in the body.

here VA is an arbitrary fixed point in the body as in fig. 11.8 The kinetic
energy is

T =
∑

a

1
2

maρa

=
∑

a

1
2

v2
a

=
∑

a

1
2
(VA +Ω × ra)

2

=
∑

a

1
2

(
V2

A + 2VA · (Ω × ra) + (Ω × ra)2
)
.

(11.19)

We see that if we take A to be the center of mass then our cross term∑
a

maVA · (Ω × ra) = VA ·

Ω ×
∑

a

mara


= VA · (Ω ×RCM),

(11.20)

which vanishes. With

µ =
∑

a

ma, (11.21)

we have

T =
1
2
µV2

CM +
1
2

∑
a

(Ω × ra) · (Ω × ra). (11.22)

With

(A ×B) · (C ×D) = (A ·C)(B ·D) − (A ·D)(B ·C), (11.23)
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or

(A ×B) · (A ×B) = A2B2 − (A ·B)2. (11.24)

Forgetting about the µ dependent term for now we have

T =
1
2

∑
a

ma
(
Ω2r2

a − (Ω · ra)2
)
. (11.25)

Expanding this out with

ra = (ra1ra2 , ra3) = {rai}, (11.26)

and

Ω = (Ω1Ω2,Ω3) = {Ωi}, (11.27)

we have

T =
1
2

∑
a

ma
(
ΩkΩkra jra j − (Ωkrak )

2
)
. (11.28)
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12.1 pictorially.

We want to look at some of the trig behind expressing general rotations.
We can perform a general rotation by a sequence of successive rotations.
One such sequence is a rotation around the z, x, z axes in sequence. Appli-
cation of a rotation of angle ϕ takes us from our original fig. 12.1 frame
to that of fig. 12.2. A second rotation around the (new) x axis by angle θ
takes us to fig. 12.3, and finally a rotation of ψ around the (new) z axis,
takes us to fig. 12.4.

A composite image of all of these rotations taken together can be found
in fig. 12.5.

Figure 12.1: Initial frame.

Figure 12.2: Rotation by ϕ around z axis.
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Figure 12.3: Rotation of θ around (new) x axis.

Figure 12.4: Rotation of ψ around (new) z axis.

Figure 12.5: All three rotations superimposed.
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12.2 relating the two pairs of coordinate systems .

Let us look at this algebraically instead, using fig. 12.6 as a guide. Step 1.

Figure 12.6: A point in two coordinate systems.

Rotation of ϕ around z
x′

y′

z′

 =


cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0

0 0 1



x

y

z

 . (12.1)

Step 2. Rotation around x′.
x′′

y′′

z′′

 =

1 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0



x′

y′

z′

 . (12.2)

Step 3. Rotation around z′′.
x′′′

y′′′

z′′′

 =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1



x′′

y′′

z′′

 . (12.3)

So, our full rotation is the composition of the rotation matrices
x′′′

y′′′

z′′′

 =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1



1 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0




cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0

0 0 1



x

y

z

 .
(12.4)
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Let us introduce some notation and write this as

Bz(α) =


cosα sinα 0

− sinα cosα 0

0 0 1

 (12.5a)

Bx(θ) =


1 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

 , (12.5b)

so that we have the mapping

r→ Bz(ψ)Bx(θ)Bz(ϕ)r. (12.6)

Now let us write

r =


x1

x2

x3

 . (12.7)

We will call

A(ψ, θ, ϕ) = Bz(ψ)Bx(θ)Bz(ϕ), (12.8)

so that

x′i =
3∑

j=1

Ai jx j. (12.9)

We will drop the explicit summation sign, so that the summation over
repeated indices are implied

x′i = Ai jx j. (12.10)

This matrix A(ψ, θ, ϕ) is in fact a general parameterization of the 3 × 3
special orthogonal matrices. The set of three angles θ, ϕ, ψ parameterizes
all rotations in 3dd space. Transformations that preserve a · b and have
unit determinant. In symbols we must have

ATA = 1. (12.11)
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det A = +1. (12.12)

Having solved this auxiliary problem, we now want to compute the angu-
lar velocity.

We want to know how to express the coordinates of a point that is fixed
in the body. i.e. We are fixing x′i and now looking for xi.

The coordinates of a point that has x′, y′ and z′ in a body-fixed frame,
in the fixed frame are x, y, z. That is given by just inverting the matrix

x1

x2

x3

 = A−1(ψ, θ, ϕ)


x′1
x′2
x′3


= B−1

z (ϕ)B−1
x (θ)B−1

z (ψ)


x′1
x′2
x′3


= BT

z (ϕ)BT
x (θ)BT

z (ψ)


x′1
x′2
x′3

 .

(12.13)

Here we have used the fact that Bx and Bz are orthogonal, so that their
inverses are just their transposes.

We have finally
x1

x2

x3

 = Bz(−ϕ)Bx(−θ)Bz(−ψ)


x′1
x′2
x′3

 . (12.14)

If we assume that ψ, θ and ϕ are functions of time, and compute dr/dt.
Starting with

xi = [A−1(ϕ, θ, ψ)]i jx′j, (12.15)

∆xi =
(
[A−1(ϕ + ∆ϕ, θ + ∆θ, ψ + ∆ψ)]i j − [A−1(ϕ, θ, ψ)]i j

)
x′j. (12.16)
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For small changes, we can Taylor expand and retain only the first order
terms. Doing that and dividing by ∆t we have

dxi

dt
=

(
∂

∂ψ
A−1

i j ψ̇ +
∂

∂θ
A−1

i j θ̇ +
∂

∂ϕ
A−1

i j ϕ̇

)
x′j. (12.17)

Now, we use

x′j = A jlxl, (12.18)

so that we have

dxi

dt
=

((
∂

∂ψ
A−1

i j

)
A jlψ̇ +

(
∂

∂θ
A−1

i j

)
A jlθ̇ +

(
∂

∂ϕ
A−1

i j

)
A jlϕ̇

)
xl. (12.19)

We are looking for a relation of the form

dr
dt
= Ω × r. (12.20)

We can write this as
vx

vy

vz

 =
(
θ̇
∂A−1

∂θ
A + ϕ̇

∂A−1

∂ϕ
A + ψ̇

∂A−1

∂ψ
A
) 

x

y

z

 . (12.21)

Actually doing this calculation is asked of us in HW6. The final answer is

dxi

dt
=

(
ϕ̇ϵi jk jϕn + θ̇ϵi jk jθn + ψ̇ϵi jk jψn

)
x j. (12.22)

Here ϵi jk is the usual fully antisymmetric tensor with properties

ϵi jk =


0 when any of the indices are equal.

1 for any of i jk = 123, 231, 312 (cyclic permutations of 123.

−1 for any of i jk = 213, 132, 321.
(12.23)
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We can express the kinetic energy as

T =
1
2

3∑
i, j=1

ΩiIi jΩ j, (13.1)

where

Ii j =
∑

a

ma
(
δi jr2

a − raira j

)
. (13.2)

Here a is a sum over all particles in the body.
If the body is continuous and ρ(r) is the mass density then the mass

inside is

m =
∫

d3rρ(r), (13.3)

where we integrate over a volume element as in fig. 13.1.

Figure 13.1: Volume element for continuous mass distribution.

For this continuous case we have

Ii j =

∫
V

d3rρ(r)
(
δi jr2 − rir j

)
. (13.4)
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Another property of Ii j is the parallel axis theorem (or as it is known in
Europe and perhaps elsewhere, as the “Steiner theorem”).

Let’s consider a change of origin as in fig. 13.2. We write

Figure 13.2: Shift of origin.

ra = r′a + b, (13.5)

and I′i j for the inertia tensor with respect to O′. Write

rai = r′ai
+ bi, (13.6)

or

r′ai
= rai − bi, (13.7)

so that

I′i j =
∑

a

ma
(
δi jr2

a − r′ai
r′b j

)
=

∑
a

ma
(
δi j(ra − b)2 − (rai − bi)(rb j − b j)

)
=

∑
a

ma
(
δi j(rak rak − b2 − 2rab) − rairb j − bib j + raib j + rb jbi

)
,

(13.8)

but, by definition of center of mass, we have∑
a

mar′ai
= 0, (13.9)
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so

I′i j =
∑

a

ma
(
δi jr2

a − raira j − · · ·
)

= Ii j − 2
��

���
���∑

a

mara · bδi j

 + µ (
δi jb2 − bib j

)
.

(13.10)

This is

I′i j = ICM
i j + µ

(
δi jb2 − bib j

)
. (13.11)

Some examples. Infinite cylinder rolling on a plane, with no slipping
and no dissipation (heat?) as in fig. 13.3. Take the mass as uniform and

Figure 13.3: Infinite rolling cylinder on plane.

set up coordinates as in fig. 13.4.
No slip means on revolution, the center of mass moves 2πR. We have

one degree of freedom: ϕ.

|Ω| = ϕ̇ =
dϕ
dt
. (13.12)

This is the angular velocity.

∆ϕ
∆x
=

2π
2πR

. (13.13)

so

∆x = R∆ϕ. (13.14)



234 parallel axis theorem .

Figure 13.4: Coordinates for infinite cylinder.

The kinetic energy is

T =
1
2
µV2

CM +
1
2

Ω2
3I33

=
1
2
µV2

CM +
1
2

Ω2I.
(13.15)

VCM =
∆x
∆t
= R

∆ϕ
∆t
= RΩ = Rϕ̇, (13.16)

so

T =
1
2
µR2ϕ̇2 +

1
2
ϕ̇2I. (13.17)

(can calculate I : See notes or derive).
Now suppose the CM is displaced as in fig. 13.5. Perhaps a hollow tube

with a blob attached as in fig. 13.6, where the torque is now due to gravity.
This can have more interesting motion. Example: Oscillation. This is a
typical test question, where calculation of the frequency of oscillation is
requested. Such a question would probably be posed with the geometry
of fig. 13.7. Recall for a general body as in fig. 13.8. Write

r = a + r′, (13.18)

and

v = VCM +Ω × r, (13.19)
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Figure 13.5: Displaced CM for infinite cylinder.

Figure 13.6: Hollow tube with blob.
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Figure 13.7: Hollow tube with cylindrical blob.

Figure 13.8: general body coordinates.
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or

v = VCM +Ω × a +Ω × r′. (13.20)

Here VCM is the velocity of the origin A.
If VCM and Ω are perpendicular always there always exists a such that

A is at rest.
Another example is a cone on plane or rod as in fig. 13.9. (this is another

Figure 13.9: Cone on rod.

typical test question).
For cylinder that point is the contact between plane and cylinder. This

is called the momentary axis of rotation: fig. 13.10. Using this is a very
useful trick.

Aside. more interesting is the cone viewed from above as in fig. 13.11.
Coordinates for this problem as in fig. 13.12. Using eq. (13.20) we have

VCM = Ω × b = ϕ̇ẑ × b, (13.21)

where this followed from

v = Ω × r′. (13.22)

Here r′ is the vector from axes of momentary rotation to point.
Our kinetic energy is

T =
1
2
µV2

CM +
I
2
ϕ̇2, (13.23)
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Figure 13.10: Momentary axes of rotation.

Figure 13.11: Cone from above.
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Figure 13.12: Momentary axes of rotation for cone on stick.

Figure 13.13: Coordinates.
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and our coordinates are fig. 13.13.

VCM = Ω × b. (13.24)

|VCM| =
∣∣∣ϕ̇∣∣∣|b|
= ϕ̇|b| ×moving unit vector in x y plane

= ϕ̇
√

a2 +R2 + 2a ·R

= ϕ̇

√
a2 + R2 + 2aR cos(π − ϕ).

(13.25)

For

T =
µ

2
ϕ̇2

(
a2 + R2 + 2aR cos(π − ϕ)

)
+

I
2
ϕ̇2

=
1
2
ϕ̇2

(
µ
(
a2 + R2 + 2aR cos(π − ϕ)

)
+ I

)
,

(13.26)

and

L = T − µg (R − a cos ϕ)

Height of CM above plane

. (13.27)

This gravity portion accounts for the torque producing interesting ef-
fects.
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14.1 phase space and phase trajectories .

The phase space and phase trajectories are the space of p’s and q’s of a
mechanical system (always even dimensional, with as many p’s as q’s for
N particles in 3d: 6N dimensional space).

The state of a mechanical system ≡ the point in phase space. Time
evolution ≡ a curve in phase space.

Example: 1 dim system, say a harmonic oscillator.

H =
p2

2m
+

1
2

mω2q2. (14.1)

Our phase space can be illustrated as an ellipse as in fig. 14.1 where the

Figure 14.1: Harmonic oscillator phase space trajectory.

phase space trajectories of the SHO. The equation describing the ellipse
is

E =
p2

2m
+

1
2

mω2q2, (14.2)

which we can put into standard elliptical form as

1 =
(

p
√

2mE

)2

+

(√
m
2E

ω

)
q2. (14.3)
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14.1.1 Applications of H.

• Classical stat mech.

• transition into QM via Poisson brackets.

• mathematical theorems about phase space “flow”.

• perturbation theory.

14.1.2 Poisson brackets.

Poisson brackets arises very naturally if one asks about the time evolution
of a function f (p, q, t) on phase space.

d
dt

f (pi, qi, t) =
∑

i

∂ f
∂pi

∂pi

∂t
+
∂ f
∂qi

∂qi

∂t
+
∂ f
∂t

=
∑

i

−
∂ f
∂pi

∂H
∂qi
+
∂ f
∂qi

∂H
∂pi
+
∂ f
∂t
.

(14.4)

Define the commutator of H and f as

[H, f ] =
∑

i

∂H
∂pi

∂ f
∂qi
−
∂H
∂qi

∂ f
∂pi

. (14.5)

This is the Poisson bracket of H(p, q, t) with f (p, q, t), defined for arbi-
trary functions on phase space.

Note that other conventions for sign exist (apparently in Landau and
Lifshitz uses the opposite).

So we have
d
dt

f (pi, qi, t) = [H, f ] +
∂ f
∂t
. (14.6)

Corollaries:
If f has no explicit time dependence ∂ f /∂t = 0 and if [H, f ] = 0, then

f is an integral of motion.
In QM conserved quantities are the ones that commute with the Hamil-

tonian operator.
To see the analogy better, recall def of Poisson bracket

[ f , g] =
∑

i

∂ f
∂pi

∂g
∂qi
−
∂ f
∂qi

∂g
∂pi

. (14.7)

Properties of Poisson bracket
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• antisymmetric

[ f , g] = − [g, f ] . (14.8)

• linear

[a f + bh, g] = a [ f , g] + b [h, g]

[g, a f + bh] = a [g, f ] + b [g, h] .
(14.9)

14.1.2.1 Example. Compute p, q. commutators

[pi, p j] =
∑

k

∂pi

∂pk�
�
�∂p j

∂qk
−
�
�
�∂pi

∂qk

∂p j

∂pk

= 0.

(14.10)

So

[pi, p j] = 0. (14.11)

Similarly [qi, q j] = 0.
How about

[qi, p j] =
∑

k �
�
�∂qi

∂pk�
�
�∂p j

∂qk
−
∂qi

∂qk

∂p j

∂pk

= −
∑

k

δikδ jk

= −δi j.

(14.12)

So

[qi, p j] = −δi j. (14.13)

This provides a systematic (axiomatic) way to “quantize” a classical me-
chanics system, where we make replacements

qi → q̂i

pi → p̂i,
(14.14)

and

[qi, p j] = −δi j → [qi, p j] = i h̄δi j

H(p, q, t)→ Ĥ( p̂, q̂, t).
(14.15)
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So

[q̂i, p̂ j]

−i h̄
= −δi j. (14.16)

Our quantization of time evolution is therefore

d
dt

q̂i =
1
−i h̄

[
Ĥ, q̂i

]
d
dt

p̂i =
1
−i h̄

[
Ĥ, p̂i

]
.

(14.17)

These are the Heisenberg equations of motion in QM.

14.1.2.2 Conserved quantities.

For conserved quantities f , functions of p’s q’s, we have

[ f ,H] = 0. (14.18)

Considering the components Mi, where

M = r × p, (14.19)

We can show eq. (14.25) that our Poisson brackets obey

[Mx,My] = −Mz

[My,Mz] = −Mx

[Mz,Mx] = −My.

(14.20)

(Prof Poppitz was not sure if he had the sign of this right for the sign
convention he happened to be using for Poisson brackets in this lecture,
but it appears he had it right).

These are the analogue of the momentum commutator relationships
from QM right here in classical mechanics.

Considering the symmetries that lead to this conservation relationship,
it is actually possible to show that rotations in 4D space lead to these
symmetries and the conservation of the Runge-Lenz vector.

14.2 adiabatic changes in phase space and conserved quanti-
ties .

In fig. 14.2 where we have
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Figure 14.2: Variable length pendulum.

T =
2π
ω(t)

=

√
l(t)
g
. (14.21)

Imagine that we change the length l(t) very slowly so that

T
1
l

dl
dt
≪ 1. (14.22)

where T is the period of oscillation. This is what is called an adiabatic
change, where the change of ω is small over a period. It turns out that if
this rate of change is slow, then there is actually an invariant, and

E
ω
, (14.23)

is the so-called “adiabatic invariant”. There is an important application to
this (and some relations to QM). Imagine that we have a particle bounded
by two walls, where the walls are moved very slowly as in fig. 14.3

Figure 14.3: Particle constrained by slowly moving walls.

This can be used to derive the adiabatic equation for an ideal gas (also
using the equipartition theorem).
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14.3 appendix i . poisson brackets of angular momentum .

Let us verify the angular momentum relations of eq. (14.20) above (sum-
mation over k implied):

[Mi,M j] =
∂Mi

∂pk

∂M j

∂xk
−
∂Mi

∂xk

∂M j

∂pk

= ϵabiϵrs j
∂xa pb

∂pk

∂xr ps

∂xk
− ϵabiϵrs j

∂xa pb

∂xk

∂xr ps

∂pk

= ϵabiϵrs jxa
∂pb

∂pk
ps
∂xr

∂xk
− ϵabiϵrs j pb

∂xa

∂xk
xr
∂ps

∂pk

= ϵabiϵrs jxaδkb psδkr − ϵabiϵrs j pbδkaxrδsk

= ϵabiϵrs jxa psδbr − ϵabiϵrs j pbxrδas

= ϵariϵrs jxa ps − ϵsbiϵrs j pbxr

= −δ
[s j]
ai xa ps − δ

[ jr]
bi pbxr

= − (δasδi j − δa jδis) xa ps − (δb jδir − δbrδi j) pbxr

= −δasδi jxa ps + δa jδisxa ps − δb jδir pbxr + δbrδi j pbxr

= −����xs psδi j + x j pi − p jxi +����pbxbδi j.

(14.24)

So, as claimed, if i , j , k we have

[Mi,M j] = −Mk. (14.25)

14.4 appendix ii . eom for the variable length pendulum .

Since we have referred to a variable length pendulum above, let us recall
what form the EOM for this system take. With cylindrical coordinates as
in fig. 14.4, and a spring constant ω2

0 = k/m our Lagrangian is

L =
1
2

m
(
ṙ2 + r2θ̇2

)
−

1
2

mω2
0r2 −mgr(1 − cos θ). (14.26)

The EOM follows immediately

Pθ =
∂L
∂θ̇
= mr2θ̇

Pr =
∂L
∂ṙ
= mṙ

dPθ
dt
=
∂L
∂θ
= −mgr sin θ

dPr

dt
=
∂L
∂r
= mrθ̇2 −mω2

0r −mg(1 − cos θ).

(14.27)
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Figure 14.4: phaseSpaceAndTrajectoriesFig4.

Or

d
dt

(
r2θ̇

)
= −gr sin θ

d
dt

(ṙ) = r
(
θ̇2 −ω2

0

)
− g(1 − cos θ).

(14.28)

Even in the small angle limit this is not a terribly friendly looking system

rθ̈ + 2θ̇ṙ + gθ = 0

r̈ − rθ̇2 + rω2
0 = 0.

(14.29)

However, in the first equation of this system

θ̈ + 2θ̇
ṙ
r
+

1
r

gθ = 0, (14.30)

we do see the ṙ/r dependence mentioned in class, and see how this being
small will still result in something that approximately has the form of a
SHO.
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15.1 runge-lenz vector conservation .

15.1.1 Motivation.

Notes from Prof. Poppitz’s phy354 classical mechanics lecture on the
Runge-Lenz vector, a less well known conserved quantity for the 3D 1/r
potentials that can be used to solve the Kepler problem.

15.1.2 Motivation: The Kepler problem.

We can plug away at the Lagrangian in cylindrical coordinates and find
eventually∫ ϕ

ϕ0

dϕ =
∫ r

r0

M
mr2

dr√
2
M

(
E −U +

M2

2mr2

) , (15.1)

but this can be messy to solve, where we get elliptic integrals or worse,
depending on the potential. For the special case of the 3D problem where
the potential has a 1/r form, this is what Prof. Poppitz called “super-
integrable”. With 2N − 1 = 5 conserved quantities to be found, we have
got one more. Here the form of that last conserved quantity is given, called
the Runge-Lenz vector, and we verify that it is conserved.

15.1.3 Runge-Lenz vector.

Given a potential

U = −
α

r
, (15.2)

and a Lagrangian

L =
mṙ2

2
+

1
2

M2
z

mr2 −U

Mz = mr2ϕ̇2,

(15.3)
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and writing the angular momentum as

M = mr × v, (15.4)

the Runge-Lenz vector

A = v ×M − αr̂, (15.5)

is a conserved quantity.

15.1.3.1 Verify the conservation assumption.

Let us show that the conservation assumption is correct

d
dt

(v ×M) =
dv
dt
×M + v ×

�
��

dM
dt

. (15.6)

Here, we note that angular momentum conservation is really dM/dt = 0,
so we are left with only the acceleration term, which we can rewrite in
terms of the Euler-Lagrange equation

d
dt

(v ×M) = −
1
m
∇U ×M

= −
1
m
∂U
∂r

r̂ ×M

= −
1
m
∂U
∂r

r̂ × (mr × v)

= −
∂U
∂r

r̂ × (r × v).

(15.7)

We can compute the double cross product

(a × (b × c))i = ambrcsϵrstϵmti

= ambrcsδ
[rs]
im

= ambicm − ambmci.

(15.8)

For

a × (b × c) = (a · c)b − (a · b)c. (15.9)

Plugging this we have

d
dt

(v ×M) =
∂U
∂r

((r̂ · r)v − (r̂ · v)r)

=

(
α

r2

) (
rv −

1
r

(r · v)r
)

= α

(
v
r
−

(r · v)r
r3

)
.

(15.10)
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Now let us look at the other term. We will need the derivative of r̂

dr̂
dt
=

d
dt

r
r

=
v
r
+ r

d 1
r

dt

=
v
r
−

r
r2

dr
dt

=
v
r
−

r
r2

d
√

r · r
dt

=
v
r
−

r
r2

v · r√
r2

=
v
r
−

r
r3 v · r.

(15.11)

Putting all the bits together we have now verified the conservation state-
ment

d
dt

(v ×M − αr̂) = α
(
v
r
−

(r · v)r
r3

)
− α

(v
r
−

r
r3 v · r

)
= 0. (15.12)

With

d
dt

(v ×M − αr̂) = 0, (15.13)

our vector must be some constant vector. Let us write this

v ×M − αr̂ = αe, (15.14)

so that

v ×M = α (e + r̂) . (15.15)

Dotting eq. (15.15) with M we find

αM · (e + r̂) =M · (v ×M)

= 0.
(15.16)
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With r̂ lying in the plane of the trajectory (perpendicular to M), we must
also have e lying in the plane of the trajectory. Now we can dot eq. (15.15)
with r to find

r · (v ×M) = αr · (e + r̂)
= α (re cos(ϕ − ϕ0) + r)

M · (r × v) =

M ·
M
m
=

M2

m
=

(15.17)

This is

M2

m
= αr (1 + e cos(ϕ − ϕ0)) . (15.18)

This is a kind of curious implicit relationship, since ϕ is also a function of
r. Recall that the kinetic portion of our Lagrangian was

1
2

m
(
ṙ2 + r2ϕ̇2

)
, (15.19)

so that our angular momentum was

Mϕ =
∂

∂ϕ̇

(
1
2

mr2ϕ̇2
)
= mr2ϕ̇, (15.20)

with no ϕ dependence in the Lagrangian we have

d
dt

(
mr2ϕ̇

)
= 0, (15.21)

or

M = mr2ϕ̇ẑ = constant. (15.22)

Our dynamics are now fully specified, even if this not completely explicit

r =
M2

mα
1

1 + e cos(ϕ − ϕ0)
dϕ
dt
=

M
mr2 .

(15.23)

What we can do is rearrange and separate variables

1
r2 =

m2α2

M4 (1 + e cos(ϕ − ϕ0))2 =
m
M

dϕ
dt
, (15.24)



15.1 runge-lenz vector conservation . 253

to find

t− t0 =
M3

mα3

∫ ϕ

ϕ0

dϕ
1

(1 + e cos(ϕ − ϕ0))2 =
M3

mα3

∫ ϕ−ϕ0

0
du

1
(1 + e cos u)2 .

(15.25)

Now, at least ϕ = ϕ(t) is specified implicitly.
We can also use the first of these to determine the magnitude of the

radial velocity

dr
dt
= −

M2

mα
1

(1 + e cos(ϕ − ϕ0))2 (−e sin(ϕ − ϕ0))
dϕ
dt

=
eM2

mα
1

(1 + e cos(ϕ − ϕ0))2 sin(ϕ − ϕ0)
M

mr2

=
eM3

m2αr2

1
(1 + e cos(ϕ − ϕ0))2 sin(ϕ − ϕ0)

=
eM3

m2αr2

(mrα
M2

)2
sin(ϕ − ϕ0)

=
e
M

sin(ϕ − ϕ0),

(15.26)

with this, we can also find the energy

E = ṙ(mṙ) + ϕ̇
(
mr2ϕ̇

)
−

(
1
2

mṙ2 +
1
2

mr2ϕ̇2 −U
)

=
1
2

mṙ2 +
1
2

mr2ϕ̇2 +U

=
1
2

mṙ2 +
1
2

mr2ϕ̇2 −
α

r

=
1
2

m
e2

M2 sin2(ϕ − ϕ0) +
1

2mr2 M2 −
α

r
.

(15.27)

Or

E =
m

2M2 (e × r̂)2 +
1

2mr2 M2 −
α

r
. (15.28)

Is this what was used in class to state the relation

e =

√
1 +

2EM2

mα2 . (15.29)

It is not obvious exactly how that is obtained, but we can go back to
eq. (15.23) to eliminate the e2 sin2 ∆ϕ term

E =
1
2

m
1

M2

e2 −

(
M2

rmα
− 1

)2 + 1
2mr2 M2 −

α

r
. (15.30)
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Presumably this simplifies to the desired result (or there is other errors
made in that prevent that).

15.2 solutions .



16F I E L D L AG R A N G I A N S .

This chapter will cover

• Derivation of the relativistic form of the Euler-Lagrange field equa-
tions from the covariant form of the action,

• Derivation of Maxwell’s equation (in it’s Space Time Algebra (STA)
form) from the Maxwell Lagrangian,

• Relationship of the STA Maxwell Lagrangian to the tensor equiva-
lent,

• Relationship of the STA form of Maxwell’s equation to it’s tensor
equivalents,

• Relationship of the STA Maxwell’s equation to it’s conventional
Gibbs form.

• Show that we may use a multivector valued Lagrangian with all of
F2, not just the scalar part.

It is assumed that the reader is thoroughly familiar with the STA for-
malism, and if that is not the case, there is no better reference than [2].

16.1 field action .

Theorem 16.1: Relativistic Euler-Lagrange field equations.

Let ϕ → ϕ + δϕ be any variation of the field, such that the variation
δϕ = 0 vanishes at the boundaries of the action integral

S =
∫

d4xL(ϕ, ∂νϕ).
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The extreme value of the action is found when the Euler-Lagrange
equations

0 =
∂L

∂ϕ
− ∂ν

∂L

∂(∂νϕ)
,

are satisfied. For a Lagrangian with multiple field variables, there
will be one such equation for each field.

Proof. To ease the visual burden, designate the variation of the field by
δϕ = ϵ, and perform a first order expansion of the varied Lagrangian

L → L(ϕ + ϵ, ∂ν(ϕ + ϵ))

= L(ϕ, ∂νϕ) +
∂L

∂ϕ
ϵ +

∂L

∂(∂νϕ)
∂νϵ.

(16.1)

The variation of the Lagrangian is

δL =
∂L

∂ϕ
ϵ +

∂L

∂(∂νϕ)
∂νϵ

=
∂L

∂ϕ
ϵ + ∂ν

(
∂L

∂(∂νϕ)
ϵ

)
− ϵ∂ν

∂L

∂(∂νϕ)
,

(16.2)

which we may plug into the action integral to find

δS =
∫

d4xϵ
(
∂L

∂ϕ
− ∂ν

∂L

∂(∂νϕ)

)
+

∫
d4x∂ν

(
∂L

∂(∂νϕ)
ϵ

)
. (16.3)

The last integral can be evaluated along the dxν direction, leaving∫
d3x

∂L

∂(∂νϕ)
ϵ

∣∣∣∣∣
∆xν
, (16.4)

where d3x = dxαdxβdxγ is the product of differentials that does not in-
clude dxν. By construction, ϵ vanishes on the boundary of the action inte-
gral so eq. (16.4) is zero. The action takes its extreme value when

0 = δS

=

∫
d4xϵ

(
∂L

∂ϕ
− ∂ν

∂L

∂(∂νϕ)

)
.

(16.5)

The proof is complete after noting that this must hold for all variations of
the field ϵ, which means that we must have

0 =
∂L

∂ϕ
− ∂ν

∂L

∂(∂νϕ)
. (16.6)

□
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16.2 maxwell’s equation .

Armed with the Euler-Lagrange equations, we can apply them to the
Maxwell’s equation Lagrangian, which we will claim has the following
form.

Theorem 16.2: Maxwell’s equation Lagrangian.

Application of the Euler-Lagrange equations to the Lagrangian

L = −
ϵ0c
2

F · F + J · A,

where F = ∇∧ A, yields the vector portion of Maxwell’s equation

∇ · F =
1
ϵ0c

J,

which implies

∇F =
1
ϵ0c

J.

This is Maxwell’s equation.

Proof. We wish to apply all of the Euler-Lagrange equations simultane-
ously (i.e. once for each of the four Aµ components of the potential), and
cast it into four-vector form

0 = γν

(
∂

∂Aν
− ∂µ

∂

∂(∂µAν)

)
L. (16.7)

Since our Lagrangian splits nicely into kinetic and interaction terms, this
gives us

0 = γν

(
∂(A · J)
∂Aν

+
ϵ0c
2
∂µ
∂(F · F)
∂(∂µAν)

)
. (16.8)

The interaction term above is just

γν
∂(A · J)
∂Aν

= γν
∂(AµJµ)
∂Aν

= γνJν = J, (16.9)
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but the kinetic term takes a bit more work. Let’s start with evaluating

∂(F · F)
∂(∂µAν)

=
∂F

∂(∂µAν)
· F + F ·

∂F
∂(∂µAν)

= 2
∂F

∂(∂µAν)
· F

= 2
∂(∂αAβ)
∂(∂µAν)

(
γα ∧ γβ

)
· F

= 2 (γµ ∧ γν) · F.

(16.10)

We hit this with the µ-partial and expand as a scalar selection to find

∂µ
∂(F · F)
∂(∂µAν)

= 2 (∂µγµ ∧ γν) · F

= −2(γν ∧∇) · F

= −2
〈
(γν ∧∇)F

〉
= −2

〈
γν∇F −����γν · ∇F

〉
= −2γν · (∇ · F) .

(16.11)

Putting all the pieces together yields

0 = J − ϵ0cγν (γν · (∇ · F))

= J − ϵ0c (∇ · F) ,
(16.12)

but

∇ · F = ∇F −∇∧ F

= ∇F −∇∧ (∇∧ A)

= ∇F,

(16.13)

so the multivector field equations for this Lagrangian are

∇F =
1
ϵ0c

J, (16.14)

as claimed. □

Exercise 16.1 Tensor formalism.

Cast the Lagrangian of theorem 16.2 into the conventional tensor form

L =
ϵ0c
4

FµνFµν + AµJµ. (16.15)
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Also show that the four-vector component of Maxwell’s equation ∇ · F =
J/(ϵ0c) is equivalent to the conventional tensor form of the Gauss-Ampere
law

∂µFµν =
1
ϵ0c

Jν, (16.16)

where Fµν = ∂µAν − ∂νAµ as usual. Also show that the trivector compo-
nent of Maxwell’s equation ∇ ∧ F = 0 is equivalent to the tensor form of
the Gauss-Faraday law

∂α
(
ϵαβµνFµν

)
= 0. (16.17)

Exercise 16.2 Tensor and Gibbs forms of Maxwell’s equations.

Using the tensor identifications of eq. (7.43) and

Jµ = (cρ, J) , (16.26)

the reader should satisfy themselves that the traditional Gibbs form of
Maxwell’s equations can be recovered from eq. (16.16).

Exercise 16.3 Grad and curl form of Maxwell’s equations.

With J = cργ0 + Jkγk and F = E+ IcB show that Maxwell’s equation, as
stated in theorem 16.2 expand to the conventional div and curl expressions
for Maxwell’s equations.

Exercise 16.4 Alternative multivector Lagrangian.

Show that a scalar+pseudoscalar Lagrangian of the following form

L = −
ϵ0c
2

F2 + J · A,

which omits the scalar selection of the Lagrangian in theorem 16.2, also
represents Maxwell’s equation. Discuss the scalar and pseudoscalar com-
ponents of F2, and show why the pseudoscalar inclusion is irrelevant.

16.3 solutions .
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Answer for Exercise 16.1

To show the Lagrangian correspondence we must expand F · F in coordi-
nates

F · F = (∇∧ A) · (∇∧ A)

= ((γµ∂µ)∧ (γνAν)) ·
(
(γα∂α)∧ (γβAβ)

)
= (γµ ∧ γν) · (γα ∧ γβ) (∂µAν)(∂αAβ)

= (δµβδ
ν
α − δ

µ
αδ

ν
β) (∂µAν)(∂αAβ)

= −∂µAν (∂µAν − ∂νAµ)

= −∂µAνFµν

= −
1
2
(∂µAνFµν + ∂νAµFνµ)

= −
1
2
(∂µAν − ∂νAµ) Fµν

= −
1
2

FµνFµν.

(16.18)

With a substitution of this and A · J = AµJµ back into the Lagrangian, we
recover the tensor form of the Lagrangian.

To recover the tensor form of Maxwell’s equation, we first split it into
vector and trivector parts

∇ · F +∇∧ F =
1
ϵ0c

J. (16.19)

Now the vector component may be expanded in coordinates by dotting
both sides with γν to find

1
ϵ0c

γν · J = Jν, (16.20)

and

γν · (∇ · F) = ∂µγν ·
(
γµ · (γα ∧ γβ) ∂

αAβ
)

= (δµαδ
ν
β − δ

ν
αδ

µ
β) ∂µ∂

αAβ

= ∂µ (∂
µAν − ∂νAµ)

= ∂µFµν.

(16.21)
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Equating eq. (16.20) and eq. (16.21) finishes the first part of the job. For
the trivector component, we have

0 = ∇∧ F

= (γµ∂µ)∧
(
γα ∧ γβ

)
∂αAβ

=
1
2

(γµ∂µ)∧
(
γα ∧ γβ

)
Fαβ.

(16.22)

Wedging with γτ and then multiplying by −2I we find

0 = −
(
γµ ∧ γα ∧ γβ ∧ γτ

)
I∂µFαβ, (16.23)

but

γµ ∧ γα ∧ γβ ∧ γτ = −Iϵµαβτ, (16.24)

which leaves us with

ϵµαβτ∂µFαβ = 0, (16.25)

as expected.

Answer for Exercise 16.2

The reader is referred to Exercise 3.4 “Electrodynamics, variational prin-
ciple.” from [14].

Answer for Exercise 16.3

To obtain Maxwell’s equations in their traditional vector forms, we pre-
multiply both sides with γ0

γ0∇F =
1
ϵ0c

γ0J, (16.27)

and then select each grade separately. First observe that the RHS above
has scalar and bivector components, as

γ0J = cρ + Jkγ0γk. (16.28)

In terms of the spatial bivector basis ek = γkγ0, the RHS of eq. (16.27) is

γ0
J
ϵ0c
=
ρ

ϵ0
− µ0cJ. (16.29)
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For the LHS, first note that

γ0∇ = γ0
(
γ0∂

0 + γk∂
k
)

= ∂0 − γ0γk∂k

=
1
c
∂

∂t
+∇.

(16.30)

We can express all the the LHS of eq. (16.27) in the bivector spatial basis,
so that Maxwell’s equation in multivector form is(

1
c
∂

∂t
+∇

)
(E + IcB) =

ρ

ϵ0
− µ0cJ. (16.31)

Selecting the scalar, vector, bivector, and trivector grades of both sides (in
the spatial basis) gives the following set of respective equations

∇ ·E =
ρ

ϵ0
(16.32a)

1
c
∂tE + Ic∇∧B = −µ0cJ (16.32b)

∇∧E + I∂tB = 0 (16.32c)

Ic∇ · B = 0, (16.32d)

which we can rewrite after some duality transformations (and noting that
µ0ϵ0c2 = 1), we have

∇ ·E =
ρ

ϵ0
(16.33a)

∇ ×B − µ0ϵ0
∂E
∂t
= µ0J (16.33b)

∇ ×E +
∂B
∂t
= 0 (16.33c)

∇ · B = 0, (16.33d)

which are Maxwell’s equations in their traditional form.
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Answer for Exercise 16.4

The quantity F2 = F · F + F ∧ F has both scalar and pseudoscalar 1 com-
ponents, which can be seen if we expand it in terms of the electric and
magnetic fields

F2 = (E + IcB)2

= E2 − c2B2 + Ic (EB +BE)
= E2 − c2B2 + 2IcE ·B.

(16.34)

Both the scalar and pseudoscalar parts of F2 are Lorentz invariant, a re-
quirement of our Lagrangian, but most Maxwell equation Lagrangians
only include the scalar E2 − c2B2 component of the field square. If we
allow the Lagrangian to be multivector valued, and evaluate the Euler-
Lagrange equations, we quickly find the same results

0 = γν

(
∂

∂Aν
− ∂µ

∂

∂(∂µAν)

)
L

= γν

(
Jν +

ϵ0c
2
∂µ ((γµ ∧ γν)F + F(γµ ∧ γν))

)
.

(16.35)

Here some steps are skipped, building on our previous scalar Euler-Lagrange
evaluation experience. We have a symmetric product of two bivectors,
which we can express as a 0,4 grade selection, since

⟨XF⟩0,4 =
1
2
(XF + FX) , (16.36)

for any two bivectors X, F. This leaves

0 = J + ϵ0cγν
〈
(∇∧ γν)F

〉
0,4

= J + ϵ0cγν
〈
−γν∇F +�����(γν · ∇)F

〉
0,4

= J − ϵ0cγν (γν · (∇ · F) + γν ∧∇∧ F) .

(16.37)

However, since ∇ ∧ F = ∇ ∧ ∇ ∧ A = 0, we see that there is no contribu-
tion from the F ∧ F pseudoscalar component of the Lagrangian, and we
are left with

0 = J − ϵ0c(∇ · F)

= J − ϵ0c∇F,
(16.38)

which is Maxwell’s equation, as before.
1 Unlike vectors, a bivector wedge in 4D with itself need not be zero (example: γ0γ1 + γ2γ3

wedged with itself).
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17.0.0.1 Schrödinger’s equation

Problem 11.3 in [4] is to take the Lagrangian

L =
h̄2

2m
∇ψ ·∇ψ∗ + Vψψ∗ +

h̄
2i

(ψ∗∂tψ − ψ∂tψ
∗)

=
h̄2

2m
∂kψ∂kψ

∗ + Vψψ∗ +
h̄
2i

(ψ∗∂tψ − ψ∂tψ
∗) .

(17.1)

treating ψ, and ψ∗ as separate fields and show that Schrödinger’s equation
and its conjugate follows. (note: I have added a 1/2 fact in the commutator
term that was not in the Goldstein problem. Believe that to have been a
typo in the original (first edition)). We have

∂L

∂ψ∗
= Vψ +

h̄
2i
∂tψ. (17.2)

and canonical momenta

∂L

∂(∂mψ∗)
=

h̄2

2m
∂mψ

∂L

∂(∂tψ∗)
= −

h̄
2i
ψ.

(17.3)

∂L

∂ψ∗
=

∑
m

∂m
∂L

∂(∂mψ∗)
+ ∂t

∂L

∂(∂tψ∗)

Vψ +
h̄
2i
∂tψ =

h̄2

2m

∑
m

∂mmψ −
h̄
2i
∂ψ

∂t
.

(17.4)

which is the desired result

−
h̄2

2m
∇

2ψ + Vψ = h̄i
∂ψ

∂t
. (17.5)

The conjugate result

−
h̄2

2m
∇

2ψ∗ + Vψ∗ = − h̄i
∂ψ∗

∂t
. (17.6)
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follows by inspection since all terms except the time partial are symmetric
in ψ and ψ∗. The time partial has a negation in sign from the commutator
of the Lagrangian.

FIXME: Goldstein also wanted the Hamiltonian, but I do not know
what that is yet. Got to go read the earlier parts of the book!

17.0.0.2 Relativistic Schrödinger’s equation

The wiki article on Noether’s theorem lists the relativistic quantum La-
grangian in the form

L = −ηµν∂µψ∂νψ
∗ +

m2c2

h̄2 ψψ∗. (17.7)

That article uses h̄ = c = 1, and appears to use a − + ++ metric, both of
which are adjusted for here. Calculating the derivatives

∂L

∂ψ∗
=

m2c2

h̄2 ψ. (17.8)

∂µ
∂L

∂(∂µψ∗)
= −∂µ

(
ηαβ∂αψ

∂

∂(∂µψ∗)
∂βψ

∗

)
= −∂µ (η

αµ∂αψ)

= −∂µ∂
µψ.

(17.9)

So we have

∂µ∂
µψ =

−m2c2

h̄2 ψ. (17.10)

With the metric dependency made explicit this is(
∇

2 −
1
c2

∂2

(∂t)2

)
ψ =

m2c2

h̄2 ψ. (17.11)

Much different looking than the classical time dependent Schrödinger’s
equation in eq. (17.6). [23] has a nice discussion about this equation and
its relation to the non-relativistic Schrödinger’s equation.

Exercise 17.1 One dimensional wave equation.

https://en.wikipedia.org/wiki/Noether%27s_theorem
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The Lagrangian for a one dimensional wave is derived in [4] using a
limiting argument applied to an infinite sequence of connected masses on
springs. The result is

L =
1
2

µ (
∂η

∂t

)2

− Y
(
∂η

∂x

)2 . (17.12)

Here η was the displacement from the equilibrium position, µ is the mass
line density and Y is Young’s modulus.

Using this Lagrangian, find the equations of the field, showing that it
has the expected form.

Exercise 17.2 Wave equation in higher dimensions.

For a string or film or other wavy material with more degrees of free-
dom than a string with back and forth motion, the Lagrangian is

L =
1
2

µ (
∂η

∂t

)2

− Y
∑

i

(
∂η

∂xi

)2 . (17.15)

Evaluate the equations for the field.

Exercise 17.3 Non-relativistic QM Lagrangian.

The non-relativistic Lagrangian given by [4] (pr. 11.3) is

L =
h̄2

2m
(∇ψ) · (∇ψ∗) + Vψψ∗ + i h̄ (ψ∂tψ

∗ − ψ∗∂tψ) . (17.18)

Show that(
− h̄2

2m
∇

2 + V
)
ψ = i h̄

∂ψ

∂t
. (17.19)

Exercise 17.4 Klein-Gordon Lagrangian.

The Klein-Gordon Lagrangian is

L = −(∇ψ) · (∇ψ∗) +
m2c2

h̄2 ψψ∗. (17.20)

Evaluate the Euler-Lagrange equations to show that this describes the
Klein-Gordon scalar wave equation(

h̄2

2m
∇2 +

1
2

mc2
)
ψ = 0. (17.21)
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Exercise 17.5 Dirac equation.

The Lagrangian for the Dirac equation is

L = mcψψ −
1
2

i h̄(ψγµ(∂µψ) − (∂µψ)γµψ). (17.22)

Where ψ = γ0ψ̃, and ψ̃ is the reversed field spinor. Show that evaluating
the Euler-Lagrange equations yield

i h̄∇ψ = ±mcψ. (17.23)

17.1 solutions .

Answer for Exercise 17.1

Taking derivatives confirms that this is the correct form. The Euler-
Lagrange equations for this equation are:

∂L

∂η
=
∂

∂t
∂L

∂
∂η
∂t

+
∂

∂x
∂L

∂
∂η
∂x

0 =
∂

∂t
µ
∂η

∂t
−
∂

∂x
Y
∂η

∂x
.

(17.13)

Which has the expected form

µ
∂2η

(∂t)2 − Y
∂2η

(∂x)2 = 0. (17.14)

Answer for Exercise 17.2

Calculating the Euler-Lagrange equations gives

∂L

∂η
=
∂

∂t
∂L

∂
∂η
∂t

+
∑

i

∂

∂xi

∂L

∂
∂η
∂xi

0 =
∂

∂t
µ
∂η

∂t
−

∑
i

∂

∂xi Y
∂η

∂xi .

(17.16)

This has the expected form

µ
∂2η

(∂t)2 − Y
∑

i

∂2η

(∂xi)2 = 0. (17.17)
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18.1 noether’s theorem .

18.1.1 Derivation.

It was seen in 8 that Noether’s law for a line integral action was shown to
essentially be an application of the chain rule, coupled with an application
of the Euler-Lagrange equations.

For a field Lagrangian a similar conservation statement can be made,
where it takes the form of a divergence relationship instead of derivative
with respect to the integration parameter associated with the line integral.

The following derivation follows [2], but is dumbed down to the scalar
field variable case, and additional details are added.

The Lagrangian to be considered is

L = L(ψ, ∂µψ), (18.1)

and the single field case is sufficient to see how this works. Consider the
following transformation:

ψ→ f (ψ, α) = ψ′

L′ = L( f , ∂µ f ).
(18.2)

Taking derivatives of the transformed Lagrangian with respect to the free
transformation variable α, we have

dL′

dα
=
∂L

∂ f
∂ f
∂α
+

∑
µ

∂L

∂(∂µ f )
∂(∂µ f )
∂α

. (18.3)

The Euler-Lagrange field equations for the transformed Lagrangian are

∂L

∂ f
=

∑
µ

∂µ
∂L

∂(∂µ f )
. (18.4)
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For some for background discussion, examples, and derivation of the field
form of Noether’s equation see ??. Now substitute back into eq. (18.3) for

dL′

dα
=

∑
µ

(
∂µ

∂L

∂(∂µ f )

)
∂ f
∂α
+

∑
µ

∂L

∂(∂µ f )
∂(∂µ f )
∂α

=
∑
µ

(
∂µ

∂L

∂(∂µ f )

)
∂ f
∂α
+

∑
µ

∂L

∂(∂µ f )
∂µ
∂ f
∂α
.

(18.5)

Using the product rule we have

dL′

dα
=

∑
µ

∂µ

(
∂L

∂(∂µ f )
∂ f
∂α

)
=

∑
µ

γµ∂µ ·

(
γµ

∂L

∂(∂µ f )
∂ f
∂α

)
= ∇ ·

(
γµ

∂L

∂(∂µψ′)
∂ψ′

∂α

)
.

(18.6)

Here the field does not have to be a relativistic field which could be im-
plied by the use of the standard symbols for relativistic four vector basis
{γµ} of STA. This is really a statement that one can form a gradient in the
field variable configuration space using any appropriate reciprocal basis
pair.

Noether’s law for a field Lagrangian is a statement that if the trans-
formed Lagrangian is unchanged (invariant) by some type of parametrized
field variable transformation, then with J′ = J′µγµ one has

dL′

dα
= ∇ · J′ = 0. (18.7a)

J′µ =
∂L

∂(∂µψ′)
∂ψ′

∂α
. (18.7b)

FIXME: GAFP evaluates things at α = 0 where that is the identity case.
I think this is what allows them to drop the primes later. Must think this
through.
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18.1.2 Examples.

18.1.2.1 Klein-Gordan Lagrangian invariance under phase change.

The Klein-Gordan Lagrangian, a relativistic relative of the Schrödinger
equation is

L = ηµν∂µψ∂νψ
∗ −m2ψψ∗. (18.8)

FIXME: fixed sign above. Adjust the remainder below. This provides a
simple example application of the field form of Noether’s equation, for a
transformation that involves a phase change

ψ→ ψ′ = eiθψ

ψ∗ → ψ∗′ = e−iθψ∗.
(18.9)

This transformation leaves the Lagrangian unchanged, so there is an asso-
ciated conserved quantity.

∂ψ′

∂θ
= iψ′

∂L

∂(∂µψ′)
= ηµν∂νψ

′∗ = ∂µψ′∗.
(18.10)

Summing all the field partials, treating ψ, and ψ∗ as separate field vari-
ables the divergence conservation statement is

∂µ (∂µψ′∗iψ′ − ∂µψ′iψ′∗)

J′µ

= 0. (18.11)

Dropping primes and writing J = γµJµ, this is

J = i(ψ∇ψ∗ − ψ∗∇ψ)

∇ · J = 0.
(18.12)

Apparently with charge added this quantity actually represents electric
current density. It will be interesting to learn some quantum mechanics
and see how this works.
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18.1.2.2 Lorentz boost and rotation invariance of Maxwell Lagrangian.

L = −
〈
(∇∧ A)2

〉
+ κA · J

= ∂µAν(∂µAν − ∂νAµ) + κAσJσ.
(18.13a)

κ =
2
ϵ0c

. (18.13b)

The rotation and boost invariance of the Maxwell Lagrangian was demon-
strated in D. Following E write the Lorentz boost or rotation in exponen-
tial form.

L(x) = exp(−αi/2)x exp(αi/2), Λ = exp(−αi/2). (18.14)

where i is a unit spatial bivector for a rotation of −α radians, and a boost
with rapidity α when i is a spacetime unit bivector.

Introducing the transformation

A→ A′ = ΛAΛ†. (18.15)

The change in A′ with respect to α is

∂A′

∂α
= −iA′ + A′i = 2A′ · i = 2A′σγσ · i. (18.16)

Next we want to compute

∂L

∂(∂µA′ν)
=

∂

∂(∂µA′ν)

(
∂αA′β(∂αA′β − ∂βA′α) + κA′σJσ

)
=

(
∂

∂(∂µA′ν)
∂αA′β

) (
∂αA′β − ∂βA′α

)
+ ∂αA′β

∂

∂(∂µA′ν)
(∂αA′β − ∂βA′α))

=

(
∂

∂(∂µA′ν)
∂µA′ν

)
(∂µA′ν − ∂νA′µ)

+ ∂µA′ν
∂

∂(∂µA′ν)
∂µA′ν

− ∂νA′µ
∂

∂(∂µA′ν)
∂µA′ν

= 2 (∂µA′ν − ∂νA′µ)

= 2Fµν.

(18.17)



18.1 noether’s theorem . 273

Employing the vector field form of Noether’s equation as in eq. (18.37)
the conserved current C components are

Cµ = 2(γνFµν) · (2A · i)

∝ (γνFµν) · (A · i)

∝ (γµ · F) · (A · i).

(18.18)

Or

C = γµ((γµ · F) · (A · i)). (18.19)

Here C was used instead of J for the conserved current vector since J is
already taken for the current charge density itself.

18.1.2.3 Questions.

FIXME: What is this quantity? It has the look of angular momentum, or
torque, or an inertial tensor. Does it have a physical significance? Can the
i be factored out of the expression, leaving a conserved quantity that is
some linear function only of F, and A (this was possible in the Lorentz
force Lagrangian for the same invariance considerations).

18.1.2.4 Expansion for x-axis boost.

As an example to get a feel for eq. (18.19), lets expand this for a specific
spacetime boost plane. Using the x-axis that is i = γ1 ∧ γ0

First expanding the potential projection one has

A · i = (Aµγµ) · (γ1 ∧ γ0)

= A1γ0 − A0γ1.
(18.20)

Next the µ component of the field is

γµ · F =
1
2

Fαβγµ · (γα ∧ γβ)

=
1
2

Fµβγβ −
1
2

Fαµγα

= Fµαγα.

(18.21)

So the µ component of the conserved vector is

Cµ = (γµ · F) · (A · i)

= (Fµαγα) · (A1γ0 − A0γ1)

= (Fµαγα) · (A0γ1 − A1γ0)

.

(18.22)
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Therefore the conservation statement is

Cµ = Fµ1A0 − Fµ0A1

∂µCµ = 0.
(18.23)

Let us write out the components of eq. (18.23) explicitly, to perhaps get a
better feel for them.

C0 = F01A0 = −Exϕ

C1 = −F10A1 = −ExAx

C2 = F21A0 − F20A1 = Bzϕ − EyAx

C3 = F31A0 − F30A1 = −Byϕ − EzAx.

(18.24)

Well, that is not particularly enlightening looking after all.

18.1.2.5 Expansion for rotation or boost.

Suppose that one takes i = γµ ∧ γν, so that we have a symmetry for a
boost if one of µ or ν is zero, and rotational symmetry otherwise.

This gives

A · i = (Aαγα) · (γµ ∧ γν)

= Aµγν − Aνγµ,
(18.25a)

Cα = (γα · F) · (A · i)

= (Fαβγβ) · (Aµγν − Aνγµ),
(18.25b)

Cα = FανAµ − FαµAν. (18.25c)

For a rotation in the a, b, plane with µ = a, and ν = b (say), lets write
out the Cα components explicitly in terms of E and B components, also
writing 0 < d, a , d , b. That is

C0 = F0bAa − F0aAb = EaAb − EbAa

C1 = F1bAa − F1aAb

C2 = F2bAa − F2aAb

C3 = F3bAa − F3aAb.

(18.26)
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Only the first term of this reduces nicely. Suppose we additionally write
a = 1, b = 2 to make things more concrete. Then we have

C0 = F02A1 − F01A2 = ExAy − EyAx = (E ×A)z

C1 = F12A1 − F11A2 = −BzAx

C2 = F22A1 − F21A2 = BzAx

C3 = F32A1 − F31A2 = BxAx + ByAy.

(18.27)

The time-like component of whatever this vector is the z component of a
cross product (spatial component of the E ×A product in the direction of
the normal to the rotational plane), but what is the rest?

18.1.2.6 Conservation statement.

Returning to eq. (18.25c), the conservation statement can be calculated as

0 = ∂αCα

= ∂αFανAµ − ∂αFαµAν + Fαν∂αAµ − Fαµ∂αAν.
(18.28)

But the grade one terms of the Maxwell equation in tensor form is

∂µFµα = Jα/ϵ0c. (18.29)

So we have

0 =
1
ϵ0c

(JνAµ − JµAν) + Fα
ν∂αAµ − Fα

µ∂αAν

=
1
ϵ0c

(JνAµ − JµAν) + Fα
νFαµ − Fα

µFαν.

(18.30)

This first part is some sort of current-potential torque like beastie. That
second part, the squared field term is what? I do not see an obvious way
to reduce it to something more structured.

18.1.3 Multivariable derivation.

For completion sake, cut and pasted with most discussion omitted, the
multiple field variable case follows in the same fashion as the single field
variable Lagrangian.

L = L(ψσ, ∂µψσ). (18.31)
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The transformation is now:

ψσ → fσ(ψσ, α) = ψ′σ
L′ = L( fσ, ∂µ fσ).

(18.32)

Taking derivatives:

dL′

dα
=

∑
σ

∂L

∂ fσ

∂ fσ
∂α
+

∑
µ,σ

∂L

∂(∂µ fσ)
∂(∂µ fσ)
∂α

. (18.33)

Again, making the Euler-Lagrange substitution of eq. (18.4) (with f →
fσ) back into eq. (18.33) gives

dL′

dα
=

∑
σ

∑
µ

∂µ
∂L

∂(∂µ fσ)

 ∂ fσ
∂α
+

∑
µ,σ

∂L

∂(∂µ fσ)
∂(∂µ fσ)
∂α

=
∑
µ,σ

((
∂µ

∂L

∂(∂µ fσ)

)
∂ fσ
∂α
+

∂L

∂(∂µ fσ)
∂µ
∂ fσ
∂α

)
=

∑
µ,σ

∂µ

(
∂L

∂(∂µ fσ)
∂ fσ
∂α

)

=
∑
µ

γµ∂µ ·

∑
σ,ν

γν
∂L

∂(∂ν fσ)
∂ fσ
∂α


= ∇ ·

∑
σ,ν

γν
∂L

∂(∂νψ′σ)
∂ψ′σ
∂α

 .

(18.34)

Or

dL′

dα
= ∇ · J′ = 0, (18.35a)

J′ = J′µγµ, (18.35b)

J′µ =
∑
σ

∂L

∂(∂µψ′σ)
∂ψ′σ
∂α

. (18.35c)

A notational convenience for vector valued fields, in particular as we have
in the electrodynamic Lagrangian for the vector potential, the chain rule
summation in eq. (18.35) above can be replaced with a dot product.

J′µ = γσ
∂L

∂(∂µψ′σ)
·
∂γσψ′σ
∂α

. (18.36)
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Dropping primes for convenience, and writing Ψ = γσψσ for the vector
field variable, the field form of Noether’s law takes the form

J = γµ

(
γσ

∂L

∂(∂µψσ)
·
∂Ψ
∂α

)
, (18.37a)

∇ · J = 0. (18.37b)

That is, a current vector with respect to this configuration space diver-
gence is conserved when the Lagrangian field transformation is invariant.

18.2 translation and rotation noether field currents .

18.2.1 Motivation.

The article [21] details the calculation for a conserved current associated
with an incremental Poincare transformation. Instead of starting with the
canonical energy momentum tensor (arising from spacetime translation)
which is not symmetric but can be symmetrized with other arguments,
the paper of interest obtains the symmetric energy momentum tensor for
Maxwell’s equations directly.

I believe that I am slowly accumulating the tools required to understand
this paper. One such tool is likely the exponential rotational generator
examined in [9], utilizing the angular momentum operator.

Here I review the Noether conservation relations and the associated
Noether currents for a single parameter alteration of the Lagrangian, incre-
mental spacetime translation of the Lagrangian, and incremental Lorentz
transform of the Lagrangian.

By reviewing these I hope that understanding the referenced article will
be easier, or I independently understand (in my own way) how to apply
similar techniques to the incremental Poincare transformed Lagrangian.

18.2.2 Field Euler-Lagrange equations.

The extremization of the action integral

S =
∫
Ld4x, (18.38)
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can be dealt with (following Feynman) as a first order Taylor expansion
and integration by parts exercise. A single field variable example serves to
illustrate. A first order Lagrangian of a single field variable has the form

L = L(ϕ, ∂µϕ). (18.39)

Let us vary the field ϕ → ϕ + ϕ around the stationary field ϕ, inducing a
corresponding variation in the action

S + δS =
∫
L(ϕ + ϕ, ∂µ(phi + ϕ)d4x

=

∫
d4x

(
L(ϕ, ∂µϕ) + ϕ

∂L

∂ϕ
+ ∂µϕ

∂L

∂(∂µϕ)
+ · · ·

)
.

(18.40)

Neglecting any second or higher order terms the change in the action from
the assumed solution is

δS =
∫

d4x
(
ϕ
∂L

∂ϕ
+ ∂µϕ

∂L

∂(∂µϕ)

)
. (18.41)

This is now integrable by parts yielding

δS =
∫

d3x
(
ϕ∂µL

∣∣∣
∂xµ

)
+

∫
d4xϕ

(
∂L

∂ϕ
− ∂µ

∂L

∂(∂µϕ)

)
. (18.42)

Here d3x is taken to mean that part of the integration not including dxµ.
The field ϕ is always required to vanish on the boundary as in the dynamic
Lagrangian arguments, so the first integral is zero. If the remainder is zero
for all fields ϕ, then the inner term must be zero, and we the field Euler-
Lagrange equations as a result

∂L

∂ϕ
− ∂µ

∂L

∂(∂µϕ)
= 0. (18.43)

When we have multiple field variables, say Aν, the chain rule expansion
leading to eq. (18.41) will have to be modified to sum over all the field
variables, and we end up instead with

δS =
∫

d4x
∑
ν

Aν

(
∂L

∂Aν
− ∂µ

∂L

∂(∂µAν)

)
. (18.44)

So for δS = 0 for all Aν we have a set of equations, one for each ν

∂L

∂Aν
− ∂µ

∂L

∂(∂µAν)
= 0. (18.45)
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18.2.3 Field Noether currents.

The single parameter Noether conservation equation again is mainly ap-
plication of the chain rule. Illustrating with the one field variable case,
with an altered field variable ϕ→ ϕ′(θ), and

L′ = L(ϕ′, ∂µϕ′). (18.46)

Examining the change of L′ with θ we have

dL′

dθ
=
∂L

∂ϕ′
∂ϕ′

∂θ
+

∂L

∂(∂µϕ′)
∂(∂µϕ′)
∂θ

. (18.47)

For the last term we can switch up the order of differentiation

∂(∂µϕ′)
∂θ

=
∂

∂θ

∂ϕ′

∂xµ

=
∂

∂xµ
∂ϕ′

∂θ
.

(18.48)

Additionally, with substitution of the Euler-Lagrange equations in the first
term we have

dL′

dθ
=

(
∂

∂xµ
∂L

∂(∂µϕ′)

)
∂ϕ′

∂θ
+

∂L

∂(∂µϕ′)
∂

∂xµ
∂ϕ′

∂θ
. (18.49)

But this can be directly anti-differentiated yielding the Noether conserva-
tion equation

dL′

dθ
=

∂

∂xµ

(
∂L

∂(∂µϕ′)
∂ϕ′

∂θ

)
. (18.50)

With multiple field variables we will have a term in the chain rule expan-
sion for each field variable. The end result is pretty much the same, but
we have to sum over all the fields

dL′

dθ
=

∑
ν

∂

∂xµ

(
∂L

∂(∂µA′ν)
∂A′ν
∂θ

)
. (18.51)

Unlike the field Euler-Lagrange equations we have just one here, not one
for each field variable. In this multivariable case, expression in vector
form can eliminate the sum over field variables. With A′ = A′νγν, we
have

dL′

dθ
=

∂

∂xµ

(
γν

∂L

∂(∂µA′ν)
·
∂A′

∂θ

)
. (18.52)
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With an evaluation at θ = 0, we have finally

dL′

dθ

∣∣∣∣∣
θ=0
=

∂

∂xµ

(
γν

∂L

∂(∂µAν)
·
∂A′

∂θ

∣∣∣∣∣
θ=0

)
. (18.53)

When the Lagrangian alteration is independent of θ (i.e. is invariant), it is
said that there is a symmetry. By eq. (18.53) we have a conserved quan-
tity associated with this symmetry, some quantity, say J that has a zero
divergence. That is

Jµ = γν
∂L

∂(∂µAν)
·
∂A′

∂θ

∣∣∣∣∣
θ=0

0 = ∂µJµ.
(18.54)

18.2.4 Spacetime translation symmetries and Noether currents.

Considering the effect of spacetime translation on the Lagrangian we ex-
amine the application of the first order linear Taylor series expansion shift-
ing the vector parameters by an increment a. The Lagrangian alteration is

L → ea·∇L ≈ L + a · ∇L. (18.55)

Similar to the addition of derivatives to the Lagrangians of dynamics, we
can add in some types of total derivatives ∂µFµ to the Lagrangian without
changing the resulting field equations (i.e. there is an associated “symme-
try” for this Lagrangian alteration). The directional derivative a · ∇L =
aµ∂µL appears to be an example of a total derivative alteration that leaves
the Lagrangian unchanged.

18.2.4.1 On the symmetry.

The fact that this translation necessarily results in the same field equations
is not necessarily obvious. Using one of the simplest field Lagrangians,
that of the Coulomb electrostatic law, we can illustrate that this is true in
at least one case, and also see what is required in the general case

L =
1
2

(∇ϕ)2 −
1
ϵ0
ρϕ =

1
2

∑
m

(∂mϕ)2 −
1
ϵ0
ρϕ. (18.56)
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With partials written ∂m f = fm we summarize the field Euler-Lagrange
equations using the variational derivative

δ

δϕ
=

∂

∂ϕ
−

∑
m

∂m
∂

∂ϕm
. (18.57)

Where the extremum condition δL/δϕ = 0 produces the field equations.
For the Coulomb Lagrangian without (spatial) translation, we have

δL

δϕ
= −

1
ϵ0
ρ − ∂mmϕ. (18.58)

So the extremum condition δL/δϕ = 0 gives

∇
2ϕ = −

1
ϵ0
ρ. (18.59)

Equivalently, and probably more familiar, we write E = −∇ϕ, and get the
differential form of Coulomb’s law in terms of the electric field

∇ ·E =
1
ϵ0
ρ. (18.60)

To consider the translation case we have to first evaluate the first order
translation produced by the directional derivative. This is

a ·∇L =
∑

m

am∂mL

= −
a
ϵ0
· (ρ∇ϕ + ϕ∇ρ).

(18.61)

For the translation to be a symmetry the evaluation of the variational
derivative must be zero. In this case we have

δ

δϕ
a ·∇L = −

a
ϵ0
·
δ

δϕ
(ρ∇ϕ + ϕ∇ρ)

= −
∑

m

am

ϵ0

δ

δϕ
(ρ∂mϕ + ϕ∂mρ)

= −
∑

m

am

ϵ0

 ∂∂ϕ −∑
k

∂k
∂

∂ϕk

 (ρϕm + ϕρm).

(18.62)

We see that the ϕ partials select only ρ derivatives whereas the ϕk partials
select only the ρ term. All told we have zero ∂∂ϕ −∑

k

∂k
∂

∂ϕk

 (ρϕm + ϕρm) = ρm −
∑

k

∂kρδkm

= ρm − ∂mρ

= 0.

(18.63)
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This example illustrates that we have a symmetry provided we can “com-
mute” the variational derivative with the gradient

δ

δϕ
a ·∇L = a ·∇

δL

δϕ
. (18.64)

Since δL/δϕ = 0 by construction, the resulting field equations are unal-
tered by such a modification.

Are there conditions where this commutation is not possible? Some
additional exploration on symmetries associated with addition of deriva-
tives to field Lagrangians was made previously in F. After all was said and
done, the conclusion motivated by this simple example was also reached.
Namely, we require the commutation condition eq. (18.64) between the
variational derivative and the gradient of the Lagrangian.

18.2.4.2 Existence of a symmetry for translational variation.

Considering an example Lagrangian we found that there was a symmetry
provided we could commute the variational derivative with the gradient,
as in eq. (18.64) What this really means is not clear in general and a better
answer to the existence question for incremental translation can be had by
considering the transformation of the action directly around the stationary
fields.

Without really any loss of generality we can consider an action with a
four dimensional spacetime volume element, and apply the incremental
translation operator to this∫

d4xa · ∇L(Aβ + Aβ, ∂αAβ + ∂αAβ)

=

∫
d4xa · ∇L(Aβ, ∂αAβ) +

∫
d4xa · ∇

(
∂L

∂Aβ
Aβ +

∂L

∂(∂αAβ)
∂αAβ

)
+ · · ·

(18.65)
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For the first term we have a · ∇
∫

d4xL(Aβ, ∂αAβ), but this integral is our
stationary action. The remainder, to first order in the field variables, can
then be expanded and integrated by parts∫

d4xaµ∂µ

(
∂L

∂Aβ
Aβ +

∂L

∂(∂αAβ)
∂αAβ

)
=

∫
d4xaµ

((
∂µ
∂L

∂Aβ

)
Aβ +

∂L

∂Aβ
(
∂µAβ

))
+

∫
d4xaµ

((
∂µ

∂L

∂(∂αAβ)

)
∂αAβ +

∂L

∂(∂αAβ)

(
∂µ∂αAβ

))
=

∫
d4x

((
aµ∂µ

∂L

∂Aβ

)
Aβ −

(
∂µaµ

∂L

∂Aβ

)
Aβ

)
+

∫
d4x

((
∂µ

∂L

∂(∂αAβ)

)
∂αAβ −

(
∂µaµ

∂L

∂(∂αAβ)

)
∂αAβ

)
.

(18.66)

Since aµ are constants, this is zero, so there can be no contribution to
the field equations by the addition of the translation increment to the La-
grangian.

18.2.4.3 Noether current derivation.

With the assumption that the Lagrangian translation induces a symmetry,
we can proceed with the calculation of the Noether current. This proce-
dure for deriving the Noether current for an incremental spacetime trans-
lation follows along similar lines as the scalar alteration considered previ-
ously.

We start with the calculation of the first order alteration, expanding the
derivatives. Let us work with a multiple field LagrangianL = L(Aβ, ∂αAβ)
right from the start

a · ∇L = aµ∂µL

= aµ
(
∂L

∂Aσ
∂Aσ

∂xµ
+

∂L

∂(∂αAβ)
∂(∂αAβ)
∂xµ

)
.

(18.67)

Using the Euler-Lagrange field equations in the first term, and switching
integration order in the second this can be written as a single derivative

a · ∇L = aµ
(
∂α

∂L

∂(∂αAβ)
∂Aβ

∂xµ
+

∂L

∂(∂αAβ)
∂α
∂Aβ

∂xµ

)
= aµ∂α

(
∂L

∂(∂αAβ)
∂Aβ

∂xµ

) (18.68)
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In the scalar Noether current we were able to form an similar expression,
but one that was a first order derivative that could be set to zero, to fix
the conservation relationship. Here there is no such freedom, but we can
sneakily subtract a · ∇L from itself to calculate such a zero

0 = ∂α

(
∂L

∂(∂αAβ)
aµ
∂Aβ

∂xµ
− aαL

)
. (18.69)

Since this must hold for any vector a, we have the freedom to choose the
simplest such vector, a unit vector a = γν, for which aµ = δµν. Our current
and its zero divergence relationship then becomes

Tα
ν =

∂L

∂(∂αAβ)
∂νAβ − δανL

0 = ∂αTα
ν.

(18.70)

This is not the symmetric energy momentum tensor that we want in the
electrodynamics context although it can be obtained from it by adding
just the right zero.

18.2.4.4 Canonical energy momentum tensor and Lagrangian gradient.

In [2] many tensor quantities are not written in index form, but instead
using a vector notation. In particular, the symmetric energy momentum
tensor is expressed as

T (a) = −
ϵ0

2
FaF. (18.71)

where the usual tensor form following by taking dot products with γµ and
substituting a = γν. The conservation equation for the canonical energy
momentum tensor of eq. (18.70) can be put into a similar vector form

T (a) = γα
∂L

∂(∂αAβ)
(a · ∇)Aβ − aL

0 = ∇ · T (a).
(18.72)

The adjoint T of the tensor can be calculated from the definition

∇ · T (a) = a · T (∇). (18.73)

Somewhat unintuitively, this is a function of the gradient. Playing around
with factoring out the displacement vector a from eq. (18.72) that the en-
ergy momentum adjoint essentially provides an expansion of the gradient
of the Lagrangian. To prepare, let us introduce some helper notation

Πβ ≡ γα
∂L

∂(∂αAβ)
. (18.74)
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With this our Noether current equation becomes

∇ · T (a) = ⟨∇T (a)⟩

=
〈
∇(Πβ(a · ∇)Aβ − a∇L)

〉
=

〈
∇

(
1
2

Πβ(a(∇Aβ) + (∇Aβ)a) − aL
)〉
.

(18.75)

Cyclic permutation of the vector products ⟨abc⟩ = ⟨cab⟩ can be used in
the scalar selection. This is a little more tractable with some helper nota-
tion for the Aβ gradients, say vβ = ∇Aβ. Because of the operator nature
of the gradient once the vector order is permuted we have to allow for the
gradient to act left or right or both, so arrows are used to disambiguate
this where appropriate.

∇ · T (a) =
〈
∇

(
1
2

Πβavβ +Πβvβa
)
−∇La

〉
=

〈(
1
2

vβ
↔

∇ Πβ
1
2
∇(Πβvβ) −∇L

)
a
〉

= a ·
(
1
2

〈
vβ
↔

∇ Πβ +∇(Πβvβ)
〉

1
−∇L

)
.

(18.76)

This dotted with quantity is the adjoint of the canonical energy momentum
tensor

T (∇) =
1
2

〈
vβ
↔

∇ Πβ +∇(Πβvβ)
〉

1
−∇L. (18.77)

This can however, be expanded further. First tackling the bidirectional
gradient vector term we can utilize the property that the reverse of a vector
leaves the vector unchanged. This gives us〈

vβ
↔

∇ Πβ

〉
1
=

〈
vβ(
→

∇ Πβ)
〉

1
+

〈
(vβ

←

∇)Πβ

〉
1

=

〈
vβ(
→

∇ Πβ)
〉

1
+

〈
Πβ(

→

∇ vβ)
〉

1
.

(18.78)

In the remaining term, using the Hestenes overdot notation clarify the
scope of the operator, we have

T (∇) =
1
2

(〈
vβ(∇Πβ)

〉
1
+

〈
Πβ(∇vβ)

〉
1
+

〈
(∇Πβ)vβ

〉
1
+

〈
∇′Πβvβ

′
〉

1

)
−∇L.

(18.79)
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The grouping of the first and third terms above simplifies nicely

1
2

〈
vβ(∇Πβ)

〉
1
+

1
2

〈
(∇Πβ)vβ

〉
1

= vβ(∇ ·Πβ) +
1
2

〈
vβ(∇∧Πβ)

〉
1
+

〈
(∇∧Πβ)vβ

〉
1
.

(18.80)

Since a(b ∧ c) + (b ∧ c)a = 2a ∧ b ∧ c, which is purely a trivector, the
vector grade selection above is zero. This leaves the adjoint reduced to

T (∇) = vβ(∇ ·Πβ) +
1
2

(〈
Πβ(∇vβ)

〉
1
+

〈
∇′Πβvβ

′
〉

1

)
−∇L. (18.81)

For the remainder vector grade selection operators we have something
that is of the following form

1
2
⟨abc + bac⟩1 = (a · b)c. (18.82)

And we are finally able to put the adjoint into a form that has no remaining
grade selection operators

T (∇) = (∇Aβ)(∇ ·Πβ) + (Πβ · ∇)(∇Aβ) −∇L

= (∇Aβ)(
→

∇ ·Πβ) + (∇Aβ)(
←

∇ ·Πβ) −∇L

= (∇Aβ)(
↔

∇ ·Πβ) −∇L.

(18.83)

Recapping, we have for the tensor and its adjoint

0 = ∇ · T (a) = a · T (∇)

Πβ ≡ γα
∂L

∂(∂αAβ)
T (a) = Πβ(a · ∇)Aβ − a∇L

T (∇) = (∇Aβ)(
↔

∇ ·Πβ) −∇L.

(18.84)

For the adjoint, since a · T (∇) = 0 for all a, we must also have T (∇) =
0, which means the adjoint of the canonical energy momentum tensor
really provides not much more than a recipe for computing the Lagrangian
gradient

∇L = (∇Aβ)(
↔

∇ ·Πβ). (18.85)

Having seen the adjoint notation, it was natural to see what this was for
a multiple scalar field variable Lagrangian, even if it is not intrinsically
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useful. Observe that the identity eq. (18.85), obtained so laboriously, is not
more than syntactic sugar for the chain rule expansion of the Lagrangian
partials (plus application of the Euler-Lagrange field equations). We could
obtain this directly if desired much more easily than by factoring out a
from ∇ · T (a) = 0.

∂µL =
∂L

∂Aβ
∂µAβ +

∂L

∂(∂αAβ)
∂µ∂αAβ

=

(
∂α

∂L

∂(∂αAβ)

)
∂µAβ +

∂L

∂(∂αAβ)
∂α∂µAβ

= ∂α

((
∂L

∂(∂αAβ)

)
∂µAβ

)
.

(18.86)

Summing over µ for the gradient, this reproduces eq. (18.85), with much
less work

∇L = γµ∂µL

= ∂α

((
∂L

∂(∂αAβ)

)
(∇Aβ)

)
= (Πβ·

↔

∇)(∇Aβ).

(18.87)

Observe that the Euler-Lagrange field equations are implied in this rela-
tionship, so perhaps it has some utility. Also note that while it is simpler
to directly compute this, without having started with the canonical energy
momentum tensor, we would not know how the two of these were related.

18.2.5 Noether current, infinitesimal Lorentz transformation.

Let us assume that we can use the exponential generator of rotations

e(i·x)·∇ = 1 + (i · x) · ∇ + · · · (18.88)

to alter a Lagrangian density. In particular, that we can use the first or-
der approximation of this Taylor series, applying the incremental rotation
operator (i · x) · ∇ = i · (x ∧∇) to transform the Lagrangian.

L → L + (i · x) · ∇L. (18.89)

Suppose that we parametrize the rotation bivector i using two perpendic-
ular unit vectors u, and v. Here perpendicular is in the sense uv = −vu so
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that i = u ∧ v = uv. For the bivector expressed this way our incremental
rotation operator takes the form

(i · x) · ∇ = ((u∧ v) · x) · ∇

= (u(v · x) − v(u · x)) · ∇

= (v · x)u · ∇ − (u · x))v · ∇.

(18.90)

The operator is reduced to a pair of torque-like scaled directional deriva-
tives, and we have already examined the Noether currents for the transla-
tions induced by the directional derivatives. It is not unreasonable to take
exactly the same approach to consider rotation symmetries as we did for
translation. We found for incremental translations

a · ∇L = ∂α

(
∂L

∂(∂αAβ)
(a · ∇)Aβ

)
. (18.91)

So for incremental rotations the change to the Lagrangian is

(i · x) · ∇L = (v · x)∂α

(
∂L

∂(∂αAβ)
(u · ∇)Aβ

)
− (u · x)∂α

(
∂L

∂(∂αAβ)
(v · ∇)Aβ

)
.

(18.92)

Since the choice to make u and v both unit vectors and perpendicular has
been made, there is really no loss in generality to align these with a pair
of the basis vectors, say u = γµ and v = γν. The incremental rotation
operator is reduced to

(i · x) · ∇ = (γν · x)γµ · ∇ − (γµ · x))γν · ∇

= xν∂µ − xµ∂ν.
(18.93)

Similarly the change to the Lagrangian is

(i · x) · ∇L = xν∂α

(
∂L

∂(∂αAβ)
∂µAβ

)
− xµ∂α

(
∂L

∂(∂αAβ)
∂νAβ

)
. (18.94)

Subtracting the two, essentially forming (i · x) · ∇L − (i · x) · ∇L = 0, we
have

0 = xν∂α

(
∂L

∂(∂αAβ)
∂µAβ − δαµL

)
− xµ∂α

(
∂L

∂(∂αAβ)
∂νAβ − δανL

)
. (18.95)

We previously wrote

Tα
ν =

∂L

∂(∂αAβ)
∂νAβ − δανL. (18.96)
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for the Noether current of spacetime translation, and with that our conser-
vation equation becomes

0 = xν∂αTα
µ − xµ∂αTα

ν. (18.97)

As is, this does not really appear to say much, since we previously also
found ∂αTα

ν = 0. We appear to need a way to pull the x coordinates
into the derivatives to come up with a more interesting statement. A test
expansion of ∇ · (i · x)L to see what is left over compared to (i · x) · ∇L
shows that there is in fact no difference, and we actually have the identity

i · (x ∧∇)L = (i · x) · ∇L = ∇ · (i · x)L. (18.98)

This suggests that we can pull the x coordinates into the derivatives of
eq. (18.97) as in

0 = ∂α (Tα
µxν − Tα

νxµ) . (18.99)

However, expanding this derivative shows that this is fact not the case.
Instead we have

∂α (Tα
µxν − Tα

νxµ) = Tα
µ∂αxν − Tα

ν∂αxµ
= Tα

µηαν − Tα
νηαµ

= Tνµ − Tµν.

(18.100)

So instead of a Noether current, following the procedure used to calculate
the spacetime translation current, we have only a mediocre compromise

Mα
µν ≡ Tα

µxν − Tα
νxµ

∂αMα
µν = Tνµ − Tµν.

(18.101)

Jackson [7] ends up with a similar index upper expression

Mαβγ ≡ Tαβxγ − Tαγxβ. (18.102)

and then uses a requirement for vanishing 4-divergence of this quantity

0 = ∂αMαβγ. (18.103)

to symmetries this tensor by subtracting off all the antisymmetric portions.
The differences compared to Jackson with upper verses lower indices are
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minor for we can follow the same arguments and arrive at the same sort
of 0 − 0 = 0 result as we had in eq. (18.97)

0 = xν∂αTαµ − xµ∂αTαν. (18.104)

The only difference is that our not-really-a-conservation equation becomes

∂αMαµν = T νµ − T µν. (18.105)

18.2.5.1 An example of the symmetry.

While not a proof that application of the incremental rotation operator is
a symmetry, an example at least provides some comfort that this is a rea-
sonable thing to attempt. Again, let us consider the Coulomb Lagrangian

L =
1
2

(∇ϕ)2 −
1
ϵ0
ρϕ. (18.106)

For this we have

L′ = L + (i · x) ·∇L

= L− (i · x) ·
1
ϵ0

(ρ∇ϕ + ϕ∇ρ) .
(18.107)

If the variational derivative of the incremental rotation contribution is
zero, then we have a symmetry.

δ

δϕ
(i · x) ·∇L = (i · x) ·

1
ϵ0
∇ρ −

∑
m

∂m

(
(i · x) ·

1
ϵ0
ρem

)
= (i · x) ·

1
ϵ0
∇ρ −∇ ·

(
(i · x)

1
ϵ0
ρ

)
.

(18.108)

As found in eq. (18.98), we have (i · x) ·∇ = ∇ · (i · x), so we have

δ

δϕ
(i · x) ·∇L = 0. (18.109)

for this specific Lagrangian as expected.
Note that the test expansion I used to state eq. (18.98) was done us-

ing only the bivector i = γµ ∧ γν. An expansion with i = uαuβγα ∧ γβ
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shows that this is also the case in shows that this is true more generally.
Specifically, this expansion gives

∇ · (i · x)L = (i · x) · ∇L + (ηαβ − ηβα)uαvβL

= (i · x) · ∇L.
(18.110)

(since the metric tensor is symmetric).
Loosely speaking, the geometric reason for this is that ∇ · f (x) takes its

maximum (or minimum) when f (x) is colinear with x and is zero when
f (x) is perpendicular to x. The vector i · x is a combined projection and
90 degree rotation in the plane of the bivector, and the divergence is left
with no colinear components to operate on.

While this commutation of the i · x with the divergence operator did not
help with finding the Noether current, it does at least show that we have
a symmetry. Demonstrating the invariance for the general Lagrangian (at
least the single field variable case) likely follows the same procedure as
in this specific example above.

18.2.5.2 General existence of the rotational symmetry.

The example above hints at a general method to demonstrate that the in-
cremental Lorentz transform produces a symmetry. It will be sufficient to
consider the variation around the stationary field variables for the change
due to the action from the incremental rotation operator. That is

δS =
∫

d4x(i · x) · ∇L(Aβ + Aβ, ∂αAβ + ∂αAβ). (18.111)

Performing a first order Taylor expansion of the Lagrangian around the
stationary field variables we have

δS =
∫

d4x(i · x) · γµ∂µL(Aβ + Aβ, ∂αAβ + ∂αAβ)

=

∫
d4x(i · x) · γµ∂µ

(
∂L

∂Aβ
Aβ +

∂L

∂(∂αAβ)
(∂αAβ)

)
=

∫
d4x(i · x) · γµ((
∂µ
∂L

∂Aβ

)
Aβ +

∂L

∂Aβ
∂µAβ

)
+

∫
d4x(i · x) · γµ((
∂µ

∂L

∂(∂αAβ)

)
(∂αAβ) +

∂L

∂(∂αAβ)
∂µ(∂αAβ)

)
.

(18.112)
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Doing the integration by parts we have

δS =
∫

d4xAβγµ ·
(
(i · x)

(
∂µ
∂L

∂Aβ

)
− ∂µ

(
∂L

∂Aβ
(i · x)

))
+

∫
d4x(∂αAβ)γµ ·

(
(i · x)

(
∂µ

∂L

∂(∂αAβ)

)
− ∂µ

(
∂L

∂(∂αAβ)
(i · x)

))
=

∫
d4xAβ

(
(i · x) · ∇

∂L

∂Aβ
−∇ · (i · x)

∂L

∂Aβ

)
+ (∂αAβ)

(
(i · x) · ∇

∂L

∂(∂αAβ)
−∇ · (i · x)

∂L

∂(∂αAβ)

)
.

(18.113)

Since (i · x) · ∇ f = ∇ · (i · x) f for any f , there is no change to the resulting
field equations due to this incremental rotation, so we have a symmetry
for any Lagrangian that is first order in its derivatives.

18.3 solutions .



AM AT H E M AT I C A N OT E B O O K S .

These Mathematica notebooks, some just trivial ones used to generate
figures, others more elaborate, and perhaps some even polished, can be
found in

https://github.com/peeterjoot/mathematica/tree/master/classicalmechanics/.
The free Wolfram CDF player, is capable of read-only viewing these

notebooks to some extent.
Files saved explicitly as CDF have interactive content that can be ex-

plored with the CDF player.

• Feb 19, 2012 infiniteCylinderPotential.cdf

Attempt at evaluating the potential for an infinite cylinder.

• Feb 24, 2012 psIIp4InfPlanePotTakeIII.cdf

Attempt at evaluating the potential for an infinite plane. Experiment-
ing with using mathematica to produce decent documents, as well
as trying a variation of the previous calculation where I used R2 ∼ e.

The final output is not as nice as latex, but the save as latex option
seems promising. New Mathematica tools used in this notebook
include HoldForm, TraditionalForm, and ReleaseHold, which can
be used to generate traditional form by default for scratch display
generation.

Note that cut-and-pasting URLS in comments as I’ve been doing
get mangled and can’t be followed. Switched the ones in this doc
to Insert->Hyperlink instead.

• Feb 27, 2012 psIIp4InfCylPot.cdf

Attempt evaluation of a cylindrical potential.

New Mathematica methods used: HoldForm, Assuming, Assump-
tions.

• Jan 26, 2016 multisphericalPendulum.nb

calculate the matrix products from the papers to verify (and as it
turns out, correct).

https://github.com/peeterjoot/mathematica/tree/master/classicalmechanics/
http://www.wolfram.com/cdf-player/
https://raw.githubusercontent.com/peeterjoot/mathematica/master/classicalmechanics/infiniteCylinderPotential.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/classicalmechanics/psIIp4InfPlanePotTakeIII.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/classicalmechanics/psIIp4InfCylPot.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/classicalmechanics/multisphericalPendulum.nb
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• Nov 4, 2020 reciprocalMatrix.nb

This demonstrates solving for a two vector reciprocal frame basis,
using the STA metric.

https://raw.githubusercontent.com/peeterjoot/mathematica/master/classicalmechanics/reciprocalMatrix.nb


BS P H E R I C A L N - P E N D U L U M P RO B L E M .

Abstract. The dynamics of chain like objects can be idealized as a mul-
tiple pendulum, treating the system as a set of point masses, joined by
rigid massless connecting rods, and frictionless pivots. The double planar
pendulum and single mass spherical pendulum problems are well treated
in Lagrangian physics texts, but due to complexity a similar treatment of
the spherical N-pendulum problem is not pervasive. We show that this
problem can be tackled in a direct fashion, even in the general case with
multiple masses and no planar constraints. A matrix factorization of the
kinetic energy into allows an explicit and compact specification of the
Lagrangian. Once that is obtained the equations of motion for this gener-
alized pendulum system follow directly.

b.1 introduction .

Derivation of the equations of motion for a planar motion constrained dou-
ble pendulum system and a single spherical pendulum system are given
as problems or examples in many texts covering Lagrangian mechanics.
Setup of the Lagrangian, particularly an explicit specification of the sys-
tem kinetic energy, is the difficult aspect of the multiple mass pendulum
problem. Each mass in the system introduces additional interaction cou-
pling terms, complicating the kinetic energy specification. In this paper,
we use matrix algebra to determine explicitly the Lagrangian for the spher-
ical N pendulum system, and to evaluate the Euler-Lagrange equations for
the system.

It is well known that the general specification of the kinetic energy
for a system of independent point masses takes the form of a symmetric
quadratic form [4] [5]. However, actually calculating that energy explic-
itly for the general N-pendulum is likely thought too pedantic for even the
most punishing instructor to inflict on students as a problem or example.
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Given a 3 × 1 coordinate vector of velocity components for each mass
relative to the position of the mass it is connected to, we can factor this
as a (3 × 2)(2 × 1) product of matrices where the 2 × 1 matrix is a vector
of angular velocity components in the spherical polar representation. The
remaining matrix factor contains all the trigonometric dependence. Such
a grouping can be used to tidily separate the kinetic energy into an explicit
quadratic form, sandwiching a symmetric matrix between two vectors of
generalized velocity coordinates.

This paper is primarily a brute force and direct attack on the problem. It
contains no new science, only a systematic treatment of a problem that is
omitted from mechanics texts, yet conceptually simple enough to deserve
treatment.

The end result of this paper is a complete and explicit specification of
the Lagrangian and evaluation of the Euler-Lagrange equations for the
chain-like N spherical pendulum system. While this end result is essen-
tially nothing more than a non-linear set of coupled differential equations,
it is believed that the approach used to obtain it has some elegance. Group-
ing all the rotational terms of the kinetic into a symmetric kernel appears
to be a tidy way to tackle multiple discrete mass problems. At the very
least, the calculation performed can show that a problem perhaps thought
to be too messy for a homework exercise yields nicely to an organized
and systematic attack.

b.2 diving right in .

We make the simplifying assumptions of point masses, rigid massless con-
necting rods, and frictionless pivots.

b.2.1 Single spherical pendulum.

Using polar angle θ and azimuthal angle ϕ, and writing S θ = sin θ, Cϕ =

cos ϕ and so forth, we have for the coordinate vector on the unit sphere

r̂ =


CϕS θ

S ϕS θ

Cθ

 . (B.1)
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The Lagrangian for the pendulum is then

L =
1
2

ml ˙̂rT ˙̂r −mglCθ. (B.2)

This is somewhat unsatisfying since the unit vector derivatives have not
been evaluated. Doing so we get

˙̂r =


CϕCθθ̇ − S ϕS θϕ̇

S ϕCθθ̇ +CϕS θϕ̇

−S θθ̇

 . (B.3)

This however, is an ugly beastie to take the norm of as is. It is straightfor-
ward to show that this norm is just

˙̂rT ˙̂r = θ̇2 + S 2
θ ϕ̇

2, (B.4)

however, the brute force multiplication that leads to this result is not easily
generalized to the multiple pendulum problem. Instead of actually expand-
ing this now, lets defer that until later and instead write for a coordinate
vector of angular velocity components

Ω =
[
θ̇ϕ̇

]
. (B.5)

Now the unit polar derivative eq. (B.3) can be factored as

˙̂r = ATΩ

A =

 CϕCθ S ϕCθ −S θ

−S ϕS θ CϕS θ 0

 . (B.6a)

Our Lagrangian now takes the explicit form

L =
1
2

mlΩTAATΩ −mglCθ

AAT =

1 0

0 S 2
θ

 . (B.7a)

b.2.2 Spherical double pendulum.

Before generalizing to N links, consider the double pendulum. Let the
position of each of the k-th mass (with k = 1, 2) be

uk = uk−1 + lkr̂k =

k∑
j=1

lkr̂k. (B.8)
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The unit vectors from the origin to the first mass, or from the first mass to
the second have derivatives

˙̂rk = Ak
TΘ̇k, (B.9)

where

Ak =

 CϕkCθk S ϕkCθk −S θk

−S ϕk S θk Cϕk S θk 0


Θk =

θk

ϕk

 .
(B.10)

Since

duk

dt
=

k∑
j=1

l jAT
j Θ̇ j, (B.11)

The squared velocity of each mass is∣∣∣∣∣duk

dt

∣∣∣∣∣2 = k∑
r,s=1

lrlsΘ̇T
r ArAT

s Θ̇s. (B.12)

To see the structure of this product, it is helpful to expand this sum com-
pletely, something that is feasible for this N = 2 case. First for k = 1 we
have just∣∣∣∣∣du1

dt

∣∣∣∣∣2 = l21Θ̇T
1 A1AT

1 Θ̇1, (B.13)

and for k = 2 we have∣∣∣∣∣du2

dt

∣∣∣∣∣2 = l21Θ̇T
1 A1AT

1 Θ̇1 + l22Θ̇T
2 A2AT

2 Θ̇2 + l1l2Θ̇T
1 A1AT

2 Θ̇2 + l2l1Θ̇T
2 A2AT

1 Θ̇1

=
(
l21Θ̇T

1 A1AT
1 + l2l1Θ̇T

2 A2AT
1

)
Θ̇1 +

(
l22Θ̇T

2 A2AT
2 + l1l2Θ̇T

1 A1AT
2

)
Θ̇2

=
[
Θ̇T

1 Θ̇T
2

]  l21A1AT
1

l2l1A2AT
1

 Θ̇1 +
[
Θ̇T

1 Θ̇T
2

] l1l2A1AT
2

l22A2AT
2

 Θ̇2

=
[
Θ̇T

1 Θ̇T
2

]  l21A1AT
1 l1l2A1AT

2

l2l1A2AT
1 l22A2AT

2


Θ̇1

Θ̇2

 .
(B.14)
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Observe that these can be summarized by writing

BT
1 =

[
l1AT

1 0
]

BT
2 =

[
l1AT

1 l2AT
2

]
Θ =

Θ̇1

Θ̇2


u̇k = Θ̇TBkBT

k Θ̇.

(B.15)

The kinetic energy for particle one is

K1 =
1
2

m1Θ̇TB1BT
1 Θ̇

= Θ̇T

m1l21A1AT
1 0

0 0

 Θ̇,
(B.16)

and for the second particle

K2 =
1
2

m2Θ̇TB2BT
2 Θ̇ =

1
2

m2Θ̇T

 l21A1AT
1 l1l2A1AT

2

l2l1A2AT
1 l22A2AT

2

 Θ̇. (B.17)

Summing these we have

K =
1
2

Θ̇T

(m1 +m2)l21A1AT
1 m2l1l2A1AT

2

m2l2l1A2AT
1 m2l22A2AT

2

 Θ̇. (B.18)

For the mass sums let

µk ≡

2∑
j=k

m j, (B.19)

so

K =
1
2

Θ̇T

 µ1l21A1AT
1 µ2l1l2A1AT

2

µ2l2l1A2AT
1 µ2l22A2AT

2

 Θ̇. (B.20)

If the matrix of quadradic factors is designated Q, so that

K =
1
2

Θ̇TQΘ̇, (B.21)

then the (i,j) element of the matrix Q is given by

Qi j = µmax(i, j)lil jAiAT
j . (B.22)
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For the potential energy, things are simplest if that energy is measured
from the z = 0 plane. The potential energy for mass 1 is

T1 = m1gl1 cos θ1, (B.23)

and the potential energy for mass 2 is

T2 = m2g (l1 cos θ1 + l2 cos θ2) . (B.24)

The total potential energy for the system is

T = (m1 +m2)gl1 cos θ1 +m2gl2 cos θ2

=

2∑
k=1

µkglk cos θk.
(B.25)

b.2.3 N spherical pendulum.

Having written things out explicitly for the two particle case, the general-
ization to N particles is straightforward

ΘT =
[
ΘT

1 ΘT
2 · · · ΘT

N

]
Qi j = µmax(i, j)lil jAiAT

j

K =
1
2

Θ̇TQΘ̇

µk =

N∑
j=k

m j

Φ = g
N∑

k=1

µklk cos θk

L = K −Φ.

(B.26)

After some expansion one can find that the block matrices AiAT
j contained

in Q are

AiAT
j =

Cϕ j−ϕiCθiCθ j + S θiS θ j −S ϕ j−ϕiCθiS θ j

S ϕ j−ϕiCθ jS θi Cϕ j−ϕiS θiS θ j

 . (B.27)

The diagonal blocks are particularly simple and have no ϕ dependence

AiAT
i =

1 0

0 sin2 θi

 . (B.28)
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b.3 evaluating the euler-lagrange equations .

It will be convenient to group the Euler-Lagrange equations into a column
vector form, with a column vector of generalized coordinates and deriva-
tives, and position and velocity gradients in the associated phase space

q ≡
[
qr

]
r

(B.29a)

q̇ ≡
[
q̇r

]
r

(B.29b)

∇qL ≡
[
∂L
∂qr

]
r

(B.29c)

∇q̇L ≡
[
∂L
∂q̇r

]
r
. (B.29d)

In this form the Euler-Lagrange equations take the form of a single vector
equation

∇qL =
d
dt
∇q̇L. (B.30)

We are now set to evaluate these generalized phase space gradients. For
the acceleration terms our computation reduces nicely to a function of
only Q

d
dt
∂L
∂θ̇a
=

1
2

d
dt

∂Θ̇

∂θ̇a

T

QΘ̇ + Θ̇
TQ

∂Θ̇

∂θ̇a


=

d
dt

([
δac

[
1 0

]]
c
QΘ̇

)
,

(B.31)

and

d
dt
∂L
∂ϕ̇a
=

1
2

d
dt

 ∂Θ̇

∂ϕ̇a

T

QΘ̇ + Θ̇
TQ

∂Θ̇

∂ϕ̇a


=

d
dt

([
δac

[
0 1

]]
c
QΘ̇

)
.

(B.32)
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The last groupings above made use of Q = QT, and in particular (Q +
QT)/2 = Q. We can now form a column matrix putting all the angular
velocity gradient in a tidy block matrix representation

∇Θ̇L =


 ∂L
∂θ̇r
∂L
∂ϕ̇r



r

= QΘ̇. (B.33)

A small aside on Hamiltonian form. This velocity gradient is also the
conjugate momentum of the Hamiltonian, so if we wish to express the
Hamiltonian in terms of conjugate momenta, we require invertability of
Q at the point in time that we evaluate things. Writing

PΘ = ∇Θ̇L, (B.34)

and noting that (Q−1)T = Q−1, we get for the kinetic energy portion of the
Hamiltonian

K =
1
2

PΘ
TQ−1PΘ. (B.35)

Now, the invertiblity of Q cannot be taken for granted. Even in the single
particle case we do not have invertiblity. For the single particle case we
have

Q = ml2
1 0

0 sin2 θ

 , (B.36)

so at θ = ±π/2 this quadratic form is singular, and the planar angular
momentum becomes a constant of motion. Returning to the evaluation of
the Euler-Lagrange equations, the problem is now reduced to calculating
the right hand side of the following system

d
dt

(
QΘ̇

)
=


 ∂L
∂θr
∂L
∂ϕr



r

. (B.37)

With back substitution of eq. (B.27), and eq. (B.28) we have a complete
and explicit matrix expansion of the left hand side. For the right hand side
taking the θa and ϕa derivatives respectively we get

∂L
∂θa
=

1
2

Θ̇
T
[
µmax(r,c)lrlc

(
∂Ar
∂θa

AT
c + Ar

∂Ac
∂θa

T
)]

rc
Θ̇− gµala sin θa, (B.38a)
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∂L
∂ϕa
=

1
2

Θ̇
T
[
µmax(r,c)lrlc

(
∂Ar
∂ϕa

AT
c + Ar

∂Ac
∂ϕa

T
)]

rc
Θ̇. (B.38b)

So to proceed we must consider the ArAT
c partials. A bit of thought shows

that the matrices of partials above are mostly zeros. Illustrating by exam-
ple, consider ∂Q/∂θ2, which in block matrix form is

0 1
2µ2l1l2A1

∂A2
∂θ2

T
0 ... 0

1
2µ2l2l1

∂A2
∂θ2

AT
1

1
2µ2l2l2

(
A2

∂A2
∂θ2

T
+
∂A2
∂θ2

AT
2

)
1
2µ3l2l3

∂A2
∂θ2

AT
3 ... 1

2µN l2lN
∂A2
∂θ2

AT
N

0 1
2µ3l3l2A3

∂A2
∂θ2

T
0 ... 0

0
... 0 ... 0

0 1
2µN lN l2AN

∂A2
∂θ2

T
0 ... 0


. (B.39)

Observe that the diagonal term has a scalar plus its transpose, so we can
drop the one half factor and one of the summands for a total contribution
to ∂L/∂θ2 of just

µ2l22Θ̇
T
2
∂A2

∂θ2
AT

2 Θ̇2. (B.40)

Now consider one of the pairs of off diagonal terms. Adding these contri-
butions to ∂L/∂θ2 of

1
2
µ2l1l2Θ̇

T
1 A1

∂A2

∂θ2

T
Θ̇2 +

1
2
µ2l2l1Θ̇

T
2
∂A2

∂θ2
AT

1 Θ̇1

=
1
2
µ2l1l2Θ̇

T
1

(
A1
∂A2

∂θ2

T
+ A1

∂A2

∂θ2

T)
Θ̇2

= µ2l1l2Θ̇
T
1 A1

∂A2

∂θ2

T
Θ̇2.

(B.41)

This has exactly the same form as the diagonal term, so summing over all
terms we get for the position gradient components of the Euler-Lagrange
equation just

∂L
∂θa
=

∑
k

µmax(k,a)lklaΘ̇
T
k Ak

∂Aa

∂θa

T
Θ̇a − gµala sin θa, (B.42)

and

∂L
∂ϕa
=

∑
k

µmax(k,a)lklaΘ̇
T
k Ak

∂Aa

∂ϕa

T
Θ̇a. (B.43)
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The only thing that remains to do is evaluate the Ak∂Aa/∂ϕa
T matrices.

Utilizing eq. (B.27), one obtains easily

Ak
∂Ar

∂θr

T
=

S θkCθr −Cθk S θrCϕk−ϕr CθkCθr S ϕk−ϕr

S θk S θr S ϕk−ϕr S θkCθrCϕk−ϕr

 , (B.44)

and

Ak
∂Ar

∂ϕr

T
=

CθkCθr S ϕk−ϕr −Cθk S θrCϕk−ϕr

S θkCθrCϕk−ϕr S θk S θr S ϕk−ϕr

 . (B.45)

The right hand side of the Euler-Lagrange equations now becomes

∇ΘL =
∑

k


µmax(k,r)lklrΘ̇

T
k Ak

∂Ar
∂θr

T
Θ̇r

µmax(k,r)lklrΘ̇
T
k Ak

∂Ar
∂ϕr

T
Θ̇r



r

− g

µrlr sin θr

10


r

. (B.46)

Between eq. (B.46), eq. (B.33), and a few other auxiliary relations, all
above we have completed the task of evaluating the Euler-Lagrange equa-
tions for this multiple particle distinct mass system. Unfortunately, just as
the simple planar pendulum is a non-linear system, so is this. Possible op-
tions for solution are numerical methods or solution restricted to a linear
approximation in a small neighborhood of a particular phase space point.
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b.4 summary.

Looking back it is hard to tell the trees from the forest. Here is a summary
of the results and definitions of importance. First the Langrangian itself

µk =

N∑
j=k

m j

Θk =

θk

ϕk


ΘT =

[
ΘT

1 ΘT
2 . . . ΘT

N

]
Ak =

 CϕkCθk S ϕkCθk −S θk

−S ϕk S θk Cϕk S θk 0


Q =

[
µmax(r,c)lrlcArAT

c

]
rc

K =
1
2

Θ̇
TQΘ̇

Φ = g
N∑

k=1

µklk cos θk

L = K −Φ.

(B.47a)

Evaluating the Euler-Lagrange equations for the system, we get

0 = ∇ΘL −
d
dt

(∇Θ̇L)

=
∑

k


µmax(k,r)lklrΘ̇

T
k Ak

∂Ar
∂θr

T
Θ̇r

µmax(k,r)lklrΘ̇
T
k Ak

∂Ar
∂ϕr

T
Θ̇r



r

− g

µrlr sin θr

10


r

−
d
dt

(
QΘ̇

)
.

(B.48)

Making this explicit requires evaluation of some of the matrix products.
With verification in multisphericalPendulum.nb, those are

ArAT
c =

Cϕc−ϕrCθrCθc + S θr S θc −S ϕc−ϕrCθr S θc

S ϕc−ϕrCθcS θr Cϕc−ϕr S θr S θc


Ak
∂Ar

∂θr

T
=

S θkCθr −Cθk S θrCϕk−ϕr CθkCθr S ϕk−ϕr

S θk S θr S ϕk−ϕr S θkCθrCϕk−ϕr


Ak
∂Ar

∂ϕr

T
=

CθkCθr S ϕk−ϕr −Cθk S θrCϕk−ϕr

S θkCθrCϕk−ϕr S θk S θr S ϕk−ϕr

 .
(B.49)
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CD I R E C T VA R I AT I O N O F M A X W E L L E Q UAT I O N S .

c.1 motivation , definitions and setup.

This document will attempt to calculate Maxwell’s equation, which in
multivector form is

∇F = J/ϵ0c. (C.1)

using a Lagrangian energy density variational approach.

c.1.1 Tensor form of the field.

Explicit expansion of the field bivector in terms of coordinates one has

F = E + IcB
= Ekγk0 + γ0123k0cBk

= Ekγk0 + (γ0)2(γk)2ϵi j
kcγi jBk.

(C.2)

The complete coordinate expansion of the field is

F = Ekγk0 − cϵi j
kBkγi j. (C.3)

When this bivector is expressed in terms of basis bivectors γµν we have

F =
∑
µ<ν

(F · γνµ)γµν =
1
2

(F · γνµ)γµν. (C.4)

As shorthand for the coordinates the field can be expressed with respect
to various bivector basis sets in tensor form

Fµν = F · γνµ F = (1/2)Fµνγµν

Fµν = F · γνµ F = (1/2)Fµνγ
µν

Fµ
ν = F · γνµ F = (1/2)Fµ

νγµν

Fµ
ν = F · γνµ F = (1/2)Fµ

νγµ
ν.

(C.5)
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In particular, we can extract the electric field components by dotting with
a spacetime mix of indices

Fi0 = Ekγk0 · γ
0i = Ei = −Fi0. (C.6)

and the magnetic field components by dotting with the bivectors having a
pure spatial mix of indices

Fi j = −cϵab
kBkγab · γ

ji = −cϵi j
kBk = Fi j. (C.7)

It is customary to summarize these tensors in matrix form

Fµν =


0 −E1 −E2 −E3

E1 0 −cB3 cB2

E2 cB3 0 −cB1

E3 −cB2 cB1 0


, (C.8a)

Fµν =


0 E1 E2 E3

−E1 0 −cB3 cB2

−E2 cB3 0 −cB1

−E3 −cB2 cB1 0


. (C.8b)

Neither of these matrices will be needed explicitly, but are included for
comparison since there is some variation in the sign conventions and units
used for the field tensor. Observe that these matrix representations are
both sparse and filled with redudancy, and are not a particularily great
representation of the field.

c.1.1.1 Potential form.

With the assumption that the field can be expressed in terms of the curl of
a potential vector

F = ∇∧ A, (C.9)

the tensor expression of the field becomes

Fµν = F · (γν ∧ γµ) = ∂µAν − ∂νAµ

Fµν = F · (γν ∧ γµ) = ∂µAν − ∂νAµ
Fµ

ν = F · (γν ∧ γµ) = ∂µAν − ∂νAµ

Fµ
ν = F · (γν ∧ γµ) = ∂µAν − ∂νAµ.

(C.10)

These field bivector coordinates will be used in the Lagrangian calcula-
tions.



DL O R E N T Z I N VA R I A N C E O F M A X W E L L
L AG R A N G I A N .

d.1 working in multivector form .

d.1.1 Lorentz boost of field Lagrangian.

The multivector form of the field Lagrangian is

L = κ(∇∧ A)2 + A · J

κ = −
ϵ0c
2
.

(D.1)

Write the boosting transformation on a four vector in exponential form

L(X) = exp(αâ/2)X exp(−αâ/2) = ΛXΛ†, (D.2)

where â = aiγi ∧ γ0 is any unit spacetime bivector, and α represents the
rapidity angle.

Consider first the transformation of the interaction term with A′ = L(A),
and J′ = L(J)

A′ · J′ = ⟨L(A)L(J)⟩

=
〈
ΛAΛ†ΛJΛ†

〉
=

〈
ΛAJΛ†

〉
=

〈
Λ†ΛAJ

〉
= ⟨AJ⟩

= A · J.

(D.3)
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Now consider the boost applied to the field bivector F = E+ IcB = ∇∧ A,
by boosting both the gradient and the potential

∇′ ∧ A′ = L(∇)∧ L(A)

= Λ∇)∧ L(A)

= (Λ∇Λ†)∧ (ΛAΛ†)

=
1
2

(
(Λ∇Λ†)(ΛAΛ†) − (ΛAΛ†)(Λ∇Λ†)

)
=

1
2

(
Λ∇AΛ† −ΛA∇Λ†

)
= Λ(∇∧ A)Λ†.

(D.4)

The boosted squared field bivector in the Lagrangian is thus

(∇′ ∧ A′)2 = Λ(∇∧ A)2Λ†

= Λ(E + IcB)2Λ†

= Λ((E2 − c2B2) + 2IcE ·B)Λ†

= ((E2 − c2B2)ΛΛ† + 2(ΛIΛ†)cE ·B)

= ((E2 − c2B2) + 2IΛΛ†cE ·B)

= ((E2 − c2B2) + 2IcE ·B)

= (E + IcB)2

= (∇∧ A)2.

(D.5)

The commutation of the pseudoscalar I with the boost exponential Λ =
exp(αâ/2) = cosh(α/2) + â sinh(α/2) is possible since I anticommutes
with all four vectors and thus commutes with bivectors, such as â. I also
necessarily commutes with the scalar components of this exponential, and
thus commutes with any even grade multivector.

Putting all the pieces together this shows that the Lagrangian in its
entirety is a Lorentz invariant

L′ = κ(∇′ ∧ A′)2 + A′ · J′ = κ(∇∧ A)2 + A · J = L. (D.6)

FIXME: what is the conserved quantity associated with this? There should
be one according to Noether’s theorem? Is it the gauge condition ∇ · A =
0?
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d.1.1.1 Maxwell equation invariance.

Somewhat related, having calculated the Lorentz transform of F = ∇∧ A,
is an aside showing that the Maxwell equation is unsurprisingly also is a
Lorentz invariant.

∇′(∇′ ∧ A′) = J′

Λ∇Λ†Λ(∇∧ A)Λ† = ΛJΛ†

Λ∇(∇∧ A)Λ† = ΛJΛ†.

(D.7)

Pre and post multiplying with Λ†, and Λ respectively returns the un-
boosted equation

∇(∇∧ A) = J. (D.8)

d.1.2 Lorentz boost applied to the Lorentz force Lagrangian.

Next interesting case is the Lorentz force, which for a time positive metric
signature is:

L = qA · v/c +
1
2

mv · v. (D.9)

The boost invariance of the A · J dot product demonstrated above demon-
strates the general invariance property for any four vector dot product, and
this Lagrangian has nothing but dot products in it. It thus follows directly
that the Lorentz force Lagrangian is also a Lorentz invariant.

d.2 repeat in tensor form .

Now, I can follow the above, but presented with the same sort of calcula-
tion in tensor form I am hopeless to understand it. To attempt translating
this into tensor form, it appears the first step is putting the Lorentz trans-
form itself into tensor or matrix form.

d.2.1 Translating versors to matrix form.

To get the feeling for how this will work, assume â = σ1, so that the boost
is along the x-axis. In that case we have

L(X) = (cosh(α/2) + γ10 sinh(α/2))xµγµ(cosh(α/2) + γ01 sinh(α/2)).
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(D.10)

Writing C = cosh(α/2), and S = sinh(α/2), and observing that the expo-
nentials commute with the γ2, and γ3 directions so the exponential action
on those directions cancel.

L(X) = x2γ2 + x3γ3 + (C + γ10S )(x0γ0 + x1γ1)(C + γ01S ). (D.11)

Expanding just the non-perpendicular parts of the above

(C + γ10S )(x0γ0 + x1γ1)(C + γ01S )

= x0(C2γ0 + γ10001S 2) + x0S C(γ001 + γ100)

+ x1(C2γ1 + γ10101S 2) + x1S C(γ101 + γ101)

= x0(C2γ0 − γ01100S 2) + 2x0S Cγ001 + x1(C2γ1 − γ11001S 2) − 2x1S Cγ011

= (x0γ0 + x1γ1)(C2 + S 2) + 2(γ0)2S C(x0γ1 + x1γ0)

= (x0γ0 + x1γ1) cosh(α) + (γ0)2 sinh(α)(x0γ1 + x1γ0)

= γ0(x0 cosh(α) + x1 sinh((γ0)2α)) + γ1(x1 cosh(α) + x0 sinh((γ0)2α)).
(D.12)

In matrix form the complete transformation is thus
x0

x1

x2

x3



′

=


cosh(α(γ0)2) sinh(α(γ0)2) 0 0

sinh(α(γ0)2) cosh(α(γ0)2) 0 0

0 0 1 0

0 0 0 1




x0

x1

x2

x3



= cosh(α(γ0)2)


1 tanh(α(γ0)2) 0 0

tanh(α(γ0)2) 1 0 0

0 0 1 0

0 0 0 1




x0

x1

x2

x3


.

(D.13)

This supplies the specific meaning for the α factor in the exponential form,
namely:

α = − tanh−1(β(γ0)2)

= − tanh−1(|v|/c(γ0)2).
(D.14)

Or

αâ = − tanh−1(â|v|/c(γ0)2)

= − tanh−1(v/c(γ0)2).
(D.15)
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Putting this back into the original Lorentz boost equation to tidy it up, and
writing tanh(A) = v/c, the Lorentz boost is

L(X) =

 exp(−A/2)X exp(A/2) for (γ0)2 = 1

exp(A/2)X exp(−A/2) for (γ0)2 = −1
. (D.16)

Both of the metric signature options are indicated here for future reference
and comparison with results using the alternate signature.

d.2.1.1 Revisit the expansion to matrix form above.

Looking back, multiplying out all the half angle terms as done above is
this is the long dumb hard way to do it. A more sensible way would be to
note that exp(αâ/2) anticommutes with both γ0 and γ1 thus

exp(αâ/2)(x0γ0 + x1γ1) exp(−αâ/2) = exp(αâ)(x0γ0 + x1γ1)

= (cosh(α) + â sinh(α))(x0γ0 + x1γ1).
(D.17)

The matrix form thus follows directly.

d.3 translating versors tensor form .

After this temporary digression back to the multivector form of the Lorentz
transformation lets dispose of the specifics of the boost direction and mag-
nitude, and also the metric signature. Instead encode all of these in a single
versor variable Λ, again writing

L(X) = ΛXΛ†. (D.18)

d.3.1 Tensor form of vector Lorentz transform.

What is the general way to encode this linear transformation in tensor/-
matrix form? The transformed vector is just that a vector, and thus can be
written in terms of coordinates for some basis

L(X) = (L(X) · eµ)eµ

= ((Λ(xνγν)Λ†) · eµ)eµ

= xν((ΛγνΛ†) · eµ)eµ.

(D.19)
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The inner term is just the tensor that we want. Write

Λν
µ = (ΛγνΛ†) · eµ

Λν
µ = (ΛγνΛ†) · eµ,

(D.20)

for

L(X) = xνΛν
µeµ

= xνΛν
µeµ.

(D.21)

Completely eliminating the basis, working in just the coordinates X =
x′µeµ = x′µeµ this is

x′µ = xνΛν
µ

x′µ = xνΛν
µ.

(D.22)

Now, in particular, having observed that the dot product is a Lorentz in-
variant this should supply the index manipulation rule for operating with
the Lorentz boost tensor in a dot product context.

Write

L(X) · L(Y) = (xνΛν
µeµ) · (yαΛα

βeβ)

= xνyαΛν
µΛα

βeµ · eβ

= xνyαΛν
µΛα

µ.

(D.23)

Since this equals xνyν, the tensor rule must therefore be

Λµ
σΛν

σ = δµ
ν. (D.24)

After a somewhat long path, the core idea behind the Lorentz boost tensor
is that it is the “matrix” of a linear transformation that leaves the four
vector dot product unchanged. There is no need to consider any Clifford
algebra formulations to express just that idea.

d.3.2 Misc notes.

FIXME: To complete the expression of this in tensor form enumerating
exactly how to express the dot product in tensor form would also be rea-
sonable. ie: how to compute the reciprocal coordinates without describing
the basis. Doing this will introduce the metric tensor into the mix.
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Looks like the result eq. (D.24) is consistent with [20] and that doc
starts making a bit more sense now. I do see that he uses primes to distin-
guish the boost tensor from its inverse (using the inverse tensor (primed
index down) to transform the covariant (down) coordinates). Is there a
convention for keeping free vs. varied indices close to the body of the
operator? For the boost tensor he puts the free index closer to Λ, but for
the inverse tensor for a covariant coordinate transformation puts the free
index further out? This also appears to be notational consistent with [22].

d.3.3 Expressing bivector Lorentz transform in tensor form.

Having translated a vector Lorentz transform into tensor form, the next
step is to do the same for a bivector. In particular for the field bivector
F = ∇∧ A.

Write

∇′ = Λγµ∂µΛ†

A′ = ΛAνγνΛ†.
(D.25)

∇′ · eβ = (ΛγµΛ†) · eβ∂µ = Λµ
β∂µ

A′ · eβ = (ΛγνΛ†) · eβAν = Λν
βAν.

(D.26)

Then the transformed bivector is

F′ = ∇′ ∧ A′ = ((∇′ · eα)eα)∧ ((A′ · eβ)eβ)

= (eα ∧ eβ)Λµ
αΛν

β∂µAν,
(D.27)

and finally the transformed tensor is thus

Fab′ = F′ · (eb ∧ ea)

= (eα ∧ eβ) · (eb ∧ ea)Λµ
αΛν

β∂µAν

= (δαaδβ
b − δβ

aδα
b)Λµ

αΛν
β∂µAν

= Λµ
aΛν

b∂µAν −Λµ
bΛν

a∂µAν

= Λµ
aΛν

b(∂µAν − ∂νAµ).

(D.28)

Which gives the final transformation rule for the field bivector in tensor
form

Fab′ = Λµ
aΛν

bFµν. (D.29)
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Returning to the original problem of field Lagrangian invariance, we want
to examine how Fab′Fab

′ transforms. That is

Fab′Fab
′ = Λµ

aΛν
bFµνΛα

aΛβ
bFαβ

= (Λµ
aΛα

a)(Λν
bΛβ

b)FµνFαβ

= δµ
αδν

βFµνFαβ

= FµνFµν.

(D.30)

which is the desired result. Since the dot product remainder of the La-
grangian eq. (D.1) has already been shown to be Lorentz invariant this
is sufficient to prove the Lagrangian boost or rotational invariance using
tensor algebra.

Working this way is fairly compact and efficient, and required a few
less steps than the multivector equivalent. To compare apples to apples,
for the algebraic tools, it should be noted that if only the scalar part of
(∇ ∧ A)2 was considered as implicitly done in the tensor argument above,
the multivector approach would likely have been as compact as well.



EL O R E N T Z T R A N S F O R M N O E T H E R C U R R E N T
( I N T E R AC T I O N L AG R A N G I A N ) .

e.1 motivation .

Here we consider Noether’s theorem applied to the covariant form of the
Lorentz force Lagrangian. Boost under rotation or boost or a combination
of the two will be considered.

e.2 covariant result.

For proper velocity v, four potential A, and positive time metric signature
(γ0)2 = 1, the Lorentz for Lagrangian is

L =
1
2

mv · v + qA · v/c. (E.1)

Let us see if Noether’s can be used to extract an invariant from the Lorentz
force Lagrangian eq. (E.1) under a Lorentz boost or a spatial rotational
transformation. Four vector dot products are Lorentz invariants. This can
be thought of as the definition of a Lorentz transform (ie: the transfor-
mations that leave the four vector dot products unchanged). Alternatively,
this can be shown using the exponential form of the boost

L(x) = exp(−αâ/2)x exp(αâ/2). (E.2)

The dot product of two such transformed vectors is

L(x) · L(y) =
〈
exp(−αâ/2)x exp(αâ/2) exp(−αâ/2)y exp(αâ/2)

〉
=

〈
exp(−αâ/2)xy exp(αâ/2)

〉
= x · y

〈
exp(−αâ/2) exp(αâ/2)

〉
= x · y.

(E.3)

Using the exponential form of the boost operation, boosting v, A leaves the
Lagrangian unchanged. Therefore there is a conserved quantity according
to Noether’s, but what is it?
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Also observe that the spacetime nature of the bivector â has not actually
been specified, which means that all the subsequent results apply to spatial
rotation as well. Due to the negative spatial signature ((γi)2 = −1) used
here, for a spatial rotation α will represent a rotation in the negative sense
in the oriented plane specified by the unit bivector â.

Consider change with respect to the rapidity factor (or rotational angle)
α

∂L′

∂α
=

d
dτ

(
∂x′

∂α
· ∇v′L

)
. (E.4)

The boost spacetime plane (or rotational plane) â could also be considered
a parameter in the transformation, but to use that or the combination of
the two we need the multivector form of Noether’s. These notes were in
fact originally part of an attempt 8 to get a feeling for the scalar case as
lead up to that so this is an exercise for later.

As for the derivatives in eq. (E.4) we have

∂x′

∂α
=

∂

∂α
exp(−αâ/2)x exp(αâ/2)

= −
1
2
(âx′ − x′â)

= −â · x′.

(E.5)

∇v′L = p′ + qA′/c. (E.6)

So the conserved quantity is

−(â · x′) · (p′ + qA′/c) = −â · (x′ ∧ (p′ + qA′/c))

= −â · κ.
(E.7)

So we have a conserved quantity

x ∧ (p + qA/c) = κ. (E.8)

This has the looks of the three dimensional angular momentum conserva-
tion expression (with an added term due to non-radial potential), but does
not look like any quantity from relativistic texts that I have seen (not that
I have really seen too much).

As an example to get a feeling for this take x to be a rest frame world-
line. Then we have

ctγ0 ∧ (mṫγ0 + qA/c) = −qtA = κ. (E.9)
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Which indicates that the product of observer time and the observers’ three
vector potential is a constant of motion. Curious. Not a familiar result.

Assuming these calculations are correct, then if this holds for all time
for then κ = 0 due to the origin time of x. I would interpret this to mean
that for the charged mass to be at rest, the vector potential must also be
zero. So while x = ctγ0 is simple for calculations, it does not appear to be
a terribly interesting case.

FIXME: try plugging in specific solutions to the Lorentz force equation
here to validate or invalidate this calculation.

One further thing that can be observed about this is that if we take
derivatives of

x ∧ (p + qA/c) = κ, (E.10)

we have

v∧ (p + qA/c) + x ∧ ( ṗ + qȦ/c) = 0. (E.11)

Or

x ∧ ṗ =
d
dτ

(q/cA∧ x)

= qA∧ v/c + q/cȦ∧ x.
(E.12)

So we have a relativistic torque expressed in terms of the potential, proper
velocity and the variation of the potential.

e.3 expansion in observer frame .

This still is not familiar looking, but lets expand this in terms of a par-
ticular observable, and see what falls out. First the LHS, with dt/dτ = γ

x ∧ ṗ = (ctγ0 + xiγi)∧
(
γ

d
dt

(
mγ(cγ0 +

dx j

dt
γ j)

))
. (E.13)

So

1
γ

(x ∧ ṗ) = −ct
d(γp)

dt
+ x

d(mcγ)
dt

+ xiγi ∧
d
dt

(
mγ

dx j

dt
γ j

)
. (E.14)
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But

σi ∧σ j =
1
2

(γiγ0γ jγ0 − γ jγ0γiγ0)

= −
(γ0)2

2
(γiγ j − γ jγi)

= −γi ∧ γ j.

(E.15)

for

1
γ

(x ∧ ṗ) = −ct
d(γp)

dt
+ x

d(mcγ)
dt

− x∧
d(γp)

dt
. (E.16)

Now, for the RHS of eq. (E.12), with A0 = ϕ

q
c
γ

d(x ∧ A)
dt

=
q
c
γ

d
dt

(ctγ0 + xiγi)∧ (ϕγ0 + A jγ j)

=
q
c
γ

d
dt

(−ctA + ϕx − x∧A) .
(E.17)

Equating the vector and bivector parts, and employing a duality transfor-
mation for the bivector parts leaves two vector relationships

ct
d(γp)

dt
− x

d(mcγ)
dt

=
q
c

d (ctA − ϕx)
dt

, (E.18)

x ×
d(γp)

dt
=

q
c

d
dt

(x ×A) . (E.19)

FIXME: the first equation looks like it could also be expressed in some
sort more symmetric form. Perhaps a grade two (commutator) product
between the multivectors (mcγ,p) = pγ0, and (ϕ,A) = Aγ0?

e.4 in tensor form .

As can be seen above, the four vector form of eq. (E.12) is much more
symmetric. What does it look like in tensor form? After first re-consolidating
the proper time derivatives we can read the coordinate form off by inspec-
tion

x ∧ ṗ =
d
dτ

(q/cA∧ x) . (E.20)

γµ ∧ γνxµmvν =
d
dτ

(
q/cAαxβ

)
γα ∧ γβ. (E.21)
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Which gives the tensor expression

ϵµν

(
xµvν −

d
dτ

( q
mc

Aµxν
))
= 0. (E.22)

This in turn implies the following six equations in µ, and ν

xµvν − xνvµ =
q

mc
d
dτ

(Aµxν − Aνxµ) . (E.23)

Looking to see if I got the right result, I asked on PF, and was pointed to
[1]. That ASCII thread is hard to read but at least my result is similar. I
will have to massage things to match them up more closely.

What I did not realize until I read that is that my rotation was not fixed
as either hyperbolic or euclidean since I did not actually specify the spe-
cific nature of the bivector for the rotational plane. So I ended up with
results for both the spatial invariance and the boost invariance at the same
time. Have adjusted things above, but that is why the spatial rotation ref-
erences all appear as afterthoughts.

Of the six equations in eq. (E.23), taking space time indices yields the
vector eq. (E.18) as the conserved quantity for a boost. Similarly the sec-
ond vector result in eq. (E.19) for purely spatial indices is the conserved
quantity for spatial rotation. That makes my result seem more reasonable
since I did not expect to get so much only considering boost.





FC A N O N I C A L E N E R G Y M O M E N T U M T E N S O R A N D
T R A N S L AT I O N .

f.1 motivation and direction .

In [11] we saw that it was possible to express the Lorentz force equation
for the charge per unit volume in terms of the energy momentum tensor.

Repeating

∇ · T (γµ) =
1
c

〈
FγµJ

〉
T (a) =

ϵ0

2
FaF̃.

(F.1)

While these may not appear too much like the Lorentz force equation as
we are used to seeing it, with some manipulation we found

1
c
⟨Fγ0J⟩ = −j ·E

1
c
⟨FγkJ⟩ = (ρE + j ×B) ·σk,

(F.2)

where we now have an energy momentum pair of equations, the second
of which if integrated over a volume is the Lorentz force for the charge
in that volume. We have also seen that we can express the Lorentz force
equation in GA form

mẍ = qF · ẋ/c. (F.3)

This was expressed in tensor form, toggling indices that was

mẍµ = qFµα ẋα. (F.4)

We then saw in [10] that the covariant form of the energy momentum
tensor relation was

T µν = ϵ0

(
FαµFν

α +
1
4

FαβFαβη
µν

)
∂νT µν = FαµJα/c.

(F.5)
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This has identical structure (FIXME: sign error here?) to the covariant
Lorentz force equation.

Now the energy momentum conservation equations above did not re-
quire the Lorentz force equations at all for their derivation, nor have we
used the Lorentz force interaction Lagrangian to arrive at them. With
Maxwell’s equation and the Lorentz force equation together ( or the equiv-
alent field and interaction Lagrangians) we have the complete specifica-
tion of classical electrodynamics. Curiously it appears that we have most
of the structure of the Lorentz force equation (except for the association
with mass) all in embedded in Maxwell’s equation or the Maxwell field
Lagrangian.

Now, a proper treatment of the field and charged mass interaction likely
requires the Dirac Lagrangian, and hiding in there if one could extract it,
is probably everything that could be said on the topic. It will be a long
journey to get to that point, but how much can we do considering just the
field Lagrangian?

For these reasons it seems desirable to understand the background be-
hind the energy momentum tensor much better. In particular, it is natural
to then expect that these conservation relations may also be found as a
consequence of a symmetry and an associated Noether current (see 18.1).
What is that symmetry? That symmetry should leave the field equations
as calculated by the field Euler-Lagrange equations Given that symmetry
how would one go about actually showing that this is the case? These are
the questions to tackle here.

f.2 on translation and divergence symmetries .

f.2.1 Symmetry due to total derivative addition to the Lagrangian.

In [2] the energy momentum tensor is treated by considering spacetime
translation, but I have unfortunately not understood much more than vague
direction in that treatment.

In [23] it is also stated that the energy momentum tensor is the result of
a Lagrangian spacetime translation, but I did not find details there.

There are examples of the canonical energy momentum tensor (in the
simpler non-GA tensor form) and the symmetric energy momentum ten-
sor in [7]. However, that treatment relies on analogy with mechanical form
of Noether’s theorem, and I had rather see it developed explicitly.
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Finally, in an unexpected place (since I am not studying QFT but was
merely curious), the clue required to understand the details of how this
spacetime translation results in the energy momentum tensor was found
in [25].

In Tong’s treatment it is pointed out there is a symmetry for the La-
grangian if it is altered by a divergence

L → L + ∂µFµ. (F.6)

It took me a while to figure out how this was a symmetry, but after a
nice refreshing motorcycle ride, the answer suddenly surfaced. One can
add a derivative to a mechanical Lagrangian and not change the resulting
equations of motion. While tackling problem 5 of Tong’s mechanics in
4.2, such an invariance was considered in detail in one of the problems
for Tong’s classical mechanics notes 5 . If one has altered the Lagrangian
by adding an arbitrary function f to it.

L′ = L + f . (F.7)

Assuming to start a Lagrangian that is a function of a single field variable
L = L(ϕ, ∂µϕ), then the variation of the Lagrangian for the field equations
yields

δL′

δϕ
=
∂L′

∂ϕ
− ∂σ

∂L′

∂(∂σϕ)

=
∂L

∂ϕ
− ∂σ

∂L

∂(∂σϕ)

= 0

+
∂ f
∂ϕ
− ∂σ

∂ f
∂(∂σϕ)

. (F.8)

So, if this transformed Lagrangian is a symmetry, it is sufficient to find
the conditions for the variation of additional part to be zero

δ f
δϕ
= 0. (F.9)

f.2.2 Some examples adding a divergence.

To validate the fact that we can add a divergence to the Lagrangian without
changing the field equations lets work out a few concrete examples of
eq. (F.9) of for Lagrangian alterations by a divergence f = ∂µFµ.

Each of these examples will be for a single field variable Lagrangian
with generalized coordinates x1 = x, and x1 = y.
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f.2.2.1 Simplest case. No partials.

Let

F1 = ϕ

F2 = 0.
(F.10)

With this the divergence is

f = ∂xFx + ∂yFy

=
∂ϕ

∂x
.

(F.11)

Now the variation is
δ f
δϕ
=

(
∂

∂ϕ
−
∂

∂x
∂

∂(∂ϕ/∂x)
−
∂

∂y
∂

∂(∂ϕ/∂y)

)
∂ϕ

∂x

=
∂

∂x
∂ϕ

∂ϕ
−
∂1
∂x

= 0.

(F.12)

Okay, so far so good.

f.2.2.2 One partial.

Now, let

F1 =
∂ϕ

∂x
F2 = 0.

(F.13)

With this the divergence is

f = ∂xFx + ∂yFy

=
∂

∂x
∂ϕ

∂x
.

(F.14)

And the variation is
δ f
δϕ
=

(
∂

∂ϕ
−
∂

∂x
∂

∂(∂ϕ/∂x)
−
∂

∂y
∂

∂(∂ϕ/∂y)

)
∂

∂x
∂ϕ

∂x

=
∂

∂ϕ

∂

∂x
∂ϕ

∂x

=
∂

∂x
∂

∂x
∂ϕ

∂ϕ

=
∂

∂x
∂1
∂x

= 0.

(F.15)
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Again, assuming I am okay to switch the differentiation order, we have
zero.

f.2.2.3 Another partial.

For the last concrete example before going on to the general case, try

F1 =
∂ϕ

∂y
F2 = 0.

(F.16)

The divergence is

f = ∂xFx + ∂yFy

=
∂

∂x
∂ϕ

∂y
.

(F.17)

And the variation is

δ f
δϕ
=

(
∂

∂ϕ
−
∂

∂x
∂

∂(∂ϕ/∂x)
−
∂

∂y
∂

∂(∂ϕ/∂y)

)
∂

∂x
∂ϕ

∂y

= −
∂

∂y
∂1
∂x

= 0.

(F.18)

f.2.2.4 The general case.

Because of linearity we have now seen that we can construct functions
with any linear combinations of first and second derivatives

Fµ = aµϕ +
∑
σ

bσµ
∂ϕ

∂xσ
. (F.19)

and for such a function we will have

δ(∂µFµ)
δϕ

= 0. (F.20)

How general can the function Fµ = Fµ(ϕ, ∂σϕ) be made and still yield a
zero variational derivative?
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To answer this, let us compute the derivative for a general divergence
added to a single field variable Lagrangian. This is

δ(∂µFµ)
δϕ

=
∑
µ

 ∂∂ϕ −∑
σ

∂

∂xσ
∂

∂(∂ϕ/∂xσ)

 ∂Fµ

∂xµ

=
∑
µ

∂

∂xµ
∂Fµ

∂ϕ

−
∑
µ,σ

∂

∂xσ
∂

∂(∂ϕ/∂xσ)

∂Fµ

∂ϕ

∂ϕ

∂xµ
+

∑
α

∂Fµ

∂(∂ϕ/∂xα)
∂(∂ϕ/∂xα)

∂xµ


= ∂µ

∂Fµ

∂ϕ
− ∂σ

∂

∂(∂σϕ)

(
∂Fµ

∂ϕ
∂µϕ +

∂Fµ

∂(∂αϕ)
∂µαϕ

)
.

(F.21)

For tractability in this last line the shorthand for the partials has been in-
jected. Sums over α, µ, andσ are also now implied (this was made explicit
prior to this in all cases where upper and lower indices were matched).

Treating these two last derivatives separately, we have for the first

∂σ
∂

∂(∂σϕ)
∂Fµ

∂ϕ
∂µϕ = ∂σ

(
∂

∂(∂σϕ)
∂Fµ

∂ϕ

)
∂µϕ + ∂σ

∂Fµ

∂ϕ

∂

∂(∂σϕ)
∂µϕ

= ∂σ

(
∂

∂(∂σϕ)
∂Fµ

∂ϕ

)
∂µϕ + ∂µ

∂Fµ

∂ϕ
.

(F.22)

So our ∂Fµ/∂ϕ’s cancel out, and we are left with

δ(∂µFµ)
δϕ

= −∂σ

((
∂

∂(∂σϕ)
∂Fµ

∂ϕ

)
∂µϕ +

∂

∂(∂σϕ)

(
∂Fµ

∂(∂αϕ)
∂µαϕ

))
= −∂σ

(
∂µϕ

(
∂

∂(∂σϕ)
∂Fµ

∂ϕ

)
+ ∂µαϕ

∂

∂(∂σϕ)

(
∂Fµ

∂(∂αϕ)

))
= −∂σ

(
(∂µϕ)

∂

∂ϕ

∂

∂(∂σϕ)
Fµ +

(
∂µ

∂ϕ

∂xα

)
∂

∂(∂αϕ)
∂

∂(∂σϕ)
Fµ

)
.

(F.23)

Now there is a lot of indices and derivatives floating around. Writing gµ =
∂Fµ/∂(∂σϕ), we have something a bit easier to look at

δ(∂µFµ)
δϕ

= −∂σ

(
(∂µϕ)

∂gµ

∂ϕ
+

(
∂µ

∂ϕ

∂xα

)
∂gµ

∂(∂αϕ)

)
. (F.24)
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But this is a chain rule expansion of the derivative ∂µgµ

∂gµ

∂xµ
=
∂ϕ

∂xµ
∂gµ

∂ϕ
+
∂∂βϕ

∂xµ
∂gµ

∂∂βϕ
. (F.25)

So, we finally have

δ(∂µFµ)
δϕ

= −∂σµgµ. (F.26)

This is

δ(∂µFµ)
δϕ

= −∂σµ
∂Fµ

∂(∂σϕ)
. (F.27)

I do not think we have any right asserting that this is zero for arbitrary
Fµ. However if the Taylor expansion of Fµ with respect to variables ϕ,
and ∂σϕ has no higher than first order terms in the field variables ∂σϕ,
we will certainly have a zero variational derivative and a corresponding
symmetry.

f.2.2.5 More examples to confirm the symmetry requirements.

As a confirmation that a zero in eq. (F.27) requires linear field derivatives,
lets try two more example calculations.

First with non-linear powers of ϕ to show that we have more freedom
to construct the function first powers. Let

F1 = ϕ2

F2 = 0.
(F.28)

We have

δ(∂µFµ)
δϕ

=

(
∂

∂ϕ
− ∂σ

∂

∂(∂σϕ)

)
2ϕϕx

= 2ϕx − ∂x(2ϕ)

= 0.

(F.29)

Zero as expected. Generalizing the function to include arbitrary polyno-
mial powers is no harder. Let

F1 = ϕk

F2 = 0

∂µFµ = kϕk−1ϕx.

(F.30)
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So we have

δ(∂µFµ)
δϕ

= k(k − 1)ϕk−2ϕx − ∂x(kϕk−1)

= 0.
(F.31)

Okay, now moving on to the derivatives. Picking a divergence that should
not will not generate a symmetry, something with a non-linear derivative
should do the trick. Let us Try

F1 = (ϕx)2

F2 = 0.
(F.32)

δ(∂µFµ)
δϕ

=

(
∂

∂ϕ
− ∂σ

∂

∂(∂σϕ)

)
2ϕxϕxx

= −2∂xϕxx

= −2ϕxxx.

(F.33)

So, sure enough, unless additional conditions can be imposed on ϕ, such
a transformation will not be a symmetry.

f.2.3 Symmetry for Wave equation under spacetime translation.

The Lagrangian for a one dimensional wave equation is

L =
1

2v2

(
∂ϕ

∂t

)2

−
1
2

(
∂ϕ

∂x

)2

. (F.34)

Under a transformation of variables

x→ x′ = x + a

t → t′ = t + τ.
(F.35)

Employing a multivariable Taylor expansion (see [8] ) for our Lagrangian
having no explicit dependence on t and x, we have

L′ = L + (a∂x + τ∂t)L

∗

+ · · · (F.36)

That first order term of the Taylor expansion ∗, can be written as a di-
vergence ∂µFµ, with F1 = aL, and F2 = τL, however both of these are
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quadratic in ϕx, and ϕt, which is not linear. That linearity in the derivatives
was required for eq. (F.27) to be definitively zero for the transformation
to be a symmetry. So after all that goofing around with derivatives and
algebra it is defeated by the simplest field Lagrangian.

Now, if we continue we find that we do in fact still have a symmetry by
introducing a linearized spacetime translation. This follows from direct
expansion

(∗) = (a∂x + τ∂t)L

= a
(

1
v2ϕt∂xϕt − ϕx∂xϕx

)
+ τ

(
1
v2ϕt∂tϕt − ϕx∂tϕx

)
.

(F.37)

Next, calculation of the variational derivative we have

δ(∗)
δϕ
=

(
∂

∂ϕ
− ∂x

∂

∂ϕx
− ∂t

∂

∂ϕt

)
(∗)

= −∂x (−a∂xxϕ − τ∂txϕ) −
1
v2 ∂t (a∂xtϕ + τ∂ttϕ)

= a
(
∂x

(
ϕxx −

1
v2ϕtt

))
+ τ

(
∂t

(
ϕxx −

1
v2ϕtt

))
.

(F.38)

Since we have ϕxx =
1
v2ϕtt by variation of eq. (F.34). So we do in fact

have a symmetry from the linearized spacetime translation for any shift
(t, x)→ (t + τ, x + a).

f.2.4 Symmetry condition for arbitrary linearized spacetime translation.

If we want to be able to alter the Lagrangian with a linearized vector
translation of the generalized coordinates by some arbitrary shift, since we
do not have the linear derivatives for many Lagrangians of interest (wave
equations, Maxwell equation, ...) then can we find a general condition
that is responsible for the translation symmetry that we have observed
must exist for the simple wave equation.

For a general Lagrangian L = L(ϕ(x), ∂µϕ(x)) under shift by some
vector a

x→ x′ = x + a, (F.39)

we have

L′ =
(
ea·∇

)
L = L + (a · ∇)L +

1
2!

(a · ∇)2L + · · · (F.40)



332 canonical energy momentum tensor and translation .

Now, if we have

δ((a · ∇)L)
δϕ

?
= (a · ∇)

δL

δϕ

= 0

. (F.41)

then this would explain the fact that we have a symmetry under linearized
translation for the wave equation Lagrangian. Can this interchange of dif-
ferentiation order be justified?

Writing out this variational derivative in full we have

δ((a · ∇)L)
δϕ

=

(
∂

∂ϕ
− ∂σ

∂

∂ϕσ

)
aµ∂µL

= aµ
(
∂

∂ϕ

∂

∂xµ
−

∂

∂xσ
∂

∂ϕσ

∂

∂xµ

)
L.

(F.42)

Now, one can impose continuity conditions on the field variables and La-
grangian sufficient to allow the commutation of the coordinate partials.
Namely

∂

∂xµ
∂

∂xν
f (ϕ, ∂σϕ) =

∂

∂xν
∂

∂xµ
f (ϕ, ∂σϕ). (F.43)

However, we have a dependence between the field variables and the coor-
dinates

∂

∂xµ
=
∂ϕ

∂xµ
∂

∂ϕ
+

∑
σ

∂ϕσ
∂xµ

∂

∂ϕσ
. (F.44)

Given this, can we commute the field partials and the coordinate partials
like so

∂

∂ϕ

∂

∂xµ
?
=

∂

∂xµ
∂

∂ϕ

∂

∂ϕσ

∂

∂xµ
?
=

∂

∂xµ
∂

∂ϕσ
.

(F.45)

This is not obvious to me due to the dependence between the two.
If that is a reasonable thing to do, then the variational derivative of this

directional derivative is zero

δ((a · ∇)L)
δϕ

= aµ
∂

∂xµ

(
∂

∂ϕ
−

∂

∂xσ
∂

∂ϕσ

)
L

= (a · ∇)
δL

δϕ

= 0.

(F.46)
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To make any progress below I had to assume that this is justifiable. With
this assumption or requirement we therefore have a symmetry for any La-
grangian altered by the addition of a directional derivative, as is required
for the first order Taylor series approximation associated with a spacetime
(or spatial or timelike) translation.

f.2.4.1 An error above to revisit.

In an email discussing what I initially thought was a typo in [25], he says
that while it is correct to transform the Lagrangian using a Taylor expan-
sion in ϕ(x + a) as I have done, this actually results from x → x − a, as
opposed to the positive shift given in eq. (F.39). There was discussion of
this in the context of Lorentz transformations around (1.26) of his QFT
course notes, also applicable to translations. The subtlety is apparently
due to differences between passive and active transformations. I am sure
he is right, and I think this is actually consistent with the treatment of [2]
where they include an inverse operation in the transformed Lagrangian
(that minus is surely associated with the inverse of the translation trans-
formation). It will take further study for me to completely understand this
point, but provided the starting point is really considered the Taylor series
expansion based on ϕ(x) → ϕ(x + a) and not based on eq. (F.39) then
nothing else I have done here is wrong. Also note that in the end our
Noether current can be adjusted by an arbitrary multiplicative constant so
the direction of the translation will also not change the final result.

f.3 noether current.

f.3.1 Vector parametrized Noether current.

In ?? the derivation of Noether’s theorem given a single variable parametrized
alteration of the Lagrangian was seen to essentially be an exercise in the
application of the chain rule.

How to extend that argument to the multiple variable case is not imme-
diately obvious. In GA we can divide by vectors but attempting to formu-
late a derivative this way gives us left and right sided derivatives. How
do we overcome this to examine change of the Lagrangian with respect
to a vector parametrization? One possibility is a scalar parametrization of
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the magnitude of the translation vector. If the translation is along a = αu,
where u is a unit vector we can write

L′ = L + δL

= L + (a · ∇)L

= L + α(u · ∇)L.

(F.47)

So we have

dL′

dα
= (u · ∇)L. (F.48)

Now our previous Noether’s current was derived by considering just the
sort of derivative on the LHS above, but on the RHS we are back to work-
ing with a directional derivative. The key is finding a logical starting point
for the chain rule like expansion that we expect to produce the conserva-
tion current.

δL = (a · ∇)L

= aµ∂µL

= aµ
 ∂ϕ∂xµ

∂L

∂ϕ
+

∑
σ

∂ϕσ
∂xµ

∂L

∂ϕσ


=
∂L

∂ϕ
(a · ∇)ϕ +

∑
σ

∂L

∂ϕσ
(a · ∇)ϕσ

=

∑
σ

∂σ
∂L

∂ϕσ

 (a · ∇)ϕ +
∑
σ

∂L

∂ϕσ
(a · ∇)ϕσ

=

∑
σ

∂σ
∂L

∂ϕσ

 (a · ∇)ϕ +
∑
σ

∂L

∂ϕσ
∂σ((a · ∇)ϕ)

=
∑
σ

∂σ

(
∂L

∂ϕσ
(a · ∇)ϕ

)
.

(F.49)

So far so good, but where to go from here? The trick (again from Tong)
is that the difference with itself is zero. With a switch of dummy indices
σ→ µ, we have

0 = δL− δL

=
∑
µ

∂µ

(
∂L

∂ϕµ
(a · ∇)ϕ

)
− aµ∂µL

=
∑
µ

∂µ

(
∂L

∂ϕµ
(a · ∇)ϕ − aµL

)
.

(F.50)
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Now we have a quantity that is zero for any vector a, and can say we have
a conserved current T (a) with coordinates

T µ(a) =
∂L

∂ϕµ
(a · ∇)ϕ − aµL. (F.51)

Finally, putting this back into vector form

T (a) = γµT µ(a)

=

(
γµ
∂L

∂ϕµ

)
(a · ∇)ϕ − γµaµL.

(F.52)

So we have

T (a) =
((
γµ

∂

∂ϕµ

)
L

)
(a · ∇)ϕ − aL

∇ · T (a) = 0.
(F.53)

So after a long journey, I have in eq. (F.53) a derivation of a conservation
current associated with a linearized vector displacement of the general-
ized coordinates. I recalled that the treatment in [2] somehow eliminated
the a. That argument is still tricky involving their linear operator theory,
but I have at least obtained their equation (13.15). They treat a multivec-
tor displacement whereas I only looked at vector displacement. They also
do it in three lines, whereas building up to this (or even understanding it)
based on what I know required 13 pages.

f.3.2 Comment on the operator above.

We have something above that is gradient like in eq. (F.53). Our spacetime
gradient operator is

∇ = γµ
∂

∂xµ
. (F.54)

Whereas this unknown field variable derivative operator

something = γµ
∂

∂ϕµ
. (F.55)

is somewhat like a velocity gradient with respect to the field variable. It
would be reasonable to expect that this will have a role in the field canon-
ical momentum.
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f.3.3 In tensor form.

The conserved current of eq. (F.53) can be put into tensor form by consid-
ering the action on each of the basis vectors.

T (γν) · γµ =
((

∂

∂ϕµ

)
L

)
(γν · (γσ∂σ))ϕ − γν · γµL. (F.56)

Thus writing T µ
ν = T (γν) · γµ we have

T µ
ν =

∂L

∂ϕµ
∂νϕ − δν

µL. (F.57)

f.3.4 Multiple field variables.

In order to deal with the Maxwell Lagrangian a generalization to multiple
field variables is required. Suppose now that we have a Lagrangian density
L = L(ϕα, ∂βϕα). Proceeding with the chain rule application again we
have after some latex search and replace adding in indices in all the right
places (proof by regular expressions)

δL = (a · ∇)L

= aµ∂µL

= aµ
(
∂ϕα

∂xµ
∂L

∂ϕα
+
∂∂σϕ

α

∂xµ
∂L

∂∂σϕα

)
=
∂L

∂ϕα
(a · ∇)ϕα +

∂L

∂∂σϕα
(a · ∇)∂σϕα

=

(
∂σ

∂L

∂∂σϕα

)
(a · ∇)ϕα +

∂L

∂∂σϕα
(a · ∇)∂σϕα

=

(
∂σ

∂L

∂∂σϕα

)
(a · ∇)ϕα +

∂L

∂∂σϕα
∂σ((a · ∇)ϕα)

= ∂σ

(
∂L

∂∂σϕα
(a · ∇)ϕα

)
.

(F.58)

In the above manipulations (and those below), any repeated index, regard-
less of whether upper and lower indices are matched implies summation.

Using this we have a multiple field generalization of eq. (F.51). The
Noether current and its conservation law in coordinate form is

T µ(a) =
∂L

∂∂µϕα
(a · ∇)ϕα − aµL

∂µT µ(a) = 0.
(F.59)



F.4 field hamiltonian . 337

Or in vector form, corresponding to eq. (F.53)

T (a) =
((
γµ

∂

∂∂µϕα

)
L

)
(a · ∇)ϕα − aL

∇ · T (a) = 0.
(F.60)

And finally in tensor form, as in eq. (F.57)

T µ
ν =

∂L

∂∂µϕα
∂νϕ

α − δν
µL

∂µT µ
ν = 0.

(F.61)

f.3.5 Spatial Noether current.

The conservation arguments above have been expressed with the assump-
tion that the Lagrangian density is a function of both spatial and time
coordinates, and this was made explicit with the use of the Dirac basis to
express the Noether current.

It should be pointed out that for a purely spatial Lagrangian density,
such as that of electrostatics

L = −
ϵ0

2
(∇ϕ)2 + ρϕ. (F.62)

the same results apply. In this case it would be reasonable to summarize
the conservation under translation using the Pauli basis and write

T (a) = σk
∂L

∂∂kϕ
a ·∇ϕ − aL

∇ · T (a) = 0.
(F.63)

Without the time translation, calling the vector Noether current the energy
momentum tensor is not likely appropriate. Perhaps just the canonical en-
ergy momentum tensor? Working with such a spatial Lagrangian density
later should help clarify how to label things.

f.4 field hamiltonian .

A special case of eq. (F.57) is for time translation of the Lagrangian.
For that, our Noether current, writingHµ = T µ

0 is

H0 =
∂L

∂ϕ̇
ϕ̇ −L

Hk =
∂L

∂ϕk
ϕ̇.

(F.64)



338 canonical energy momentum tensor and translation .

These are expected to have a role associated with field energy and mo-
mentum respectively.

For the Maxwell Lagrangian we will need the multiple field current

H0 =
∂L

∂∂0ϕα
∂0ϕ

α −L

Hk =
∂L

∂∂kϕα
∂0ϕ

α.

(F.65)

f.5 wave equation .

The energy momentum tensor has been computed for some general field
Lagrangians. Now let’s consider some specific concrete examples. The
Lagrangian for the relativistic wave equation is an obvious first candidate
due to simplicity.

f.5.1 Tensor components and energy term.

L =
1
2
∂µϕ∂

µϕ

=
1
2
ϕµϕ

µ

=
1
2
(∇ϕ)2

=
1
2

(
ϕ̇2 − (∇ϕ)2

)
.

(F.66)

In the explicit spacetime split above we have a split into terms that appear
to correspond to kinetic and potential terms

L = K − V. (F.67)

To compute the tensor, we first need ∂L/∂ϕµ = ϕµ, which gives us

T µ
ν = ϕ

µϕν − δν
µL. (F.68)

Writing this out in matrix form (with rows µ, and columns ν), we have
1
2 (ϕ̇2+ϕ2

x+ϕ
2
y+ϕ

2
z ) ϕ̇ϕx ϕ̇ϕy ϕ̇ϕz

−ϕxϕ̇
1
2 (−ϕ̇2−ϕ2

x+ϕ
2
y+ϕ

2
z ) −ϕxϕy −ϕxϕz

−ϕyϕ̇ −ϕyϕx
1
2 (−ϕ̇2+ϕ2

x−ϕ
2
y+ϕ

2
z ) −ϕyϕz

−ϕzϕ̇ −ϕzϕx −ϕzϕy
1
2 (−ϕ̇2+ϕ2

x+ϕ
2
y−ϕ

2
z )

. (F.69)
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As mentioned by Jackson, the canonical energy momentum tensor is not
necessarily symmetric, and we see that here. We have what is expected
for the wave energy in the 0, 0 element

T 0
0 = K + V

=
1
2

(ϕ̇2 + (∇ϕ)2).
(F.70)

f.5.2 Conservation equations.

How about the conservation equations when written in full. The first is

0 = ∂µT µ
0

=
1
2
∂t

(
ϕ̇2 + ϕ2

x + ϕ
2
y + ϕ

2
z

)
− ∂x(ϕxϕ̇) − ∂y(ϕyϕ̇) − ∂z(ϕzϕ̇)

= ϕ̇ϕ̈ + ϕxϕxt + ϕyϕyt + ϕzϕzt − ϕxxϕ̇ − ϕyyϕ̇ − ϕzzϕ̇ − ϕxϕtx − ϕyϕty − ϕzϕtz

= ϕ̇(ϕ̈ − ϕxx − ϕyy − ϕzz).
(F.71)

So our first conservation equation is

0 = ϕ̇(∇2ϕ). (F.72)

But ∇2ϕ = 0 is just our wave equation, the result of the variation of the
Lagrangian itself. So curiously the divergence of energy-momentum four
vector T µ

0 ends up as another method of supplying the wave equation!
How about one of the other conservation equations? The pattern will

all be the same, so calculating one is sufficient.

0 = ∂µT µ
1

= ∂t(ϕ̇ϕx) +
1
2
∂x(−ϕ̇2 − ϕ2

x + ϕ
2
y + ϕ

2
z ) − ∂y(ϕyϕx) − ∂z(ϕzϕx)

= ϕ̈ϕx + ϕ̇ϕxt − ϕ̇ϕtx − ϕxϕxx + ϕyϕyx + ϕzϕzx − ϕyyϕx − ϕyϕxy − ϕzzϕx − ϕzϕxz

= ϕx(ϕ̈ − ϕxx − ϕyy − ϕzz).
(F.73)

It should probably not be surprising that we have such a symmetric rela-
tion between space and time for the wave equations and we can summa-
rize the spacetime translation conservation equations by

0 = ∂µT µ
ν

= ϕν(∇2ϕ).
(F.74)
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f.5.3 Invariant length.

It has been assumed that T (γµ) are four vectors. If that is the cast we ought
to have an invariant length.

Let us calculate the vector square of T (γ0). Picking off first column of
our tensor in eq. (F.69), we have

(T (γ0))2 = (γµT µ
0) · (γνT ν

0)

= (T 0
0)2 − (T 1

0)2 − (T 2
0)2 − (T 3

0)2

=
1
4

(
ϕ̇2 + ϕ2

x + ϕ
2
y + ϕ

2
z

)2
− ϕ2

xϕ̇
2 − ϕ2

y ϕ̇
2 − ϕ2

z ϕ̇
2

=
1
4

(
ϕ̇4 + ϕ4

x + ϕ
4
y + ϕ

4
z

)
−

1
2

(
ϕ̇2ϕ2

x + ϕ̇
2ϕ2

y + ϕ̇
2ϕ2

z

)
+

1
2

(
+ϕ2

xϕ
2
y + ϕ

2
yϕ

2
z + ϕ

2
zϕ

2
x

)
=

1
4

(
ϕ̇2 − ϕ2

x − ϕ
2
y − ϕ

2
z

)2
.

(F.75)

But this is just our (squared) Lagrangian density, and we therefore have

(T (γ0))2 = L2. (F.76)

Doing the same calculation for the second column, which is representative
of the other two by symmetry, we have

(T (γk))2 = −L2. (F.77)

Summarizing all four squares we have

(T (γµ))2 = (γµ)2L2. (F.78)

All of these conservation current four vectors have the same length up to a
sign, where T (γ0) is timelike (positive square), whereas T (γk) is spacelike
(negative square).

Now, is L2 a Lorentz invariant? If so we can justify calling T (γµ) four
vectors. Reflection shows that this is in fact the case, since L is a Lorentz
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invariant. The transformation properties of L go with the gradient. Writ-
ing ∇′ = R∇R̃, we have

L′ =
1
2
∇′ϕ · ∇′ϕ

=
1
2

〈
R∇R̃ϕR∇R̃ϕ

〉
=

1
2

〈
R∇ϕ∇R̃ϕ

〉

=
1
2

〈
R̃R

= 1

∇ϕ∇ϕ

〉
=

1
2
∇ϕ · ∇ϕ

= L.

(F.79)

f.5.4 Diagonal terms of the tensor.

There is a conjugate structure evident in the diagonal terms of the matrix
for the tensor. In particular, the T 0

0 can be expressed using the Hermitian
conjugate from QM. For a multivector F, this was defined as

F† = γ0F̃γ0. (F.80)

We have for T 0
0

T 0
0 =

1
2

(∇ϕ)† · (∇ϕ)

=
1
2
⟨γ0∇γ0ϕ∇ϕ⟩

=
1
2

〈
(γ0∇ϕ)2

〉
=

1
2

〈
(γ0(γ0∂0 + γ

k∂k)ϕ)2
〉

=
1
2

〈
((∂0 − γ

kγ0∂k)ϕ)2
〉

=
1
2

〈
((∂0 +∇)ϕ)2

〉
=

1
2

(
ϕ̇2 + (∇ϕ)2

)
.

(F.81)
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Now conjugation with respect to the time basis vector should not be spe-
cial in any way, and should be equally justified defining a conjugation
operation along any of the spatial directions too. Is there a symbol for
this? Let us write for now

F†µ ≡ γµF̃γµ. (F.82)

There is a possibility that the sign picked here is not appropriate for all
purposes. It is hard to tell for now since we have a vector F that equals its
reverse, and in fact after a computation with both µ indices down I have
raised an index altering an initial choice of F†µ = γµF̃γµ.

Applying this, for µ , 0 we have

(∇ϕ)†µ · (∇ϕ) = −
〈
γµ∇γµϕ∇ϕ

〉
= −

〈
((∂µ + γµ

∑
ν,µ

γν∂ν)ϕ)2
〉

= −((∂µϕ)2 +
∑
ν,µ

(γµγν)2(∂νϕ)2)

= −((∂µϕ)2 −
∑
ν,µ

(γµ)2(γν)2(∂νϕ)2)

= −((∂µϕ)2 +
∑
ν,µ

(γν)2(∂νϕ)2)

= −(∂µϕ)2 − (∂0ϕ)2 +
∑

k,µ,k,0

(∂kϕ)2.

(F.83)

This recovers the diagonal terms, and allows us to write (no sum)

T µ
µ =

1
2

(∇ϕ)†µ · (∇ϕ). (F.84)

f.5.4.1 As a projection?

As a vector (a projection of T (γµ) onto the γµ direction) this is (again no
sum)

γµT µ
µ =

1
2
γµ(∇ϕ)†µ · (∇ϕ)

=
1
2
γµ

〈
γµ∇ϕγµ∇ϕ

〉
=

1
4
γµ(γµ∇ϕγµ∇ϕ +∇ϕγµ∇ϕγµ)

=
1
4

((∇ϕγµ∇ϕ) + γµ(∇ϕγµ∇ϕ)γµ).

(F.85)



F.6 wave equation . ga form for the energy momentum tensor . 343

Intuition says this may have a use when assembling a complete vector
representation of T (γµ) in terms of the gradient, but what that is now is
not clear.

f.5.5 Momentum.

Now, let us look at the four vector T (γ0) = γµT µ
0 more carefully. We

have seen the energy term of this, but have not looked at the spatial part
(momentum).

We can calculate the spatial component by wedging with the observer
unit velocity γ0, and get

T (γ0)∧ γ0 = γkγ0T k
0

= −σkϕ̇ϕk

= −ϕ̇∇ϕ.

(F.86)

Right away we have something interesting! The wave momentum is re-
lated to the gradient operator, exactly as we have in quantum physics,
despite the fact that we are only looking at the classical wave equation
(for light or some other massless field effect).

f.6 wave equation . ga form for the energy momentum tensor .

Some of the playing around above was attempting to find more structure
for the terms of the energy momentum tensor. For the diagonal terms
this was done successfully. However, doing so for the remainder is harder
when working backwards from the tensor in coordinate form.

f.6.1 Calculate GA form.

Let us step back to the defining relation eq. (F.60), from which we see that
we wish to calculate

γµ
∂L

∂∂µϕα
= γµ∂

µϕ

= γµ∂µϕ

= ∇ϕ.

(F.87)
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This completely removes the indices from the tensor, leaving us with

T (a) = (∇ϕ)a · ∇ϕ −
a
2

(∇ϕ)2

= (∇ϕ)
(
1
2

(a∇ϕ +∇ϕa) −∇ϕ
a
2

)
.

(F.88)

Thus we have

T (a) =
1
2

(∇ϕ)a(∇ϕ). (F.89)

This meets the intuitive expectation that the energy momentum tensor for
the wave equation could be expressed completely in terms of the gradient.

f.6.2 Verify against tensor expression.

There is in fact a surprising simplicity to the result of eq. (F.89). It is some-
what hard to believe that it summarizes the messy matrix we have calcu-
lated above. To verify this let us derive the tensor relation of eq. (F.68).

T µ
ν = T (γν) · γµ

=
1
2
〈
(∇ϕ)γν(∇ϕ)γµ

〉
=

1
2

〈
γα∂αϕγνγβ∂

βϕγµ
〉

=
1
2
∂αϕ∂

βϕ
〈
γαγνγβγ

µ
〉

=
1
2
∂αϕ∂

βϕ (δανδβ
µ + (γα ∧ γν) · (γβ ∧ γµ))

=
1
2

(
∂νϕ∂

µϕ + ∂αϕ∂βϕ(γα ∧ γν) · (γβ ∧ γµ)
)

=
1
2


∂νϕ∂

µϕ + (∂αϕ∂βϕ)γα · ( γν · (γβ ∧ γµ)

= δν
βγµ − δν

µγβ

)


=

1
2

(
∂νϕ∂

µϕ + (∂αϕ∂βϕ)(δνβδαµ − δνµδαβ)
)

=
1
2
(∂νϕ∂

µϕ + ∂µϕ∂νϕ − δν
µ(∂αϕ∂αϕ))

= ∂νϕ∂
µϕ − δν

µL. □

(F.90)
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f.6.3 Invariant length.

Putting the energy momentum tensor in GA form makes the demonstra-
tion of the invariant length almost trivial. We have for any a

(T (a))2 =
1
4
∇ϕa∇ϕ∇ϕa∇ϕ

=
1
4

(∇ϕ)2∇ϕa2∇ϕ

=
1
4

(∇ϕ)4a2

= L2a2.

(F.91)

This recovers eq. (F.78), which came at considerably higher cost in terms
of guesswork.

f.6.4 Energy and Momentum split (again).

By wedging with γ0 we can extract the momentum terms of T (γ0). That
is

T (γ0)∧ γ0 =

(
(γ0 · ∇ϕ)∇ϕ −

1
2

(∇ϕ)2γ0

)
∧ γ0

= (γ0 · ∇ϕ)(∇ϕ∧ γ0) −
1
2

(∇ϕ)2 (γ0 ∧ γ0)

= 0

= ϕ̇(γkγ0∂kϕ)

= −ϕ̇∇ϕ.

(F.92)

For the energy term, dotting with γ0 we have

T (γ0) · γ0 =

(
(γ0 · ∇ϕ)∇ϕ −

1
2

(∇ϕ)2γ0

)
· γ0

= (γ0 · ∇ϕ)2 −
1
2

(∇ϕ)2

= ϕ̇2 −
1
2

(ϕ̇2 − (∇ϕ)2)

=
1
2

(
ϕ̇2 + (∇ϕ)2

)
.

(F.93)
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Wedging with γ0 itself does not provide us with a relative spatial vector.
For example, consider the proper time velocity four vector (still working
with c = 1)

v =
dt
dτ

d
dt

(
tγ0 + γkxk

)
=

dt
dτ

(
γ0 + γk

dxk

dt

)
.

(F.94)

We have

v · γ0 =
dt
dτ
= γ, (F.95)

and

v∧ γ0 =
dt
dτ
σk

dxk

dt
. (F.96)

Or

v ≡ σk
dxk

dt

=
v∧ γ0

v · γ0
.

(F.97)

This suggests that the form for the relative momentum (spatial) vector for
the field should therefore be

p ≡
T (γ0)∧ γ0

T (γ0) · γ0

= −
ϕ̇

1
2 (ϕ̇2 + (∇ϕ)2)

∇ϕ

= −
2

1 +
(
∇ϕ
ϕ̇

)2

∇ϕ

ϕ̇

= −
2

ϕ̇

∇ϕ
+
∇ϕ
ϕ̇

.

(F.98)

This has been written in a few different ways, looking for something fa-
miliar, and not really finding it. It would be useful to revisit this after con-
sidering in detail wave momentum in a mechanical sense, perhaps with a
limiting argument as given in [4] (ie: one dimensional Lagrangian density
considering infinite sequence of springs in a line).
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f.7 scalar klein gordon .

A number of details have been extracted considering the scalar wave equa-
tion. Now lets move to a two field variable Lagrangian.

L =
1
2
∂µψ∂

µψ −
m2c2

2 h̄2 ψ
2. (F.99)

This forced wave equation will have almost the same energy momentum
tensor. The exception will be the diagonal terms for which we have an
additional factor of m2c2ψ2/2 h̄2.

This also means that the conservation equations will be altered slightly

0 = ∂µT µ
ν

= ϕν

(
∇2ϕ +

m2c2

h̄2 ϕ

)
.

(F.100)

Again the divergence of the individual canonical energy momentum ten-
sor four vectors reproduces the field equations that we also obtain from
the variation.

f.8 complex klein gordon .

f.8.1 Tensor in GA form.

L = ∂µψ∂
µψ∗ −

m2c2

h̄2 ψψ∗. (F.101)

We first want to calculate what perhaps could be called the field velocity
gradient

γµ
∂L

∂(∂µψ)
= γµ∂

µψ

= ∇ψ.

(F.102)

Similarly

γµ
∂L

∂(∂µψ∗)
= γµ∂

µψ∗

= ∇ψ∗.

(F.103)
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Assembling results into an application of eq. (F.60), we have

T (a) = ∇ψ(a · ∇)ψ∗ +∇ψ∗(a · ∇)ψ − aL

= ∇ψ(a · ∇)ψ∗ +∇ψ∗(a · ∇)ψ − a
1
2

(∇ψ∇ψ∗ +∇ψ∗∇ψ) + a
m2c2

h̄2 ψψ∗

= ∇ψ(a · ∇ψ∗ −
1
2
∇ψ∗a) +∇ψ∗(a · ∇ψ −

1
2
∇ψa) + a

m2c2

h̄2 ψψ∗

=
1
2
((∇ψ)a(∇ψ∗) + (∇ψ∗)a(∇ψ)) + a

m2c2

h̄2 ψψ∗.

(F.104)

Since vectors equal their own reverse this is just

T (a) = (∇ψ)a(∇ψ∗) + a
m2c2

h̄2 ψψ∗. (F.105)

f.8.2 Tensor in index form.

Expanding the energy momentum tensor in index notation we have

T µ
ν = T (γν) · γµ

= ∂αψ∂βψ
∗
〈
γαγνγ

βγµ
〉
+ δν

µm2c2

h̄2 ψψ∗

= ∂νψ∂
µψ∗ + ∂µψ∂νψ

∗ − ∂αψ∂αψ
∗δν

µ + δν
µm2c2

h̄2 ψψ∗.

(F.106)

So we have

T µ
ν = ∂

µψ∂νψ
∗ + ∂µψ∗∂νψ − δν

µL. (F.107)

This index representation also has a nice compact elegance.

f.8.3 Invariant Length?

Writing for short b = ∇ψ, and working in natural units m2c2 = h̄2, we
have

(T (a))2 = (bab∗ + aψψ∗)2

=
〈
ab∗bab∗b

〉
+ a2ψ2(ψ∗)2 + 2a · (bab∗).

(F.108)

Unlike the light wave equation this does not (obviously) appear to have a
natural split into something times a2. Is there a way to do it?
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f.8.4 Divergence relation.

Borrowing notation from above to calculate the divergence we want

∇ · (bab∗) =
〈
∇(bab∗)

〉
=

〈
(b∗

↔

∇ b)a
〉

= a ·
〈
b∗
↔

∇ b
〉

1
.

(F.109)

Here cyclic reordering of factors within the scalar product was used. In
order for that to be a meaningful operation the gradient must be allowed
to operate bidirectionally, so this is really just shorthand for

b∗
↔

∇ b ≡ ḃ∗∇̇b + b∗∇̇ḃ, (F.110)

where the more conventional overdot notation is used to indicate the scope
of the operation. In particular, for b = ∇ψ, we have〈

b∗
↔

∇ b
〉

1
= (∇2ψ∗)(∇ψ) + (∇ψ∗)(∇2ψ). (F.111)

Our tensor also has a vector scalar product that we need the divergence of.
That is

∇ · (aψψ∗) =
〈
∇(aψψ∗)

〉
= a · ∇(ψψ∗).

(F.112)

Putting things back together we have

∇ · T (a) = a ·
(〈

(∇ψ∗)
↔

∇ (∇ψ)
〉

1
+

m2c2

h̄2 ∇(ψψ∗)
)
. (F.113)

This is

0 = ∇ ·T (a) = a ·
(
(∇2ψ∗)(∇ψ) + (∇ψ∗)(∇2ψ) +

m2c2

h̄2 ∇(ψψ∗)
)
. (F.114)

Again, we see that the divergence of the canonical energy momentum
tensor produces the field equations that we get by direct variation! Put
explicitly we have zero for all displacements a, so must also have

0 = (∇ψ)
(
∇2ψ∗ +

m2c2

h̄2 ψ∗
)
+ (∇ψ∗)

(
∇2ψ +

m2c2

h̄2 ψ

)
. (F.115)



350 canonical energy momentum tensor and translation .

Also noteworthy above is the adjoint relationship. The adjoint F of a an
operator F was defined via the dot product

a · F(b) ≡ b · F(a). (F.116)

So we have a concrete example of the adjoint applied to the gradient, and
for this energy momentum tensor we have

T (∇) =
〈
(∇ψ∗)∇(∇ψ)

〉
1 +

m2c2

h̄2 ∇(ψψ∗). (F.117)

Here the arrows notation has been dropped, where it is implied that this
derivative acts on all neighboring vectors either unidirectionally or bidi-
rectionally as appropriate.

Now, this adjoint tensor is a curious beastie. Intuition says this one will
have a Lorentz invariant length. A moment of reflection shows that this is
in fact the case since the adjoint was fully expanded in eq. (F.115). That
vector is zero, and the length is therefore also necessarily invariant.

f.8.5 TODO.

How about the energy and momentum split in this adjoint form? Could
also write out adjoint in index notation for comparison to non-adjoint
tensor in index form.

f.9 electrostatics poisson equation .

f.9.1 Lagrangian and spatial Noether current.

L = −
ϵ0

2
(∇ϕ)2 + ρϕ. (F.118)

Evaluating this yields the desired ∇2ϕ = −ρ/ϵ0, or ∇ ·E = ρ/ϵ0.
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f.9.2 Energy momentum tensor.

In this particular case we then have

T (a) = σk(−ϵ0∂kϕ)a ·∇ϕ − aL

= −ϵ0(∇ϕ)a ·∇ϕ − a(−
ϵ0

2
(∇ϕ)2 + ρϕ)

= −ϵ0(∇ϕ)a ·∇ϕ + (∇ϕ)2a
ϵ0

2
− aρϕ

=
ϵ0

2
(∇ϕ) (−2a ·∇ϕ +∇ϕa) − aρϕ

=
ϵ0

2
(∇ϕ) (−a∇ϕ −∇ϕa +∇ϕa) − aρϕ

= −
ϵ0

2
(∇ϕ)a∇ϕ − aρϕ.

(F.119)

It in terms of E = −∇ϕ this is

T (a) = −
ϵ0

2
EaE − aρϕ. (F.120)

This is not immediately recognizable (at least to me), and also does not
appear to be easily separable into something times a.

f.9.3 Divergence and adjoint tensor.

What will we get with the divergence calculation?

∇ · (EaE) = ⟨∇(EaE)⟩

= a ·
〈
E
↔

∇ E
〉

1
.

(F.121)

Also want

∇ · (aρϕ) = ⟨∇(aρϕ)⟩

= a ·∇(ρϕ).
(F.122)

Assembling these we have

∇ · T (a) = −a ·
(〈
ϵ0

2
E
↔

∇ E
〉

1
+∇(ρϕ)

)
. (F.123)
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From this we can pick off the adjoint

T (∇) = −
ϵ0

2

〈
E
↔

∇ E
〉

1
−∇(ρϕ)

= −
ϵ0

2

(
(Ė · ∇̇)EE(∇ ·E)

)
−∇(ρϕ)

= −ϵ0(∇2ϕ)∇ϕ −∇(ρϕ)

= −ϵ0∇(∇ϕ)2 −∇(ρϕ)

= ∇
(
−ϵ0(∇ϕ)2 − ρϕ

)
.

(F.124)

If we write L = K − V , then we have in this case

T (∇) = ∇(K + V) = 0. (F.125)

Since the gradient of this quantity is zero everywhere it must be constant

K + V = constant. (F.126)

We did not have any time dependence in the Lagrangian, and blindly fol-
lowing the math to calculate the associated symmetry with the field trans-
lation, we end up with a conservation statement that appears to be about
energy.

TODO: am used to (as in [3]) seeing electrostatic energy written

U =
1
2
ϵ0

∫
E2dV =

1
2

∫
ρϕdV. (F.127)

Reconcile this with eq. (F.126).

f.10 schrödinger equation

While not a Lorentz invariant Lagrangian, we do not have a dependence
on that, and can still calculate a Noether current on spatial translation.

L =
h̄2

2m
(∇ψ) · (∇ψ∗) + Vψψ∗ + i h̄ (ψ∂tψ

∗ − ψ∗∂tψ) . (F.128)

For this Lagrangian density it is worth noting that the action is in fact

S =
∫

d3xL. (F.129)
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... ie: ∂tψ is not a field variable in the variation (this is why there is no
factor of 1/2 in the probability current term). Calculating the Noether
current for a vector translation a we have

T (a) =
h̄2

2m
∇ψa ·∇ψ∗ +

h̄2

2m
∇ψ∗a ·∇ψ − aL. (F.130)

Expanding the divergence is messy but straightforward

∇ · T (a)

=
h̄2

2m
〈
∇ (∇ψa ·∇ψ∗ +∇ψ∗a ·∇ψ) −∇(∇ψ ·∇ψ∗)a

〉
− a ·∇ (Vψψ∗ + i h̄(ψψ̇∗ − ψ∗ψ̇))

=
h̄2

4m
〈
∇ (∇ψ(a∇ψ∗ +∇ψ∗a) +∇ψ∗(a∇ψ +∇ψa)) − 2∇(∇ψ ·∇ψ∗)a

〉
− a ·∇ (Vψψ∗ + i h̄(ψψ̇∗ − ψ∗ψ̇))

=
h̄2

4m
a ·

〈
∇ψ∗

↔

∇ ∇ψ +∇ψ
↔

∇ ∇ψ∗
〉

1

+
h̄2

4m
a ·

〈
∇(∇ψ∇ψ∗) +∇(∇ψ∗∇ψ) − 2∇(∇ψ ·∇ψ∗)

〉
1

− a ·∇ (Vψψ∗ + i h̄(ψψ̇∗ − ψ∗ψ̇))

=
h̄2

4m
a ·

〈
∇ψ∗

↔

∇ ∇ψ +∇ψ
↔

∇ ∇ψ∗
〉

1

− a ·∇ (Vψψ∗ + i h̄(ψψ̇∗ − ψ∗ψ̇))

=
h̄2

4m
a · 2

(
∇ψ∗∇2ψ +∇ψ∇2ψ∗

)
− a ·∇ (Vψψ∗ + i h̄(ψψ̇∗ − ψ∗ψ̇))

=
h̄2

2m
a ·∇ (∇ψ∗ ·∇ψ) − a ·∇ (Vψψ∗ + i h̄(ψψ̇∗ − ψ∗ψ̇)) .

(F.131)

Which is, finally,

∇ · T (a) = a ·∇
(

h̄2

2m
∇ψ∗ ·∇ψ − Vψψ∗ − i h̄(ψψ̇∗ − ψ∗ψ̇)

)
. (F.132)

Picking off the adjoint we have

T (∇) =
h̄2

2m
∇ψ∗ ·∇ψ − Vψψ∗ − i h̄(ψψ̇∗ − ψ∗ψ̇). (F.133)
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Just like the electrostatics equation, it appears that we can make an asso-
ciation with Kinetic (K) and Potential (ϕ) energies with the adjoint stress
tensor.

K =
h̄2

2m
∇ψ∗ ·∇ψ

ϕ = Vψψ∗ + i h̄(ψψ̇∗ − ψ∗ψ̇)

L = K − ϕ

T (∇) = K + ϕ.

(F.134)

FIXME: Unlike the electrostatics case however, there is no conserved
scalar quantity that is obvious. The association in this case with energy is
by analogy, not connected to anything reasonably physical seeming. How
to connect this with actual physical concepts? Can this be written as the
gradient of something? Because of the time derivatives perhaps the space
time gradient would be required, however, because of the non-Lorentz in-
variant nature I had expect that terms may have to be added or subtracted
to make that possible.

f.11 maxwell equation .

Wanting to see some of the connections between the Maxwell equation
and the Lorentz force was the original reason for examining this canonical
energy momentum tensor concept in detail.

f.11.1 Lagrangian.

Recall that the Lagrangian for the vector grades of Maxwell’s equation

∇F = J/ϵ0c, (F.135)

is of the form

L = κ(∇∧ A) · (∇∧ A) + J · A

= κ(γµ ∧ γν) · (γα ∧ γβ)∂µAν∂αAβ + JσAσ.
(F.136)

We can fix the constant κ by taking variational derivatives and comparing
with eq. (F.135)

0 =
∂L

∂Aσ
− ∂µ

∂L

∂(∂µAσ)

= Jσ − 2κ(γµ ∧ γσ) · (γα ∧ γβ)∂µ∂αAβ.
(F.137)
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Taking γσ dot products with eq. (F.135) we have

0 = γσ · (J − ϵ0c∇ · F)

= Jσ − ϵ0cγσ · (γµ · (γα ∧ γβ))∂µ∂αAβ.
(F.138)

So we have 2κ = −ϵ0c, and can write our Lagrangian density as

L = −
ϵ0

2
(∇∧ A) · (∇∧ A) +

J
c
· A

= −
ϵ0

2
(γµ ∧ γν) · (γα ∧ γβ)∂µAν∂αAβ +

Jσ

c
Aσ.

(F.139)

f.11.2 Energy momentum tensor.

For the Lagrangian density we have

γµ
∂L

∂(∂µAν)
= −ϵ0γµ(γµ ∧ γν) · (γα ∧ γβ)∂αAβ

= −ϵ0γµ(δµβδνα − δµαδνβ)∂αAβ

= −ϵ0γµ(∂νAµ − ∂µAν)

= ϵ0γµFµν.

(F.140)

One can guess that the vector contraction of Fµν above is an expression
of a dot product with our bivector field. This is in fact the case

F · γν = (γα ∧ γβ) · γν∂αAβ

= (γαδβν − γβδαν)∂αAβ

= γµ(∂µAν − ∂νAµ)

= γµFµν.

(F.141)

We therefore have

T (a) = ϵ0(F · γν)a · ∇Aν − aL

= ϵ0

(
(F · γν)a · ∇Aν +

a
2

F · F
)
− a (A · J/c) .

(F.142)
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f.11.3 Index form of tensor.

Before trying to factor out a, let us expand the tensor in abstract index
form. This is

Tνµ = T (γν) · γµ

= ϵ0

(
Fµβ∂νAβ +

δν
µ

2
F · F

)
− δν

µAσJσ/c

= ϵ0

(
Fµβ∂νAβ −

δν
µ

4
FαβFαβ

)
− δν

µAσJσ/c.

(F.143)

In particular, note that this is not the familiar symmetric tensor from the
Poynting relations.

f.11.4 Adjoint.

Now, we want to move on to a computation of the adjoint so that a can
essentially be factored out. Doing so is resisting initial attempts. As an
aid, introduce a few vector valued helper variables

Fµ = F · γµ

Gµ = ∇Aν.
(F.144)

Then we have

∇ · T (a) =
ϵ0

2

(〈
∇(Fν(aGν +Gνa)

〉
+ a ·

〈
∇(F2)

〉
1

)
− a · ∇ (A · J/c)

=
ϵ0

2
a ·

〈
Gν

↔

∇ Fν +∇(FνGν) +∇(F2)
〉

1
− a · ∇ (A · J/c) .

(F.145)

This provides the adjoint energy momentum tensor, albeit in a form that
looks like it can be reduced further

0 = T (∇) =
ϵ0

2

〈
Gν

↔

∇ Fν +∇(FνGν) +∇(F2)
〉

1
−∇ (A · J/c) . (F.146)

We want to write this as a gradient of something, to determine the con-
served quantity. Getting part way is not too hard.

T (∇) =
ϵ0

2

(〈
Gν

↔

∇ Fν
〉

1
+∇ · (Fν ∧Gν)

)∗

+∇

(
ϵ0

2
(Fν ·Gν + F · F) − A · J/c

)
.

(F.147)



F.11 maxwell equation . 357

It would be nice if these first two terms ∗ cancel. Can we be so lucky?

(∗) =
〈
Gν

↔

∇ Fν
〉

1
+∇ · (Fν ∧Gν)

=

〈
(Gν

←

∇)Fν +Gν(
→

∇ Fν)
〉

1
+ (∇ · Fν)Gν − Fν(∇ ·Gν)

= (∇ ·Gν)Fν + Fν · (∇∧Gν) +Gν(∇ · Fν)

+Gν · (∇∧ Fν) + (∇ · Fν)Gν − Fν(∇ ·Gν)

= 2Gν(∇ · Fν) +Gν · (∇∧ Fν)

(F.148)

This is not obviously zero. How about Fν ·Gν?

Fν ·Gν =
〈
((γα ∧ γβ) · γν)γσ

〉
∂αAβ∂σAν

= (δασδβν − δβσδαν)∂αAβ∂σAν
= ∂αAβ(∂αAβ − ∂βAα)

= ∂αAβFαβ

=
1
2

FαβFαβ.

(F.149)

Ah. Up to a sign, this was F · F. What is the sign?

F · F = (γα ∧ γβ) · (γµ ∧ γν)∂αAβ∂µAν
= (δανδβµ − δβνδαµ)∂αAβ∂µAν
= ∂αAβ(∂βAα − ∂αAβ)

= ∂αAβFβα

=
1
2

Fβα(∂αAβ − ∂βAα)

=
1
2

FβαFαβ

= −Fν ·Gν.

(F.150)

Bad first guess. It is the second two terms that cancel, not the first, leaving
us with

T (∇) =
ϵ0

2

(〈
Gν

↔

∇ Fν
〉

1
+∇ · (Fν ∧Gν)

)
−∇ (A · J/c) . (F.151)

Now, intuition tells me that it ought to be possible to simplify this further,
in particular, eliminating the ν indices.

Think I will take a break from this for a while, and come back to it later.
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f.12 nomenclature . linearized spacetime translation .

Applying the translation xµ → xµ + eµ, is what I thought would be called
“spacetime translation”. But to do so we need higher order powers of the
exponential vector translation operator (ie: multivariable Taylor series op-
erator)∑

k

(1/k! )(eµ∂µ)k. (F.152)

The transformation that appears to result in the canonical energy mo-
mentum tensor has only the linear term of this operator, so I called it
“linearized spacetime translation operator”, which seemed like a better
name (to me). That is all. My guess is that what is typically referred to
as the spacetime translation that generates the canonical energy momen-
tum tensor is really just the first order term of the translation operation,
and not truly a complete translation. If that is the case, then dropping the
linearized adjective would probably be reasonable.

It is somewhat odd that the derived conditions for a divergence added
to the Lagrangian are immediately busted by the wave equation. I think
the saving grace is the fact that an arbitrary ∂µFµ is not necessarily a sym-
metry is the fact the translation of the coordinates is not an arbitrary di-
vergence. This directional derivative operator is applied to the Lagrangian
itself and not to an arbitrary function. This builds in the required symme-
try (you could also add in or subtract out additional divergence terms that
meet the derived conditions and not change anything).

Now, if the first order term of the Taylor expansion is a symmetry be-
cause we can commute the field partials and the coordinate partials then
the higher order terms should also be symmetries. This would mean that a
true translationL → exp(eµ∂µ)Lwould also be a symmetry. What conser-
vation current would we get from that? Would it be the symmetric energy
momentum tensor?
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