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Geometric calculus relationships to differential forms, and vector calculus
identities.

1.1 Motivation.

I was asked about the geometric algebra equivalents of some of the vector calculus identities from [1].
I’ll call the specific page of those calculus notes “the article”. The article includes identities like

∇( f g) = f∇g + g∇ f
∇× ( f F) = f∇× F + (∇ f ) × F
∇ · ( f F) = f∇ · F + (∇ f ) · F

∇ · (F × G) = G · (∇× F)− F · (∇× G) ,

(1.1)

but the point of these particular lecture notes is the interface between traditional Gibbs vector calculus
and differential forms. That’s a much bigger topic, and perhaps not what I was actually being asked
about. It is, however, an interesting topic, so let’s explore it.

1.2 Comparisons.

The article identifies the cross product representation of the curl ∇× F as the equivalent to the exterior
derivative of a one form (which has been mapped to a vector function.) In geometric algebra, this isn’t
the identification we would use. Instead we should identify the “bivector curl” ∇ ∧ F as the logical
equivalent of the exterior derivative of that one form, and in general identify ∇ ∧ Ak as the exterior
derivative of a k-form (k-blade). In my notes to follow, the wedge of the gradient with a function, will
be called the curl of that function, even if we are operating in R3 where the cross product is defined.

The starting place of the article was to define a one form and it’s exterior derivative was essentially as
follows

Definition 1.1: The exterior derivative of a one form.
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Let f : RN → R be a zero form. It’s exterior derivative is

d f = ∑
i

dxi
∂ f
∂xi

.

I’ve stated that the GA equivalent of the exterior derivative was a curl ∇ ∧ A, and this doesn’t look
anything curl like, so right away, we have some trouble to deal with. To resolve that trouble, let’s step
back to the gradient, which we haven’t defined yet. In the article, the gradient (of a scalar function) was
defined as a coordinate triplet

∇f =
(

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

)
. (1.2)

In GA we don’t like representations where the basis vectors are implicit, so we’d prefer to define

Definition 1.2: The gradient of a function.

We define the gradient of multivector f (x1, x2, · · · , xN), and denote it by ∇ f

∇ f =
N

∑
i=1

ei
∂ f
∂xi

,

where {e1, · · · eN} is an orthonormal basis for RN .

Unlike the article, we do not restrict f to be a scalar function, since we do not have a problem with
a vector valued operator directly multiplying a vector or any product of vectors. Instead f can be a
multivector function, with scalar, vector, bivector, trivector, ... components, and we define the gradient
the same way.

In order to define the curl of a k-blade, we need a reminder of how we define the wedge of a vector
with a k-blade. Recall that this is how we generally define the wedge between two blades.

Definition 1.3

Let Ar be a r-blade, and Bs a s-blade. The wedge of Ar with Bs is

Ar ∧ Bs = ⟨ArBs⟩r+s. (1.3)

In particular, if a is a vector, then the wedge with an s-blade Bs is

a ∧ Bs = ⟨aBs⟩s+1, (1.4)

which is just the s + 1 grade selection of their product. Furthermore, if f is a scalar, then

a ∧ f = ⟨a f ⟩1 = a f . (1.5)

We can now state the curl of a k-blade
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Definition 1.4: Curl of a k-blade.

Let Ak be a k-blade. We define the curl of a k-blade as the wedge product of the gradient with that
k-blade, designated

∇ ∧ Ak.

Observe, given our generalized wedge product definition above, that the curl of a scalar function f , is in
fact just the gradient of that function

∇ ∧ f = ∇ f = ∑
i

ei
∂ f
∂xi

. (1.6)

This has exactly the structure of the exterior derivative of a one form, as stated in definition 1.1, but we
have replaced dxi with a basis vector ei.

Definition 1.5: Exterior derivative of a one-form.

Let ω = fidxi be a one-form. The exterior derivative of dω is

dω = ∑
i

d( fi) ∧ dxi.

Lemma 1.1: Exterior derivative of a one-form.

Let ω = fidxi be a one-form. The exterior derivative dω can be expanding into a Jacobian form

dω = ∑
i<j

(
∂ f j

∂xi
− ∂ fi

∂xj

)
dxi ∧ dxj.
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Proof.
dω = ∑

j
d( f jdxj)

= ∑
j

d( f j) ∧ dxj

= ∑
j

(
∑

i
dxi

∂ f j

∂xi

)
∧ dxj

= ∑
ji

∂ f j

∂xi
dxi ∧ dxj

= ∑
j ̸=i

∂ f j

∂xi
dxi ∧ dxj

= ∑
i<j

∂ f j

∂xi
dxi ∧ dxj + ∑

j<i

∂ f j

∂xi
dxi ∧ dxj

= ∑
i<j

∂ f j

∂xi
dxi ∧ dxj + ∑

i<j

∂ fi

∂xj
dxj ∧ dxi

= ∑
i<j

(
∂ f j

∂xi
− ∂ fi

∂xj

)
dxi ∧ dxj.

(1.7)

Lemma 1.2: Curl of a vector.

Let f = ∑i ei fi ∈ RN be a vector. The curl of f has a Jacobian structure

∇ ∧ f = ∑
i<j

(
∂ f j

∂xi
− ∂ fi

∂xj

) (
ei ∧ ej

)
.

Proof. The antisymmetry of the wedges of differentials in the exterior derivative and the curl clearly has
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a one to one correspondence. Let’s show this explicitly by expansion

∇ ∧ f = ∑
ij

(
ei

∂

∂xi

)
∧
(
ej f j
)

= ∑
ij

(
ei ∧ ej

) ∂ f j

∂xi

= ∑
i ̸=j

(
ei ∧ ej

) ∂ f j

∂xi

= ∑
i<j

(
ei ∧ ej

) ∂ f j

∂xi
+ ∑

j<i

(
ei ∧ ej

) ∂ f j

∂xi

= ∑
i<j

(
ei ∧ ej

) ∂ f j

∂xi
+ ∑

i<j

(
ej ∧ ei

) ∂ fi

∂xj

= ∑
i<j

(
ei ∧ ej

) ( ∂ f j

∂xi
− ∂ fi

∂xj

)
.

(1.8)

If we are translating from differential forms, again, we see that we simply replace any differentials dxi
with the basis vectors ei (at least for the zero-form and one-form cases, which is all that we have looked
at here.)

Note that in differential forms, we often assume that there is an implicit wedge product between any
different one form elements, writing

dx1 ∧ dx2 = dx1dx2. (1.9)

This works out fine when we map differentials to basis vectors, since

e1e2 = e1 · e2 + e1 ∧ e2 = e1 ∧ e2. (1.10)

However, we have to be more careful in GA when using indexed expressions, since

eiej = ei · ej + ei ∧ ej. (1.11)

The dot product portion of the RHS is only zero if i ̸= j.
Now let’s look at the equivalence between the exterior derivative of a two-form with the curl.

Definition 1.6: Exterior derivative of a two-form.
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Let η = ∑ij fijdxi ∧ dxj be a two-form. The exterior derivative of η is

dη = ∑
ij

d( fij) ∧ dxi ∧ dxj.

Lemma 1.3: Exterior derivative of a two-form.

Let η = ∑ij fijdxi ∧ dxj be a two-form. The exterior derivative of η can be expanded as

dη = ∑
i,j,k

∂ fij

∂xk
dxi ∧ dxj ∧ dxk.

Proof. The exterior derivative of η is

dη = ∑
i,j

d( fijdxi ∧ dxj)

= ∑
i,j,k

(
∂ fij

∂xk
dxk

)
∧ dxi ∧ dxj

= ∑
i,j,k

∂ fij

∂xk
dxi ∧ dxj ∧ dxk.

(1.12)

Let’s compare that to the curl of a bivector valued function.

Lemma 1.4: Curl of a 2-blade.

Let B = ∑i ̸=j fijei ∧ ej be a 2-blade. The curl of B is

∇ ∧ B = ∑
i,j,k

∂ fij

∂xk
ei ∧ ej ∧ ek.

Proof.

∇ ∧ B =

(
∑

k
ek

∂

∂xk

)
∧
(

∑
i ̸=j

fijei ∧ ej

)

= ∑
k,i ̸=j

∂ fij

∂xk
ek ∧ ei ∧ ej

= ∑
i,j,k

∂ fij

∂xk
ei ∧ ej ∧ ek.

(1.13)

6



Again, we see an exact correspondence with the exterior derivative dη of a two-form, and the curl ∇∧ B,
of a 2-blade.

The article established a coorespondence between the exterior derivative of a two form over R3 to the
divergence. The way we would express this in GA (also for R3) is to write

B = Ib, (1.14)

where I = e1e2e3 is the R3 pseudoscalar (a “unit” trivector.) Forming the curl of B we have

∇ ∧ B = ⟨∇B⟩3

= ⟨∇Ib⟩3

= ⟨I(∇b)⟩3

= ⟨I(∇ · b + ∇ ∧ b)⟩3

= I(∇ · b).

(1.15)

The equivalence relationships that we have developed must then imply that the differential forms rep-
resentation of this relationship is

dB = dx1 ∧ dx2 ∧ dx3(∇ · b) = dx ∧ dy ∧ dz
(

∂b1

∂x
+

∂b2

∂y
+

∂b3

∂z

)
, (1.16)

as defined in the article.
Here is the GA equivalent of Lemma 4.4.10 from the article

Lemma 1.5: Repeated curl identities.

Let A be a smooth k-blade, then
∇ ∧ (∇ ∧ A) = 0.

For R3, this result, for a scalar function f , and a vector function f, in terms of the cross product, as

∇× (∇ f ) = 0
∇ · (∇× f) = 0.

(1.17)

It shouldn’t be surprising that this is the equivalent of d2A = 0 from differential forms. Let’s prove this,
first considering the 0-blade case

Proof.
∇ ∧ (∇ ∧ A) = ∇ ∧ (∇A)

= ∑
ij

ei ∧ ej
∂2A

∂xi∂xj

= 0.

(1.18)

7



The smooth criteria of for the function A is assumed to imply that we have equality of mixed partials,
and since this is a sum of an antisymmetric term with respect to indexes i, j (the wedge) and a symmetric
term in indexes i, j (the partials), we have zero overall.

Now consider a k-blade A, k > 0. Expanding the gradients, we have

∇ ∧ (∇ ∧ A) = ∑
ij

ei ∧ ej ∧
∂2A

∂xi∂xj
. (1.19)

It may be obvious that this is zero for the same reasons as above (sum of product of symmetric and
antisymmetric entities). We can, however, make it more obvious, at the cost of some hellish indexing, by
expressing A in coordinate form. Let

A = ∑
i1 ,i2 ,···,ik

Ai1,i2 ,···,ik ei1 ∧ ei2 ∧ · · · ∧ eik , (1.20)

then

∇ ∧ (∇ ∧ A) = ∑
i,j,i1,i2 ,···,ik

ei ∧ ej ∧ ei1 ∧ ei2 ∧ · · · ∧ eik

∂2

∂xi∂xj
Ai1,i2 ,···,ik

= 0.

(1.21)

Now we clearly have a sum of an antisymmetric term (the wedges), and a symmetric term (assuming
smooth A means that we have equality of mixed partials), so the sum is zero.

Finally, for the R3 identities, we have

∇× (∇ f ) = −I (∇ ∧ (∇ f ))
= 0,

(1.22)

since ∇ ∧ (∇ f ) = 0. For a vector f, we have

∇ · (∇× f) = ⟨∇ (∇× f)⟩
= ⟨∇(−I) (∇ ∧ f)⟩
= −⟨I∇ (∇ ∧ f)⟩
= −I∇ ∧ (∇ ∧ f)
= 0,

(1.23)

again, because ∇ ∧ (∇ ∧ f) = 0.

1.3 Identities.

We have a number of chain rule identities in the article. Here is the GA equivalent of that, and its
corollaries
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Lemma 1.6: Chain rule identities.

Let f be a scalar function and A be a k-blade, then

∇ ( f A) = (∇ f ) A + f (∇A) .

For A with grade k > 0, the grade k − 1 and k + 1 components of this product are

∇ · ( f A) = (∇ f ) · A + f (∇ · A)

∇ ∧ ( f A) = (∇ f ) ∧ A + f (∇ ∧ A) .

For R3, the wedge product relation above can be written in dual form as

∇× ( f A) = (∇ f )× A + f (∇× A) .

Proving this is left to the reader.
We have some chain rule identities left in the article to verify and to find GA equivalents of. Before

doing so, we need a couple miscellaneous identities relating triple cross products to wedge-dots.

Lemma 1.7: Triple cross products.

Let a, b, c be vectors in R3. Then

a × (b × c) = −a · (b ∧ c)
(a × b)× c = − (a ∧ b) · c.

Proof.
a × (b × c) = ⟨−I (a ∧ (b × c))⟩1

= ⟨−I (a (b × c))⟩1

=
〈
(−I)2 (a (b ∧ c))

〉
1

= −a · (b ∧ c) ,

(1.24)

(a × b)× c = ⟨−I (a × b) ∧ c⟩1

= ⟨−I (a × b) c⟩1

=
〈
(−I)2 (a ∧ b) c

〉
1

= − (a ∧ b) · c.

(1.25)

Next up is another chain rule identity
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Lemma 1.8: Gradient of dot product.

If a, b are vectors, then

∇ (a · b) = (a ·∇) b + (b ·∇) a + (∇ ∧ b) · a + (∇ ∧ a) · b

For R3, this can be written as

∇ (a · b) = (a ·∇) b + (b ·∇) a + a × (∇× b) + b × (∇× a)

Proof. We will use
→
∇ to indicate that the gradient operates on everything to the right,

↔
∇ to indicate that

the gradient operates bidirectionally, and ∇′AB′ to indicate that the gradient’s scope is limited to the
ticked entity (just on B in this case.)

→
∇ (a · b) =

〈→
∇ (ab − a ∧ b)

〉
1

=
〈
∇′a′b + ∇′ab′〉

1−
→
∇ · (a ∧ b)

= (∇ · a) b + (∇ ∧ a) · b + ⟨−a∇b + 2 (a ·∇) b⟩1 −∇′ ·
(
a′ ∧ b

)
−∇′ ·

(
a ∧ b′)

= (∇ · a) b + (∇ ∧ a) · b − a (∇ · b)− a · (∇ ∧ b) + 2 (a ·∇) b −∇′ ·
(
a′ ∧ b

)
−∇′ ·

(
a ∧ b′) .

(1.26)
We are running out of room, and have not had any cancellation yet, so let’s expand those last two terms
separately

−∇′ ·
(
a′ ∧ b

)
−∇′ ·

(
a ∧ b′) = −

(
∇′ · a′

)
b +

(
∇′ · b

)
a′ −

(
∇′ · a

)
b′ +

(
∇′ · b′) a

= − (∇ · a) b + (b ·∇) a − (a ·∇) b + (∇ · b) a.
(1.27)

Now we can cancel some terms, leaving

→
∇ (a · b) = (∇ ∧ a) · b − a · (∇ ∧ b) + (a ·∇) b + (b ·∇) a. (1.28)

After adjustment of the order and sign of the second term, we see that this is the result we wanted. To
show the R3 formulation, we have only apply lemma 1.7.

Lemma 1.9: Divergence of a bivector.

Let a, b ∈ RN be vectors. The divergence of their wedge can be written

∇ · (a ∧ b) = b (∇ · a)− a (∇ · b)− (b ·∇) a + (a ·∇) b.
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For R3, this can also be written in triple cross product form

∇ · (a ∧ b) = −∇× (a × b) .

Proof.
→
∇ · (a ∧ b) = ∇′ ·

(
a′ ∧ b

)
+ ∇′ ·

(
a ∧ b′)

=
(
∇′ · a′

)
b −

(
∇′ · b

)
a′ +

(
∇′ · a

)
b′ −

(
∇′ · b′) a

= (∇ · a) b − (b ·∇) a + (a ·∇) b − (∇ · b) a.

(1.29)

For the R3 part of the story, we have

∇× (a × b) = ⟨−I (∇ ∧ (a × b))⟩1

= ⟨−I∇ (a × b)⟩1

=
〈
(−I)2∇ (a ∧ b)

〉
1

= −∇ · (a ∧ b)

(1.30)

We have just one identity left in the article to find the GA equivalent of, but will split that into two
logical pieces.

Lemma 1.10: Dual of triple wedge.

If a, b, c ∈ R3 are vectors, then
a · (b × c) = −I (a ∧ b ∧ c) .

Proof.
a · (b × c) = ⟨a (b × c)⟩

= ⟨a(−I) (b ∧ c)⟩
= ⟨−I (a · (b ∧ c) + a ∧ (b ∧ c))⟩
= ⟨−I (a ∧ (b ∧ c))⟩
= −I (a ∧ (b ∧ c)) .

(1.31)

Lemma 1.11: Curl of a wedge of gradients (divergence of a gradient cross products.)

Let f , g, h be smooth functions with smooth derivatives. Then

∇ ∧ ( f (∇g ∧∇h)) = ∇ f ∧∇g ∧∇h.
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For R3 this can be written as

∇ · ( f (∇g ×∇h)) = ∇ f · (∇g ×∇h) .

Proof. The GA identity follows by chain rule and application of lemma 1.5.

∇ ∧ ( f (∇g ∧∇h)) = ∇ f ∧ (∇g ∧∇h) + f∇ ∧ (∇g ∧∇h)
= ∇ f ∧∇g ∧∇h.

(1.32)

The R3 part of the lemma can be shown using lemma 1.10, or we can compute it directly

∇ · ( f (∇g ×∇h)) = ⟨∇ ( f (∇g ×∇h))⟩
= ∇ f · ((∇g ×∇h)) + f ⟨−I∇ (∇g ∧∇h)⟩
= ∇ f · ((∇g ×∇h))− f I (∇ ∧ (∇g ∧∇h)) .

(1.33)

The last term is clearly zero, since after our chain rule application, we end up with a ∇ ∧∇ term on
either branch of the chain rule expansion.

Lemma 1.12: Curl of a bivector.

Let a, b be vectors. The curl of their wedge is

∇ ∧ (a ∧ b) = b ∧ (∇ ∧ a)− a ∧ (∇ ∧ b)

For R3, this can be expressed as the divergence of a cross product

∇ · (a × b) = b · (∇× a)− a · (∇× b)

Proof. The GA case is a trivial chain rule application

→
∇ ∧ (a ∧ b) =

(
∇′ ∧ a′

)
∧ b +

(
∇′ ∧ a

)
∧ b′

= b ∧ (∇ ∧ a)− a ∧ (∇ ∧ b) .
(1.34)

The R3 case, is less obvious by inspection, but follows from lemma 1.10.

1.4 Summary.

We found that we have an isomorphism between the exterior derivative of differential forms and the
curl operation of geometric algebra, as follows

d f ⇌ ∇ ∧ f
dxi ⇌ ei.

(1.35)
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We didn’t look at how the Hodge dual translates to GA duality (pseudoscalar multiplication.) The
divergence relationship between the exterior derivative of an R3 two-form really requires that formalism,
and has only been examined in a cursory fashion.

We also translated a number of vector and gradient identities from conventional vector algebra (i.e.:
using cross products) and wedge product equivalents of the same. The GA identities are often simpler,
and in some cases, provide nice mechanisms to derive the conventional identities that would be more
cumbersome to determine without the GA toolbox.

1.5 Hodge star vs. pseudoscalar multiplication.

We find a definition of the hodge star for basic k-forms in [2].

Definition 1.7: Hodge star.

Let ω be a basic k-form on Rn. The hodge star of ω, denoted by ⋆ω is the unique n − k-form with
the property

ω ∧ ⋆ω = dx1 ∧ · · · ∧ dxn.

I find it interesting that this duality definition is completely free of any notion of metric or inner prod-
uct. That isn’t the case with the hodge star definition from [3]. This is certainly an easier definition to
understand.

Let’s calculate all the duals for the basic forms from R3. We let I = dx1 ∧ dx2 ∧ dx3, and then by
inspection find all the duals satisfying

I = 1 ∧ ⋆1
I = dx ∧ ⋆dx
I = dy ∧ ⋆dy
I = dz ∧ ⋆dz
I = (dxdy) ∧ ⋆(dxdy)
I = (dydz) ∧ ⋆(dydz)
I = (dzdx) ∧ ⋆(dzdx)
I = dxdydz ∧ ⋆(dxdydz).

(1.36)
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Those are
⋆1 = dxdydz

⋆dx = dydz
⋆dy = dzdx
⋆dz = dxdy

⋆(dxdy) = dz
⋆(dydz) = dx
⋆(dzdx) = dy

⋆(dxdydz) = 1.

(1.37)

Now let’s compare this to multiplication of the R3 basis vectors with the pseudoscalar I = e1e2e3. We
have

1I = I
e1 I = e1123 = e23

e2 I = e2123 = e31

e3 I = e3123 = e12

e23 I = e23123 = −e1

e31 I = e31123 = −e2

e12 I = e12123 = −e3

e123 I = e123123 = −1.

(1.38)

With differential forms, the duals of the duals of all our basic forms recovered the original, that is ∗ ∗ ω =
ω, but that isn’t the case if we use pseudoscalar multiplication to define duality. We see that to model
the Hodge dual, we need to multiply by a grade specific pseudoscalar.

Definition 1.8: Hodge dual of an R3 multivector

Let M be a R3 multivector. The Hodge dual ⋆M of that multivector is

⋆M = ⟨M⟩0,1 I − ⟨M⟩2,3 I.

In particular, if A is a k-blade in R3, a round trip requires multiplication with different signed unit
pseudoscalars.

Let’s step back and consider the R2 case as well. This time we let i = dx1 ∧ dx2. We seek all the duals
satisfying

i = 1 ∧ ⋆1
i = dx ∧ ⋆dx
i = dy ∧ ⋆dy
i = (dxdy) ∧ ⋆(dxdy).

(1.39)
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Those duals are
⋆1 = dxdy

⋆dx = dy
⋆dy = −dx

⋆(dxdy) = 1

(1.40)

Now let’s compare this to multiplication of the R2 basis vectors with the pseudoscalar i = e1e2. We
have

1i = i
e1i = e112 = e2

e2i = e212 = −e1

e12i = e1212 = −1

(1.41)

Definition 1.9: Hodge dual of R2 multivector

Let M be a R2 multivector. The Hodge dual ⋆M of that multivector is

⋆M = ⟨M⟩0,1i − ⟨M⟩2i.

Neither of these grade specific duality operations are as nice as simply multiplying by a unit pseu-
doscalar, but if we care about correspondence with the Hodge dual (at least according to the definition
in the article), then this is what we need.

Having done that, let’s now look at the Hodge dual that produces the divergence operation.

Lemma 1.13: Divergence relation to the exterior derivative.

Let ω = f dx + gdy + hdz be a one-form in R3. The exterior derivative of the Hodge dual of ω is a
divergence three-form

d(⋆ω) =
(

∂ f
∂x

+
∂g
∂y

+
∂h
∂z

)
dx ∧ dy ∧ dz.

The GA equivalent of this, for a vector corresponding to this one-form f = f e1 + ge2 + he3 ∈ R3, is

∇ ∧ (⋆f) = (∇ · f) I.

Proof. The dual of the one form is

⋆ω = f dy ∧ dz + gdz ∧ dx + hdx ∧ dy, (1.42)
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so the exterior derivative is

d(⋆ω) =
(

∂ f
∂x

dx +
∂ f
∂y

dy +
∂ f
∂z

dz
)
∧ dy ∧ dz

+
(

∂g
∂x

dx +
∂g
∂y

dy +
∂g
∂z

dz
)
∧ dz ∧ dx

+
(

∂g
∂x

dx +
∂g
∂y

dy +
∂g
∂z

dz
)
∧ dx ∧ dy

=
(

∂ f
∂x

+
∂g
∂y

+
∂h
∂z

)
dx ∧ dy ∧ dz.

(1.43)

We expect that the GA equivalent of this is ∇ ∧ (⋆f) = (∇ · f) I. Let’s check that this is the case. The
dual, for a vector, is

⋆f = fI, (1.44)

so
∇ ∧ (⋆f) = ⟨∇(fI)⟩3

= ⟨(∇f)I⟩3

= ⟨(∇ · f + ∇ ∧ f)I⟩3

= (∇ · f) I.

(1.45)
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