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1I N T RO D U C T I O N .

1.1 what’s this course about?

• Science of optimization.

• problem formulation, design, analysis of engineering systems.

1.2 basic concepts

• Basic concepts. convex sets, functions, problems.

• Theory (about 40 % of the material). Specifically Lagrangian dual-
ity.

• Algorithms: gradient descent, Newton’s, interior point, ...

Homework will involve computational work (solving problems, ...)

1.3 goals

• Recognize and formulate engineering problems as convex optimiza-
tion problems.

• To develop (Matlab) code to solve problems numerically.

• To characterize the solutions via duality theory

• NOT a math course, but lots of proofs.

• NOT a communications course, but lots of ... (?)

• NOT a CS course, but lots of useful algorithms.

Definition 1.1: Mathematical program
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min
x

F0(x) (1.1)

where x = (x1, x2, · · · , xm) ∈ Rm is subject to constraints Fi : Rm →

R1

Fi(x) ≤ 0, i = 1, · · · ,m. (1.2)

The function F0 : Rm → R1 is called the “objective function”.

Solving a problem produces:
An optimal x∗ is a value x that gives the smallest value among all the

feasible x for the objective function F0. Such a function is sketched in
fig. 1.1.

Figure 1.1: Convex objective function.

• A convex objective looks like a bowl, “holds water”.

• If connect two feasible points line segment in the ? above bottom
of the bowl.

A non-convex function is illustrated in fig. 1.2, which has a number of
local minimums.
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Figure 1.2: Non-convex (wavy) figure with a number of local minimums.

1.4 example: line fitting .

A linear fit of some points distributed around a line y = ax + b is plotted
in fig. 1.3. Here a, b are the optimization variables x = (a, b).

Figure 1.3: Linear fit of points around a line.

How is the solution for such a best fit line obtained?

Approach 1: Calculus minimization of a multivariable error function. De-
scribe an error function, describing how far from the line a given point is.

yi − (axi + b), (1.3)

Because this can be positive or negative, we can define a squared variant
of this, and then sum over all data points.

F0 =

n∑
i=1

(yi − (axi + b))2
. (1.4)
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One way to solve (for a, b): Take the derivatives

∂F0

∂a
=

n∑
i=1

2(yi − (axi + b))(−xi) = 0

∂F0

∂b
=

n∑
i=1

2(yi − (axi + b))(−1) = 0.

(1.5)

This yields
n∑

i=1

yi =

 n∑
i=1

xi

 a +

 n∑
i=1

1

 b

n∑
i=1

xiyi =

 n∑
i=1

x2
i

 a +

 n∑
i=1

xi

 b.

(1.6)

In matrix form, this is∑ xiyi∑
yi

 =
∑ x2

i
∑

xi∑
xi n


ab

 . (1.7)

If invertible, have an analytic solution for (a∗, b∗). This is a convex opti-
mization problem because F(x) = x2 is a convex “quadratic program”. In
general a quadratic program has the structure

F(a, b) = (· · ·)a2 + (· · ·)ab + (· · ·)b2. (1.8)

Approach 2: Linear algebraic formulation.
y1
...

yn

 =

x1 1
...
...

xn 1


ab

 +

z1
...

zn

 , (1.9)

or

y = Hv + z, (1.10)

where z is the error vector. The problem is now reduced to : Fit y to be as
close to Hv + z as possible, or to minimize the norm of the error vector,
or

min
v
∥y − Hv∥22 = min

v
(y − Hv)T (y − Hv)

= min
v

(
yTy − yTHv − vTHy + vTHTHv

)
= min

v

(
yTy − 2yTHv + vTHTHv

)
.

(1.11)
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It is now possible to take the derivative with respect to the v vector (i.e.
the gradient with respect to the coordinates of the constraint vector)

∂

∂v
(
yTy − 2yTHv + vTHTHv

)
= −2yTH + 2vTHTH

= 0,
(1.12)

or

(HTH)v = HTy, (1.13)

so, assuming that HTH is invertible, the optimization problem has solu-
tion

v∗ = (HTH)−1HTy, (1.14)

where

HTH =

x1 · · · xn

1 · · · 1



x1 1
...
...

xn 1


=

∑ x2
i

∑
xi∑

xi n

 ,
(1.15)

as seen in the calculus approach.

1.5 maximum likelyhood estimation (mle).

It is reasonable to ask why the 2-norm was picked for the objective func-
tion?

• One justification is practical: Because we can solve the derivative
equation.

• Another justification: In statistics the error vector z = y − Hv can
be modeled as an IID (Independently and Identically Distributed)
Gaussian random variable (i.e. noise). Under this model, the use of
the 2-norm can be viewed as a consequence of such an ML estima-
tion problem (see [1] ch. 7).
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A Gaussian fig. 1.4 IID model is given by

yi = axi + b (1.16a)

zi = yi − axi − b ∼ N(O,O2) (1.16b)

PZ(z) =
1
√

2πσ
exp

(
−

1
2

z2/σ2
)
. (1.16c)

Figure 1.4: Gaussian probability distribution.

MLE: Maximum Likelyhood Estimator Pick (a, b) to maximize the prob-
ability of observed data.

(a∗, b∗) = arg max P(x, y; a, b)

= arg max PZ(y − (ax + b))

= arg max
n∏

i=1

= arg max
1
√

2πσ
exp

(
−

1
2

(yi − axi − b)2/σ2
)
.

(1.17)

Taking logs gives

(a∗, b∗) = arg max

constant −
1
2

∑
i

(yi − axi − b)2/σ2


= arg min

1
2

∑
i

(yi − axi − b)2/σ2

= arg min
∑

i

(yi − axi − b)2/σ2

(1.18)
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Here arg max is not the maximum of the function, but the value of the
parameter (the argument) that maximizes the function.

Double sides exponential noise A double sided exponential distribution
is plotted in fig. 1.5, and has the mathematical form

PZ(z) =
1
2c

exp
(
−

1
c
|z|

)
. (1.19)

Figure 1.5: Double sided exponential probability distribution.

The optimization problem is

max
a,b

n∏
i=1

Pz(zi) = max
a,b

n∏
i=1

1
2c

exp
(
−

1
c
|zi|

)

= max
a,b

n∏
i=1

1
2c

exp
(
−

1
c
|yi − axi − b|

)

= max
a,b

(
1
2c

)n

exp

−1
c

n∑
i=1

|yi − axi − b|

 .
(1.20)

This is a L1 norm problem

min
a,b

n∑
i=1

|yi − axi − b|. (1.21)

i.e.

min
v
∥y − Hv∥1 . (1.22)

This is still convex, but has no analytic solution, and is an example of a
linear program.
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1.5.1 Solution of linear program

Introduce helper variables t1, · · · , tn, and minimize
∑

i ti, such that

|yi − axi − b| ≤ ti. (1.23)

This is now an optimization problem for a, b, t1, · · · tn. A linear program
is defined as

min
a,b,t1,···tn

∑
i

ti (1.24)

such that

yi − axi − b ≤ tiyi − axi − b ≥ −ti (1.25)

Single sided exponential What if your noise doesn’t look double sided,
with only noise for values x > 0. Can define a single sided probability
distribution, as that of fig. 1.6.

Figure 1.6: Single sided exponential distribution.

PZ(z) =

 1
c e−z/c z ≥ 0

0 z < 0
(1.26)

i.e. all zi error values are always non-negative.

log Pz(z) =

 const − z/c z > 0

−∞ z < 0
(1.27)

Problem becomes

min
a,b

∑
i

(yi − axi − b) , (1.28)

such that

yi − axi − b ≥ ti ∀i (1.29)
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Uniform noise For noise that is uniformly distributed in a range, as that
of fig. 1.7, which is constant in the range [−c, c] and zero outside that
range.

Figure 1.7: Uniform probability distribution.

PZ(z) =

 1
2c |z| ≤ c

0 |z| > c.
(1.30)

or

log PZ(z) =

 const |z| ≤ c

−∞ |z| > c.
(1.31)

MLE solution

max
a,b

n∏
i=1

P(x, y; a, b) = max
a,b

n∑
i=1

log PZ(yi − axi − b). (1.32)

Here the argument is constant if −c ≤ yi − axi − b ≤ c, so an ML solution
is any (a, b) such that

|yi − axi − b| ≤ c ∀i ∈ 1, · · · , n. (1.33)

This is a linear program known as a “feasibility problem”.

min d (1.34)

such that

yi − axi − b ≤ d

yi − axi − b ≥ −d
(1.35)

If d∗ ≤ c, then the problem is feasible, however, if d∗ > c it is infeasible.
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1.5.2 Method comparison

The double sided exponential, single sided exponential and uniform prob-
ability distributions of fig. 1.8 each respectively represent the point plots
of the form fig. 1.9. The double sided exponential samples are distributed
on both sides of the line, the single sided strictly above or on the line, and
the uniform representing error bars distributed around the line of best fit.

(a) (b)

(c)

Figure 1.8: Distributions
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(a) (b)

(c)

Figure 1.9: Samples





2M AT H E M AT I C A L BAC K G RO U N D .

Topics

• Calculus: Derivatives and Jacobians, Gradients, Hessians, approxi-
mation functions.

• Linear algebra, Matrices, decompositions, ...

2.1 norms

Definition 2.1: Vector space

A set of elements (vectors) that is closed under vector addition and
scaling.

This generalizes the directed arrow concept of vector space ( fig. 2.1)
that is familiar from geometry.

x

y

x + y

Figure 2.1: Vector addition.

Definition 2.2: Normed vector spaces

A vector space with a notion of length of any single vector, the
“norm”.
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Definition 2.3: Inner product space.

A normed vector space with a notion of a real angle between any pair
of vectors.

This course has a focus on optimization in Rn. Complex spaces in the
context of this course can be considered with a mapping Cn → R2n.

Definition 2.4: Norm.

A norm is a function operating on a vector

x = (x1, x2, · · · , xn)

that provides a mapping

∥·∥ : Rn → R,

where

• ∥x∥ ≥ 0

• ∥x∥ = 0 ⇐⇒ x = 0

• ∥tx∥ = |t| ∥x∥

• ∥x + y∥ ≤ ∥x∥ + ∥y∥. This is the triangle inequality.

Example: Euclidean norm

∥x∥ =

√√ n∑
i=1

x2
i (2.1)

Example: lp-norms

∥x∥p =
 n∑

i=1

|xi|
p

1/p

. (2.2)

For p = 1, this is

∥x∥1 =
n∑

i=1

|xi|, (2.3)
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For p = 2, this is the Euclidean norm eq. (2.1). For p = ∞, this is

∥x∥∞ =
n

max
i=1
|xi|. (2.4)

Note that it hasn’t been proven here that ∥x∥p satisfies the triangle in-
equality. This is only the case for p ≥ 1, and in general is known as the
Minkowski identity [3]. The proof of this also requires Holder’s inequal-
ity. A very nice treatment of both can be found on Dr. Chris Tisdell’s
youtube channel ([5], [4]).

Definition 2.5: Unit ball

{x|∥x∥ ≤ 1}

The regions of the unit ball under the l1, l2, andl∞ norms are plotted in
fig. 2.2.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 2.2: Some unit ball regions.

The l2 norm is not only familiar, but can be “induced” by an inner
product

⟨x, y⟩ = xTy =
n∑

i=1

xiyi, (2.5)

which is not true for all norms. The norm induced by this inner product is

∥x∥2 =
√
⟨x, y⟩ (2.6)
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Inner product spaces have a notion of angle (fig. 2.3) given by

⟨x, y⟩ = ∥x∥ ∥y∥ cos θ, (2.7)

and always satisfy the Cauchy-Schwartz inequality

x

y

θ

Figure 2.3: Inner product induced angle.

⟨x, y⟩ ≤ ∥x∥2 ∥y∥2 . (2.8)

In an inner product space we say x and y are orthogonal vectors x ⊥ y if
⟨x, y⟩ = 0, as sketched in fig. 2.4.

x

y
θ

Figure 2.4: Orthogonality.

2.2 dual norm

Definition 2.6: Dual norm

Let ∥·∥ be a norm in Rn. The “dual” norm ∥·∥∗ is defined as

∥z∥∗ = sup
x

{
zTx|∥x∥ ≤ 1

}
.
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where sup is roughly the “least upper bound”.
This is a limit over the unit ball of ∥·∥.

l2 dual .
Dual of the l2 is the l2 norm.

Figure 2.5: l2 dual norm determination.

Proof:

∥z∥∗ = sup
x

{
zTx|∥x∥2 ≤ 1

}
= sup

x
{∥z∥2 ∥x∥2 cos θ|∥x∥2 ≤ 1}

≤ sup
x
{∥z∥2 ∥x∥2 |∥x∥2 ≤ 1}

≤���∥z∥2
∥∥∥∥∥ z
�
��∥z∥2

∥∥∥∥∥
2

= ∥z∥2 .

(2.9)

l1 dual . For l1, the dual is the l∞ norm. Proof:

∥z∥∗ = sup
x

{
zTx|∥x∥1 ≤ 1

}
, (2.10)

but

zTx =
n∑

i=1

zixi ≤

∣∣∣∣∣∣∣
n∑

i=1

zixi

∣∣∣∣∣∣∣
≤

n∑
i=1

|zixi|,

(2.11)
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so

∥z∥∗ =
n∑

i=1

|zi||xi|

≤

(
n

max
j=1

∣∣∣z j
∣∣∣) n∑

i=1

|xi|

≤

(
n

max
j=1

∣∣∣z j
∣∣∣)

= ∥z∥∞ .

(2.12)

Figure 2.6: l1 dual norm determination.

l∞ dual .

Figure 2.7: l∞ dual norm determination.

∥z∥∗ = sup
x

{
zTx|∥x∥∞ ≤ 1

}
. (2.13)
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Here

zTx =
n∑

i=1

zixi

≤

n∑
i=1

|zi||xi|

≤

(
max

j

∣∣∣x j
∣∣∣) n∑

i=1

|zi|

= ∥x∥∞
n∑

i=1

|zi|.

(2.14)

So

∥z∥∗ ≤
n∑

i=1

|zi| = ∥z∥1 . (2.15)

Statement from the lecture: I’m not sure where this fits:

x∗i =

 +1 zi ≥ 0

−1 zi ≤ 0
(2.16)

2.3 multivariable taylor approximation

The Taylor series expansion for a scalar function g : R → R about the
origin is just

g(t) = g(0) + tg′(0) +
t2

2
g′′(0) + · · · (2.17)

In particular

g(1) = g(0) + g′(0) +
1
2

g′′(0) + · · · (2.18)

Now consider g(t) = f (x + at), where f : Rn → R, g(0) = f (x), and
g(1) = f (x + a). This trick, from [2] allows for a direct expansion of the
multivariable Taylor series of a scalar function

f (x + a) = f (x) +
d f (x + at)

dt

∣∣∣∣∣
t=0
+

1
2

d2 f (x + at)
dt2

∣∣∣∣∣∣
t=0
+ · · · (2.19)
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The first order term is

d f (x + at)
dt

∣∣∣∣∣
t=0
=

n∑
i=1

d(xi + ait)
dt

∂ f (x + at)
∂(xi + ait)

∣∣∣∣∣
t=0

=

n∑
i=1

ai
∂ f (x)
∂xi

= a ·∇ f .

(2.20)

Similarly, for the second order term

d2 f (x + at)
dt2

∣∣∣∣∣∣
t=0
=

 d
dt

 n∑
i=1

ai
∂ f (x + at)
∂(xi + ait)


∣∣∣∣∣∣∣
t=0

=

 n∑
j=1

d(x j + a jt)
dt

n∑
i=1

ai
∂2 f (x + at)

∂(x j + a jt)∂(xi + ait)


∣∣∣∣∣∣∣∣
t=0

=

n∑
i, j=1

aia j
∂2 f
∂xi∂x j

= (a ·∇)2 f .
(2.21)

The complete Taylor expansion of a scalar function f : Rn → R is there-
fore

f (x + a) = f (x) + a ·∇ f +
1
2
(a ·∇)2 f + · · · , (2.22)

so the Taylor expansion has an exponential structure

f (x + a) =
∞∑

k=0

1
k!

(a ·∇)k f = ea·∇ f . (2.23)

Should an approximation of a vector valued function f : Rn → Rm be
desired it is only required to form a matrix of the components

f(x + a) = f(x) + [a ·∇ fi]i +
1
2

[(a ·∇)2 fi]i + · · · , (2.24)

where [.]i denotes a column vector over the rows i ∈ [1,m], and fi are the
coordinates of f.
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2.4 the jacobian matrix

In [1] the Jacobian Df of a function f : Rn → Rm is defined in terms of
the limit of the l2 norm ratio

∥f(z) − f(x) − (Df)(z − x)∥2
∥z − x∥2

, (2.25)

with the statement that the function f has a derivative if this limit exists.
Here the Jacobian Df ∈ Rm×n must be matrix valued.

Let z = x + a, so the first order expansion of eq. (2.24) is

f(z) = f(x) + [(z − x) ·∇ fi]i. (2.26)

With the (unproven) assumption that this Taylor expansion satisfies the
norm limit criteria of eq. (2.25), it is possible to extract the structure of
the Jacobian by comparison

(Df)(z − x) =
[
(z − x) ·∇ fi

]
i

=

[∑n
j=1(z j − x j)

∂ fi
∂x j

]
i

=

[
∂ fi
∂x j

]
i j

(z − x),

(2.27)

so

(Df)i j =
∂ fi
∂x j

(2.28)

Written out explicitly as a matrix the Jacobian is

Df =



∂ f1
∂x1

∂ f1
∂x2

· · ·
∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · ·
∂ f2
∂xn

...
...

...
∂ fm
∂x1

∂ fm
∂x2

· · ·
∂ fm
∂xn


=


(∇ f1)T

(∇ f2)T

...

(∇ fm)T


. (2.29)

In particular, when the function is scalar valued

D f = (∇ f )T. (2.30)

With this notation, the first Taylor expansion, in terms of the Jacobian
matrix is

f(z) ≈ f(x) + (Df) (z − x) . (2.31)
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Gradient The gradient provides a linear approximation of a function
about a point x0 ∈ Rn.

F(x) ≈ F(x0) +∇F(x0)T (x − x0)

= F(x0) + ⟨∇F(x0), x − x0⟩,
(2.32)

or

F(x + ∆x) = F(x) + ⟨∇F(x),∆x⟩. (2.33)

This can be thought of as the definition of the gradient in an inner product
space. It will be possible to find the structure of the gradient by consider-
ing a perturbation of a function about a point.

When g is a scalar function, the chain rule can be expressed in terms of
the gradient

∇(g(F(x))) = (DF)T
∣∣∣∣x∇g|F(x). (2.34)

Example 1:

F : Rn → R

g : R→ R,
(2.35)

and let

h(x) = g(F(x)), (2.36)

for x ∈ Rn, then

∇h(x) = g′(F(x))∇F(x). (2.37)

Example 2.1: Quadratic form

F(x) = xTPx =
n∑

i, j=1

xix jPi j, (2.38)

We want to show that

∇F(x) =
(
P + PT

)
x. (2.39)
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Consider the k-th derivative

∂

∂xk
F(x) =

∂

∂xk

Pkkx2
k +

∑
i,k

xixk (Pik + Pki)


= 2Pkkxk + 2

∑
i,k

xi
(Pik + Pki)

2

=

n∑
i

xi
(Pik + Pki)

2

=

n∑
i

(Pik + Pki) xi,

(2.40)

which proves eq. (2.39).

Symmetric matrices Let S n be the set of symmetric matrices

S n =
{
P ∈ Rn×n|P = PT

}
, (2.41)

then

∇(xTPx) = 2Px. (2.42)

2.5 chain rule

The gradients or Jacobians for compositions of functions can also be cal-
culated

Theorem 2.1: Chain rule

Given functions

F : Rn → Rm

g : Rm → Rp,
(2.43)

D(g(F(x))) = Dg|F(x) DF|x. (2.44)
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Scalar valued composition To illustrate this, first consider a scalar val-
ued composition

F : Rn → Rn

g : Rn → R,
(2.45)

and let

h(x) = g(F(x))

= g




F1(x)

F2(x)
...

Fn(x)




(2.46)

for x ∈ Rn, then

∂h(x)
∂xk

=
∂g
∂F1

∂F1

∂xk
+
∂g
∂F2

∂F2

∂xk
+ · · · (2.47)

With

DF(x) =



∂F1
∂x1

∂F1
∂x2

· · ·
∂F1
∂xn

∂F2
∂x1

∂F2
∂x2

· · ·
∂F2
∂xn

...
...

∂Fn
∂x1

∂Fn
∂x2

· · ·
∂Fn
∂xn


(2.48)

the gradient ∇g = (Dg)T is

∇h(x) = (DF)T
∣∣∣x∇g(F(x)), (2.49)

or

D(g(F(x))) = Dg|F(x) DF|x. (2.50)

Affine functions An important example are affine functions of x

F : Rn → Rn

g : Rn → R,
(2.51)

F(x) = Ax + b, (2.52)
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where A is an n × n matrix and b is an n × 1 column vector.
Given a function

h(x) = g(F(x)) = g(Ax + b). (2.53)

F(x) = Ax + b =



∑n
i=1 a1ixi∑n
i=1 a2ixi
...∑n

i=1 anixi
...


+ b, (2.54)

so

DF(x) = A, (2.55)

and

∇(g(F(x))) = (Ax)T
∇g|F(x). (2.56)

General case The proof of the general case can be essentially be per-
formed by example, provided that example is sufficiently non-trivial, such
as a non-square case such as n = 4,m = 3, p = 2

F(x) =


F1(x)

F2(x)

F3(x)

 , (2.57)

and

g(y) =

g1(y)

g2(y)

 . (2.58)

For such a function

∂g(F(x))
∂x1

=

∂g1(F(x))/∂x1

∂g2(F(x))/∂x1

 , (2.59)

so

Dg(F(x)) =

∂g1(F(x))/∂x1 ∂g1(F(x))/∂x2 · · · ∂g1(F(x))/∂x4

∂g2(F(x))/∂x1 ∂g2(F(x))/∂x2 · · · ∂g2(F(x))/∂x4


=

D(g1(F(x)))

D(g2(F(x)))

 .
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(2.60)

This reduces the problem to the composition of a scalar and vector func-
tion, such as

D(g1(F(x))) =
3∑

i=1

4∑
j=1

∂g1

∂yi

∣∣∣∣∣
yi=Fi(x)

∂Fi

∂x j

=

([
∂g1
∂y1

∂g1
∂y2

∂g1
∂y3

])∣∣∣∣∣y=F(x)

[
∂Fi
∂x j

]
i j

= Dg1|F(x)DF(x).

(2.61)

The total Jacobian is

Dg(F(x)) =

Dg1|F(x)DF(x)

Dg2|F(x)DF(x)

 , (2.62)

which can be factored as

D(g(F(x))) = Dg|F(x)DF(x). (2.63)

.

2.6 the hessian matrix

For scalar valued functions, the text expresses the second order expansion
of a function in terms of the Jacobian and Hessian matrices

f (z) ≈ f (x) + (D f ) (z − x) +
1
2
(z − x)T (∇2 f ) (z − x) . (2.64)

Because ∇2 is the usual notation for a Laplacian operator, this ∇2 f ∈
Rn×n notation for the Hessian matrix is not ideal in my opinion. Ignoring
that notational objection for this class, the structure of the Hessian matrix
can be extracted by comparison with the coordinate expansion

aT(∇2 f )a =
n∑

r,s=1

aras
∂2 f
∂xr∂xs

(2.65)

so

(∇2 f )i j =
∂2 fi
∂xi∂x j

. (2.66)
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In explicit matrix form the Hessian is

∇
2 f =



∂2 f
∂x1∂x1

∂2 f
∂x1∂x2

· · ·
∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x2∂x2

· · ·
∂2 f
∂x2∂xn

...
...

...
∂2 f
∂xn∂x1

∂2 f
∂xn∂x2

· · ·
∂2 f
∂xn∂xn


. (2.67)

Is there a similar nice matrix structure for the Hessian of a function f :
Rn → Rm?

Example 2.2: Second order scalar function

Given

F(x) =
1
2

xTPx + qTx + c, (2.68)

where P is a symmetric matrix P = PT, then

∇F =
1
2

(
P + PT

)
x + q

= Px + q,
(2.69)

and

∇
2F = P. (2.70)

2.7 problems .

Exercise 2.1 Taylor series expansion

Consider the function

f (x) = −
m∑

l=1

log(bl − aT
l x), (2.71)

where x ∈ Rn, bl ∈ R and al ∈ Rn. Compute ∇ f (x) and ∇2 f (x). Write
down the first three terms of the Taylor series expansion of f (x) around
some x0.
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Answer for Exercise 2.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOC-
UMENT.PLEASE FEEL FREE TO EMAIL ME FOR THE FULL VER-
SION IF YOU AREN’T TAKING ECE1505.

. .
. .

.
. . .

. .
. .

. .
.

. .
. END-REDACTION

Exercise 2.2 Inversion formula for “small” matrices

Prove the relation

(I + A)−1 = I − A, (2.72)

for A “small”. We used this in class to derive the second order expansion
of

log det(I + A). (2.73)

Prove this result in two ways:

a. First, prove this for the special case of A ∈ S n
++ where the eigen-

values are small. This is what we needed in class. Use a decompo-
sition of A and Taylor approximation of the eigenvalues.

b. Next prove the general relation: If A ∈ Rn×n and ∥A∥p < 1 then
I − A is non-singular, and

(I − A)−1
=

∞∑
k=0

Ak (2.74)

where ∥∥∥(I − A)−1
∥∥∥

p ≤
1

1 − ∥A∥p
. (2.75)



2.7 problems . 29

The p-th matrix norm ∥A∥p is defined in terms of the vector p-norm
as

∥A∥p = sup
x,0

∥Ax∥p
∥x∥p

(2.76)

which, using the scaling property of a norm, can be seen to be
equivalent to

∥A∥p = max
∥x∥p=1

∥Ax∥p . (2.77)

In our derivation in class we used only the zeroth and first-order
terms of the expansion.
Some hints that outline one approach to the above result:

(i) One approach to proving the first statement (about non-singularity)
is by contradiction: note that if I − A is singular then there
exists a vector v such that (I − A)v = 0 and work from there.

(ii) Next, consider the telescoping sum

N∑
k=0

Ak(I − A) = I − AN+1, (2.78)

and show

lim
k→∞

Ak = 0. (2.79)

(iii) To show that limk→∞ Ak = 0, it is helpful first to prove that∥∥∥Ak+1
∥∥∥

p ≤ ∥A∥p ∥A
k∥p. (2.80)

(iv) Finally, combine your above results and the properties of a
norm to show the desired result.

Answer for Exercise 2.2

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOC-
UMENT.PLEASE FEEL FREE TO EMAIL ME FOR THE FULL VER-
SION IF YOU AREN’T TAKING ECE1505.

. .
. .

.
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. . .
. .

. .
. .

.
. .

. END-REDACTION



3M AT R I X I N N E R P RO D U C T, S V D , A N D S E T T Y P E S .

3.1 matrix inner product

Given real matrices X,Y ∈ Rm×n, one possible matrix inner product defi-
nition is

⟨X,Y⟩ = Tr(XTY)

= Tr

 m∑
k=1

XkiYk j


=

m∑
k=1

n∑
j=1

Xk jYk j

=

m∑
i=1

n∑
j=1

Xi jYi j.

(3.1)

This inner product induces a norm on the (matrix) vector space, called the
Frobenius norm

∥X∥F = Tr(XTX)

=
√
⟨X, X⟩

=

m∑
i=1

n∑
j=1

X2
i j.

(3.2)

3.2 range , nullspace .

Definition 3.1: Range.

Given A ∈ Rm×n, the range of A is the set:

R(A) =
{
Ax|x ∈ Rn} .
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Definition 3.2: Nullspace.

Given A ∈ Rm×n, the nullspace of A is the set:

N(A) = {x|Ax = 0} .

3.3 svd .

To understand operation of A ∈ Rm×n, a representation of a linear trans-
formation from Rn to Rm, decompose A using the singular value decom-
position (SVD).

Definition 3.3: SVD.

Given A ∈ Rm×n, an operator on x ∈ Rn, a decomposition of the
following form is always possible

A = UΣVT

U ∈ Rm×r

V ∈ Rn×r,

where r is the rank of A, and both U and V are orthogonal

UTU = I ∈ Rr×r

VTV = I ∈ Rr×r.

Here Σ = diag(σ1, σ2, · · · , σr), is a diagonal matrix of “singular”
values, where

σ1 ≥ σ2 ≥ · · · ≥ σr.

For simplicity consider square case m = n

Ax =
(
UΣVT

)
x. (3.3)
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The first product VTx is a rotation, which can be checked by looking at
the length∥∥∥VTx

∥∥∥
2 =

√
xTVVTx

=
√

xTx
= ∥x∥2 ,

(3.4)

which shows that the length of the vector is unchanged after application
of the linear transformation represented by VT so that operation must be
a rotation.

Similarly the operation of U on ΣVTx also must be a rotation. The
operation Σ = [σi]i applies a scaling operation to each component of the
vector VTx.

All linear (square) transformations can therefore be thought of as a
rotate-scale-rotate operation. Often the A of interest will be symmetric
A = AT.

3.4 set of symmetric matrices

Let S n be the set of real, symmetric n × n matrices.

Theorem 3.1: Spectral theorem.

When A ∈ S n then it is possible to factor A as

A = QΛQT,

where Q is an orthogonal matrix, and Λ = diag(λ1, λ2, · · · λn). Here
λi ∈ R∀i are the (real) eigenvalues of A.

A real symmetric matrix A ∈ S n is “positive semi-definite” if

vTAv ≥ 0 ∀v ∈ Rn, v , 0,

and is “positive definite” if

vTAv > 0 ∀v ∈ Rn, v , 0.

The set of such matrices is denoted S n
+, and S n

++ respectively.
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Consider A ∈ S n
+ (or S n

++ )

A = QΛQT, (3.5)

possible since the matrix is symmetric. For such a matrix

vTAv = vTQΛATv
= wTΛw,

(3.6)

where w = ATv. Such a product is

vTAv =
n∑

i=1

λiw2
i . (3.7)

So, if λi ≥ 0 (λi > 0 ) then
∑n

i=1 λiw2
i is non-negative (positive) ∀w ∈

Rn,w , 0. Since w is just a rotated version of v this also holds for all v.
A necessary and sufficient condition for A ∈ S n

+ (S n
++ ) is λi ≥ 0 (λi > 0).

3.5 square root of positive semi-definite matrix

Real symmetric matrix power relationships such as

A2 = QΛQTQΛQT

= QΛ2QT,
(3.8)

or more generally Ak = QΛkQT, k ∈ Z, can be further generalized to non-
integral powers. In particular, the square root (non-unique) of a square
matrix can be written

A1/2 = Q



√
λ1 √

λ2
. . . √

λn


QT, (3.9)

since A1/2A1/2 = A, regardless of the sign picked for the square roots in
question.

3.6 functions of matrices

Consider F : S n → R, and define

F(X) = log det X, (3.10)
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Here dom F = S n
++. The task is to find ∇F, which can be done by looking

at the perturbation log det(X + ∆X)

log det(X + ∆X) = log det(X1/2(I + X−1/2∆XX−1/2)X1/2)

= log det(X(I + X−1/2∆XX−1/2))

= log det X + log det(I + X−1/2∆XX−1/2).

(3.11)

Let X−1/2∆XX−1/2 = M where λi are the eigenvalues of M : Mv = λiv
when v is an eigenvector of M. In particular

(I +M)v = (1 + λi)v, (3.12)

where 1+λi are the eigenvalues of the I +M matrix. Since the determinant
is the product of the eigenvalues, this gives

log det(X + ∆X) = log det X + log
n∏

i=1

(1 + λi)

= log det X +
n∑

i=1

log(1 + λi).

(3.13)

If λi are sufficiently “small”, then log(1 + λi) ≈ λi, giving

log det(X + ∆X) = log det X +
n∑

i=1

λi

≈ log det X + Tr(X−1/2∆XX−1/2).

(3.14)

Since

Tr(AB) = Tr(BA), (3.15)

this trace operation can be written as

log det(X + ∆X) ≈ log det X + Tr(X−1∆X)

= log det X + ⟨X−1,∆X⟩,
(3.16)

so

∇F(X) = X−1. (3.17)

To check this, consider the simplest example with X ∈ R1×1, where we
have

d
dX

(log det X) =
d

dX
(log X) =

1
X
= X−1. (3.18)

This is a nice example demonstrating how the gradient can be obtained
by performing a first order perturbation of the function. The gradient can
then be read off from the result.
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3.7 second order perturbations

• To get first order approximation found the part that varied linearly
in ∆X.

• To get the second order part, perturb X−1 by ∆X and see how that
perturbation varies in ∆X.

For G(X) = X−1, this is

(X + ∆X)−1 =
(
X1/2(I + X−1/2∆XX−1/2)X1/2

)−1

= X−1/2(I + X−1/2∆XX−1/2)−1X−1/2
(3.19)

To be proven in the homework (for “small” A)

(I + A)−1 ≈ I − A. (3.20)

This gives

(X + ∆X)−1 = X−1/2(I − X−1/2∆XX−1/2)X−1/2

= X−1 − X−1∆XX−1,
(3.21)

or

G(X + ∆X) = G(X) + (DG)∆X

= G(X) + (∇G)T∆X,
(3.22)

so

(∇G)T∆X = −X−1∆XX−1. (3.23)

The Taylor expansion of F to second order is

F(X + ∆X) = F(X) + Tr
(
(∇F)T∆X

)
+

1
2

(
(∆X)T(∇2F)∆X

)
. (3.24)

The first trace can be expressed as an inner product

Tr
(
(∇F)T∆X

)
= ⟨∇F,∆X⟩

= ⟨X−1,∆X⟩.
(3.25)

The second trace also has the structure of an inner product

(∆X)T(∇2F)∆X = Tr
(
(∆X)T(∇2F)∆X

)
= ⟨(∇2F)T∆X,∆X⟩,

(3.26)
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where a no-op trace could be inserted in the second order term since that
quadratic form is already a scalar. This (∇2F)T∆X term has essentially
been found implicitly by performing the linear variation of ∇F in ∆X,
showing that we must have

Tr
(
(∆X)T(∇2F)∆X

)
= ⟨−X−1∆XX−1,∆X⟩, (3.27)

so

F(X + ∆X) = F(X) + ⟨X−1,∆X⟩ +
1
2
⟨−X−1∆XX−1,∆X⟩, (3.28)

or

log det(X+∆X) = log det X+Tr(X−1∆X)−
1
2

Tr(X−1∆XX−1∆X). (3.29)

3.8 convex sets

• Types of sets: Affine, convex, cones

• Examples: Hyperplanes, polyhedra, balls, ellipses, norm balls, cone
of PSD matrices.

Definition 3.4: Affine set

A set C ⊆ Rn is affine if ∀x1, x2 ∈ C then

θx1 + (1 − θ)x2 ∈ C, ∀θ ∈ R.

The affine sum above can be rewritten as

x2 + θ(x1 − x2). (3.30)

Since θ is a scaling, this is the line containing x2 in the direction between
x1 and x2.

Observe that the solution to a set of linear equations

C = {x|Ax = b} , (3.31)

is an affine set. To check, note that

A(θx1 + (1 − θ)x2) = θAx1 + (1 − θ)Ax2

= θb + (1 − θ)b
= b.

(3.32)
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Definition 3.5: Affine combination.

An affine combination of points x1, x2, · · · xn is

n∑
i=1

θixi,

such that for θi ∈ R

n∑
i=1

θi = 1.

An affine set contains all affine combinations of points in the set. Ex-
amples of a couple affine sets are sketched in fig. 3.1.

(a) (b)

Figure 3.1: Affine.

For comparison, a couple of non-affine sets are sketched in fig. 3.2.

Definition 3.6: Convex set

A set C ⊆ Rn is convex if ∀x1, x2 ∈ C and ∀θ ∈ R, θ ∈ [0, 1], the
combination

θx1 + (1 − θ)x2 ∈ C. (3.33)

Definition 3.7: Convex combination
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(a) (b)

Figure 3.2: Not affine.

A convex combination of x1, x2, · · · xn is

n∑
i=1

θixi,

such that ∀θi ≥ 0

n∑
i=1

θi = 1

Definition 3.8: Convex hull.

Convex hull of a set C is a set of all convex combinations of points
in C, denoted

conv(C) =

 n∑
i=1

θixi|xi ∈ C, θi ≥ 0,
n∑

i=1

θi = 1

 .
A non-convex set can be converted into a convex hull by filling in all

the combinations of points connecting points in the set, as sketched in
fig. 3.3.

Definition 3.9: Cones.

A set C is a cone if ∀x ∈ C and ∀θ ≥ 0 we have θx ∈ C.
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(a) (b)

Figure 3.3: Convex hulls.

This scales out if θ > 1 and scales in if θ < 1.
A convex cone is a cone that is also a convex set. A conic combination

is

n∑
i=1

θixi, θi ≥ 0.

A convex and non-convex 2D cone is sketched in fig. 3.4

(a) (b)

Figure 3.4: Convex and non-convex cone.

Like the convex null, it is possible to define affine and conic hulls.
These are

Definition 3.10: Affine hull.
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Affine hull of a set C is a set of all affine combinations of points in
C, denoted

affine(C) =

 n∑
i=1

θixi|xi ∈ C, θi ∈ R,

n∑
i=1

θi = 1

 .

Definition 3.11: Conic hull.

Conic hull of a set C is a set of all conic combinations of points in C,
denoted

conic(C) =

 n∑
i=1

θixi|xi ∈ C, θi ≥ 0

 .



42 matrix inner product, svd , and set types .

Table 3.1: Affine, Convex, and Conic properties.

θi ≥ 0
∑
θi = 1

Affine No Yes

Convex Yes Yes

Conic Yes No

A comparison of these three types of hulls are tabulated in table 3.1.

3.9 hyperplanes and half spaces

Definition 3.12: Hyperplane.

A hyperplane is defined by{
x|aTx = b, a , 0

}
.

A line and plane are examples of this general construct as sketched in
fig. 3.5.

(a) (b)

Figure 3.5: Hyperplanes.

An alternate view is possible should one find any specific x0 such that
aTx0 = b{

x|aTx = b
}
=

{
x|aT(x − x0) = 0

}
(3.34)
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This shows that x − x0 = a⊥ is perpendicular to a, or

x = x0 + a⊥. (3.35)

This is the subspace perpendicular to a shifted by x0, subject to aTx0 = b.
As a set

a⊥ =
{
v|aTv = 0

}
. (3.36)

3.10 half space

Definition 3.13: Half space.

The half space is defined as{
x|aTx = b

}
=

{
x|aT(x − x0) ≤ 0

}
.

This can also be expressed as {x|⟨a, x − x0⟩ ≤ 0}.

3.11 problems .

Exercise 3.1 Matrix inner product

a. Verify that Sn ⊆ Rn×n is a vector space under the regular matrix
addition and scaling (multiplication by scalars in R) operations.
Accomplish this by verifying that all properties of a vector space
are satisfied.

b. Verify that ⟨A, B⟩ = Tr(ATB) where A, B ∈ Sn satisfies all the
properties of an inner product.

Answer for Exercise 3.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOC-
UMENT.PLEASE FEEL FREE TO EMAIL ME FOR THE FULL VER-
SION IF YOU AREN’T TAKING ECE1505.

. .
. .

.
. . .
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. .
. .

. .
.

. .
. END-REDACTION
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4.1 hyperplanes

Find some x0 ∈ Rn such that aTx0 = b, so{
x|aTx = b

}
=

{
x|aTx = aTx0

}
=

{
x|aT(x − x0)

}
= x0 + a⊥,

(4.1)

where

a⊥ =
{
v|aTv = 0

}
. (4.2)

Figure 4.1: Parallel hyperplanes.

Recall

∥z∥∗ = sup
x

{
zTx|∥x∥ ≤ 1

}
(4.3)

Denote the optimizer of above as x∗. By definition

zTx∗ ≥ zTx ∀x, ∥x∥ ≤ 1 (4.4)

This defines a half space in which the unit ball{
x|zT(x − x∗ ≤ 0

}
(4.5)
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Figure 4.2: Half space containing unit ball.

Start with the l1 norm, duals of l1 is l∞
Similar pic for l∞, for which the dual is the l1 norm, as sketched in

fig. 4.3. Here the optimizer point is at (1, 1)

Figure 4.3: Half space containing the unit ball for l∞.

and a similar pic for l2, which is sketched in fig. 4.4.
Q: What was this optimizer point?

4.2 polyhedra

P =
{
x|aT

j x ≤ b j, j ∈ [1,m], cT
i x = di, i ∈ [1, p]

}
= {x|Ax ≤ b,Cx = d} ,

(4.6)

where the final inequality and equality are component wise.
Proving P is convex:

• Pick x1 ∈ P, x2 ∈ P

• Pick any θ ∈ [0, 1]
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Figure 4.4: Half space containing for l2 unit ball.

• Test θx1 + (1 − θ)x2. Is it in P?

A (θx1 + (1 − θ)x2) = θAx1 + (1 − θ)Ax2

≤ θb + (1 − θ)b
= b.

(4.7)

4.3 balls

Euclidean ball for xc ∈ Rn, r ∈ R

B(xc, r) = {x|∥x − xc∥2 ≤ r} , (4.8)

or

B(xc, r) =
{
x|(x − xc)

T (x − xc) ≤ r2
}
. (4.9)

Let x1, x2, θ ∈ [0, 1]

∥θx1 + (1 − θ)x2 − xc∥2 = ∥θ(x1 − xc) + (1 − θ)(x2 − xc)∥2
≤ ∥θ(x1 − xc)∥2 + ∥(1 − θ)(x2 − xc)∥2
= |θ| ∥x1 − xc∥2 + |1 − θ| ∥x2 − xc∥2

= θ ∥x1 − xc∥2 + (1 − θ) ∥x2 − xc∥2

≤ θr + (1 − θ)r

= r.

(4.10)

4.4 ellipse

E(xc, P) =
{
x|(x − xc)TP−1(x − xc) ≤ 1

}
, (4.11)

where P ∈ S n
++.
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• Euclidean ball is an ellipse with P = Ir2

• Ellipse is image of Euclidean ball B(0, 1) under affine mapping.

Figure 4.5: Circle and ellipse.

Given

F(u) = P1/2u + xc (4.12)

{F(u)|∥u∥2 ≤ r} =
{
P1/2u + xc|uTu ≤ r2

}
=

{
x|x = P1/2u + xc,uTu ≤ r2

}
=

{
x|u = P−1/2(x − xc),uTu ≤ r2

}
=

{
x|(x − xc)TP−1(x − xc) ≤ r2

} (4.13)

4.5 geometry of an ellipse

Decomposition of positive definite matrix P ∈ S n
++ ⊂ S n is:

P = Q diag(λi)QT

QTQ = 1
, (4.14)

where λi ∈ R, and λi > 0.
The ellipse is defined by

(x − xc)TQ diag(1/λi)(x − xc)Q ≤ r2 (4.15)

The term (x−xc)TQ projects x−xc onto the columns of Q. Those columns
are perpendicular since Q is an orthogonal matrix.
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Let

x̃ = QT(x − xc), (4.16)

this shifts the origin around xc and Q rotates into a new coordinate system.
The ellipse is therefore

x̃T



1
λ1

1
λ2
. . .

1
λn


x̃ =

n∑
i=1

x̃2
i

λi
≤ 1. (4.17)

An example is sketched for λ1 > λ2 in fig. 4.6.

Figure 4.6: Ellipse with λ1 > λ2.

• λi tells us length of the semi-major axis.

• Larger λi means x̃2
i can be bigger and still satisfy constraint ≤ 1.

• Volume of ellipse if proportional to
√

det P =
√∏n

i=1 λi.

• When any λi → 0 a dimension is lost and the volume goes to zero.
That removes the invertibility required.

Ellipses will be seen a lot in this course, since we are interested in
“bowl” like geometries (and the ellipse is the image of a Euclidean ball).

4.6 norm ball .

The norm ball

B = {x|∥x∥ ≤ 1} , (4.18)
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is a convex set for all norms. Proof:
Take any x, y ∈ B

∥θx + (1 − θ)y∥ ≤ |θ| ∥x∥ + |1 − θ| ∥y∥
= θ ∥x∥ + (1 − θ) ∥y∥ (θ) + (1 − θ)
= 1.

(4.19)

This is true for any p-norm 1 ≤ p, ∥x∥p = (
∑n

i=1 |xi|
p)1/p.

Figure 4.7: Norm ball.

The shape of a p < 1 norm unit ball is sketched in fig. 4.8 (lines con-
necting points in such a region can exit the region).

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 4.8: Unit ball for l0.6 “p-norm”.

4.7 cones

Recall that C is a cone if ∀x ∈ C, θ ≥ 0, θx ∈ C.
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Impt cone of PSD matrices

S n =
{
X ∈ Rn×n|X = XT

}
S n
+ =

{
X ∈ S n|vTXv ≥ 0, ∀v ∈ Rn

}
S n
++ =

{
X ∈ S n

+|v
TXv > 0, ∀v ∈ Rn

} (4.20)

These have respectively

• λi ∈ R

• λi ∈ R+

• λi ∈ R++

S n
+ is a cone if:

X ∈ S n
+, then θX ∈ S n

+, ∀θ ≥ 0

vT(θX)v = θvTv
≥ 0,

(4.21)

since θ ≥ 0 and because X ∈ S n
+.

Shorthand:

X ∈ S n
+ =⇒ X ⪰ 0X ∈ S n

++ =⇒ X ≻ 0. (4.22)

Further S n
+ is a convex cone.

Let A ∈ S n
+, B ∈ S n

+, θ1, θ2 ≥ 0, θ1 + θ2 = 1, or θ2 = 1 − θ1.
Show that θ1A + θ2B ∈ S n

+ :

vT (θ1A + θ2B) v = θ1vTAv + θ2vTBv ≥ 0, (4.23)

since θ1 ≥ 0, θ2 ≥ 0, vTAv ≥ 0, vTBv ≥ 0.
Inequalities:
Start with a proper cone K ⊆ Rn

• closed, convex

• non-empty interior (“solid”)

• “pointed” (contains no lines)
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Figure 4.9: Cone.

Figure 4.10: K is non-negative “orthant”

The K defines a generalized inequality in Rn defined as “≤K”
Interpreting

x ≤K y↔ y − x ∈ Kx <K y ↔ y − x ∈ int K (4.24)

Why pointed? Want if x ≤K y and y ≤K x with this K is a half space.
Example:1: K = Rn

+, x ∈ Rn, y ∈ Rn

x ≤K y =⇒ y − x ∈ K (4.25)

say: [
y1 − x1y2 − x2

]
∈ R2
+ (4.26)

Also:

K = R1
+ (4.27)

(pointed, since it contains no rays)

x ≤K y, (4.28)
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with respect to K = Rn
+ means that xi ≤ yi for all i ∈ [1, n].

Example:2: For K = PS D ⊆ S n,

x ≤K y, (4.29)

means that

y − x ∈ K = S n
+. (4.30)

• Difference y − x is always in S

• check if in K by checking if all eigenvalues ≥ 0.

• S n
++ is the interior of S n

+.

Interpretation:

x ≤K y↔ y − x ∈ K

x <K y↔ y − x ∈ int K.
(4.31)

We’ll use these with vectors and matrices so often the K subscript will
often be dropped, writing instead (for vectors)

x ≤ y↔ y − x ∈ Rn
+

x < y↔ y − x ∈ int Rn
++

(4.32)

and for matrices

x ≤ y↔ y − x ∈ S n
+

x < y↔ y − x ∈ int S n
++.

(4.33)

4.8 intersection

Take the intersection of (perhaps infinitely many) sets S α:
If S α is (affine,convex, conic) for all α ∈ A then

∩αS α (4.34)

is
(affine,convex, conic).
To prove in homework:

P =
{
x|aT

i x ≤ bi, cT
j x = d j, ∀i · · · j

}
(4.35)

This is convex since the intersection of a bunch of hyperplane and half
space constraints.
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1. If S ⊆ Rn is convex then

F(S ) = {F(x)|x ∈ S } (4.36)

is convex.

2. If S ⊆ Rm then

F−1(S ) = {x|F(x) ∈ S } (4.37)

is convex. Such a mapping is sketched in fig. 4.11.

Figure 4.11: Mapping functions of sets.

4.9 problems .

Exercise 4.1 Convex, affine, and conic hulls

a. Consider the set

S =


11

 ,
12


 ⊆ R2. (4.38)

Sketch conv(S), affine(S) and conic(S), respectively the convex,
affine, and conic hulls of the set S. Each is the union of all combi-
nations of the respective type (convex, affine or conic).

b. Repeat part a for the set

S =


11

 ,
12

 ,
 0.5

0.25


 . (4.39)



4.9 problems . 55

c. Consider a set S. What are the respective inclusion relations be-
tween the convex hull, the affine hull, and the conic hull of S. I.e.,
which of these three sets are always subsets of the other, regardless
of the original S?

Answer for Exercise 4.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOC-
UMENT.PLEASE FEEL FREE TO EMAIL ME FOR THE FULL VER-
SION IF YOU AREN’T TAKING ECE1505.

. .
. .

.
. . .

. .
. .

. .
.

. .
. END-REDACTION

Exercise 4.2 Distance between two parallel hyperplanes ([1] pr. 2.5)

What is the distance between two parallel hyperplanes
{
x ∈ Rn|aTx = b1

}
and

{
x ∈ Rn|aTx = b2

}
.

Answer for Exercise 4.2

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOC-
UMENT.PLEASE FEEL FREE TO EMAIL ME FOR THE FULL VER-
SION IF YOU AREN’T TAKING ECE1505.

. .
. .

.
. . .

. .
. .

. .
.

. .
. END-REDACTION





5S E T S , E P I G R A P H S , Q UA S I - C O N V E X I T Y, A N D
S U B L E V E L S E T S .

5.1 operations that preserve convexity

If S α is convex ∀α ∈ A, then

∪α∈AS α, (5.1)

is convex.
Example:

F(x) = Ax + b (5.2)

x ∈ Rn

A ∈ Rm×n

F : Rn → Rm

b ∈ Rm

(5.3)

(i) If S ∈ Rn is convex, then

F(S ) = {F(x)|x ∈ S } (5.4)

is convex if F is affine.

(ii) If S ∈ Rm is convex, then

F−1(S ) = {x|F(x) ∈ S } (5.5)

is convex.

Example:

{y|y = Ax + b, ∥x∥ ≤ 1} (5.6)

is convex. Here Ax + b is an affine function (F(x). This is the image of a
(convex) unit ball, through an affine map.
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Earlier saw when defining ellipses

y = P1/2x + xc (5.7)

Example :

{x|∥Ax + b∥ ≤ 1} , (5.8)

is convex. This can be seen by writing

{x|∥Ax + b∥ ≤ 1} = {x|∥F(x)∥ ≤ 1} = {x|F(x) ∈ B} , (5.9)

where B = {y|∥y∥ ≤ 1}. This is the pre-image (under F()) of a unit norm
ball.

Example:{
x ∈ Rn|x1A1 + x2A2 + · · · xnAn ≤ B

}
(5.10)

where Ai ∈ S m and B ∈ S m, and the inequality is a matrix inequality. This
is a convex set. The constraint is a “linear matrix inequality” (LMI).

This has to do with an affine map:

F(x) = B− 1x1A1 − x2A2 − · · · xnAn ≥ 0 (5.11)

(positive semi-definite inequality). This is a mapping

F : Rn → S m, (5.12)

since all Ai and B are in S m.
This F(x) = B − A(x) is a constant and a factor linear in x, so is affine.

Can be written

{x|B− A(x) ≥ 0} =
{
x|B− A(x) ∈ S m

+

}
(5.13)

This is a pre-image of a cone of PSD matrices, which is convex. Therefore,
this is a convex set.

5.2 separating hyperplanes

Theorem 5.1: Separating hyperplanes

If S ,T ⊆ Rn are convex and disjoint i.e. S ∪ T = 0, then there exists
on a ∈ Rn a , 0 and a b ∈ Rn such that

aTx ≥ b∀x ∈ S
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and

aTx < b∀x ∈ T.

An example of a hyperplanes that separates two sets and two sets that
are not separable is sketched in fig. 5.1.

(a) (b)

Figure 5.1: separable and non-separable sets

Proof in the book.

Theorem 5.2: Supporting hyperplane

If S is convex then ∀x0 ∈ ∂S = cl(S ) int(S ), where ∂S is the bound-
ary of S , then ∃ an a , 0 ∈ Rn such that aTx ≤ aTx0 ∀x ∈ S .

Here denotes “without”.
An example is sketched in fig. 5.2, for which

Figure 5.2: Supporting hyperplane.
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• The vector a perpendicular to tangent plane.

• inner product aT(x − x0) ≤ 0.

A set with a supporting hyperplane is sketched in fig. 5.3, whereas
fig. 5.4 shows that there is not necessarily a unique supporting hyperplane
at any given point, even if S is convex.

Figure 5.3: Set with supporting hyperplane.

Figure 5.4: No unique supporting hyperplane possible.

5.3 basic definitions of convex functions

Theorem 5.3: Convex functions

If F : Rn → R is defined on a convex domain (i.e. dom F ⊆ Rn is a
convex set), then F is convex if ∀x, y ∈ dom F, ∀θ ∈ [0, 1] ∈ R

F(θx + (1 − θ)y ≤ θF(x) + (1 − θ)F(y) (5.14)
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Figure 5.5: Example of convex function.

An example is sketched in fig. 5.5.
Remarks

• Require dom F to be a convex set. This is required so that the func-
tion at the point θu + (1 − θ)v can be evaluated. i.e. so that F(θu +
(1− θ)v) is well defined. Example: dom F = (−∞, 0]∪ [1,∞) is not
okay, because a linear combination in (0, 1) would be undesirable.

• Parameter θ is “how much up” the line segment connecting (u, F(u)
and (v, F(v). This line segment never below the bottom of the bowl.
The function is concave, if −F is convex. i.e. If the convex function
is flipped upside down. That is

F(θx+ (1− θ)y) ≥ θF(x)+ (1− θ)F(y)∀x, y ∈ dom F, θ ∈ [0, 1].

(5.15)

• a “strictly” convex function means ∀θ ∈ [0, 1]

F(θx + (1 − θ)y) < θF(x) + (1 − theta)F(y). (5.16)

• Strictly concave function F means −F is strictly convex.
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Figure 5.6: Not convex or concave.

Figure 5.7: Not strictly convex

• Examples:

Definition 5.1: Epigraph of a function

The epigraph epi F of a function F : Rn → R is

epi F =
{
(x, t) ∈ Rn+1|x ∈ dom F, t ≥ F(x)

}
,

where x ∈ Rn, t ∈ R.

Theorem 5.4: Convexity and epigraph.

If F is convex implies epi F is a convex set.

Proof:
For convex function, a line segment connecting any 2 points on func-

tion is above the function. i.e. it is epi F.
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Figure 5.8: Epigraph.

Many authors will go the other way around, showing definition 5.1
from theorem 5.4. That is:

Pick any 2 points in epi F, (x, µ) ∈ epi F and (y, ν) ∈ epi F. Consider
convex combination

θ(x, µ) + (1 − θ)(y, ν) = (θx(1 − θ)y, θµ(1 − θ)ν) ∈ epi F, (5.17)

since epi F is a convex set.
By definition of epi F

F(θx(1 − θ)y) ≤ θµ(1 − θ)ν. (5.18)

Picking µ = F(x), ν = F(y) gives

F(θx(1 − θ)y) ≤ θF(x)(1 − θ)F(y). (5.19)

5.4 extended value function

Sometimes convenient to work with “extended value function”

F̃(x) =

 F(x) If x ∈ dom F

∞ otherwise.
(5.20)

Examples:

• Linear (affine) functions (fig. 5.9) are both convex and concave.
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Figure 5.9: Linear functions.

Figure 5.10: Convex (quadratic.)

Figure 5.11: Concave (logarithm.)
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• x2 is convex, sketched in fig. 5.10.

• log x, dom F = R+ concave, sketched in fig. 5.11.

• ∥x∥ is convex. ∥θx + (1 − θ)y∥ ≤ θ ∥x∥ + (1 − θ) ∥y∥.

• 1/x is convex on {x|x > 0} = dom F, and concave on {x|x < 0} =
dom F.

F̃(x) =

 1
x If x > 0

∞ else.
(5.21)

Definition 5.2: Sublevel

The sublevel set of a function F : Rn → R is

C(α) = {x ∈ dom F|F(x) ≤ α}

Figure 5.12: Convex sublevel.

Theorem 5.5

If F is convex then C(α) is a convex set ∀α.

This is not an if and only if condition, as illustrated in fig. 5.14.
There C(α) is convex, but the function itself is not.
Proof:
Since F is convex, then epi F is a convex set.
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Figure 5.13: Non-convex sublevel.

Figure 5.14: Convex sublevel does not imply convexity.

• Let

A = {(x, t)|t = α} (5.22)

is a convex set.

• A ∩ epi F

is a convex set since it is the intersection of convex sets.

• Project A ∩ epi F onto Rn (i.e. domain of F ). The projection is an
affine mapping. Image of a convex set through affine mapping is a
convex set.

Definition 5.3: Quasi-convex.

A function is quasi-convex if all of its sublevel sets are convex.
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5.5 composing convex functions

Properties of convex functions:

• If F is convex, then αF is convex ∀α > 0.

• If F1, F2 are convex, then the sum F1 + F2 is convex.

• If F is convex, then g(x) = F(Ax+b) is convex ∀x ∈ {x|Ax + b ∈ dom F}.

Note: for the last

g : Rm → R

F : Rn → R

x ∈ Rm

A ∈ Rn×m

b ∈ Rn

(5.23)

Proof (of last):

g(θx + (1 − θ)y) = F(θ(Ax + b) + (1 − θ)(Ay + b))

≤ θF(Ax + b) + (1 − θ)F(Ay + b)

= θg(x) + (1 − θ)g(y).

(5.24)

5.6 problems .

Exercise 5.1 Ellipses, eigenvalues, eigenvectors, and volume

Make neat and clearly-labeled sketches of the ellipsoid E =
{
x|(x − xc)TP−1(x − xc) = 1

}
for the following sets of parameters:

a. Center xc =

00
 and P =

 1.5 −0.5

−0.5 1.5

.
b. Center xc =

 1

−2

 and P =

3 1

1 3

.
c. Center xc =

−2

1

 and P =

 9 −2

−2 6

.
For each part (a)-(c) also compute each pair of eigenvalues and
corresponding eigenvectors.
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d. Recall that the most geometrically meaningful property of the de-
terminant of a square real matrix A is that its magnitude |det A| is
equal to the volume of the parallelepiped P formed by applying
A to the unit cube C = {x|0 ≤ x ≤ 1}. (Recall that since x ∈ Rn

we interpret the inequalities coordinate-wise, i.e., 0 ≤ xi ≤ 1 for
all i = 1, · · · , n.) In other words, if P = {Ax|x ∈ C} then |det(A)| is
equal to the volume of P. Furthermore, recall that the determinant
of a matrix is zero if any of its eigenvalues are zero. Explain how
to interpret this latter fact in terms of the interpretation of |det(A)|
as the volume of P.

Answer for Exercise 5.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOC-
UMENT.PLEASE FEEL FREE TO EMAIL ME FOR THE FULL VER-
SION IF YOU AREN’T TAKING ECE1505.

. .
. .

.
. . .

. .
. .

. .
.

. .
. END-REDACTION

Exercise 5.2 Proving convexity-preserving operations

a. Prove that the set S resulting from taking the intersection of a set
of convex sets Sα is itself a convex set. I.e., S = ∩αSα is a convex
set when all the Sα are convex sets.

b. Consider any affine function f : Rn → Rm and convex set S ⊆
Rn. Prove that the image of S under f , i.e., f (S) = { f (x)|x ∈ S},
is a convex set.

c. Consider any affine function f : Rn → Rm and convex set S ⊆
Rm. Prove that the inverse (or pre-) image of S under f , i.e.,
f −1(S) = {x| f (x) ∈ S}, is a convex set.

Answer for Exercise 5.2
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PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOC-
UMENT.PLEASE FEEL FREE TO EMAIL ME FOR THE FULL VER-
SION IF YOU AREN’T TAKING ECE1505.

. .
. .

.
. . .

. .
. .

. .
.

. .
. END-REDACTION

Exercise 5.3 Expanded and restricted sets ([1] pr. 2.14(a))

Let S ⊆ Rn, and let ∥·∥ be a norm on Rn.
For a ≥ 0 we define S a as {x|dist(x, S ) ≤ a}, where dist(x, S ) = infy∈S ∥x − y∥.

We refer to S a as S expanded or extended by a. Show that if S is convex,
then S a is convex.
Answer for Exercise 5.3

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOC-
UMENT.PLEASE FEEL FREE TO EMAIL ME FOR THE FULL VER-
SION IF YOU AREN’T TAKING ECE1505.

. .
. .

.
. . .

. .
. .

. .
.

. .
. END-REDACTION
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Quasi-convex F1 and F2 convex implies max(F1, F2) convex.
Note that min(F1, F2) is NOT convex.
If F : Rn → R is convex, then F(x0 + tv) is convex in t ∀t ∈ R, x0 ∈

Rn, v ∈ Rn, provided x0 + tv ∈ dom F.
Idea: Restrict to a line (line segment) in dom F. Take a cross section or

slice through F alone the line. If the result is a 1D convex function for all
slices, then F is convex.

This is nice since it allows for checking for convexity, and is also nice
numerically. Attempting to test a given data set for non-convexity with
some random lines can help disprove convexity. However, to show that
F is convex it is required to test all possible slices (which isn’t possible
numerically, but is in some circumstances possible analytically).

Differentiable (convex) functions

Definition 6.1: First order condition

If

F : Rn → R

is differentiable, then F is convex iff dom F is a convex set and
∀x, x0 ∈ dom F

F(x) ≥ F(x0) + (∇F(x0))T (x − x0).

This is the first order Taylor expansion. If n = 1, this is F(x) ≥ F(x0) +
F′(x0)(x − x0).

The first order condition says a convex function always lies above its
first order approximation, as sketched in fig. 6.1.

When differentiable, the supporting plane is the tangent plane.
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Figure 6.1: First order approximation lies below convex function

Definition 6.2: Second order condition
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If F : Rn → R is twice differentiable, then F is convex iff dom F is
a convex set and ∇2F(x) ≥ 0∀x ∈ dom F.

The Hessian is always symmetric, but is not necessarily positive. Re-
call that the Hessian is the matrix of the second order partials (∇F)i j =

∂2F/(∂xi∂x j).
The scalar case is F′′(x) ≥ 0∀x ∈ dom F.
An implication is that if F is convex, then F(x) ≥ F(x0) + F′(x0)(x −

x0)∀x, x0 ∈ dom F
Since F is convex, dom F is convex.
Consider any 2 points x, y ∈ dom F, and θ ∈ [0, 1]. Define

z = (1 − θ)x + θy ∈ dom F, (6.1)

then since dom F is convex

F(z) = F((1 − θ)x + θy)

≤ (1 − θ)F(x) + θF(y)
(6.2)

Reordering

θF(x) ≥ θF(x) + F(z) − F(x), (6.3)

or

F(y) ≥ F(x) +
F(x + θ(y − x)) − F(x)

θ
, (6.4)

which is, in the limit,

F(y) ≥ F(x) + F′(x)(y − x) □ (6.5)

To prove the other direction, showing that

F(x) ≥ F(x0) + F′(x0)(x − x0), (6.6)

implies that F is convex. Take any x, y ∈ dom F and any θ ∈ [0, 1]. Define

z = θx + (1 − θ)y, (6.7)

which is in dom F by assumption. We want to show that

F(z) ≤ θF(x) + (1 − θ)F(y). (6.8)

By assumption
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(i) F(x) ≥ F(z) + F′(z)(x − z)

(ii) F(y) ≥ F(z) + F′(z)(y − z)

Compute

θF(x) + (1 − θ)F(y) ≥ θ (F(z) + F′(z)(x − z)) + (1 − θ) (F(z) + F′(z)(y − z))

= F(z) + F′(z) (θ(x − z) + (1 − θ)(y − z))

= F(z) + F′(z) (θx + (1 − θ)y − θz − (1 − θ)z)

= F(z) + F′(z) (θx + (1 − θ)y − z)

= F(z) + F′(z) (z − z)

= F(z).
(6.9)

Proof of the 2nd order case for n = 1 Want to prove that if

F : R→ R (6.10)

is a convex function, then F′′(x) ≥ 0∀x ∈ dom F.
By the first order conditions ∀x , y ∈ dom F

F(y) ≥ F(x) + F′(x)(y − x)F(x) ≥ F(y) + F′(y)(x − y) (6.11)

Can combine and get

F′(x)(y − x) ≤ F(y) − F(x) ≤ F′(y)(y − x) (6.12)

Subtract the two derivative terms for

(F′(y) − F′(x))(y − x)
(y − x)2 ≥ 0, (6.13)

or

F′(y) − F′(x)
y − x

≥ 0. (6.14)

In the limit as y→ x, this is

F′′(x) ≥ 0∀x ∈ dom F. (6.15)

Now prove the reverse condition:
If F′′(x) ≥ 0∀x ∈ dom F ⊆ R, implies that F : R→ R is convex.
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Note that if F′′(x) ≥ 0, then F′(x) is non-decreasing in x.
i.e. If x < y, where x, y ∈ dom F, then

F′(x) ≤ F′(y). (6.16)

Consider any x, y ∈ dom F such that x < y, where

F(y) − F(x) =
∫ y

x
F′(t)dt ≥ F′(x)

∫ y

x
1dt = F′(x)(y − x). (6.17)

This tells us that

F(y) ≥ F(x) + F′(x)(y − x), (6.18)

which is the first order condition. Similarly consider any x, y ∈ dom F
such that x < y, where

F(y) − F(x) =
∫ y

x
F′(t)dt ≤ F′(y)

∫ y

x
1dt = F′(y)(y − x). (6.19)

This tells us that

F(x) ≥ F(y) + F′(y)(x − y). (6.20)

Vector proof: F is convex iff F(x + tv) is convex ∀x, v ∈ Rn, t ∈ R,
keeping x + tv ∈ dom F.

Let

h(t; x, v) = F(x + tv) (6.21)

then h(t) satisfies scalar first and second order conditions for all x, v.

h(t) = F(x + tv) = F(g(t)), (6.22)

where g(t) = x + tv, where

F : Rn → R

g : R→ Rn.
(6.23)

This is expressing h(t) as a composition of two functions. By the first
order condition for scalar functions we know that

h(t) ≥ h(0) + h′(0)t. (6.24)
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Note that

h(0) = F(x + tv)|t=0 = F(x). (6.25)

Let’s figure out what h′(0) is. Recall hat for any F̃ : Rn → Rm

DF̃ ∈ Rm×n, (6.26)

and

DF̃(x)i j =
∂F̃i(x)
∂x j

(6.27)

This is one function per row, for i ∈ [1,m], j ∈ [1, n]. This gives

d
dt

F(x + vt) =
d
dt

F(g(t))

=
d
dt

h(t)

= Dh(t)

= DF(g(t)) · Dg(t).

(6.28)

The first matrix is in R1×n whereas the second is in Rn×1, since F : Rn →

R and g : R→ Rn. This gives

d
dt

F(x + vt) = DF(x̃)|x̃=g(t) · Dg(t). (6.29)

That first matrix is

DF(x̃)|x̃=g(t) =

([
∂F(x̃)
∂x̃1

∂F(x̃)
∂x̃2

· · ·
∂F(x̃)
∂x̃n

])∣∣∣∣∣x̃=g(t)=x+tv

< F16 > = (∇F(x̃))T
∣∣∣∣x̃=g(t)

= (∇F(g(t)))T
.

(6.30)

The second Jacobian is

Dg(t) = D


g1(t)

g2(t)
...

gn(t)


= D


x1 + tv1

x2 + tv2
...

xn + tvn


=


v1

v1
...

vn


= v. (6.31)

so

h′(t) = Dh(t) = (∇F(g(t)))T v, (6.32)
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and

h′(0) = (∇F(g(0)))T v

= (∇F(x))T v.
(6.33)

Finally

F(x + tv) ≥ h(0) + h′(0)t

= F(x) + (∇F(x))T (tv)

= F(x) + ⟨∇F(x), tv⟩.

(6.34)

Which is true for all x, x + tv ∈ dom F. Note that the quantity tv is a shift.

Epigraph Recall that if (x, t) ∈ epi F then t ≥ F(x).

t ≥ F(x) ≥ F(x0) + (∇F(x0))T (x − x0), (6.35)

or

0 ≥ −(t − F(x0)) + (∇F(x0))T (x − x0), (6.36)

In block matrix form

0 ≥
[
(∇F(x0))T

−1
]  x − x0

t − F(x0)

 (6.37)

With w =
[
(∇F(x0))T

−1
]
, the geometry of the epigraph relation to the

half plane is sketched in fig. 6.2.



78 first and second order conditions .

Figure 6.2: Half planes and epigraph.
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Example:

F(x) = x2

F′′(x) = 2 > 0
(7.1)

strictly convex.

Example:

F(x) = x3

F′′(x) = 6x.
(7.2)

Not always non-negative, so not convex. However x3 is convex on dom F =
R+.

Example:

F(x) = xα

F′(x) = αxα−1

F′′(x) = α(α − 1)xα−2.

(7.3)

This is convex on R+, if α ≥ 1, or α ≤ 0.

Example:

F(x) = log x

F′(x) =
1
x

F′′(x) = −
1
x2 ≤ 0

(7.4)

This is concave.
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Figure 7.1: Powers of x.

Example:

F(x) = x log x

F′(x) = log x + x
1
x
= 1 + log x

F′′(x) =
1
x

(7.5)

This is strictly convex on R++, where F′′(x) ≥ 0.

Example:

F(x) = eαx

F′(x) = αeαx

F′′(x) = α2eαx ≥ 0

(7.6)

Such functions are plotted in fig. 7.2, and are convex function for all α.

Example: For symmetric P ∈ S n

F(x) = xTPx + 2qTx + r

∇F = (P + PT)x + 2q = 2Px + 2q
∇

2F = 2P.

(7.7)

This is convex(concave) if P ≥ 0 (P ≤ 0).
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α < 0

α > 0

x

ⅇ
α x

Figure 7.2: Exponential.

Example: A quadratic function

F(x, y) = x2 + y2 + 3xy, (7.8)

that is neither convex nor concave is plotted in fig. 7.3

(a)
-4 -2 0 2 4

-4

-2

0

2

4

(b)

Figure 7.3: Function with saddle point (3d and contours).

This function can be put in matrix form

F(x, y) = x2 + y2 + 3xy =
[
x y

]  1 1.5

1.5 1


x

y

 , (7.9)
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and has the Hessian

∇
2F =

∂xxF ∂xyF

∂yxF ∂yyF


=

2 3

3 2


= 2P.

(7.10)

From the plot we know that this is not PSD, but this can be confirmed by
checking the eigenvalues

0 = det(P − λI)

= (1 − λ)2 − 1.52,
(7.11)

which has solutions

λ = 1 ±
3
2
=

3
2
,−

1
2
. (7.12)

This is not PSD nor negative semi-definite, because it has one positive
and one negative eigenvalues. This is neither convex nor concave.

Along y = −x,

F(x, y) = F(x,−x)

= 2x2 − 3x2

= −x2,

(7.13)

so it is concave along this line. Along y = x

F(x, y) = F(x, x)

= 2x2 + 3x2

= 5x2,

(7.14)

so it is convex along this line.

Example:

F(x) =
√

x1x2, (7.15)

on dom F = {x1 ≥ 0, x2 ≥ 0}
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For the Hessian
∂F
∂x1
=

1
2

x−1/2
1 x1/2

2

∂F
∂x2
=

1
2

x−1/2
2 x1/2

1

(7.16)

The Hessian components are

∂

∂x1

∂F
∂x1
= −

1
4

x−3/2
1 x1/2

2

∂

∂x1

∂F
∂x2
=

1
4

x−1/2
2 x−1/2

1

∂

∂x2

∂F
∂x1
=

1
4

x−1/2
1 x−1/2

2

∂

∂x2

∂F
∂x2
= −

1
4

x−3/2
2 x1/2

1

(7.17)

or

∇
2F = −

√
x1x2

4


1
x2

1
− 1

x1 x2

− 1
x1 x2

1
x2

2

 . (7.18)

Checking this for PSD against v = (v1, v2), we have

[
v1 v2

] 
1
x2

1
− 1

x1 x2

− 1
x1 x2

1
x2

2


v1

v2

 = [
v1 v2

] 
1
x2

1
v1 −

1
x1 x2

v2

− 1
x1 x2

v1 +
1
x2

2
v2


=

 1
x2

1

v1 −
1

x1x2
v2

 v1 +

− 1
x1x2

v1 +
1
x2

2

v2

 v2

=
1
x2

1

v2
1 +

1
x2

2

v2
2 − 2

1
x1x2

v1v2

=

(
v1

x1
−

v2

x2

)2

≥ 0,
(7.19)

so ∇2F ≤ 0. This is a negative semi-definite function (concave). Observe
that this check required checking PSD for all values of x.

This is an example of a more general result

F(x) =

 n∏
i=1

xi

1/n

, (7.20)
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which is concave (prove on homework).

Summary. If F is differentiable in Rn, then check the curvature of the
function along all lines. i.e. At all locations and in all directions.

If the Hessian is PSD at all x ∈ dom F, that is

∇
2F ≥ 0∀x ∈ dom F, (7.21)

then the function is convex.

more examples of convex, but not necessarily differentiable functions

Example: Over dom F = Rn

F(x) =
n

max
i=1

xi (7.22)

i.e.

F((1, 2) = 2

F((3,−1) = 3
(7.23)

Example:

F(x) =
n

max
i=1

Fi(x), (7.24)

where

Fi(x) = ...? (7.25)

max of a set of convex functions is a convex function.

Example:

F(x) = x[1] + x[2] + x[3] (7.26)

where
x[k] is the k-th largest number in the list
Write

F(x) = max xi + x j + xk (7.27)

(i, j, k) ∈
(
n
3

)
(7.28)
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Example: For a ∈ Rn and bi ∈ R

F(x) =
n∑

i=1

log(bi − aTx)−1

= −

n∑
i=1

log(bi − aTx).

(7.29)

This bi − aTx is an affine function of x so it doesn’t affect convexity.
Since log is concave, − log is convex. Convex functions of affine func-

tion of x is convex function of x.

Example:

F(x) = sup
y∈C
∥x − y∥ (7.30)

Figure 7.4: Max length function

Here C ⊆ Rn is not necessarily convex. We are using sup here because
the set C may be open. This function is the length of the line from x to the
point in C that is furthest from x.

• x − y is linear in x

• gy(x) = ∥x − y∥ is convex in x since norms are convex functions.

• F(x) = supy∈C ∥x − y∥. Each y index is a convex function. Taking
max of those.
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Example:

F(x) = inf
y∈C
∥x − y∥ . (7.31)

Min and max of two convex functions are plotted in fig. 7.5.

min

max

Figure 7.5: Min and max

The max is observed to be convex, whereas the min is not necessarily
so.

F(z) = F(θx + (1 − θ)y) ≥ θF(x) + (1 − θ)F(y). (7.32)

This is not necessarily convex for all sets C ⊆ Rn, because the inf of
a bunch of convex function is not necessarily convex. However, if C is
convex, then F(x) is convex.

Consequences of convexity for differentiable functions

• Think about unconstrained functions dom F = Rn.

• By first order condition F is convex iff the domain is convex and

F(x) ≥ (∇F(x))T (y − x)∀x, y ∈ dom F. (7.33)

If F is convex and one can find an x∗ ∈ dom F such that

∇F(x∗) = 0, (7.34)
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then

F(y) ≥ F(x∗)∀y ∈ dom F. (7.35)

If you can find the point where the gradient is zero (which can’t always
be found), then x∗ is a global minimum of F.

Conversely, if x∗ is a global minimizer of F, then ∇F(x∗) = 0 must
hold. If that were not the case, then you would be able to find a direction
to move downhill, contracting the optimality of x∗.

Figure 7.6: Global and local minimums

Local vs Global optimum

Definition 7.1: Local optimum.

x∗ is a local optimum of F if ∃ϵ > 0 such that ∀x, ∥x − x∗∥ < ϵ, we
have

F(x∗) ≤ F(x)

Theorem 7.1

Suppose F is twice continuously differentiable (not necessarily con-
vex)
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Figure 7.7: min length function.

• If x∗ is a local optimum then

∇F(x∗) = 0

∇
2F(x∗) ≥ 0

• If

∇F(x∗) = 0

∇
2F(x∗) ≥ 0

,

then x∗ is a local optimum.

Proof:

• Let x∗ be a local optimum. Pick any v ∈ Rn.

lim
t→0

F(x∗ + tv) − F(x∗)
t

= (∇F(x∗))T v ≥ 0. (7.36)

Here the fraction is ≥ 0 since x∗ is a local optimum.
Since the choice of v is arbitrary, the only case that you can ensure that
≥ 0,∀v is

∇F = 0, (7.37)

( or else could pick v = −∇F(x∗).
This means that ∇F(x∗) = 0 if x∗ is a local optimum.
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Consider the 2nd order derivative

lim
t→0

F(x∗ + tv) − F(x∗)
t2

= lim
t→0

1
t2

(
F(x∗) + t (∇F(x∗))T v +

1
2

t2vT
∇

2F(x∗)v +O(t3) − F(x∗)
)

=
1
2

vT
∇

2F(x∗)v

≥ 0.
(7.38)

Here the ≥ condition also comes from the fraction, based on the optimial-
ity of x∗. This is true for all choice of v, thus ∇2F(x∗).

Now we want to prove that if

∇F(x∗) = 0

∇
2F(x∗) ≥ 0

,

then x∗ is a local optimum.
Proof:
Again, using Taylor approximation

F(x∗ + v) = F(x∗) + (∇F(x∗))T v +
1
2

vT
∇

2F(x∗)v + o(∥v∥2) (7.39)

The linear term is zero by assumption, whereas the Hessian term is given
as > 0. Any direction that you move in, if your move is small enough, this
is going uphill at a local optimum.

7.1 summarize:

For twice continuously differentiable functions, at a local optimum x∗,
then

∇F(x∗) = 0

∇
2F(x∗) ≥ 0

(7.40)

If, in addition, F is convex, then ∇F(x∗) = 0 implies that x∗ is a global
optimum. i.e. for (unconstrained) convex functions, local and global opti-
mums are equivalent.
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Figure 7.8: Exponential has no global optimum.

• It is possible that a convex function does not have a global optimum.
Examples are F(x) = ex (fig. 7.8) , which has an inf, but no lowest
point.

• Our discussion has been for unconstrained functions. For constrained
problems (next topic) is not necessarily true that ∇F(x) = 0 implies
that x is a global optimum, even for F convex.

As an example of a constrained problem consider

min2x2 + y2

x ≥ 3

y ≥ 5.

(7.41)

The level sets of this objective function are plotted in fig. 7.9. The
optimal point is at x∗ = (3, 5), where ∇F , 0.
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Figure 7.9: Constrained problem with optimum not at the zero gradient point.
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8.1 projection

Given x ∈ Rn, y ∈ Rp, if h(x, y) is convex in x, y, then

F(x0) = inf
y

h(x0, y) (8.1)

is convex in x, as sketched in fig. 8.1.

Figure 8.1: Epigraph of h is a filled bowl.

The intuition here is that shining light on the (filled) “bowl”. That is,
the image of epi h on the y = 0 screen which we will show is a convex
set.

Proof:
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Since h is convex in

xy
 ∈ dom h, then

epi h =

(x, y, t)|t ≥ h(x, y),

xy
 ∈ dom h

 , (8.2)

is a convex set.
We also have to show that the domain of F is a convex set. To show

this note that

dom F =

x|∃ys.t.

xy
 ∈ dom h


=

[In×n 0n×p

] xy
 |
xy

 ∈ dom h

 .
(8.3)

This is an affine map of a convex set. Therefore dom F is a convex set.

epi F =


xy

 |t ≥ inf h(x, y), x ∈ dom F, y :

xy
 ∈ dom h


=


I 0 0

0 0 1



x
y
t

 |t ≥ h(x, y),

xy
 ∈ dom h

 .
(8.4)

Example: The function

F(x) = inf
y∈C
∥x − y∥ , (8.5)

over x ∈ Rn, y ∈ C, ,is convex if C is a convex set. Reason:

• x − y is linear in (x, y).

• ∥x − y∥ is a convex function if the domain is a convex set

• The domain is Rn ×C. This will be a convex set if C is.

• h(x, y) = ∥x − y∥ is a convex function if dom h is a convex set. By
setting dom h = Rn ×C, if C is convex, dom h is a convex set.

• F()
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8.2 composition of functions

Consider

F(x) = h(g(x))

dom F = {x ∈ dom g|g(x) ∈ dom h}

F : Rn → R

g : Rn → R

h : R→ R.

(8.6)

Cases:

(a) g is convex, h is convex and non-decreasing.

(b) g is convex, h is convex and non-increasing.

Show for 1D case ( n = 1). Get to n > 1 by applying to all lines.

(a)

F′(x) = h′(g(x))g′(x)

F′′(x) = h′′(g(x))g′(x)g′(x) + h′(g(x))g′′(x)

= h′′(g(x))(g′(x))2 + h′(g(x))g′′(x)

= (≥ 0) · (≥ 0)2
+ (≥ 0) · (≥ 0) ,

(8.7)

since h is respectively convex, and non-decreasing.

(b)

F′(x) = (≥ 0) · (≥ 0)2
+ (≤ 0) · (≤ 0) , (8.8)

since h is respectively convex, and non-increasing, and g is concave.

8.3 extending to multiple dimensions

F(x) = h(g(x)) = h(g1(x), g2(x), · · · gk(x))

g : Rn → R

h : Rk → R.

(8.9)

is convex if gi is convex for each i ∈ [1, k] and h is convex and non-
decreasing in each argument.
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Proof:
again assume n = 1, without loss of generality,

g : R→ Rk

h : Rk → R
(8.10)

F′′(x) =
[
g1(x) g2(x) · · · gk(x)

]
∇

2h(g(x))


g′1(x)

g′2(x)
...

g′k(x)


+ (∇h(g(x)))T


g′′1 (x)

g′′2 (x)
...

g′′k (x)


(8.11)

The Hessian is PSD.

Example:

F(x) = exp(g(x)) = h(g(x)), (8.12)

where g is convex is convex, and h(y) = ey. This implies that F is a convex
function.

Example:

F(x) =
1

g(x)
, (8.13)

is convex if g(x) is concave and positive. The most simple such example
of such a function is h(x) = 1/x, dom h = R++, which is plotted in fig. 8.2.

Figure 8.2: Inverse function is convex over positive domain.
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Example:

F(x) = −
n∑

i=1

log(−Fi(x)) (8.14)

is convex on {x|Fi(x) < 0∀i} if all Fi are convex.

• Due to dom F, −Fi(x) > 0∀x ∈ dom F

• log(x) concave on R++ so− log convex also non-increasing (fig. 8.3).

Figure 8.3: Negative logarithm convex over positive domain.

F(x) =
∑

hi(x) (8.15)

but

hi(x) = − log(−Fi(x)), (8.16)

which is a convex and non-increasing function (− log), of a convex func-
tion −Fi(x). Each hi is convex, so this is a sum of convex functions, and
is therefore convex.

Example: Over dom F = S n
++

F(X) = log det X−1 (8.17)

To show that this is convex, check all lines in domain. A line in S n
++ is a

1D family of matrices

F̃(t) = log det((X0 + tH)−1), (8.18)

where X0 ∈ S n
++, t ∈ R,H ∈ S n.

F9
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For t small enough,

X0 + tH ∈ S n
++ (8.19)

F̃(t) = log det((X0 + tH)−1)

= log det
(
X−1/2

0

(
I + tX−1/2

0 HX−1/2
0

)−1
X−1/2

0

)
= log det

(
X−1

0

(
I + tX−1/2

0 HX−1/2
0

)−1
)

= log det X−1
0 + log det

(
I + tX−1/2

0 HX−1/2
0

)−1

= log det X−1
0 − log det

(
I + tX−1/2

0 HX−1/2
0

)
= log det X−1

0 − log det (I + tM) .

(8.20)

If λi are eigenvalues of M, then 1 + tλi are eigenvalues of I + tM. i.e.:

(I + tM)v = Iv + tλiv
= (1 + tλi)v.

(8.21)

This gives

F̃(t) = log det X−1
0 − log

n∏
i=1

(1+ tλi) = log det X−1
0 −

n∑
i=1

log(1+ tλi)

(8.22)

• 1 + tλi is linear in t.

• − log is convex in its argument.

• sum of convex function is convex.

Example:

F(X) = λmax(X), (8.23)

is convex on dom F ∈ S n

(a)

λmax(X) = sup
∥v∥2≤1

vTXv, (8.24)
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
λ1

λ2
. . .

λn


(8.25)

Recall that a decomposition

X = QΛQT

QTQ = QQT = I
(8.26)

can be used for any X ∈ S n.
(b)
Note that vTXv is linear in X. This is a max of a number of linear (and

convex) functions, so it is convex.
Last example:
(non-symmetric matrices)

F(X) = σmax(X), (8.27)

is convex on dom F = Rm×n. Here

σmax(X) = sup
∥v∥2=1

∥Xv∥2 (8.28)

This is called an operator norm of X. Using the SVD

X = UΣVT

U = Rm×r

Σ ∈ diag ∈ Rr × r

VT ∈ Rr×n.

(8.29)

Have

∥Xv∥22 =
∥∥∥UΣVTv

∥∥∥2
2

= vTVΣUTUΣVTv
= vTVΣΣVTv
= vTVΣ2VTv
= ṽTΣ2ṽ,

(8.30)
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where ṽ = vTV , so

∥Xv∥22 =
r∑

i=1

σ2
i ∥ṽ∥ ≤ σ

2
max ∥ṽ∥

2 , (8.31)

or

∥Xv∥2 ≤
√
σ2

max ∥ṽ∥

≤ σmax.
(8.32)

Set v to the right singular value of X to get equality.
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Exercise 9.1 Identifying convexity ([1] pr. 3.16 (a)-(c))

For each of the following functions determine whether it is convex, con-
cave, quasiconvex, or quasiconcave

a. f (x) = ex − 1 on R.

b. f (x1, x2) = x1x2 on R2
++.

c. f (x1, x2) = 1/(x1x2) on R2
++.

Exercise 9.2 Products and ratios of convex functions ([1] pr. 3.32 (a))

In general the product or ration of two convex functions is not convex.
However, there are some results that apply to functions on R. Prove the
following

Exercise 9.3 Convex-concave functions and saddle-points ([1] pr. 3.14)

We way the function f : Rn ×Rm → R is convex-concave if f (x, z)
is a concave function of z, for each fixed x, and a convex function of x,
for each fixed z. We also require its domain to have the product form
dom f = A × B, where A ⊆ Rn and B ⊆ Rm are convex.

a. Give a second-order condition for a twice differentable function
f : Rn ×Rm → R to be convex-concave, in terms of its Hessian
∇2 f (x, z).

b. Suppose that f : Rn ×Rm → R is a convex-concave and differ-
entiable, with ∇ f (x̃, z̃) = 0. Show that the saddle-point property
holds: for all x, z, we have

f (x̃, z) ≤ f (x̃, z̃) ≤ f (x, z̃). (9.1)

Show that this implies that f satisfies the strong max-in property:

sup
z

inf
x

f (x, z) = inf
x

sup
z

f (x, z) (9.2)

(and their common value is f (x̃, z̃)).
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c. Now suppose that f : Rn ×Rm → R is differentiable, but not
necessarily convex-concave, and the saddle-point property holds
at x̃, z̃:

f (x̃, z) ≤ f (x̃, z̃) ≤ f (x, z̃), (9.3)

for all x, z. Show that ∇ f (x̃, z̃) = 0.

Exercise 9.4 Parameterized convexity

Consider the function

f (x, y) = x2 + y2 + βxy + x + 2y. (9.4)

Find (x∗, y∗) for which ∇ f = 0. Express your answer as a function of β.
For which values of β is the (x∗, y∗) a global minimum of f (x, y)?

Exercise 9.5 Maximum likelyhood estimation.

In this problem, we are given a set of data points (xi, yi), i = 1 · · · 100.
We wish to fit a quadratic model,

yi = ax2
i + bxi + c + ni, (9.5)

to the data. Here, (a, b, c) are the parameters to be determined and ni is
the unknown observation noise. The (xi, yi) points are contained in a file
dataForMLest.mat available on the course webpage. You may load the
data to MATLAB using the command load ps01data and view them using
scatter(x,y,’+’). Please use the same data set and find the maximum
likelihood estimate of (a, b, c) assuming ni’s are i.i.d. when

a. ni ∼ N(0, 1);

b. ni is always positive and pni(z) = e−zu(z) where u(·) is the unit step
function.
Please plot the data and the models on the same MATLAB figure and
submit the figgure as a part of your solution. (MATLAB has built-
in functions to solve many optimization problems. For example,
linprog solves a linear programming problem, quadprog solves
a quadratic programming problem. You may use help linprog
to get more details.
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Hint: part a has an analytic solution.)

Exercise 9.6 First and second order conditions for convexity

In class we proved the first and second-order conditions for convexity
of differentiable scalar functions. In particular, the first-order condition
we showed is that a differentiable function f : R → R is convex if and
only if dom f is a convex set and

f (x) ≥ f (x0) + f ′(x0)(x − x0), (9.6)

for all x, x0 ∈ dom f . The second-order condition we showed is that a
twice differentiable function f : R→ R is convex if and only if dom f is
a convex set and f ′′(x) ≥ 0 for all x ∈ dom f .

In this problem you are asked to prove the two corresponding vector
results:

a. If f : Rn → R is differentiable then f is a convex function if and
only if dom f is a convex set and

f (x) ≥ f (x0) + (∇ f (x0))T (x − x0), (9.7)

for all x, x0 ∈ dom f .

b. If f : Rn → R is twice differentiable then f is a convex function
if and only if dom f is a convex set and

∇
2 f (x) ≥ 0, (9.8)

for all x ∈ dom f .
To prove the above two results, follow the approach followed in
class. Namely, show that the differentiable (twice differentiable)
vector function f : Rn → R is convex if and only if the first
order (second-order) scalar condition holds along all lines in the
domain. In other words, show that f is convex if and only if dom f
is a convex set and the first-order (second-order) scalar condition
holds for f (x0 + tv) for all x0, v ∈ Rn, t ∈ R and x0 + tv ∈ dom f .
To be clear, we already proved part a in class. For part a you are
simply asked to reproduce that proof to ensure you fully under-
stand the proof method. Clearly explain the overall logic and the
logic of each step. Then, in part b you are asked to take the same
(lines-based) approach to show the second-order condition.



104 problem set ii (not attempted).

Exercise 9.7 Kullback-Leibler divergence and the information inequality ([1] pr. 3.13)

Let Dkl be the Kullback-Liebler divergence, as defined in (3.17). Prove
the information inequality:

Dkl(u, v) ≥ 0, (9.9)

for all u, v ∈ Rn
++. Also show that Dkl(u, v) = 0 if and only if u = v.

Hint: The Kullback-Liebler divergence can be expressed as

Dkl(u, v) = f (u) − f (v) − (∇ f (v))T (u − v). (9.10)

Exercise 9.8 Examples of proving convexity

a. Show that the following function f : Rn → R is convex where

f (x) =

 −(x1x2 · · · xn)1/n if x1 > 0, · · · , xn > 0

∞ otherwise
(9.11)

Prove the above result by computing the Hessian of the function.
(Note, this is a special case of [1] pr. 3.18(b) in which you are
asked to show that (det X)1/n is concave on dom f = S n

++. While
for this problem I ask you to compute the Hessian, in that problem
you may take any approach you wish.)

Hint: it may prove useful to use the relation that for any real
numbers α1, · · · , αn, (

∑n
i=1 αi)2 ≤ n(

∑n
i=1 α

2
i ).

b. Show that the following function f : Rn → R is convex where

f (x) = exp
(
βxTAx

)
, (9.12)

where x ∈ Rn, A is a positive semidefinite symmetric n× n matrix,
and β is a positive scalar.

Exercise 9.9 (det X)1/n is concave on dom f = S n
++ ([1] pr. 3.18 (b))

Adapt the proof of concavity of the log-determinant function in §3.1.5
to show the following.

f (X) = tr(X−1), (9.13)

is convex on dom f = S n
++.
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Exercise 9.10 Some functions on the probability simplex. ([1] pr. 3.24 (a)-(e))

Let x be a real-valued random variable which takes values {a1, · · · , an}

where a1 < a2 < · · · < an, with prob(x = ai) = pi i ∈ [1, n]. For each of
the following functions of p (on the probability simplex

{
p ∈ Rn

+|1T p = 1
}
),

determine if the function is convex, concave, quasiconvex, or quasicon-
cave.

a. Ex.

b. prob(x ≥ α).

c. prob(α ≤ x ≤ β).

d.
∑n

i=1 pi log pi, the negative entropy of the distribution.

e. var x = E(x −Ex)2.
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