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P R E FAC E

This is an exploratory collection of notes containing worked examples of more advanced appli-
cations of Geometric Algebra (GA), also known as Clifford Algebra.

These notes are (dis)organized into the following chapters

• Relativity. This is a fairly incoherent chapter, including an attempt to develop the Lorentz
transformation by requiring wave equation invariance, Lorentz transformation of the four-
vector (STA) gradient, and a look at the relativistic doppler equation.

• Electrodynamics. The GA formulation of Maxwell’s equation (singular in GA) is devel-
oped here. Various basic topics of electrodynamics are examined using the GA toolbox,
including the Biot-Savart law, the covariant form for Maxwell’s equation (Space Time
Algebra, or STA), four vectors and potentials, gauge invariance, TEM waves, and some
Lienard-Wiechert problems.

• Lorentz Force. Here the GA form of the Lorentz force equation and its relation to the
usual vectorial representation is explored. This includes some application of boosts to the
force equation to examine how it transforms under observe dependent conditions.

• Electrodynamic stress energy. This chapter explores concepts of electrodynamic energy
and momentum density and the GA representation of the Poynting vector and the stress-
energy tensors.

• Quantum Mechanics. This chapter includes a look at the Dirac Lagrangian, and how this
can be cast into GA form. Properties of the Pauli and Dirac bases are explored, and how
various matrix operations map onto their GA equivalents. A bivector form for the angular
momentum operator is examined. A multivector form for the first few spherical harmonic
eigenfunctions is developed. A multivector factorization of the three and four dimensional
Laplacian and the angular momentum operators are derived.

• Fourier treatments. Solutions to various PDE equations are attempted using Fourier series
and transforms. Much of this chapter was exploring Fourier solutions to the GA form of
Maxwell’s equation, but a few other non-geometric algebra Fourier problems were also
tackled.

I can not promise that I have explained things in a way that is good for anybody else. My
audience was essentially myself as I existed at the time of writing (i.e. undergraduate engineer-
ing background), but the prerequisites, for both the mathematics and the physics, have evolved
continually.
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Part I

R E L AT I V I T Y





1WAV E E Q UAT I O N BA S E D L O R E N T Z T R A N S F O R M AT I O N
D E R I VAT I O N

1.1 intro

My old electrodynamics book did a Lorentz transformation derivation using a requirement for
invariance of a spherical light shell. ie:

x2 − c2t2 = x′2 − c2t′2 (1.1)

Such an approach does not require any sophisticated math, but I never understood why that
invariance condition could be assumed. To understand that intuitively, requires that you under-
stand how the speed of light is constant. There are some subtleties involved in understanding
that which are not necessarily obvious to me. A good illustration of this is Feynman’s question
about what speed to expect light to be going from a rocket ship going 100000 miles per second
is a good example (ref: book: Six not so easy parts). Many people who would say "yes, the
speed of light is constant" would still answer 280000 miles per second for that question.

I present below an alternate approach to deriving the Lorentz transformation. This has a bit
more math (ie: partial differentials for change of variables in the wave equation). However,
compared to really understanding that the speed of light is constant, I think it is easier to con-
ceptualize the idea that light is wavelike regardless of the motion of the observer since it (ie:
an electrodynamic field) must satisfy the wave equation (ie: Maxwell’s equations) regardless of
the parametrization. I am curious if somebody else also new to the subject of relativity would
agree?

The motivation for this is the fact that many introductory relativity texts mention how Lorentz
observed that while Maxwell’s equations were not invariant with respect to Galilean transfor-
mation, they were with his modified transformation.

I found it interesting to consider this statement with a bit of detail. The result is what I think
is an interesting approach to introducing the Lorentz transformation.

1.2 the wave equation for electrodynamic fields (light)

From Maxwell’s equations one can show that in a charge and current free region the electric
field and magnetic field both satisfy the wave equation:

∇2 −
1
c2

∂2

∂t2 = 0 (1.2)



4 wave equation based lorentz transformation derivation

I believe this is the specific case where there are the light contains enough photons that the bulk
(wavelike) phenomena dominate and quantum effects do not have to be considered.

The wikipedia article Electromagnetic radiation (under Derivation)
goes over this nicely.
Although this can be solved separately for either E or B the two are not independent. This

dependence is nicely expressed by writing the electromagnetic field as a complete bivector F =
E+ icB, and in that form the general solution to this equation for the combined electromagnetic
field is:

F = (E0 + k̂∧E0) f (k̂ · r ± ct) (1.3)

Here f is any function, and represents the amplitude of the waveform.

1.3 verifying lorentz invariance

The Lorentz transform for a moving (primed) frame where the motion is along the x axis is
(β = v/c, γ−2 = 1 − β2). x′

ct′

 = γ
 1 −β

−β 1


Or,  x

ct

 = γ
1 β

β 1


Using this we can express the partials of the wave equation in the primed frame. Starting with
the first derivatives:

∂

∂x
=
∂x′

∂x
∂

∂x′
+
∂ct′

∂x
∂

∂ct′

= γ
∂

∂x′
− γβ

∂

∂ct′

(1.4)

And:
∂

∂ct
=
∂x′

∂ct
∂

∂x′
+
∂ct′

∂ct
∂

∂ct′

= −βγ
∂

∂x′
+ γ

∂

∂ct′

(1.5)

Thus the second partials in terms of the primed frame are:

∂2

∂x2 = γ
2
(
∂

∂x′
− β

∂

∂ct′

) (
∂

∂x′
− β

∂

∂ct′

)
= γ2

(
∂2

∂x′∂x′
+ β2 ∂2

∂ct′∂ct′
− β

(
∂2

∂x′∂ct′
∂2

∂ct′∂x′

)) (1.6)
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∂2

∂ct∂ct
= γ2

(
β2 ∂2

∂x′∂x′
+

∂2

∂ct′∂ct′
− β

(
∂2

∂x′∂ct′
∂2

∂ct′∂x′

))
(1.7)

Thus the wave equation transforms as:

∂2

∂x2 −
∂2

∂ct∂ct
= γ2

(
(1 − β2)

∂2

∂x′∂x′
+ (β2 − 1)

∂2

∂ct′∂ct′

)
=

∂2

∂x′∂x′
−

∂2

∂ct′∂ct′

(1.8)

which is what we expect but nice to see written out in full without having to introduce Minkowski
space, and its invariant norm, or use Einstein’s subtle arguments from his "Relativity, the special
and general theory" (the latter requires actual understanding whereas the former and this just
require math).

1.4 derive lorentz transformation requiring invariance of the wave equation

Now, lets look at a general change of variables for the wave equation for the electromagnetic
field. This will include the Galilean transformation, as well as the Lorentz transformation above,
as special cases.

Consider a two variable, scaled Laplacian:

∇2 = m
∂2

∂u2 + n
∂2

∂v2 (1.9)

and a linear change of variables defined by:uv
 =

e f

g h


x

y

 = A

x

y

 (1.10)

To perform the change of variables we need to evaluate the following:

∂

∂u
=
∂x
∂u

∂

∂x
+
∂y
∂u

∂

∂y
∂

∂v
=
∂x
∂v

∂

∂x
+
∂y
∂v

∂

∂y

(1.11)

To compute the partials we must invert A. Writing

J =

∣∣∣∣∣∣∣e f

g h

∣∣∣∣∣∣∣ = ∂(u, v)
∂(x, y)

, (1.12)
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that inverse is

A−1 =
1∣∣∣∣∣∣∣e f

g h

∣∣∣∣∣∣∣
 h − f

−g e

 . (1.13)

The first partials are therefore:

∂

∂u
=

1
J

(
h
∂

∂x
− g

∂

∂y

)
∂

∂v
=

1
J

(
− f

∂

∂x
+ e

∂

∂y

)
.

(1.14)

Repeating for the second partials yields:

∂2

∂u2 =
1
J2

(
h2 ∂

2

∂x2 + g2 ∂
2

∂y2 − gh
(
∂2

∂x∂y
+

∂2

∂y∂x

))
∂2

∂v2 =
1
J2

(
f 2 ∂

2

∂x2 + e2 ∂
2

∂y2 − e f
(
∂2

∂x∂y
+

∂2

∂y∂x

)) (1.15)

That is the last calculation required to compute the transformed Laplacian:

∇2 =
1
J2

(
(mh2 + n f 2)∂xx + (mg2 + ne2)∂yy − (mgh + ne f )(∂xy + ∂yx)

)
(1.16)

1.4.1 Galilean transformation

Lets apply this to the electrodynamics wave equation, first using a Galilean transformation
x = x′ + vt, t = t′, β = v/c. x

ct

 =
1 β

0 1


 x′

ct′

 (1.17)

∂xx −
1
c2 ∂tt = (1 − β2)∂x′x′ −

1
c2 ∂t′t′ +

1
c
β(∂x′t′ + ∂t′x′) (1.18)

Thus we see that the equations of light when subjected to a Galilean transformation have a
different form after such a transformation. If this was correct we should see the effects of the
mixed product terms and the reduced effect of the spatial component when there is any motion.
However, light comes in a wave form regardless of the motion, so there is something wrong
with application of this transformation to the equations of light. This was the big problem of
physics over a hundred years ago before Einstein introduced relativity to explain all this.
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1.4.2 Determine the transformation of coordinates that retains the form of the equations of
light

Before Einstein, Lorentz worked out the transformation that left Maxwell’s equation “invariant”.
I have not seen any text that actually showed this. Lorentz may have showed that his transfor-
mations left Maxwell’s equations invariant in their full generality, however that complexity is
not required to derive the transformation itself. Instead this can be done considering only the
wave equation for light in source free space.

Let us define the matrix A for a general change of space and time variables in one spatial
dimension: x

ct

 =
e f

g h


 x′

ct′

 (1.19)

Application of this to eq. (1.16) gives:

∂xx − ∂ct,ct =
1
J2

(
(h2 − f 2)∂x′x′ + (g2 − e2)∂ct′,ct′ − (gh − e f )(∂x′,ct′ + ∂ct′,x′)

)
(1.20)

Now, we observe that light has wavelike behavior regardless of our velocity (we do observe
frequency variation with velocity but the fundamental waviness does not change). Once that is
accepted as a requirement for a transformation of coordinates of the wave equation for light we
get the Lorentz transformation.

Expressed mathematically, this means that we want eq. (1.20) to have the form:

∂xx − ∂ct,ct = ∂x′x′ − ∂ct′,ct′ (1.21)

This requirement is equivalent to the following system of equations:

J = eh − f g

h2 − f 2 = J2

g2 − e2 = −J2

gh = e f .

(1.22)

Attempting to solve this in full generality for any J gets messy (ie: non-linear). To simplify
things, it is not unreasonable to require J = 1, which is consistent with Galilean transformation,
in particular for the limiting case as v→ 0.

Additionally, we want to give physical significance to these values e, f , g, h. Following Ein-
stein’s simple derivation of the Lorentz transformation, we do this by defining x′ = 0 as the
origin of the moving frame:

x′ =
1
J

[
h − f

]  x

ct

 = 0 (1.23)
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This allows us to relate f , h to the velocity:

xh = f ct (1.24)

=⇒
dx
dt
=

f c
h
= v, (1.25)

and provides physical meaning to the first of the elements of the linear transformation:

f = h
v
c
= hβ. (1.26)

The significance and values of e, g, h remain to be determined. Substituting eq. (1.26) into our
system of equations we have:

h2 − h2β2 = 1

g2 − e2 = −1

gh = ehβ.

(1.27)

From the first equation we have h2 = 1
1−β2 , which is what is usually designated γ2. Considering

the limiting case again of v→ 0, we want to take the positive root. Summarizing what has been
found so far we have:

h =
1√

1 − β2
= γ

f = γβ

g2 − e2 = −1

g = eβ.

(1.28)

Substitution of the last yields

e2(β2 − 1) = −1 (1.29)

which means that e2 = γ2, or e = γ, and g = γβ (again taking the positive root to avoid a re-
flective transformation in the limiting case). This completely specifies the linear transformation
required to maintain the wave equation in wave equation form after a change of variables that
includes a velocity transformation in one direction: x

ct

 = γ
1 β

β 1


 x′

ct′

 (1.30)
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Inversion of this yields the typical one dimensional Lorentz transformation where the position
and time of a moving frame is specified in terms of the inertial frame: x′

ct′

 = γ
 1 −β

−β 1


 x

ct

 . (1.31)

That is perhaps more evident when this is written out explicitly in terms of velocity:

x′ =
x − vt√

1 − v2/c2

t′ =
t − (v/c2)x√

1 − v2/c2
.

(1.32)

1.5 light sphere , and relativistic metric

TBD.
My old E&M book did this derivation using a requirement for invariance of a spherical light

shell. ie:
x2 − c2t2 = x′2 − c2t′2.
That approach requires less math (ie: to partial derivatives or change of variables), but I never

understood why that invariance condition could be assumed (to understand that intuitively, you
have to understand the constancy of light phenomena, which has a few subtleties that are not
obvious in my opinion).

I like my approach, which has a bit more math, but I think is easier (vs. light constancy) to
conceptualize the idea that light is wavelike regardless of the motion of the observer since it (ie:
an electrodynamic field) must satisfy the wave equation (ie: Maxwell’s equations). I am curious
if somebody else also new to the subject of relativity would agree?

1.6 derive relativistic doppler shift

TBD.
This is something I think would make sense to do considering solutions to the wave equation

instead of utilizing more abstract wave number, and frequency four vector concepts. Have not
yet done the calculations for this part.





2E Q UAT I O N S O F M OT I O N G I V E N M A S S VA R I AT I O N W I T H
S PAC E T I M E P O S I T I O N

2.1

Let

x =
∑

γµxµ

v =
dx
dτ
=

∑
γµ ẋµ

(2.1)

Where whatever spacetime basis you pick has a corresponding reciprocal frame defined implic-
itly by:

γµ · γν = δ
µ
ν

You could for example pick these so that these are orthonormal with:

γ2
i = γi · γi = −1

γi = −γi

γ0 = γ0

γ2
0 = 1

γi · γ0 = 0

(2.2)

ie: the frame vectors define the metric tensor implicitly:

gµν = γµ · γν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(2.3)

Now, my assumption is that given a Lagrangian of the form:

L =
1
2

mv2 + ϕ (2.4)

That the equations of motion follow by computation of:

∂L

∂xµ
=

d
dτ

∂L

∂ẋµ
(2.5)
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I do not have any proof of this (I do not yet know any calculus of variations, and this is a guess
based on intuition). It does however work out to get the covariant form of the Lorentz force law,
so I think it is right.

To get the EOM we need the squared proper velocity. This is just c2. Example: for an or-
thonormal spacetime frame one has:

v2 =
(
γ0cdt/dτ +

∑
γidx/dτ

)2

= γ
(
γ0c +

∑
γidx/dt

)2

= γ2
(
c2 − v2

)
= c2

(2.6)

but if we leave this expressed in terms of coordinates (also do not have to assume the diagonal
metric tensor, since we can use non-orthonormal basis vectors if desired) we have:

v2 =
(∑

γµ ẋµ
)
·
(∑

γν ẋν
)

=
∑

γµ · γν ẋµ ẋν

=
∑

gµν ẋµ ẋν
(2.7)

Therefore the Lagrangian to minimize is:

L =
1
2

m
∑

gµν ẋµ ẋν + ϕ. (2.8)

Performing the calculations for the EOM, and in this case, also allowing mass to be a function
of space or time position (m = m(xµ))

∂L

∂xµ
=

d
dτ

∂L

∂ẋµ
∂ϕ

∂xµ
+

1
2
∂m
∂xµ

∑
gαβ ẋα ẋβ =

∂ϕ

∂xµ
+

1
2
∂m
∂xµ

v2 =

=
1
2

d
dτ

m
∑

gαβ
∂

∂xµ
(
ẋα ẋβ

)
=

1
2

d
dτ

m
∑

gαβ
(
δµα ẋβ + ẋαδµβ

)
=

d
dτ

m
∑

gαµ ẋα

=
∑ ∂m

∂xβ
ẋβgαµ ẋα +mgαµ ẍα

(2.9)
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Now, the metric tensor values can be removed by summing since they can be used to switch
upper and lower indices of the frame vectors:

γµ =
∑

aνγν

γµ · γβ =
∑

aνγν · γβ

=
∑

aνδνβ

= aβ

=⇒

γµ =
∑

γµ · γνγ
ν

=
∑

gµνγν

(2.10)

If you are already familiar with tensors then this may be obvious to you (but was not to me with
only vector background).

Multiplying throughout by γµ, and summing over µ one has:∑
γµ

(
∂ϕ

∂xµ
+

1
2
∂m
∂xµ

v2
)
=

∑
γµ

(
∂m
∂xβ

ẋβgαµ ẋα +mgαµ ẍα
)

+

(∑
γµ

∂

∂xµ

)
ϕ +

1
2

v2
(∑

γµ
∂

∂xµ

)
m =

=
∑ ∂m

∂xβ
ẋβγµγα · γµ ẋα +mγµγα · γµ ẍα

=
∑ ∂m

∂xβ
ẋβγα ẋα +mγα ẍα

(2.11)

Writing:

∇ =
∑

γµ
∂

∂xµ

This is:

∇ϕ +
1
2

v2∇m = v
∑ ∂m

∂xβ
ẋβ +mv̇

However,

(∇m) · v =
(∑

γµ
∂m
∂xµ

)
·
(∑

γν ẋν
)

=
∑

γµ · γν
∂m
∂xµ

ẋν

=
∑

δµν
∂m
∂xµ

ẋν

=
∑ ∂m

∂xµ
ẋµ =

dm
dτ

(2.12)
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That allows for expressing the EOM in strict vector form:

∇ϕ +
1
2

v2∇m = v∇m · v +mv̇. (2.13)

However, there is still an asymmetry here, as one would expect a ṁv term. Regrouping slightly,
and using some algebraic vector manipulation we have:

mv̇ + v∇m · v −
1
2

v2∇m = ∇ϕ

mv̇ +
1
2

v( 2∇m · v − v∇m

2a · b − ba = ab

) =

mv̇ +
1
2

v(∇m)v =

mv̇ +
1
2

(v∇m)v =

mv̇ +
1
2

(2v · ∇m −∇mv)v =

mv̇ + (v · ∇m)v −
1
2

(∇mv)v =

mv̇ + ṁv −
1
2
∇m(vv) =

=⇒

d(mv)
dτ

= mv̇ + ṁv =
1
2
∇mc2 +∇ϕ

= ∇

(
ϕ −

1
2

mc2
)

= ∇

(
ϕ −

1
2

mv2
)

(2.14)

So, after a whole wack of algebra, the end result is to show the proper time variant of the
Lagrangian equations imply that our proper force can be expressed as a (spacetime) gradient.

The caveat is that if the mass is allowed to vary, it also needs to be included in the generalized
potential associated with the equation of motion.
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2.1.1 Summarizing

We took this Lagrangian with kinetic energy and non-velocity dependent potential terms, where
the mass in the kinetic energy term is allowed to vary with position or time. That plus the
presumed proper-time Lagrange equations:

L =
1
2

mv2 + ϕ

∂L

∂xµ
=

d
dτ

∂L

∂ẋµ
,

(2.15)

when followed to their algebraic conclusion together imply that the equation of motion is:

d(mv)
dτ

= ∇L, (2.16)

2.2 examine spatial components for comparison with newtonian limit

Now, in the original version of this document, the signs for all the ϕ terms were inverted. This
was changed since we want agreement with the Newtonian limit, and there is an implied sign
change hiding in the above equations.

Consider, the constant mass case, where the Lagrangian is specified in terms of spatial quan-
tities:

L =
1
2

mv2 + ϕ =
1
2

mγ2(c2 − v2) =
1
2

mγ2c2 − γ2
(
1
2

mv2 − ϕ

)
For |v| << c, γ ≈ 1, so we have a constant term in the Lagrangian of 1

2 mc2 which will not change
the EOM and can be removed. The remainder is our normal kinetic minus potential Lagrangian
(the sign inversion on the entire remaining Lagrangian also will not change the EOM result).

Suppose one picks an orthonormal spacetime frame as given in the example metric tensor of
eq. (2.3). To select our spatial quantities we wedge with γ0.
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For the left hand side of our equation of motion eq. (2.16) we have:

d(mv)
dτ

∧ γ0 =
d(mv)∧ γ0

dt
dt
dτ

=
dp∧ γ0

dt
dt
dτ

=
dt
dτ

d
dt

m(cγ0 +
∑

γi ẋi)∧ γ0

=
dt
dτ

d
dt

m
∑

(γi ∧ γ0)ẋi

=
dt
dτ

d
dt

m
∑

σi ẋi

=
dt
dτ

d
dt

(mvγ)

= γ
d(γp)

dt

(2.17)

Now, looking at the right hand side of the EOM we have (again for the constant mass case
where we expect agreement with our familiar Newtonian EOM):

∇

(
ϕ −

1
2

mv2
)
∧ γ0 = (∇ϕ)∧ γ0

=
∑

γµ ∧ γ0
∂ϕ

∂xµ

=
∑

γi ∧ γ0
∂ϕ

∂xi

= −
∑

γi ∧ γ0
∂ϕ

∂xi

= −
∑

σi
∂ϕ

∂xi

= −∇ϕ

(2.18)

Therefore in the limit |v| << c we have our agreement with the Newtonian EOM:

γ
d(γp)

dt
= −∇ϕ ≈

dp
dt

(2.19)



3U N D E R S TA N D I N G F O U R V E L O C I T Y T R A N S F O R M F RO M R E S T
F R A M E

3.1

[8] writes v = Rγ0R†, as a proper velocity expressed in terms of a rest frame velocity and a
Lorentz boost. This was not clear to me, and would probably be a lot more obvious to me if I
had fully read chapter 5, but in my defense it is a hard read without first getting more familiarity
with basic relativity.

Let us just expand this out to see how this works. First thing to note is that there is an omitted
factor of c, and I will add that back in here, since I am not comfortable enough without it
explicitly for now.

With:

v/c = tanh (α) v̂
R = exp (αv̂/2)

(3.1)

We want to expansion this Lorentz boost exponential (see details section) and apply it to the
rest frame basis vector. Writing C = cosh (α/2), and S = sinh (α/2), we have:

v = R (cγ0)R†

= c (C + v̂S ) γ0 (C − v̂S )

= c (Cγ0 + S v̂γ0) (C − v̂S )

= c
(
C2γ0 + S Cv̂γ0 −CS γ0v̂ − S 2v̂γ0v̂

) (3.2)
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Now, here things can start to get confusing since v̂ is a spatial quantity with vector-like space-
time basis bivectors σi = γiγ0. Factoring out the γ0 term, utilizing the fact that γ0 and σi

anticommute (see below).

v = c
(
C2 + S 2 + 2S Cv̂

)
γ0

= c (cosh (α) + v̂ sinh (α)) γ0

= c cosh (α) (1 + v̂ tanh (α)) γ0

= c cosh (α) (1 + v/c) γ0

= cγ (1 + v/c) γ0

= γ
(
cγ0 +

∑
viγi

)
=

dt
dτ

(
cγ0 +

∑
viγi

)
=

dt
dτ

d
dt

(
ctγ0 +

∑
xiγi

)
=

dt
dτ

d
dt

∑
xµγµ

=
d
dτ

∑
xµγµ

=
dx
dτ

(3.3)

So, we get the end result that demonstrates that a Lorentz boost applied to the rest event vector
x = x0γ0 = ctγ0 directly produces the four velocity for the motion from the new viewpoint. This
makes some intuitive sense, but I do not feel this is necessarily obvious without demonstration.

This also explains how the text is able to use the wedge and dot product ratios with the γ0

basis vector to produce the relative spatial velocity. If one introduces a rest frame proper velocity
of w = d

dt (ctγ0) = cγ0, then one has:

v ·w =
(∑ dxµ

dτ
γµ

)
· (cγ0)

= c2γ

(3.4)
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v∧w =
(∑ dxµ

dτ
γµ

)
∧ (cγ0)

=

(∑ dxi

dτ
γi

)
∧ (cγ0)

= c
∑ dxi

dτ
σi

= c
dt
dτ

∑ dxi

dt
σi

= cγ
∑ dxi

dt
σi

(3.5)

Combining these one has the spatial observer dependent relative velocity:

v∧w
v ·w

=
1
c

∑ dxi

dt
σi =

v
c

(3.6)

3.1.1 Invariance of relative velocity?

What is not clear to me is whether this can be used to determine the relative velocity between
two particles in the general case, when one of them is not a rest frame velocity (time progression
only at a fixed point in space.) The text seems to imply this is the case, so perhaps it is obvious
to them only and not me;)

This can be verified relatively easily for the extreme case, where one boosts both the w, and
v velocities to measure v in its rest frame.

Expressed mathematically this is:

w = cγ0

v = RwR†

v′ = R†vR = R†Rcγ0R†R = cγ0

w′ = R†wR

(3.7)

Now, this last expression for w′ can be expanded brute force as was done initially to calculate v
(and I in fact did that initially without thinking). The end result matches what should have been
the intuitive expectation, with the velocity components all negated in a conjugate like fashion:

w′ = γ
(
cγ0 −

∑
viγi

)
With this result we have:

v′ ·w′ = cγ0 · γ
(
cγ0 −

∑
viγi

)
= γc2
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v′ ∧w′ = cγ0 ∧ γ
(
cγ0 −

∑
viγi

)
= −cγ

∑
viγ0γi

= cγ
∑

viσi

(3.8)

Dividing the two we have the following relative velocity between the two proper velocities:

v′ ∧w′

v′ ·w′
=

1
c

∑
viσi = v/c.

Lo and behold, this is the same as when the first event worldline was in its rest frame, so we have
the same relative velocity regardless of which of the two are observed at rest. The remaining
obvious question is how to show that this is a general condition, assuming that it is.

3.1.2 General invariance?

Intuitively, I would guess that this is fact the case because when only two particles are consid-
ered, the result should be the same independent of which of the two is considered at rest.

Mathematically, I would express this statement by saying that if one has a Lorentz boost that
takes v′ = TvT † to its rest frame, then application of this to both proper velocities leaves both
the wedge and dot product parts of this ratio unchanged:

v ·w =
(
T †v′T

)
·
(
T †w′T

)
=

〈(
T †v′T

) (
T †w′T

)〉
=

〈
T †v′w′T

〉

=
〈
T †v′ ·w′T

〉
+

〈
T †v′ ∧w′T

〉 = 0

= (v′ ·w′)
〈
T †T

〉
= v′ ·w′

(3.9)



3.2 appendix . omitted details from above 21

v∧w =
(
T †v′T

)
∧

(
T †w′T

)
=

〈(
T †v′T

) (
T †w′T

)〉
2

=
〈
T †v′w′T

〉
2

=
〈
T †v′ ·w′T

〉
2

= 0

+
〈
T †v′ ∧w′T

〉
2

= T † (v′ ∧w′) T

(3.10)

FIXME: can not those last T factors be removed somehow?

3.2 appendix . omitted details from above

3.2.1 exponential of a vector

Understanding the vector exponential is a prerequisite above. This is defined and interpreted by
series expansion as with matrix exponentials. Expanding in series the exponential of a vector
x = xx̂, we have:

exp (x) =
∑ x2k

(2k) !
+

∑ x2k+1

(2k + 1) !

=
∑ x2k

(2k) !
+ x̂

∑ x2k+1

(2k + 1) !

= cosh (x) + x̂ sinh (x)

(3.11)

Notationally this can also be written:

exp (x) = cosh (x) + sinh (x)

But doing so will not really help.
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3.2.2 v anticommutes with γ0

vγ0 =
∑

viσiγ0

=
∑

viγiγ0γ0

= −
∑

viγ0γiγ0

= −γ0

∑
viγiγ0

= −γ0

∑
viσ0

= −γ0v

(3.12)



4F O U R V E C T O R D OT P RO D U C T I N VA R I A N C E A N D L O R E N T Z
ROT O R S

4.1

Prof. Ramamurti Shankar’s In the relativity lectures of [28] Prof. Shankar indicates that the four
vector dot product is a Lorentz invariant. This makes some logical sense, but lets demonstrate it
explicitly.

Start with a Lorentz transform matrix between coordinates for two four vectors (omitting the
components perpendicular to the motion) :x1

x0


′

= γ

 1 −β

−β 1


x1

x0


y1

y0


′

= γ

 1 −β

−β 1


y1

y0


Now write out the dot product between the two vectors given the perceived length and time
measurements for the same events in the moving frame:

X′ · Y ′ = γ2
(
(−βx1 + x0)(−βy1 + y0) − (x1 − βx0)(y1 − βy0)

)
= γ2

(
(β2x1y1 + x0y0) + x0y1(−β + β) + x1y0(−β + β) − (x1y1 + β2x0y0)

)
= γ2

(
x0y0(1 − β2) − (1 − β2)x1y1

)
= x0y0 − x1y1

= X · Y

(4.1)

This completes the proof of dot product Lorentz invariance. An automatic consequence of this
is invariance of the Minkowski length.

4.1.1 Invariance shown with hyperbolic trig functions

Dot product or length invariance can also be shown with the hyperbolic representation of the
Lorentz transformation:x1

x0


′

=

 cosh(α) − sinh(α)

− sinh(α) cosh(α)


x1

x0

 (4.2)
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Writing S = sinh(α), and C = cosh(α) for short, this gives:

X′ · Y ′ =
(
(−S x1 +Cx0)(−S y1 +Cy0) − (Cx1 − S x0)(Cy1 − S y0)

)
=

(
(S 2x1y1 +C2x0y0) + x0y1(−S C + S C) + x1y0(−S C + S C) − (C2x1y1 + S 2x0y0)

)
=

(
x0y0(C2 − S 2) − (C2 − S 2)x1y1

)
= x0y0 − x1y1

= X · Y
(4.3)

This is not really any less work.

4.2 geometric product formulation of lorentz transform

We can show the above invariance almost trivially when we write the Lorentz boost in exponen-
tial form. However we first have to show how to do so.

Writing the spacetime bivector γ10 = γ1 ∧ γ0 for short, lets calculate the exponential of this
spacetime bivector, as scaled with a rapidity angle α :

exp(γ10α) =
∑ (γ10α)k

k!
(4.4)

Now, the spacetime bivector has a unit square:

γ10
2 = γ1010 = −γ1001 = −γ11 = 1

so, we can split the sum of eq. (4.4) into even and odd parts, and pull out the common bivector
factor:

exp(γ10α) =
∑ α2k

(2k)!
+ γ10

∑ α2k+1

(2k + 1)!
= cosh(α) + γ10 sinh(α) (4.5)

4.2.1 Spatial rotation

So, this quite a similar form as bivector exponential with a Euclidean metric. For such a space
the bivector had a negative square, just like the complex unit imaginary, which allowed for the
normal trigonometric split of the exponential:

exp(e12θ) =
∑

(−1)k θ2k

(2k)!
+ e12

∑
(−1)k θ2k+1

(2k + 1)!
= cos(θ) + e12 sin(θ) (4.6)
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Now, with the Minkowski metric having a negative square for purely spatial components, how
does a purely spacial bivector behave when squared? Let us try it with

γ12
2 = γ1212 = −γ1221 = γ11 = −1

This also has a square that behaves like the unit imaginary, so we can do spacial rotations with
rotors like we can with Euclidean space. However, we have to invert the sign of the angle when
using a Minkowski metric. Take a specific example of a 90 degree rotation in the x-y plane,
expressed in complex form:

Rπ/2(γ1) = γ1 exp(γ12π/2)

= γ1(0 + γ12)

= −γ2

(4.7)

In general our Rotor equation with a Minkowski (+,−,−,−) metric will be thus be:

Rθ(x) = exp(iθ/2)x exp(−iθ/2) (4.8)

Here i is a spatial bivector (a bivector with negative square), such as γ1 ∧ γ2, and the rotation
sense is with increasing angle from γ1 towards γ2.

4.2.2 Validity of the double sided spatial rotor formula

To demonstrate the validity of eq. (4.8) one has to observe how the unit vectors γµ behave
with respect to commutation, and how that behavior results in either commutation or conjugate
commutation with the exponential rotor. Without any loss of generality one can restrict attention
to a specific example, such as bivector γ12. By inspection, γ0, and γ3 both commute since an
even number of exchanges in position is required for either:

γ0γ12 = γ0 ∧ γ1 ∧ γ2

= γ1 ∧ γ2 ∧ γ0

= γ12γ0

(4.9)

For this reason, application of the double sided rotation does not change any such (perpendicu-
lar) vector that commutes with the rotor:

Rθ(x⊥) = exp(iθ/2)x⊥ exp(−iθ/2)

= x⊥ exp(iθ/2) exp(−iθ/2)

= x⊥

(4.10)
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Now for the basis vectors that lie in the plane of the spatial rotation we have anticommutation:

γ1γ12 = −γ1γ21

= −γ121

= −γ12γ1

(4.11)

γ2γ12 = γ21γ2

= −γ12γ2
(4.12)

Given an understanding of how the unit vectors either commute or anticommute with the bivec-
tor for the plane of rotation, one can now see how these behave when multiplied by a rotor
expressed exponentially:

γµ exp(iθ) = γµ (cos(θ) + i sin(θ)) =

 (cos(θ) + i sin(θ)) γµ if γµ · i = 0

(cos(θ) − i sin(θ)) γµ if γµ · i , 0
(4.13)

The condition γµ · i = 0 corresponds to a spacelike vector perpendicular to the plane of rotation,
or a timelike vector, or any combination of the two, whereas γµ · i , 0 is true for any spacelike
vector that lies completely in the plane of rotation.

Putting this information all together, we now complete the verification that the double sided
rotor formula leaves the perpendicular spacelike or the timelike components untouched. For
for purely spacelike vectors in the plane of rotation we recover the single sided complex form
rotation as illustrated by the following x-y plane rotation:

Rθ(x∥) = exp(γ12θ/2)x∥ exp(−γ12θ/2)

= x∥ exp(−γ12θ/2) exp(−γ12θ/2)

= x∥ exp(−γ12θ)

(4.14)

4.2.3 Back to time space rotation

Now, like we can express a spatial rotation in exponential form, we can do the same for the
hyperbolic “rotation” matrix of eq. (4.2). Direct expansion 1 of the product is the easiest way to
see that this is the case:(

γ1x1 + γ0x0
)

exp(γ10α) =
(
γ1x1 + γ0x0

)
(cosh(α) + γ10 sinh(α)) (4.15)

1 The paper “Generalized relativistic velocity addition with spacetime algebra”,
http://arxiv.org/pdf/physics/0511247.pdf derives the bivector form of this Lorentz boost directly in an inter-
esting fashion. Simple relativistic arguments are used that are quite similar to those of Einstein in his “Relativity,
the special and general theory” appendix. This paper is written in a form that requires you to work out many of the
details yourself (likely for brevity). However, once that extra work is done, I found the first half of that paper quite
readable.
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(
γ1x1 + γ0x0

)
exp(γ10α)

= γ1
(
x1 cosh(α) − x0 sinh(α)

)
+ γ0

(
x0 cosh(α) − x1 sinh(α)

) (4.16)

As with the spatial rotation, full characterization of this exponential rotation operator, in both
single and double sided form requires that one looks at how the various unit vectors commute
with the unit bivector. Without loss of generality one can restrict attention to a specific case, as
done with the γ10 above.

As in the spatial case, γ2, and γ3 both commute with γ10 = γ1 ∧ γ0. Example:

γ2γ10 = γ2 ∧ γ1 ∧ γ0 = γ1 ∧ γ0 ∧ γ2 = γ10γ2

Now, consider each of the basis vectors in the spacetime plane.

γ0γ10 = γ010 = γ01γ0 = −γ10γ0

γ1γ10 = γ110 = −γ101 = −γ10γ1

Both of the basis vectors in the spacetime plane anticommute with the bivector that describes
the plane, and as a result we have a conjugate change in the exponential comparing left and
right multiplication as with a spatial rotor. Summarizing for the general case by introducing a
spacetime rapidity plane described by a bivector
α = α̂α, we have:

γµ exp(α) = γµ (cosh(α) + α̂ sinh(α))

=

 (cosh(α) + α̂ sinh(α)) γµ if γµ · α̂ = 0

(cosh(α) − α̂ sinh(α)) γµ if γµ · α̂ , 0

(4.17)

Observe the similarity between eq. (4.13), and eq. (4.17) for spatial and spacetime rotors. Re-
gardless of whether the plane is spacelike, or a spacetime plane we have the same rule:

γµ exp(B) =

 exp(B)γµ if γµ · B̂ = 0

exp(−B)γµ if γµ · B̂ , 0
(4.18)

Here, if B is a spacelike bivector (B2 < 0) we get trigonometric functions generated by the
exponentials, and if it represents the spacetime plane B2 > 0 we get the hyperbolic functions.
As with the spatial rotor formulation, we have the same result for the general signature bivector,
and can write the generalized spacetime or spatial rotation as:

RB(x) = exp(−B/2)x exp(B/2) (4.19)
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Some care is required assigning meaning to the bivector angle B. We have seen that this is an
negatively oriented spatial rotation in the B̂ plane when spacelike. How about for the spacetime
case? Lets go back and rewrite eq. (4.16) in terms of vector relations, with v = vv̂

(
x1v̂ + x0γ0

)  1√
1 − |(v/c)|2

+
(v/c)γ0√
1 − |(v/c)|2


= v̂γ

(
x1 − x0v/c

)
+ γ0γ

(
x0 − x1v/c

) (4.20)

This allows for the following identification:

cosh(α) + v̂γ0 sinh(α) = exp(v̂γ0α) =
1 + (v/c)γ0√

1 − |v/c|2

which gives us the rapidity bivector (B above) in terms of the values we are familiar with:

v̂γ0α = log

 1 + (v/c)γ0√
1 − |v/c|2


Or,

B = v̂γ0α = tanh−1(v/c)v̂γ0

Now since |v/c| < 1, the hyperbolic inverse tangent here can be expanded in (the slowly conver-
gent) power series:

tanh−1(x) =
∑
k=0

x2k+1

2k + 1

Observe that this has only odd powers, and ((v/c)γ0)2k+1 = v̂γ0(v/c)2k+1. This allows for the
notational nicety of working with the spacetime bivector directly instead of only its magnitude:

B = tanh−1((v/c)γ0) (4.21)

4.2.4 FIXME

Revisit the equivalence of the two identities above. How can one get from the log expression to
the hyperbolic inverse tangent directly?
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4.2.5 Apply to dot product invariance

With composition of rotation and boost rotors we can form a generalized Lorentz transformation.
For example application of a rotation with rotor R, to a boost with spacetime rotor L0, we get a
combined more general transformation:

L(x) = R(L0xL0
†)R†

In both cases, the rotor and its reverse when multiplied are identity:

1 = RR† = LL†

It is not hard to see one can also compose an arbitrary set of rotations and boosts in the same
fashion. The new rotor will also satisfy LL† = 1.

Application of such a rotor to a four vector we have:

X′ = LXL†

Y ′ = LYL†

X′ · Y ′ = (LXL†) · (LYL†)

=
〈
LXL†LYL†

〉
=

〈
LXYL†

〉
=

〈
L(X · Y)L†

〉
+

〈
L(X ∧ Y)L†

〉
= (X · Y)

〈
LL†

〉
= X · Y

(4.22)

It is also clear that the four bivector X ∧ Y will also be Lorentz invariant. This also implies that
the geometric product of two four vectors XY will also be Lorentz invariant.

UPDATE (Aug 14): I do not recall my reasons for thinking that the bivector invariance was
clear initially. It does not seem so clear now after the fact so I should have written it down.
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5.1 motivation

We have observed that the wave equation is Lorentz invariant, and conversely that invariance
of the form of the wave equation under linear transformation for light can be used to calculate
the Lorentz transformation. Specifically, this means that we require the equations of light (wave
equation) retain its form after a change of variables that includes a (possibly scaled) translation.
The wave equation should have no mixed partial terms, and retain the form:(

∇
2 − ∂2

ct

)
F =

(
∇
′2 − ∂2

ct′
)

F = 0

Having expressed the spacetime gradient with a (STA) Minkowski basis, and knowing that the
Maxwell equation written using the spacetime gradient is Lorentz invariant:

∇F = J,

we therefore expect that the square root of the wave equation (Laplacian) operator is also
Lorentz invariant. Here this idea is explored, and we look at how the spacetime gradient be-
haves under Lorentz transformation.

5.1.1 Lets do it

Our spacetime gradient is

∇ =
∑

γµ
∂

∂xµ

Under Lorentz transformation we can transform the x1 = x, and x0 = ct coordinates: x′

ct′

 = γ
 1 −β

−β 1


 x

ct


Set c = 1 for convenience, and use this to transform the partials:

∂

∂x
=
∂x′

∂x
∂

∂x′
+
∂t′

∂x
∂

∂t′

= γ

(
∂

∂x′
− β

∂

∂t′

) (5.1)
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∂

∂t
=
∂x′

∂t
∂

∂x′
+
∂t′

∂t
∂

∂t′

= γ

(
−β

∂

∂x′
+

∂

∂t′

) (5.2)

Inserting this into our expression for the gradient we have

∇ = γ0 ∂

∂t
+ γ1 ∂

∂x
+ γ2 ∂

∂y
+ γ3 ∂

∂z

= γ0γ

(
−β

∂

∂x′
+

∂

∂t′

)
+ γ1γ

(
∂

∂x′
− β

∂

∂t′

)
+ γ2 ∂

∂y
+ γ3 ∂

∂z
.

(5.3)

Grouping by the primed partials this is:

∇ = γ
(
γ0 − βγ1

) ∂

∂t′
+ γ

(
γ1 − βγ0

) ∂

∂x′
+ γ2 ∂

∂y
+ γ3 ∂

∂z
. (5.4)

Lo and behold, the basis vectors with respect to the new coordinates appear to themselves
transform as a Lorentz pair. Specifically:γ1′

γ0′

 = γ
 1 −β

−β 1


γ1

γ0


Now this is a bit curious looking since these new basis vectors are a funny mix of the origi-
nal time and space basis vectors. Observe however that these linear combinations of the basis
vectors γ0′, and γ1′ do behave just as adequately as timelike and spacelike basis vectors:

γ0′γ0′ = γ2
(
−βγ1 + γ0

) (
−βγ1 + γ0

)
= γ2

(
−β2 + 1 − βγ0γ1 − βγ1γ0

)

= γ2(−β2 + 1 + βγ1γ0 − βγ1γ0

= 0

)

= 1

(5.5)

and for the transformed “spacelike” vector, it squares like a spacelike vector:

γ1′γ1′ = γ2
(
γ1 − βγ0

) (
γ1 − βγ0

)
= γ2

(
−1 + β2 − βγ0γ1 − βγ1γ0

)

= γ2(−1 + β2 + βγ1γ0 − βγ1γ0

= 0

)

= −1

(5.6)
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The conclusion is that like the wave equation, its square root, the spacetime gradient is also
Lorentz invariant, and to achieve this invariance we transform both the coordinates and the
basis vectors (there was no need to transform the basis vectors for the wave equation since it is
a scalar equation).

In fact, this gives a very interesting way to view the Lorentz transform. It is not just notational
that we can think of the spacetime gradient as one of the square roots of the wave equation. Like
the vector square root of a scalar there are infinitely many such roots, all differing by an angle
or rotation in the vector space:

(RnR†)2 = 1

Requiring the mixed signature (Minkowski) metric for the space requires only that we need a
slightly different meaning for any of the possible rotations applied to the vector.

5.1.2 transform the spacetime bivector

I am not sure of the significance of the following yet, but it is interesting to note that the space-
time bivector for the transformed coordinate pair is also invariant:

γ1′γ0′ = γ2
(
γ1 − βγ0

) (
−βγ1 + γ0

)
= γ2

(
β − β + β2γ0γ1 + γ1γ0

)
= γ2

(
1 − β2

)
γ1γ0

= γ1γ0

(5.7)

We can probably use this to figure out how to transform bivector quantities like the electromag-
netic field F.
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6.1 some rough notes on reading of gravitoelectromagnetism review

I found the GEM equations interesting, and explored the surface of them slightly. Here are some
notes, mostly as a reference for myself ... looking at the GEM equations mostly generates ques-
tions, especially since I do not have the GR background to understand where the potentials (ie:
what is that stress energy tensor Tµν) nor the specifics of where the metric tensor (perturbation
of the Minkowski metric) came from.

6.2 definitions

The article [21] outlines the GEM equations, which in short are
Scalar and potential fields

Φ ≈
GM

r
, A ≈

G
c

J × x
r3

(6.1)

Gauge condition

1
c
∂Φ
∂t
+∇ ·

(
1
2

A
)
= 0. (6.2)

GEM fields

E = −∇Φ −
1
c
∂

∂t

(
1
2

B
)
, B = ∇ ×A (6.3)

and finally the Maxwell-like equations are

∇ ×E = −
1
c
∂

∂t

(
1
2

B
)

∇ ·

(
1
2

B
)
= 0

∇ ·E = 4πGρ

∇ ×

(
1
2

B
)
=

1
c
∂E
∂t
+

4πG
c

J

(6.4)
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6.3 sta form

As with Maxwell’s equations a Clifford algebra representation should be possible to put this
into a more symmetric form. Combining the spatial div and grads, following conventions from
[8] we have

∇E = 4πGρ +
1
c
∂

∂t

(
1
2

IB
)

∇

(
1
2

IB
)
=

1
c
∂E
∂t
+

4πG
c

J
(6.5)

Or (
∇ −

1
c
∂

∂t

) (
E +

1
2

IB
)
=

4πG
c

(cρ + J) (6.6)

Left multiplication with γ0, using a time positive metric signature ((γ0)2 = 1),(
∇ −

1
c
∂

∂t

)
γ0

(
−E +

1
2

IB
)
=

4πG
c

(
cργ0 + Jiγi

)
(6.7)

But
(
∇ − 1

c
∂
∂t

)
γ0 = γi∂i − γ0∂0 = −γ

µ∂µ = −∇. Introduction of a four vector mass density
J = cργ0 + Jiγi = Jµγµ, and a bivector field F = E − 1

2 IB this is

∇F = −
4πG

c
J (6.8)

The gauge condition suggests a four potential V = Φγ0 + Aγ0 = Vµγµ, where V0 = Φ, and
V i = Ai/2. This merges the space and time parts of the gauge condition

∇ · V = γµ∂µ · γνVν = ∂µVµ =
1
c
∂Φ
∂t
+

1
2
∂iAi. (6.9)

It is reasonable to assume that F = ∇∧ V as in electromagnetism. Let us see if this is the case

E − IB/2 = −∇Φ −
1
c
∂

∂t

(
1
2

B
)
− I∇ ×A/2

= −γi∂iγ0V0 −
1
2
∂0Aiγiγ0 +∇∧A/2

= γi∂iγ0V0 + γ0∂0γiAi/2 − γi∂i ∧ γ jV j

= γi∂iγ0V0 + γ0∂0γiV i + γi∂i ∧ γ jV j

= γµ∂µ ∧ γνVν

= ∇∧ V

(6.10)
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Okay, so in terms of potential we have the form as Maxwell’s equation

∇(∇∧ V) = −
4πG

c
J. (6.11)

With the gauge condition ∇ · V = 0, this produces the wave equation

∇2V = −
4πG

c
J. (6.12)

In terms of the author’s original equation 1.2 it appears that roughly Vµ = h0µ, and Jµ ∝ T0µ.
This is logically how he is able to go from that equation to the Maxwell form since both have

the same four-vector wave equation form (when Ti j ≈ 0). To give the potentials specific values
in terms of mass and current distribution appears to be where the retarded integrals are used.

The author expresses T µν in terms of ρ, and mass current j, but the field equations are in
terms of Tµν. What metric tensor is used to translate from upper to lower indices in this case. ie:
is it gµν, or ηµν ?

6.4 lagrangians

6.4.1 Field Lagrangian

Since the electrodynamic equation and corresponding field Lagrangian is

∇(∇∧ A) =
J
ϵ0c

L = −
ϵ0c
2

(∇∧ A)2 + A · J
(6.13)

Then, from eq. (6.11), the GEM field Lagrangian in covariant form is

L =
c

8πG
(∇∧ V)2 + V · J (6.14)

Writing Fµν = ∂µVν − ∂νVµ, the scalar part of this Lagrangian is:

L = −
c

16πG
FµνFµν + VσJσ (6.15)

Is this expression hiding in the Einstein field equations?
What is the Lagrangian for Newtonian gravity, and how do they compare?
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6.4.2 Interaction Lagrangian

The metric (equation 1.4) in the article is given to be

ds2 = −c2
(
1 − 2

Φ
c2

)
dt2 +

4
c
(A · dx) dt +

(
1 + 2

Φ
c2

)
δi jdxidx j

=⇒
∣∣∣ds2

∣∣∣ = c2(dτ)2 = (dx0)2 −
∑

i

(dxi)2 − 2
V0

c2 (dx0)2 −
8
c2 Vidxidx0 − 2

V0

c2 δi jdxidx j
(6.16)

With v = γµdxµ/dτ, the Lagrangian for interaction is

L =
1
2

m
∣∣∣∣∣ds
dτ

∣∣∣∣∣2
=

1
2

mc2

=
1
2

mv2 − 2
mV0

c2

∑
µ

(ẋµ)2 −
8m
c2 Vi ẋ0 ẋi

(6.17)

L =
1
2

mv2 − 2m

V0

∑
µ

(ẋµ/c)2 + 4Vi(ẋ0/c)(ẋi/c)

 (6.18)

Now, unlike the Lorentz force Lagrangian

L =
1
2

mv2 + qA · v/c, (6.19)

the Lagrangian of eq. (6.18) is quadratic in powers of ẋµ. There are remarks in the article saying
that the non-covariant Lagrangian used to arrive at the Lorentz force equivalent was a first order
approximation. Evaluation of this interaction Lagrangian does not produce anything like the
ṗµ = κFµν ẋν that we see in electrodynamics.

The calculation is not interesting but the end result for reference is

ṗ =
4m
c2

(
(v · ∇V0)γµvµ + 2(v · ∇Vi)(viγ0 + v0γi)

)
+

4m
c2

(
V0γ

µaµ + 2Vi(aiγ0 + a0γi)
)

−
2m
c2

∑
µ

(vµ)2∇V0 + 4v0vi∇Vi


(6.20)

This can be simplified somewhat, but no matter what it will be quadratic in the velocity coordi-
nates.

The article also says that the line element is approximate. Has some of what is required for a
more symmetric covariant interaction proper force been discarded?
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6.5 conclusion

The ideas here are interesting. At a high level, roughly, as I see it, the equation

∇2h0µ = T0µ (6.21)

has exactly the same form as Maxwell’s equations in covariant form, so you can define an
antisymmetric field tensor equation in the same way, treating these elements of h, and the cor-
responding elements of T as a four vector potential and mass current.

That said, I do not have the GR background to know understand the introduction. For exam-
ple, how to actually arrive at 1.2 or how to calculated your metric tensor in equation 1.4. I would
have expected 1.4 to have a more symmetric form like the covariant Lorentz force Lagrangian
(v2 + kA.v), since you can get a Lorentz force like equation out of it. Because of the quadratic
velocity terms, no matter how one varies that metric with respect to s as a parameter, one can-
not get anything at all close to the electrodynamics Lorentz force equation mẍµ = qFµνẋν, so
the correspondence between electromagnetism and GR breaks down once one considers the
interaction.
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7.1 transform of angular velocity four vector

It was possible to derive the Lorentz boost matrix by requiring that the wave equation operator

∇2 =
1
c2

∂2

∂t2 −∇
2 (7.1)

retain its form under linear transformation (1). Applying spatial Fourier transforms (61), one
finds that solutions to the wave equation

∇2ψ(t, x) = 0 (7.2)

Have the form

ψ(t, x) =
∫

A(k)ei(k·x−ωt)d3k (7.3)

Provided that ω = ±c|k|. Wave equation solutions can therefore be thought of as continuously
weighted superpositions of constrained fundamental solutions

ψ = ei(k·x−ωt)

c2k2 = ω2 (7.4)

The constraint on frequency and wave number has the look of a Lorentz square

ω2 − c2k2 = 0 (7.5)

Which suggests that in additional to the spacetime vector

X = (ct, x) = xµγµ (7.6)

evident in the wave equation fundamental solution, we also have a frequency-wavenumber four
vector

K = (ω/c,k) = kµγµ (7.7)

The pair of four vectors above allow the fundamental solutions to be put explicitly into covariant
form

K · X = ωt − k · x = kµxµ (7.8)
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ψ = e−iK·X (7.9)

Let us also examine the transformation properties of this fundamental solution, and see as a side
effect that K has transforms appropriately as a four vector.

0 = ∇2ψ(t, x)

= ∇′
2ψ(t′, x′)

= ∇′
2ei(x′·k′−ω′t′)

= −

(
ω′2

c2 − k′2
)

ei(x′·k′−ω′t′)

(7.10)

We therefore have the same form of frequency wave number constraint in the transformed frame
(if we require that the wave function for light is unchanged under transformation)

ω′2 = c2k′2 (7.11)

Writing this as

0 = ω2 − c2k2 = ω′2 − c2k′2 (7.12)

singles out the Lorentz invariant nature of the (ω,k) pairing, and we conclude that this pairing
does indeed transform as a four vector.

7.2 application of one dimensional boost

Having attempted to justify the four vector nature of the wave number vector K, now move on
to application of a boost along the x-axis to this vector.ω′ck′

 = γ
 1 −β

−β 1


ωck


=

 ω − vk

ck − βω


(7.13)

We can take ratios of the frequencies if we make use of the dependency between ω and k.
Namely, ω = ±ck. We then have

ω′

ω
= γ(1 ∓ β)

=
1 ∓ β√
1 − β2

=
1 ∓ β√

1 − β
√

1 + β

(7.14)
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For the positive angular frequency this is

ω′

ω
=

√
1 − β√
1 + β

(7.15)

and for the negative frequency the reciprocal.
Deriving this with a Lorentz boost is much simpler than the time dilation argument in wikipedia

doppler article [32]. EDIT: Later found exactly the above boost argument in the wiki k-vector
article [30].

What is missing here is putting this in a physical context properly with source and reciever
frequencies spelled out. That would make this more than just math.
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8.1 motivation

In [23] a Poincare transformation is used to develop the symmetric stress energy tensor directly,
in contrast to the non-symmetric canonical stress energy tensor that results from spacetime
translation.

Attempt to decode one part of this article, the use of a Poincare transformation.

8.2 incremental transformation in ga form

Equation (11) in the article, is labeled an infinitesimal Poincare transformation

x′µ = x′µ + ϵµνxν + ϵµ (8.1)

It is stated that an antisymmetrization condition ϵµν = −ϵνµ. This is somewhat confusing since
the infinitesimal transformation is given by a mixed upper and lower index tensor. Due to the
antisymmetry perhaps this all a coordinate statement of the following vector to vector linear
transformation

x′ = x + ϵ + A · x (8.2)

This transformation is less restricted than a plain old spacetime transformation, as it also con-
tains a projective term, where x is projected onto the spacetime (or spatial) plane A (a bivector),
plus a rotation in that plane.

Writing as usual

x = γµxµ (8.3)

So that components are recovered by taking dot products, as in

xµ = x · γµ (8.4)

For the bivector term, write

A = c∧ d = cαdβ(γα ∧ γβ) (8.5)



46 poincare transformations

For

(A · x) · γµ = cαdβxσ((γα ∧ γβ) · γσ) · γµ

= cαdβxσ(δαµδβσ − δβµδασ)

= (cµdσ − cσdµ)xσ

(8.6)

This allows for an identification ϵµσ = cµdσ − cσdµ which is antisymmetric as required. With
that identification we can write eq. (8.1) via the equivalent vector relation eq. (8.2) if we write

ϵµσxσ = (cµdσ − cσdµ)xσ (8.7)

Where ϵµσ is defined implicitly in terms of components of the bivector A = c∧ d.
Is this what a Poincare transformation is? The Poincare Transformation article suggests not.

This article suggests that the Poincare transformation is a spacetime translation plus a Lorentz
transformation (composition of boosts and rotations). That Lorentz transformation will not be
antisymmetric however, so how can these be reconciled? The key is probably the fact that this
was an infinitesimal Poincare transformation so lets consider a Taylor expansion of the Lorentz
boost or rotation rotor, considering instead a transformation of the following form

x′ = x + ϵ + RxR̃

RR̃ = 1
(8.8)

In particular, let us look at the Lorentz transformation in terms of the exponential form

R = eIθ/2 (8.9)

Here θ is either the angle of rotation (when the bivector is a unit spatial plane such as I =
γk ∧ γm), or a rapidity angle (when the bivector is a unit spacetime plane such as I = γk ∧ γ0).

Ignoring the translation in eq. (8.8) for now, to calculate the first order term in Taylor series
we need

dx′

dθ
=

dR
dθ

xR̃ + Rx
dR̃
dθ

=
dR
dθ

R̃RxR̃ + RxR̃R
dR̃
dθ

=
1
2

(Ωx′ + x′Ω̃)

(8.10)

where

1
2

Ω =
dR
dθ

R̃ (8.11)

Now, what is the grade of the product Ω? We have both dR/dθ and R in {
∧0 ⊕

∧2} so the product
can only have even grades Ω ∈ {

∧0 ⊕
∧2 ⊕

∧4}, but the unitary constraint on R restricts this

http://mathworld.wolfram.com/PoincareTransformation.html
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Since RR̃ = 1 the derivative of this is zero

dR
dθ

R̃ + R
dR̃
dθ
= 0 (8.12)

Or

dR
dθ

R̃ = −
(
dR
dθ

R̃
)̃

(8.13)

Antisymmetry rules out grade zero and four terms, leaving only the possibility of grade 2. That
leaves

dx′

dθ
=

1
2

(Ωx′ − x′Ω) = Ω · x′ (8.14)

And the first order Taylor expansion around θ = 0 is

x′(dθ) ≈ x′(θ = 0) + (Ωdθ) · x′

= x + (Ωdθ) · x′
(8.15)

This has close to the postulated form in eq. (8.2), but differs in one notable way. The dot product
with the antisymmetric form A = 1

2
dR
dθ R̃dθ is a dot product with x′ and not x! One can however

invert the identity writing x in terms of x′ (to first order)

x = x′ − (Ωdθ) · x′ (8.16)

Replaying this argument in fast forward for the inverse transformation should give us a relation
for x′ in terms of x and the incremental Lorentz transform

x′ = RxR̃

=⇒

x = R̃x′R

(8.17)

dx
dθ
=

dR̃
dθ

RR̃x′R + R̃x′RR̃
dR
dθ

=

(
2

dR̃
dθ

R
)
· x

(8.18)

So we have our incremental transformation given by

x′ = x −
(
2

dR̃
dθ

Rdθ
)
· x (8.19)
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8.3 consider a specific infinitesimal spatial rotation

The signs and primes involved in arriving at eq. (8.19) were a bit confusing. To firm things up a
bit considering a specific example is called for.

For a rotation in the x, y plane, we have

R = eγ1γ2θ/2

x′ = RxR̃
(8.20)

Here also it is easy to get the signs wrong, and it is worth pointing out the sign convention
picked here for the Dirac basis is γ0

2 = −γk
2 = 1. To verify that R does the desired job, we have

Rγ1R̃ = γ1R̃2

= γ1eγ2γ1θ

= γ1(cos θ + γ2γ1 sin θ)

= γ1(cos θ − γ1γ2 sin θ)

= γ1 cos θ + γ2 sin θ

(8.21)

and

Rγ2R̃ = γ2R̃2

= γ2eγ2γ1θ

= γ2(cos θ + γ2γ1 sin θ)

= γ2 cos θ − γ1 sin θ

(8.22)

For γ3 or γ0, the quaternion R commutes, so we have

Rγ3R̃ = RR̃γ3 = γ3

Rγ0R̃ = RR̃γ0 = γ0
(8.23)

(leaving the perpendicular basis directions unchanged).
Summarizing the action on the basis vectors in matrix form this is

γ0

γ1

γ2

γ3


→


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1




γ0

γ1

γ2

γ3


(8.24)

Observe that the basis vectors transform with the transposed matrix to the coordinates, and we
have

γ0x0 + γ1x1 + γ2x2 + γ3x3 → γ0x0 + x1(γ1 cos θ + γ2 sin θ) + x2(γ2 cos θ − γ1 sin θ) + γ3x3
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(8.25)

Dotting x′µ = x′ · γµ we have

x0 → x0

x1 → x1 cos θ − x2 sin θ

x2 → x1 sin θ + x2 cos θ

x3 → x3

(8.26)

In matrix form this is the expected and familiar rotation matrix in coordinate form
x0

x1

x2

x3


→


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1




x0

x1

x2

x3


(8.27)

Moving on to the initial verification we have

2
dR̃
dθ
= 2

d
dθ

eγ2γ1θ/2

= γ1γ2eγ2γ1θ/2
(8.28)

So we have

2
dR̃
dθ

R = γ2γ1eγ2γ1θ/2eγ1γ2θ/2

= γ2γ1

(8.29)

The antisymmetric form ϵµν in this case therefore appears to be nothing more than the unit bivec-
tor for the plane of rotation! We should now be able to verify the incremental transformation
result from eq. (8.19), which is in this specific case now calculated to be

x′ = x + dθ(γ1γ2) · x (8.30)

As a final check let us look at the action of rotation part of the transformation eq. (8.30) on the
coordinates xµ. Only the x1 and x2 coordinates need be considered since there is no projection
of γ0 or γ3 components onto the plane γ1γ2.

dθ(γ1γ2) · (x1γ1 + x2γ2) = dθ
〈
γ1γ2(x1γ1 + x2γ2)

〉
1

= dθ(γ2x1 − γ1x2)
(8.31)
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Now compare to the incremental transformation on the coordinates in matrix form. That is

δR = dθ
d
dθ


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
θ=0

= dθ


0 0 0 0

0 − sin θ − cos θ 0

0 cos θ − sin θ 0

0 0 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
θ=0

= dθ


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0



(8.32)

So acting on the coordinate vector

δR = dθ


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0




x0

x1

x2

x3



= dθ


0

−x2

x1

0



(8.33)

This is exactly what we got above with the bivector dot product. Good.

8.4 consider a specific infinitesimal boost

For a boost along the x axis we have

R = eγ0γ1α/2

x′ = RxR̃
(8.34)
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Verifying, we have

x0γ0 → x0(coshα + γ0γ1 sinhα)γ0

= x0(γ0 coshα − γ1 sinhα)
(8.35)

x1γ1 → x1(coshα + γ0γ1 sinhα)γ1

= x1(γ1 coshα − γ0 sinhα)
(8.36)

Dot products recover the familiar boost matrix
x0

x1

x2

x3



′

=


coshα − sinhα 0 0

− sinhα coshα 0 0

0 0 1 0

0 0 0 1




x0

x1

x2

x3


(8.37)

Now, how about the incremental transformation given by eq. (8.19). A quick calculation shows
that we have

x′ = x + dα(γ0γ1) · x (8.38)

Just like the eq. (8.30) case for a rotation in the xy plane, the antisymmetric form is again the
unit bivector of the rotation plane (this time the unit bivector in the spacetime plane of the
boost.)

This completes the examination of two specific incremental Lorentz transformations. It is
clear that the result will be the same for an arbitrarily oriented bivector, and the original guess
eq. (8.2) of a geometric equivalent of tensor relation eq. (8.1) was correct, provided that A is a
unit bivector scaled by the magnitude of the incremental transformation.

The specific case not treated however are those transformations where the orientation of the
bivector is allowed to change. Parameterizing that by angle is not such an obvious procedure.

8.5 in tensor form

For an arbitrary bivector A = a∧ b, we can calculate ϵσα. That is

ϵσαxα = dθ
((aµγµ ∧ bνγν) · (xαγα)) · γσ∣∣∣((aµγµ)∧ (bνγν)) · ((aαγα)∧ (bβγβ))

∣∣∣1/2
=

aσbα − aαbσ∣∣∣aµbν(aνbµ − aµbν)
∣∣∣1/2 xα

(8.39)
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So we have

ϵσα = dθ
aσbα − aαbσ∣∣∣aµbν(aνbµ − aµbν)

∣∣∣1/2 (8.40)

The denominator can be subsumed into dθ, so the important factor is just the numerator, which
encodes an incremental boost or rotational in some arbitrary spacetime or spatial plane (respec-
tively). The associated antisymmetry can be viewed as a consequence of the bivector nature of
the rotor derivative rotor product.
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A L G E B R A

9.1 on different ways of expressing maxwell’s equations

One of the most striking applications of the geometric product is the ability to formulate the
eight Maxwell’s equations in a coherent fashion as a single equation.

This is not a new idea, and this has been done historically using formulations based on quater-
nions ( 1910. dig up citation). A formulation in terms of antisymmetric second rank tensors Fµν

and Gµν (See: wiki:Formulation of Maxwell’s equations in special relativity) reduces the eight
equations to two, but also introduces complexity and obfuscates the connection to the physically
measurable quantities.

A formulation in terms of differential forms (See: wiki:Maxwell’s equations) is also possible.
This does not have the complexity of the tensor formulation, but requires the electromagnetic
field to be expressed as a differential form. This is arguably strange given a traditional vector
calculus education. One also does not have to integrate a field in any fashion, so what meaning
should be given to a electrodynamic field as a differential form?

9.1.1 Introduction of complex vector electromagnetic field

To explore the ideas, the starting point is the traditional set of Maxwell’s equations

∇ ·E =
ρ

ϵ0
(9.1)

∇ ·B = 0 (9.2)

∇×E +
∂B
∂t
= 0 (9.3)

c2∇×B −
∂E
∂t
=

J
ϵ0

(9.4)
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It is customary in relativistic treatments of electrodynamics to introduce a four vector (x, y, z, ict).
Using this as a hint, one can write the time partials in terms of ict and regrouping slightly

∇ ·E =
ρ

ϵ0
(9.5)

∇ · (icB) = 0 (9.6)

∇×E +
∂(icB)
∂(ict)

= 0 (9.7)

∇× (icB) +
∂E
∂(ict)

= i
J
ϵ0c

(9.8)

There is no use of geometric or wedge products here, but the opposing signs in the two sets of
curl and time partial equations is removed. The pairs of equations can be added together without
loss of information since the original equations can be recovered by taking real and imaginary
parts.

∇ · (E + icB) =
ρ

ϵ0
(9.9)

∇× (E + icB) +
∂(E + icB)
∂(ict)

= i
J
ϵ0c

(9.10)

It is thus natural to define a combined electrodynamic field as a complex vector, expressing the
natural orthogonality of the electric and magnetic fields

F = E + icB. (9.11)

The electric and magnetic fields can be recovered from this composite field by taking real and
imaginary parts respectively, and we can now write Maxwell’s equations in terms of this single
electrodynamic field

∇ · F =
ρ

ϵ0
(9.12)

∇× F +
∂F
∂(ict)

= i
J
ϵ0c

(9.13)
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9.1.2 Converting the curls in the pair of Maxwell’s equations for the electrodynamic field to
wedge and geometric products

The above manipulations didn’t make any assumptions about the structure of the “imaginary”
denoted i above. What was implied was a requirement that i2 = −1, and that i commutes with
vectors. Both of these conditions are met by the use of the pseudoscalar for 3D Euclidean space
e1e2e3. This is usually denoted I and we’ll now switch notations for clarity.

With multiplication of the second by a I factor to convert to a wedge product representation
the remaining pair of equations can be written

∇ · F =
ρ

ϵ0
(9.14)

I∇× F +
1
c
∂F
∂t
= −

J
ϵ0c

(9.15)

This last, in terms of the geometric product is,

∇∧ F +
1
c
∂F
∂t
= −

J
ϵ0c

(9.16)

These equations can be added without loss

∇ · F +∇∧ F +
1
c
∂F
∂t
=
ρ

ϵ0
−

J
ϵ0c

(9.17)

Leading to the end result(
1
c
∂

∂t
+∇

)
F =

1
ϵ0

(
ρ −

J
c

)
(9.18)

Here we have all of Maxwell’s equations as a single differential equation. This gives a hint
why it is hard to separately solve these equations for the electric or magnetic field components
(the partials of which are scattered across the original eight different equations.) Logically the
electric and magnetic field components have to be kept together.

Solution of this equation will require some new tools. Minimally, some relearning of existing
vector calculus tools is required.

9.1.3 Components of the geometric product Maxwell equation

Explicit expansion of this equation, again using I = e1e2e3, will yield a scalar, vector, bivector,
and pseudoscalar components, and is an interesting exercise to verify the simpler field equation
really describes the same thing.(

1
c
∂

∂t
+∇

)
F =

1
c
∂E
∂t
+ I

1
c
∂B
∂t
+∇ ·E +∇∧E +∇ · IB +∇∧ IB (9.19)
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The imaginary part of the field can be multiplied out as bivector components explicitly

IB = e1e2e3(e1B1 + e2B2 + e3B3)

= e2e3B1 + e3e1B2 + e1e2B3
(9.20)

which allows for direct calculation of the following

∇∧ IB = I∇ ·B (9.21)

∇ · IB = −∇ ×B. (9.22)

These can be demonstrated by reducing ⟨∇IB⟩3, and ⟨∇IB⟩1 respectively. Using these identities
and writing the electric field curl term in terms of the cross product

∇∧E = I∇×E, (9.23)

allows for grouping of real and imaginary scalar and real and imaginary vector (bivector) com-
ponents

(∇ ·E) + I (∇ ·B) +
(
1
c
∂E
∂t
−∇ ×B

)
+ I

(
1
c
∂B
∂t
+∇×E

)
(9.24)

=
ρ

ϵ0
+ I (0) +

(
−

J
ϵ0c

)
+ I0. (9.25)

Comparing each of the left and right side components recovers the original set of four (or eight
depending on your point of view) Maxwell’s equations.
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10.1

Having observed and demonstrated that the Lorentz transformation is a natural consequence
of requiring the electromagnetic wave equation retains the form of the wave equation under
change of space and time variables that includes a velocity change in one spacial direction.

Lets step back and look at Maxwell’s equations in more detail. In particular looking at how
we get from integral to differential to GA form. Some of this is similar to the approach in GAFP,
but that text is intended for more mathematically sophisticated readers.

We start with the equations in SI units:∫
S (closed boundary of V)

E · n̂dA =
1
ϵ0

∫
V
ρdV∫

S (any closed surface)
B · n̂dA = 0∫

C(boundary of S)
E · dx = −

∫
S

∂B
∂t
· n̂dA∫

C(boundary of S)
B · dx = µ0

(
I + ϵ0

∫
S

∂E
∂t
· n̂dA

)
(10.1)

As the surfaces and corresponding loops or volumes are made infinitely small, these equations
(FIXME: demonstrate), can be written in differential form:

∇ ·E =
ρ

ϵ0

∇ ·B = 0

∇ ×E = −
∂B
∂t

∇ ×B = µ0

(
J + ϵ0

∂E
∂t

) (10.2)

These are respectively, Gauss’s Law for E, Gauss’s Law for B, Faraday’s Law, and the Ampere/-
Maxwell’s Law.

This differential form can be manipulated to derive the wave equation for free space, or the
wave equation with charge and current forcing terms in other space.
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10.1.1 Regrouping terms for dimensional consistency

Derivation of the wave equation can be done nicely using geometric algebra, but first is it helpful
to put these equations in a more dimensionally pleasant form. Lets relate the dimensions of the
electric and magnetic fields and the constants µ0, ϵ0.

From Faraday’s equation we can relate the dimensions of B, and E:

[E]
[d]
=

[B]
[t]

(10.3)

We therefore see that B, and E are related dimensionally by a velocity factor.
Looking at the dimensions of the displacement current density in the Ampere/Maxwell equa-

tion we see:

[B]
[d]
= [µ0ϵ0]

[E]
[t]

(10.4)

From the two of these the dimensions of the µ0ϵ0 product can be seen to be:

[µ0ϵ0] =
[t]2

[d]2 (10.5)

So, we see that we have a velocity factor relating E, and B, and we also see that we have a
squared velocity coefficient in Ampere/Maxwell’s law. Let us factor this out explicitly so that E
and B take dimensionally consistent form:

τ =
t

√
µ0ϵ0

∇ ·E =
ρ

ϵ0

∇ ·
B
√
µ0ϵ0

= 0

∇ ×E = −
∂

∂τ

B
√
µ0ϵ0

∇ ×
B
√
µ0ϵ0

=

√
µ0

ϵ0
J +

∂E
∂τ

(10.6)

10.1.2 Refactoring the equations with the geometric product

Now that things are dimensionally consistent, we are ready to group these equations using the
geometric product

AB = A ·B +A∧B = A ·B + iA ×B (10.7)
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where i = e1e2e3 is the spatial pseudoscalar. By grouping the divergence and curl terms for each
of B, and E we can write vector gradient equations for each of the Electric and Magnetic fields:

∇E =
ρ

ϵ0
− i

∂

∂τ

B
√
µ0ϵ0

(10.8)

∇
B
√
µ0ϵ0

= i
√
µ0

ϵ0
J + i

∂E
∂τ

(10.9)

Multiplication of eq. (10.9) with i, and adding to eq. (10.8), we have Maxwell’s equations
consolidated into:

∇

(
E + i

B
√
µ0ϵ0

)
=

(
ρ

ϵ0
−

√
µ0

ϵ0
J
)
−
∂

∂τ

(
E +

iB
√
µ0ϵ0

)
(10.10)

We see that we have a natural combined Electrodynamic field:

F = ϵ0

(
E + i

B
√
µ0ϵ0

)
= ϵ0 (E + icB) (10.11)

Note that here the ϵ0 factor has been included as a convenience to remove it from the charge
and current density terms later. We have also looked ahead slightly and written:

c =
1
√
µ0ϵ0

(10.12)

The dimensional analysis above showed that this had dimensions of velocity. This velocity is in
fact the speed of light, and we will see this more exactly when looking at the wave equation for
electrodynamics. Until that this can be viewed as a nothing more than a convenient shorthand.

We use this to write (Maxwell’s) eq. (10.10) as:(
∇ +

1
c
∂

∂t

)
F = ρ −

J
c
. (10.13)

These are still four equations, and the originals can be recovered by taking scalar, vector, bivec-
tor and trivector parts. However, in this consolidated form, we are able to see the structure more
easily.

10.1.3 Grouping by charge and current density

Before moving on to the wave equation, lets put equations eq. (10.8) and eq. (10.9) in a slightly
more symmetric form, grouping by charge and current density respectively:
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∇E +
∂icB
∂ct
=
ρ

ϵ0
(10.14)

∇icB +
∂E
∂ct
= −

J
ϵ0c

(10.15)

Here we see how spatial electric field variation and magnetic field time variation are related
to charge density. We also see the opposite pairing, where spatial magnetic field variation and
electric field variation with time are related to current density.

TODO: examine Lorentz transformations of the coordinates here.
Perhaps the most interesting feature here is how the spacetime gradient ends up split across

the E and B fields, but it may not be worth revisiting this. Let us move on.

10.1.4 Wave equation for light

To arrive at the wave equation, we take apply the gradient twice to calculate the Laplacian. First
vector gradient is:

∇F = −
1
c
∂F
∂t
+

(
ρ −

J
c

)
. (10.16)

Second application gives:

∇
2F = −

1
c
∇
∂F
∂t
+∇

(
ρ −

J
c

)
.

Assuming continuity sufficient for mixed partial equality, we can swap the order of spatial and
time derivatives, and substitute eq. (10.16) back in.

∇
2F = −

1
c
∂

∂t

(
−

1
c
∂F
∂t
+

(
ρ −

J
c

))
+∇

(
ρ −

J
c

)
(10.17)

Or, (
∇

2 −
1
c2 ∂tt

)
F =

(
∇ −

1
c
∂t

) (
ρ −

J
c

)
(10.18)

Now there are a number of things that can be read out of this equation. The first is that in
a charge and current free region the electromagnetic field is described by an unforced wave
equation:(

∇
2 −

1
c2 ∂tt

)
F = 0 (10.19)

This confirms the meaning that was assigned to c. It is the speed that an electrodynamic wave
propagates in a charge and current free region of space.
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10.1.5 Charge and current density conservation

Now, lets look at the right hand side of eq. (10.18) a bit closer:

(∇ − ∂ct)

(
ρ −

J
c

)
= −

1
c

(
∂ρ

∂t
+∇ · J

)
+∇ρ −

1
c
∇∧ J +

1
c2

∂J
∂t

(10.20)

Compare this to the left hand side of eq. (10.18) which has only vector and bivector parts. This
implies that the scalar components of the right hand side are zero. Specifically:

∂ρ

∂t
+∇ · J = 0

This is a statement of charge conservation, and is more easily interpreted in integral form:

−

∫
S (closed boundary of V)

J · n̂dA =
∂

∂t

∫
V
ρdV =

∂Qenc

∂t
(10.21)

FIXME: think about signs fully here.
The flux of the current density vector through a closed surface equals the time rate of change

of the charge enclosed by that volume (ie: the current). This could perhaps be viewed as the def-
inition of the current density itself. This fact would probably be more obvious if I did the math
myself to demonstrate exactly how to take Maxwell’s equations in integral form and convert
those to their differential form. In lieu of having done that proof myself I can at least determine
this as a side effect of a bit of math.

10.1.6 Electric and Magnetic field dependence on charge and current density

Removing the explicit scalar terms from eq. (10.18) we have:(
∇

2 − ∂ct,ct
)

F =
1
c

(
∇cρ +

∂J
∂ct

)
−

1
c
∇∧ J

This shows explicitly how the charge and current forced wave equations for the electric and
magnetic fields is split:(

∇
2 − ∂ct,ct

)
E =

1
c

(
∇cρ +

∂J
∂ct

)
(
∇

2 − ∂ct,ct
)

B = −
1
c2∇ × J
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10.1.7 Spacetime basis

Now, if we look back to Maxwell’s equation in the form of eq. (10.13), we have a spacetime
“gradient” with vector and scalar parts, an electrodynamic field with vector and trivector parts,
and a charge and current density term with scalar and vector parts.

It is still rather confused, but it all works out, and one can recover the original four vector
equations by taking scalar, vector, bivector, and trivector parts.

We want however to put this into a natural orderly fashion, and can do so if we use a normal
bivector basis for all the spatial basis vectors, and factor out a basis vector from that for each of
the scalar (timelike) factors.

Since bivectors over a Euclidean space have negative square, and this is not what we want for
our Euclidean basis, and will have to pick a bivector basis with a mixed metric. We will see that
this defines a Minkowski metric space. Amazingly, by the simple desire that we want to express
Maxwell’s equations be written in the most orderly fashion, we arrive at the mixed signature
spacetime metric that is the basis of special relativity.

Now, perhaps the reasons why to try to factor the spatial basis into a bivector basis are not
obvious. It is worth noting that we have suggestions of conjugate operations above. Examples
of this are the charge and current terms with alternate signs, and the alternation in sign in the
wave equation itself. Also worth pointing out is the natural appearance of a complex factor i
in Maxwell’s equation coupled with the time term (that idea is explored more in ../maxwell/-
maxwell.pdf). This coupling was observed long ago and Minkowski’s original paper refactors
Maxwell’s equation using it. Now we have also seen that complex numbers are isomorphic
with a scalar plus vector representation. Quaternions, which were originally “designed” to fit
naturally in Maxwell’s equation and express the inherent structure are exactly this, a scalar and
bivector sum. There is a lot of history that leads up to this idea, and the ideas here are not too
surprising with some reading of the past attempts to put structure to these equations.

On to the math...
Having chosen to find a bivector representation for our spatial basis vectors we write:

ei = γi ∧ γ0 = γiγ0 = γ
0 ∧ γi = γ0γi

For our Euclidean space we want

(ei)2 = γiγ0γiγ0 = −(γi)2(γ0)2 = 1

This implies the mixed signature:

(γi)2 = −(γ0)2 = ±1
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We are free to pick either γ0 or γi to have a negative square, but following GAFP we use:

(γ0)2 = 1

(γi)2 = −1

γ0 = γ0

γi = −γi

(10.22)

Now, lets translate the other scalar, vector, bivector, and trivector representations to use this
alternate basis, and see what we get. Start with the spacial pseudoscalar that is part of our
magnetic field:

i = e123

= γ102030

= −γ012030

= γ012300

= γ0123

(10.23)

We see that the three dimensional pseudoscalar represented with this four dimensional basis is
in fact also a pseudoscalar for that space. Lets now use this to expand the trivector part of our
electromagnetic field in this new basis:

iB =
∑

ieiBi =
∑

γ0123i0Bi = γ32B1 + γ13B2 + γ21B3 (10.24)

So we see that our electromagnetic field has a bivector only representation with this mixed
signature basis:

F = E + icB = γ10E1 + γ20E2 + γ30E3 + γ32cB1 + γ13cB2 + γ21cB3 (10.25)

Each of the possible bivector basis vectors is associated with a component of the combined
electromagnetic field. I had the signs wrong initially for the B components, but I think it is right
now (and signature independent in fact). ? If I did get it wrong the idea is the same ... F is
naturally viewed as a pure bivector, which fits well with the fact that the tensor formulation is
two completely antisymmetric rank two tensors.

Now, lets look at the spacetime gradient terms, first writing the spacial gradient in index form:

∇ =
∑

ei ∂

∂xi

=
∑

ei
∂

∂xi

=
∑

γiγ0
∂

∂xi

= γ0

∑
γi ∂

∂xi .

(10.26)
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This allows the spacetime gradient to be written in vector form replacing the vector plus scalar
formulation:

∇ + ∂ct = γ0

∑
γi ∂

∂xi + ∂ct

= γ0

(∑
γi ∂

∂xi + γ
0∂ct

)
= γ0

∑
γµ

∂

∂xi

(10.27)

Observe that after writing x0 = ct we can factor out the γ0, and write the spacetime gradient in
pure vector form, using this mixed signature basis.

Now, let us do the same thing for the charge and current density terms, writing J = eiJi:

ρ −
J
c
=

1
c

(
cρ −

∑
eiJi

)
=

1
c

(
cρ −

∑
γiγ0Ji

)
=

1
c

(
cρ + γ0

∑
γiJi

)
= γ0

1
c

(
γ0cρ +

∑
γiJi

)
(10.28)

Thus after writing J0 = cρ, we have:

ρ −
J
c
= γ0

1
c

∑
γµJµ

Putting these together and canceling out the leading γ0 terms we have the final result:∑
γµ

∂

∂xi F =
1
c

∑
γµJµ. (10.29)

Or with a four-gradient ∇ =
∑
γµ ∂

∂xi , and four current J =
∑
γµJµ, we have Maxwell’s equation

in their most compact and powerful form:

∇F =
J
c
. (10.30)

10.1.8 Examining the GA form Maxwell equation in more detail

From eq. (10.30), the wave equation becomes quite simple to derive. Lets look at this again
from this point of view. Applying the gradient we have:

∇2F =
∇J
c
. (10.31)
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∇2 = ∇ · ∇ =
∑

(γµ)2∂xµ,xµ = −∇
2 +

1
c2 ∂tt. (10.32)

Thus for a charge and current free region, we still have the wave equation.
Now, lets look at the right hand side, and verify that it meets the expectations:

1
c
∇J =

1
c
(∇ · J +∇∧ J) (10.33)

First thing to observe is that the left hand side is a pure spacetime bivector, which implies that
the scalar part of eq. (10.33) is zero as we previously observed. Lets verify that this is still the
charge conservation condition:

0 = ∇ · J

= (
∑

γµ∂µ) ·
∑

γνJν

=
∑

γµ · γν∂µJν

=
∑

δ
µ
ν∂µJν

=
∑

∂µJµ

= ∂ct(cρ) +
∑

∂iJi

(10.34)

This is our previous result:

∂ρ

∂t
+∇ · J = 0 (10.35)

This allows a slight simplification of the current forced wave equation for an electrodynamic
field, by taking just the bivector parts:(

∇
2 −

1
c2 ∂tt

)
F = −∇∧

J
c

(10.36)

Now we know how to solve the left hand side of this equation in its homogeneous form, but the
four space curl term on the right is new.

This is really a set of six equations, subject to coupled boundary value conditions. Written
this out in components, one for each F · (γν ∧ γµ) term and the corresponding terms of the right
hand side one ends up with:

−∇2E = ∇ρ/ϵ0 + µ0∂tJ

−∇2B = −µ0∇ × J
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I have not bothered transcribing my notes for how to get this. One way (messy) was starting
with eq. (10.36) and dotting with γνµ to calculate the tensor Fµν (components of which are E
and B components). Doing the same for the spacetime curl term the end result is:

(∇∧ J) · (γνµ) = ∂µJν(γµ)2 − ∂νJµ(γν)2

For a spacetime split of indices one gets the ∇ρ, and ∂tJ term, and for a space-space pair of
indices one gets the spacial curl in the B equation.

An easier starting point for this is actually using equations eq. (10.14) and eq. (10.15) since
they are already split into E, and B fields.

10.1.9 Minkowski metric

Having observed that a mixed signature bivector basis with a space time mix of underlying basis
vectors is what we want to express Maxwell’s equation in its most simple form, now lets step
back and look at that in a bit more detail. In particular lets examine the dot product of a four
vector with such a basis. Our current density four vector is one such vector:

J2 = J · J =
∑

(Jµ)2(γµ)2 = (cρ)2 − J2 (10.37)

The coordinate vector that is forms the partials of our four gradient is another such vector:

x = (ct, x1, x2, x3) =
∑

γµxµ

Again, the length applied to this vector is:

x2 = x · x = (ct)2 − x2 (10.38)

As a result of nothing more than a desire to put Maxwell’s equations into structured form, we
have the special relativity metric of Minkowski and Einstein.



11M AC RO S C O P I C M A X W E L L’ S E Q UAT I O N

11.1 motivation

In [16] the macroscopic Maxwell’s equations are given as

∇ ·D = 4πρ

∇ ×H −
1
c
∂D
∂t
=

4π
c

J

∇ ×E +
1
c
∂B
∂t
= 0

∇ ·B = 0

(11.1)

The H and D fields are then defined in terms of dipole, and quadrupole fields

Dα = Eα + 4π

Pα −
∑
β

∂Q′αβ
∂xβ

+ · · ·


Hα = Bα − 4π (Mα + · · ·)

(11.2)

Can this be put into the Geometric Algebra formulation that works so nicely for microscopic
Maxwell’s equations, and if so what will it look like?

11.2 consolidation attempt

Let us try this, writing

P = σα
Pα −

∑
β

∂Q′αβ
∂xβ

+ · · ·


M = σα (Mα + · · ·)

(11.3)

We can then express the E, B in terms of the derived fields

E = D − 4πP
B = H + 4πM

(11.4)
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and in turn can write the macroscopic Maxwell equations eq. (11.1) in terms of just the derived
fields, the material properties, and the charges and currents

∇ ·D = 4πρ

∇ ×H −
1
c
∂D
∂t
=

4π
c

J

∇ ×D +
1
c
∂H
∂t
= 4π∇ × P +

4π
c
∂M
∂t

∇ ·H = −4π∇ ·M

(11.5)

Now, using a × b = −i(a∧ b), we have

∇ ·D = 4πρ

i∇∧H +
1
c
∂D
∂t
= −

4π
c

J

∇∧D +
1
c
∂iH
∂t
= 4πi∇ × P +

4π
c
∂iM
∂t

i∇ ·H = −4πi∇ ·M

(11.6)

Summing these in pairs with ∇a = ∇ · a +∇∧ a, and writing ∂/∂(ct) = ∂0 we have

∇D + ∂0iH = 4πρ + 4π∇∧ P + 4π∂0iM

i∇H + ∂0D = −
4π
c

J − 4πi∇ ·M
(11.7)

Note that while had i∇ · a , ∇ · (ia), and i∇ ∧ a , ∇ ∧ (ia) (instead i∇ · a = ∇ ∧ (ia), and
i∇ ∧ a = ∇ · (ia)), but now that these are summed we can take advantage of the fact that the
pseudoscalar i commutes with all vectors (such as ∇). So, summing once again we have

(∂0 +∇)(D + iH) =
4π
c
(cρ − J) + 4π (∇∧ P + ∂0iM −∇∧ (iM)) (11.8)

Finally, premultiplication by γ0, where J = σkJk = γkγ0Jk, and ∇ =
∑

k γkγ0∂k we have

γµ∂µ(D + iH) =
4π
c

(
cργ0 + Jkγk

)
+ 4πγ0 (∇∧ P + ∂0iM −∇∧ (iM)) (11.9)

With

J0 = cρ

J = γµJµ

∇ = γµ∂µ

F = D + iH

(11.10)
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For the remaining terms we have ∇ ∧ P, iM ∈ span{γaγb}, and γ0∇ ∧ (iM) ∈ span γ1γ2γ3, so
between the three of these we have a (Dirac) trivector, so it would be reasonable to write

T = γ0 (∇∧ P + ∂0iM −∇∧ (iM)) ∈ span{γµ ∧ γν ∧ γσ} (11.11)

Putting things back together we have

∇F =
4π
c

J + 4πT (11.12)

This has a nice symmetry, almost nicer than the original microscopic version of Maxwell’s
equation since we now have matched grades (vector plus trivector in the Dirac vector space) on
both sides of the equation.

11.2.1 Continuity equation

Also observe that interestingly we still have the same continuity equation as in the microscopic
case. Application of another spacetime gradient and then selecting scalar grades we have

⟨∇∇F⟩ = 4π
〈
∇

( J
c
+ T

)〉
∇2⟨F⟩ =

=
4π
c
⟨J⟩

=
4π
c
∂µJµ

(11.13)

Since F is a Dirac bivector it has no scalar part, so this whole thing is zero by the grade selection
on the LHS. So, from the RHS we have

0 = ∂µJµ

=
1
c
∂cρ
∂t
+ ∂kJk

=
∂ρ

∂t
+∇ · J

(11.14)

Despite the new trivector term in the equation due to the matter properties!





12E X P R E S S I N G WAV E E Q UAT I O N E X P O N E N T I A L S O L U T I O N S
U S I N G F O U R V E C T O R S

12.1 mechanical wave equation solutions

For the unforced wave equation in 3D one wants solutions to 1
v2 ∂tt −

3∑
j=1

∂ j j

 ϕ = 0 (12.1)

For the single spatial variable case one can verify that ϕ = f (x ± |v|t) is a solution for any
function f . In particular ϕ = exp(i(±|v|t + x)) is a solution. Similarly ϕ = exp(i(±|v|t + k̂ · x)) is
a solution in the 3D case.

Can the relativistic four vector notation be used to put this in a more symmetric form with
respect to time and position? For the four vector

x = xµγµ (12.2)

Lets try the following as a possible solution to eq. (12.1)

ϕ = exp(ik · x) (12.3)

verifying that this can be a solution, and determining the constraints required on the four vector
k.

Observe that

x · k = xµkµ (12.4)

so

ϕµ = ikµ
ϕµµ = (ikµ)2ϕ = −(kµ)2ϕ

(12.5)

Since ∂t = c∂0, we have ϕtt = c2ϕ00, and 1
v2 ∂tt −

3∑
j=1

∂ j j

 ϕ =
− 1

v2 c2k0
2 −

3∑
j=1

−(k j)2

 ϕ (12.6)
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For equality with zero, and β = v/c, we require

β2 =
(k0)2∑
j(k j)2 (12.7)

Now want the components of k = kµγµ in terms of k directly. First

k0 = k · γ0 (12.8)

The spacetime relative vector for k is

k = k ∧ γ0 =
∑

kµγµ ∧ γ0 = (γ1)2
∑

j

k jσ j

k2 = (±1)2
∑

j

(k j)2
(12.9)

So the constraint on the four vector parameter k is

β2 =
(k0)2∑
j(k j)2

=
(k · γ0)2

(k ∧ γ0)2

(12.10)

It is interesting to compare this to the relative spacetime bivector for x

v =
dx
dτ
= c

dt
dτ
γ0 +

dxi

dτ
γi

v · γ0 =
dx
dτ
· γ0 = c

dt
dτ

v∧ γ0 =
dx
dτ
∧ γ0

=
dxi

dτ
σi

=
dxi

dt
dt
dτ
σi

(12.11)

v/c =
d(xiσi)

dt

=
v∧ γ0

v · γ0

(12.12)

So, for ϕ = exp(ik · x) to be a solution to the wave equation for a wave traveling with velocity
|v|, the constraint on k in terms of proper velocity v is∣∣∣∣∣∣k ∧ γ0

k · γ0

∣∣∣∣∣∣−1

=

∣∣∣∣∣∣v∧ γ0

v · γ0

∣∣∣∣∣∣ (12.13)
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So we see the relative spacetime vector of k has an inverse relationship with the relative space-
time velocity vector v = dx/dτ.





13G AU S S I A N S U R FAC E I N VA R I A N C E F O R R A D I A L F I E L D

13.1 flux independence of surface

Figure 13.1: Flux through tilted spherical surface element

In [25], section 1.10 is a demonstration that the flux through any closed surface is the same
as that through a sphere.

A similar demonstration of the same is possible using a spherical polar basis {r̂, θ̂, ϕ̂} with an
element of surface area that is tilted slightly as illustrated in fig. 13.1.

The tangential surface on the sphere at radius r will have bivector

dAr = r2dθdϕθ̂ϕ̂ (13.1)

where dθ, and dϕ are the subtended angles (should have put them in the figure).
Now, as in the figure we want to compute the bivector for the tilted surface at radius R. The

vector u in the figure is required. This is r̂R + Rdθθ̂ − r̂(R + dr), so the bivector for that area
element is(

Rr̂ + Rdθθ̂ − (R + dr)r̂
)
∧ Rdθϕ̂ =

(
Rdθθ̂ − drr̂

)
∧ Rdϕϕ̂ (13.2)
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For

dAR = R2dθdϕθ̂ϕ̂ − Rdrdϕr̂ϕ̂ (13.3)

Now normal area elements can be calculated by multiplication with a R3 pseudoscalar such as
I = r̂θ̂ϕ̂.

n̂r |dAr | = r2dθdϕr̂θ̂ϕ̂θ̂ϕ̂
= −r2dθdϕr̂

(13.4)

And

n̂R|dAR| = r̂θ̂ϕ̂
(
R2dθdϕθ̂ϕ̂ − Rdrdϕr̂ϕ̂

)
= −R2dθdϕr̂ − Rdrdϕθ̂

(13.5)

Calculating E · n̂dA for the spherical surface element at radius r we have

E(r) · n̂r |dAr | =
1

4πϵ0r2 qr̂ · (−r2dθdϕr̂)

=
−dθdϕq

4πϵ0

(13.6)

and for the tilted surface at R

E(R) · n̂R|dAR| =
q

4πϵ0R2 r̂ ·
(
−R2dθdϕr̂ − Rdrdϕθ̂

)
=
−dθdϕq

4πϵ0

(13.7)

The θ̂ component of the surface normal has no contribution to the flux since it is perpendicular
to the outwards (r̂ facing) field. Here the particular normal to the surface happened to be inwards
facing due to choice of the pseudoscalar, but because the normals chosen in each case had the
same orientation this does not make a difference to the equivalence result.

13.1.1 Suggests dual form of Gauss’s law can be natural

The fact that the bivector area elements work well to describe the surface can also be used to
write Gauss’s law in an alternate form. Let n̂dA = −IdA

E · n̂dA = −E · (IdA)

=
−1
2

(EIdA + IdAE)

=
−I
2

(EdA + dAE)

= −I(E∧ dA)

(13.8)
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So for∫
E · n̂dA =

∫
ρ

ϵ0
dV (13.9)

with dV = IdV , we have Gauss’s law in dual form:∫
E∧ dA =

∫
ρ

ϵ0
dV (13.10)

Writing Gauss’s law in this form it becomes almost obvious that we can deform the surface
without changing the flux, since all the non-tangential surface elements will have an r̂ factor
and thus produce a zero once wedged with the radial field.





14E L E C T RO DY NA M I C WAV E E Q UAT I O N S O L U T I O N S

14.1 motivation

In 12 four vector solutions to the mechanical wave equations were explored. What was obvi-
ously missing from that was consideration of the special case for v2 = c2.

Here solutions to the electrodynamic wave equation will be examined. Consideration of such
solutions in more detail will is expected to be helpful as background for the more complex study
of quantum (matter) wave equations.

14.2 electromagnetic wave equation solutions

For electrodynamics our equation to solve is

∇F = J/ϵ0c (14.1)

For the unforced (vacuum) solutions, with F = ∇ ∧ A, and the Coulomb gauge ∇ · A = 0 this
reduces to

0 =
(
(γµ)2∂µµ

)
A

=

(
1
c2 ∂tt − ∂ j j

)
A

(14.2)

These equations have the same form as the mechanical wave equation where the wave velocity
v2 = c2 is the speed of light 1

v2 ∂tt −

3∑
j=1

∂ j j

ψ = 0 (14.3)

14.2.1 Separation of variables solution of potential equations

Let us solve this using separation of variables, and write Aν = XYZT = ΠµXµ

From this we have∑
µ

(γµ)2 (Xµ)′′

Xµ
= 0 (14.4)
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and can proceed with the normal procedure of assuming that a solution can be found by sepa-
rately equating each term to a constant. Writing those constants explicitly as (mµ)2, which we
allow to be potentially complex we have (no sum)

Xµ = exp
(
±

√
(γµ)2mµxµ

)
(14.5)

Now, let kµ = ±
√

(γµ)2mµ, folding any sign variation and complex factors into these constants.
Our complete solution is thus

ΠµXµ = exp
(∑

kµxµ
)

(14.6)

However, for this to be a solution, the wave equation imposes the constraint∑
µ

(γµ)2(kµ)2 = 0 (14.7)

Or

(k0)2 −
∑

j

(k j)2 = 0 (14.8)

Summarizing each potential term has a solution expressible in terms of null "wave-number"
vectors Kν

Aν = exp (Kν · x)

|Kν| = 0
(14.9)

14.2.2 Faraday bivector and tensor from the potential solutions

From the components of the potentials eq. (14.9) we can compute the curl for the complete field.
That is

F = ∇∧ A

A = γν exp (Kν · x)
(14.10)

This is

F = (γµ ∧ γν) ∂µ exp (Kν · x)

= (γµ ∧ γν) ∂µ exp (γαKνα · γσxσ)

= (γµ ∧ γν) ∂µ exp (Kνσxσ)

= (γµ ∧ γν) Kνµ exp (Kνσxσ)

= (γµ ∧ γν) Kνµ exp (Kν · x)

= (γµ ∧ γν)
1
2
(Kνµ exp (Kν · x) − Kµν exp (Kµ · x))

(14.11)



14.2 electromagnetic wave equation solutions 83

Writing our field in explicit tensor form

F = Fµνγ
µ ∧ γν (14.12)

our vacuum solution is therefore

Fµν =
1
2
(Kνµ exp (Kν · x) − Kµν exp (Kµ · x)) (14.13)

but subject to the null wave number and Lorentz gauge constraints∣∣∣Kµ

∣∣∣ = 0

∇ · (γµ exp (Kµ · x)) = 0
(14.14)

14.2.3 Examine the Lorentz gauge constraint

That Lorentz gauge constraint on the potential is a curious looking beastie. Let us expand that
out in full to examine it closer

∇ · (γµ exp (Kµ · x)) = γα∂α · (γµ exp (Kµ · x))

=
∑
µ

(γµ)2∂µ exp (Kµ · x)

=
∑
µ

(γµ)2∂µ exp
(∑

γνKµν · γαxα
)

=
∑
µ

(γµ)2∂µ exp
(∑

Kµαxα
)

=
∑
µ

(γµ)2Kµµ exp (Kµ · x)

(14.15)

If this must be zero for any x it must also be zero for x = 0, so the Lorentz gauge imposes an
additional restriction on the wave number four vectors Kµ∑

µ

(γµ)2Kµµ = 0 (14.16)

Expanding in time and spatial coordinates this is

K00 −
∑

j

K j j = 0 (14.17)

One obvious way to satisfy this is to require that the tensor Kµν be diagonal, but since we also
have the null vector requirement on each of the Kµ four vectors it is not clear that this is an
acceptable choice.



84 electrodynamic wave equation solutions

14.2.4 Summarizing so far

We have found that our field solution has the form

Fµν =
1
2
(Kνµ exp (Kν · x) − Kµν exp (Kµ · x)) (14.18)

Where the vectors Kµ have coordinates

Kµ = γ
νKµν (14.19)

This last allows us to write the field tensor completely in tensor formalism

Fµν =
1
2
(Kνµ exp (Kνσxσ) − Kµν exp (Kµσxσ)) (14.20)

Note that we also require the constraints

0 =
∑
µ

(γµ)2Kµµ

0 =
∑
µ

(γµ)2(Kνµ)2
(14.21)

Alternately, calling out the explicit space time split of the constraint, we can remove the explicit
γµ factors

0 = K00 −
∑

j

K j j = (K00)2 −
∑

j

(K j j)2
(14.22)

14.3 looking for more general solutions

14.3.1 Using mechanical wave solutions as a guide

In the mechanical wave equation, we had exponential solutions of the form

f (x, t) = exp (k · x +ωt) (14.23)

which were solutions to eq. (14.3) provided that

1
v2ω

2 − k2 = 0. (14.24)

This meant that

ω = ±|v||k| (14.25)
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and our function takes the (hyperbolic) form, or (sinusoidal) form respectively

f (x, t) = exp
(
|k|

(
k̂ · x ± |v|t

))
f (x, t) = exp

(
i|k|

(
k̂ · x ± |v|t

)) (14.26)

Fourier series superposition of the latter solutions can be used to express any spatially periodic
function, while Fourier transforms can be used to express the non-periodic cases.

These superpositions, subject to boundary value conditions, allow for writing solutions to the
wave equation in the form

f (x, t) = g
(
k̂ · x ± |v|t

)
(14.27)

Showing this logically follows from the original separation of variables approach has not been
done. However, despite this, it is simple enough to confirm that, this more general function does
satisfy the unforced wave equation eq. (14.3).

TODO: as followup here would like to go through the exercise of showing that the solution of
eq. (14.27) follows from a Fourier transform superposition. Intuition says this is possible, and I
have said so without backing up the statement.

14.3.2 Back to the electrodynamic case

Using the above generalization argument as a guide we should be able to do something similar
for the electrodynamic wave solution.

We want to solve for F the following gradient equation for the field in free space

∇F = 0 (14.28)

Let us suppose that the following is a solution and find the required constraints

F = γµ ∧ γν (Kµν f (x · Kµ) − Kνµ f (x · Kν)) (14.29)

We have two different grade equations built into Maxwell’s equation eq. (14.28), one of which
is the vector equation, and the other trivector. Those are respectively

∇ · F = 0

∇∧ F = 0
(14.30)

14.3.2.1 zero wedge

For the grade three term we have we can substitute eq. (14.29) and see what comes out

∇∧ F = (γα ∧ γµ ∧ γν) ∂α (Kµν f (x · Kµ) − Kνµ f (x · Kν)) (14.31)
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For the partial we will want the following

∂µ(x · Kβ) = ∂µ(xνγν · Kβσγ
σ)

= ∂µ(xσKβσ

= Kβµ

(14.32)

and application of this with the chain rule we have

∇∧ F = (γα ∧ γµ ∧ γν) (KµνKµα f ′(x · Kµ) − KνµKνα f ′(x · Kν))

= 2 (γα ∧ γµ ∧ γν) KµνKµα f ′(x · Kµ)
(14.33)

So, finally for this to be zero uniformly for all f , we require

KµνKµα = 0 (14.34)

14.3.2.2 zero divergence

Now for the divergence term, corresponding to the current four vector condition J = 0, we have

∇ · F

= γα · (γµ ∧ γν) ∂α (Kµν f (x · Kµ) − Kνµ f (x · Kν))

= (γα)2 (γνδα
µ − γµδα

ν) ∂α (Kµν f (x · Kµ) − Kνµ f (x · Kν))

=
(
(γµ)2γν∂µ − (γν)2γµ∂ν

)
(Kµν f (x · Kµ) − Kνµ f (x · Kν))

= (γµ)2γν∂µ (Kµν f (x · Kµ) − Kνµ f (x · Kν)) − (γµ)2γν∂µ (Kνµ f (x · Kν) − Kµν f (x · Kµ))

= 2(γµ)2γν∂µ (Kµν f (x · Kµ) − Kνµ f (x · Kν))

(14.35)

Application of the chain rule, and ∂µ(x · Kβ) = Kβµ, gives us

∇ · F = 2(γµ)2γν (KµνKµµ f ′(x · Kµ) − KνµKνµ f ′(x · Kν)) (14.36)

For µ = ν this is zero, which is expected since that should follow from the wedge product itself,
but for the µ , ν case it is not clear cut.

Damn. On paper I missed some terms and it all canceled out nicely giving only a condition
on Kµν from the wedge term. The only conclusion possible is that we require x · Kν = x · Kµ

for this form of solution, and therefore need to restrict the test solution to a fixed spacetime
direction.
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14.4 take ii . a bogus attempt at a less general plane wave like solution

Let us try instead

F = γµ ∧ γνAµν f (x · k) (14.37)

and see if we can find conditions on the vector k, and the tensor A that make this a solution to
the unforced Maxwell equation eq. (14.28).

14.4.1 curl term

Taking the curl is straightforward

∇∧ F = γα ∧ γµ ∧ γν∂αAµν f (x · k)

= γα ∧ γµ ∧ γνAµν∂α f (xσkσ)

= γα ∧ γµ ∧ γνAµνkα f ′(x · k)

=
1
2
γα ∧ γµ ∧ γν(Aµν − Aνµ)kα f ′(x · k)

(14.38)

Curiously, the only condition that this yields is that we have

Aµν − Aνµ = 0 (14.39)

which is a symmetry requirement for the tensor

Aµν = Aνµ (14.40)

14.4.2 divergence term

Now for the divergence

∇ · F = γα · (γµ ∧ γν)∂αAµν f (xσkσ)

= (δα
µγν − δα

νγµ) kαAµν f ′(x · k)

= γνkµAµν f ′(x · k) − γµkνAµν f ′(x · k)

= γνkµ(Aµν − Aνµ) f ′(x · k)

(14.41)

So, again, as in the divergence part of Maxwell’s equation for the vacuum (∇F = 0), we require,
and it is sufficient that

Aµν − Aνµ = 0, (14.42)
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for eq. (14.37) to be a solution. This is somewhat surprising since I would not have expected a
symmetric tensor to fall out of the analysis.

Actually, this is more than surprising and amounts to a requirement that the field solution is
zero. Going back to the proposed solution we have

F = γµ ∧ γνAµν f (x · k)

= γµ ∧ γν
1
2

(Aµν − Aνµ) f (x · k)
(14.43)

So, any symmetric components of the tensor A automatically cancel out.

14.5 summary

A few dead ends have been chased and I am left with the original attempt summarized by
eq. (14.18), eq. (14.19), and eq. (14.21).

It appears that the TODO noted above to attempt the Fourier transform treatment will likely
be required to put these exponentials into a more general form. I had also intended to try to
cover phase and group velocities for myself here but took too much time chasing the dead ends.
Will have to leave that to another day.
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15.1 student’s guide to maxwell’s’ equations . problem 4.1

The problem is:
Two parallel wires carry currents I1 and 2I1 in opposite directions. Use Ampere is law to find

the magnetic field at a point midway between the wires.
Do this instead (visualizing the cross section through the wires) for N wires located at points

Pk, with currents Ik.

Figure 15.1: Currents through parallel wires

This is illustrated for two wires in fig. 15.1.

http://www4.wittenberg.edu/maxwell/chapter4/problem1/
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15.1.1

Consider first just the magnetic field for one wire, temporarily putting the origin at the point of
the current.∫

B · dl = µ0I

At a point r from the local origin the tangent vector is obtained by rotation of the unit vector:

ŷ exp
(
x̂ŷ log

(
r
∥r∥

))
= ŷ

(
r
∥r∥

)x̂ŷ

Thus the magnetic field at the point r due to this particular current is:

B(r) =
µ0Iŷ
2π∥r∥

(
r
∥r∥

)x̂ŷ

Considering additional currents with the wire centers at points Pk, and measurement of the field
at point R we have for each of those:

r = R − P

Thus the total field at point R is:

B(R) =
µ0ŷ
2π

∑
k

Ik

∥R − Pk∥

(
R − Pk

∥R − Pk∥

)x̂ŷ
(15.1)

15.1.2 Original problem

For the problem as stated, put the origin between the two points with those two points on the
x-axis.

P1 = −x̂d/2

P2 = x̂d/2
(15.2)

Here R = 0, so r1 = R − P1 = x̂d/2 and r2 = −x̂d/2. With x̂ŷ = i, this is:

B(0) =
µ0ŷ
πd

(
I1(−x̂)i + I2x̂i

)
=
µ0ŷ
πd

(−I − 2I)

=
−3Iµ0ŷ
πd

(15.3)
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Here unit vectors exponentials were evaluated with the equivalent complex number manipula-
tions:

(−1)i = x

i log (−1) = log x

iπ = log x

exp (iπ) = log x

x = −1

(15.4)

(1)i = x

i log (1) = log x

0 = log x

x = 1

(15.5)
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16.1 motivation

Problem 1.5 from [25], is to calculate the field at the center of a half circular arc of line charge.
Do this calculation and setup for the calculation at other points.

16.2 just the stated problem

To solve for the field at just the center point in the plane of the arc, given line charge density λ,
and arc radius R one has, and pseudoscalar for the plane i = e1e2 one has

dq = λRdθ

dE =
1

4πϵ0R2 dq(−e1eiθ)
(16.1)

Straight integration gives the result in short order

E =
−λe1

4πϵ0R

∫ π

0
eiθdθ

=
λe2

4πϵ0R
eiθ

∣∣∣π
0

=
−λe2

2πϵ0R

(16.2)

So, if the total charge is Q = πRλ, the field is then

E =
−Qe2

2π2ϵ0R2 (16.3)

So, at the center point the semicircular arc of charge behaves as if it is a point charge of magni-
tude 2Q/π at the point Re2

E =
−Qe2

4πϵ0R2

2
π

(16.4)

16.3 field at other points

Now, how about at points outside of the plane of the charge?
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Suppose our point of measurement is expressed in cylindrical polar coordinates

P = ρe1eiα + ze3 (16.5)

So that the vector from the element of charge at θ is

u = P − Re1eiθ = e1(ρeiα − Reiθ) + ze3 (16.6)

Relative to θ, writing θ = α + β this is

u = e1eiα(ρ − Reiβ) + ze3 (16.7)

The squared magnitude of this vector is

u2 =
∣∣∣ρ − Reiβ

∣∣∣2 + z2

= z2 + ρ2 + R2 − 2ρR cos β
(16.8)

The field is thus

E =
1

4πϵ0
λR

∫ β=θ2−α

β=θ1−α

(
z2 + ρ2 + R2 − 2ρR cos β

)−3/2 (
e1eiα(ρ − Reiβ) + ze3

)
dβ (16.9)

This integral has two variations∫ (
a2 − b2 cos β

)−3/2
dβ∫ (

a2 − b2 cos β
)−3/2

eiβdβ
(16.10)

or

I1 =

∫ (
a2 − b2 cos β

)−3/2
dβ

I2 =

∫ (
a2 − b2 cos β

)−3/2
cos βdβ

I3 =

∫ (
a2 − b2 cos β

)−3/2
sin βdβ

(16.11)

Of these when only the last is obviously integrable (at least for b , 0)

I3 =

∫ (
a2 − b2 cos β

)−3/2
sin βdβ

= −2
(
a2 − b2 cos β

)−1/2
(16.12)

Having solved for the imaginary component can the Cauchy Riemann equations be used to
supply the real part? How about I1 ?
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16.3.1 On the z-axis

Not knowing how to solve the integral of eq. (16.9) (elliptic?), the easy case of ρ = 0 (up the
z-axis) can at least be obtained

E =
1

4πϵ0
λR

(
z2 + R2

)−3/2
∫ θ2

θ1

(
−e1Reiθ + ze3

)
dθ

=
1

4πϵ0
λR

(
z2 + R2

)−3/2 (
e2R(eiθ2 − eiθ1) + ze3∆θ

)
=

1
4πϵ0

λR
(
z2 + R2

)−3/2 (
e2Rei(θ1+θ2)/2

(
ei(θ2−θ1)/2 − e−i(θ2−θ1)/2

)
+ ze3∆θ

)
=

1
4πϵ0

λR
(
z2 + R2

)−3/2 (
−2e1Rei(θ1+θ2)/2 sin(∆θ/2) + ze3∆θ

)
=

1
4πϵ0∆θ

Q
(
z2 + R2

)−3/2 (
−2e1Rei(θ1+θ2)/2 sin(∆θ/2) + ze3∆θ

)
(16.13)

Eliminating the explicit imaginary, and writing θ = (θ1 + θ2)/2, we have in vector form the field
on any position up and down the z-axis

E =
1

4πϵ0∆θ
Q
(
z2 + R2

)−3/2 (
−2R

(
e1 cos θ + e2 sin θ

)
sin(∆θ/2) + ze3∆θ

)
(16.14)

For z = 0, θ1 = 0, and θ2 = π, this matches with eq. (16.4) as expected, but expressing this as
an equivalent to a point charge is no longer possible at any point off the plane of the charge.
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17.1 motivation

In [25] the electric field for an infinite length charged line element is derived in two ways. First
using summation directly, then with Gauss’s law. Associated with the first was the statement
that the field must be radial by symmetry. This was not obvious to me when initially taking my
E&M course, so I thought it was worth revisiting.

17.2 calculation of electric field for non- infinite length line element

Figure 17.1: Charge on wire

This calculation will be done with a thickness neglected wire running up and down along
the y axis as illustrated in fig. 17.1, where the field is being measured at P = re1, and the field
contributions due to all charge elements dq = λdy are to be summed.



98 charge line element

We want to sum each of the field contributions along the line, so with

dE =
dqû(θ)
4πϵ0R2

r/R = cos θ

dy = rd(tan θ) = r sec2 θ

û(θ) = e1eiθ

i = e1e2

(17.1)

Putting things together we have

dE =
λr sec2 θe1eiθdθ

4πϵ0r2 sec2 θ

=
λe1eiθdθ

4πϵ0r

= −
λe1id(eiθ)

4πϵ0r

(17.2)

Thus the total field is

E =
∫

dE

= −
λe2

4πϵ0r

∫
d(eiθ)

(17.3)

We see that the integration, which has the value

E = −
λ

4πϵ0r
e2eiδθ (17.4)

The integration range for the infinite wire is θ ∈ [3π/2, π/2] so the field for the infinite wire is

E = −
λ

4πϵ0r
e2 eiθ

∣∣∣θ=π/2
θ=3π/2

= −
λ

4πϵ0r
e2(eiπ/2 − e3iπ/2)

= −
λ

4πϵ0r
e2(e1e2 − (−e1e2))

=
λ

2πϵ0r
e1

(17.5)

Invoking symmetry was done in order to work with coordinates, but working with the vector
quantities directly avoids this requirement and gives the general result for any subset of angles.



17.2 calculation of electric field for non- infinite length line element 99

For a finite length wire all that is required is an angle parametrization of that wire’s length

[θ1, θ2] = [tan−1(y1/r), tan−1(y2/r)] (17.6)

For such a range the exponential difference for the integral is

eiθ
∣∣∣θ2

θ1
= eiθ2 − eiθ1

= ei(θ1+θ2)/2
(
ei(θ2−θ1)/2 − ei(θ2−θ1)/2

)
= 2iei(θ1+θ2)/2 sin((θ2 − θ1)/2)

(17.7)

thus the associated field is

E = −
λ

2πϵ0r
e2iei(θ1+θ2)/2 sin((θ2 − θ1)/2)

=
λ

2πϵ0r
e1ei(θ1+θ2)/2 sin((θ2 − θ1)/2)

(17.8)





18B I OT S AVA RT D E R I VAT I O N

18.1 motivation

Looked at my Biot-Savart derivation in 42. There I was playing with doing this without first
dropping down to the familiar vector relations, and end up with an expression of the Biot Savart
law in terms of the complete Faraday bivector. This is an excessive approach, albeit interesting
(to me). Let us try this again in terms of just the magnetic field.

18.2 do it

18.2.1 Setup. Ampere-Maxwell equation for steady state

The starting point can still be Maxwell’s equation

∇F = J/ϵ0c (18.1)

and the approach taken will be the more usual consideration of a loop of steady-state (no-time
variation) current.

In the steady state we have

∇ = γ0 1
c
∂t + γ

k∂k = γ
k∂k (18.2)

and in particular

γ0∇F = γ0γ
k∂kF

= γkγ0∂kF

= σk∂kF

= ∇(E + IcB)

(18.3)

and for the RHS,

γ0J/ϵ0c = γ0(cργ0 + Jkγk)/ϵ0c

= (cρ − Jkσk)/ϵ0c

= (cρ − j)/ϵ0c

(18.4)
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So we have

∇(E + IcB) =
1
ϵ0
ρ −

j
ϵ0c

(18.5)

Selection of the (spatial) vector grades gives

Ic(∇∧B) = −
j
ϵ0c

(18.6)

or with a ∧ b = I(a × b), and ϵ0µ0c2 = 1, this is the familiar Ampere-Maxwell equation when
∂E/∂t = 0.

∇ ×B = µ0j (18.7)

18.2.2 Three vector potential solution

With ∇ ·B = 0 (the trivector part of eq. (18.5)), we can write

B = ∇ ×A (18.8)

For some vector potential A. In particular, we have in eq. (18.7),

∇ ×B = ∇ × (∇ ×A)

= −I(∇∧ (∇ ×A))

= −
I
2

(∇(∇ ×A) − (∇ ×A)∇)

=
I2

2
(∇(∇∧A) − (∇∧A)∇)

= −∇ · (∇∧A)

(18.9)

Therefore the three vector potential equation for the magnetic field is

∇(∇ ·A) −∇2A = µ0j (18.10)

18.2.3 Gauge freedom

We have the freedom to set∇ ·A = 0, in eq. (18.10). To see this suppose that the vector potential
is expressed in terms of some other potential A′ that does have zero divergence (∇ ·A′ = 0) plus
a (spatial) gradient

A = A′ +∇ϕ (18.11)
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Provided such a construction is possible, then we have

∇(∇ ·A) −∇2A = ∇(∇ · (A′ +∇ϕ)) −∇2(A′ +∇ϕ)

= −∇2A′
(18.12)

and can instead solve the simpler equivalent problem

∇
2A′ = −µ0j (18.13)

Addition of the gradient ∇ϕ to A′ will not change the magnetic field B since ∇ × (∇ϕ) = 0.
FIXME: what was not shown here is that it is possible to express any vector potential A in

terms of a divergence free potential and a gradient. How would one show this?

18.2.4 Solution to the vector Poisson equation

The solution (dropping primes) to the Poisson eq. (18.13) is

A =
µ0

4π

∫
j
r

dV (18.14)

(See [27] for example.)
The magnetic field follows by taking the spatial curl

B = ∇ ×A

=
µ0

4π
∇ ×

∫
j′

|r − r′|
dV ′

(18.15)

Pulling the curl into the integral and writing the gradient in terms of radial components

∇ =
r − r′

|r − r′|
∂

∂|r − r′|
(18.16)

we have

B =
µ0

4π

∫
r − r′

|r − r′|
× j′

∂

∂|r − r′|
1

|r − r′|
dV ′

= −
µ0

4π

∫
r − r′

|r − r′|3
× j′dV ′

(18.17)

Finally with j′dV ′ = I ĵ′dl′, we have

B(r) =
µ0

4π

∫
dl′ĵ′ ×

r − r′

|r − r′|3
(18.18)





19V E C T O R F O R M S O F M A X W E L L’ S E Q UAT I O N S A S P RO J E C T I O N
A N D R E J E C T I O N O P E R AT I O N S

19.1 vector form of maxwell’s equations

We saw how to extract the tensor formulation of Maxwell’s equations from ∇F = J. A little bit
of play shows how to pick off the divergence equations we are used to as well.

The end result is that we can pick off two of the eight coordinate equations with specific
product operations.

It is helpful in the following to write ∇F in index notation

∇F =
∂Ei

∂xµ
γµi0 − ϵi jkc

∂Bi

∂xµ
γµ jk (19.1)

In particular, look at the span of the vector, or trivector multiplicands of the partials of the
electric and magnetic field coordinates

γµi0 ∈ span{γµ, γ0i j} (19.2)

γµ jk ∈ span{γi jµ, γi} (19.3)

19.1.1 Gauss’s law for electrostatics

For extract Gauss’s law for electric fields that operation is to take the scalar parts of the product
with γ0.

Dotting with γ0 will pick off the ρ term from J

J
ϵ0c
· γ0 = ρ/ϵ0,
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We see that dotting with γ0 will leave bivector parts contributed by the trivectors in the span of
eq. (19.2). Similarly the magnetic partials will contribute bivectors and scalars with this product.
Therefore to get an equation with strictly scalar parts equal to ρ/ϵ0 we need to compute〈

(∇F − J/ϵ0c) γ0
〉
=

〈
∇Eγ0

〉
− ρ/ϵ0

=
〈
∇Ekγk0

0
〉
− ρ/ϵ0

=
〈
γ j∂ jEkγk

〉
− ρ/ϵ0

= δ j
k∂ jEk − ρ/ϵ0

= ∂kEk − ρ/ϵ0

(19.4)

This is Gauss’s law for electrostatics:〈
(∇F − J/ϵ0c) γ0

〉
= ∇ ·E − ρ/ϵ0 = 0 (19.5)

19.1.2 Gauss’s law for magnetostatics

Here we are interested in just the trivector terms that are equal to zero that we saw before in
∇∧∇∧ A = 0.

The divergence like equation of these four can be obtained by dotting with γ123 = γ
0I. From

the span enumerated in eq. (19.3), we see that only the B field contributes such a trivector. An
addition scalar part selection is used to eliminate the bivector that J contributes.〈

(∇F − J/ϵ0c) ·
(
γ0I

)〉
= (∇IcB) ·

(
γ0I

)
=

〈
∇IcBγ0I

〉
=

〈
I∇IcBγ0

〉
= −c

〈
I2∇Bγ0

〉
= c

〈
∇Bγ0

〉
= c

〈
γµ∂µBkγk

〉
= cδµk∂µBk

= c∂kBk

= 0

(19.6)

This is just the divergence, and therefore yields Gauss’s law for magnetostatics:

(∇F − J/ϵ0c) ·
(
γ0I/c

)
= ∇ ·B = 0 (19.7)
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19.1.3 Faraday’s Law

We have three more trivector equal zero terms to extract from our field equation.
Taking dot products for those remaining three trivectors we have

(∇F − J/ϵ0c) · (γ jI) (19.8)

This will leave a contribution from J, so to exclude that we want to calculate〈
(∇F − J/ϵ0c) · (γ jI)

〉
(19.9)

The electric field contribution gives us

∂µEk
〈
γµγk0γ

j
0123

〉
= −∂µEk(γ0)2

〈
γµγkγ

j
123

〉
(19.10)

the terms µ = 0 will not produce a scalar, so this leaves

−∂iEk(γ0)2
〈
γiγkγ

j
123

〉
= −∂iEk(γ0)2(γk)2ϵ jki

= ∂iEkϵ jki

= −∂iEkϵ jik

(19.11)

Now, for the magnetic field contribution we have

c∂µBk
〈
γµIγk0γ

jI
〉
= −c∂µBk

〈
Iγµγk0γ

jI
〉

= −c∂µBk
〈
I2γµγk0γ

j
〉

= c∂µBk
〈
γµγk0γ

j
〉 (19.12)

For a scalar part we need µ = 0 leaving

c∂0Bk
〈
γ0γk0γ

j
〉
= −∂tBk

〈
γkγ

j
〉

= −∂tBkδk
j

= −∂tB j

(19.13)

Combining the results and summing as a vector we have:∑
σ j

〈
(∇F − J/ϵ0c) · (γ jI)

〉
= −∂iEkϵ jikσ j − ∂tB jσ j

= −∂ jEkϵi jkσi − ∂tBiσi

= −∇ ×E −
∂B
∂t

= 0

(19.14)

Moving one term to the opposite side of the equation yields the familiar vector form for Fara-
day’s law

∇ ×E = −
∂B
∂t

(19.15)
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19.1.4 Ampere Maxwell law

For the last law, we want the current density, so to extract the Ampere Maxwell law we must
have to wedge with γ0. Such a wedge will eliminate all the trivectors from the span of eq. (19.2),
but can contribute pseudoscalar components from the trivectors in eq. (19.3). Therefore the
desired calculation is〈

(∇F − J/ϵ0c) ∧ γ0
〉

2
=

〈
((γµ j0)∧ γ0∂µE j + (∇IcB)∧ γ0

〉
2
− (γ0)2J/ϵ0c

=
〈
−((γ0

0 j)∧ γ
0∂0E j + (∇IcB)∧ γ0

〉
2
− (γ0)2J/ϵ0c

= −γ j
0 1

c
∂tE j +

〈
(∇IcB)∧ γ0

〉
2
− (γ0)2J/ϵ0c

= −
(γ0)2

c
∂E
∂t
+ c⟨∇IB⟩1 ∧ γ

0 − (γ0)2J/ϵ0c

(19.16)

Let us take just that middle term

⟨∇IB⟩1 ∧ γ
0 = −

〈
Iγµ∂µBkγk0

〉
1
∧ γ0

= −∂µBk〈γ0123γ
µγk0

〉
1 ∧ γ

0

= ∂µBk (
〈
γ0123γ

µγ0
〉

2 · γk) ∧ γ
0

(19.17)

Here µ , 0 since that leaves just a pseudoscalar in the grade two selection.

⟨∇IB⟩1 ∧ γ
0 = ∂ jBk

(〈
γ0123γ

jγ0
〉

2
· γk

)
∧ γ0

= (γ0)2∂ jBk
(〈
γ123γ

j
〉

2
· γk

)
∧ γ0

= (γ0)2∂ jBk
(〈
ϵhk jγhk jγ

j
〉

2
· γk

)
∧ γ0

= ∂ jBkϵhk j(γ0)2(γk)2γh
0

= −(γ0)2∂ jBkϵhk jσh

= (γ0)2
∇ ×B

(19.18)

Putting things back together and factoring out the common metric dependent (γ0)2 term we
have

−
1
c
∂E
∂t
+ c∇ ×B − J/ϵ0c = 0

=⇒

−
1
c2

∂E
∂t
+∇ ×B − J/ϵ0c2 = 0

(19.19)

With 1
c2 = µ0ϵ0 this is the Ampere Maxwell law

∇ ×B = µ0

(
J + ϵ0

∂E
∂t

)
(19.20)
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which we can put in the projection form of eq. (19.5) and eq. (19.7) as:

〈
(∇F − J/ϵ0c) ∧ (γ0/c)

〉
2 = ∇ ×B − µ0

(
J + ϵ0

∂E
∂t

)
= 0 (19.21)

19.2 summary of traditional maxwell’s equations as projective operations on
maxwell equation〈

(∇F − J/ϵ0c) γ0
〉
= ∇ ·E − ρ/ϵ0 = 0〈

(∇F − J/ϵ0c) ·
(
γ0I/c

)〉
= ∇ ·B = 0∑

σ j
〈
(∇F − J/ϵ0c) · (γ jI)

〉
= −∇ ×E −

∂B
∂t
= 0〈

(∇F − J/ϵ0c) ∧ (γ0/c)
〉

2 = ∇ ×B − µ0

(
J + ϵ0

∂E
∂t

)
= 0

(19.22)

Faraday’s law requiring a sum suggests that this can likely be written instead using a rejective
operation. Will leave that as a possible future followup.
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E Q UAT I O N

20.1 spacetime domain

We’ve seen the relativistic form of Maxwell’s equation in Geometric Algebra

∇F =
1

cϵ0
J. (20.1)

, but a dual representation, with F = IG is also possible

∇G =
I

cϵ0
J. (20.2)

Either form of Maxwell’s equation can be split into grade one and three components. The stan-
dard (non-dual) form is

∇ · F =
1

cϵ0
J

∇∧ F = 0,
(20.3)

and the dual form is

∇ ·G = 0

∇∧G =
I

cϵ0
J.

(20.4)

In both cases a potential representation F = ∇ ∧ A, where A is a four vector potential can be
used to kill off the non-current equation. Such a potential representation reduces Maxwell’s
equation to

∇ · F =
1

cϵ0
J, (20.5)

or

∇∧G =
I

cϵ0
J. (20.6)

In both cases, these reduce to

∇2A −∇ (∇ · A) =
1

cϵ0
J. (20.7)
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This can clearly be further simplified by using the Lorentz gauge, where ∇ · A = 0. However, the
aim for now is to try applying Stokes theorem to Maxwell’s equation. The dual form eq. (20.6)
has the curl structure required for the application of Stokes. Suppose that we evaluate this curl
over the three parameter volume element d3x = i dx0dx1dx2, where i = γ0γ1γ2 is the unit
pseudoscalar for the spacetime volume element.∫

V
d3x · (∇∧G) =

∫
V

d3x · (γµ ∧ ∂µG)

=

∫
V

(
d3x · γµ

)
· ∂µG

=
∑
µ,3

∫
V

(
d3x · γµ

)
· ∂µG.

(20.8)

This uses the distribution identity As · (a ∧ Ar) = (As · a) · Ar which holds for blades As, Ar

provided s > r > 0. Observe that only the component of the gradient that lies in the tangent
space of the three volume manifold contributes to the integral, allowing the gradient to be used
in the Stokes integral instead of the vector derivative (see: [20]). Defining the the surface area
element

d2x =
∑
µ,3

i · γµ
1

dxµ
d3x

= γ1γ2dxdy + cγ2γ0dtdy + cγ0γ1dtdx,

(20.9)

Stokes theorem for this volume element is now completely specified∫
V

d3x · (∇∧G) =

∫
∂V

d2 ·G. (20.10)

Application to the dual Maxwell equation gives∫
∂V

d2x ·G =
1

cϵ0

∫
V

d3x · (IJ). (20.11)

After some manipulation, this can be restated in the non-dual form

∫
∂V

1
I

d2x ∧ F =
1

cϵ0I

∫
V

d3x ∧ J. (20.12)

It can be demonstrated that using this with each of the standard basis spacetime 3-volume
elements recovers Gauss’s law and the Ampere-Maxwell equation. So, what happened to Fara-
day’s law and Gauss’s law for magnetism? With application of Stokes to the curl equation from
eq. (20.3), those equations take the form



20.2 spatial domain 113

∫
∂V

d2x · F = 0. (20.13)

Exercise 20.1

Demonstrate that the Ampere-Maxwell equation and Gauss’s law can be recovered from the
trivector (curl) equation eq. (20.6).

Exercise 20.2

Prove eq. (20.12).

Exercise 20.3

Using each of the four possible spacetime volume elements, write out the components of the
Stokes integral eq. (20.12).

20.2 spatial domain

Recall that the relativistic form of Maxwell’s equation in Geometric Algebra is

∇F =
1

cϵ0
J. (20.34)

where ∇ = γµ∂µ is the spacetime gradient, and J = (cρ, J) = Jµγµ is the four (vector) current
density. The pseudoscalar for the space is denoted I = γ0γ1γ2γ3, where the basis elements
satisfy γ2

0 = 1 = −γ2
k , and a dual basis satisfies γµ · γν = δνµ. The electromagnetic field F is a

composite multivector F = E + IcB. This is actually a bivector because spatial vectors have a
bivector representation in the space time algebra of the form E = Ekγkγ0.

Previously, I wrote out the Stokes integrals for Maxwell’s equation in GA form using some
three parameter spacetime manifold volumes. This time I’m going to use two and three param-
eter spatial volumes, again with the Geometric Algebra form of Stokes theorem.

Multiplication by a timelike unit vector transforms Maxwell’s equation from their relativis-
tic form. When that vector is the standard basis timelike unit vector γ0, we obtain Maxwell’s
equations from the point of view of a stationary observer

(∂0 +∇) (E + cIB) =
1
ϵ0c

(cρ − J) , (20.35)
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Extracting the scalar, vector, bivector, and trivector grades respectively, we have

∇ ·E =
ρ

ϵ0

cI∇∧B = −∂0E −
1
ϵ0c

J

∇∧E = −Ic∂0B
cI∇ ·B = 0.

(20.36)

Each of these can be written as a curl equation

∇∧ (IE) = I
ρ

ϵ0
1
µ0
∇∧B = ϵ0I∂tE + IJ

∇∧E = −I∂tB
∇∧ (IB) = 0,

(20.37)

a form that allows for direct application of Stokes integrals. The first and last of these require
a three parameter volume element, whereas the two bivector grade equations can be integrated
using either two or three parameter volume elements. Suppose that we have can parameterize
the space with parameters u, v,w, for which the gradient has the representation

∇ = xu∂u + xv∂v + xw∂w, (20.38)

but we integrate over a two parameter subset of this space spanned by x(u, v), with area element

d2x = dxu ∧ dxv

=
∂x
∂u
∧
∂x
∂v

dudv

= xu ∧ xv dudv,

(20.39)

as illustrated in fig. 20.1.
Our curvilinear coordinates xu, xv, xw are dual to the reciprocal basis xu, xv, xw, but we won’t

actually have to calculate that reciprocal basis. Instead we need only know that it can be calcu-
lated and is defined by the relations xa · xb = δb

a. Knowing that we can reduce (say),

d2x · (∇∧E) = d2x · (xa∂a ∧E)

= (xu ∧ xv) · (xa ∧ ∂aE) dudv

= (((xu ∧ xv) · xa) · ∂aE dudv

= dxu · ∂vE dv − dxv · ∂uE du,

(20.40)
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Figure 20.1: Two parameter manifold.

Because each of the differentials, for example dxu = (∂x/∂u)du, is calculated with the other
(i.e.v) held constant, this is directly integrable, leaving∫

d2x · (∇∧E) =
∫

(dxu ·E)
∣∣∣v=1
v=0 −

∫
(dxv ·E)

∣∣∣u=1
u=0

=



dx ·E.

(20.41)

That direct integration of one of the parameters, while the others are held constant, is the basic
idea behind Stokes theorem.

The pseudoscalar grade Maxwell’s equations from eq. (20.37) require a three parameter vol-
ume element to apply Stokes theorem to. Again, allowing for curvilinear coordinates such a
differential expands as

d3x · (∇∧ (IB)) = ((xu ∧ xv ∧ xw) · xa) · ∂a(IB) dudvdw

= (dxu ∧ dxv) · ∂w(IB)dw + (dxv ∧ dxw) · ∂u(IB)du + (dxw ∧ dxu) · ∂v(IB)dv.
(20.42)

Like the two parameter volume, this is directly integrable∫
d3x · (∇∧ (IB)) =

∫
(dxu ∧ dxv) · (IB)|∆w+

∫
(dxv ∧ dxw) · (IB)|∆u+

∫
(dxw ∧ dxu) · (IB)|∆v.

(20.43)

After some thought (or a craft project such as that of fig. 20.2) is can be observed that this is
conceptually an oriented surface integral
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Figure 20.2: Oriented three parameter surface.

Noting that d2x · (If) =
〈
d2xIB

〉
= I(d2x ∧ f), we can now write down the results of applica-

tion of Stokes theorem to each of Maxwell’s equations in their curl forms



dx ·E = −I∂t

∫
d2x∧B

1
µ0



dx ·B = ϵ0I∂t

∫
d2x∧E + I

∫
d2x∧ J∮

d2x∧E =
1
ϵ0

∫
(d3x · I)ρ∮

d2x∧B = 0.

(20.44)

In the three parameter surface integrals the specific meaning to apply to d2x∧ f is∮
d2x∧ f =

∫
(dxu ∧ dxv ∧ f)

∣∣∣
∆w

+

∫
(dxv ∧ dxw ∧ f)

∣∣∣
∆u

+

∫
(dxw ∧ dxu ∧ f)

∣∣∣
∆v.

(20.45)

Note that in each case only the component of the vector f that is projected onto the normal to
the area element contributes.
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21.1 free space

Motivation Most electrodynamics textbooks either start with or contain a treatment of bound-
ary value conditions. These typically involve evaluating Maxwell’s equations over areas or vol-
umes of decreasing height, such as those illustrated in fig. 21.1, and fig. 21.2. These represent
surfaces and volumes where the height is allowed to decrease to infinitesimal levels, and are tra-
ditionally used to find the boundary value constraints of the normal and tangential components
of the electric and magnetic fields.

Figure 21.1: Two surfaces normal to the interface.

More advanced topics, such as evaluation of the Fresnel reflection and transmission equations,
also rely on similar consideration of boundary value constraints. I’ve wondered for a long time
how the Fresnel equations could be attacked by looking at the boundary conditions for the
combined field F = E + IcB, instead of the considering them separately.

A unified approach. The Geometric Algebra (and relativistic tensor) formulations of Maxwell’s
equations put the electric and magnetic fields on equal footings. It is in fact possible to specify
the boundary value constraints on the fields without first separating Maxwell’s equations into
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Figure 21.2: A pillbox volume encompassing the interface.

their traditional forms. The starting point in Geometric Algebra is Maxwell’s equation, premul-
tiplied by a stationary observer’s timelike basis vector

γ0∇F =
1
ϵ0c

γ0J, (21.1)

or

(∂0 +∇) F =
ρ

ϵ0
−

J
ϵ0
. (21.2)

The electrodynamic field F = E + IcB is a multivector in this spatial domain (whereas it is
a bivector in the spacetime algebra domain), and has vector and bivector components. The
product of the spatial gradient and the field can still be split into dot and curl components
∇M = ∇ · M + ∇ ∧ M. If M =

∑
Mi, where Mi is an grade i blade, then we give this the

Hestenes’ [15] definitions

∇ ·M =
∑

i

⟨∇Mi⟩i−1

∇∧M =
∑

i

⟨∇Mi⟩i+1.
(21.3)

With that said, Maxwell’s equation can be rearranged into a pair of multivector equations

∇ · F =
〈
−∂0F +

ρ

ϵ0
−

J
ϵ0c

〉
0,1

∇∧ F =
〈
−∂0F +

ρ

ϵ0
−

J
ϵ0c

〉
2,3
,

(21.4)
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The former equation can be integrated with Stokes theorem, but we need to apply a duality
transformation to the latter in order to apply Stokes to it

∇ · F = −I2
∇ · F

= −I2⟨∇F⟩0,1
= −I⟨I∇F⟩2,3
= −I∇∧ (IF),

(21.5)

so

∇∧ (IF) = I
(
−

1
c
∂tE +

ρ

ϵ0
−

J
ϵ0c

)
∇∧ F = −I∂tB.

(21.6)

Integrating each of these over the pillbox volume gives∮
∂V

d2x · (IF) =
∫

V
d3x ·

(
I
(
−

1
c
∂tE +

ρ

ϵ0
−

J
ϵ0c

))
∮
∂V

d2x · F = −∂t

∫
V

d3x · (IB) .
(21.7)

In the absence of charges and currents on the surface, and if the height of the volume is reduced
to zero, the volume integrals vanish, and only the upper surfaces of the pillbox contribute to the
surface integrals.∮

∂V
d2x · (IF) = 0∮
∂V

d2x · F = 0.
(21.8)

With a multivector F in the mix, the geometric meaning of these integrals is not terribly clear.
They do describe the boundary conditions, but to see exactly what those are, we can now resort
to the split of F into its electric and magnetic fields. Let’s look at the non-dual integral to start
with ∮

∂V
d2x · F =

∮
∂V

d2x · (E + IcB)

=

∮
∂V

d2x ·E + Icd2x∧B

= 0.

(21.9)

No component of E that is normal to the surface contributes to d2x ·E, whereas only components
of B that are normal contribute to d2x∧B. That means that we must have tangential components
of E and the normal components of B matching on the surfaces

(E2 ∧ n̂) n̂ − (E1 ∧ (−n̂)) (−n̂) = 0

(B2 · n̂) n̂ − (B1 · (−n̂)) (−n̂) = 0.
(21.10)
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Similarly, for the dot product of the dual field, this is∮
∂V

d2x · (IF) =
∮
∂V

d2x · (IE − cB)

=

∮
∂V

Id2x∧E − cd2x ·B.
(21.11)

For this integral, only the normal components of E contribute, and only the tangential compo-
nents of B contribute. This means that

(E2 · n̂) n̂ − (E1 · (−n̂)) (−n̂) = 0

(B2 ∧ n̂) n̂ − (B1 ∧ (−n̂)) (−n̂) = 0.
(21.12)

This is why we end up with a seemingly strange mix of tangential and normal components of
the electric and magnetic fields. These constraints can be summarized as

(E2 −E1) · n̂ = 0

(E2 −E1)∧ n̂ = 0

(B2 −B1) · n̂ = 0

(B2 −B1)∧ n̂ = 0

(21.13)

These relationships are usually expressed in terms of all of E,D,B and H. Because I’d started
with Maxwell’s equations for free space, I don’t have the ϵ and µ factors that produce those
more general relationships. Those more general boundary value relationships are usually the
starting point for the Fresnel interface analysis. It is also possible to further generalize these
relationships to include charges and currents on the surface.

21.2 maxwell equation boundary conditions in media

Following [1], Maxwell’s equations in media, including both electric and magnetic sources and
currents are

∇ ×E = −M − ∂tB (21.14a)

∇ ×H = J + ∂tD (21.14b)

∇ ·D = ρ (21.14c)
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∇ ·B = ρm (21.14d)

In general, it is not possible to assemble these into a single Geometric Algebra equation unless
specific assumptions about the permeabilities are made, but we can still use Geometric Algebra
to examine the boundary condition question. First, these equations can be expressed in a more
natural multivector form

∇∧E = −I (M + ∂tB) (21.15a)

∇∧H = I (J + ∂tD) (21.15b)

∇ ·D = ρ (21.15c)

∇ ·B = ρm (21.15d)

Then duality relations can be used on the divergences to write all four equations in their curl
form

∇∧E = −I (M + ∂tB) (21.16a)

∇∧H = I (J + ∂tD) (21.16b)

∇∧ (ID) = ρI (21.16c)

∇∧ (IB) = ρmI. (21.16d)

Now it is possible to employ Stokes theorem to each of these. The usual procedure is to both
use the loops of fig. 21.1 and the pillbox of fig. 21.2 , where in both cases the height is made
infinitesimal.
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With all these relations expressed in curl form as above, we can use just the pillbox configu-
ration to evaluate the Stokes integrals. Let the height h be measured along the normal axis, and
assume that all the charges and currents are localized to the surface

M =Msδ(h)

J = Jsδ(h)

ρ = ρsδ(h)

ρm = ρmsδ(h),

(21.17)

where n̂∧Ms = n̂∧Js = 0. We can enumerate the Stokes integrals
∫

d3x · (∇∧X) =
∮
∂V d2x ·X.

The three-volume area element will be written as d3x = d2x∧ n̂dh, giving

∮
∂V

d2x ·E = −
∫

(d2x∧ n̂) · (IMs + ∂tIB∆h) (21.18a)

∮
∂V

d2x ·H =
∫

(d2x∧ n̂) · (IJs + ∂tID∆h) (21.18b)

∮
∂V

d2x · (ID) =
∫

(d2x∧ n̂) · (ρsI) (21.18c)

∮
∂V

d2x · (IB) =
∫

(d2x∧ n̂) · (ρmsI) (21.18d)

In the limit with ∆h→ 0, the LHS integrals are reduced to just the top and bottom surfaces, and
the ∆h contributions on the RHS are eliminated. With i = In̂, and d2x = dA i on the top surface,
we are left with

0 =
∫

dA (i · ∆E + I · (IMs)) (21.19a)

0 =
∫

dA (i · ∆H − I · (IJs)) (21.19b)

0 =
∫

dA (i · ∆(ID) + ρs) (21.19c)
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0 =
∫

dA (i · ∆(IB) + ρms) (21.19d)

Consider the first integral. Any component of E that is normal to the plane of the pillbox top
(or bottom) has no contribution to the integral, so this constraint is one that effects only the
tangential components n̂(n̂∧ (∆E)). Writing out the vector portion of the integrand, we have

i · ∆E + I · (IMs) =
〈
i∆E + I2Ms

〉
1

= ⟨In̂∆E −Ms⟩1

= ⟨In̂n̂(n̂∧ ∆E) −Ms⟩1

= ⟨I(n̂∧ (∆E)) −Ms⟩1

= ⟨−n̂ × (∆E) −Ms⟩1.

(21.20)

The dot product (a scalar) in the two surface charge integrals can also be reduced

i · ∆(ID) = ⟨i∆(ID)⟩

= ⟨In̂∆(ID)⟩

= ⟨−n̂∆D⟩
= −n̂ · ∆D,

(21.21)

so the integral equations are satisfied provided

n̂ × (E2 −E1) = −Ms

n̂ × (H2 −H1) = Js

n̂ · (D2 −D1) = ρs

n̂ · (B2 −B1) = ρms.

(21.22)

The cross products may also be written in a (perhaps more natural) dual form

n̂∧ (E2 −E1) = −IMs

n̂∧ (H2 −H1) = IJs

n̂ · (D2 −D1) = ρs

n̂ · (B2 −B1) = ρms.

(21.23)

It is tempting to try to assemble these into a results expressed in terms of a four-vector surface
current and composite STA bivector fields like the F = E + IcB that we can use for the free
space Maxwell’s equation. Dimensionally, we need something with velocity in that mix, but
what velocity should be used when the speed of the field propagation in each media is potentially
different?
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21.3 problems

Exercise 21.1 Fields accross dielectric boundary.

Given a plane n̂ · x = a describing the interface between two dielectric mediums, and the fields
on one side of the plane E1,B1, what are the fields on the other side of the interface?
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22.1 motivation

This contains a somewhat unstructured collection of notes translating between tensor and bivec-
tor forms of Maxwell’s equation(s).

22.2 electrodynamic tensor

John Denker’s paper [6] writes:

F = (E + icB)γ0, (22.1)

with

E = Eiγi

B = Biγi.
(22.2)

Since he uses the positive end of the metric for spatial indices this works fine. Contrast to [8]
who write:

F = E + icB, (22.3)

with the following implied spatial bivector representation:

E = Eiσi = Eiγi0

B = Biσi = Biγi0.
(22.4)

That implied representation was not obvious to me, but I eventually figured out what they meant.
They also use c = 1, so I have added it back in here for clarity.

The end result in both cases is a pure bivector representation for the complete field:

F = E jγ j0 + icB jγ j0.

Let us look at the B j basis bivectors a bit more closely:

iγ j0 = γ0123 j0 = −γ01230 j = +γ00123 j = (γ0)2γ123 j.
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Where,

γ123 j =


(γ j)2γ23 if j = 1

(γ j)2γ31 if j = 2

(γ j)2γ12 if j = 3.

Combining these results we have a (γ0)2(γ j)2 = −1 coefficient that is metric invariant, and can
write:

iσ j = iγ j0 =


γ32 if j = 1

γ13 if j = 2

γ21 if j = 3.

Or, more compactly:

iσa = iγa0 = −ϵabcγbc.

Putting things back together, our bivector field in index notation is:

F = Eiγi0 − ϵi jkcBiγ jk. (22.5)

22.2.1 Tensor components

Now, given a grade two multivector such as our field, how can we in general compute the
components of that field given any arbitrary basis. This can be done using the reciprocal bivector
frame:

F =
∑

aµν(eµ ∧ eν).

To calculate the coordinates aµν we can dot with eν ∧ eµ:

F · (eν ∧ eµ) =
∑

aαβ(eα ∧ eβ) · (eν ∧ eµ)

= (aµν(eµ ∧ eν) + aνµ(eν ∧ eµ)) · (eν ∧ eµ)

= aµν − aνµ
= 2aµν.

(22.6)

Therefore

F =
1
2

∑
(F · (eν ∧ eµ))(eµ ∧ eν) =

∑
µ<ν

(F · (eν ∧ eµ))(eµ ∧ eν).
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With Fµν = F · (eν ∧ eµ) and summation convention:

F =
1
2

Fµν(eµ ∧ eν). (22.7)

It is not hard to see that the representation with respect to the reciprocal frame, with Fµν =

F · (eν ∧ eµ) must be:

F =
1
2

Fµν(eµ ∧ eν). (22.8)

Writing Fµν or Fµν leaves a lot unspecified. You will get a different tensor for each choice of
basis. Using this form amounts to the equivalent of using the matrix of a linear transformation
with respect to a specified basis.

22.2.2 Electromagnetic tensor components

Next, let us calculate these Fµν, and Fµν values and relate them to our electric and magnetic
fields so we can work in or translate to and from all of the traditional vector, the tensor, and the
Clifford/geometric languages.

Fµν =
(
Eiγi0 − ϵi jkcBiγ jk

)
· γνµ.

By inspection our electric field components we have:

Fi0 = Ei,

and for the magnetic field:

Fi j = −ϵki jcBk = −ϵi jkcBk.

Putting in sample numbers this is:

F32 = −ϵ321cB1 = cB1

F13 = −ϵ132cB2 = cB2

F21 = −ϵ213cB3 = cB3.

(22.9)

This can be summarized in matrix form:

Fµν =


0 −E1 −E2 −E3

E1 0 −cB3 cB2

E2 cB3 0 −cB1

E3 −cB2 cB1 0


. (22.10)

Observe that no specific reference to a metric was required to evaluate these components.
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22.2.3 reciprocal tensor (name?)

The reciprocal frame representation of eq. (22.5) is

F = Eiγi0 − ϵi jkcBiγ jk

= −Eiγi0 − ϵi jkcBiγ jk.
(22.11)

Calculation of the reciprocal representation of the field tensor Fµν = F · γνµ is now possible,
and by inspection

Fi0 = −Ei = −Fi0

Fi j = −ϵi jkcBk = Fi j.
(22.12)

So, all the electric field components in the tensor have inverted sign:

Fµν =


0 E1 E2 E3

−E1 0 −cB3 cB2

−E2 cB3 0 −cB1

−E3 −cB2 cB1 0


.

This is metric independent with this bivector based definition of Fµν, and Fµν. Surprising, since
I thought I had read otherwise.

22.2.4 Lagrangian density

[8] write the Lagrangian density in terms of
〈
F2

〉
, whereas Denker writes it in terms of

〈
FF̃

〉
.

Is their alternate choice in metric responsible for this difference.
Reversing the field since it is a bivector, just inverts the sign:

F = Eiγi0 − ϵi jkcBiγ jk

F̃ = Eiγ0i − ϵi jkcBiγk j = −F.
(22.13)

So the choice of
〈
F2

〉
vs.

〈
FF̃

〉
is just a sign choice, and does not have anything to do with the

metric.
Let us evaluate one of these:

F2 = (Eiγi0 − ϵi jkcBiγ jk)(Euγu0 − ϵuvwcBuγvw)

= EiEuγi0γu0 − ϵuvwEicBuγvwγi0 − ϵi jkEucBiγ jkγu0 + ϵi jkϵuvwc2BiBuγvwγ jk.
(22.14)
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That first term is:

EiEuγi0γu0 = E2 +
∑
i, j

EiE j(σiσ j +σ jσi)

= E2 +
∑
i, j

2EiE jσi ·σ j

= E2.

(22.15)

Hmm. This is messy. Let us try with F = E+ icB directly (with the Doran/Lasenby convention:
E = Ekσk) :

F2 = (E + icB)(E + icB)

= E2 + c2(iB)(iB) + c(iBE +EiB)

= E2 + c2(Bi)(iB) + ic(BE +EB)

= E2 − c2B2 + 2ic(B ·E).

(22.16)

22.2.4.1 Compared to tensor form

Now lets compare to the tensor form, where the Lagrangian density is written in terms of the
product of upper and lower index tensors:

FµνFµν = Fi0Fi0 + F0iF0i +
∑
i< j

Fi jFi j +
∑
j<i

Fi jFi j

= 2Fi0Fi0 + 2
∑
i< j

Fi jFi j

= 2(−Ei)(Ei) + 2
∑
i< j

(Fi j)2

= −2E2 + 2
∑
i< j

(−ϵi jkcBk)2

= −2(E2 − c2B2).

(22.17)

Summarizing with a comparison of the bivector and tensor forms we have:

1
2

FµνFµν = c2B2 −E2 = −
〈
F2

〉
=

〈
FF̃

〉
. (22.18)

But to put this in context we need to figure out how to apply this in the Lagrangian. That appears
to require a potential formulation of the field equations, so that is the next step.
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22.2.4.2 Potential and relation to electromagnetic tensor

Since the field is a bivector is it reasonable to assume that it may be possible to express as the
curl of a vector

F = ∇∧ A.

Inserting this into the field equation we have:

∇(∇∧ A) = ∇ · (∇∧ A) + ∇∧∇

= 0

∧ A

= ∇2A −∇(∇ · A)

=
1
ϵ0c

J.

(22.19)

With application of the gauge condition ∇ · A = 0, one is left with the four scalar equations:

∇2A =
1
ϵ0c

J. (22.20)

This can also be seen more directly since the gauge condition implies:

∇∧ A = ∇∧ A +∇ · A = ∇A,

from which eq. (22.20) follows directly. Observe that although the field equation was not metric
dependent, the equivalent potential equation is since it has a squared Laplacian.

22.2.4.3 Index raising or lowering

Any raising or lowering of indices, whether it be in the partials or the basis vectors corresponds
to a multiplication by a (γα)2 = ±1 value, so doing this twice cancels out (±1)2 = 1.

Vector coordinates in the reciprocal basis is translated by such a squared factor when we are
using an orthonormal basis:

x =
∑

γµ(γµ · x)

=
∑

γµxµ

=
∑

γµ(γµγµ)xµ

=
∑

(γµ)2γµxµ,

(22.21)

therefore

xµ = x · γµ = (γµ)2xµ.
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Similarly our partial derivatives can be raised or lowered since they are just derivatives in terms
of one of the choices of coordinates

∂µ =
∂

∂xµ
=

∂

∂(γµ)2xµ
= (γµ)2 ∂

∂xµ
= (γµ)2∂µ,

when written as a gradient, we have two pairs of (γµ)2 factors that cancel if we switch both
indices:

∇ = γµ
∂

∂xµ
= (γµ)2(γµ)2γµ

∂

∂xµ
= (±1)2γµ

∂

∂xµ
.

Or in short with the notation above

∇ = γµ∂µ = γµ∂
µ.

22.2.4.4 Back to tensor in terms of potential

Utilizing matched raising and lowering of indices, our field can be written in any of the follow-
ing ways

∇∧ A = γµ ∧ γν∂µAν =
∑
µ<ν

γµ ∧ γν (∂
µAν − ∂νAµ)

= γµ ∧ γν∂µAν =
∑
µ<ν

γµ ∧ γν (∂µAν − ∂νAµ)

= γµ ∧ γ
ν∂µAν =

∑
µ<ν

γµ ∧ γ
ν (∂µAν − ∂νAµ)

= γµ ∧ γν∂µAν =
∑
µ<ν

γµ ∧ γν (∂µAν − ∂νAµ) .

(22.22)

These implicitly define the tensor in terms of potential, so we can write: Calculating the tensor
in terms of the bivector we have:

Fµν = F · (γν ∧ γµ) = ∂µAν − ∂νAµ

Fµν = F · (γν ∧ γµ) = ∂µAν − ∂νAµ
Fµ

ν = F · (γν ∧ γµ) = ∂µAν − ∂νAµ

Fµ
ν = F · (γν ∧ γµ) = ∂µAν − ∂νAµ.

(22.23)

These potential based equations of eq. (22.23), are consistent with the definition of the field
tensor in terms of potential in the wikipedia Covariant electromagnetism article. That article’s
definition of the field tensor is also consistent with the field tensor in matrix form of eq. (22.10).

However, the wikipedia Electromagnetic Tensor uses different conventions (at the time of
this writing), but both claim a − + ++ metric, so I think one is wrong. I had naturally favor the
covariant article since it agrees with my results.

https://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
https://en.wikipedia.org/wiki/Electromagnetic_tensor
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22.2.5 Field equations in tensor form

J/cϵ0 = ∇(∇∧ A)

= ∇ · (∇∧ A) +∇∧∇∧ A.
(22.24)

This produces two equations

∇ · (∇∧ A) = J/cϵ0

∇∧∇∧ A = 0.

22.2.5.1 Vector equation part

Expanding the first in coordinates we have

J/cϵ0 = γ
α∂α · (γµ ∧ γν∂µAν)

= (γα · γµν)∂α∂µAν

= (δαµγν − δ
α
νγµ)∂α∂µAν

= (γν∂µ − γµ∂ν)∂µAν

= γν∂µ(∂µAν − ∂νAµ)

= γν∂µFµν.

(22.25)

Dotting the LHS with γα we have

γα · J/cϵ0 = γ
α · γβJβ/cϵ0

= δαβ Jβ/cϵ0

= Jα/cϵ0.

(22.26)

and for the RHS

γα · γν∂µFµν = ∂µFµα. (22.27)

Or,

∂µFµα = Jα/cϵ0. (22.28)

This is exactly (with index switch) the tensor equation in wikipedia Covariant electromagnetism
article. It however, differs from the wikipedia Electromagnetic Tensor article.

https://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
https://en.wikipedia.org/wiki/Covariant_formulation_of_classical_electromagnetism
https://en.wikipedia.org/wiki/Electromagnetic_tensor
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22.2.5.2 Trivector part

Now, the trivector part of this equation does not seem like it is worth much consideration

∇∧∇∧ A = 0. (22.29)

But this is four of the eight traditional Maxwell’s equations when written out in terms of coor-
dinates. Let us write this out in tensor form and see how this follows.

∇∧∇∧ A = (γα∂α)∧ (γβ∂β)∧ (γσAσ)

= (γα ∧ γβ ∧ γσ)∂α∂βAσ

=
1
2

(γα ∧ γβ ∧ γσ)∂α∂βAσ +
1
2

(γα ∧ γσ ∧ γβ)∂α∂σAβ

=
1
2

(γα ∧ γβ ∧ γσ)∂α(∂βAσ − ∂σAβ)

=
1
2

(γα ∧ γβ ∧ γσ)∂αFβσ.

(22.30)

For each of the four trivectors that span the trivector space the coefficients of those trivectors
must all therefore equal zero. The duality set

{iγµ}

can be used to enumerate these four equations, so to separate these from the wedge products
we have to perform the dot products. Here i can be any pseudoscalar associated with the four
vector space, and it will be convenient to use an "index-up" pseudoscalar i = γ0123. This will
still anticommute with any of the γµ vectors.

(γα ∧ γβ ∧ γσ) · (iγµ) =
〈
(γα ∧ γβ ∧ γσ)(iγµ)

〉
= −

〈
γαγβγσγµ0123

〉
= −

〈
γαβσµ0123

〉
= ϵαβσµ.

(22.31)

The last line follows with the observation that the scalar part will be zero unless α, β, σ, and
µ are all unique. When they are 0, 1, 2, 3 for example then we have i2 = −1, and any odd
permutation will change the sign.

Application of this to our curl of curl expression we have

(∇∧∇∧ A) · (iγµ) =
1
2
ϵαβσµ∂αFβσ.

Because there are no magnetic sources, the one-half scale factor can be dropped, which leaves
the remaining four equations of Maxwell’s equation in standard tensor form

ϵαβσµ∂αFβσ = 0. (22.32)
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One of these will be Gauss’s law ∇ · B = 0, and the other three can be summed in vector form
for Faraday’s law ∇ ×E + ∂B

∂t = 0.

22.2.6 Lagrangian density in terms of potential

We have seen that we can write the core of the Lagrangian density in two forms:

1
2

FµνFµν = −
〈
F2

〉
= c2B2 −E2,

where summarizing the associated relations we have:

F = E + icB =
1
2

Fµνγµν = ∇∧ A = Eiγi0 − ϵi jkcBiγ jk

Fµν = ∂µAν − ∂νAµ

Fµν = ∂µAν − ∂νAµ
Fi0 = Ei = −Fi0

Fi j = −ϵi jkcBk = Fi j.

(22.33)

Now, if we want the density in terms of potential, by inspection we can form this from the tensor
as:

1
2

FµνFµν =
1
2

(∂µAν − ∂νAµ)(∂µAν − ∂νAµ).

We should also be able to calculate this directly from the bivector square. Lets verify this:〈
F2

〉
= ⟨(∇∧ A)(∇∧ A)⟩

=
〈
(γµ ∧ γν∂µAν)(γα ∧ γβ∂αAβ)

〉
= (γµ ∧ γν∂µAν) · (γα ∧ γβ∂αAβ)

= (((γµ ∧ γν) · γα) · γβ)∂µAν∂αAβ

=
(
δ
µ
βδ
ν
α − δ

µ
αδ

ν
β

)
∂µAν∂αAβ

= ∂µAν∂νAµ − ∂µAν∂µAν

= ∂µAν (∂νAµ − ∂µAν)

=
1
2
(∂µAν (∂νAµ − ∂µAν) + ∂νAµ (∂µAν − ∂νAµ))

=
1
2
(∂νAµ − ∂µAν) (∂νAµ − ∂µAν)

= −
1
2

FµνFµν,

(22.34)
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as expected.
The factor of 1/2 appearance is a x = (1/2)(x+ x) operation, plus a switch of dummy indices

in one half of the sum.
With the density expanded completely in terms of potentials things are in a form for an

attempt to evaluate the Lagrangian equations or do the variational exercise (as in Feynman [10]
with the electrostatic case) and see that this recovers the field equations (covered in a subsequent
set of notes in both fashions).





23F O U R V E C T O R P OT E N T I A L

23.1

Goldstein’s classical mechanics, and many other texts, will introduce the four potential starting
with Maxwell’s equation in scalar, vector, bivector, trivector expanded form:

∇ ·E =
ρ

ϵ0

∇ ·B = 0

∇ ×E = −
∂B
∂t

∇ ×B = µ0

(
J + ϵ0

∂E
∂t

) (23.1)

ie: E can not be a gradient, since it has a curl, but B can be the curl of something since it has
zero divergence, so we have B = ∇ ×A. Faraday’s law above gives:

0 = ∇ ×E +
∂∇ ×A
∂t

= ∇ ×

(
E +

∂A
∂t

) (23.2)

Because this curl is zero, one can write it as a gradient, say −∇ϕ.
The end result are the equations:

E = − (∇ϕ + ∂tA) (23.3)

B = ∇ ×A (23.4)

Looking at what Goldstein does with this (which I re-derived above to put in the SI form
I am used to), my immediate question is how would the combined bivector field look when
expressed using an STA basis, and then once that is resolved, how would his Lagrangian for a
charged point particle look in explicit four vector form?

Intuition says that this is all going to work out to be a spacetime gradient of a four vector, but
I am not sure how the Lorentz gauge freedom will turn out. Here is an exploration of this.
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23.1.1

Forming as usual

F = E + icB (23.5)

We can combine the equations eq. (23.3) and eq. (23.4) into bivector form

F = − (∇ϕ + ∂tA) + c∇∧A (23.6)

23.1.2 Dimensions

Let us do a dimensional check before continuing:
Equation (23.5) gives:

[E] =
[m][d]
[q][t]2

That and eq. (23.6) gives

[ϕ] =
[m][d]2

[q][t]2

And the two A terms of eq. (23.6) both give:

[A] =
[m][d]
[q][t]

.

Therefore if we create a four vector out of ϕ, and A in SI units we will need that factor c with A
with velocity dimensions to fix things up.

23.1.3 Expansion in terms of components. STA split

F = − (∇ϕ + ∂tA) + c∇∧A

= −
∑

γiγ0∂xiϕ −
∑

γiγ0∂tAi + c
(∑

σi∂xi

)
∧

(∑
σ jA j

)
=

∑
γi∂xi(γ0ϕ) +

∑
γ0∂ctcγiAi −

(∑
γi∂xi

)
∧

(∑
γ jcA j

)
=

∑
γi ∧ γ0∂xiϕ +

∑
γ0 ∧ γi∂x0cAi +

∑
γi ∧ γ j∂xicA j

=
(∑

γi∂xi

)
∧

(
γ0ϕ + γicAi

)
= ∇∧

(
γ0ϕ +

∑
γicAi

)
(23.7)



23.1 139

Once the electric and magnetic fields are treated as one entity, the separate equations of eq. (23.3)
and eq. (23.4) become nothing more than a statement that the bivector field F is the spacetime
curl of a four vector potential A = γ0ϕ +

∑
γicAi.

This original choice of components Ai, defined such that B = ∇×A is a bit unfortunate in SI
units. Setting Ai = cAi, and A0 = ϕ, one then has the more symmetric form.

A =
∑

γµA
µ.

Of course the same thing could be achieved with c = 1 ;)
Anyways, substitution of this back into Maxwell’s equation gives:

∇(∇∧ A) = ∇ · (∇∧ A) + ∇∧∇∧ A

= 0

= J

One can see an immediate simplification possible if one requires:

∇ · A = 0.

Then we are left with a forced wave equation to solve for the four potential:

∇2A = −
(∑

∂xi xi −
1
c2 ∂tt

)
A = J.

Now, without all this mess of algebra, I could have gone straight to this end result (and had done
so previously). I just wanted to see where I would get applying the STA basis to the classical
vector+scalar four vector ideas.

23.1.4 Lorentz gauge

Looking at ∇ · A = 0, I was guessing that this was what I recalled being called the Lorentz
gauge, but in a slightly different form.

If one expands this you get:

0 = ∇ · A

=
∑

γµ∂µ ·
(
γ0ϕ + c

∑
γ jA j

)
= ∂ctϕ + c

∑
∂xi Ai

= ∂ctϕ + c∇ ·A

(23.8)

Or,

∇ ·A = −
1
c2 ∂tϕ (23.9)
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Checked my Feynman book. Yes, this is the Lorentz Gauge.
Another note. Again the SI units make things ugly. With the above modification of compo-

nents that hide this, where one sets A =
∑
γiA

i, this gauge equation also takes a simpler form:

0 = ∇ · A =
(∑

γµ∂xµ
)
·
(∑

γνA
ν
)
=

∑
∂xµA

µ.

23.2 appendix

23.2.1 wedge of spacetime bivector basis elements

For i , j:

σi ∧σ j =
1
2
(σiσ j −σ jσi)

=
1
2
(γi0 j0 − γ j0i0)

=
1
2
(−γi j + γ ji)

= γ ji

(23.10)
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24.1 motivation

Doran/Lasenby use a +,−,−,− signature, and I had gotten used to that. On first seeing the
alternate signature used by John Denker’s excellent GA explanatory paper , I found myself
disoriented. How many of the identities that I was used to were metric dependent? Here are
some notes that explore some of the metric dependencies of STA, in particular observing which
identities are metric dependent and which are not.

In the end this exploration turned into a big meandering examination and comparison of
the bivector and tensor forms of Maxwell’s equation. That part has been split into a different
writeup.

24.2 the guts

24.2.1 Spatial basis

Our spatial (bivector) basis:

σi = γi ∧ γ0 = γi0,

that behaves like Euclidean vectors (positive square) still behave as desired, regardless of the
signature:

σi ·σ j =
〈
γi0 j0

〉
= −

〈
γi j

〉
(γ0)2

= −δi j(γi)2(γ0)2

(24.1)

Regardless of the signature the pair of products (γi)2(γ0)2 = −1, so our spatial bivectors are
metric invariant.

24.2.2 How about commutation?

Commutation with

iγµ = γ0123µ = γµ0123

http://www.av8n.com/physics/maxwell-ga.pdf
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µ has to "pass" three indices regardless of metric, so anticommutes for any µ.

σkγµ = γk0µ

If k = µ, or 0 = µ, then we get a sign inversion, and otherwise commute (pass two indices). This
is also metric invariant.

24.2.3 Spatial and time component selection

With a positive time metric (Doran/Lasenby) selection of the x0 component of a vector x re-
quires a dot product:

x = x0γ0 + xiγi

x · γ0 = x0(γ0)2

Obviously this is a metric dependent operation. To generalize it appropriately, we need to dot
with γ0 instead:

x · γ0 = x0

Now, what do we get when wedging with this upper index quantity instead.

x ∧ γ0 =
(
x0γ0 + xiγi

)
∧ γ0

= xiγi ∧ γ
0

= xiγi0(γ0)2

= xiσi(γ0)2

= x
(
γ0

)2

(24.2)

Not quite the usual expression we are used to, but it still behaves as a Euclidean vector (positive
square), regardless of the metric:

(x ∧ γ0)2 = (±x)2
= x2

This suggests that we should define our spatial projection vector as x ∧ γ0 instead of x ∧ γ0 as
done in Doran/Lasenby (where a positive time metric is used).

24.2.3.1 Velocity

Variation of a event path with some parameter we have:

dx
dλ
=

dxµ

dλ
γµ = c

dt
dλ
γ0 +

dxi

dλ
γi

=
dt
dλ

(
cγ0 +

dxi

dt
γi

) (24.3)
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The square of this is:

1
c2

(
dx
dλ

)2

=

(
dt
dλ

)2

(γ0)2

1 + 1
c2

(
dxi

dt

)2

(γi)2(γ0)2


=

(
dt
dλ

)2

(γ0)2
(
1 − (v/c)2

)
(γ0)2

c2

(
dx
dλ

)2

=

(
dt
dλ

)2 (
1 − (v/c)2

)
(24.4)

We define the proper time τ as that particular parametrization cτ = λ such that the LHS equals
1. This is implicitly defined via the integral

τ =

∫ √
1 − (v/c)2dt =

∫ √
1 −

(
1
c

dxi

dα

)2

dα

Regardless of this parametrization α = α(t), this velocity scaled 4D arc length is the same. This
is a bit of a digression from the ideas of metric dependence investigation. There is however a
metric dependence in the first steps arriving at this result.

with proper velocity defined in terms of proper time v = dx/dτ, we also have:

γ =
dt
dτ
=

1√
1 − (v/c)2

(24.5)

v = γ
(
cγ0 +

dxi

dt
γi

)
(24.6)

Therefore we can select this quantity γ, and our spatial velocity components, from our proper
velocity:

cγ = v · γ0

In eq. (24.5) we did not define v, only implicitly requiring that its square was
∑

(dxi/dt)2, as we
require for correspondence with Euclidean meaning. This can be made more exact by taking
wedge products to weed out the time component:

v∧ γ0 = γ
dxi

dt
γi ∧ γ

0

With a definition of v = dxi

dt γi ∧ γ
0 (which has the desired positive square), we therefore have:

v =
v∧ γ0

γ

=
v∧ γ0

v/c · γ0

(24.7)
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Or,

v/c =
v/c∧ γ0

v/c · γ0 (24.8)

All the lead up to this allows for expression of the spatial component of the proper velocity in a
metric independent fashion.

24.2.4 Reciprocal Vectors

By reciprocal frame we mean the set of vectors {uα} associated with a basis for some linear
subspace {uα} such that:

uα · uβ = δ
β
α

In the special case of orthonormal vectors uα · uβ = ±δαβ the reciprocal frame vectors are just
the inverses (literally reciprocals), which can be verified by taking dot products:

1
uα
· uα =

〈
1
uα

uα

〉
=

〈
1
uα

uα
uα

uα

〉
=

〈
(uα)2

(uα)2

〉
= 1

(24.9)

Written out explicitly for our positive "orthonormal" time metric:

(γ0)2 = 1

(γi)2 = −1,
(24.10)

we have the reciprocal vectors:

γ0 = γ
0

γi = −γ
i (24.11)

Note that this last statement is consistent with (γi)2 = −1, since (γi)2 = γi(−γi) = −δi
i = −1

Contrast this with a positive spatial metric:

(γ0)2 = −1

(γi)2 = 1,
(24.12)
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with reciprocal vectors:

γ0 = −γ
0

γi = γ
i (24.13)

where we have the opposite.

24.2.5 Reciprocal Bivectors

Now, let us examine the bivector reciprocals. Given our orthonormal vector basis, let us invert
the bivector and verify that is what we want:

1
γµν
=

1
γµν

γνµ

γνµ

=
1
γµν

1
γνµ

γνµ

=
1

γµννµ
γνµ

=
1

(γµ)2(γν)2γνµ

(24.14)

Multiplication with our vector we will get 1 if this has the required reciprocal relationship:

1
γµν

γµν =
1

(γµ)2(γν)2γνµγµν

=
(γµ)2(γν)2

(γµ)2(γν)2

= 1

(24.15)

Observe that unlike our basis vectors the bivector reciprocals are metric independent. Let us
verify this explicitly:

1
γi0
=

1
(γi)2(γ0)2γ0i

1
γi j
=

1
(γi)2(γ j)2γ ji

1
γ0i
=

1
(γ0)2(γi)2γi0

(24.16)

With a spacetime mix of indices we have a −1 denominator for either metric. With a spatial only
mix (B components) we have 1 in the denominator 12 = (−1)2 for either metric.



146 metric signature dependencies

Now, perhaps counter to intuition the reciprocal 1
γµν

of γµν is not γµν, but instead γνµ. Here
the shorthand can be deceptive and it is worth verifying this statement explicitly:

γµν · γ
αβ = (γµ ∧ γν) · (γα ∧ γβ)

= ((γµ ∧ γν) · γα) · γβ)

= (γµ(γν · γα) − γν(γµ · γα)) · γβ)

= (γµδνα − γνδµα) · γβ

(24.17)

Or,

γµν · γ
αβ = δµ

βδν
α − δν

βδµ
α (24.18)

In particular for matched pairs of indices we have:

γµν · γ
νµ = δµ

µδν
ν − δν

µδµ
ν = 1

24.2.6 Pseudoscalar expressed with reciprocal frame vectors

With a positive time metric

γ0123 = −γ
0123

(three inversions for each of the spatial quantities). This is metric invariant too since it will
match the single negation for the same operation using a positive spatial metric.

24.2.7 Spatial bivector basis commutation with pseudoscalar

I have been used to writing:

σ j = γ j0

as a spatial basis, and having this equivalent to the four-pseudoscalar, but this only works with
a time positive metric:

i3 = σ123 = γ102030 = γ0123(γ0)2

With the spatial positive spacetime metric we therefore have:

i3 = σ123 = γ102030 = −i4

instead of i3 = i4 as is the case with a time positive spacetime metric. We see that the metric
choice can also be interpreted as a choice of handedness.



24.2 the guts 147

That choice allowed Doran/Lasenby to initially write the field as a vector plus trivector where
i is the spatial pseudoscalar:

F = E + icB, (24.19)

and then later switch the interpretation of i to the four space pseudoscalar. The freedom to do
so is metric dependent freedom, but eq. (24.19) works regardless of metric when i is uniformly
interpreted as the spacetime pseudoscalar.

Regardless of the metric the spacetime pseudoscalar commutes with σ j = γ j0, since it anti-
commutes twice to cross:

σ ji = γ j00123 = γ00123 j = γ0123 j0 = iσ j

24.2.8 Gradient and Laplacian

As seen by the Lagrangian based derivation of the (spacetime or spatial) gradient, the form is
metric independent and valid even for non-orthonormal frames:

∇ = γµ
∂

∂xµ

24.2.8.1 Vector derivative

A cute aside, as pointed out in John Denker’s paper, for orthonormal frames, this can also be
written as:

∇ =
1
γµ

∂

∂xµ
(24.20)

as a mnemonic for remembering where the signs go, since in that form the upper and lower
indices are nicely matched in summation convention fashion.

Now, γµ is a constant when we are not working in curvilinear coordinates, and for constants
we are used to the freedom to pull them into our derivatives as in:

1
c
∂

∂t
=

∂

∂(ct)

Supposing that one had an orthogonal vector decomposition:

x =
∑

γixi =
∑

xi

then, we can abuse notation and do the same thing with our unit vectors, rewriting the gradient
eq. (24.20) as:

∇ =
∂

∂(γµxµ)
=

∑ ∂

∂xi
(24.21)
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Is there anything to this that is not just abuse of notation? I think so, and I am guessing the
notational freedom to do this is closely related to what Hestenes calls geometric calculus.

Expanding out the gradient in the form of eq. (24.21) as a limit statement this becomes, rather
loosely:

∇ =
∑

i

lim
dxi→0

1
dxi

( f (x + dxi) − f (x))

If nothing else this justifies the notation for the polar form gradient of a function that is only
radially dependent, where the quantity:

∇ = r̂
∂

∂r
=

1
r̂
∂

∂r

is sometimes written:

∇ =
∂

∂r

Tong does this for example in his online dynamics paper, although there it appears to be not
much more than a fancy shorthand for gradient.

24.2.9 Four-Laplacian

Now, although our gradient is metric invariant, its square the four-Laplacian is not. There we
have:

∇2 =
∑

(γµ)2 ∂2

∂2xµ

= (γ0)2
(
∂2

∂2x0 + (γ0)2(γi)2 ∂2

∂2xi

)
= (γ0)2

(
∂2

∂2x0 −
∂2

∂2xi

) (24.22)

This makes the metric dependency explicit so that we have:

∇2 =
1
c2

∂2

∂2t
−

∂2

∂2xi if (γ0)2 = 1

∇2 =
∂2

∂2xi −
1
c2

∂2

∂2t
if (γ0)2 = −1
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25.1 motivation

In [16], on plane waves, he writes "we find easily..." to show that the wave equation for each of
the components of E, and B in the absence of current and charge satisfy the wave equation. Do
this calculation.

25.2 vacuum case

Avoiding the non-vacuum medium temporarily, Maxwell’s vacuum equations (in SI units) are

∇ ·E = 0 (25.1)

∇ ·B = 0 (25.2)

∇ ×B =
1
c2

∂E
∂t

(25.3)

∇ ×E = −
∂B
∂t

(25.4)

The last two curl equations can be decoupled by once more calculating the curl. Illustrating by
example

∇ × (∇ ×E) = −
∂

∂t
∇ ×B = −

1
c2

∂2E
∂t2

(25.5)

Digging out vector identities and utilizing the zero divergence we have

∇ × (∇ ×E) = ∇(∇ ·E) −∇2E = −∇2E (25.6)

Putting eq. (25.5), and eq. (25.6) together provides a wave equation for the electric field vector

1
c2

∂2E
∂t2 −∇

2E = 0 (25.7)
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Operating with curl on the remaining Maxwell equation similarly produces a wave equation for
the magnetic field vector

1
c2

∂2B
∂t2 −∇

2B = 0 (25.8)

This is really six wave equations, one for each of the field coordinates.

25.3 with geometric algebra

Arriving at eq. (25.7), and eq. (25.8) is much easier using the GA formalism of [8].
Pre or post multiplication of the gradient with the observer frame time basis unit vector γ0

has a conjugate like action

∇γ0 = γ
0γ0∂0 + γ

kγ0∂k

= ∂0 −∇
(25.9)

(where as usual our spatial basis is σk = γkγ0). Similarly

γ0∇ = ∂0 +∇ (25.10)

For the vacuum Maxwell’s equation is just

∇F = ∇(E + IcB) = 0 (25.11)

With nothing more than an algebraic operation we have

0 = ∇γ0γ0∇F

= (∂0 −∇)(∂0 +∇)(E + IcB)

=

(
1
c2

∂2

∂t2 −∇
2
)

(E + IcB)

(25.12)

This equality is true independently for each of the components of E and B, so we have as before
These wave equations are still subject to the constraints of the original Maxwell equations.

0 = γ0∇F

= (∂0 +∇)(E + IcB)

= ∇ ·E + (∂0E − c∇ ×B) + I(c∂0B +∇ ×E) + Ic∇ ·B
(25.13)
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25.4 tensor approach?

In both the traditional vector and the GA form one can derive the wave equation relations of
eq. (25.7), eq. (25.8). One can obviously summarize these in tensor form as

∂µ∂
µFαβ = 0 (25.14)

working backwards from the vector or GA result. In this notation, the coupling constraint would
be that the field variables Fαβ are subject to the Maxwell divergence equation (name?)

∂µFµν = 0 (25.15)

and also the dual tensor relation

ϵσµαβ∂µFαβ = 0 (25.16)

I cannot seem to figure out how to derive eq. (25.14) starting from these tensor relations?
This probably has something to do with the fact that we require both the divergence and the

dual relations eq. (25.15), eq. (25.16) expressed together to do this.

25.5 electromagnetic waves in media

Jackson lists the Macroscopic Maxwell equations in (6.70) as

∇ ·B = 0

∇ ·D = 4πρ

∇ ×E +
1
c
∂B
∂t
= 0

∇ ×H −
1
c
∂D
∂t
=

4π
c

J

(25.17)

(for this note this means unfortunately a switch from SI to CGS midstream)
For linear material (B = µH, and D = ϵE) that is devoid of unbound charge and current

(ρ = 0, and J = 0), we can assemble these into his (7.1) equations

∇ ·B = 0

∇ ·E = 0

∇ ×E +
1
c
∂B
∂t
= 0

∇ ×B −
ϵµ

c
∂E
∂t
= 0

(25.18)
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In this macroscopic form, it is not obvious how to assemble the equations into a nice tidy GA
form. A compromise is

∇E + ∂0(IB) = 0

∇(IB) + ϵµ∂0E = 0
(25.19)

Although not as pretty, we can at least derive the wave equations from these. For example for
E, we apply one additional spatial gradient

0 = ∇2E + ∂0(∇IB)

= ∇2E + ∂0(−ϵµ∂0E)
(25.20)

For B we get the same, and have two wave equations

µϵ

c2

∂2E
∂t2 −∇

2E = 0

µϵ

c2

∂2B
∂t2 −∇

2B = 0
(25.21)

The wave velocity is thus not c, but instead the reduced speed of c/
√
µϵ.

The fact that it is possible to assemble wave equations of this form means that there must
also be a simpler form than eq. (25.19). The reduced velocity is the clue, and that can be used
to refactor the constants

∇E +
√
µϵ∂0

(
IB
√
µϵ

)
= 0

∇

(
IB
√
µϵ

)
+
√
µϵ∂0E = 0

(25.22)

These can now be added

(∇ +
√
µϵ∂0)

(
E +

IB
√
µϵ

)
= 0 (25.23)

This allows for the one liner derivation of eq. (25.21) by premultiplying by the conjugate oper-
ator −∇ +

√
µϵ∂0

0 = (−∇ +
√
µϵ∂0) (∇ +

√
µϵ∂0)

(
E +

IB
√
µϵ

)
=

(
−∇2 +

µϵ

c2 ∂tt

) (
E +

IB
√
µϵ

) (25.24)

Using the same hint, and doing some rearrangement, we can write Jackson’s equations (6.70)
as

(∇ +
√
µϵ∂0)

(
E +

IB
√
µϵ

)
=

4π
ϵ

(
ρ −

√
µϵ

c
J
)

(25.25)
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26.1 motivation

How to obtain solutions to Maxwell’s equations in vacuum is well known. The aim here is
to explore the same problem starting with the Geometric Algebra (GA) formalism [8] of the
Maxwell equation.

∇F = J/ϵ0c

F = ∇∧ A = E + icB
(26.1)

A Fourier transformation attack on the equation should be possible, so let us see what falls out
doing so.

26.1.1 Fourier problem

Picking an observer bias for the gradient by premultiplying with γ0 the vacuum equation for
light can therefore also be written as

0 = γ0∇F

= γ0(γ0∂0 + γ
k∂k)F

= (∂0 − γ
kγ0∂k)F

= (∂0 +σ
k∂k)F

=

(
1
c
∂t +∇

)
F

(26.2)

A Fourier transformation of this equation produces

0 =
1
c
∂F
∂t

(k, t) +
1

(
√

2π)3

∫
σm∂mF(x, t)e−ik·xd3x (26.3)
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and with a single integration by parts one has

0 =
1
c
∂F
∂t

(k, t) −
1

(
√

2π)3

∫
σmF(x, t)(−ikm)e−ik·xd3x

=
1
c
∂F
∂t

(k, t) +
1

(
√

2π)3

∫
kF(x, t)ie−ik·xd3x

=
1
c
∂F
∂t

(k, t) + ikF̂(k, t)

(26.4)

The flexibility to employ the pseudoscalar as the imaginary i = γ0γ1γ2γ3 has been employed
above, so it should be noted that pseudoscalar commutation with Dirac bivectors was implied
above, but also that we do not have the flexibility to commute k with F.

Having done this, the problem to solve is now Maxwell’s vacuum equation in the frequency
domain

∂F
∂t

(k, t) = −ickF̂(k, t) (26.5)

Introducing an angular frequency (spatial) bivector, and its vector dual

Ω = −ick
ω = ck

(26.6)

This becomes

F̂′ = ΩF (26.7)

With solution

F̂ = eΩtF̂(k, 0) (26.8)

Differentiation with respect to time verifies that the ordering of the terms is correct and this
does in fact solve eq. (26.7). This is something we have to be careful of due to the possibility of
non-commuting variables.

Back substitution into the inverse transform now supplies the time evolution of the field given
the initial time specification

F(x, t) =
1

(
√

2π)3

∫
eΩtF̂(k, 0)eik·xd3k

=
1

(2π)3

∫
eΩt

(∫
F(x′, 0)e−ik·x′d3x′

)
eik·xd3k

(26.9)
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Observe that Pseudoscalar exponentials commute with the field because i commutes with spatial
vectors and itself

Feiθ = (E + icB)(C + iS )

= C(E + icB) + S (E + icB)i

= C(E + icB) + S i(E + icB)

= eiθF

(26.10)

This allows the specifics of the initial time conditions to be suppressed

F(x, t) =
∫

d3keΩteik·x
∫

1
(2π)3 F(x′, 0)e−ik·x′d3x′ (26.11)

The interior integral has the job of a weighting function over plane wave solutions, and this can
be made explicit writing

D(k) =
1

(2π)3

∫
F(x′, 0)e−ik·x′d3x′

F(x, t) =
∫

eΩteik·xD(k)d3k
(26.12)

Many assumptions have been made here, not the least of which was a requirement for the
Fourier transform of a bivector valued function to be meaningful, and have an inverse. It is
therefore reasonable to verify that this weighted plane wave result is in fact a solution to the
original Maxwell vacuum equation. Differentiation verifies that things are okay so far

γ0∇F(x, t) =
(
1
c
∂t +∇

) ∫
eΩteik·xD(k)d3k

=

∫ (
1
c

ΩeΩt +σmeΩtikm

)
eik·xD(k)d3k

=

∫ (
1
c

(−ikc) + ik
)

eΩteik·xD(k)d3k

= 0 □

(26.13)

26.1.2 Discretizing and grade restrictions

The fact that it the integral has zero gradient does not mean that it is a bivector, so there must
also be at least also be restrictions on the grades of D(k).

To simplify discussion, let us discretize the integral writing

D(k′) = Dkδ
3(k − k′) (26.14)
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So we have

F(x, t) =
∫

eΩteik′·xD(k′)d3k′

=

∫
eΩteik′·xDkδ

3(k − k′)d3k′
(26.15)

This produces something planewave-ish

F(x, t) = eΩteik·xDk (26.16)

Observe that at t = 0 we have

F(x, 0) = eik·xDk

= (cos(k · x) + i sin(k · x))Dk
(26.17)

There is therefore a requirement for Dk to be either a spatial vector or its dual, a spatial bivector.
For example taking Dk to be a spatial vector we can then identify the electric and magnetic
components of the field

E(x, 0) = cos(k · x)Dk

cB(x, 0) = sin(k · x)Dk
(26.18)

and if Dk is taken to be a spatial bivector, this pair of identifications would be inverted.
Considering eq. (26.16) at x = 0, we have

F(0, t) = eΩtDk

= (cos(|Ω|t) + Ω̂ sin(|Ω|t))Dk

= (cos(|Ω|t) − ik̂ sin(|Ω|t))Dk

(26.19)

If Dk is first assumed to be a spatial vector, then F would have a pseudoscalar component if Dk
has any component parallel to k̂.

Dk ∈{σ
m} =⇒ Dk · k̂ = 0 (26.20)

Dk ∈{σ
a ∧σb} =⇒ Dk · (ik̂) = 0 (26.21)

Since we can convert between the spatial vector and bivector cases using a duality transforma-
tion, there may not appear to be any loss of generality imposing a spatial vector restriction on
Dk, at least in this current free case. However, an attempt to do so leads to trouble. In particular,
this leads to collinear electric and magnetic fields, and thus the odd seeming condition where the
field energy density is non-zero but the field momentum density (Poynting vector P ∝ E × B)
is zero. In retrospect being forced down the path of including both grades is not unreasonable,
especially since this gives Dk precisely the form of the field itself F = E + icB.
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26.2 electric and magnetic field split

With the basic form of the Maxwell vacuum solution determined, we are now ready to start
extracting information from the solution and making comparisons with the more familiar vector
form. To start doing the phasor form of the fundamental solution can be expanded explicitly in
terms of two arbitrary spatial parametrization vectors Ek and Bk.

F = e−iωteik·x(Ek + icBk) (26.22)

Whether these parametrization vectors have any relation to electric and magnetic fields respec-
tively will have to be determined, but making that assumption for now to label these uniquely
does not seem unreasonable.

From eq. (26.22) we can compute the electric and magnetic fields by the conjugate relations
eq. (26.49). Our conjugate is

F† = (Ek − icBk)e−ik·xeiωt

= e−iωte−ik·x(Ek − icBk)
(26.23)

Thus for the electric field

F + F† = e−iωt
(
eik·x(Ek + icBk) + e−ik·x(Ek − icBk)

)
= e−iωt (2 cos(k · x)Ek + ic(2i) sin(k · x)Bk)

= 2 cos(ωt) (cos(k · x)Ek − c sin(k · x)Bk)

+ 2 sin(ωt)k̂ × (cos(k · x)Ek − c sin(k · x)Bk)

(26.24)

So for the electric field E = 1
2 (F + F†) we have

E =
(
cos(ωt) + sin(ωt)k̂×

)
(cos(k · x)Ek − c sin(k · x)Bk) (26.25)

Similarly for the magnetic field we have

F − F† = e−iωt
(
eik·x(Ek + icBk) − e−ik·x(Ek − icBk)

)
= e−iωt (2i sin(k · x)Ek + 2ic cos(k · x)Bk)

(26.26)

This gives cB = 1
2i (F − F†) we have

cB =
(
cos(ωt) + sin(ωt)k̂×

)
(sin(k · x)Ek + c cos(k · x)Bk) (26.27)

Observe that the action of the time dependent phasor has been expressed, somewhat abusively
and sneakily, in a scalar plus cross product operator form. The end result, when applied to a
vector perpendicular to k̂, is still a vector

e−iωta =
(
cos(ωt) + sin(ωt)k̂×

)
a (26.28)
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Also observe that the Hermitian conjugate split of the total field bivector F produces vectors E
and B, not phasors. There is no further need to take real or imaginary parts nor treat the phasor
eq. (26.22) as an artificial mathematical construct used for convenience only.

With E · k̂ = B · k̂ = 0, we have here what Jackson ([16], ch7), calls a transverse wave.

26.2.1 Polar Form

Suppose an explicit polar form is introduced for the plane vectors Ek, and Bk. Let

Ek = EÊk

Bk = BÊkeik̂θ
(26.29)

Then for the field we have

F = e−iωteik·x(E + icBe−ik̂θ)Êk (26.30)

For the conjugate

F† = Êk(E − icBeik̂θ)e−ik·xeiωt

= e−iωte−ik·x(E − icBe−ik̂θ)Êk

(26.31)

So, in the polar form we have for the electric, and magnetic fields

E = e−iωt(E cos(k · x) − cB sin(k · x)e−ik̂θ)Êk

cB = e−iωt(E sin(k · x) + cB cos(k · x)e−ik̂θ)Êk

(26.32)

Observe when θ is an integer multiple of π, E and B are colinear, having the zero Poynting
vector mentioned previously. Now, for arbitrary θ it does not appear that there is any inherent
perpendicularity between the electric and magnetic fields. It is common to read of light being the
propagation of perpendicular fields, both perpendicular to the propagation direction. We have
perpendicularity to the propagation direction by virtue of requiring that the field be a (Dirac)
bivector, but it does not look like the solution requires any inherent perpendicularity for the field
components. It appears that a normal triplet of field vectors and propagation directions must
actually be a special case. Intuition says that this freedom to pick different magnitude or angle
between Ek and Bk in the plane perpendicular to the transmission direction may correspond to
different mixes of linear, circular, and elliptic polarization, but this has to be confirmed.
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Working towards confirming (or disproving) this intuition, lets find the constraints on the
fields that lead to normal electric and magnetic fields. This should follow by taking dot products

E ·Bc =
〈
e−iωt(E cos(k · x) − cB sin(k · x)e−ik̂θ)ÊkÊkeiωt(E sin(k · x) + cB cos(k · x)eik̂θ)

〉
=

〈
(E cos(k · x) − cB sin(k · x)e−ik̂θ)(E sin(k · x) + cB cos(k · x)eik̂θ)

〉
= (E2 − c2B2) cos(k · x) sin(k · x) + cEB

〈
cos2(k · x)eik̂θ − sin2(k · x)e−ik̂θ

〉
= (E2 − c2B2) cos(k · x) sin(k · x) + cEB cos(θ)(cos2(k · x) − sin2(k · x))

= (E2 − c2B2) cos(k · x) sin(k · x) + cEB cos(θ)(cos2(k · x) − sin2(k · x))

=
1
2

(E2 − c2B2) sin(2k · x) + cEB cos(θ) cos(2k · x)

(26.33)

The only way this can be zero for any x is if the left and right terms are separately zero, which
means

|Ek| = c|Bk|

θ =
π

2
+ nπ

(26.34)

This simplifies the phasor considerably, leaving

E + icBe−ik̂θ = E(1 + i(∓ik̂))

= E(1 ± k̂)
(26.35)

So the field is just

F = e−iωteik·x(1 ± k̂)Ek (26.36)

Using this, and some regrouping, a calculation of the field components yields

E = eik̂(±k·x−ωt)Ek

cB = ±eik̂(±k·x−ωt)ikEk
(26.37)

Observe that ik rotates any vector in the plane perpendicular to k̂ by 90 degrees, so we have
here cB = ±k̂×E. This is consistent with the transverse wave restriction (7.11) of Jackson [16],
where he says, the “curl equations provide a further restriction, namely”, and

B =
√
µϵn × E (26.38)

He works in explicit complex phasor form and CGS units. He also allows n to be complex.
With real k, and no E ·B = 0 constraint, it appears that we cannot have such a simple coupling
between the field components? Is it possible that allowing k to be complex allows this cross
product coupling constraint on the fields without the explicit 90 degree phase difference between
the electric and magnetic fields?
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26.3 energy and momentum for the phasor

To calculate the field energy density we can work with the two fields of equations eq. (26.32),
or work with the phasor eq. (26.22) directly. From the phasor and the energy-momentum four
vector eq. (26.52) we have for the energy density

U = T (γ0) · γ0

=
−ϵ0

2
⟨Fγ0Fγ0⟩

=
−ϵ0

2

〈
e−iωteik·x(Ek + icBk)γ0e−iωteik·x(Ek + icBk)γ0

〉
=
−ϵ0

2

〈
e−iωteik·x(Ek + icBk)(γ0)2e−iωte−ik·x(−Ek + icBk)

〉
=
−ϵ0

2

〈
e−iωt(Ek + icBk)e−iωt(−Ek + icBk)

〉
=
ϵ0

2
⟨(Ek + icBk)(Ek − icBk)⟩

=
ϵ0

2

(
(Ek)2 + c2(Bk)2

)
+ cϵ0⟨iEk ∧Bk⟩

=
ϵ0

2

(
(Ek)2 + c2(Bk)2

)
+ cϵ0⟨Bk ×Ek⟩

(26.39)

Quite anticlimactically we have for the energy the sum of the energies associated with the
parametrization constants, lending some justification for the initial choice to label these as elec-
tric and magnetic fields

U =
ϵ0

2

(
(Ek)2 + c2(Bk)2

)
(26.40)

For the momentum, we want the difference of FF†, and F†F

FF† = e−iωteik·x(Ek + icBk)(Ek − icBk)e−ik·xeiωt

= (Ek + icBk)(Ek − icBk)

= (Ek)2 + c2(Bk)2 − 2cBk ×Ek

(26.41)

FF† = (Ek − icBk)e−ik·xeiωte−iωteik·x(Ek + icBk)

= (Ek − icBk)(Ek + icBk)

= (Ek)2 + c2(Bk)2 + 2cBk ×Ek

(26.42)

So we have for the momentum, also anticlimactically

P =
1
c

T (γ0)∧ γ0 = ϵ0Ek ×Bk (26.43)
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26.4 followup

Well, that is enough for one day. Understanding how to express circular and elliptic polariza-
tion is one of the logical next steps. I seem to recall from Susskind’s QM lectures that these
can be considered superpositions of linearly polarized waves, so examining a sum of two co-
directionally propagating fields would seem to be in order. Also there ought to be a more natural
way to express the perpendicularity requirement for the field and the propagation direction. The
fact that the field components and propagation direction when all multiplied is proportional to
the spatial pseudoscalar can probably be utilized to tidy this up and also produce a form that
allows for simpler summation of fields in different propagation directions. It also seems reason-
able to consider a planar Fourier decomposition of the field components, perhaps framing the
superposition of multiple fields in that context.

Reconsilation of the Jackson’s (7.11) restriction for perpendicularity of the fields noted above
has not been done. If such a restriction is required with an explicit dot and cross product split
of Maxwell’s equation, it would make sense to also have this required of a GA based solution.
Is this just a conquense of the differences between his explicit phasor representation, and this
geometric approach where the phasor has an explicit representation in terms of the transverse
plane?

26.5 appendix . background details

26.5.1 Conjugate split

The Hermitian conjugate is defined as

A† = γ0Ãγ0 (26.44)

The conjugate action on a multivector product is straightforward to calculate

(AB)† = γ0(AB)̃γ0

= γ0B̃Ãγ0

= γ0B̃γ0
2Ãγ0

= B†A†

(26.45)

For a spatial vector Hermitian conjugation leaves the vector unaltered

a = γ0(γkγ0)̃akγ0

= γ0(γ0γk)akγ0

= γkakγ0

= a

(26.46)
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But the pseudoscalar is negated

i† = γ0 ĩγ0

= γ0iγ0

= −γ0γ0i

= −i

(26.47)

This allows for a split by conjugation of the field into its electric and magnetic field components.

F† = −γ0(E + icB)γ0

= −γ2
0(−E + icB)

= E − icB
(26.48)

So we have

E =
1
2

(F + F†)

cB =
1
2i

(F − F†)
(26.49)

26.5.2 Field Energy Momentum density four vector

In the GA formalism the energy momentum tensor is

T (a) =
ϵ0

2
FaF̃ (26.50)

It is not necessarily obvious this bivector-vector-bivector product construction is even a vector
quantity. Expansion of T (γ0) in terms of the electric and magnetic fields demonstrates this
vectorial nature.

Fγ0F̃ = −(E + icB)γ0(E + icB)

= −γ0(−E + icB)(E + icB)

= −γ0(−E2 − c2B2 + ic(BE −EB))

= γ0(E2 + c2B2) − 2γ0ic(B∧E))

= γ0(E2 + c2B2) + 2γ0c(B ×E)

= γ0(E2 + c2B2) + 2γ0cγkγ0(B ×E)k

= γ0(E2 + c2B2) + 2γk(E × (cB))k

(26.51)

Therefore, T (γ0), the energy momentum tensor biased towards a particular observer frame γ0 is

T (γ0) = γ0
ϵ0

2
(E2 + c2B2) + γkϵ0(E × (cB))k (26.52)
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Recognizable here in the components T (γ0) are the field energy density and momentum density.
In particular the energy density can be obtained by dotting with γ0, whereas the (spatial vector)
momentum by wedging with γ0.

These are

U ≡ T (γ0) · γ0 =
1
2

(
ϵ0E2 +

1
µ0

B2
)

cP ≡ T (γ0)∧ γ0 =
1
µ0

E ×B
(26.53)

In terms of the combined field these are

U =
−ϵ0

2
(Fγ0Fγ0 + γ0Fγ0F)

cP =
−ϵ0

2
(Fγ0Fγ0 − γ0Fγ0F)

(26.54)

Summarizing with the Hermitian conjugate

U =
ϵ0

2
(FF† + F†F)

cP =
ϵ0

2
(FF† − F†F)

(26.55)

26.5.2.1 Divergence

Calculation of the divergence produces the components of the Lorentz force densities

∇ · T (a) =
ϵ0

2
⟨∇(FaF)⟩

=
ϵ0

2
⟨(∇F)aF + (F∇)Fa⟩

(26.56)

Here the gradient is used implicitly in bidirectional form, where the direction is implied by
context. From Maxwell’s equation we have

J/ϵ0c = (∇F )̃

= (F̃∇̃)

= −(F∇)

(26.57)

and continuing the expansion

∇ · T (a) =
1
2c
⟨JaF − JFa⟩

=
1
2c
⟨FJa − JFa⟩

=
1
2c
⟨(FJ − JF)a⟩

(26.58)
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Wrapping up, the divergence and the adjoint of the energy momentum tensor are

∇ · T (a) =
1
c

(F · J) · a

T (∇) = F · J/c
(26.59)

When integrated over a volume, the quantities F · J/c are the components of the RHS of the
Lorentz force equation ṗ = qF · v/c.



27T R A N S V E R S E E L E C T R I C A N D M AG N E T I C F I E L D S

27.1 motivation

In Eli’s Transverse Electric and Magnetic Fields in a Conducting Waveguide blog entry he
works through the algebra calculating the transverse components, the perpendicular to the prop-
agation direction components.

This should be possible using Geometric Algebra too, and trying this made for a good exer-
cise.

27.2 setup

The starting point can be the same, the source free Maxwell’s equations. Writing ∂0 = (1/c)∂/∂t,
we have

∇ ·E = 0

∇ ·B = 0

∇ ×E = −∂0B
∇ ×B = µϵ∂0E

(27.1)

Multiplication of the last two equations by the spatial pseudoscalar I, and using Ia × b = a∧ b,
the curl equations can be written in their dual bivector form

∇∧E = −∂0IB
∇∧B = µϵ∂0IE

(27.2)

Now adding the dot and curl equations using ab = a · b + a∧ b eliminates the cross products

∇E = −∂0IB
∇B = µϵ∂0IE

(27.3)

These can be further merged without any loss, into the GA first order equation for Maxwell’s
equation in cgs units(

∇ +

√
µϵ

c
∂t

) (
E +

IB
√
µϵ

)
= 0. (27.4)

http://behindtheguesses.blogspot.com/2009/07/transverse-electric-and-magnetic-fields.html
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We are really after solutions to the total multivector field F = E + IB/√µϵ. For this problem
where separate electric and magnetic field components are desired, working from eq. (27.3) is
perhaps what we want?

Following Eli and Jackson, write ∇ = ∇t + ẑ∂z, and

E(x, y, z, t) = E(x, y)e±ikz−iωt

B(x, y, z, t) = B(x, y)e±ikz−iωt (27.5)

Evaluating the z and t partials we have

(∇t ± ikẑ)E(x, y) =
iω
c

IB(x, y)

(∇t ± ikẑ)B(x, y) = −µϵ
iω
c

IE(x, y)
(27.6)

For the remainder of these notes, the explicit (x, y) dependence will be assumed for E and B.
An obvious thing to try with these equations is just substitute one into the other. If that is

done we get the pair of second order harmonic equations

∇t
2

EB
 = (

k2 − µϵ
ω2

c2

) EB
 (27.7)

One could consider the problem solved here. Separately equating both sides of this equation
to zero, we have the k2 = µϵω2/c2 constraint on the wave number and angular velocity, and
the second order Laplacian on the left hand side is solved by the real or imaginary parts of any
analytic function. Especially when one considers that we are after a multivector field that of
intrinsic complex nature.

However, that is not really what we want as a solution. Doing the same on the unified Maxwell
equation eq. (27.4), we have(

∇t ± ikẑ −
√
µϵ

iω
c

) (
E +

IB
√
µϵ

)
= 0 (27.8)

Selecting scalar, vector, bivector and trivector grades of this equation produces the following
respective relations between the various components

0 = ⟨· · ·⟩ = ∇t ·E ± ikẑ ·E

0 = ⟨· · ·⟩1 = I∇t ∧B/
√
µϵ ± iIkẑ∧B/

√
µϵ − i

√
µϵ
ω

c
E

0 = ⟨· · ·⟩2 = ∇t ∧E ± ikẑ∧E − i
ω

c
IB

0 = ⟨· · ·⟩3 = I∇t ·B/
√
µϵ ± iIkẑ ·B/

√
µϵ

(27.9)
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From the scalar and pseudoscalar grades we have the propagation components in terms of the
transverse ones

Ez =
±i
k
∇t ·Et

Bz =
±i
k
∇t ·Bt

(27.10)

But this is the opposite of the relations that we are after. On the other hand from the vector and
bivector grades we have

i
ω

c
E = −

1
µϵ

(∇t ×Bz ± ikẑ ×Bt)

i
ω

c
B = ∇t ×Ez ± ikẑ ×Et

(27.11)

27.3 a clue from the final result

From eq. (27.11) and a lot of messy algebra we should be able to get the transverse equations.
Is there a slicker way? The end result that Eli obtained suggests a path. That result was

Et =
i

µϵ ω
2

c2 − k2

(
±k∇tEz −

ω

c
ẑ ×∇tBz

)
(27.12)

The numerator looks like it can be factored, and after a bit of playing around a suitable factor-
ization can be obtained:〈(

±k +
ω

c
ẑ
)
∇tẑ (Ez + IBz)

〉
1
=

〈(
±k +

ω

c
ẑ
)
∇t (Ez + IBz)

〉
1

= ±k∇Ez +
ω

c
⟨Iẑ∇tBz⟩1

= ±k∇Ez +
ω

c
Iẑ∧∇tBz

= ±k∇Ez −
ω

c
ẑ ×∇tBz

(27.13)

Observe that the propagation components of the field Ez + IEz can be written in terms of the
symmetric product

1
2
(ẑ(E + IB) + (E + IB)ẑ) =

1
2
(ẑE +Eẑ) +

I
2
(ẑB +Bẑ + I)

= ẑ ·E + Iẑ ·B
(27.14)

Now the total field in CGS units was actually F = E + IB/√µϵ, not F = E + IB, so the
factorization above is not exactly what we want. It does however, provide the required clue.
We probably get the result we want by forming the symmetric product (a hybrid dot product
selecting both the vector and bivector terms).
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27.4 symmetric product of the field with the direction vector

Rearranging Maxwell’s equation eq. (27.8) in terms of the transverse gradient and the total field
F we have

∇tF =
(
∓ikẑ +

√
µϵ

iω
c

)
F (27.15)

With this our symmetric product is

∇t(Fẑ + ẑF) = (∇tF)ẑ − ẑ(∇tF)

=

(
∓ikẑ +

√
µϵ

iω
c

)
Fẑ − ẑ

(
∓ikẑ +

√
µϵ

iω
c

)
F

= i
(
∓kẑ +

√
µϵ
ω

c

)
(Fẑ − ẑF)

(27.16)

The antisymmetric product on the right hand side should contain the desired transverse field
components. To verify multiply it out

1
2

(Fẑ − ẑF) =
1
2
((E + IB/

√
µϵ) ẑ − ẑ (E + IB/

√
µϵ))

= E∧ ẑ + IB/
√
µϵ ∧ ẑ

= (Et + IBt/
√
µϵ)ẑ

(27.17)

Now, with multiplication by the conjugate quantity −i(±kẑ + √µϵω/c), we can extract these
transverse components.(

±kẑ +
√
µϵ
ω

c

) (
∓kẑ +

√
µϵ
ω

c

)
(Fẑ − ẑF) =

(
−k2 + µϵ

ω2

c2

)
(Fẑ − ẑF) (27.18)

Rearranging, we have the transverse components of the field

(Et + IBt/
√
µϵ)ẑ =

i

k2 − µϵ ω
2

c2

(
±kẑ +

√
µϵ
ω

c

)
∇t

1
2

(Fẑ + ẑF) (27.19)

With left multiplication by ẑ, and writing F = Ft + Fz we have

Ft =
i

k2 − µϵ ω
2

c2

(
±kẑ +

√
µϵ
ω

c

)
∇tFz (27.20)

While this is a complete solution, we can additionally extract the electric and magnetic fields
to compare results with Eli’s calculation. We take vector grades to do so with Et = ⟨Ft⟩1, and
Bt/
√
µϵ = ⟨−IFt⟩1. For the transverse electric field

〈(
±kẑ +

√
µϵ
ω

c

)
∇t(Ez + IBz/

√
/µϵ)

〉
1
= ±kẑ(−ẑ)∇tEz +

ω

c
⟨I∇tẑ⟩1

−I2ẑ ×∇t

Bz

= ∓k∇tEz +
ω

c
ẑ ×∇tBz

(27.21)
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and for the transverse magnetic field〈
−I

(
±kẑ +

√
µϵ
ω

c

)
∇t(Ez + IBz/

√
µϵ)

〉
1

= −I
√
µϵ
ω

c
∇tEz +

〈(
±kẑ +

√
µϵ
ω

c

)
∇tBz/

√
µϵ

〉
1

= −
√
µϵ
ω

c
ẑ ×∇tEz ∓ k∇tBz/

√
µϵ

(27.22)

Thus the split of transverse field into the electric and magnetic components yields

Et =
i

k2 − µϵ ω
2

c2

(
∓k∇tEz +

ω

c
ẑ ×∇tBz

)
Bt =

i

k2 − µϵ ω
2

c2

(
−µϵ

ω

c
ẑ ×∇tEz ∓ k∇tBz

) (27.23)

Compared to Eli’s method using messy traditional vector algebra, this method also has a fair
amount of messy tricky algebra, but of a different sort.

27.5 summary

There is potentially a lot of new ideas above (some for me even with previous exposure to the
Geometric Algebra formalism). There was no real attempt to teach GA here, but for complete-
ness the GA form of Maxwell’s equation was developed from the traditional divergence and
curl formulation of Maxwell’s equations. That was mainly due to use of CGS units which differ
since this makes Maxwell’s equation take a different form from the usual (see [8]).

Here a less exploratory summary of the previous results above is assembled.
In these CGS units our field F, and Maxwell’s equation (in absence of charge and current),

take the form

F = E +
IB
√
µϵ

0 =
(
∇ +

√
µϵ

c
∂t

)
F

(27.24)

The electric and magnetic fields can be picked off by selecting the grade one (vector) compo-
nents

E = ⟨F⟩1
B =

√
µϵ⟨−IF⟩1

(27.25)

With an explicit sinusoidal and z-axis time dependence for the field

F(x, y, z, t) = F(x, y)e±ikz−iωt (27.26)
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and a split of the gradient into transverse and z-axis components ∇ = ∇t + ẑ∂z, Maxwell’s
equation takes the form(

∇t ± ikẑ −
√
µϵ

iω
c

)
F(x, y) = 0 (27.27)

Writing for short F = F(x, y), we can split the field into transverse and z-axis components with
the commutator and anticommutator products respectively. For the z-axis components we have

Fzẑ ≡ Ez + IBz =
1
2

(Fẑ + ẑF). (27.28)

The projections onto the z-axis and transverse directions are respectively

Fz = Ez + IBz =
1
2

(F + ẑFẑ)

Ft = Et + IBt =
1
2

(F − ẑFẑ)
(27.29)

With an application of the transverse gradient to the z-axis field we easily found the relation
between the two field components

∇tFz = i
(
±kẑ −

√
µϵ
ω

c

)
Ft (27.30)

A left division by the multivector factor gives the total transverse field

Ft =
1

i
(
±kẑ −

√
µϵ ωc

)∇tFz. (27.31)

Multiplication of both the numerator and denominator by the conjugate normalizes this

Ft =
i

k2 − µϵ ω
2

c2

(
±kẑ +

√
µϵ
ω

c

)
∇tFz (27.32)

From this the transverse electric and magnetic fields may be picked off using the projective
grade selection operations of eq. (27.25), and are

Et =
i

µϵ ω
2

c2 − k2

(
±k∇tEz −

ω

c
ẑ ×∇tBz

)
Bt =

i

µϵ ω
2

c2 − k2

(
µϵ
ω

c
ẑ ×∇tEz ± k∇tBz

) (27.33)
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S O L U T I O N S T O T H E M A X W E L L E Q UAT I O N

28.1 motivation

In (26) a phasor like form of the transverse wave equation was found by considering Fourier
solutions of the Maxwell equation. This will be called the “geometric phasor” since it is hard to
refer and compare it without giving it a name. Curiously no perpendicularity condition for E and
B seemed to be required for this geometric phasor. Why would that be the case? In Jackson’s
treatment, which employed the traditional dot and cross product form of Maxwell’s equations,
this followed by back substituting the assumed phasor solution back into the equations. This
back substitution was not done in (26). If we attempt this we should find the same sort of
additional mutual perpendicularity constraints on the fields.

Here we start with the equations from Jackson ([16], ch7), expressed in GA form. Using the
same assumed phasor form we should get the same results using GA. Anything else indicates a
misunderstanding or mistake, so as an intermediate step we should at least recover the Jackson
result.

After using a more traditional phasor form (where one would have to take real parts) we
revisit the geometric phasor found in (26). It will be found that the perpendicular constraints of
the Jackson phasor solution lead to a representation where the geometric phasor is reduced to the
Jackson form with a straight substitution of the imaginary i with the pseudoscalar I = σ1σ2σ3.
This representation however, like the more general geometric phasor requires no selection of
real or imaginary parts to construct a “physical” solution.

28.2 with assumed phasor field

Maxwell’s equations in absence of charge and current ((7.1) of Jackson) can be summarized by

0 = (∇ +
√
µϵ∂0)F (28.1)

The F above is a composite electric and magnetic field merged into a single multivector. In the
spatial basic the electric field component E is a vector, and the magnetic component IB is a
bivector (in the Dirac basis both are bivectors).

F = E + IB/
√
µϵ (28.2)
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With an assumed phasor form

F = Fei(k·x−ωt) = (E + IB/
√
µϵ)ei(k·x−ωt) (28.3)

Although there are many geometric multivectors that square to -1, we do not assume here that
the imaginary i has any specific geometric meaning, and in fact commutes with all multivectors.
Because of this we have to take the real parts later when done.

Operating on F with Maxwell’s equation we have

0 = (∇ +
√
µϵ∂0)F = i

(
k −
√
µϵ
ω

c

)
F (28.4)

Similarly, left multiplication of Maxwell’s equation by the conjugate operator ∇ −
√
µϵ∂0, we

have the wave equation

0 =
(
∇

2 −
µϵ

c2

∂2

∂t2

)
F (28.5)

and substitution of the assumed phasor solution gives us

0 =
(
∇

2 − µϵ∂00
)

F = −
(
k2 − µϵ

ω2

c2

)
F (28.6)

This provides the relation between the magnitude of k and ω, namely

|k| = ±
√
µϵ
ω

c
(28.7)

Without any real loss of generality we can pick the positive root, so the result of the Maxwell
equation operator on the phasor is

0 = (∇ +
√
µϵ∂0)F = i

√
µϵ
ω

c

(
k̂ − 1

)
F (28.8)

Rearranging we have the curious property that the field F can “swallow” a left multiplication
by the propagation direction unit vector

k̂F = F (28.9)

Selection of the scalar and pseudoscalar grades of this equation shows that the electric and
magnetic fields E and B are both completely transverse to the propagation direction k̂. For the
scalar grades we have

0 =
〈
k̂F − F

〉
= k̂ ·E

(28.10)
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and for the pseudoscalar

0 =
〈
k̂F − F

〉
3

= Ik̂ ·B
(28.11)

From this we have k̂ · B = k̂ · B = 0. Because of this transverse property we see that the k̂
multiplication of F in eq. (28.9) serves to map electric field (vector) components into bivectors,
and the magnetic bivector components into vectors. For the result to be the same means we
must have an additional coupling between the field components. Writing out eq. (28.9) in terms
of the field components we have

E + IB/
√
µϵ = k̂(E + IB/

√
µϵ)

= k̂∧E + I(k̂∧B)/
√
µϵ

= Ik̂ ×E + I2(k̂ ×B)/
√
µϵ

(28.12)

Equating left and right hand grades we have

E = −(k̂ ×B)/
√
µϵ

B =
√
µϵ(k̂ ×E)

(28.13)

Since E and B both have the same phase relationships we also have

E = −(k̂ ×B)/
√
µϵ

B =
√
µϵ(k̂ × E)

(28.14)

With phasors as used in electrical engineering it is usual to allow the fields to have complex
values. Assuming this is allowed here too, taking real parts of F, and separating by grade, we
have for the electric and magnetic fieldsEB

 = Re

E
B

 cos(k · x −ωt) + Im

E
B

 sin(k · x −ωt) (28.15)

We will find a slightly different separation into electric and magnetic fields with the geometric
phasor.

28.3 geometrized phasor

Translating from SI units to the CGS units of Jackson the geometric phasor representation of
the field was found previously to be

F = e−Ik̂ωteIk·x(E + IB/
√
µϵ) (28.16)
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As above the transverse requirement E · k = B · k = 0 was required. Application of Maxwell’s
equation operator should show if we require any additional constraints. That is

0 = (∇ +
√
µϵ∂0)F

= (∇ +
√
µϵ∂0)e−Ik̂ωteIk·x(E + IB/

√
µϵ)

=
∑

σme−Ik̂ωt(Ikm)eIk·x(E + IB/
√
µϵ) − Ik̂

√
µϵ
ω

c
e−Ik̂ωteIk·x(E + IB/

√
µϵ)

= I
(
k − k̂

√
µϵ
ω

c

)
e−Ik̂ωteIk·x(E + IB/

√
µϵ)

(28.17)

This is zero for any combinations of E or B since k = k̂√µϵω/c. It therefore appears that this
geometric phasor has a fundamentally different nature than the non-geometric version. We have
two exponentials that commute, but due to the difference in grades of the arguments, it does not
appear that there is any easy way to express this as an single argument exponential. Multiplying
these out, and using the trig product to sum identities helps shed some light on the differences
between the geometric phasor and the one using a generic imaginary. Starting off we have

e−Ik̂ωteIk·x

= (cos(ωt) − Ik̂ sin(ωt))(cos(k · x) + I sin(k · x))

= cos(ωt) cos(k · x) + k̂ sin(ωt) sin(k · x) − Ik̂ sin(ωt) cos(k · x) + I cos(ωt) sin(k · x)

(28.18)

In this first expansion we see that this product of exponentials has scalar, vector, bivector, and
pseudoscalar grades, despite the fact that we have only vector and bivector terms in the end
result. That will be seen to be due to the transverse nature of F that we multiply with. Before
performing that final multiplication, writing C− = cos(ωt − k · x), C+ = cos(ωt + k · x), S − =
sin(ωt − k · x), and S + = sin(ωt + k · x), we have

e−Ik̂ωteIk·x =
1
2

(
(C− +C+) + k̂(C− −C+) − Ik̂(S − + S +) − I(S − − S +)

)
(28.19)

As an operator the left multiplication of k̂ on a transverse vector has the action

k̂(·) = k̂∧ (·)

= I(k̂ × (·))
(28.20)

This gives

e−Ik̂ωteIk·x =
1
2

(
(C− +C+) + (C− −C+)Ik̂ × +(S − + S +)k̂ × −I(S − − S +)

)
(28.21)
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Now, lets apply this to the field with F = E + IB/
√
µϵ. To avoid dragging around the

√
µϵ

factors, let us also temporarily work with units where µϵ = 1. We then have

2e−Ik̂ωteIk·xF = (C− +C+)(E + IB)

+ (C− −C+)(I(k̂ × E) − k̂ ×B)

+ (S − + S +)(k̂ × E + I(k̂ ×B))

+ (S − − S +)(−IE +B)

(28.22)

Rearranging explicitly in terms of the electric and magnetic field components this is

2e−Ik̂ωteIk·xF = (C− +C+)E − (C− −C+)(k̂ ×B) + (S − + S +)(k̂ × E) + (S − − S +)B

+ I
(
(C− +C+)B + (C− −C+)(k̂ × E) + (S − + S +)(k̂ ×B) − (S − − S +)E

) (28.23)

Quite a mess! A first observation is that the application of the perpendicularity conditions
eq. (28.14) we have a remarkable reduction in complexity. That is

2e−Ik̂ωteIk·xF = (C− +C+)E + (C− −C+)E + (S − + S +)B + (S − − S +)B

+ I ((C− +C+)B + (C− −C+)B − (S − + S +)E − (S − − S +)E)
(28.24)

This wipes out the receding wave terms leaving only the advanced wave terms, leaving

e−Ik̂ωteIk·xF = C−E + S −(k̂ × E) + I
(
C−B + S −k̂ ×B

)
= C−(E + IB) + S −(B − IE)

= (C− − IS −)(E + IB)

(28.25)

We see therefore for this special case of mutually perpendicular (equ-magnitude) field com-
ponents, our geometric phasor has only the advanced wave term

e−Ik̂ωteIk·xF = e−I(ωt−k·x)F (28.26)

If we pick this as the starting point for the assumed solution, it is clear that the same perpendic-
ularity constraints will follow as in Jackson’s treatment, or the GA version of it above. We have
something that is slightly different though, for we have no requirement to take real parts of this
simplified geometric phasor, since the result already contains just the vector and bivector terms
of the electric and magnetic fields respectively.

A small aside, before continuing. Having made this observation that we can write the assumed
phasor for this transverse field in the form of eq. (28.26) an easier way to demonstrate that the
product of exponentials reduces only to the advanced wave term is now clear. Instead of using
eq. (28.14) we could start back at eq. (28.19) and employ the absorption property k̂F = F. That
gives

e−Ik̂ωteIk·xF =
1
2
((C− +C+) + (C− −C+) − I(S − + S +) − I(S − − S +))F

= (C− − IS −)F
(28.27)



176 comparing phasor and geometric transverse solutions to the maxwell equation

That is the same result, obtained in a slicker manner.

28.4 explicit split of geometric phasor into advanced and receding parts

For a more general split of the geometric phasor into advanced and receding wave terms, will
there be interdependence between the electric and magnetic field components? Going back to
eq. (28.19), and rearranging, we have

2e−Ik̂ωteIk·x = (C− − IS −) + k̂(C− − IS −) + (C+ + IS +) − k̂(C+ + IS +) (28.28)

So we have

e−Ik̂ωteIk·x =
1
2

(1 + k̂)e−I(ωt−k·x) +
1
2

(1 − k̂)eI(ωt+k·x) (28.29)

As observed if we have k̂F = F, the result is only the advanced wave term

e−Ik̂ωteIk·xF = e−I(ωt−k·x)F (28.30)

Similarly, with absorption of k̂ with the opposing sign k̂F = −F, we have only the receding
wave

e−Ik̂ωteIk·xF = eI(ωt+k·x)F (28.31)

Either of the receding or advancing wave solutions should independently satisfy the Maxwell
equation operator. Let us verify both of these, and verify that for either the ± cases the following
is a solution and examine the constraints for that to be the case.

F =
1
2

(1 ± k̂)e±I(ωt±k·x)F (28.32)

Now we wish to apply the Maxwell equation operator∇+
√
µϵ∂0 to this assumed solution. That

is

0 = (∇ +
√
µϵ∂0)F

= σm
1
2

(1 ± k̂)(±I ± km)e±I(ωt±k·x)F +
1
2

(1 ± k̂)(±I
√
µϵω/c)e±I(ωt±k·x)F

=
±I
2

(
±k̂ +

√
µϵ
ω

c

)
(1 ± k̂)e±I(ωt±k·x)F

(28.33)

By left multiplication with the conjugate of the Maxwell operator ∇−
√
µϵ∂0 we have the wave

equation operator, and applying that, we have as before, a magnitude constraint on the wave
number k

0 = (∇ −
√
µϵ∂0)(∇ +

√
µϵ∂0)F

= (∇2 − µϵ∂00)F

=
−1
2

(1 ± k̂)
(
k2 − µϵ

ω2

c2

)
e±I(ωt±k·x)F

(28.34)
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So we have as before |k| = √µϵω/c. Substitution into the first order operator result we have

0 = (∇ +
√
µϵ∂0)F

=
±I
2
√
µϵ
ω

c

(
±k̂ + 1

)
(1 ± k̂)e±I(ωt±k·x)F

(28.35)

Observe that the multivector 1 ± k̂, when squared is just a multiple of itself

(1 ± k̂)2 = 1 + k̂2 ± 2k̂ = 2(1 ± k̂) (28.36)

So we have

0 = (∇ +
√
µϵ∂0)F

= ±I
√
µϵ
ω

c
(1 ± k̂)e±I(ωt±k·x)F

(28.37)

So we see that the constraint again on the individual assumed solutions is again that of ab-
sorption. Separately the advanced or receding parts of the geometric phasor as expressed in
eq. (28.32) are solutions provided

k̂F = ∓F (28.38)

The geometric phasor is seen to be curious superposition of both advancing and receding states.
Independently we have something pretty much like the standard transverse phasor wave states.
Is this superposition state physically meaningful. It is a solution to the Maxwell equation (with-
out any constraints on E and B).





29C OVA R I A N T M A X W E L L E Q UAT I O N I N M E D I A

29.1 motivation , some notation , and review

Adjusting to Jackson’s of CGS [16] and Maxwell’s equations in matter takes some work. A first
pass at a GA form was assembled in (11), based on what was in the introduction chapter for
media that includes P, and M properties. He later changes conventions, and also assumes linear
media in most cases, so we want something different than what was previously derived.

The non-covariant form of Maxwell’s equation in absence of current and charge has been
convenient to use in some initial attempts to look at wave propagation. That was

F = E + IB/
√
µϵ

0 = (∇ +
√
µϵ∂0)F

(29.1)

To examine the energy momentum tensor, it is desirable to express this in a fashion that has no
such explicit spacetime dependence. This suggests a spacetime gradient definition that varies
throughout the media.

∇ ≡ γm∂m +
√
µϵγ0∂0 (29.2)

Observe that this spacetime gradient is adjusted by the speed of light in the media, and is not
one that is naturally relativistic. Even though the differential form of Maxwell’s equation is
implicitly defined only in a neighborhood of the point it is evaluated at, we now have a reason
to say this explicitly, because this non-isotropic condition is now hiding in the (perhaps poor)
notation for the operator. Ignoring the obscuring nature of this operator, and working with it,
we can that Maxwell’s equation in the neighborhood (where µϵ is “fixed”) is

∇F = 0 (29.3)

We also want a variant of this that includes the charge and current terms.
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29.2 linear media

Lets pick Jackson’s equation (6.70) as the starting point. A partial translation to GA form, with
D = ϵE, and B = µH, and ∂0 = ∂/∂ct is

∇ ·B = 0

∇ · ϵE = 4πρ

−I∇∧E + ∂0B = 0

−I∇∧B/µ − ∂0ϵE =
4π
c

J

(29.4)

Scaling and adding we have

∇E + ∂0IB =
4πρ
ϵ

∇B − I∂0µϵE =
4πµI

c
J

(29.5)

Once last scaling prepares for addition of these last two equations

∇E +
√
µϵ∂0IB/

√
µϵ =

4πρ
ϵ

∇IB/
√
µϵ + ∂0

√
µϵE = −

4πµ
c
√
µϵ

J
(29.6)

This gives us a non-covariant assembly of Maxwell’s equations in linear media

(∇ +
√
µϵ∂0)F =

4π
c

(
cρ
ϵ
−

√
µ

ϵ
J
)

(29.7)

Premultiplication by γ0, and utilizing the definition of eq. (29.2) we have

∇F =
4π
c

(
c
ρ

ϵ
γ0 +

√
µ

ϵ
Jmγm

)
(29.8)

We can then define

J ≡
cρ
ϵ
γ0 +

√
µ

ϵ
Jmγm (29.9)

and are left with an expression of Maxwell’s equation that puts space and time on a similar
footing. It is probably not really right to call this a covariant expression since it is not naturally
relativistic.

∇F =
4π
c

J (29.10)



29.3 energy momentum tensor 181

29.3 energy momentum tensor

My main goal was to find the GA form of the stress energy tensor in media. With the require-
ment for both an alternate spacetime gradient and the inclusion of the scaling factors for the
media it is not obviously clear to me how to do translate from the vacuum expression in SI units
to the CGS in media form. It makes sense to step back to see how the divergence conservation
equation translates with both of these changes. In SI units our tensor (a four vector parametrized
by another direction vector a) was

T (a) ≡
−1
2ϵ0

FaF (29.11)

Ignoring units temporarily, let us calculate the media-spacetime divergence of −FaF/2. That is

−
1
2
∇ · (FaF) = −

1
2
⟨∇(FaF)⟩

= −
1
2

〈
(F(
→

∇ F) + (F
←

∇)F)a
〉

= −
4π
c

〈
1
2

(FJ − JF)a
〉

= −
4π
c

(F · J) · a

(29.12)

We want the T µ0 components of the tensor T (γ0). Noting the anticommutation relation for
the pseudoscalar Iγ0 = −γ0I, and the anticommutation behavior for spatial vectors such as
Eγ0 = −γ0 we have

−
1
2

(E + IB/
√
µϵ)γ0(E + IB/

√
µϵ) =

γ0

2
(E − IB/

√
µϵ)(E + IB/

√
µϵ)

=
γ0

2

(
(E2 +B2/µϵ) + I

1
√
µϵ

(EB −BE)
)

=
1
2

(E2 +B2/µϵ) + γ0I
1
√
µϵ

(E∧B)

=
γ0

2
(E2 +B2/µϵ) − γ0

1
√
µϵ

(E ×B)

=
γ0

2
(E2 +B2/µϵ) − γ0

1
√
µϵ
γmγ0(E ×B)m

=
γ0

2
(E2 +B2/µϵ) +

1
√
µϵ
γm(E ×B)m

(29.13)
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Calculating the divergence of this using the media spacetime gradient we have

∇ ·

(
−

1
2

Fγ0F
)
=

√
µϵ

c
∂

∂t
1
2

(
E2 +

1
µϵ

B2
)
+

∑
m

∂

∂xm

(
1
√
µϵ

(E ×B)m
)

=

√
µϵ

c
∂

∂t
1
2

(
E2 +

1
µϵ

B2
)
+∇ ·

(
1
√
µϵ

(E ×B)m
) (29.14)

Multiplying this by (c/4π)
√
ϵ/µ, we have

∇ ·

(
−

c
8π

√
ϵ

µ
Fγ0F

)
=
∂

∂t
1
2
(E ·D +B ·H) +∇ ·

c
4π

(E ×H)

= −

√
ϵ

µ
(F · J) · γ0

(29.15)

Now expand the RHS. We have√
ϵ

µ
(F · J) · γ0 =

(
(E + IB/

√
µϵ) ·

(
ρ
√
µϵ
γ0 + Jmγm

))
· γ0

=
〈
Eqγqγ0Jmγmγ0

〉
= E · J

(29.16)

Assembling results the energy conservation relation, first in covariant form is

∇ ·

(
−

c
8π

√
ϵ

µ
FaF

)
= −

√
ϵ

µ
(F · J) · a (29.17)

and the same with an explicit spacetime split in vector quantities is

∂

∂t
1
2
(E ·D +B ·H) +∇ ·

c
4π

(E ×H) = −E · J (29.18)

The first of these two eq. (29.17) is what I was after for application to optics where the radiation
field in media can be expressed directly in terms of F instead of E and B. The second sets the
dimensions appropriately and provides some confidence in the result since we can compare to
the well known Poynting results in these units.
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At the end of section 12.1 in Jackson [16] he states that it is obvious that the Lorentz force
equations are gauge invariant.

dp
dt
= e

(
E +

u
c
×B

)
dE
dt
= eu ·E

(30.1)

Since I did not remember what Gauge invariance was, it was not so obvious. But if I looking
ahead to one of the problem 12.2 on this invariance we have a Gauge transformation defined in
four vector form as

Aα → Aα + ∂αψ (30.2)

In vector form with A = γαAα, this gauge transformation can be written

A→ A +∇ψ (30.3)

so this is really a statement that we add a spacetime gradient of something to the four vector
potential. Given this, how does the field transform?

F = ∇∧ A

→ ∇∧ (A +∇ψ)

= F +∇∧∇ψ

(30.4)

But ∇ ∧ ∇ψ = 0 (assuming partials are interchangeable) so the field is invariant regardless of
whether we are talking about the Lorentz force

∇F = J/ϵ0c (30.5)

or the field equations themselves

dp
dτ
= eF · v/c (30.6)

So, once you know the definition of the gauge transformation in four vector form, yes this
justifiably obvious, however, to anybody who is not familiar with Geometric Algebra, perhaps
this is still not so obvious. How does this translate to the more common place tensor or space
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time vector notations? The tensor four vector translation is the easier of the two, and there we
have

Fαβ = ∂αAβ − ∂βAα

→ ∂α(Aβ + ∂βψ) − ∂β(Aα + ∂αψ)

= Fαβ + ∂α∂βψ − ∂β∂αψ

(30.7)

As required for ∇ ∧ ∇ψ = 0 interchange of partials means the field components Fαβ are un-
changed by adding this gradient. Finally, in plain old spatial vector form, how is this gauge
invariance expressed?

In components we have

A0 → A0 + ∂0ψ = ϕ +
1
c
∂ψ

∂t

Ak → Ak + ∂kψ = Ak −
∂ψ

∂xk

(30.8)

This last in vector form is A → A − ∇ψ, where the sign inversion comes from ∂k = −∂k =

−∂/∂xk, assuming a + − −− metric.
We want to apply this to the electric and magnetic field components

E = −∇ϕ −
1
c
∂A
∂t

B = ∇ ×A
(30.9)

The electric field transforms as

E→ −∇
(
ϕ +

1
c
∂ψ

∂t

)
−

1
c
∂

∂t
(A −∇ψ)

= E −
1
c
∇
∂ψ

∂t
+

1
c
∂

∂t
∇ψ

(30.10)

With partial interchange this is just E. For the magnetic field we have

B→ ∇ × (A −∇ψ)
= B −∇ ×∇ψ

(30.11)

Again since the partials interchange we have ∇ ×∇ψ = 0, so this is just the magnetic field.
Alright. Worked this in three different ways, so now I can say its obvious.
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31.1 motivation

In some reading there I found that the electrodynamic field components transform in a reversed
sense to that of vectors, where instead of the perpendicular to the boost direction remaining
unaffected, those are the parts that are altered.

To explore this, look at the Lorentz boost action on a multivector, utilizing symmetric and
antisymmetric products to split that vector into portions effected and unaffected by the boost.
For the bivector (electrodynamic case) and the four vector case, examine how these map to dot
and wedge (or cross) products.

The underlying motivator for this boost consideration is an attempt to see where equation
(6.70) of [7] comes from. We get to this by the very end.

31.2 guts

31.2.1 Structure of the bivector boost

Recall that we can write our Lorentz boost in exponential form with

L = eασ/2

X′ = L†XL,
(31.1)

where σ is a spatial vector. This works for our bivector field too, assuming the composite trans-
formation is an outermorphism of the transformed four vectors. Applying the boost to both the
gradient and the potential our transformed field is then

F′ = ∇′ ∧ A′

= (L†∇L)∧ (L†AL)

=
1
2

(
(L†

→

∇ L)(L†AL) − (L†AL)(L†
←

∇ L)
)

=
1
2

L†
(
→

∇ A − A
←

∇

)
L

= L†(∇∧ A)L.

(31.2)
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Note that arrows were used briefly to indicate that the partials of the gradient are still acting on
A despite their vector components being to one side. We are left with the very simple transfor-
mation rule

F′ = L†FL, (31.3)

which has exactly the same structure as the four vector boost.

31.2.2 Employing the commutator and anticommutator to find the parallel and perpendicular
components

If we apply the boost to a four vector, those components of the four vector that commute with
the spatial direction σ are unaffected. As an example, which also serves to ensure we have the
sign of the rapidity angle α correct, consider σ = σ1. We have

X′ = e−ασ/2(x0γ0 + x1γ1 + x2γ2 + x3γ3)(coshα/2 + γ1γ0 sinhα/2) (31.4)

We observe that the scalar and σ1 = γ1γ0 components of the exponential commute with γ2

and γ3 since there is no vector in common, but that σ1 anticommutes with γ0 and γ1. We can
therefore write

X′ = x2γ2 + x3γ3 + (x0γ0 + x1γ1+)(coshα + γ1γ0 sinhα)

= x2γ2 + x3γ3 + γ0(x0 coshα − x1 sinhα) + γ1(x1 coshα − x0 sinhα)
(31.5)

reproducing the familiar matrix result should we choose to write it out. How can we express
the commutation property without resorting to components. We could write the four vector as a
spatial and timelike component, as in

X = x0γ0 + xγ0, (31.6)

and further separate that into components parallel and perpendicular to the spatial unit vector σ
as

X = x0γ0 + (x ·σ)σγ0 + (x∧σ)σγ0. (31.7)

However, it would be nicer to group the first two terms together, since they are ones that are
affected by the transformation. It would also be nice to not have to resort to spatial dot and
wedge products, since we get into trouble too easily if we try to mix dot and wedge products of
four vector and spatial vector components.

What we can do is employ symmetric and antisymmetric products (the anticommutator and
commutator respectively). Recall that we can write any multivector product this way, and in
particular

Mσ =
1
2

(Mσ +σM) +
1
2

(Mσ −σM). (31.8)
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Left multiplying by the unit spatial vector σ we have

M =
1
2

(M +σMσ) +
1
2

(M −σMσ) =
1
2
{M,σ}σ +

1
2
[M,σ]σ. (31.9)

When M = a is a spatial vector this is our familiar split into parallel and perpendicular compo-
nents with the respective projection and rejection operators

a =
1
2
{a,σ}σ +

1
2
[a,σ]σ = (a ·σ)σ + (a∧σ)σ. (31.10)

However, the more general split employing symmetric and antisymmetric products in eq. (31.9),
is something we can use for our four vector and bivector objects too.

Observe that we have the commutation and anti-commutation relationships(
1
2
{M,σ}σ

)
σ = σ

(
1
2
{M,σ}σ

)
(
1
2
[M,σ]σ

)
σ = −σ

(
1
2
[M,σ]σ

)
.

(31.11)

This split therefore serves to separate the multivector object in question nicely into the portions
that are acted on by the Lorentz boost, or left unaffected.

31.2.3 Application of the symmetric and antisymmetric split to the bivector field

Let us apply eq. (31.9) to the spacetime event X again with an x-axis boost σ = σ1. The
anticommutator portion of X in this boost direction is

1
2
{X,σ1}σ1 =

1
2

((
x0γ0 + x1γ1 + x2γ2 + x3γ3

)
+ γ1γ0

(
x0γ0 + x1γ1 + x2γ2 + x3γ3

)
γ1γ0

)
= x2γ2 + x3γ3,

(31.12)

whereas the commutator portion gives us

1
2
[X,σ1]σ1 =

1
2

((
x0γ0 + x1γ1 + x2γ2 + x3γ3

)
− γ1γ0

(
x0γ0 + x1γ1 + x2γ2 + x3γ3

)
γ1γ0

)
= x0γ0 + x1γ1.

(31.13)

We have seen that only these commutator portions are acted on by the boost. We have therefore
found the desired logical grouping of the four vector X into portions that are left unchanged by
the boost and those that are affected. That is

1
2
[X,σ]σ = x0γ0 + (x ·σ)σγ0

1
2
{X,σ}σ = (x∧σ)σγ0

(31.14)
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Let us now return to the bivector field F = ∇ ∧ A = E + IcB, and split that multivector into
boostable and unboostable portions with the commutator and anticommutator respectively.

Observing that our pseudoscalar I commutes with all spatial vectors we have for the anticom-
mutator parts that will not be affected by the boost

1
2
{E + IcB,σ}σ = (E ·σ)σ + Ic(B ·σ)σ, (31.15)

and for the components that will be boosted we have

1
2
[E + IcB,σ]σ = (E∧σ)σ + Ic(B∧σ)σ. (31.16)

For the four vector case we saw that the components that lay “perpendicular” to the boost
direction, were unaffected by the boost. For the field we see the opposite, and the components of
the individual electric and magnetic fields that are parallel to the boost direction are unaffected.
Our boosted field is therefore

F′ = (E ·σ)σ + Ic(B ·σ)σ + ((E∧σ)σ + Ic(B∧σ)σ) (coshα +σ sinhα) (31.17)

Focusing on just the non-parallel terms we have

((E∧σ)σ + Ic(B∧σ)σ) (coshα +σ sinhα)

= (E⊥ + IcB⊥) coshα + (IE ×σ − cB ×σ) sinhα

= E⊥ coshα − c(B ×σ) sinhα + I(cB⊥ coshα + (E ×σ) sinhα)

= γ (E⊥ − c(B ×σ)|v|/c + I(cB⊥ + (E ×σ)|v|/c))

(31.18)

A final regrouping gives us

F′ = E∥ + γ (E⊥ −B × v) + Ic
(
B∥ + γ

(
B⊥ +E × v/c2

))
(31.19)

In particular when we consider the proton, electron system as in equation (6.70) of [7] where it
is stated that the electron will feel a magnetic field given by

B = −
v
c
×E (31.20)

we can see where this comes from. If F = E + Ic(0) is the field acting on the electron, then
application of a v boost to the electron perpendicular to the field (ie: radial motion), we get

F′ = γE + IcγE × v/c2 = γE + −Icγ
v
c2 ×E (31.21)

We also have an additional 1/c factor in our result, but that is a consequence of the choice of
units where the dimensions of E match cB, whereas in the text we have E and B in the same
units. We also have an additional γ factor, so we must presume that |v| << c in this portion of
the text. That is actually a requirement here, for if the electron was already in motion, we would
have to boost a field that also included a magnetic component. A consequence of this is that the
final interaction Hamiltonian of (6.75) is necessarily non-relativistic.



32A C Y L I N D R I C A L L I E NA R D - W I E C H E RT P OT E N T I A L
C A L C U L AT I O N U S I N G M U LT I V E C T O R M AT R I X P RO D U C T S

32.1 motivation

A while ago I worked the problem of determining the equations of motion for a chain like object
[18]. This was idealized as a set of N interconnected spherical pendulums. One of the aspects
of that problem that I found fun was that it allowed me to use a new construct, factoring vectors
into multivector matrix products, multiplied using the Geometric (Clifford) product. It seemed
at the time that this made the problem tractable, whereas a traditional formulation was much
less so. Later I realized that a very similar factorization was possible with matrices directly [19].
This was a bit disappointing since I was enamored by my new calculation tool, and realized that
the problem could be tackled with much less learning cost if the same factorization technique
was applied using plain old matrices.

I have now encountered a new use for this idea of factoring a vector into a product of mul-
tivector matrices. Namely, a calculation of the four vector Lienard-Wiechert potentials, given
a general motion described in cylindrical coordinates. This I thought I had try since we had a
similar problem on our exam (with the motion of the charged particle additionally constrained
to a circle).

32.2 the goal of the calculation

Our problem is to calculate

A0 =
q

R∗

A =
qvc

cR∗
(32.1)

where xc(t) is the location of the charged particle, r is the point that the field is measured, and

R∗ = R −
vc

c
·R

R2 = R2 = c2(t − tr)2

R = r − xc(tr)

vc =
∂xc

∂tr
.

(32.2)
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32.3 calculating the potentials for an arbitrary cylindrical motion

Suppose that our charged particle has the trajectory

xc(t) = h(t)e3 + a(t)e1eiθ(t) (32.3)

where i = e1e2, and we measure the field at the point

r = ze3 + ρe1eiϕ (32.4)

The vector separation between the two is

R = r − xc

= (z − h)e3 + e1(ρeiϕ − aeiθ)

=
[
e1eiϕ −e1eiθ e3

] 
ρ

a

z − h


(32.5)

Transposition does not change this at all, so the (squared) length of this vector difference is

R2 =
[
ρ a (z − h)

] 
e1eiϕ

−e1eiθ

e3


[
e1eiϕ −e1eiθ e3

] 
ρ

a

z − h


=

[
ρ a (z − h)

] 
e1eiϕe1eiϕ −e1eiϕe1eiθ e1eiϕe3

−e1eiθe1eiϕ e1eiθe1eiθ −e1eiθe3

e3e1eiϕ −e3e1eiθ e3e3



ρ

a

z − h


=

[
ρ a (z − h)

] 
1 −ei(θ−ϕ) e1eiϕe3

−ei(ϕ−θ) 1 −e1eiθe3

e3e1eiϕ −e3e1eiθ 1



ρ

a

z − h



(32.6)

32.3.1 A motivation for a Hermitian like transposition operation

There are a few things of note about this matrix. One of which is that it is not symmetric. This
is a consequence of the non-commutative nature of the vector products. What we do have is a
Hermitian transpose like symmetry. Observe that terms like the (1, 2) and the (2, 1) elements of
the matrix are equal after all the vector products are reversed.
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Using tilde to denote this reversion, we have

(ei(θ−ϕ))̃ = cos(θ − ϕ) + (e1e2)̃ sin(θ − ϕ)

= cos(θ − ϕ) + e2e1 sin(θ − ϕ)

= cos(θ − ϕ) − e1e2 sin(θ − ϕ)

= e−i(θ−ϕ).

(32.7)

The fact that all the elements of this matrix, if non-scalar, have their reversed value in the
transposed position, is sufficient to show that the end result is a scalar as expected. Consider a
general quadratic form where the matrix has scalar and bivector grades as above, where there is
reversion in all the transposed positions. That is

bTAb (32.8)

where A =
∥∥∥Ai j

∥∥∥, a m ×m matrix where Ai j = Ã ji and contains scalar and bivector grades, and
b = ∥bi∥, a m × 1 column matrix of scalars. Then the product is∑

i j

biAi jb j =
∑
i< j

biAi jb j +
∑
j<i

biAi jb j +
∑

k

bkAkkbk

=
∑
i< j

biAi jb j +
∑
i< j

b jA jibi +
∑

k

bkAkkbk

=
∑

k

bkAkkbk + 2
∑
i< j

bi(Ai j + A ji)b j

=
∑

k

bkAkkbk + 2
∑
i< j

bi(Ai j + Ãi j)b j

(32.9)

The quantity in braces Ai j + Ãi j is a scalar since any of the bivector grades in Ai j cancel out.
Consider a similar general product of a vector after the vector has been factored into a product
of matrices of multivector elements

x =
[
a1 a2 . . . am

]

b1

b2
...

bm


(32.10)

The (squared) length of the vector is

x2 = (aibi)(a jb j)

= (aibi)̃a jb j

= b̃iãia jb j

= b̃i(ãia j)b j.

(32.11)
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It is clear that we want a transposition operation that includes reversal of its elements, so with
a general factorization of a vector into matrices of multivectors x = Ab, its square will be
x = b̃TÃTAb.

As with purely complex valued matrices, it is convenient to use the dagger notation, and
define

A† = ÃT (32.12)

where Ã contains the reversed elements of A. By extension, we can define dot and wedge prod-
ucts of vectors expressed as products of multivector matrices. Given x = Ab, a row vector and
column vector product, and y = Cd, where each of the rows or columns has m elements, the dot
and wedge products are

x · y =
〈
d†C†Ab

〉
x∧ y =

〈
d†C†Ab

〉
2
.

(32.13)

In particular, if b and d are matrices of scalars we have

x · y = dT
〈
C†A

〉
b = dT C†A + A†C

2
b

x∧ y = dT
〈
C†A

〉
2
b = dT C†A − A†C

2
b.

(32.14)

The dot product is seen as a generator of symmetric matrices, and the wedge product a generator
of purely antisymmetric matrices.

32.3.2 Back to the problem

Now, returning to the example above, where we want R2. We have seen that we can drop any
bivector terms from the matrix, so that the squared length can be reduced as

R2 =
[
ρ a (z − h)

] 
1 −ei(θ−ϕ) 0

−ei(ϕ−θ) 1 0

0 0 1



ρ

a

z − h


=

[
ρ a (z − h)

] 
1 − cos(θ − ϕ) 0

− cos(θ − ϕ) 1 0

0 0 1



ρ

a

z − h


=

[
ρ a (z − h)

] 
ρ − a cos(θ − ϕ)

−ρ cos(θ − ϕ) + a

z − h



(32.15)
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So we have

R2 = ρ2 + a2 + (z − h)2 − 2aρ cos(θ − ϕ)

R =
√
ρ2 + a2 + (z − h)2 − 2aρ cos(θ − ϕ)

(32.16)

Now consider the velocity of the charged particle. We can write this as

dxc

dt
=

[
e3 e1eiθ e2eiθ

] 
ḣ

ȧ

aθ̇

 (32.17)

To compute vc ·R we have to extract scalar grades of the matrix product

〈
e1eiϕ

−e1eiθ

e3


[
e3 e1eiθ e2eiθ

]〉
=

〈
e1eiϕ

−e1eiθ

e3


[
e3 e1eiθ e2eiθ

]〉

=

〈
e1eiϕe3 e1eiϕe1eiθ e1eiϕe2eiθ

−e1eiθe3 −e1eiθe1eiθ −e1eiθe2eiθ

e3e3 e3e1eiθ e3e2eiθ


〉

=


0 cos(θ − ϕ) − sin(θ − ϕ)

0 −1 0

1 0 0

 .

(32.18)

So the dot product is

R · v =
[
ρ a (z − h)

] 
0 cos(θ − ϕ) − sin(θ − ϕ)

0 −1 0

1 0 0




ḣ

ȧ

aθ̇


=

[
ρ a (z − h)

] 
ȧ cos(θ − ϕ) − aθ̇ sin(θ − ϕ)

−ȧ

ḣ


= (z − h)ḣ − ȧa + ρȧ cos(θ − ϕ) − ρaθ̇ sin(θ − ϕ)

(32.19)

This is the last of what we needed for the potentials, so we have

A0 =
q

R − (z − h)ḣ/c + aȧ/c + ρ cos(θ − ϕ)ȧ/c − ρa sin(θ − ϕ)θ̇/c

A =
ḣe3 + (ȧe1 + aθ̇e2)eiθ

c
A0,

(32.20)
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where all the time dependent terms in the potentials are evaluated at the retarded time tr, defined
implicitly by the messy relationship

c(t − tr) =
√

(ρ(tr))2 + (a(tr))2 + (z − h(tr))2 − 2a(tr)ρ cos(θ(tr) − ϕ). (32.21)

32.4 doing this calculation with plain old cylindrical coordinates

It is worth trying this same calculation without any geometric algebra to contrast it. I had expect
that the same sort of factorization could also be performed. Let us try it

xc =


a cos θ

a sin θ

h


r =


ρ cos ϕ

ρ sin ϕ

z


(32.22)

R = r − xc

=


ρ cos ϕ − a cos θ

ρ sin ϕ − a sin θ

z − h


=


cos ϕ − cos θ 0

sin ϕ − sin θ 0

0 0 1



ρ

a

z − h


(32.23)
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So for R2 we really just need to multiply out two matrices
cos ϕ sin ϕ 0

− cos θ − sin θ 0

0 0 1



cos ϕ − cos θ 0

sin ϕ − sin θ 0

0 0 1


=


cos2 ϕ + sin2 ϕ −(cos ϕ cos ϕ + sin ϕ sin θ) 0

−(cos ϕ cos θ + sin θ sin ϕ) cos2 θ + sin2 θ 0

0 0 1


=


1 − cos(ϕ − θ) 0

− cos(ϕ − θ) 1 0

0 0 1



(32.24)

So for R2 we have

R2 =
[
ρ a (z − h)

] 
1 − cos(ϕ − θ) 0

− cos(ϕ − θ) 1 0

0 0 1



ρ

a

z − h


=

[
ρ a (z − h)

] 
ρ − a cos(ϕ − θ)

−ρ cos(ϕ − θ) + a

z − h


= (z − h)2 + ρ2 + a2 − 2aρ cos(ϕ − θ)

(32.25)

We get the same result this way, as expected. The matrices of multivector products provide a
small computational savings, since we do not have to look up the cos ϕ cos ϕ + sin ϕ sin θ =
cos(ϕ − θ) identity, but other than that minor detail, we get the same result.

For the particle velocity we have

vc =


ȧ cos θ − aθ̇ sin θ

ȧ sin θ + aθ̇ cos θ

ḣ


=


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




ȧ

aθ̇

ḣ


(32.26)
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So the dot product is

vc ·R =
[
ȧ aθ̇ ḣ

] 
cos θ sin θ 0

− sin θ cos θ 0

0 0 1



cos ϕ − cos θ 0

sin ϕ − sin θ 0

0 0 1



ρ

a

z − h


=

[
ȧ aθ̇ ḣ

] 
cos θ cos ϕ + sin θ sin ϕ − cos2 θ − sin2 θ 0

− cos ϕ sin θ + cos θ sin ϕ 0

0 0 1



ρ

a

z − h


=

[
ȧ aθ̇ ḣ

] 
cos(ϕ − θ) −1 0

sin(ϕ − θ) 0 0

0 0 1



ρ

a

z − h


= ḣ(z − h) − ȧa + ρȧ cos(ϕ − θ) + ρaθ̇ sin(ϕ − θ)

(32.27)

32.5 reflecting on two the calculation methods

With a learning curve to both Geometric Algebra, and overhead required for this new multivec-
tor matrix formalism, it is definitely not a clear winner as a calculation method. Having worked
a couple examples now this way, the first being the N spherical pendulum problem, and now
this potentials problem, I will keep my eye out for new opportunities. If nothing else this can
be a useful private calculation tool, and the translation into more pedestrian matrix methods has
been seen in both cases to not be too difficult.
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34P L A N E WAV E S O L U T I O N S O F M A X W E L L’ S E Q UAT I O N U S I N G
G E O M E T R I C A L G E B R A

34.1 motivation

Study of reflection and transmission of radiation in isotropic, charge and current free, linear
matter utilizes the plane wave solutions to Maxwell’s equations. These have the structure of
phasor equations, with some specific constraints on the components and the exponents.

These constraints are usually derived starting with the plain old vector form of Maxwell’s
equations, and it is natural to wonder how this is done directly using Geometric Algebra. [8]
provides one such derivation, using the covariant form of Maxwell’s equations. Here’s a slightly
more pedestrian way of doing the same.

34.2 maxwell’s equations in media

We start with Maxwell’s equations for linear matter as found in [13]

∇ ·E = 0 (34.1a)

∇ ×E = −
∂B
∂t

(34.1b)

∇ ·B = 0 (34.1c)

∇ ×B = µϵ
∂E
∂t
. (34.1d)

We merge these using the geometric identity

∇ · a + I∇ × a = ∇a, (34.2)

where I is the 3D pseudoscalar I = e1e2e3, to find

∇E = −I
∂B
∂t

(34.3a)
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∇B = Iµϵ
∂E
∂t
. (34.3b)

We want dimensions of 1/L for the derivative operator on the RHS of eq. (34.3b), so we divide
through by

√
µϵI for

−I
1
√
µϵ
∇B =

√
µϵ
∂E
∂t
. (34.4)

This can now be added to eq. (34.3a) for(
∇ +
√
µϵ

∂

∂t

) (
E +

I
√
µϵ

B
)
= 0. (34.5)

This is Maxwell’s equation in linear isotropic charge and current free matter in Geometric Al-
gebra form.

34.3 phasor solutions

We write the electromagnetic field as

F =
(
E +

I
√
µϵ

B
)
, (34.6)

so that for vacuum where 1/
√
µϵ = c we have the usual F = E + IcB. Assuming a phasor

solution of

F̃ = F0ei(k·x−ωt) (34.7)

where F0 is allowed to be complex, and the actual field is obtained by taking the real part

F = Re F̃ = Re(F0) cos(k · x −ωt) − Im(F0) sin(k · x −ωt). (34.8)

Note carefully that we are using a scalar imaginary i, as well as the multivector (pseudoscalar)
I, despite the fact that both have the square to scalar minus one property.

We now seek the constraints on k, ω, and F0 that allow F̃ to be a solution to eq. (34.5)

0 =
(
∇ +
√
µϵ

∂

∂t

)
F̃. (34.9)
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As usual in the non-geometric algebra treatment, we observe that any such solution F̃ to Maxwell’s
equation is also a wave equation solution. In GA we can do so by right multiplying an operator
that has a conjugate form,

0 =
(
∇ +
√
µϵ

∂

∂t

)
F̃

=

(
∇ −
√
µϵ

∂

∂t

) (
∇ +
√
µϵ

∂

∂t

)
F̃

=

(
∇

2 − µϵ
∂2

∂t2

)
F̃

=

(
∇

2 −
1
v2

∂2

∂t2

)
F̃,

(34.10)

where v = 1/
√
µϵ is the speed of the wave described by this solution.

Inserting the exponential form of our assumed solution eq. (34.7) we find

0 = −(k2 −ω2/v2)F0ei(k·x−ωt), (34.11)

which implies that the wave number vector k and the angular frequency ω are related by

v2k2 = ω2. (34.12)

Our assumed solution must also satisfy the first order system eq. (34.9)

0 =
(
∇ +
√
µϵ

∂

∂t

)
F0ei(k·x−ωt)

= i
(
emkm −

ω

v

)
F0ei(k·x−ωt)

= ik(k̂ − 1)F0ei(k·x−ωt).

(34.13)

The constraints on F0 must then be given by

0 =
(
k̂ − 1

)
F0. (34.14)

With

F0 = E0 + IvB0, (34.15)

we must then have all grades of the multivector equation equal to zero

0 = (k̂ − 1) (E0 + IvB0) . (34.16)
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Writing out all the geometric products, grouping into columns by grade, we have

0 = k̂ ·E0 −E0 +k̂∧E0 Ivk̂ ·B0

+Ivk̂∧B0 +IvB0
(34.17)

We’ve made use of the fact that I commutes with all of k̂, E0, and B0 and employed the identity
ab = a · b + a∧ b.

Collecting the scalar, vector, bivector, and pseudoscalar grades and using a ∧ b = Ia × b
again, we have a set of constraints resulting from the first order system

0 = k̂ ·E0 (34.18a)

E0 = −k̂ × vB0 (34.18b)

vB0 = k̂ ×E0 (34.18c)

0 = k̂ ·B0. (34.18d)

This and eq. (34.12) describe all the constraints on our phasor that are required for it to be
a solution. Note that only one of the two cross product equations in eq. (34.18) are required
because the two are not independent (problem 34.1).

Writing out the complete expression for F0 we have

F0 = E0 + IvB0

= E0 + Ik̂ ×E0

= E0 + k̂∧E0.

(34.19)

Since k̂ ·E0 = 0, this is

F0 = (1 + k̂)E0. (34.20)

Had we been clever enough this could have been deduced directly from the eq. (34.14) directly,
since we require a product that is killed by left multiplication with k̂ − 1. Our complete plane
wave solution to Maxwell’s equation is therefore given by

F = Re(F̃) = E +
I
√
µϵ

B

F̃ = (1 ± k̂)E0ei(k·x∓ωt)

0 = k̂ ·E0

k2 = ω2µϵ.

(34.21)
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34.4 problems

Exercise 34.1 Electrodynamic plane wave constraints

It was claimed that

E0 = −k̂ × vB0 (34.22a)

vB0 = k̂ ×E0 (34.22b)

relating the electric and magnetic field of electrodynamic plane waves were dependent. Show
this.

Exercise 34.2 Proving that the wavevectors are all coplanar

[13] poses the following simple but excellent problem, related to the relationship between the
incident, transmission and reflection phasors, which he states has the following form

()ei(ki·x−ωt) + ()ei(kr ·x−ωt) = ()ei(kt ·x−ωt), (34.25)

He poses the problem (9.15)
Suppose Aeiax + Beibx = Ceicx for some nonzero constants A, B, C, a, b, c, and for all x. Prove

that a = b = c and A + B = C.
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35.1 motivation

Reading of [4] is a treatment of the Lorentz transform properties of the Lorentz force equation.
This is not clear to me without working through it myself, so do this.

I also have the urge to try this with the GA formulation of the Lorentz transformation. That
may not end up being simpler if one works with the non-covariant form of the Lorentz force
equation, but only trying it will tell.

35.2 compare forms of the lorentz boost

Working from the Geometric Algebra form of the Lorentz boost, show equivalence to the stan-
dard coordinate matrix form and the vector form from Bohm.

35.2.1 Exponential form

Write the Lorentz boost of a four vector x = xµγµ = ctγ0 + xkγk as

L(x) = e−αv̂/2xeαv̂/2 (35.1)

35.2.2 Invariance property

A Lorentz transformation (boost or rotation) can be defined as those transformation that leave
the four vector square unchanged.

Following [8], work with a +−−−metric signature (1 = γ2
0 = −γ

2
k), and σk = γkγ0. Our four

vector square in this representation has the familiar invariant form

x2 = (ctγ0 + xmγm)
(
ctγ0 + xkγk

)
= (ctγ0 + xmγm) γ

2
0

(
ctγ0 + xkγk

)
= (ct + xmσm)

(
ct − xkσk

)
= (ct + x)(ct − x)

= (ct)2 − x2

(35.2)
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and we expect this of the Lorentz boost of eq. (35.1). To verify we have

L(x)2 = e−αv̂/2xeαv̂/2e−αv̂/2xeαv̂/2

= e−αv̂/2xxeαv̂/2

= x2e−αv̂/2eαv̂/2

= x2

(35.3)

35.2.3 Sign of the rapidity angle

The factor α will be the rapidity angle, but what sign do we want for a boost along the positive
v̂ direction?

Dropping to coordinates is an easy way to determine the sign convention in effect. Write
v̂ = σ1

L(x) = e−αv̂/2xeαv̂/2

= (cosh(α/2) −σ1 sinh(α/2))(x0γ0 + x1γ1 + x2γ2 + x3γ3)(cosh(α/2) +σ1 sinh(α/2))
(35.4)

σ1 commutes with γ2 and γ3 and anticommutes otherwise, so we have

L(x) =
(
x2γ2 + x3γ3

)
e−αv̂/2eαv̂/2 +

(
x0γ0 + x1γ1

)
eαv̂

= x2γ2 + x3γ3 +
(
x0γ0 + x1γ1

)
eαv̂

= x2γ2 + x3γ3 +
(
x0γ0 + x1γ1

)
(cosh(α) +σ1 sinh(α))

(35.5)

Expanding out just the 0, 1 terms changed by the transformation we have(
x0γ0 + x1γ1

)
(cosh(α) +σ1 sinh(α)) = x0γ0 cosh(α) + x1γ1 cosh(α) + x0γ0σ1 sinh(α) + x1γ1σ1 sinh(α)

= x0γ0 cosh(α) + x1γ1 cosh(α) + x0γ0γ1γ0 sinh(α) + x1γ1γ1γ0 sinh(α)

= x0γ0 cosh(α) + x1γ1 cosh(α) − x0γ1 sinh(α) − x1γ0 sinh(α)

= γ0(x0 cosh(α) − x1 sinh(α)) + γ1(x1 cosh(α) − x0 sinh(α))

Writing xµ′ = L(x) · γµ, and xµ = x · γµ, and a substitution of cosh(α) = 1/
√

1 − v2/c2, and
αv̂ = tanh−1(v/c), we have the traditional coordinate expression for the one directional Lorentz
boost 

x0′

x1′

x2′

x3′


=


coshα − sinhα 0 0

− sinhα coshα 0 0

0 0 1 0

0 0 0 1




x0

x1

x2

x3


(35.6)
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Performing this expansion showed initially showed that I had the wrong sign for α in the expo-
nentials and I went back and adjusted it all accordingly.

35.2.4 Expanding out the Lorentz boost for projective and rejective directions

Two forms of Lorentz boost representations have been compared above. An additional one is
used in the Bohm text (a vector form of the Lorentz transformation not using coordinates). Let
us see if we can derive that from the exponential form.

Start with computation of components of a four vector relative to an observer timelike unit
vector γ0.

x = xγ0γ0

= (xγ0)γ0

= (x · γ0 + x ∧ γ0) γ0

(35.7)

For the spatial vector factor above write x = x ∧ γ0, for

x = (x · γ0) γ0 + xγ0

= (x · γ0) γ0 + xv̂v̂γ0

= (x · γ0) γ0 + (x · v̂)v̂γ0 + (x∧ v̂)v̂γ0

(35.8)

We have the following commutation relations for the various components

v̂(γ0) = −γ0v̂
v̂(v̂γ0) = −(v̂γ0)v̂

v̂((x∧ v̂)v̂γ0) = ((x∧ v̂)v̂γ0)v̂
(35.9)

For a four vector u that commutes with v̂ we have e−αv̂/2u = ue−αv̂/2, and if it anticommutes we
have the conjugate relation e−αv̂/2u = ueαv̂/2. This gives us

L(x) = (x∧ v̂)v̂γ0 + ((x · γ0)γ0 + (x · v̂)v̂γ0) eαv̂ (35.10)

Now write the exponential as a scalar and spatial vector sum

eαv̂ = coshα + v̂ sinhα

= γ(1 + v̂ tanhα)

= γ(1 + v̂β)

= γ(1 + v/c)

(35.11)
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Expanding out the exponential product above, also writing x0 = ct = x · γ0, we have

(x0γ0 + (x · v̂)v̂γ0)eαv̂

= γ(x0γ0 + (x · v̂)v̂γ0)(1 + v/c)

= γ(x0γ0 + (x · v̂)v̂γ0 + x0γ0v/c + (x · v̂)v̂γ0v/c)

(35.12)

So for the total Lorentz boost in vector form we have

L(x) = (x∧ v̂)v̂γ0 + γ
(
x0 − x ·

v
c

)
γ0 + γ

(
x ·

1
v/c
− x0

)
v
c
γ0 (35.13)

Now a visual inspection shows that this does match equation (15-12) from the text:

x′ = x − (v̂ · x)v̂ +
(v̂ · x)v̂ − vt√

1 − (v2/c2)

t′ =
t − (v · x)/c2√

1 − (v2/c2)

(35.14)

but the equivalence of these is perhaps not so obvious without familiarity with the GA con-
structs.

35.2.5 differential form

Bohm utilizes a vector differential form of the Lorentz transformation for both the spacetime
and energy-momentum vectors. From equation eq. (35.14) we can derive the expressions used.
In particular for the transformed spatial component we have

x′ = x + γ
(
−(v̂ · x)v̂

1
γ
+ (v̂ · x)v̂ − vt

)
= x + γ

(
(v̂ · x)v̂

(
1 −

1
γ

)
− vt

)
= x + (γ − 1)(v̂ · x)v̂ − γvt

(35.15)

So in differential vector form we have

dx′ = dx + (γ − 1)(v̂ · dx)v̂ − γvdt

dt′ = γ(dt − (v · dx) /c2)
(35.16)

and by analogy with dx0 = cdt → dE/c, and dx → dp, we also have the energy momentum
transformation

dp′ = dp + (γ − 1)(v̂ · dp)v̂ − γvdE/c2

dE′ = γ(dE − v · dp)
(35.17)
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Reflecting on these forms of the Lorentz transformation, they are quite natural ways to express
the vector results. The terms with γ factors are exactly what we are used to in the coordinate
representation (transformation of only the time component and the projection of the spatial
vector in the velocity direction), while the −1 part of the (γ − 1) term just subtracts off the
projection unaltered, leaving dx − (dx · v̂)v̂ = (dx∧ v̂)v̂, the rejection from the v̂ direction.

35.3 lorentz force transformation

Preliminaries out of the way, now we want to examine the transform of the electric and magnetic
field as used in the Lorentz force equation. In CGS units as in the text we have

dp
dt
= q

(
E +

v
c
×H

)
dE
dt
= qE · v

(35.18)

After writing this in differential form

dp = q
(
Edt +

dx
c
×H

)
dE = qE · dx

(35.19)

and the transformed variation of this equation, also in differential form

dp′ = q
(
E′dt′ +

dx′

c
×H′

)
dE′ = qE′ · dx′

(35.20)

A brute force insertion of the transform results of equations eq. (35.16), and eq. (35.17) into
these is performed. This is mostly a mess of algebra.

While the Bohm book covers some of this, other parts are left for the reader. Do the whole
thing here as an exercise.
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35.3.1 Transforming the Lorentz power equation

Let us start with the energy rate equation in its entirety without interleaving the momentum
calculation.

1
q

dE′ = E′ · dx′

= E′ ·
(
dx + (γ − 1)(V̂ · dx)V̂ − γVdt

)
= E′ · dx + (γ − 1)(V̂ · dx)E′ · V̂ − γE′ ·Vdt

1
q
γ(dE −V · dp) =

γE · dx − γV ·
(
Edt +

dx
c
×H

)
=

γE · dx − γV · Edt − γ
1
c

dx · (H ×V) =

(35.21)

Grouping dt and dx terms we have

0 = dx ·
(
E′ + (γ − 1)V̂(E′ · V̂) − γE + γ(H ×V/c)

)
+ dtγV · (E − E′) (35.22)

Now the argument is that both the dt and dx factors must separately equal zero. Assuming that
for now (but come back to this and think it through), and writing E = E∥ +E⊥ for the projective
and rejective components of the field relative to the boost direction V (same for H and the
transformed fields) we have from the dt term

0 = V · (E∥ + E⊥ − E′∥ − E
′
⊥)

= V · (E∥ − E′∥)
(35.23)

So we can conclude

E′
∥
= E∥ (35.24)

Now from the dx coefficient, we have

0 = E′
∥
+ E′⊥ + (γ − 1)V̂(E′

∥
· V̂) − γE∥ − γE⊥ + γ(H⊥ ×V/c)

=
(
E′
∥
− V̂(E′

∥
· V̂)

)
E′
∥
− E′

∥

+ E′⊥ − γ
(
E∥ − V̂(E′

∥
· V̂)

)
E∥ − E∥

− γE⊥ + γ(H⊥ ×V/c) (35.25)

This now completely specifies the transformation properties of the electric field under a V boost

E′⊥ = γ

(
E⊥ +

V
c
×H⊥

)
E′
∥
= E∥

(35.26)
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(it also confirms the typos in the text).

35.3.2 Transforming the Lorentz momentum equation

Now we do the exercise for the reader part, and express the transformed momentum differential
of equation eq. (35.20) in terms of eq. (35.16)

1
q

dp′ = E′dt′ +
dx′

c
×H′

= γE′dt − γE′(V · dx)/c2 + dx ×H′/c + (γ − 1)(V̂ · dx)V̂ ×H′/c − γV ×H′/cdt
(35.27)

Now for the LHS using eq. (35.17) and eq. (35.19) we have

1
q

dp′ = dp/q + (γ − 1)(V̂ · dp/q)V̂ − γVdE/qc2

= Edt +
dx
c
×H + (γ − 1)(V̂ · Edt + V̂ · (dx ×H/c))V̂ − γV(E · dx)/c2

= Edt +
dx
c
×H + (γ − 1)(V̂ · E)V̂dt + (γ − 1)(dx · (H × V̂/c))V̂ − γV(E · dx)/c2

(35.28)

Combining these and grouping by dt and dx we have

dt
(
−(E − (V̂ · E)V̂) + γ(E′ − (V̂ · E)V̂) − γV ×H′/c

)
=
γ

c2 (E′(V · dx) −V(E · dx)) +
dx
c
× (H −H′)

+
γ − 1

c

(
(dx · (H × V̂))V̂ − (V̂ · dx)(V̂ ×H′)

) (35.29)

What a mess, and this is after some initial grouping! From the power result we have V̂ · E =
V̂ · E′ so we can write the LHS of this mess as

dt
(
−(E − (V̂ · E)V̂) + γ(E′ − (V̂ · E)V̂) − γV ×H′/c

)
= dt

(
−(E − (V̂ · E)V̂) + γ(E′ − (V̂ · E′)V̂) − γV ×H′/c

)
= dt (−E⊥ + γE′⊥ − γV ×H′/c)
= dt (−E⊥ + γE′⊥ − γV ×H′⊥/c)

(35.30)

If this can separately equal zero independent of the dx terms we have

E⊥ = γ

(
E′⊥ −

V
c
×H′⊥

)
(35.31)
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Contrast this to the result for E′⊥ in the first of eq. (35.26). It differs only by a sign which has an
intuitive relativistic (anti)symmetry that is not entirely unsurprising. If a boost along V takes E
to E′, then an boost with opposing direction makes sense for the reverse.

Despite being reasonable seeming, a relation like H∥ =H′
∥

was expected ... does that follow
from this somehow? Perhaps things will become more clear after examining the mess on the
RHS involving all the dx terms?

The first part of this looks amenable to some algebraic manipulation. Using (E′ ∧V) · dx =
E′(V · dx) −V(E′ · dx), we have

E′(V · dx) −V(E · dx) = (E′ ∧V) · dx +V(E′ · dx) −V(E · dx)

= (E′ ∧V) · dx +V((E′ − E) · dx)
(35.32)

and

(E′ ∧V) · dx =
〈
(E′ ∧V)dx

〉
1

=
〈
i(E′ ×V)dx

〉
1

=
〈
i((E′ ×V)∧ dx)

〉
1

=
〈
i2((E′ ×V) × dx)

〉
1

= dx × (E′ ×V)

(35.33)

Putting things back together, does it improve things?

0 = dx ×
(
γ

(
E′ ×

V
c

)
+ (H −H′)

)
+
γ

c
V((E′ − E) · dx)

+ (γ − 1)
(
(dx · (H × V̂))V̂ − (V̂ · dx)(V̂ ×H′)

) (35.34)

Perhaps the last bit can be factored into dx crossed with some function of H −H′?
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36.1 some notes on gafp 5.5.3 the lorentz force law

Expand on treatment of [8].
The idea behind this derivation, is to express the vector part of the proper force in covariant

form, and then do the same for the energy change part of the proper momentum. That first part
is:

dp
dτ
∧ γ0 =

d(γp)
dτ

=
d(γp)

dt
dt
dτ

=
dt
dτ

q (E + v ×B)

(36.1)

Now, the spacetime split of velocity is done in the normal fashion:

x = ctγ0 +
∑

xiγi

v =
dx
dτ
= c

dt
dτ
γ0 +

∑ dxi

dτ
γi

v · γ0 = c
dt
dτ
= cγ

v∧ γ0 =
∑ dxi

dt
dt
dτ
γiγ0

= (v · γ0)/c
∑

viσi

= (v · γ0)v/c.

(36.2)

Writing ṗ = dp/dτ, substitute the gamma factor into the force equation:

ṗ∧ γ0 = (v/c · γ0)q (E + v ×B)
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Now, GAFP goes on to show that the γE term can be reduced to the form (E · v) ∧ γ0. Their
method is not exactly obvious, for example writing E = (1/2)(E+E) to start. Let us just do this
backwards instead, expanding E · v to see the form of that term:

E · v =
(∑

Eiγi0
)
·
(∑

vµγµ
)

=
∑

Eivµ
〈
γi0µ

〉
1

= v0
∑

Eiγi +
∑

Eiv j
〈
γi0 j

〉
1

−δi jγ0

= v0
∑

Eiγi −
∑

Eiviγ0.

(36.3)

Wedging with γ0 we have the desired result:

(E · v)∧ γ0 = v0
∑

Eiγi0 = (v · γ0)E = cγE

Now, for equation 5.164 there are not any surprising steps, but lets try this backwards too:

(IB) · v =


∑

Bi γ102030i0

γ123i


·
(∑

vµγµ
)

=
∑

Bivµ
〈
γ123iµ

〉
1

(36.4)

That vector selection does yield the cross product as expected:

〈
γ123iµ

〉
1
=



0 µ = 0

0 i = µ

γ1 iµ = 32

−γ2 iµ = 31

γ3 iµ = 21

(with alternation for the missing set of index pairs). This gives:

(IB) · v = (B3v2 − B2v3)γ1 + (B1v3 − B3v1)γ2 + (B2v1 − B1v2)γ3, (36.5)

thus, since vi = γdxi/dt, this yields the desired result

((IB) · v)∧ γ0 = γv ×B
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In retrospect, for this magnetic field term, the GAFP approach is cleaner and easier than to try
to do it the dumb way.

Combining the results we have:

ṗ∧ γ0 = qγ(E + v ×B)

= q((E + cIB) · (v/c))∧ γ0
(36.6)

Or with F = E + cIB, we have:

ṗ∧ γ0 = q(F · v/c)∧ γ0 (36.7)

It is tempting here to attempt to cancel the ∧γ0 parts of this equation, but that cannot be done
until one also shows:

ṗ · γ0 = q(F · v/c) · γ0

I follow most of the details of GAFP on this fine. I found they omitted a couple steps that would
have been helpful.

For the four momentum we have:

p0 = p · γ0 = E/c

The rate of change work done on the particle by the force is:

dW = qE · dx
dW
dt
= qE ·

dx
dt
= c

dp0

dt
dp0

dt
= qE · v/c

dp0

dτ
=

dt
dτ

v/c · γ0

qE ·
(
v∧ γ0

v · γ0

)
= qE · (v/c∧ γ0)

= q (E + cIB) · (v/c∧ γ0)

(36.8)

IB has only purely spatial bivectors, γ12, γ13, and γ23. On the other hand v ∧ γ0 =
∑

viγi0 has
only spacetime bivectors, so IB · (v/c∧ γ0) = 0, which is why it can be added above to complete
the field.

That leaves:

dp0

dτ
= qF · (v/c∧ γ0) , (36.9)
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but we want to put this in the same form as eq. (36.7). To do so, note how we can reduce the dot
product of two bivectors:

(a∧ b) · (c∧ d) = ⟨(a∧ b)(c∧ d)⟩

= ⟨(a∧ b)(cd − c · d)⟩

= ⟨((a∧ b) · c)d + ((a∧ b)∧ c)d⟩

= ((a∧ b) · c) · d.

(36.10)

Using this, and adding the result to eq. (36.7) we have:

ṗ · γ0 + ṗ∧ γ0 = q(F · v/c) · γ0 + q(F · v/c)∧ γ0

Or

ṗγ0 = q(F · v/c)γ0

Right multiplying by γ0 on both sides to cancel those terms we have our end result, the covariant
form of the Lorentz proper force equation:

ṗ = q(F · v/c) (36.11)

36.2 lorentz force in terms of four potential

If one expresses the Faraday bivector in terms of a spacetime curl of a potential vector:

F = ∇∧ A, (36.12)

then inserting into eq. (36.11) we have:

ṗ = q(F · v/c)

= q(∇∧ A) · v/c

= q (∇(A · v/c) − A(∇ · v/c))

(36.13)

Let us look at that proper velocity divergence term:

∇ · v/c =
1
c

(
∇ ·

dx
dτ

)
=

1
c

d
dτ
∇ · x

=
1
c

d
dτ

∑ ∂xµ

∂xµ

=
1
c

d4
dτ

= 0

(36.14)
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This leaves the proper Lorentz force expressible as the (spacetime) gradient of a scalar quantity:

ṗ = q∇(A · v/c) (36.15)

I believe this dot product is likely an invariant of electromagnetism. Looking from the rest frame
one has:

ṗ = q∇A0 = q
∑

γµ∂µA0 =
∑

Eiγi (36.16)

Wedging with γ0 to calculate E =
∑

Eiγi, we have:

q
∑
−γi0∂iA0 = −q∇A0

So we want to identify this component of the four vector potential with electrostatic potential:

A0 = ϕ (36.17)

36.3 explicit expansion of potential spacetime curl in components

Having used the gauge condition ∇ · A = 0, to express the Faraday bivector as a gradient, we
should be able to verify that this produces the familiar equations for E, and B in terms of ϕ, and
A.

First lets do the electric field components, which are easier.
With F = E + icB = ∇∧ A, we calculate E =

∑
σiEi =

∑
γi0Ei.

Ei = F ·
(
γ0 ∧ γi

)
= F · γ0i

=
(∑

γµ∂µ ∧ γνAν
)
· γ0i

=
∑

∂µAνγµν · γ
0i

= ∂0Aiγ0
i · γ

0i + ∂iA0γi
0 · γ

0i

= −
(
∂0Ai + ∂iA0

)∑
Eiσi = −

(
∂ct

∑
σiAi +

∑
σi∂iA0

)
= −

(
1
c
∂A
∂t
+∇A0

)
(36.18)

Again we see that we should identify A0 = ϕ, and write:

E +
1
c
∂A
∂t
= −∇ϕ (36.19)
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Now, let us calculate the magnetic field components (setting c = 1 temporarily):

iB = σ123

∑
σiBi

=
∑

σ123iBi

= σ1231B1 +σ1232B2 +σ1233B3

= σ23B1 +σ31B2 +σ12B3

= γ2030B1 + γ3010B2 + γ1020B3

= γ32B1 + γ13B2 + γ21B3

(36.20)

Thus, we can calculate the magnetic field components with:

B1 = F · γ23

B2 = F · γ31

B3 = F · γ12

(36.21)

Here the components of F of interest are: γi ∧ γ j∂iA j = −γi j∂iA j.

B1 = −∂2A3γ23 · γ
23 − ∂3A2γ32 · γ

23

B2 = −∂3A1γ31 · γ
31 − ∂1A3γ13 · γ

31

B3 = −∂1A2γ12 · γ
12 − ∂2A1γ21 · γ

12

=⇒

B1 = ∂2A3 − ∂3A2

B2 = ∂3A1 − ∂1A3

B3 = ∂1A2 − ∂2A1

(36.22)

Or, with A =
∑
σiAi and ∇ =

∑
σi∂i, this is our familiar:

B = ∇ ×A (36.23)
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37.1 motivation

Both [2] and [8] cover rotor formulations of the Lorentz force equation. Work through some of
this on my own to better understand it.

37.2 in terms of ga

An active Lorentz transformation can be used to translate from the rest frame of a particle with
worldline x to an observer frame, as in

y = ΛxΛ̃ (37.1)

Here Lorentz transformation is used in the general sense, and can include both spatial rotation
and boost effects, but satisfies ΛΛ̃ = 1. Taking proper time derivatives we have

ẏ = Λ̇xΛ̃ +Λx ˜̇Λ

= Λ
(
Λ̃Λ̇

)
xΛ̃ +Λx

( ˜̇ΛΛ
)

Λ̃
(37.2)

Since Λ̃Λ = ΛΛ̃ = 1 we also have

0 = Λ̇Λ̃ +Λ ˜̇Λ

0 = Λ̃Λ̇ + ˜̇ΛΛ
(37.3)

Here is where a bivector variable

Ω/2 = Λ̃Λ̇ (37.4)

is introduced, from which we have ˜̇ΛΛ = −Ω/2, and

ẏ =
1
2

(
ΛΩxΛ̃ −ΛxΩΛ̃

)
(37.5)

Or

Λ̃ẏΛ =
1
2
(Ωx − xΩ) (37.6)
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The inclusion of the factor of two in the definition of Ω was cheating, so that we get the bivector
vector dot product above. Presuming Ω is really a bivector (return to this in a bit), we then have

Λ̃ẏΛ = Ω · x (37.7)

We can express the time evolution of y using this as a stepping stone, since we have

Λ̃yΛ = x (37.8)

Using this we have

0 =
〈
Λ̃ẏΛ −Ω · x

〉
1

=
〈
Λ̃ẏΛ −Ωx

〉
1

=
〈
Λ̃ẏΛ −ΩΛ̃yΛ

〉
1

=
〈(

Λ̃ẏ − Λ̃ΛΩΛ̃y
)

Λ
〉

1

=
〈
Λ̃

(
ẏ −ΛΩΛ̃y

)
Λ

〉
1

(37.9)

So we have the complete time evolution of our observer frame worldline for the particle, as a
sort of an eigenvalue equation for the proper time differential operator

ẏ =
(
ΛΩΛ̃

)
· y =

(
2Λ̇Λ̃

)
· y (37.10)

Now, what Baylis did in his lecture, and what Doran/Lasenby did as well in the text (but I did
not understand it then when I read it the first time) was to identify this time evolution in terms
of Lorentz transform change with the Lorentz force.

Recall that the Lorentz force equation is

v̇ =
e

mc
F · v (37.11)

where F = E+ icB, like Λ̇Λ̃ is also a bivector. If we write the velocity worldline of the particle
in the lab frame in terms of the rest frame particle worldline as

v = Λctγ0Λ̃ (37.12)

Then for the field F observed in the lab frame we are left with a differential equation 2Λ̇Λ̃ =
eF/mc for the Lorentz transformation that produces the observed motion of the particle given
the field that acts on it

Λ̇ =
e

2mc
FΛ (37.13)

Okay, good. I understand now well enough what they have done to reproduce the end result
(with the exception of my result including a factor of c since they have worked with c = 1).

http://www.ime.unicamp.br/%7Eicca8/videos/baylis.avi
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37.2.1 Omega bivector

It has been assumed above that Ω = 2Λ̃Λ̇ is a bivector. One way to confirm this is by examining
the grades of this product. Two bivectors, not necessarily related can only have grades 0, 2, and
4. Because Ω = −Ω̃, as seen above, it can have no grade 0 or grade 4 parts.

While this is a powerful way to verify the bivector nature of this object it is fairly abstract. To
get a better feel for this, let us consider this object in detail for a purely spatial rotation, such as

Rθ(x) = ΛxΛ̃

Λ = exp(−inθ/2) = cos(θ/2) − in sin(θ/2),
(37.14)

where n is a spatial unit bivector, n2 = 1, in the span of {σk = γkγ0}.

37.2.1.1 Verify rotation form

To verify that this has the appropriate action, by linearity two cases must be considered. First is
the action on n or the components of any vector in this direction.

Rθ(n) = ΛnΛ̃

= (cos(θ/2) − in sin(θ/2)) nΛ̃

= n (cos(θ/2) − in sin(θ/2)) Λ̃

= nΛΛ̃

= n.

(37.15)

The rotation operator does not change any vector colinear with the axis of rotation (the normal).
For a vector m that is perpendicular to axis of rotation n (ie: 2(m · n) = mn + nm = 0), we have

Rθ(m) = ΛmΛ̃

= (cos(θ/2) − in sin(θ/2))mΛ̃

= (m cos(θ/2) − i(nm) sin(θ/2)) Λ̃

= (m cos(θ/2) + i(mn) sin(θ/2)) Λ̃

= m(Λ̃)2

= m exp(inθ)

(37.16)

This is a rotation of the vector m that lies in the in plane by θ as desired.
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37.2.1.2 The rotation bivector

We want derivatives of the Λ object.

Λ̇ =
θ̇

2
(− sin(θ/2) − in cos(θ/2)) − iṅ cos(θ/2)

=
inθ̇
2

(in sin(θ/2) − cos(θ/2)) − iṅ cos(θ/2)

= −
1
2

exp(−inθ/2)inθ̇ − iṅ cos(θ/2)

(37.17)

So we have

Ω = 2Λ̃Λ̇

= −inθ̇ − 2 exp(inθ/2)iṅ cos(θ/2)

= −inθ̇ − 2 cos(θ/2) (cos(θ/2) − in sin(θ/2)) iṅ

= −inθ̇ − 2 cos(θ/2) (cos(θ/2)iṅ + nṅ sin(θ/2))

(37.18)

Since n · ṅ = 0, we have nṅ = n ∧ ṅ, and sure enough all the terms are bivectors. Specifically
we have

Ω = −θ̇(in) − (1 + cos θ)(iṅ) − sin θ(n∧ ṅ) (37.19)

37.2.2 Omega bivector for boost

TODO.

37.3 tensor variation of the rotor lorentz force result

There is not anything in the initial Lorentz force rotor result that intrinsically requires geometric
algebra. At least until one actually wants to express the Lorentz transformation concisely in
terms of half angle or boost rapidity exponentials.

In fact the logic above is not much different than the approach used in [29] for rigid body
motion. Let us try this in matrix or tensor form and see how it looks.

37.3.1 Tensor setup

Before anything else some notation for the tensor work must be established. Similar to eq. (37.1)
write a Lorentz transformed vector as a linear transformation. Since we want only the matrix of



37.3 tensor variation of the rotor lorentz force result 225

this linear transformation with respect to a specific observer frame, the details of the transfor-
mation can be omitted for now. Write

y = L(x) (37.20)

and introduce an orthonormal frame {γµ}, and the corresponding reciprocal frame {γµ}, where
γµ · γ

ν = δµ
ν. In this basis, the relationship between the vectors becomes

yµγµ = L(xνγν)

= xνL(γν)
(37.21)

Or

yµ = xνL(γν) · γµ (37.22)

The matrix of the linear transformation can now be written as

Λν
µ = L(γν) · γµ (37.23)

and this can now be used to express the coordinate transformation in abstract index notation

yµ = xνΛν
µ (37.24)

Similarly, for the inverse transformation, we can write

x = L−1(y)

Πν
µ = L−1(γν) · γµ

xµ = yνΠν
µ

(37.25)

I have seen this expressed using primed indices and the same symbol Λ used for both the
forward and inverse transformation ... lacking skill in tricky index manipulation I have avoided
such a notation because I will probably get it wrong. Instead different symbols for the two
different matrices will be used here and Π was picked for the inverse rather arbitrarily.

With substitution

yµ = xνΛν
µ = (yαΠα

ν)Λν
µ

xµ = yνΠν
µ = (xαΛα

ν)Πν
µ

(37.26)

the pair of explicit inverse relationships between the two matrices can be read off as

δα
µ = Πα

νΛν
µ = Λα

νΠν
µ (37.27)
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37.3.2 Lab frame velocity of particle in tensor form

In tensor form we want to express the worldline of the particle in the lab frame coordinates.
That is

v = L(ctγ0)

= L(x0γ0)

= x0L(γ0)

(37.28)

Or

vµ = x0L(γ0) · γµ

= x0Λ0
µ

(37.29)

37.3.3 Lorentz force in tensor form

The Lorentz force equation eq. (37.11) in tensor form will also be needed. The bivector F is

F =
1
2

Fµνγ
µ ∧ γν (37.30)

So we can write

F · v =
1
2

Fµν(γµ ∧ γν) · γαvα

=
1
2

Fµν(γµδνα − γνδµα)vα

=
1
2

(vαFµαγ
µ − vαFανγ

ν)

(37.31)

And

v̇σ =
e

mc
(F · v) · γσ

=
e

2mc
(vαFµαγ

µ − vαFανγ
ν) · γσ

=
e

2mc
vα(Fσα − Fασ)

=
e

mc
vαFσα

(37.32)

Or

v̇σ =
e

mc
vαFσ

α (37.33)
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37.3.4 Evolution of Lab frame vector

Given a lab frame vector with all the (proper) time evolution expressed via the Lorentz transfor-
mation

yµ = xνΛν
µ (37.34)

we want to calculate the derivatives as in the GA procedure

ẏµ = xνΛ̇µ
ν

= xαδανΛ̇
µ
ν

= xαΛα
βΠβ

νΛ̇µ
ν

(37.35)

With y = v, this is

v̇σ = vαΠα
νΛ̇σ

ν

= vα
e

mc
Fσ

α

(37.36)

So we can make the identification of the bivector field with the Lorentz transformation matrix

Πα
νΛ̇σ

ν =
e

mc
Fσ

α (37.37)

With an additional summation to invert we have

Λβ
αΠα

νΛ̇σ
ν = Λβ

α e
mc

Fσ
α (37.38)

This leaves a tensor differential equation that will provide the complete time evolution of the
lab frame worldline for the particle in the field

Λ̇ν
µ =

e
mc

Λµ
αFν

α (37.39)

This is the equivalent of the GA equation eq. (37.13). However, while the GA equation is di-
rectly integrable for constant F, how to do this in the equivalent tensor formulation is not so
clear.

Want to revisit this, and try to perform this integral in both forms, ideally for both the simpler
constant field case, as well as for a more general field. Even better would be to be able to
express F in terms of the current density vector, and then treat the proper interaction of two
charged particles.
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37.4 gauge transformation for spin

In the Baylis article eq. (37.13) is transformed as Λ → Λω0 exp(−ie3ω0τ).
Using this we have

Λ̇ →
d
dτ

(Λω0 exp(−ie3ω0τ))

= Λ̇ω0 exp(−ie3ω0τ) −Λω0(ie3ω0) exp(−ie3ω0τ)
(37.40)

For the transformed eq. (37.13) this gives

Λ̇ω0 exp(−ie3ω0τ) −Λω0(ie3ω0) exp(−ie3ω0τ) =
e

2mc
FΛω0 exp(−ie3ω0τ) (37.41)

Canceling the exponentials, and shuffling

Λ̇ω0 =
e

2mc
FΛω0 +Λω0(ie3ω0) (37.42)

How does he commute the ie3 term with the Lorentz transform? How about instead transforming
as Λ → exp(−ie3ω0τ)Λω0 .

Using this we have

Λ̇ →
d
dτ

(exp(−ie3ω0τ)Λω0)

= exp(−ie3ω0τ)Λ̇ω0 − (ie3ω0) exp(−ie3ω0τ)Λω0

(37.43)

then, the transformed eq. (37.13) gives

exp(−ie3ω0τ)Λ̇ω0 − (ie3ω0) exp(−ie3ω0τ)Λω0 =
e

2mc
F exp(−ie3ω0τ)Λω0 (37.44)

Multiplying by the inverse exponential, and shuffling, noting that exp(ie3α) commutes with ie3,
we have

Λ̇ω0 = (ie3ω0)Λω0 +
e

2mc
exp(ie3ω0τ)F exp(−ie3ω0τ)Λω0

=
e

2mc

(
2mc

e
(ie3ω0) + exp(ie3ω0τ)F exp(−ie3ω0τ)

)
Λω0

(37.45)

So, if one writes Fω0 = exp(ie3ω0τ)F exp(−ie3ω0τ), then the transformed differential equation
for the Lorentz transformation takes the form

Λ̇ω0 =
e

2mc

(
2mc

e
(ie3ω0) + Fω0

)
Λω0 (37.46)

This is closer to Baylis’s equation 31. Dropping ω0 subscripts this is

Λ̇ =
e

2mc

(
2mc

e
(ie3ω0) + F

)
Λ (37.47)
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A phase change in the Lorentz transformation rotor has introduced an additional term, one that
Baylis appears to identify with the spin vector S. My way of getting there seems fishy, so I think
that I am missing something.

Ah, I see. If we go back to eq. (37.42), then with S = Λω0(ie3)Λ̃ω0 (an application of a
Lorentz transform to the unit bivector for the e2e3 plane), one has

Λ̇ω0 =
1
2

( e
mc

F + 2ω0S
)

Λω0 (37.48)





38( I N C O M P L E T E ) G E O M E T RY O F M A X W E L L R A D I AT I O N
S O L U T I O N S

38.1 motivation

We have in GA multiple possible ways to parametrize an oscillatory time dependence for a
radiation field.

This was going to be an attempt to systematically solve the resulting eigen-multivector prob-
lem, starting with the a Iẑωt exponential time parametrization, but I got stuck part way. Perhaps
using a plain old Iωt would work out better, but I have spent more time on this than I want for
now.

38.2 setup. the eigenvalue problem

Again following Jackson [16], we use CGS units. Maxwell’s equation in these units, with F =
E + IB/√µϵ is

0 = (∇ +
√
µϵ∂0)F (38.1)

With an assumed oscillatory time dependence

F = Feiωt (38.2)

Maxwell’s equation reduces to a multivariable eigenvalue problem

∇F = −Fiλ

λ =
√
µϵ
ω

c
(38.3)

We have some flexibility in picking the imaginary. As well as a non-geometric imaginary i typ-
ically used for a phasor representation where we take real parts of the field, we have additional
possibilities, two of which are

i = x̂ŷẑ = I

i = x̂ŷ = Iẑ
(38.4)

The first is the spatial pseudoscalar, which commutes with all vectors and bivectors. The second
is the unit bivector for the transverse plane, here parametrized by duality using the perpendicular
to the plane direction ẑ.
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Let us examine the geometry required of the object F for each of these two geometric mod-
eling choices.

38.3 using the transverse plane bivector for the imaginary

Assuming no prior assumptions about F let us allow for the possibility of scalar, vector, bivector
and pseudoscalar components

F = e−Iẑωt(F0 + F1 + F2 + F3) (38.5)

Writing e−Iẑωt = cos(ωt) − Iẑ sin(ωt) = Cω − IẑSω, an expansion of this product separated into
grades is

F = CωF0 − ISω(ẑ∧ F2)

+CωF1 − ẑSω(IF3) + Sω(ẑ × F1)

+CωF2 − IẑSωF0 − ISω(ẑ · F2)

+CωF3 − ISω(ẑ · F1)

(38.6)

By construction F has only vector and bivector grades, so a requirement for zero scalar and
pseudoscalar for all t means that we have four immediate constraints (with n ⊥ ẑ.)

F0 = 0

F3 = 0

F2 = ẑ∧m
F1 = n

(38.7)

Since we have the flexibility to add or subtract any scalar multiple of ẑ to m we can write
F2 = ẑm where m ⊥ ẑ. Our field can now be written as just

F = Cωn − ISω(ẑ∧ n)

+Cωẑm − ISω(ẑ · (ẑm))
(38.8)

We can similarly require n ⊥ ẑ, leaving

F = (Cω − IẑSω)n + (Cω − IẑSω)mẑ (38.9)

So, just the geometrical constraints give us

F = e−Iẑωt(n +mẑ) (38.10)

The first thing to be noted is that this phasor representation utilizing for the imaginary the
transverse plane bivector Iẑ cannot be the most general. This representation allows for only
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transverse fields! This can be seen two ways. Computing the transverse and propagation field
components we have

Fz =
1
2

(F + ẑFẑ)

=
1
2

e−Iẑωt(n +mẑ + ẑnẑ + ẑmẑẑ)

=
1
2

e−Iẑωt(n +mẑ − n −mẑ)

= 0

(38.11)

The computation for the transverse field Ft = (F − ẑFẑ)/2 shows that F = Ft as expected since
the propagation component is zero.

Another way to observe this is from the split of F into electric and magnetic field components.
From eq. (38.9) we have

E = cos(ωt)m + sin(ωt)(ẑ ×m)

B = cos(ωt)(ẑ × n) − sin(ωt)n
(38.12)

The space containing each of the E and B vectors lies in the span of the transverse plane. We
also see that there is some potential redundancy in the representation visible here since we have
four vectors describing this span m, n, ẑ ×m, and ẑ × n, instead of just two.

38.3.1 General wave packet

If eq. (38.1) were a scalar equation for F(x, t) it can be readily shown using Fourier transforms
the field propagation in time given initial time description of the field is

F(x, t) =
∫ (

1
(2π)3

∫
F(x′, 0)eik·(x′−x)d3x

)
eickt/

√
µϵd3k (38.13)

In traditional complex algebra the vector exponentials would not be well formed. We do not
have the problem in the GA formalism, but this does lead to a contraction since the resulting
F(x, t) cannot be scalar valued. However, by using this as a motivational tool, and also using
assumed structure for the discrete frequency infinite wavetrain phasor, we can guess that a
transverse only (to z-axis) wave packet may be described by a single direction variant of the
Fourier result above. That is

F(x, t) =
1
√

2π

∫
e−IẑωtF(x, ω)dω (38.14)
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Since eq. (38.14) has the same form as the earlier single frequency phasor test solution, we now
know that F is required to anticommute with ẑ. Application of Maxwell’s equation to this test
solution gives us

(∇ +
√
µϵ∂0)F(x, t) = (∇ +

√
µϵ∂0)

1
√

2π

∫
F(x, ω)eIẑωtdω

=
1
√

2π

∫ (
∇F +FIẑ

√
µϵ
ω

c

)
eIẑωtdω

(38.15)

This means that F must satisfy the gradient eigenvalue equation for all ω

∇F = −FIẑ
√
µϵ
ω

c
(38.16)

Observe that this is the single frequency problem of equation eq. (38.3), so for mono-directional
light we can consider the infinite wave train instead of a wave packet with no loss of generality.

38.3.2 Applying separation of variables

While this may not lead to the most general solution to the radiation problem, the transverse
only propagation problem is still one of interest. Let us see where this leads. In order to reduce
the scope of the problem by one degree of freedom, let us split out the ẑ component of the
gradient, writing

∇ = ∇t + ẑ∂z (38.17)

Also introduce a product split for separation of variables for the z dependence. That is

F = G(x, y)Z(z) (38.18)

Again we are faced with the problem of too many choices for the grades of each of these factors.
We can pick one of these, say Z, to have only scalar and pseudoscalar grades so that the two
factors commute. Then we have

(∇t +∇z)F = (∇tG)Z + ẑG∂zZ = −GZIẑλ (38.19)

With Z in an algebra isomorphic to the complex numbers, it is necessarily invertible (and com-
mutes with it is derivative). Similar arguments to the grade fixing for F show that G has only
vector and bivector grades, but does G have the inverse required to do the separation of vari-
ables? Let us blindly suppose that we can do this (and if we can not we can probably fudge it
since we multiply again soon after). With some rearranging we have

−
1
G

ẑ(∇tG +GIẑλ) = (∂zZ)
1
Z
= constant (38.20)
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We want to separately equate these to a constant. In order to commute these factors we have
only required that Z have only scalar and pseudoscalar grades, so for the constant let us pick an
arbitrary element in this subspace. That is

(∂zZ)
1
Z
= α + kI (38.21)

The solution for the Z factor in the separation of variables is thus

Z ∝ e(α+kI)z (38.22)

For G the separation of variables gives us

∇tG + (Gẑλ + ẑGk)I + ẑGα = 0 (38.23)

We have now reduced the problem to something like a two variable eigenvalue problem, where
the differential operator to find eigenvectors for is the transverse gradient ∇t. We unfortunately
have an untidy split of the eigenvalue into left and right hand factors.

While the product GZ was transverse only, we have now potentially lost that nice property for
G itself, and do not know if G is strictly commuting or anticommuting with ẑ. Assuming either
possibility for now, we can split this multivector into transverse and propagation direction fields
G = Gt +Gz

Gt =
1
2

(G − ẑGẑ)

Gz =
1
2

(G + ẑGẑ)
(38.24)

With this split, noting that ẑGt = −Gtẑ, and ẑGz = Gzẑ a rearrangement of eq. (38.23) produces

(∇t + ẑ((k − λ)I + α))Gt = −(∇t + ẑ((k + λ)I + α))Gz (38.25)

How do we find the eigen multivectors Gt and Gz? A couple possibilities come to mind (per-
haps not encompassing all solutions). One is for one of Gt or Gz to be zero, and the other to
separately require both halves of eq. (38.25) equal a constant, very much like separation of vari-
ables despite the fact that both of these functions Gt and Gz are functions of x and y. The easiest
non-trivial path is probably letting both sides of eq. (38.25) separately equal zero, so that we
are left with two independent eigen-multivector problems to solve

∇tGt = −ẑ((k − λ)I + α))Gt

∇tGz = −ẑ((k + λ)I + α))Gz
(38.26)

Damn. have to mull this over. Do not know where to go with it.





39R E L AT I V I S T I C C L A S S I C A L P ROT O N E L E C T RO N I N T E R AC T I O N

39.1 motivation

The problem of a solving for the relativistically correct trajectories of classically interacting
proton and electron is one that I have wanted to try for a while. Conceptually this is just about
the simplest interaction problem in electrodynamics (other than motion of a particle in a field),
but it is not obvious to me how to even set up the right equations to solve. I should have the
tools now to at least write down the equations to solve, and perhaps solve them too.

Familiarity with Geometric Algebra, and the STA form of the Maxwell and Lorentz force
equation will be assumed. Writing F = E + cIB for the Faraday bivector, these equations are
respectively

∇F = J/ϵ0c

m
d2X
dτ
=

q
c

F ·
dX
dτ

(39.1)

The possibility of self interaction will also be ignored here. From what I have read this self
interaction is more complex than regular two particle interaction.

39.2 with only coulomb interaction

With just Coulomb (non-relativistic) interaction setup of the equations of motion for the relative
vector difference between the particles is straightforward. Let us write this out as a reference.
Whatever we come up with for the relativistic case should reduce to this at small velocities.

Fixing notation, lets write the proton and electron positions respectively by rp and re, the
proton charge as Ze, and the electron charge −e. For the forces we have

FIXME: picture

Force on electron = me
d2re

dt2 = −
1

4πϵ0
Ze2 re − rp∣∣∣re − rp

∣∣∣3
Force on proton = mp

d2rp

dt2 =
1

4πϵ0
Ze2 re − rp∣∣∣re − rp

∣∣∣3
(39.2)
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Subtracting the two after mass division yields the reduced mass equation for the relative motion

d2(re − rp)
dt2 = −

1
4πϵ0

Ze2
(

1
me
+

1
mp

)
re − rp∣∣∣re − rp

∣∣∣3 (39.3)

This is now of the same form as the classical problem of two particle gravitational interaction,
with the well known conic solutions.

39.3 using the divergence equation instead

While use of the Coulomb force above provides the equation of motion for the relative motion of
the charges, how to generalize this to the relativistic case is not entirely clear. For the relativistic
case we need to consider all of Maxwell’s equations, and not just the divergence equation. Let
us back up a step and setup the problem using the divergence equation instead of Coulomb’s
law. This is a bit closer to the use of all of Maxwell’s equations.

To start off we need a discrete charge expression for the charge density, and can use the delta
distribution to express this.

0 =
∫

d3x
(
∇ ·E −

1
ϵ0

(
Zeδ3(x − rp) − eδ3(x − re)

))
(39.4)

Picking a volume element that only encloses one of the respective charges gives us the Coulomb
law for the field produced by those charges as above

0 =
∫

Volume around proton only
d3x

(
∇ ·Ep −

1
ϵ0

Zeδ3(x − rp)
)

0 =
∫

Volume around electron only
d3x

(
∇ ·Ee +

1
ϵ0

eδ3(x − re)
) (39.5)

Here Ep and Ee denote the electric fields due to the proton and electron respectively. Ignoring
the possibility of self interaction the Lorentz forces on the particles are

Force on proton/electron = charge of proton/electron times field due to electron/proton (39.6)

In symbols, this is

mp
d2rp

dt2 = ZeEe

me
d2re

dt2 = −eEp

(39.7)
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If we were to substitute back into the volume integrals we would have

0 =
∫

Volume around proton only
d3x

(
−

me

e
∇ ·

d2re

dt2 −
1
ϵ0

Zeδ3(x − rp)
)

0 =
∫

Volume around electron only
d3x

mp

Ze
∇ ·

d2rp

dt2 +
1
ϵ0

eδ3(x − re)
 (39.8)

It is tempting to take the differences of these two equations so that we can write this in terms of
the relative acceleration d2(re − rp)/dt2. I did just this initially, and was surprised by a mass term
of the form 1/me − 1/mp instead of reduced mass, which cannot be right. The key to avoiding
this mistake is the proper considerations of the integration volumes. Since the volumes are
different and can in fact be entirely disjoint, subtracting these is not possible. For this reason we
have to be especially careful if a differential form of the divergence integrals eq. (39.7) were to
be used, as in

∇ ·Ep =
1
ϵ0

Zeδ3(x − rp)

∇ ·Ee = −
1
ϵ0

eδ3(x − re)
(39.9)

The domain of applicability of these equations is no longer explicit, since each has to omit
a neighborhood around the other charge. When using a delta distribution to express the point
charge density it is probably best to stick with an explicit integral form.

Comparing how far we can get starting with the Gauss’s law instead of the Coulomb force,
and looking forward to the relativistic case, it seems likely that solving the field equations due
to the respective current densities will be the first required step. Only then can we substitute
that field solution back into the Lorentz force equation to complete the search for the particle
trajectories.

39.4 relativistic interaction

First order of business is an expression for a point charge current density four vector. Following
Jackson [16], but switching to vector notation from coordinates, we can apparently employ an
arbitrary parametrization for the four-vector particle trajectory R = Rµγµ, as measured in the
observer frame, and write

J(X) = qc
∫

dλ
dX
dλ

δ4(X − R(λ)) (39.10)
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Here X = Xµγµ is the four vector event specifying the spacetime position of the current, also
as measured in the observer frame. Reparameterizating in terms of time should get us back
something more familiar looking

J(X) = qc
∫

dt
dX
dt
δ4(X − R(t))

= qc
∫

dt
d
dt

(ctγ0 + γkXk)δ4(X − R(t))

= qc
∫

dt
d
dt

(ct + x)δ4(X − R(t))γ0

= qc
∫

dt(c + v)δ4(X − R(t))γ0

= qc
∫

dt′(c + v(t′))δ3(x − r(t′))δ(ct′ − ct)γ0

(39.11)

Note that the scaling property of the delta function implies δ(ct) = δ(t)/c. With the split of the
four-volume delta function δ4(X − R(t)) = δ3(x − r(t))δ(x0′ − x0), where x0 = ct, we have an
explanation for why Jackson had a factor of c in his representation. I initially thought this factor
of c was due to CGS vs SI units! One more Jackson equation decoded. We are left with the
following spacetime split for a point charge current density four vector

J(X) = q(c + v(t))δ3(x − r(t))γ0 (39.12)

Comparing to the continuous case where we have J = ρ(c + v)γ0, it appears that this works out
right. One thing worth noting is that in this time reparameterization I accidentally mixed up X,
the observation event coordinates of J(X), and R, the spacetime trajectory of the particle itself.
Despite this, I am saved by the delta function since no contributions to the current can occur on
trajectories other than R, the worldline of the particle itself. So in the final result it should be
correct to interpret v as the spatial particle velocity as I did accidentally.

With the time reparameterization of the current density, we have for the field due to our proton
and electron

0 =
∫

d3x
(
ϵ0c∇F − Ze(c + vp(t))δ3(x − rp(t)) + e(c + ve(t))δ3(x − re(t))γ0

)
(39.13)

How to write this in a more tidy covariant form? If we reparametrize with any of the other
spatial coordinates, say x we end up having to integrate the field gradient with a spacetime three
form (dtdydz if parametrizing the current density with x). Since the entire equation must be zero
I suppose we can just integrate that once more, and simply write

constant =
∫

d4x
(
∇F −

e
ϵ0c

∫
dτ

dX
dτ

(
Zδ4(X − Rp(τ)) − δ4(X − Re(τ))

))
(39.14)
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Like eq. (39.5) we can pick spacetime volumes that surround just the individual particle world-
lines, in which case we have a Coulomb’s law like split where the field depends on just the
enclosed current. That is

constant =
∫

spacetime volume around only the proton
d4x

(
∇Fp −

Ze
ϵ0c

∫
dτ

dX
dτ
δ4(X − Re(τ))

)
constant =

∫
spacetime volume around only the electron

d4x
(
∇Fe +

e
ϵ0c

∫
dτ

dX
dτ
δ4(X − Re(τ))

) (39.15)

Here Fe is the field due to only the electron charge, whereas Fp would be that part of the total
field due to the proton charge.

FIXME: attempt to draw a picture (one or two spatial dimensions) to develop some comfort
with tossing out a phrase like “spacetime volume surrounding a particle worldline”. Having
expressed the equation for the total field eq. (39.14), we are tracking a nice parallel to the setup
for the non-relativistic treatment. Next is the pair of Lorentz force equations. As in the non-
relativistic setup, if we only consider the field due to the other charge we have in covariant
Geometric Algebra form, the following pair of proper force equations in terms of the particle
worldline trajectories

proper Force on electron = me
d2Re

dτ2 = −eFp ·
dRe

cdτ

proper Force on proton = mp
d2Rp

dτ2 = ZeFe ·
dRp

cdτ

(39.16)

We have the four sets of coupled multivector equations to be solved, so the question remains how
to do so. Each of the two Lorentz force equations supplies four equations with four unknowns,
and the field equations are really two sets of eight equations with six unknown field variables
each. Then they are all tied up together is a big coupled mess. Wow. How do we solve this?

With eq. (39.15), and eq. (39.16) committed to pdf at least the first goal of writing down the
equations is done.

As for the actual solution. Well, that is a problem for another night. TO BE CONTINUED (if
I can figure out an attack).





Part IV

E L E C T RO DY NA M I C S S T R E S S E N E R G Y





40P OY N T I N G V E C T O R A N D E L E C T RO M AG N E T I C E N E R G Y
C O N S E RVAT I O N

40.1 motivation

Clarify Poynting discussion from [8].
Equation 7.59 and 7.60 derives a E×B quantity, the Poynting vector, as a sort of energy flux

through the surface of the containing volume.
There are a couple of magic steps here that were not at all obvious to me. Go through this in

enough detail that it makes sense to me.

40.2 charge free case

In SI units the Energy density is given as

U =
ϵ0

2

(
E2 + c2B2

)
(40.1)

In 42 the electrostatic energy portion of this energy was observed. FIXME: A magnetostatics
derivation (ie: unchanging currents) is possible for the B2 term, but I have not done this myself
yet.

It is somewhat curious that the total field energy is just this sum without any cross terms
(all those cross terms show up in the field momentum). A logical confirmation of this in a
general non-electrostatics and non-magnetostatics context will not be done here. Instead it will
be assumed that eq. (40.1) has been correctly identified as the field energy (density), and a
mechanical calculation of the time rate of change of this quantity (the power density) will be
performed. In doing so we can find the analogue of the momentum. How to truly identify this
quantity with momentum will hopefully become clear as we work with it.

Given this energy density the rate of change of energy in a volume is then

dU
dt
=

d
dt
ϵ0

2

∫
dV

(
E2 + c2B2

)
= ϵ0

∫
dV

(
E ·

∂E
∂t
+ c2B ·

∂B
∂t

) (40.2)
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The next (omitted in the text) step is to utilize Maxwell’s equation to eliminate the time deriva-
tives. Since this is the charge and current free case, we can write Maxwell’s as

0 = γ0∇F

= γ0(γ0∂0 + γ
k∂k)F

= (∂0 + γkγ0∂k)F

= (∂0 +σk∂k)F

= (∂0 +∇)F

= (∂0 +∇)(E + icB)

= ∂0E + ic∂0B +∇E + ic∇B

(40.3)

In the spatial (σ) basis we can separate this into even and odd grades, which are separately equal
to zero

0 = ∂0E + ic∇B
0 = ic∂0B +∇E

(40.4)

A selection of just the vector parts is

∂tE = −ic2
∇∧B

∂tB = i∇∧E
(40.5)

Which can be back substituted into the energy flux

dU
dt
= ϵ0

∫
dV

(
E · (−ic2

∇∧B) + c2B · (i∇∧E)
)

= ϵ0c2
∫

dV⟨Bi∇∧E −Ei∇∧B⟩
(40.6)

Since the two divergence terms are zero we can drop the wedges here for

dU
dt
= ϵ0c2

∫
dV⟨Bi∇E −Ei∇B⟩

= ϵ0c2
∫

dV⟨(iB)∇E −E∇(iB)⟩

= ϵ0c2
∫

dV∇ · ((iB) ·E)

(40.7)

Justification for this last step can be found below in the derivation of eq. (40.30).
We can now use Stokes theorem to change this into a surface integral for a final energy flux

dU
dt
= ϵ0c2

∫
dA · ((iB) ·E) (40.8)
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This last bivector/vector dot product is the Poynting vector

(iB) ·E = ⟨(iB) ·E⟩1
= ⟨iBE⟩1
= ⟨i(B∧E)⟩1
= i(B∧E)

= i2(B ×E)

= E ×B

(40.9)

So, we can identity the quantity

P = ϵ0c2E ×B = ϵ0c(icB) ·E (40.10)

as a directed energy density flux through the surface of a containing volume.

40.3 with charges and currents

To calculate time derivatives we want to take Maxwell’s equation and put into a form with
explicit time derivatives, as was done before, but this time be more careful with the handling of
the four vector current term. Starting with left factoring out of a γ0 from the spacetime gradient.

∇ = γ0∂0 + γ
k∂k

= γ0(∂0 − γ
kγ0∂k)

= γ0(∂0 +σk∂k)

(40.11)

Similarly, the γ0 can be factored from the current density

J = γ0cρ + γkJk

= γ0(cρ − γkγ0Jk)

= γ0(cρ −σkJk)

= γ0(cρ − j)

(40.12)

With this Maxwell’s equation becomes

γ0∇F = γ0J/ϵ0c

(∂0 +∇)(E + icB) = ρ/ϵ0 − j/ϵ0c
(40.13)

A split into even and odd grades including current and charge density is thus

∇E + ∂t(iB) = ρ/ϵ0

∇(iB)c2 + ∂tE = −j/ϵ0
(40.14)
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Now, taking time derivatives of the energy density gives

∂U
∂t
=
∂

∂t
1
2
ϵ0

(
E2 − (icB)2

)
= ϵ0

(
E · ∂tE − c2(iB) · ∂t(iB)

)
= ϵ0

〈
E(−j/ϵ0 −∇(iB)c2) − c2(iB)(−∇E + ρ/ϵ0)

〉
= −E · j + c2ϵ0⟨iB∇E −E∇(iB)⟩

= −E · j + c2ϵ0 ((iB) · (∇∧E) −E · (∇ · (iB)))

(40.15)

Using eq. (40.30), we now have the rate of change of field energy for the general case including
currents. That is

∂U
∂t
= −E · j + c2ϵ0∇ · (E · (iB)) (40.16)

Written out in full, and in terms of the Poynting vector this is

∂

∂t
ϵ0

2

(
E2 + c2B2

)
+ c2ϵ0∇ · (E ×B) = −E · j (40.17)

40.4 poynting vector in terms of complete field

In eq. (40.10) the individual parts of the complete Faraday bivector F = E+ icB stand out. How
would the Poynting vector be expressed in terms of F or in tensor form?

One possibility is to write E×B in terms of F using a conjugate split of the Maxwell bivector

Fγ0 = −γ0(E − icB) (40.18)

we have

γ0Fγ0 = −(E − icB) (40.19)

and

icB =
1
2

(F + γ0Fγ0)

E =
1
2

(F − γ0Fγ0)
(40.20)

However [8] has the answer more directly in terms of the electrodynamic stress tensor.

T (a) = −
ϵ0

2
FaF (40.21)
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In particular for a = γ0, this is

T (γ0) = −
ϵ0

2
Fγ0F

=
ϵ0

2
(E + icB)(E − icB)γ0

=
ϵ0

2
(E2 + c2B2 + ic(BE −BE))γ0

=
ϵ0

2
(E2 + c2B2)γ0 + icϵ0(B∧E)γ0

=
ϵ0

2
(E2 + c2B2)γ0 + cϵ0(E ×B)γ0

(40.22)

So one sees that the energy and the Poynting vector are components of an energy density mo-
mentum four vector

T (γ0) = Uγ0 +
1
c

Pγ0 (40.23)

Writing U0 = U and Uk = Pk/c, this is T (γ0) = Uµγµ.
(inventing such a four vector is how Doran/Lasenby started, so this is not be too surprising).

This relativistic context helps justify the Poynting vector as a momentum like quantity, but is not
quite satisfactory. It would make sense to do some classical comparisons, perhaps of interacting
wave functions or something like that, to see how exactly this quantity is momentum like. Also
how exactly is this energy momentum tensor used, how does it transform, ...

40.5 energy density from lagrangian?

I did not get too far trying to calculate the electrodynamic Hamiltonian density for the general
case, so I tried it for a very simple special case, with just an electric field component in one
direction:

L =
1
2

(Ex)2

=
1
2

(F01)2

=
1
2

(∂0A1 − ∂1A0)2

(40.24)

[12] gives the Hamiltonian density as

π =
∂L

∂ṅ
H = ṅπ −L

(40.25)
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If I try calculating this I get

π =
∂

∂(∂0A1)

(
1
2

(∂0A1 − ∂1A0)2
)

= ∂0A1 − ∂1A0

= F01

(40.26)

So this gives a Hamiltonian of

H = ∂0A1F01 −
1
2

(∂0A1 − ∂1A0)F01

=
1
2

(∂0A1 + ∂1A0)F01

=
1
2

((∂0A1)2 − (∂1A0)2)

(40.27)

For a Lagrangian density of E2 − B2 we have an energy density of E2 + B2, so I had have
expected the Hamiltonian density here to stay equal to E2

x/2, but it does not look like that is
what I get (what I calculated is not at all familiar seeming).

If I have not made a mistake here, perhaps I am incorrect in assuming that the Hamiltonian
density of the electrodynamic Lagrangian should be the energy density?

40.6 appendix . messy details

For both the charge and the charge free case, we need a proof of

(iB) · (∇∧E) −E · (∇ · (iB)) = ∇ · (E · (iB)) (40.28)

This is relativity straightforward, albeit tedious, to do backwards.

∇ · ((iB) ·E) = ⟨∇((iB) ·E)⟩

=
1
2
⟨∇(iBE −EiB)⟩

=
1
2

〈
∇̇iḂE + ∇̇iBĖ − ∇̇ĖiB − ∇̇EiḂ

〉
=

1
2

〈
E∇(iB) − (iḂ)∇̇E + Ė∇̇iB − iB∇E

〉
=

1
2

(
E · (∇ · (iB)) − ((iḂ) · ∇̇) ·E + (Ė∧ ∇̇) · (iB) − (iB) · (∇∧E)

)
(40.29)

Grouping the two sets of repeated terms after reordering and the associated sign adjustments
we have

∇ · ((iB) ·E) = E · (∇ · (iB)) − (iB) · (∇∧E) (40.30)
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which is the desired identity (in negated form) that was to be proved.
There is likely some theorem that could be used to avoid some of this algebra.

40.7 references for followup study

Some of the content available in the article Energy Conservation looks like it will also be useful
to study (in particular it goes through some examples that convert this from a math treatment to
a physics story).

http://farside.ph.utexas.edu/teaching/em/lectures/node89.html




41T I M E R AT E O F C H A N G E O F T H E P OY N T I N G V E C T O R , A N D I T S
C O N S E RVAT I O N L AW

41.1 motivation

Derive the conservation laws for the time rate of change of the Poynting vector, which appears
to be a momentum density like quantity.

The Poynting conservation relationship has been derived previously. Additionally a starting
exploration 43 of the related four vector quantity has been related to a subset of the energy
momentum stress tensor. This was incomplete since the meaning of the Tk j terms of the tensor
were unknown and the expected Lorentz transform relationships had not been determined. The
aim here is to try to figure out this remainder.

41.2 calculation

Repeating again from 40, the electrodynamic energy density U and momentum flux density
vectors are related as follows

U =
ϵ0

2

(
E2 + c2B2

)
P =

1
µ0

E ×B =
1
µ0

(iB) ·E

0 =
∂U
∂t
+∇ · P +E · j

(41.1)

We want to now calculate the time rate of change of this Poynting (field momentum density)
vector.

∂P
∂t
=
∂

∂t

(
1
µ0

E ×B
)

=
∂

∂t

(
1
µ0

(iB) ·E
)

= ∂0

(
1
µ0

(icB) ·E
)

=
1
µ0

(∂0(icB) ·E + (icB) · ∂0E)

(41.2)
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We will want to express these time derivatives in terms of the current and spatial derivatives to
determine the conservation identity. To do this let us go back to Maxwell’s equation once more,
with a premultiplication by γ0 to provide us with an observer dependent spacetime split

γ0∇F = γ0J/ϵ0c

(∂0 +∇)(E + icB) = ρ/ϵ0 − j/ϵ0c
(41.3)

We want the grade one and grade two components for the time derivative terms. For grade one
we have

−j/ϵ0c = ⟨(∂0 +∇)(E + icB)⟩1
= ∂0E +∇ · (icB)

(41.4)

and for grade two

0 = ⟨(∂0 +∇)(E + icB)⟩2
= ∂0(icB) +∇∧E

(41.5)

Using these we can express the time derivatives for back substitution

∂0E = −j/ϵ0c −∇ · (icB)

∂0(icB) = −∇∧E
(41.6)

yielding

µ0
∂P
∂t
= ∂0(icB) ·E + (icB) · ∂0E

= −(∇∧E) ·E − (icB) · (j/ϵ0c +∇ · (icB))
(41.7)

Or

0 = ∂0((icB) ·E) + (∇∧E) ·E + (icB) · (∇ · (icB)) + (icB) · j/ϵ0c

= ⟨∂0(icBE) + (∇∧E)E + icB(∇ · (icB)) + icBj/ϵ0c⟩1
= ⟨∂0(icBE) + (∇∧E)E + (∇∧ (cB))cB + icBj/ϵ0c⟩1

0 = i∂0(cB∧E) + (∇∧E) ·E + (∇∧ (cB)) · (cB) + i(cB∧ j)/ϵ0c

(41.8)

This appears to be the conservation law that is expected for the change in vector field momentum
density.

∂t(E ×B) + (∇∧E) ·E + c2(∇∧B) ·B = (B × j)/ϵ0 (41.9)

In terms of the original Poynting vector this is

∂P
∂t
+

1
µ0

(∇∧E) ·E + c2 1
µ0

(∇∧B) ·B = c2(B × j) (41.10)

Now, there are a few things to pursue here.
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• How to or can we put this in four vector divergence form.

• Relate this to the wikipedia result which is very different looking.

• Find the relation to the stress energy tensor.

• Lorentz transformation relation to Poynting energy momentum conservation law.

41.2.1 Four vector form?

If P = Pmσm, then each of the Pm coordinates could be thought of as the zero coordinate of a
four vector. Can we get a four vector divergence out of eq. (41.9)?

Let us expand the wedge-dot term in coordinates.

((∇∧E) ·E) ·σm = ((σa ∧σb) ·σk) ·σm(∂aEb)Ek

= (δa
mδbk − δbmδ

a
k)(∂aEb)Ek

=
∑

k

(∂mEk − ∂kEm)Ek

= ∂m
E2

2
− (E ·∇)Em

(41.11)

So we have three equations, one for each m = {1, 2, 3}

∂Pm

∂t
+ c2 ∂U

∂xm −
1
µ0

((E ·∇)Em + c2(B ·∇)Bm) = c2(B × j)m (41.12)

Damn. This does not look anything like the four vector divergence that we had with the Poynting
conservation equation. In the second last line of the wedge dot expansion we do see that we only
have to sum over the k , m terms. Can that help simplify this?

41.2.2 Compare to wikipedia form

To compare eq. (41.10) with the wikipedia article , the first thing we have to do is eliminate the
wedge products.

This can be done in a couple different ways. One, is conversion to cross products

(∇∧ a) · a = ⟨(∇∧ a)a⟩1
= ⟨i(∇ × a)a⟩1
= ⟨i((∇ × a) · a) + i((∇ × a)∧ a)⟩1
= ⟨i((∇ × a)∧ a)⟩1
= i2((∇ × a) × a)

(41.13)

https://en.wikipedia.org/wiki/Electromagnetic_stress-energy_tensor#Conservation_laws
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So we have

(∇∧ a) · a = a × (∇ × a) (41.14)

so we can rewrite the Poynting time change eq. (41.10) as

∂P
∂t
+

1
µ0

(
E × (∇ ×E) + c2B × (∇ ×B)

)
= c2(B × j) (41.15)

However, the wikipedia article has ρE terms, which suggests that a ∇ · E based expansion has
been used. Take II.

Let us try expanding this wedge dot differently, and to track what is being operated on write
x as a variable vector, and a as a constant vector. Now expand

(∇∧ x) · a = −a · (∇∧ x)

= ∇(a · x) − (a ·∇)∧ x
(41.16)

What we really want is an expansion of (∇∧ x) · x. To get there consider

∇x2 = ∇̇ẋ · x + ∇̇x · ẋ
= 2∇̇x · ẋ

(41.17)

This has the same form as the first term above. We take the gradient and apply it to a dot product
where one of the vectors is kept constant, so we can write

∇x · ẋ =
1
2
∇x2 (41.18)

and finally

(∇∧ x) · x =
1
2
∇x2 − (x ·∇)x (41.19)

We can now reassemble the equations and write

(∇∧E) ·E + c2(∇∧B) ·B =
1
2
∇E2 − (E ·∇)E + c2

(
1
2
∇B2 − (B ·∇)B

)
=

1
ϵ0
∇U − (E ·∇)E − c2(B ·∇)B

(41.20)

Now, we have the time derivative of momentum and the spatial derivative of the energy grouped
together in a nice relativistic seeming pairing. For comparison let us also put the energy density
rate change equation with this to observe them together

∂U
∂t
+∇ · P = −j ·E

∂P
∂t
+ c2
∇U = −c2(j ×B) +

1
µ0

(
(E ·∇)E + c2(B ·∇)B

) (41.21)
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The second equation here is exactly what we worked out above by coordinate expansion when
looking for a four vector formulation of this equation. This however, appears much closer to the
desired result, which was not actually clear looking at the coordinate expansion.

These equations are not tidy enough seeming, so one can intuit that there is some more
natural way to express those misfit seeming (x · ∇)x terms. It would be logically tidier if we
could express those both in terms of charge and current densities. Now, it is too bad that it is
not true that

(E ·∇)E = E(∇ ·E) (41.22)

If that were the case then we would have on the right hand side

−c2(j ×B) +
1
µ

(
E(∇ ·E) + c2B(∇ ·B)

)
= −c2(j ×B) +

1
µ0

(Eρ + c2B(0))

= −c2(j ×B) +
1
µ0
ρE

(41.23)

This has a striking similarity to the Lorentz force law, and is also fairly close to the wikipedia
equation, with the exception that the j ×B and ρE terms have opposing signs.

Lets instead adding and subtracting this term so that the conservation equation remains cor-
rect

1
c2

∂P
∂t
+∇U − ϵ0

(
E(∇ ·E) + (E ·∇)E + c2B(∇ ·B) + c2(B ·∇)B

)
= −(j ×B) − ϵ0ρE

(41.24)

Now we are left with quantities of the following form.

x(∇ · x) + (x ·∇)x (41.25)

The sum of these for the electric and magnetic fields appears to be what the wiki article calls
∇ ·σ, although it appears there that σ is a scalar so this does not quite make sense.

It appears that we should therefore be looking to express these in terms of a gradient of the
squared fields? We have such E2 and B2 terms in the energy so it would make some logical
sense if this could be done.

The essence of the desired reduction is to see if we can find a scalar function σ(x) such that

∇σ(x) =
1
2
∇x2 − (x(∇ · x) + (x ·∇)x)) (41.26)

41.2.3 stress tensor

From [8] we expect that there is a relationship between the equations eq. (41.12), and FγkF.
Let us see if we can find exactly how these relate.

TODO: ...
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41.3 take ii

After going in circles and having a better idea now where I am going, time to restart and make
sure that errors are not compounding.

The starting point will be

∂P
∂t
=

1
µ0

(∂0(icB) ·E + (icB) · ∂0E)

∂0E = −j/ϵ0c −∇ · (icB)

∂0(icB) = −∇∧E

(41.27)

Assembling we have

∂P
∂t
+

1
µ0

((∇∧E) ·E + (icB) · (j/ϵ0c +∇ · (icB))) = 0 (41.28)

This is

∂P
∂t
+

1
µ0

((∇∧E) ·E + (icB) · (∇ · (icB))) = −c2(iB) · j. (41.29)

Now get rid of the pseudoscalars

(iB) · j = ⟨iBj⟩1
= i(B∧ j)
= i2(B × j)
= −(B × j)

(41.30)

and

(icB) · (∇ · (icB)) = c2⟨iB(∇ · (iB))⟩1
= c2⟨iB⟨∇iB⟩1⟩1
= c2⟨iBi(∇∧B)⟩1
= −c2⟨B(∇∧B)⟩1
= −c2B · (∇∧B)

(41.31)

So we have

∂P
∂t
−

1
µ0

(
E · (∇∧E) + c2B · (∇∧B)

)
= c2(B × j) (41.32)

Now we subtract (E(∇ ·E) + c2B(∇ ·B))/µ0 = Eρ/ϵ0µ0 from both sides yielding

∂P
∂t
−

1
µ0

(
E · (∇∧E) +E(∇ ·E) + c2B · (∇∧B) + c2B(∇ ·B)

)
= −c2(j ×B + ρE) (41.33)
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Regrouping slightly

0 =
1
c2

∂P
∂t
+ (j ×B + ρE)

− ϵ0
(
E · (∇∧E) +E(∇ ·E) + c2B · (∇∧B) + c2B(∇ ·B)

) (41.34)

Now, let us write the E gradient terms here explicitly in coordinates.

−E · (∇∧E) −E(∇ ·E) = −σk · (σm ∧σn)Ek∂mEn − Ekσk∂mEm

= −δm
k σnEk∂mEn + δknσ

mEk∂mEn − Ekσk∂mEm

= −σnEk∂kEn +σmEk∂mEk − Ekσk∂mEm

=
∑
k,m

σk
(
−Em∂mEk + Em∂kEm − Ek∂mEm

) (41.35)

We could do the B terms too, but they will have the same form. Now [27] contains a relativistic
treatment of the stress tensor that would take some notation study to digest, but the end result
appears to have the divergence result that is desired. It is a second rank tensor which probably
explains the ∇ ·σ notation in wikipedia.

For the x coordinate of the ∂P/∂t vector the book says we have a vector of the form

Tx =
1
2

(−E2
x + E2

y + E2
z )σ1 − ExEyσ2 − ExEzσ3 (41.36)

and it looks like the divergence of this should give us our desired mess. Let us try this, writing
k,m, n as distinct indices.

Tk =
1
2

(−(Ek)2 + (Em)2 + (En)2)σk − EkEmσm − EkEnσn (41.37)

∇ ·Tk =
1
2
∂k(−(Ek)2 + (Em)2 + (En)2) − ∂m(EkEm) − ∂n(EkEn)

= −Ek∂kEk + Em∂kEm + En∂kEn − Ek∂mEm − Em∂mEk − Ek∂nEn − En∂nEk

= −Ek∂kEk − Ek∂mEm − Ek∂nEn

− Em∂mEk + Em∂kEm

− En∂nEk + En∂kEn

(41.38)
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Does this match? Let us expand our k term above to see if it looks the same. That is∑
m

(−Em∂mEk + Em∂kEm − Ek∂mEm) = −Ek∂kEk + Ek∂kEk − Ek∂kEk

− Em∂mEk + Em∂kEm − Ek∂mEm

− En∂nEk + En∂kEn − Ek∂nEn

= −Ek∂kEk − Ek∂mEm − Ek∂nEn

− Em∂mEk + Em∂kEm

− En∂nEk + En∂kEn

(41.39)

Yeah! Finally have a form of the momentum conservation equation that is strictly in terms of
gradients and time partials. Summarizing the results, this is

1
c2

∂P
∂t
+ j ×B + ρE +

∑
k

σk∇ ·Tk = 0 (41.40)

Where∑
k

σk∇ ·Tk = −ϵ0
(
E · (∇∧E) +E(∇ ·E) + c2B · (∇∧B) + c2B(∇ ·B)

)
(41.41)

For Tk itself, with k , m , n we have

Tk = ϵ0

(
1
2

(−(Ek)2 + (Em)2 + (En)2)σk − EkEmσm − EkEnσn

)
+

1
µ0

(
1
2

(−(Bk)2 + (Bm)2 + (Bn)2)σk − BkBmσm − BkBnσn

) (41.42)
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42.1 motivation

The concept of energy in the electric and magnetic fields I am getting closer to understanding,
but there is a few ways that I would like to approach it.

I have now explored the Poynting vector energy conservation relationships in 40, and 43 ,
but had not understood fully where the energy expressions in the electro and magneto statics
cases came from separately. I also do not yet know where the FγkF terms of the stress tensor
fit in the big picture? I suspect that they can be obtained by Lorentz transforming the rest frame
expression Fγ0F (the energy density, Poynting momentum density four vector).

It also ought to be possible to relate the field energies to a Lagrangian and Hamiltonian, but
I have not had success doing so.

The last thing that I had like to understand is how the energy and momentum of a wave can be
expressed, both in terms of the abstract conjugate field momentum concept and with a concrete
example such as the one dimensional oscillating rod that can be treated in a limiting coupled
oscillator approach as in [12].

Once I have got all these down I think I will be ready to revisit Bohm’s Rayleigh-Jeans law
treatment in [3]. Unfortunately, each time I try perusing some interesting aspect of QM I find
that I end up back studying electrodynamics, and suspect that needs to be my focus for the
foreseeable future (perhaps working thoroughly through Feynman’s volume II).

42.2 electrostatic energy in a field

Feynman’s treatment in [10] of the energy ϵ0
2 E2 associated with the electrostatic E field is very

easy to understand. Here is a write up of this myself without looking at the book to see if I really
understood the ideas.

The first step is consideration of the force times distance for two charges gives you the energy
required (or gained) by moving one of those charges from infinity to some given separation

W =
1

4πϵ0

∫ r

∞

q1q2

x2 e1 · (−e1dx)

=
q1q2

4πϵ0r

(42.1)
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This provides a quantization for an energy in a field concept. A distribution of charge requires
energy to assemble and it is possible to enumerate that energy separately by considering all the
charges, or alternatively, by not looking at the final charge distribution, but only considering
the net field associated with this charge distribution. This is a pretty powerful, but somewhat
abstract seeming idea.

The generalization to continuous charge distribution from there was pretty straightforward,
requiring a double integration over all space

W =
1
2

∫
1

4πϵ0

ρ1dV1ρ2dV2

r12

=
1
2

∫
ρ1ϕ2dV1

(42.2)

The 1/2 factor was due to double counting all "pairs" of charge elements. The next step was to
rewrite the charge density by using Maxwell’s equations. In terms of the four vector potential
Maxwell’s equation (with the ∇ · A = 0 gauge) is

∇2A =
1
ϵ0c

(cργ0 + Jkγk) (42.3)

So, to write ρ in terms of potential A0 = ϕ, we have(
1
c2

∂2

(∂t)2 −∇
2
)
ϕ =

1
ϵ0
ρ (42.4)

In the statics case, where ∂ϕ
∂t = 0, we can thus write the charge density in terms of the potential

ρ = −ϵ0∇
2ϕ (42.5)

and substitute back into the energy summation

W =
1
2

∫
ρϕdV

=
−ϵ0

2

∫
ϕ∇2ϕdV

(42.6)

Now, Feynman’s last step was a bit sneaky, which was to convert the ϕ∇2ϕ term into a diver-
gence integral. Working backwards to derive the identity that he used

∇ · (ϕ∇ϕ) = ⟨∇(ϕ∇ϕ)⟩

= ⟨(∇ϕ)∇ϕ + ϕ∇(∇ϕ)⟩

= (∇ϕ)2 + ϕ∇2ϕ

(42.7)
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This can then be used with Stokes theorem in its dual form to convert our ϕ∇2ϕ the into plain
volume and surface integral

W =
ϵ0

2

∫ (
(∇ϕ)2 −∇ · (ϕ∇ϕ)

)
dV

=
ϵ0

2

∫
(∇ϕ)2dV −

ϵ0

2

∫
∂V

(ϕ∇ϕ) · n̂dA
(42.8)

Letting the surface go to infinity and employing a limiting argument on the magnitudes of the
ϕ and ∇ϕ terms was enough to produce the final electrostatics energy result

W =
ϵ0

2

∫
(∇ϕ)2dV

=
ϵ0

2

∫
E2dV

(42.9)

42.3 magnetostatic field energy

Feynman’s energy discussion of the magnetic field for a constant current loop (magnetostatics),
is not so easy to follow. He considers the dipole moment of a small loop, obtained by compari-
son to previous electrostatic results (that I had have to go back and read or re-derive) and some
subtle seeming arguments about the mechanical vs. total energy of the system.

42.3.1 Biot Savart

As an attempt to understand all this, let us break it up into pieces. First, is calculation of the field
for a current loop. Let us also use this as an opportunity to see how one would work directly
and express the Biot-Savart law in the STA formulation.

Going back to Maxwell’s equation (with the ∇ · A gauge again), we have

∇F = ∇(∇∧ A)

= ∇2Aµ

= Jµ/ϵ0c

(42.10)

For a static current configuration with J0 = cρ = 0, we have ∂Aµ/∂t = 0, and our vector
potential equations are

∇
2Ak = −Jk/ϵ0c (42.11)

Recall that the solution of Ak can be expressed as the impulse response of a function of the
following form

Ak = C
1
r

(42.12)
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and that∇ · (∇(1/r)) is zero for all r , 0. Performing a volume integral of the expected Laplacian
we can integrate over an infinitesimal spherical volume of radius R∫

∇
2AkdV = C

∫
∇ ·∇

1
r

dV

= C
∫
∇ ·

(
−r̂

1
r2

)
dV

= −C
∫
∂V

r̂
1
r2 · r̂dA

= −C
1

R2 4πR2

= −4πC

(42.13)

Equating we can solve for C

−4πC = −Jk/ϵ0c

C =
1

4πϵ0c
Jk (42.14)

Note that this is cheating slightly since C was kind of treated as a constant, whereas this equality
makes it a function. It works because the infinitesimal volume can be made small enough that
Jk can be treated as a constant. This therefore provides our potential function in terms of this
impulse response

Ak =
1

4πϵ0c

∫
Jk

r
dV (42.15)

Now, this could have all been done with a comparison to the electrostatic result. Regardless, it
now leaves us in the position to calculate the field bivector

F = ∇∧ A

= (γµ ∧ γk)∂µAk

= −(γm ∧ γk)∂mAk

(42.16)

So our field in terms of components is

F = (σm ∧σk)∂mAk (42.17)

Which in terms of spatial vector potential A = Akσk is also

F = ∇∧A (42.18)
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From eq. (42.17) we can calculate the field in terms of our potential directly

∂mAk =
1

4πϵ0c

∫
dV∂m

Jk

r

=
1

4πϵ0c

∫
dV

(
Jk∂m

1
r
+

1
r
∂mJk

)
=

1
4πϵ0c

∫
dV

Jk∂m

∑
j

((x j)2)−1/2

 + 1
r
∂mJk


=

1
4πϵ0c

∫
dV

(
Jk

(
−

1
2

)
2xm 1

r3 +
1
r
∂mJk

)
=

1
4πϵ0c

∫
1
r3 dV

(
−xmJk + r2∂mJk

)

(42.19)

So with j = Jkσk we have

F =
1

4πϵ0c

∫
1
r3 dV

(
−r∧ j + r2(∇∧ j)

)
=

1
4πϵ0c

∫
dV

(
j∧ r̂
r2 +

1
r

(∇∧ j)
) (42.20)

The first term here is essentially the Biot Savart law once the current density is converted to
current

∫
jdV = I

∫
ĵdl, so we expect the second term to be zero.

To calculate the current density divergence we first need the current density in vector form

j = −ϵ0c∇2A
= −ϵ0c⟨∇(∇A)⟩1
= −ϵ0c∇(∇ ·A) +∇ · (∇∧A)

(42.21)

Now, recall the gauge choice was

0 = ∇ · A

= ∂0A0 + ∂kAk

=
1
c
∂A0

∂t
+∇ ·A

(42.22)

So, provided we also have ∂A0/∂t = 0, we also have ∇ ·A = 0, which is true due to the assumed
static conditions, we are left with

j = −ϵ0c∇ · (∇∧A) (42.23)
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Now we can take the curl of j, also writing this magnetic field F in its dual form F = icB, we
see that the curl of our static current density vector is zero:

∇∧ j = ∇∧ (∇ · F)

= c∇∧ (∇ · (iB))

=
c
2
∇∧ (∇(iB) − iḂ∇̇)

= c∇∧ (i∇∧B)

= c∇∧ (i2∇ ×B)

= −ci∇ × (∇ ×B)

= 0

(42.24)

This leaves us with

F =
1

4πϵ0c

∫
j∧ r̂
r2 dV (42.25)

Which with the current density expressed in terms of current is the desired Biot-Savart law

F =
1

4πϵ0c

∫
Ids∧ r̂

r2 (42.26)

Much shorter derivations are possible than this one which was essentially done from first prin-
ciples. The one in [8], which also uses the STA formulation, is the shortest I have ever seen,
utilizing a vector Green’s function for the Laplacian. However, that requires understanding the
geometric calculus chapter of that book, which is a battle for a different day.

42.3.2 Magnetic field torque and energy

TODO: work out on paper and write up.
I created a PF thread, electric and magnetic field energy, to followup on these ideas, and now

have an idea how to proceed.

42.4 complete field energy

Can a integral of the Lorentz force coupled with Maxwell’s equations in their entirety produce
the energy expression ϵ0

2

(
E2 + c2B2

)
? It seems like cheating to add these arbitrarily and then

follow the Poynting derivation by taking derivatives. That shows this quantity is a conserved
quantity, but does it really show that it is the energy? One could imagine that there could be
other terms in a total energy expression such as E ·B.

https://www.physicsforums.com/threads/electric-and-magnetic-field-energy.291638/#post-2072561
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Looking in more detail at the right hand side of the energy/Poynting relationship is the key.
That is

∂

∂t
ϵ0

2

(
E2 + c2B2

)
+ c2ϵ0∇ · (E ×B) = −E · j (42.27)

Two questions to ask. The first is that if the left hand side is to be a conserved quantity then we
need the right hand side to be one too? Is that really the case? Second, how can this be related
to work done (a line integral of the Lorentz force).

The second question is easiest, and the result actually follows directly.

Work done moving a charge against the Lorentz force =
∫

F · (−dx)

=

∫
q(E + v ×B) · (−dx)

= −

∫
q(E + v ×B) · vdt

= −

∫
qE · vdt

= −

∫
E · jdtdV

(42.28)

From this we see that −E · j is the rate of change of power density in an infinitesimal volume!
Let us write

U =
ϵ0

2

(
E2 + c2B2

)
P =

1
µ0

(E ×B)
(42.29)

and now take eq. (42.27) and integrate over a (small) volume∫
V

∂U
∂t

dV +
∫
∂V

P · n̂dA = −
∫

V
(E · j)dV (42.30)

So, for a small time increment ∆t = t1 − t0, corresponding to the start and end times of the
particle at the boundaries of the work line integral, we have

Work done on particle against field =
∫ t1

t0

∫
V

∂U
∂t

dVdt +
∫ t1

t0

∫
∂V

P · n̂dAdt

=

∫
V

(U(t1) −U(t0))dV +
∫ t1

t0

∫
∂V

P · n̂dAdt

=

∫
V

∆UdV +
∫ t1

t0

∫
∂V

P · n̂dAdt

(42.31)
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Roughly speaking, it appears that the energy provided to move a charge against the field is
absorbed into the field in one of two parts, one of which is what gets identified as the energy of
the field

∫
UdV . The other part is the time integral of the flux through the surface of the volume

of this Poynting vector P.

42.4.1 Dimensional analysis

That is a funny looking term though? Where would we see momentum integrated over time in
classical mechanics?∫

mvdt = mx (42.32)

Let us look at the dimensions of all the terms in the conservation equation. We have identified
the j ·E term with energy density, and should see this

[jE] = [(qv/x3)(F/q)]

= [(x/(x3t))(mx/t2)]

= [m(x2/t2)/(x3t)]

=
Energy

Volume × Time

(42.33)

Good. That is what should have been the case.
Now, for the U term we must then have

[U] =
Energy
Volume

(42.34)

Okay, that is good too, since we were calling U energy density. Now for the Poynting term we
have

[∇ · P] = [1/x][P] (42.35)

So we have

[P] = [1/x][P]

=
Energy × velocity

Volume

(42.36)

For uniform dimensions of all the terms this suggests that it is perhaps more natural to work
with velocity scaled quantity, with

[P]
Velocity

=
Energy
Volume

(42.37)
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Rewriting the conservation equation scaling by a velocity, for which the obvious generic veloc-
ity choice is naturally c, we have

1
c
∂

∂t
U +∇ ·

P
c
= −

j
c
·E (42.38)

Written this way we have 1/ct with dimensions of inverse distance matching the divergence,
and the dimensions of U, and P/c are both energy density. Now it makes a bit more sense to
say that the work done moving the charge against the field supplies energy to the field in some
fashion between these two terms.

42.4.2 A note on the scalar part of the covariant Lorentz force

The covariant formulation of the Lorentz force equation, when wedged with γ0 has been seen
to recover the traditional Lorentz force equation (with a required modification to use relativistic
momentum), but there was a scalar term that was unaccounted for.

Recall that the covariant Lorentz force, with derivatives all in terms of proper time, was

mṗ = qF · (v/c)

=
q
2c

(Fv − vF)

=
q
2c

((E + icB)γ0(ẋ0 − ẋkσk) − γ0(ẋ0 − ẋkσk)(E + icB))

(42.39)

In terms of time derivatives, where factors of γ can be canceled on each side, we have

m
dp
dt
=

q
2
γ0((−E + icB)(1 − v/c) − (1 − v/c)(E + icB)) (42.40)

After some reduction this is

m
dp
dt
= q(−E · v/c + (E + v ×B))γ0 (42.41)

Or, with an explicit spacetime split for all components

mc
dγ
dt
= −qE · v/c

m
dγv
dt
= q(E + v ×B))

(42.42)

We have got the spatial vector Lorentz force in the second term, and now have an idea what
this −j ·E term is in the energy momentum vector. It is not a random thing, but an intrinsic part
(previously ignored) of the covariant Lorentz force.
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Now recall that when the time variation of the Poynting was studied in 41 we had what
looked like the Lorentz force components in all the right hand side terms. Let us reiterate that
here, putting all the bits together

1
c
∂

∂t
U +∇ ·

P
c
= −

j
c
·E

1
c2

∂P
∂t
+

∑
k

σk∇ ·Tk = −(j ×B + ρE)
(42.43)

We have four scalar equations, where each one contains exactly one of the four vector compo-
nents of the Lorentz force. This makes the stress energy tensor seem a lot less random. Now the
interesting thing about this is that each of these equations required nothing more than a bunch
of algebra applied to the Maxwell equation. Doing so required no use of the Lorentz force, but
it shows up magically as an intrinsic quantity associated with the Maxwell equation. Before
this I thought that one really needed both Maxwell’s equation and the Lorentz force equation
(or their corresponding Lagrangians), but looking at this result the Lorentz force seems to more
of a property of the field than a fundamental quantity in its own right (although some means to
relate this stress energy tensor to force is required).
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43.1 expanding out the stress energy vector in tensor form

[8] defines (with ϵ0 omitted), the energy momentum stress tensor as a vector to vector mapping
of the following form:

T (a) =
ϵ0

2
FaF̃ = −

ϵ0

2
FaF (43.1)

This quantity can only have vector, trivector, and five vector grades.Â The grade five term must
be zero

⟨T (a)⟩5 =
ϵ0

2
F ∧ a∧ F̃

=
ϵ0

2
a∧ (F ∧ F̃)

= 0

(43.2)

Since (T (a))̃ = T (a), the grade three term is also zero (trivectors invert on reversion), so this
must therefore be a vector.

As a vector this can be expanded in coordinates

T (a) = (T (a) · γν) γν
= (T (aµγµ) · γν) γν
= aµγν (T (γµ) · γν)

(43.3)

It is this last bit that has the form of a traditional tensor, so we can write

T (a) = aµγνTµν

Tµν = T (γµ) · γν
(43.4)

Let us expand this tensor Tµν explicitly to verify its form.
We want to expand, and dot with γν, the following

−2
1
ϵ0

(T (γµ) · γν) γν =
〈
(∇∧ A)γµ(∇∧ A)

〉
1

=
〈
(∇∧ A) · γµ(∇∧ A) + (∇∧ A)∧ γµ(∇∧ A)

〉
1

= ((∇∧ A) · γµ) · (∇∧ A) + ((∇∧ A)∧ γµ) · (∇∧ A)

(43.5)
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Both of these will get temporarily messy, so let us do them in parts.Â Starting with

(∇∧ A) · γµ = (γα ∧ γβ) · γµ∂αAβ
= (γαδβµ − γβδαµ)∂αAβ
= γα∂αAµ − γβ∂µAβ
= γα(∂αAµ − ∂µAα)

= γαFαµ

(43.6)

((∇∧ A) · γµ) · (∇∧ A) = (γαFαµ) · (γβ ∧ γλ)∂βAλ

= ∂βAλFαµ(δαβγλ − δαλγβ)

= (∂αAβFαµ − ∂
βAαFαµ)γβ

= FαβFαµγβ

(43.7)

So, by dotting with γν we have

((∇∧ A) · γµ) · (∇∧ A) · γν = FανFαµ (43.8)

Moving on to the next bit, (((∇∧ A)∧ γµ) · (∇∧ A)) · γν. By inspection the first part of this is

(∇∧ A)∧ γµ = (γµ)2(γα ∧ γβ)∧ γµ∂αAβ (43.9)

so dotting with ∇∧ A, we have

((∇∧ A)∧ γµ) · (∇∧ A) = (γµ)2∂αAβ∂λAδ(γα ∧ γβ ∧ γµ) · (γλ ∧ γδ)

= (γµ)2∂αAβ∂λAδ((γα ∧ γβ ∧ γµ) · γλ) · γδ
(43.10)

Expanding just the dot product parts of this we have

(((γα ∧ γβ)∧ γµ) · γλ) · γδ
= (γα ∧ γβ)δµλ − (γα ∧ γµ)δβλ + (γβ ∧ γµ)δαλ) · γδ
= γα(δβδδµλ − δµδδβλ) + γβ(δµδδαλ − δαδδµλ) + γµ(δαδδβλ − δβδδαλ)

(43.11)

This can now be applied to ∂λAδ

∂λAδ(((γα ∧ γβ)∧ γµ) · γλ) · γδ
= ∂µAβγα − ∂βAµγα + ∂αAµγβ − ∂µAαγβ + ∂βAαγµ − ∂αAβγµ

= (∂µAβ − ∂βAµ)γα + (∂αAµ − ∂µAα)γβ + (∂βAα − ∂αAβ)γµ

= Fµβγα + Fαµγβ + Fβαγµ

(43.12)
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This is getting closer, and we can now write

((∇∧ A)∧ γµ) · (∇∧ A) = (γµ)2∂αAβ(Fµβγα + Fαµγβ + Fβαγµ)

= (γµ)2∂βAαFµαγβ + (γµ)2∂αAβFαµγβ + (γµ)2∂αAβFβαγµ

= FβαFµαγβ + ∂αAβFβαγµ

(43.13)

This can now be dotted with γν,

((∇∧ A)∧ γµ) · (∇∧ A) · γν = FβαFµαδβ
ν + ∂αAβFβαδµ

ν (43.14)

which is

((∇∧ A)∧ γµ) · (∇∧ A) · γν = FναFµα +
1
2

FαβFβαδµ
ν (43.15)

The final combination of results eq. (43.8), and eq. (43.15) gives

(FγµF) · γν = 2FανFαµ +
1
2

FαβFβαδµ
ν (43.16)

Yielding the tensor

Tµν = ϵ0

(
1
4

FαβFαβδµ
ν − FαµFαν

)
(43.17)

43.2 validate against previously calculated poynting result

In 40, the electrodynamic energy density U and momentum flux density vectors were related as
follows

U =
ϵ0

2

(
E2 + c2B2

)
P = ϵ0c2E ×B = ϵ0c(icB) ·E

0 =
∂

∂t
ϵ0

2

(
E2 + c2B2

)
+ c2ϵ0∇ · (E ×B) +E · j

(43.18)

Additionally the energy and momentum flux densities are components of this stress tensor four
vector

T (γ0) = Uγ0 +
1
c

Pγ0 (43.19)

From this we can read the first row of the tensor elements

T0
0 = U =

ϵ0

2

(
E2 + c2B2

)
T0

k =
1
c

(Pγ0) · γk = ϵ0cEaBbϵkab

(43.20)
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Let us compare these to eq. (43.17), which gives

T0
0 = ϵ0

(
1
4

FαβFαβ − Fα0Fα0
)

=
ϵ0

4

(
Fα jFα j − 3F j0F j0

)
=
ϵ0

4

(
Fm jFm j + F0 jF0 j − 3F j0F j0

)
=
ϵ0

4

(
Fm jFm j − 2F j0F j0

)
T0

k = −ϵ0Fα0Fαk

= −ϵ0F j0F jk

(43.21)

Now, our field in terms of electric and magnetic coordinates is

F = E + icB
= Ekγkγ0 + icBkγkγ0

= Ekγkγ0 − cϵabkBkγaγb

(43.22)

so the electric field tensor components are

F j0 = (F · γ0) · γ j

= Ekδk
j

= E j

(43.23)

and
F j0 = (γ j)2(γ0)2F j0

= −E j (43.24)

and the magnetic tensor components are

Fm j = Fm j

= −cϵabkBk((γaγb) · γ j) · γm

= −cϵm jkBk

(43.25)

This gives

T0
0 =

ϵ0

4

(
2c2BkBk + 2E jE j

)
=
ϵ0

2

(
c2B2 +E2

)
T0

k = ϵ0E jF jk

= ϵ0cϵke f EeB f

= ϵ0(cE ×B)k

=
1
c

(P ·σk)

(43.26)



43.3 four vector form of energy momentum conservation relationship 275

Okay, good. This checks 4 of the elements of eq. (43.17) against the explicit E and B based
representation of T (γ0) in eq. (43.18), leaving only 6 unique elements in the remaining parts of
the (symmetric) tensor to verify.

43.3 four vector form of energy momentum conservation relationship

One can observe that there is a spacetime divergence hiding there directly in the energy conser-
vation equation of eq. (43.18). In particular, writing the last of those as

0 = ∂0
ϵ0

2

(
E2 + c2B2

)
+∇ · P/c +E · j/c (43.27)

We can then write the energy-momentum parts as a four vector divergence

∇ ·

(
ϵ0γ0

2

(
E2 + c2B2

)
+

1
c

Pkγk

)
= −E · j/c (43.28)

Since we have a divergence relationship, it should also be possible to convert a spacetime hyper-
volume integration of this quantity into a time-surface integral or a pure volume integral. Pursing
this will probably clarify how the tensor is related to the hypersurface flux as mentioned in the
text here, but making this concrete will take a bit more thought.

Having seen that we have a divergence relationship for the energy momentum tensor in the
rest frame, it is clear that the Poynting energy momentum flux relationship should follow much
more directly if we play it backwards in a relativistic setting.

This is a very sneaky way to do it since we have to have seen the answer to get there, but it
should avoid the complexity of trying to factor out the spacial gradients and recover the diver-
gence relationship that provides the Poynting vector. Our sneaky starting point is to compute

∇ · (Fγ0F̃) =
〈
∇(Fγ0F̃)

〉
=

〈
(∇F)γ0F̃ + ∇̇Fγ0

˙̃F
〉

=
〈
(∇F)γ0F̃ + ˙̃F∇̇Fγ0

〉 (43.29)

Since this is a scalar quantity, it is equal to its own reverse and we can reverse all factors in this
second term to convert the left acting gradient to a more regular right acting form. This is

∇ · (Fγ0F̃) =
〈
(∇F)γ0F̃ + γ0F̃(∇F)

〉
(43.30)
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Now using Maxwell’s equation ∇F = J/ϵ0c, we have

∇ · (Fγ0F̃) =
1
ϵ0c

〈
Jγ0F̃ + γ0F̃J

〉
=

2
ϵ0c

〈
Jγ0F̃

〉
=

2
ϵ0c

(J ∧ γ0) · F̃

(43.31)

Now, J = γ0cρ+ γkJk, so J ∧ γ0 = Jkγkγ0 = Jkσk = j, and dotting this with F̃ = −E− icB will
pick up only the (negated) electric field components, so we have

(J ∧ γ0) · F̃ = j · (−E) (43.32)

Although done in 40, for completeness let us re-expand Fγ0F̃ in terms of the electric and mag-
netic field vectors.

Fγ0F̃ = −(E + icB)γ0(E + icB)

= γ0(E − icB)(E + icB)

= γ0(E2 + c2B2 + ic(EB −BE))

= γ0(E2 + c2B2 + 2ic(E∧B))

= γ0(E2 + c2B2 − 2c(E ×B))

(43.33)

Next, we want an explicit spacetime split of the gradient

∇γ0 = (γ0∂0 + γ
k∂k)γ0

= ∂0 − γkγ0∂k

= ∂0 −σk∂k

= ∂0 −∇

(43.34)

We are now in shape to assemble all the intermediate results for the left hand side

∇ · (Fγ0F̃) =
〈
∇(Fγ0F̃)

〉
=

〈
(∂0 −∇)(E2 + c2B2 − 2c(E ×B))

〉
= ∂0(E2 + c2B2) + 2c∇ · (E ×B)

(43.35)

With a final reassembly of the left and right hand sides of ∇ · T (γ0), the spacetime divergence
of the rest frame stress vector we have

1
c
∂t(E2 + c2B2) + 2c∇ · (E ×B) = −

2
cϵ0

j ·E (43.36)



43.4 validate with relativistic transformation 277

Multiplying through by ϵ0c/2 we have the classical Poynting vector energy conservation rela-
tionship.

∂

∂t
ϵ0

2
(E2 + c2B2) +∇ ·

1
µ0

(E ×B) = −j ·E (43.37)

Observe that the momentum flux density, the Poynting vector P = (E × B)/µ0, is zero in the
rest frame, which makes sense since there is no magnetic field for a static charge distribution.
So with no currents and therefore no magnetic fields the field energy is a constant.

43.3.1 Transformation properties

Equation (43.37) is the explicit spacetime expansion of the equivalent relativistic equation

∇ · (cT (γ0)) = ∇ ·
(cϵ0

2
Fγ0F̃

)
=

〈
Jγ0F̃

〉
(43.38)

This has all the same content, but in relativistic form seems almost trivial. While the stress
vector T (γ0) is not itself a relativistic invariant, this divergence equation is.

Suppose we form a Lorentz transformation L(x) = RxR̃, applied to this equation we have

F′ = (R∇R̃)∧ (RAR̃)

=
〈
R∇R̃RAR̃

〉
2

=
〈
R∇AR̃

〉
2

= R(∇∧ A)R̃

= RFR̃

(43.39)

Transforming all the objects in the equation we have

∇′ ·

(cϵ0

2
F′γ′0F̃′

)
=

〈
J′γ′0F̃′

〉
(R∇R̃) ·

(cϵ0

2
RFR̃Rγ0RR̃(RFR̃)̃

)
=

〈
RJR̃Rγ0R̃(RFR̃)̃

〉 (43.40)

This is nothing more than the original untransformed quantity

∇ ·

(cϵ0

2
Fγ0F̃

)
=

〈
Jγ0F̃

〉
(43.41)

43.4 validate with relativistic transformation

As a relativistic quantity we should be able to verify the messy tensor relationship by Lorentz
transforming the energy density from a rest frame to a moving frame.

Now let us try the Lorentz transformation of the energy density.
FIXME: TODO.
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T E N S O R

44.1 motivation

Have now made a few excursions related to the concepts of electrodynamic field energy and
momentum.

In 40 the energy density rate and Poynting divergence relationship was demonstrated using
Maxwell’s equation. That was:

∂

∂t
ϵ0

2

(
E2 + c2B2

)
+∇ ·

1
µ0

(E ×B) = −E · j (44.1)

In terms of the field energy density U, and Poynting vector P, this is

U =
ϵ0

2

(
E2 + c2B2

)
P =

1
µ0

(E ×B)

∂U
∂t
+∇ · P = −E · j

(44.2)

In 43 this was related to the energy momentum four vectors

T (a) =
ϵ0

2
FaF̃ (44.3)

as defined in [8], but the big picture view of things was missing.
Later in 41 the rate of change of Poynting vector was calculated, with an additional attempt

to relate this to T (γµ).
These relationships, and the operations required to factoring out the divergence were consid-

erably messier.
Finally, in 42 the four vector T (γµ) was related to the Lorentz force and the work done

moving a charge against a field. This provides the natural context for the energy momentum
tensor, since it appears that the spacetime divergence of each of the T (γµ) four vectors appears
to be a component of the four vector Lorentz force (density).

In these notes the divergences will be calculated to confirm the connection between the
Lorentz force and energy momentum tensor directly. This is actually expected to be simpler
than the previous calculations.
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It is also potentially of interest, as shown in 65, and 66 that the energy density and Poynting
vectors, and energy momentum four vector, were seen to be naturally expressible as Hermitian
conjugate operations

F† = γ0F̃γ0 (44.4)

T (γ0) =
ϵ0

2
FF†γ0 (44.5)

U = T (γ0) · γ0 =
ϵ0

4

(
FF† + F†F

)
P/c = T (γ0)∧ γ0 =

ϵ0

4

(
FF† − F†F

) (44.6)

It is conceivable that a generalization of Hermitian conjugation, where the spatial basis vectors
are used instead of γ0, will provide a mapping and driving structure from the Four vector quan-
tities and the somewhat scrambled seeming set of relationships observed in the split spatial and
time domain. That will also be explored here.

44.2 spacetime divergence of the energy momentum four vectors

The spacetime divergence of the field energy momentum four vector T (γ0) has been calculated
previously. Let us redo this calculation for the other components.

∇ · T (γµ) =
ϵ0

2

〈
∇(FγµF̃)

〉
=
ϵ0

2

〈
(∇F)γµF̃ + (F̃∇)Fγµ

〉
=
ϵ0

2

〈
(∇F)γµF̃ + γµF̃(∇F)

〉
= ϵ0

〈
(∇F)γµF̃

〉
=

1
c

〈
JγµF̃

〉
(44.7)

The ability to perform cyclic reordering of terms in a scalar product has been used above. Ap-
plication of one more reverse operation (which does not change a scalar), gives us

∇ · T (γµ) =
1
c

〈
FγµJ

〉
(44.8)

Let us expand the right hand size first.

1
c

〈
FγµJ

〉
=

1
c

〈
(E + icB)γµ(cργ0 + jγ0)

〉
(44.9)
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The µ = 0 term looks the easiest, and for that one we have

1
c
⟨(E + icB)(cρ − j)⟩ = −j ·E (44.10)

Now, for the other terms, say µ = k, we have

1
c
⟨(E + icB)(cρσk −σkj)⟩ = Ekρ − ⟨iBσkj⟩

= Ekρ − JaBb⟨σ1σ2σ3σbσkσa⟩

= Ekρ − JaBbϵakb

= Ekρ + JaBbϵkab

= (ρE + j ×B) ·σk

(44.11)

Summarizing the two results we have

1
c
⟨Fγ0J⟩ = −j ·E

1
c
⟨FγkJ⟩ = (ρE + j ×B) ·σk

(44.12)

The second of these is easily recognizable as components of the Lorentz force for an element of
charge (density). The first of these is actually the energy component of the four vector Lorentz
force, so expanding that in terms of spacetime quantities is the next order of business.

44.3 four vector lorentz force

The Lorentz force in covariant form is

mẍ = qF · ẋ/c (44.13)

Two verifications of this are in order. One is that we get the traditional vector form of the Lorentz
force equation from this and the other is that we can get the traditional tensor form from this
equation.

44.3.1 Lorentz force in tensor form

Recovering the tensor form is probably the easier of the two operations. We have

mẍµγµ =
q
2

Fαβ ẋσ(γα ∧ γβ) · γσ

=
q
2

Fαβ ẋσ(γαδβσ − γβδασ)

=
q
2

Fαβ ẋβγα −
q
2

Fαβ ẋαγβ

(44.14)
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Dotting with γµ the right hand side is

q
2

Fµβ ẋβ −
q
2

Fαµ ẋα = qFµα ẋα (44.15)

Which recovers the tensor form of the equation

mẍµ = qFµα ẋα (44.16)

44.3.2 Lorentz force components in vector form

mγ
d
dt
γ

(
c +σk

dxk

dt

)
γ0 =

q
2c

(Fv − vF)

=
qγ
2c

(E + icB)
(
c +σk

dxk

dt

)
γ0

−
qγ
2c

(
c +σk

dxk

dt

)
γ0(E + icB)

(44.17)

Right multiplication by γ0/γ we have

m
d
dt
γ (c + v) =

q
2c

((E + icB) (c + v) − (c + v) (−E + icB))

=
q
2c

(+2Ec +Ev + vE + ic(Bv − vB))
(44.18)

After a last bit of reduction this is

m
d
dt
γ (c + v) = q(E + v ×B) + qE · v/c (44.19)

In terms of four vector momentum this is

ṗ = q(E · v/c +E + v ×B)γ0 (44.20)

44.3.3 Relation to the energy momentum tensor

It appears that to relate the energy momentum tensor to the Lorentz force we have to work with
the upper index quantities rather than the lower index stress tensor vectors. Doing so our four
vector force per unit volume is

∂ṗ
∂V
= (j ·E + ρE + j ×B)γ0

= −
1
c
〈
FγµJ

〉
γµ

= −(∇ · T (γµ))γµ

(44.21)
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The term ⟨FγµJ⟩γµ appears to be expressed simply has F · J in [8]. Understanding that simple
statement is now possible now that an exploration of some of the underlying ideas has been
made. In retrospect having seen the bivector product form of the Lorentz force equation, it
should have been clear, but some of the associated trickiness in their treatment obscured this
fact ( Although their treatment is only two pages, I still only understand half of what they are
doing!)

44.4 expansion of the energy momentum tensor

While all the components of the divergence of the energy momentum tensor have been expanded
explicitly, this has not been done here for the tensor itself. A mechanical expansion of the
tensor in terms of field tensor components Fµν has been done previously and is not particularly
enlightening. Let us work it out here in terms of electric and magnetic field components. In
particular for the T 0µ and T µ0 components of the tensor in terms of energy density and the
Poynting vector.

44.4.1 In terms of electric and magnetic field components

Here we want to expand

T (γµ) =
−ϵ0

2
(E + icB)γµ(E + icB) (44.22)

It will be convenient here to temporarily work with ϵ0 = c = 1, and put them back in afterward.

44.4.1.1 First row

First expanding T (γ0) we have

T (γ0) =
1
2

(E + iB)(E − iB)γ0

=
1
2

(E2 +B2 + i(BE −EB))γ0

=
1
2

(E2 +B2)γ0 + i(B∧E)γ0

(44.23)

Using the wedge product dual a ∧ b = i(a × b), and putting back in the units, we have our first
stress energy four vector,

T (γ0) =
(
ϵ0

2

(
E2 + c2B2

)
+

1
µ0c

(E ×B)
)
γ0 (44.24)
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In particular the energy density and the components of the Poynting vector can be picked off by
dotting with each of the γµ vectors. That is

U = T (γ0) · γ0

P/c ·σk = T (γ0) · γk (44.25)

44.4.1.2 First column

We have Poynting vector terms in the T 0k elements of the matrix. Let us quickly verify that we
have them in the T k0 positions too.

To do so, again with c = ϵ0 = 1 temporarily this is a computation of

T (γk) · γ0 =
1
2

(T (γk)γ0 + γ0T (γk))

=
−1
4

(FγkFγ0 + γ0FγkF)

=
1
4

(Fσkγ0Fγ0 − γ0Fγ0σkF)

=
1
4

(Fσk(−E + iB) − (−E + iB)σkF)

=
1
4
⟨σk(−E + iB)(E + iB) −σk(E + iB)(−E + iB)⟩

=
1
4

〈
σk(−E2 −B2 + 2(E ×B)) −σk(−E2 −B2 − 2(E ×B))

〉

(44.26)

Adding back in the units we have

T (γk) · γ0 = ϵ0c(E ×B) ·σk =
1
c

P ·σk (44.27)

As expected, these are the components of the Poynting vector (scaled by 1/c for units of energy
density).

44.4.1.3 Diagonal and remaining terms

T (γa) · γb =
1
2

(T (γa)γb + γbT (γa))

=
−1
4

(FγaFγb + γaFγbF)

=
1
4

(Fσaγ0Fγb − γaFγ0σbF)

=
1
4

(Fσa(−E + iB)σb +σa(−E + iB)σbF)

=
1
2
⟨σa(−E + iB)σb(E + iB)⟩

(44.28)
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From this point is there any particularly good or clever way to do the remaining reduction?
Doing it with coordinates looks like it would be easy, but also messy. A decomposition of E and
B that are parallel and perpendicular to the spatial basis vectors also looks feasible.

Let us try the dumb way first

T (γa) · γb =
1
2

〈
σa(−Ekσk + iBkσk)σb(Emσm + iBmσm)

〉
=

1
2

(BkEm − EkBm)⟨iσaσkσbσm⟩ −
1
2

(EkEm + BkBm)⟨σaσkσbσm⟩

(44.29)

Reducing the scalar operations is going to be much different for the a = b, and a , b cases. For
the diagonal case we have

T (γa) · γa =
1
2

(BkEm − EkBm)⟨iσaσkσaσm⟩ −
1
2

(EkEm + BkBm)⟨σaσkσaσm⟩

= −
1
2

∑
m,k,a

1
2

(BkEm − EkBm)⟨iσkσm⟩ +
1
2

∑
m,k,a

(EkEm + BkBm)⟨σkσm⟩

+
1
2

∑
m

(BaEm − EaBm)⟨iσaσm⟩ −
1
2

∑
m

(EaEm + BaBm)⟨σaσm⟩

(44.30)

Inserting the units again we have

T (γa) · γa =
ϵ0

2

∑
k,a

(
(Ek)2 + c2(Bk)2

)
−

(
(Ea)2 + c2(Ba)2

) (44.31)

Or, adding and subtracting, we have the diagonal in terms of energy density (minus a fudge)

T (γa) · γa = U − ϵ0
(
(Ea)2 + c2(Ba)2

)
(44.32)

Now, for the off diagonal terms. For a , b this is

T (γa) · γb =
1
2

∑
m

(BaEm − EaBm)⟨iσbσm⟩ +
1
2

∑
m

(BbEm − EbBm)⟨iσaσm⟩

−
1
2

∑
m

(EaEm + BaBm)⟨σbσm⟩ −
1
2

∑
m

(EbEm + BbBm)⟨σaσm⟩

+
1
2

∑
m,k,a,b

(BkEm − EkBm)⟨iσaσkσbσm⟩ −
1
2

∑
m,k,a,b

(EkEm + BkBm)⟨σaσkσbσm⟩

(44.33)

The first two scalar filters that include i will be zero, and we have deltas ⟨σbσm⟩ = δbm in the
next two. The remaining two terms have only vector and bivector terms, so we have zero scalar
parts. That leaves (restoring units)

T (γa) · γb = −
ϵ0

2

(
EaEb + EbEa + c2(BaBb + BbBa)

)
(44.34)
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44.4.2 Summarizing

Collecting all the results, with T µν = T (γµ) · γν, we have

T 00 =
ϵ0

2

(
E2 + c2B2

)
T aa =

ϵ0

2

(
E2 + c2B2

)
− ϵ0

(
(Ea)2 + c2(Ba)2

)
T k0 = T 0k =

1
c

(
1
µ0

(E ×B)
)
·σk

T ab = T ba = −
ϵ0

2

(
EaEb + EbEa + c2(BaBb + BbBa)

)
(44.35)

44.4.3 Assembling a four vector

Let us see what one of the T aµγµ rows of the tensor looks like in four vector form. Let f , g , h
represent an even permutation of the integers 1, 2, 3. Then we have

T f = T fµγµ

=
ϵ0

2
c(EgBh − EhBg)γ0

+
ϵ0

2

(
−(E f )2 + (Eg)2 + (Eh)2 + c2(−(B f )2 + (Bg)2 + (Bh)2)

)
γ f

−
ϵ0

2

(
E f Eg + EgE f + c2(B f Bg + BgB f )

)
γg

−
ϵ0

2

(
E f Eh + EhE f + c2(B f Bh + BhB f )

)
γh

(44.36)

It is pretty amazing that the divergence of this produces the f component of the Lorentz force
(density)

∂µT fµ = (ρE + j ×B) ·σ f (44.37)

Demonstrating this directly without having STA as an available tool would be quite tedious, and
looking at this expression inspires no particular attempt to try!

44.5 conjugation?

44.5.1 Followup: energy momentum tensor

This also suggests a relativistic generalization of conjugation, since the time basis vector should
perhaps not have a distinguishing role. Something like this:

F†µ = γµF̃γµ (44.38)
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Or perhaps:

F†µ = γµF̃γµ (44.39)

may make sense for consideration of the other components of the general energy momentum
tensor, which had roughly the form:

T µν ∝ T (γµ) · γν (44.40)

(with some probable adjustments to index positions). Think this through later.
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45.1 motivation

In 44 the energy momentum tensor was related to the Lorentz force in STA form. Work the
same calculation strictly in tensor form, to develop more comfort with tensor manipulation.
This should also serve as a translation aid to compare signs due to metric tensor differences in
other reading.

45.1.1 Definitions

The energy momentum “tensor”, really a four vector, is defined in [8] as

T (a) =
ϵ0

2
FaF̃ = −

ϵ0

2
FaF (45.1)

We have seen that the divergence of the T (γµ) vectors generate the Lorentz force relations.
Let us expand this with respect to index lower basis vectors for use in the divergence calcula-

tion.

T (γµ) = (T (γµ) · γν) γν (45.2)

So we define

T µν = T (γµ) · γν (45.3)

and can write these four vectors in tensor form as

T (γµ) = T µνγν (45.4)

45.1.2 Expanding out the tensor

An expansion of T µν was done in 43, but looking back that seems a peculiar way, using the four
vector potential.

Let us try again in terms of Fµν instead. Our field is

F =
1
2

Fµνγµ ∧ γν (45.5)
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So our tensor components are

T µν = T (γµ) · γν

= −
ϵ0

8
FλσFαβ

〈
(γλ ∧ γσ)γµ(γα ∧ γβ)γν

〉 (45.6)

Or

−8
1
ϵ0

T µν = FλσFαβ
〈
(γλδσµ − γσδλµ)(γαδβν − γβδαν)

〉
+ FλσFαβ

〈
(γλ ∧ γσ ∧ γµ)(γα ∧ γβ ∧ γν)

〉 (45.7)

Expanding only the first term to start with

FλσFαβ(γλδσµ) · (γαδβν) + FλσFαβ(γσδλµ) · (γβδαν)

− FλσFαβ(γλδσµ) · (γβδαν) − FλσFαβ(γσδλµ) · (γαδβν)

= FλµFανγλ · γα + FµσFνβγσ · γβ − FλµFνβγλ · γβ − FµσFανγσ · γα

= ηαβ(FλµFανγλ · γ
β + FµσFναγσ · γ

β − FλµFναγλ · γ
β − FµσFανγσ · γ

β)

= ηαλFλµFαν + ηασFµσFνα − ηαλFλµFνα − ηασFµσFαν

= 2(ηαλFλµFαν + ηασFµσFνα)

= 2(ηαβFβµFαν + ηαβFµβFνα)

= 4ηαβFβµFαν

= 4FβµFβ
ν

= 4FαµFα
ν

(45.8)

For the second term after a shuffle of indices we have

FλσFαβη
µµ′

〈
(γλ ∧ γσ ∧ γµ)(γα ∧ γβ ∧ γν)

〉
(45.9)

This dot product is reducible with the identity

(a∧ b∧ c) · (d ∧ e∧ f ) = (((a∧ b∧ c) · d) · e) · f (45.10)

leaving a completely antisymmetized sum

FλσFαβη
µµ′(δλνδσβδµ′α − δλνδσαδµ′β − δλβδσνδµ′α + δλαδσνδµ′β + δλβδσαδµ′ν − δλαδσβδµ′ν)

= FνβFµ′βη
µµ′ − FναFαµ′η

µµ′ − FβνFµ′βη
µµ′ + FανFαµ′η

µµ′ + FβαFαβη
µµ′δµ′

ν − FαβFαβη
µµ′δµ′

ν

= 4FναFµ′αη
µµ′ + 2FβαFαβη

µµ′δµ′
ν

= 4FναFµ
α + 2FβαFαβη

µν

(45.11)
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Combining these we have

T µν = −
ϵ0

8

(
4FαµFα

ν + 4FναFµ
α + 2FβαFαβη

µν
)

=
ϵ0

8

(
−4FαµFα

ν + 4FαµFν
α + 2FαβFαβη

µν
) (45.12)

If by some miracle all the index manipulation worked out, we have

T µν = ϵ0

(
FαµFν

α +
1
4

FαβFαβη
µν

)
(45.13)

45.1.2.1 Justifying some of the steps

For justification of some of the index manipulations of the F tensor components it is helpful to
think back to the definitions in terms of four vector potentials

F = ∇∧ A

= ∂µAνγµ ∧ γν
= ∂µAνγµ ∧ γν

= ∂µAνγµ ∧ γν
= ∂µAνγµ ∧ γν

=
1
2

(∂µAν − ∂νAµ)γµ ∧ γν

=
1
2

(∂µAν − ∂νAµ)γµ ∧ γν

=
1
2

(∂µAν − ∂νAµ)γµ ∧ γν

=
1
2

(∂µAν − ∂νAµ)γµ ∧ γν

(45.14)

So with the shorthand

Fµν = ∂µAν − ∂νAµ

Fµν = ∂µAν − ∂νAµ
Fµ

ν = ∂µAν − ∂νAµ
Fµ

ν = ∂
µAν − ∂νAµ

(45.15)
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We have

F =
1
2

Fµνγµ ∧ γν

=
1
2

Fµνγ
µ ∧ γν

=
1
2

Fµ
νγµ ∧ γν

=
1
2

Fµ
νγµ ∧ γ

ν

(45.16)

In particular, and perhaps not obvious without the definitions handy, the following was used
above

Fµ
ν = −Fν

µ (45.17)

45.1.3 The divergence

What is our divergence in tensor form? This would be

∇ · T (γµ) = (γα∂α) · (T µνγν) (45.18)

So we have

∇ · T (γµ) = ∂νT µν (45.19)

Ignoring the ϵ0 factor for now, chain rule gives us

(∂νFαµ)Fν
α + Fαµ(∂νFν

α) +
1
2

(∂νFαβ)Fαβη
µν

= (∂νFαµ)Fν
α + Fα

µ(∂νFνα) +
1
2

(∂νFαβ)Fαβη
µν

(45.20)

Only this center term is recognizable in terms of current since we have

∇ · F = J/ϵ0c (45.21)

Where the LHS is

∇ · F = γα∂α ·
(
1
2

Fµνγµ ∧ γν

)
=

1
2
∂αFµν(δαµγν − δανγµ)

= ∂µFµνγν

(45.22)
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So we have

∂µFµν = (J · γν)/ϵ0c

= ((Jαγα) · γν)/ϵ0c

= Jν/ϵ0c

(45.23)

Or

∂µFµν = Jν/ϵ0c (45.24)

So we have

∇ · T (γµ) = ϵ0

(
(∂νFαµ)Fν

α +
1
2

(∂νFαβ)Fαβη
µν

)
+ Fα

µJα/c (45.25)

So, to get the expected result the remaining two derivative terms must somehow cancel. How to
reduce these? Let us look at twice that

2(∂νFαµ)Fν
α + (∂νFαβ)Fαβη

µν

= 2(∂νFαµ)Fνα + (∂µFαβ)Fαβ

= (∂νFαµ)(Fνα − Fαν) + (∂µFαβ)Fαβ

= (∂αFβµ)Fαβ + (∂βFµα)Fαβ + (∂µFαβ)Fαβ

= (∂αFβµ + ∂βFµα + ∂µFαβ)Fαβ

(45.26)

Ah, there is the trivector term of Maxwell’s equation hiding in there.

0 = ∇∧ F

= γµ∂
µ ∧

(
1
2

Fαβ(γα ∧ γβ)
)

=
1
2

(∂µFαβ)(γµ ∧ γα ∧ γβ)

=
1
3!

(
∂µFαβ + ∂αFβµ + ∂βFµα

)
(γµ ∧ γα ∧ γβ)

(45.27)

Since this is zero, each component of this trivector must separately equal zero, and we have

∂µFαβ + ∂αFβµ + ∂βFµα = 0 (45.28)

So, where T µν is defined by eq. (45.13), the final result is

∂νT µν = FαµJα/c (45.29)
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46.1 motivation

Despite a lot of recent study of electrodynamics, faced with a simple electrical problem:
“What capacity generator would be required for an arc welder on a 30 Amp breaker using a

220 volt circuit”.
I could not think of how to answer this off the top of my head. Back in school without

hesitation I would have been able to plug into P = IV to get a capacity estimation for the
generator.

Having forgotten the formula, let us see how we get that P = IV relationship from Maxwell’s
equations.

46.2

Having just derived the Poynting energy momentum density relationship from Maxwell’s equa-
tions, let that be the starting point

d
dt

(
ϵ0

2

(
E2 + c2B2

))
= −

1
µ0

(E ×B) −E · j (46.1)

The left hand side is the energy density time variation, which is power per unit volume, so we
can integrate this over a volume to determine the power associated with a change in the field.

P = −
∫

dV
(

1
µ0

(E ×B) +E · j
)

(46.2)

As a reminder, let us write the magnetic and electric fields in terms of potentials.
In terms of the “native” four potential our field is

F = E + icB
= ∇∧ A

= γ0γk∂0Ak + γ jγ0∂ jA0 + γm ∧ γn∂mAn

(46.3)

The electric field is

E =
∑

k

(∇∧ A) · (γ0γk)γkγ0 (46.4)
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From this, with ϕ = A0, and A = σkAk we have

E = −
1
c
∂A
∂t
−∇ϕ

iB = ∇∧A
(46.5)

Now, the arc welder is (I think) a DC device, and to get a rough idea of what it requires lets just
assume that its a rectifier that outputs RMS DC. So if we make this simplification, and assume
that we have a purely resistive load (ie: no inductance and therefore no magnetic fields) and a
DC supply and constant current, then we eliminate the vector potential terms.

This wipes out the B and the Poynting vector, and leaves our electric field specified in terms
of the potential difference across the load E = −∇ϕ. That is

P =
∫

dV(∇ϕ) · j (46.6)

Suppose we are integrating over the length of a uniformly resistive load with some fixed cross
sectional area. jdV is then the magnitude of the current directed along the wire for its length.
This basically leaves us with a line integral over the length of the wire that we are measuring
our potential drop over so we are left with just

P = (δϕ)I (46.7)

This δϕ is just our voltage drop V , and this gives us the desired P = IV equation. Now, I
also recall from school now that I think about it that P = IV also applied to inductive loads,
but it required that I and V be phasors that represented the sinusoidal currents and sources. A
good followup exercise would be to show from Maxwell’s equations that this is in fact valid.
Eventually I will know the origin of all the formulas from my old engineering courses.
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47.1 motivation

Fill in the gaps for a reading of the initial parts of the Rayleigh-Jeans discussion of [3].

47.2 2. electromagnetic energy

Energy of the field given to be:

E =
1

8π

∫
(E2 +H2) (47.1)

I still do not really know where this comes from. Could perhaps justify this with a Hamiltonian
of a field (although this is uncomfortably abstract).

With the particle Hamiltonian we have

H = q̇i pi −L (47.2)

What is the field equivalent of this? Try to get the feel for this with some simple fields (such
as the one dimensional vibrating string), and the Coulomb field. For the physical case, do this
with both the Hamiltonian approach and a physical limiting argument.

47.3 3. electromagnetic potentials

Bohm writes Maxwell’s equations in non-SI units, and also, naturally, not in STA form which
would be somewhat more natural for a gauge discussion.

∇ × E = −
1
c
∂tH

∇ · E = 4πρ

∇ ×H =
1
c
∂tE + 4πj

∇ ·H = 0

(47.3)

In STA form this is

∇E = −∂0iH + 4πρ

∇iH = −∂0E − 4πj
(47.4)
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Or

∇(E + iH) + ∂0(E + iH) = 4π(ρ − j) (47.5)

Left multiplying by γ0 gives

γ0∇ = γ0

∑
k

σk∂k

= γ0

∑
k

γkγ0∂k

= −
∑

k

γk∂k

= γk∂k

(47.6)

and

γ0j =
∑

k

γ0σk jk

= −
∑

k

γk jk,
(47.7)

so with J0 = ρ, Jk = jk and J = γµJµ, we have

γµ∂µ(E + iH) = 4πJ (47.8)

and finally with F = E + iH, we have Maxwell’s equation in covariant form

∇F = 4πJ. (47.9)

Next it is stated that general solutions can be expressed as

H = ∇ × a

E = −
1
c
∂a
∂t
−∇ϕ

(47.10)

Let us double check that this jives with the bivector potential solution F = ∇∧ A = E + iH. Let
us split our bivector into spacetime and spatial components by the conjugate operation

F∗ = γ0Fγ0

= γ0γ
µ ∧ γν∂µAµγ0

=


0 if µ = ν

γµγν∂µAν if µ ∈ {1, 2, 3}, and ν ∈ {1, 2, 3}

−γµγν∂µAν one of µ = 0 or ν = 0

(47.11)
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F = E + iH

=
1
2

(F − F∗) +
1
2

(F + F∗)

=
(
γk ∧ γ0∂kA0 + γ

0 ∧ γk∂0Ak
)
+

(
γa ∧ γb∂aAb

)
= −

∑
k

σk∂kA0 + ∂0σkAk

 + i (ϵabcσa∂bAc)

(47.12)

So, with a = σkAk, and ϕ = A0, we do have equations eq. (47.10) as identical to F = ∇∧ A.
Now how about the gauge variations of the fields? Bohm writes that we can alter the potentials

by

a′ = a −∇ψ

ϕ′ = ϕ +
1
c
∂ψ

∂t

(47.13)

How does this translate to an alteration of the four potential? For the vector potential we have

σkAk′ = σkAk −σk∂ψ

γkγ0Ak′ = γkγ0Ak − γkγ0∂kψ

−γ0γkAk′ = −γ0γkAk − γ0γ
k∂kψ

γkAk′ = γkAk + γk∂kψ

(47.14)

with ϕ = A0, add in the ϕ term

γ0ϕ
′ = γ0ϕ + γ0

∂ψ

∂x0

γ0ϕ
′ = γ0ϕ + γ

0 ∂ψ

∂x0

(47.15)

For

γµAµ′ = γµAµ + γµ∂µψ (47.16)

Which is just a statement that we can add a spacetime gradient to our vector potential without
altering the field equation:

A′ = A +∇ψ (47.17)

Let us verify that this does in fact not alter Maxwell’s equation.

∇(∇∧ (A +∇ψ) = 4πJ∇(∇∧ A) +∇(∇∧∇ψ) = (47.18)
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Since ∇∧∇ = 0 we have

∇(∇∧ A′) = ∇(∇∧ A) (47.19)

Now the statement that ∇ ∧ ∇ as an operator equals zero, just by virtue of ∇ being a vector is
worth explicit confirmation. Let us expand that to verify

∇∧∇ψ = γµ ∧ γν∂µ∂νψ

=

∑
µ<ν

+
∑
ν<µ

 γµ ∧ γν∂µ∂νψ
=

∑
µ<ν

γµ ∧ γν(∂µ∂νψ − ∂ν∂µψ)

(47.20)

So, we see that we additionally need the field variable ψ to be sufficiently continuous for mixed
partial equality for the statement that ∇ ∧ ∇ = 0 to be valid. Assuming that continuity is taken
as a given the confirmation of the invariance under this transformation is thus complete.

Now, Bohm says it is possible to pick ∇ · a′ = 0. From eq. (47.13) that implies

∇ · a′ = ∇ · a −∇ ·∇ψ
= ∇ · a −∇2ψ = 0

(47.21)

So, provided we can find a solution to the Poisson equation

∇
2ψ = ∇ · a (47.22)

one can find a ψ, a gauge transformation that has the particular quality that ∇ · a′ = 0.
That solution, from eq. (47.53) is

ψ(r) = −
1

4π

∫
(∇′ · a(r′))dV ′

1
|r − r′|

(47.23)

The corollary to this is that one may similarly impose a requirement that ∇ · a = 0, since if that
is not the case, some a′ can be added to the vector potential to make that the case.

FIXME: handwaving description here. Show with a math statement with a→ a′.

47.3.1 Free space solutions

From eq. (47.5) and eq. (47.10) the free space solution to Maxwell’s equation must satisfy

0 = (∇ + ∂0) (E + iH)

= (∇ + ∂0) (−∂0a −∇ϕ +∇∧ a)
= −∇∂0a −∇2ϕ +∇(∇∧ a) − ∂00a − ∂0∇ϕ + ∂0(∇∧ a)

= −∇ · ∂0a −∇2ϕ +∇ · (∇∧ a) − ∂00a − ∂0∇ϕ

(47.24)
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Since the scalar and vector parts of this equation must separately equal zero we have

0 = −∂0∇ · a −∇2ϕ

0 = ∇ · (∇∧ a) − ∂00a − ∂0∇ϕ
(47.25)

If one picks a gauge transformation such that ∇ · a = 0 we then have

0 = ∇2ϕ

0 = ∇2a − ∂00a − ∂0∇ϕ
(47.26)

For the first Bohm argues that “It is well known that the only solution of this equation that is
regular over all space is ϕ = 0”, and anything else implies charge in the region. What does
regular mean here? I suppose this seems like a reasonable enough statement, but I think the
proper way to think about this is really that one has picked the covariant gauge ∇ · A = 0 (that is
simpler anyhow). With an acceptance of the ϕ = 0 argument one is left with the vector potential
wave equation which was the desired goal of that section.

Note: The following physicsforums thread discusses some of the confusion I had in this bit
of text.

47.3.2 Doing this all directly

Now, the whole point of the gauge transformation appears to be to show that one can find
the four wave equation solutions for Maxwell’s equation by picking a specific gauge. This is
actually trivial to do from the STA Maxwell equation:

∇(∇∧ A) = ∇(∇A −∇ · A) = ∇2A −∇(∇ · A) = 4πJ (47.27)

So, if one picks a gauge transformation with ∇ · A = 0, one has

∇2A = 4πJ (47.28)

This is precisely the four wave equations desired

∂ν∂
νAµ = 4πJµ (47.29)

FIXME: show the precise gauge transformation A→ A′ that leads to ∇ · A = 0.

47.4 energy density. get the units right with these cgs equations

We will want to calculate the equivalent of

U =
ϵ0

2
(E2 + c2B2) (47.30)

https://www.physicsforums.com/threads/electrodynamic-vector-potential-wave-equations-in-free-space.281874/
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but are faced with the alternate units of Bohm’s text. Let us repeat the derivation of the electric
field energy from 42 in the CGS units directly from Maxwell’s equation

F = E + iH

J = (ρ + j)γ0

∇F = 4πJ

(47.31)

to ensure we get it right.
To start with we our spacetime split of eq. (47.31) is

(∂0 +∇)(E +H) = 4π(ρ − j) (47.32)

The scalar part gives us Coulomb’s law

∇ · E = 4πρ (47.33)

Gauss’s theorem applied to a spherical constant density charge distribution gives us∫
∇ · EdV = 4π

∫
ρdV

=⇒∫
E · n̂dA = 4πQ

=⇒

|E|4πr2 = 4πQ

(47.34)

so we have the expected “unitless” Coulomb law force equation

F = qE =
qQ
r2 r̂ (47.35)

So far so good. Next introduction of a potential. For statics we do not care about the four vectors
and stick with the old fashion definition of the potential ϕ indirectly in terms of E. That is

E = −∇ϕ (47.36)

A line integral of this gives us ϕ in terms of E

−

∫
E · r =

∫
∇ϕ · dr

= ϕ − ϕ0

(47.37)
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With ϕ(∞) = 0 this is

ϕ(d) = −
∫ d

r=∞
E · dr

= −

∫ d

r=∞

Q
r2 r̂ · dr

= −

∫ d

r=∞

Q
r2 dr

=
Q
d

(47.38)

Okay. Now onto the electrostatic energy. The work done to move one charge from infinite to
some separation d of another like sign charge is∫ d

r=∞
F · dr =

∫ d

r=∞

qQ
r2 r̂ · (−dr)

= −

∫ d

r=∞

qQ
r2 dr

=
qQ
d

= q1ϕ2(d)

(47.39)

For a distribution of discrete charges we have to sum over all pairs

W =
∑
i, j

qiq j

di j

=
∑
i, j

1
2

qiq j

di j

(47.40)

In a similar fashion we can do a continuous variation, employing a double summation over all
space. Note first that we can also write one of the charge densities in terms of the potential

E = −∇ϕ

=⇒

∇ · E = −∇ ·∇ϕ

= −∇2ϕ

= 4πρ

(47.41)
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W =
1
2

∫
ρϕ(r)dV

= −
1

8π

∫
ϕ∇2ϕdV

=
1

8π

∫
((∇ϕ)2 −∇ · (ϕ∇ϕ))dV

=
1

8π

∫
(−E)2 −

1
8π

∫
(ϕ∇ϕ) · n̂dA

(47.42)

Here the one and two subscripts could be dropped with a switch to the total charge density and
the potential from this complete charge superposition. For our final result we have an energy
density of

dW
dV
=

1
8π

E2 (47.43)

47.5 auxiliary details

47.5.1 Confirm Poisson solution to Laplacian

Bohm lists the solution for eq. (47.22) (a Poisson integral), but I forget how one shows this. I
can not figure out how to integrate this Laplacian, but it is simple enough to confirm this by
back substitution.

Suppose one has

ψ =

∫
ρ(r′)
|r − r′|

dV ′ (47.44)

We can take the Laplacian by direct differentiation under the integration sign

∇
2ψ =

∫
ρ(r′)dV ′∇2 1

|r − r′|
(47.45)

To evaluate the Laplacian we need

∂|r − r′|k

∂xi
=

∂

∂xi

∑
j

(x j − x′j)
2


k/2

= k2
∣∣∣r − r′

∣∣∣k−2 ∂

∂xi

∑
j

(x j − x′j)
2


= k

∣∣∣r − r′
∣∣∣k−2(xi − x′i)

(47.46)
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So we have

∂

∂xi

∂

∂xi

∣∣∣r − r′
∣∣∣−1
= −(xi − x′i)

∂

∂xi

1

|r − r′|3
−

1

|r − r′|3
∂(xi − x′i)

∂xi

= 3(xi − x′i)
2 1

|r − r′|5
−

1

|r − r′|3

(47.47)

So, provided r , r′ we have

∇
2ψ = 3(r − r′)2 1

|r − r′|5
− 3

1

|r − r′|3

= 0
(47.48)

Observe that this is true only for R3. Now, one is left with only an integral around a neighbor-
hood around the point r which can be made small enough that ρ(r′) = ρ(r) in that volume can
be taken as constant.

∇
2ψ = ρ(r)

∫
dV ′∇2 1

|r − r′|

= ρ(r)
∫

dV ′∇ ·∇
1

|r − r′|

= −ρ(r)
∫

dV ′∇ ·
(r − r′)
|r − r′|3

(47.49)

Now, if the divergence in this integral was with respect to the primed variable that ranges over
the infinitesimal volume, then this could be converted to a surface integral. Observe that a
radial expansion of this divergence allows for convenient change of variables to the primed x′i
coordinates

∇ ·
(r − r′)
|r − r′|3

=

(
r − r′

|r − r′|
∂

∂|r − r′|

)
·

(
r − r′

|r − r′|
1

|r − r′|2

)
=

∂

∂|r′ − r|
∣∣∣r′ − r

∣∣∣−2

=

(
r′ − r
|r′ − r|

∂

∂|r′ − r|

)
·

(
r′ − r
|r′ − r|

1

|r′ − r|2

)
= ∇′ ·

(r′ − r)

|r′ − r|3

(47.50)

Now, since r′ − r is in the direction of the outwards normal the divergence theorem can be used

∇
2ψ = −ρ(r)

∫
dV ′∇′ ·

(r′ − r)

|r′ − r|3

= −ρ(r)
∫
∂V′

dA′
1

|r′ − r|2

(47.51)
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Picking a spherical integration volume, for which the radius is constant R = |r′ − r|, we have

∇
2ψ = −ρ(r)4πR2 1

R2
(47.52)

In summary this is

ψ =

∫
ρ(r′)
|r − r′|

dV ′

∇
2ψ = −4πρ(r)

(47.53)

Having written this out I recall that the same approach was used in [27] (there it was to calculate
∇ ·E in terms of the charge density, but the ideas are all the same.)



48E N E R G Y A N D M O M E N T U M F O R C O M P L E X E L E C T R I C A N D
M AG N E T I C F I E L D P H A S O R S

48.1 motivation

In [16] a complex phasor representations of the electric and magnetic fields is used

E = Ee−iωt

B = Be−iωt.
(48.1)

Here the vectors E and B are allowed to take on complex values. Jackson uses the real part of
these complex vectors as the true fields, so one is really interested in just these quantities

Re E = Er cos(ωt) + Ei sin(ωt)

Re B = Br cos(ωt) +Bi sin(ωt),
(48.2)

but carry the whole thing in manipulations to make things simpler. It is stated that the energy
for such complex vector fields takes the form (ignoring constant scaling factors and units)

Energy ∝ E ·E∗ +B ·B∗. (48.3)

In some ways this is an obvious generalization. Less obvious is how this and the Poynting vector
are related in their corresponding conservation relationships.

Here I explore this, employing a Geometric Algebra representation of the energy momentum
tensor based on the real field representation found in [8]. Given the complex valued fields and
a requirement that both the real and imaginary parts of the field satisfy Maxwell’s equation,
it should be possible to derive the conservation relationship between the energy density and
Poynting vector from first principles.

48.2 review of ga formalism for real fields

In SI units the Geometric algebra form of Maxwell’s equation is

∇F = J/ϵ0c, (48.4)
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where one has for the symbols

F = E + cIB
I = γ0γ1γ2γ3

E = Ekγkγ0

B = Bkγkγ0

(γ0)2 = −(γk)2 = 1

γµ · γν = δ
µ
ν

J = cργ0 + Jkγk

∇ = γµ∂µ = γ
µ∂/∂xµ.

(48.5)

The symmetric electrodynamic energy momentum tensor for real fields E and B is

T (a) =
−ϵ0

2
FaF =

ϵ0

2
FaF̃. (48.6)

It may not be obvious that this is in fact a four vector, but this can be seen since it can only have
grade one and three components, and also equals its reverse implying that the grade three terms
are all zero. To illustrate this explicitly consider the components of T µ0

2
ϵ0

T
(
γ0

)
= − (E + cIB) γ0 (E + cIB)

= (E + cIB) (E − cIB) γ0

=
(
E2 + c2B2 + cI (BE −EB)

)
γ0

=
(
E2 + c2B2

)
γ0 + 2cI (B∧E) γ0

=
(
E2 + c2B2

)
γ0 + 2c (E ×B) γ0

(48.7)

Our result is a four vector in the Dirac basis as expected

T
(
γ0

)
= T µ0γµ

T 00 =
ϵ0

2

(
E2 + c2B2

)
T k0 = cϵ0 (E ×B)k

(48.8)

Similar expansions are possible for the general tensor components T µν but lets defer this more
general expansion until considering complex valued fields. The main point here is to remind
oneself how to express the energy momentum tensor in a fashion that is natural in a GA context.
We also know that one has a conservation relationship associated with the divergence of this
tensor ∇ · T (a) (ie. ∂µT µν), and want to rederive this relationship after guessing what form the
GA expression for the energy momentum tensor takes when one allows the field vectors to take
complex values.
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48.3 computing the conservation relationship for complex field vectors

As in eq. (48.3), if one wants

T 00 ∝ E ·E∗ + c2B ·B∗, (48.9)

it is reasonable to assume that our energy momentum tensor will take the form

T (a) =
ϵ0

4
(F∗aF̃ + F̃aF∗) =

ϵ0

2
Re (F∗aF̃) (48.10)

For real vector fields this reduces to the previous results and should produce the desired mix of
real and imaginary dot products for the energy density term of the tensor. This is also a real four
vector even when the field is complex, so the energy density and power density terms will all
be real valued, which seems desirable.

48.3.1 Expanding the tensor. Easy parts

As with real fields expansion of T (a) in terms of E and B is simplest for a = γ0. Let us start
with that.

4
ϵ0

T (γ0)γ0 = −(E∗ + cIB∗)γ0(E + cIB)γ0 − (E + cIB)γ0(E∗ + cIB∗)γ0

= (E∗ + cIB∗)(E − cIB) + (E + cIB)(E∗ − cIB∗)
= E∗E +EE∗ + c2(B∗B +BB∗) + cI(B∗E −E∗B +BE∗ −EB∗)
= 2E ·E∗ + 2c2B ·B∗ + 2c(E ×B∗ +E∗ ×B).

(48.11)

This gives

T (γ0) =
ϵ0

2

(
E ·E∗ + c2B ·B∗

)
γ0 +

ϵ0c
2

(E ×B∗ +E∗ ×B)γ0 (48.12)

The sum of F∗aF and its conjugate has produced the desired energy density expression. An
implication of this is that one can form and take real parts of a complex Poynting vector S ∝
E × B∗ to calculate the momentum density. This is stated but not demonstrated in Jackson,
perhaps considered too obvious or messy to derive.

Observe that the a choice to work with complex valued vector fields gives a nice consistency,
and one has the same factor of 1/2 in both the energy and momentum terms. While the energy
term is obviously real, the momentum terms can be written in an explicitly real notation as
well since one has a quantity plus its conjugate. Using a more conventional four vector notation
(omitting the explicit Dirac basis vectors), one can write this out as a strictly real quantity.

T (γ0) = ϵ0

(
1
2

(
E ·E∗ + c2B ·B∗

)
, c Re(E ×B∗)

)
(48.13)

Observe that when the vector fields are restricted to real quantities, the conjugate and real part
operators can be dropped and the real vector field result ?? is recovered.
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48.3.2 Expanding the tensor. Messier parts

I intended here to compute T (γk), and my starting point was a decomposition of the field vectors
into components that anticommute or commute with γk

E = E∥ +E⊥
B = B∥ +B⊥.

(48.14)

The components parallel to the spatial vector σk = γkγ0 are anticommuting γkE∥ = −E∥γk,
whereas the perpendicular components commute γkE⊥ = E⊥γk. The expansion of the tensor
products is then

(F∗γkF̃ + F̃γkF∗)γk = −(E∗ + IcB∗)γk(E∥ +E⊥ + cI(B∥ +B⊥))γk

− (E + IcB)γk(E∥∗ +E⊥∗ + cI(B∥∗ +B⊥∗))γk

= (E∗ + IcB∗)(E∥ −E⊥ + cI(−B∥ +B⊥))

+ (E + IcB)(E∥∗ −E⊥∗ + cI(−B∥∗ +B⊥∗))

(48.15)

This is not particularly pretty to expand out. I did attempt it, but my result looked wrong. For
the application I have in mind I do not actually need anything more than T µ0, so rather than
show something wrong, I will just omit it (at least for now).

48.3.3 Calculating the divergence

Working with eq. (48.10), let us calculate the divergence and see what one finds for the corre-
sponding conservation relationship.

4
ϵ0
∇ · T (a) =

〈
∇(F∗aF̃ + F̃aF∗)

〉
= −

〈
F
↔

∇ F∗a + F∗
↔

∇ Fa
〉

= −

〈
F
↔

∇ F∗ + F∗
↔

∇ F
〉

1
· a

= −

〈
F
→

∇ F∗ + F
←

∇ F∗ + F∗
←

∇ F + F∗
→

∇ F
〉

1
· a

= −
1
ϵ0c

〈
FJ∗ − JF∗ − J∗F + F∗J

〉
1 · a

=
2
ϵ0c

a · (J · F∗ + J∗ · F)

=
4
ϵ0c

a ·Re(J · F∗).

(48.16)
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We have then for the divergence

∇ · T (a) = a ·
1
c

Re (J · F∗) . (48.17)

Lets write out J · F∗ in the (stationary) observer frame where J = (cρ + J)γ0. This is

J · F∗ =
〈
(cρ + J)γ0(E∗ + IcB∗)

〉
1

= −(J ·E∗)γ0 − c (ρE∗ + J ×B∗) γ0
(48.18)

Writing out the four divergence relationships in full one has

∇ · T (γ0) = −
1
c

Re(J ·E∗)

∇ · T (γk) = −Re
(
ρ(Ek)

∗
+ (J ×B∗)k

) (48.19)

Just as in the real field case one has a nice relativistic split into energy density and force (mo-
mentum change) components, but one has to take real parts and conjugate half the terms appro-
priately when one has complex fields.

Combining the divergence relation for T (γ0) with eq. (48.13) the conservation relation for
this subset of the energy momentum tensor becomes

1
c
∂

∂t
ϵ0

2
(E ·E∗ + c2B ·B∗) + cϵ0 Re∇ · (E ×B∗) = −

1
c

Re(J ·E∗) (48.20)

Or

∂

∂t
ϵ0

2
(E ·E∗ + c2B ·B∗) +Re∇ ·

1
µ0

(E ×B∗) +Re(J ·E∗) = 0 (48.21)

It is this last term that puts some meaning behind Jackson’s treatment since we now know how
the energy and momentum are related as a four vector quantity in this complex formalism.

While I have used geometric algebra to get to this final result, I would be interested to com-
pare how the intermediate mess compares with the same complex field vector result obtained
via traditional vector techniques. I am sure I could try this myself, but am not interested enough
to attempt it.

Instead, now that this result is obtained, proceeding on to application is now possible. My
intention is to try the vacuum electromagnetic energy density example from [3] using complex
exponential Fourier series instead of the doubled sum of sines and cosines that Bohm used.
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49.1 motivation

From 48 how to formulate the energy momentum tensor for complex vector fields (ie. phasors)
in the Geometric Algebra formalism is now understood. To recap, for the field F = E + IcB,
where E and B may be complex vectors we have for Maxwell’s equation

∇F = J/ϵ0c. (49.1)

This is a doubly complex representation, with the four vector pseudoscalar I = γ0γ1γ2γ3 act-
ing as a non-commutatitive imaginary, as well as real and imaginary parts for the electric and
magnetic field vectors. We take the real part (not the scalar part) of any bivector solution F
of Maxwell’s equation as the actual solution, but allow ourself the freedom to work with the
complex phasor representation when convenient. In these phasor vectors, the imaginary i, as in
E = Re(E) + i Im(E), is a commuting imaginary, commuting with all the multivector elements
in the algebra.

The real valued, four vector, energy momentum tensor T (a) was found to be

T (a) =
ϵ0

4
(F∗aF̃ + F̃aF∗) = −

ϵ0

2
Re(F∗aF). (49.2)

To supply some context that gives meaning to this tensor the associated conservation relation-
ship was found to be

∇ · T (a) = a ·
1
c

Re (J · F∗) . (49.3)

and in particular for a = γ0, this four vector divergence takes the form

∂

∂t
ϵ0

2
(E ·E∗ + c2B ·B∗) +∇ ·

1
µ0

Re(E ×B∗) +Re(J ·E∗) = 0, (49.4)

relating the energy term T 00 = T (γ0) · γ0 and the Poynting spatial vector T (γ0) ∧ γ0 with the
current density and electric field product that constitutes the energy portion of the Lorentz force
density.

Let us apply this to calculating the energy associated with the field that is periodic within a
rectangular prism as done by Bohm in [3]. We do not necessarily need the Geometric Algebra
formalism for this calculation, but this will be a fun way to attempt it.



314 electrodynamic field energy for vacuum

49.2 setup

Let us assume a Fourier representation for the four vector potential A for the field F = ∇ ∧ A.
That is

A =
∑

k
Ak(t)eik·x, (49.5)

where summation is over all angular wave number triplets k = 2π(k1/λ1, k2/λ2, k3/λ3). The
Fourier coefficients Ak = Ak

µγµ are allowed to be complex valued, as is the resulting four
vector A, and the associated bivector field F.

Fourier inversion, with V = λ1λ2λ3, follows from

δk′,k =
1
V

∫ λ1

0

∫ λ2

0

∫ λ3

0
eik′·xe−ik·xdx1dx2dx3, (49.6)

but only this orthogonality relationship and not the Fourier coefficients themselves

Ak =
1
V

∫ λ1

0

∫ λ2

0

∫ λ3

0
A(x, t)e−ik·xdx1dx2dx3, (49.7)

will be of interest here. Evaluating the curl for this potential yields

F = ∇∧ A =
∑

k

(
1
c
γ0 ∧ Ȧk + γ

m ∧ Ak
2πikm

λm

)
eik·x. (49.8)

Since the four vector potential has been expressed using an explicit split into time and space
components it will be natural to re express the bivector field in terms of scalar and (spatial)
vector potentials, with the Fourier coefficients. Writing σm = γmγ0 for the spatial basis vectors,
Ak

0 = ϕk, and A = Akσk, this is

Ak = (ϕk +Ak)γ0. (49.9)

The Faraday bivector field F is then

F =
∑

k

(
−

1
c

Ȧk − ikϕk + ik∧Ak

)
eik·x. (49.10)

This is now enough to express the energy momentum tensor T (γµ)

T (γµ)

= −
ϵ0

2

∑
k,k′

Re
((
−

1
c

(Ȧk′)
∗
+ ik′ϕk′

∗ − ik′ ∧Ak′
∗

)
γµ

(
−

1
c

Ȧk − ikϕk + ik∧Ak

)
ei(k−k′)·x

)
.
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(49.11)

It will be more convenient to work with a scalar plus bivector (spatial vector) form of this tensor,
and right multiplication by γ0 produces such a split

T (γµ)γ0 =
〈
T (γµ)γ0

〉
+σa

〈
σaT (γµ)γ0

〉
(49.12)

The primary object of this treatment will be consideration of the µ = 0 components of the tensor,
which provide a split into energy density T (γ0) · γ0, and Poynting vector (momentum density)
T (γ0)∧ γ0.

Our first step is to integrate Equation 49.12 over the volume V . This integration and the
orthogonality relationship Equation 49.6, removes the exponentials, leaving∫

T (γµ) · γ0 = −
ϵ0V
2

∑
k

Re
〈(
−

1
c

(Ȧk)∗ + ikϕk
∗ − ik∧Ak

∗

)
γµ

(
−

1
c

Ȧk − ikϕk + ik∧Ak

)
γ0

〉
∫

T (γµ)∧ γ0 = −
ϵ0V
2

∑
k

Reσa

〈
σa

(
−

1
c

(Ȧk)∗ + ikϕk
∗ − ik∧Ak

∗

)
γµ

(
−

1
c

Ȧk − ikϕk + ik∧Ak

)
γ0

〉
(49.13)

Because γ0 commutes with the spatial bivectors, and anticommutes with the spatial vectors, the
remainder of the Dirac basis vectors in these expressions can be eliminated

∫
T (γ0) · γ0 = −

ϵ0V
2

∑
k

Re
〈(
−

1
c

(Ȧk)∗ + ikϕk
∗ − ik∧Ak

∗

) (
1
c

Ȧk + ikϕk + ik∧Ak

)〉
(49.14a)∫

T (γ0)∧ γ0 = −
ϵ0V
2

∑
k

Reσa

〈
σa

(
−

1
c

(Ȧk)∗ + ikϕk
∗ − ik∧Ak

∗

) (
1
c

Ȧk + ikϕk + ik∧Ak

)〉
(49.14b)∫

T (γm) · γ0 =
ϵ0V
2

∑
k

Re
〈(
−

1
c

(Ȧk)∗ + ikϕk
∗ − ik∧Ak

∗

)
σm

(
1
c

Ȧk + ikϕk + ik∧Ak

)〉
(49.14c)∫

T (γm)∧ γ0 =
ϵ0V
2

∑
k

Reσa

〈
σa

(
−

1
c

(Ȧk)∗ + ikϕk
∗ − ik∧Ak

∗

)
σm

(
1
c

Ȧk + ikϕk + ik∧Ak

)〉
.

(49.14d)
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49.3 expanding the energy momentum tensor components

49.3.1 Energy

In Equation 49.14a only the bivector-bivector and vector-vector products produce any scalar
grades. Except for the bivector product this can be done by inspection. For that part we utilize
the identity

⟨(k∧ a)(k∧ b)⟩ = (a · k)(b · k) − k2(a · b). (49.15)

This leaves for the energy H =
∫

T (γ0) · γ0 in the volume

H =
ϵ0V
2

∑
k

(
1
c2

∣∣∣Ȧk
∣∣∣2 + k2

(
|ϕk|

2 + |Ak|
2
)
− |k ·Ak|

2 +
2
c

Re
(
iϕk
∗ · Ȧk

))
(49.16)

We are left with a completely real expression, and one without any explicit Geometric Algebra.
This does not look like the Harmonic oscillator Hamiltonian that was expected. A gauge trans-
formation to eliminate ϕk and an observation about when k ·Ak equals zero will give us that,
but first lets get the mechanical jobs done, and reduce the products for the field momentum.

49.3.2 Momentum

Now move on to Equation 49.14b. For the factors other than σa only the vector-bivector prod-
ucts can contribute to the scalar product. We have two such products, one of the form

σa⟨σaa(k∧ c)⟩ = σa(c ·σa)(a · k) −σa(k ·σa)(a · c)

= c(a · k) − k(a · c),
(49.17)

and the other

σa⟨σa(k∧ c)a⟩ = σa(k ·σa)(a · c) −σa(c ·σa)(a · k)

= k(a · c) − c(a · k).
(49.18)

The momentum P =
∫

T (γ0)∧ γ0 in this volume follows by computation of

σa

〈
σa

(
−

1
c

(Ȧk)∗ + ikϕk
∗ − ik∧Ak

∗

) (
1
c

Ȧk + ikϕk + ik∧Ak

)〉
= iAk

((
−

1
c

(Ȧk)∗ + ikϕk
∗

)
· k

)
− ik

((
−

1
c

(Ȧk)∗ + ikϕk
∗

)
·Ak

)
− ik

((
1
c

Ȧk + ikϕk

)
·Ak

∗

)
+ iAk

∗

((
1
c

Ȧk + ikϕk

)
· k

) (49.19)
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All the products are paired in nice conjugates, taking real parts, and premultiplication with
−ϵ0V/2 gives the desired result. Observe that two of these terms cancel, and another two have
no real part. Those last are

−
ϵ0Vk

2c
Re

(
i(Ȧk

∗
·Ak + Ȧk ·Ak

∗
)
= −

ϵ0Vk
2c

Re
(
i

d
dt

Ak ·Ak
∗

)
(49.20)

Taking the real part of this pure imaginary i|Ak|
2 is zero, leaving just

P = ϵ0V
∑

k
Re

(
iAk

(
1
c

Ȧ∗k · k
)
+ k2ϕkAk

∗ − kϕk
∗(k ·Ak)

)
(49.21)

I am not sure why exactly, but I actually expected a term with |Ak|
2, quadratic in the vector

potential. Is there a mistake above?

49.3.3 Gauge transformation to simplify the Hamiltonian

In Equation 49.16 something that looked like the Harmonic oscillator was expected. On the
surface this does not appear to be such a beast. Exploitation of gauge freedom is required to
make the simplification that puts things into the Harmonic oscillator form.

If we are to change our four vector potential A→ A+∇ψ, then Maxwell’s equation takes the
form

J/ϵ0c = ∇(∇∧ (A +∇ψ) = ∇(∇∧ A) +∇( ∇∧∇ψ

= 0

), (49.22)

which is unchanged by the addition of the gradient to any original potential solution to the
equation. In coordinates this is a transformation of the form

Aµ → Aµ + ∂µψ, (49.23)

and we can use this to force any one of the potential coordinates to zero. For this problem, it
appears that it is desirable to seek a ψ such that A0 + ∂0ψ = 0. That is∑

k
ϕk(t)eik·x +

1
c
∂tψ = 0. (49.24)

Or,

ψ(x, t) = ψ(x, 0) −
1
c

∑
k

eik·x
∫ t

τ=0
ϕk(τ). (49.25)
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With such a transformation, the ϕk and Ȧk cross term in the Hamiltonian Equation 49.16 van-
ishes, as does the ϕk term in the four vector square of the last term, leaving just

H =
ϵ0

c2 V
∑

k

(
1
2

∣∣∣Ȧk
∣∣∣2 + 1

2
((ck)2|Ak|

2 + |(ck) ·Ak|
2 + |ck ·Ak|

2)

)
. (49.26)

Additionally, wedging Equation 49.5 with γ0 now does not loose any information so our poten-
tial Fourier series is reduced to just

A =
∑

k
Ak(t)e2πik·x

Ak =
1
V

∫ λ1

0

∫ λ2

0

∫ λ3

0
A(x, t)e−ik·xdx1dx2dx3.

(49.27a)

The desired harmonic oscillator form would be had in Equation 49.26 if it were not for the
k · Ak term. Does that vanish? Returning to Maxwell’s equation should answer that question,
but first it has to be expressed in terms of the vector potential. While A = A∧ γ0, the lack of an
A0 component means that this can be inverted as

A = Aγ0 = −γ0A. (49.28)

The gradient can also be factored scalar and spatial vector components

∇ = γ0(∂0 +∇) = (∂0 −∇)γ0. (49.29)

So, with this A0 = 0 gauge choice the bivector field F is

F = ∇∧ A =
1
2

(
→

∇ A − A
←

∇

)
(49.30)

From the left the gradient action on A is

→

∇ A = (∂0 −∇)γ0(−γ0A)

= (−∂0+
→

∇)A,
(49.31)

and from the right

A
←

∇ = Aγ0γ
0(∂0 +∇)

= A(∂0 +∇)

= ∂0A +A
←

∇

(49.32)
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Taking the difference we have

F =
1
2
(−∂0A+

→

∇ A − ∂0A −A
←

∇). (49.33)

Which is just

F = −∂0A +∇∧A. (49.34)

For this vacuum case, premultiplication of Maxwell’s equation by γ0 gives

0 = γ0∇(−∂0A +∇∧A)

= (∂0 +∇)(−∂0A +∇∧A)

= −
1
c2 ∂ttA − ∂0∇ ·A − ∂0∇∧A + ∂0(∇∧A) + ∇ · (∇∧A)

∇2A −∇(∇ ·A)

+ ∇∧ (∇∧A)

= 0

(49.35)

The spatial bivector and trivector grades are all zero. Equating the remaining scalar and vector
components to zero separately yields a pair of equations in A

0 = ∂t(∇ ·A)

0 = −
1
c2 ∂ttA +∇2A +∇(∇ ·A)

(49.36a)

If the divergence of the vector potential is constant we have just a wave equation. Let us see
what that divergence is with the assumed Fourier representation

∇ ·A =
∑

k,(0,0,0)

Ak
m2πi

km

λm
eik·x

= i
∑

k,(0,0,0)

(Ak · k)eik·x

= i
∑

k
(Ak · k)eik·x

(49.37)

Since Ak = Ak(t), there are two ways for ∂t(∇ ·A) = 0. For each k there must be a requirement
for either Ak · k = 0 or Ak = constant. The constant Ak solution to the first equation appears to
represent a standing spatial wave with no time dependence. Is that of any interest?

The more interesting seeming case is where we have some non-static time varying state. In
this case, if Ak · k, the second of these Maxwell’s equations is just the vector potential wave
equation, since the divergence is zero. That is

0 = −
1
c2 ∂ttA +∇2A (49.38)
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Solving this is not really what is of interest, since the objective was just to determine if the
divergence could be assumed to be zero. This shows then, that if the transverse solution to
Maxwell’s equation is picked, the Hamiltonian for this field, with this gauge choice, becomes

H =
ϵ0

c2 V
∑

k

(
1
2

∣∣∣Ȧk
∣∣∣2 + 1

2
(ck)2|Ak|

2
)
. (49.39)

How does the gauge choice alter the Poynting vector? From Equation 49.21, all the ϕk depen-
dence in that integrated momentum density is lost

P = ϵ0V
∑

k
Re

(
iAk

(
1
c

Ȧ∗k · k
))
. (49.40)

The Ak · k solutions to Maxwell’s equation are seen to result in zero momentum for this infinite
periodic field. My expectation was something of the form cP = Hk̂, so intuition is either failing
me, or my math is failing me, or this contrived periodic field solution leads to trouble.

What do we really know about the energy and momentum components of T (γ0)? For vacuum,
we have

1
c
∂T (γ0) · γ0

∂t
+∇ · (T (γ0)∧ γ0) = 0. (49.41)

However, integration over the volume has been performed. That is different than integrating this
four divergence. What we can say is

1
c

∫
d3x

∂T (γ0) · γ0

∂t
+

∫
d3x∇ · (T (γ0)∧ γ0) = 0. (49.42)

It is not obvious that the integration and differentiation order can be switched in order to come
up with an expression containing H and P. This is perhaps where intuition is failing me.

49.4 conclusions and followup

The objective was met, a reproduction of Bohm’s Harmonic oscillator result using a complex
exponential Fourier series instead of separate sine and cosines.

The reason for Bohm’s choice to fix zero divergence as the gauge choice upfront is now clear.
That automatically cuts complexity from the results. Figuring out how to work this problem
with complex valued potentials and also using the Geometric Algebra formulation probably also
made the work a bit more difficult since blundering through both simultaneously was required
instead of just one at a time.

This was an interesting exercise though, since doing it this way I am able to understand
all the intermediate steps. Bohm employed some subtler argumentation to eliminate the scalar
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potential ϕ upfront, and I have to admit I did not follow his logic, whereas blindly following
where the math leads me all makes sense.

As a bit of followup, I had like to consider the constant Ak case in more detail, and any
implications of the freedom to pick A0.

The general calculation of T µν for the assumed Fourier solution should be possible too, but
was not attempted. Doing that general calculation with a four dimensional Fourier series is
likely tidier than working with scalar and spatial variables as done here.

Now that the math is out of the way (except possibly for the momentum which does not seem
right), some discussion of implications and applications is also in order. My preference is to let
the math sink-in a bit first and mull over the momentum issues at leisure.





50F O U R I E R T R A N S F O R M S O L U T I O N S A N D A S S O C I AT E D E N E R G Y
A N D M O M E N T U M F O R T H E H O M O G E N E O U S M A X W E L L
E Q UAT I O N

50.1 motivation and notation

In 49, building on 48 a derivation for the energy and momentum density was derived for an
assumed Fourier series solution to the homogeneous Maxwell’s equation. Here we move to the
continuous case examining Fourier transform solutions and the associated energy and momen-
tum density.

A complex (phasor) representation is implied, so taking real parts when all is said and done is
required of the fields. For the energy momentum tensor the Geometric Algebra form, modified
for complex fields, is used

T (a) = −
ϵ0

2
Re(F∗aF). (50.1)

The assumed four vector potential will be written

A(x, t) = Aµ(x, t)γµ =
1

(
√

2π)3

∫
A(k, t)eik·xd3k. (50.2)

Subject to the requirement that A is a solution of Maxwell’s equation

∇(∇∧ A) = 0. (50.3)

To avoid latex hell, no special notation will be used for the Fourier coefficients,

A(k, t) =
1

(
√

2π)3

∫
A(x, t)e−ik·xd3x. (50.4)

When convenient and unambiguous, this (k, t) dependence will be implied.
Having picked a time and space representation for the field, it will be natural to express both

the four potential and the gradient as scalar plus spatial vector, instead of using the Dirac basis.
For the gradient this is

∇ = γµ∂µ = (∂0 −∇)γ0 = γ0(∂0 +∇), (50.5)

and for the four potential (or the Fourier transform functions), this is

A = γµAµ = (ϕ +A)γ0 = γ0(ϕ −A). (50.6)
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50.2 setup

The field bivector F = ∇∧ A is required for the energy momentum tensor. This is

∇∧ A =
1
2

(
→

∇ A − A
←

∇

)
=

1
2

(
(
→

∂0 −
→

∇)γ0γ0(ϕ −A) − (ϕ +A)γ0γ0(
←

∂0 +
←

∇)
)

= −∇ϕ − ∂0A +
1
2

(
→

∇ A −A
←

∇)

(50.7)

This last term is a spatial curl and the field is then

F = −∇ϕ − ∂0A +∇∧A (50.8)

Applied to the Fourier representation this is

F =
1

(
√

2π)3

∫ (
−

1
c

Ȧ − ikϕ + ik∧A
)

eik·xd3k. (50.9)

It is only the real parts of this that we are actually interested in, unless physical meaning can be
assigned to the complete complex vector field.

50.3 constraints supplied by maxwell’s equation

A Fourier transform solution of Maxwell’s vacuum equation ∇F = 0 has been assumed. Having
expressed the Faraday bivector in terms of spatial vector quantities, it is more convenient to do
this back substitution into after pre-multiplying Maxwell’s equation by γ0, namely

0 = γ0∇F

= (∂0 +∇)F.
(50.10)

Applied to the spatially decomposed field as specified in Equation 50.8, this is

0 = −∂0∇ϕ − ∂00A + ∂0∇∧A −∇2ϕ −∇∂0A +∇ · (∇∧A)

= −∂0∇ϕ −∇
2ϕ − ∂00A −∇ · ∂0A +∇2A −∇(∇ ·A)

(50.11)

All grades of this equation must simultaneously equal zero, and the bivector grades have can-
celed (assuming commuting space and time partials), leaving two equations of constraint for
the system

0 = ∇2ϕ +∇ · ∂0A (50.12a)

0 = ∂00A −∇2A +∇∂0ϕ +∇(∇ ·A) (50.12b)
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It is immediately evident that a gauge transformation could be immediately helpful to sim-
plify things. In [3] the gauge choice ∇ ·A = 0 is used. From Equation 50.12a this implies that
∇2ϕ = 0. Bohm argues that for this current and charge free case this implies ϕ = 0, but he also
has a periodicity constraint. Without a periodicity constraint it is easy to manufacture non-zero
counterexamples. One is a linear function in the space and time coordinates

ϕ = px + qy + rz + st (50.13)

This is a valid scalar potential provided that the wave equation for the vector potential is also a
solution. We can however, force ϕ = 0 by making the transformation Aµ → Aµ + ∂µψ, which in
non-covariant notation is

ϕ→ ϕ +
1
c
∂tψ

A→ ϕ −∇ψ
(50.14)

If the transformed field ϕ′ = ϕ + ∂tψ/c can be forced to zero, then the complexity of the associ-
ated Maxwell equations are reduced. In particular, antidifferentiation of ϕ = −(1/c)∂tψ, yields

ψ(x, t) = ψ(x, 0) − c
∫ t

τ=0
ϕ(x, τ)dτ. (50.15)

Dropping primes, the transformed Maxwell equations now take the form

0 = ∂t(∇ ·A) (50.16a)

0 = ∂00A −∇2A +∇(∇ ·A). (50.16b)

There are two classes of solutions that stand out for these equations. If the vector potential is
constant in time A(x, t) = A(x), Maxwell’s equations are reduced to the single equation

0 = −∇2A +∇(∇ ·A). (50.17)

Observe that a gradient can be factored out of this equation

−∇2A +∇(∇ ·A) = ∇(−∇A +∇ ·A)

= −∇(∇∧A).
(50.18)

The solutions are then those As that satisfy both

0 = ∂tA (50.19a)

0 = ∇(∇∧A). (50.19b)
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In particular any non-time dependent potential A with constant curl provides a solution to
Maxwell’s equations. There may be other solutions to Equation 50.17 too that are more gen-
eral. Returning to Equation 50.16 a second way to satisfy these equations stands out. Instead
of requiring of A constant curl, constant divergence with respect to the time partial eliminates
Equation 50.16a. The simplest resulting equations are those for which the divergence is a con-
stant in time and space (such as zero). The solution set are then spanned by the vectors A for
which

constant = ∇ ·A (50.20a)

0 =
1
c2 ∂ttA −∇2A. (50.20b)

Any A that both has constant divergence and satisfies the wave equation will via Equa-
tion 50.8 then produce a solution to Maxwell’s equation.

50.4 maxwell equation constraints applied to the assumed fourier solutions

Let us consider Maxwell’s equations in all three forms, Equation 50.12, Equation 50.19a, and
Equation 50.20 and apply these constraints to the assumed Fourier solution.

In all cases the starting point is a pair of Fourier transform relationships, where the Fourier
transforms are the functions to be determined

ϕ(x, t) = (2π)−3/2
∫

ϕ(k, t)eik·xd3k (50.21a)

A(x, t) = (2π)−3/2
∫

A(k, t)eik·xd3k (50.21b)

50.4.1 Case I. Constant time vector potential. Scalar potential eliminated by gauge transfor-
mation

From Equation 50.21a we require

0 = (2π)−3/2
∫

∂tA(k, t)eik·xd3k. (50.22)

So the Fourier transform also cannot have any time dependence, and we have

A(x, t) = (2π)−3/2
∫

A(k)eik·xd3k (50.23)
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What is the curl of this? Temporarily falling back to coordinates is easiest for this calculation

∇∧A(k)eik·x = σm∂m ∧σnAn(k)eix·x

= σm ∧σnAn(k)ikmeix·x

= ik∧A(k)eix·x
(50.24)

This gives

∇∧A(x, t) = (2π)−3/2
∫

ik∧A(k)eik·xd3k. (50.25)

We want to equate the divergence of this to zero. Neglecting the integral and constant factor this
requires

0 = ∇ ·
(
ik∧Aeik·x

)
=

〈
σm∂mi(k∧A)eik·x

〉
1

= −
〈
σm(k∧A)kmeik·x

〉
1

= −k · (k∧A)eik·x

(50.26)

Requiring that the plane spanned by k and A(k) be perpendicular to k implies that A ∝ k. The
solution set is then completely described by functions of the form

A(x, t) = (2π)−3/2
∫

kψ(k)eik·xd3k, (50.27)

where ψ(k) is an arbitrary scalar valued function. This is however, an extremely uninteresting
solution since the curl is uniformly zero

F = ∇∧A

= (2π)−3/2
∫

(ik)∧ kψ(k)eik·xd3k.
(50.28)

Since k∧k = 0, when all is said and done the ϕ = 0, ∂tA = 0 case appears to have no non-trivial
(zero) solutions. Moving on, ...

50.4.2 Case II. Constant vector potential divergence. Scalar potential eliminated by gauge
transformation

Next in the order of complexity is consideration of the case Equation 50.20. Here we also have
ϕ = 0, eliminated by gauge transformation, and are looking for solutions with the constraint

constant = ∇ ·A(x, t)

= (2π)−3/2
∫

ik ·A(k, t)eik·xd3k.
(50.29)
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How can this constraint be enforced? The only obvious way is a requirement for k ·A(k, t) to be
zero for all (k, t), meaning that our to be determined Fourier transform coefficients are required
to be perpendicular to the wave number vector parameters at all times.

The remainder of Maxwell’s equations, Equation 50.20b impose the addition constraint on
the Fourier transform A(k, t)

0 = (2π)−3/2
∫ (

1
c2 ∂ttA(k, t) − i2k2A(k, t)

)
eik·xd3k. (50.30)

For zero equality for all x it appears that we require the Fourier transforms A(k) to be harmonic
in time

∂ttA(k, t) = −c2k2A(k, t). (50.31)

This has the familiar exponential solutions

A(k, t) = A±(k)e±ic|k|t, (50.32)

also subject to a requirement that k ·A(k) = 0. Our field, where the A±(k) are to be determined
by initial time conditions, is by Equation 50.8 of the form

F(x, t) = Re
i

(
√

2π)3

∫
(−|k|A+(k) + k∧A+(k)) exp(ik · x + ic|k|t)d3k

+Re
i

(
√

2π)3

∫
(|k|A−(k) + k∧A−(k)) exp(ik · x − ic|k|t)d3k.

(50.33)

Since 0 = k · A±(k), we have k ∧ A±(k) = kA±. This allows for factoring out of |k|. The
structure of the solution is not changed by incorporating the i(2π)−3/2|k| factors into A±, leaving
the field having the general form

F(x, t)

= Re
∫

(k̂ − 1)A+(k) exp(ik · x + ic|k|t)d3k +Re
∫

(k̂ + 1)A−(k) exp(ik · x − ic|k|t)d3k.

(50.34)

The original meaning of A± as Fourier transforms of the vector potential is obscured by the tidy
up change to absorb |k|, but the geometry of the solution is clearer this way.

It is also particularly straightforward to confirm that γ0∇F = 0 separately for either half of
Equation 50.34.
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50.4.3 Case III. Non-zero scalar potential. No gauge transformation

Now lets work from Equation 50.12. In particular, a divergence operation can be factored from
Equation 50.12a, for

0 = ∇ · (∇ϕ + ∂0A). (50.35)

Right off the top, there is a requirement for

constant = ∇ϕ + ∂0A. (50.36)

In terms of the Fourier transforms this is

constant =
1

(
√

2π)3

∫
(ikϕ(k, t) +

1
c
∂tA(k, t))eik·xd3k. (50.37)

Are there any ways for this to equal a constant for all x without requiring that constant to be
zero? Assuming no for now, and that this constant must be zero, this implies a coupling between
the ϕ and A Fourier transforms of the form

ϕ(k, t) = −
1

ick
∂tA(k, t) (50.38)

A secondary implication is that ∂tA(k, t) ∝ k or else ϕ(k, t) is not a scalar. We had a transverse
solution by requiring via gauge transformation that ϕ = 0, and here we have instead the vector
potential in the propagation direction.

A secondary confirmation that this is a required coupling between the scalar and vector po-
tential can be had by evaluating the divergence equation of Equation 50.35

0 =
1

(
√

2π)3

∫
(−k2ϕ(k, t) +

ik
c
· ∂tA(k, t))eik·xd3k. (50.39)

Rearranging this also produces Equation 50.38. We want to now substitute this relationship into
Equation 50.12b.

Starting with just the ∂0ϕ −∇ ·A part we have

∂0ϕ +∇ ·A =
1

(
√

2π)3

∫
(

i
c2k

∂ttA(k, t) + ik ·A)eik·xd3k. (50.40)

Taking the gradient of this brings down a factor of ik for

∇(∂0ϕ +∇ ·A) = −
1

(
√

2π)3

∫
(

1
c2 ∂ttA(k, t) + k(k ·A))eik·xd3k. (50.41)
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Equation 50.12b in its entirety is now

0 =
1

(
√

2π)3

∫
(−(ik)2A + k(k ·A))eik·xd3k. (50.42)

This is not terribly pleasant looking. Perhaps going the other direction. We could write

ϕ =
i

ck
∂A
∂t
=

i
c
∂ψ

∂t
, (50.43)

so that

A(k, t) = kψ(k, t). (50.44)

0 =
1

(
√

2π)3

∫
(

1
c2 kψtt −∇

2kψ +∇
i

c2ψtt +∇(∇ · (kψ)))eik·xd3k (50.45)

Note that the gradients here operate on everything to the right, including and especially the
exponential. Each application of the gradient brings down an additional ik factor, and we have

1

(
√

2π)3

∫
k(

1
c2ψtt − i2k2ψ +

i2

c2ψtt + i2k2ψ)eik·xd3k. (50.46)

This is identically zero, so we see that this second equation provides no additional information.
That is somewhat surprising since there is not a whole lot of constraints supplied by the first
equation. The function ψ(k, t) can be anything. Understanding of this curiosity comes from
computation of the Faraday bivector itself. From Equation 50.8, that is

F =
1

(
√

2π)3

∫
(−ik

i
c
ψt −

1
c

kψt + ik∧ kψ)eik·xd3k. (50.47)

All terms cancel, so we see that a non-zero ϕ leads to F = 0, as was the case when considering
Equation 50.21a (a case that also resulted in A(k) ∝ k).

Can this Fourier representation lead to a non-transverse solution to Maxwell’s equation? If
so, it is not obvious how.

50.5 the energy momentum tensor

The energy momentum tensor is then

T (a) = −
ϵ0

2(2π)3 Re
" (

−
1
c

Ȧ∗(k′, t) + ik′ϕ∗(k′, t) − ik′ ∧A∗(k′, t)
)

a
(
−

1
c

Ȧ(k, t) − ikϕ(k, t) + ik∧A(k, t)
)

ei(k−k′)·xd3kd3k′.
(50.48)
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Observing that γ0 commutes with spatial bivectors and anticommutes with spatial vectors, and
writing σµ = γµγ0, the tensor splits neatly into scalar and spatial vector components

T (γµ) · γ0 =
ϵ0

2(2π)3 Re
"

ei(k−k′)·xd3kd3k′〈(
1
c

Ȧ∗(k′, t) − ik′ϕ∗(k′, t) + ik′ ∧A∗(k′, t)
)
σµ

(
1
c

Ȧ(k, t) + ikϕ(k, t) + ik∧A(k, t)
)〉

T (γµ)∧ γ0 =
ϵ0

2(2π)3 Re
"

ei(k−k′)·xd3kd3k′〈(
1
c

Ȧ∗(k′, t) − ik′ϕ∗(k′, t) + ik′ ∧A∗(k′, t)
)
σµ

(
1
c

Ȧ(k, t) + ikϕ(k, t) + ik∧A(k, t)
)〉

1
.

(50.49)

In particular for µ = 0, we have

H ≡ T (γ0) · γ0 =
ϵ0

2(2π)3 Re
"

ei(k−k′)·xd3kd3k′((
1
c

Ȧ∗(k′, t) − ik′ϕ∗(k′, t)
)
·

(
1
c

Ȧ(k, t) + ikϕ(k, t)
)
− (k′ ∧A∗(k′, t)) · (k∧A(k, t))

)
P ≡ T (γµ)∧ γ0 =

ϵ0

2(2π)3 Re
"

ei(k−k′)·xd3kd3k′(
i
(
1
c

Ȧ∗(k′, t) − ik′ϕ∗(k′, t)
)
· (k∧A(k, t)) − i

(
1
c

Ȧ(k, t) + ikϕ(k, t)
)
· (k′ ∧A∗(k′, t))

)
.

(50.50)

Integrating this over all space and identification of the delta function

δ(k) ≡
1

(2π)3

∫
eik·xd3x, (50.51)

reduces the tensor to a single integral in the continuous angular wave number space of k.∫
T (a)d3x = −

ϵ0

2
Re

∫ (
−

1
c

Ȧ∗ + ikϕ∗ − ik∧A∗
)

a
(
−

1
c

Ȧ − ikϕ + ik∧A
)

d3k. (50.52)

Or,∫
T (γµ)γ0d3x =

ϵ0

2
Re

∫ 〈(
1
c

Ȧ∗ − ikϕ∗ + ik∧A∗
)
σµ

(
1
c

Ȧ + ikϕ + ik∧A
)〉

0,1
d3k. (50.53)

Multiplying out Equation 50.53 yields for
∫

H∫
Hd3x =

ϵ0

2

∫
d3k

(
1
c2

∣∣∣Ȧ∣∣∣2 + k2(|ϕ|2 + |A|2) − |k ·A|2 + 2
k
c
·Re(iϕ∗Ȧ)

)
(50.54)
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Recall that the only non-trivial solution we found for the assumed Fourier transform represen-
tation of F was for ϕ = 0, k ·A(k, t) = 0. Thus we have for the energy density integrated over
all space, just∫

Hd3x =
ϵ0

2

∫
d3k

(
1
c2

∣∣∣Ȧ∣∣∣2 + k2|A|2
)
. (50.55)

Observe that we have the structure of a Harmonic oscillator for the energy of the radiation
system. What is the canonical momentum for this system? Will it correspond to the Poynting
vector, integrated over all space?

Let us reduce the vector component of Equation 50.53, after first imposing the ϕ = 0, and
k ·A = 0 conditions used to above for our harmonic oscillator form energy relationship. This is

∫
Pd3x =

ϵ0

2c
Re

∫
d3k (iA∗t · (k∧A) + i(k∧A∗) ·At)

=
ϵ0

2c
Re

∫
d3k (−i(A∗t ·A)k + ik(A∗ ·At))

(50.56)

This is just∫
Pd3x =

ϵ0

c
Re i

∫
k(A∗ ·At)d3k. (50.57)

Recall that the Fourier transforms for the transverse propagation case had the form A(k, t) =
A±(k)e±ic|k|t, where the minus generated the advanced wave, and the plus the receding wave.
With substitution of the vector potential for the advanced wave into the energy and momentum
results of Equation 50.55 and Equation 50.57 respectively, we have∫

Hd3x = ϵ0

∫
k2|A(k)|2d3k∫

Pd3x = ϵ0

∫
k̂k2|A(k)|2d3k.

(50.58)

After a somewhat circuitous route, this has the relativistic symmetry that is expected. In partic-
ular the for the complete µ = 0 tensor we have after integration over all space∫

T (γ0)γ0d3x = ϵ0

∫
(1 + k̂)k2|A(k)|2d3k. (50.59)

The receding wave solution would give the same result, but directed as 1 − k̂ instead.
Observe that we also have the four divergence conservation statement that is expected

∂

∂t

∫
Hd3x +∇ ·

∫
cPd3x = 0. (50.60)
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This follows trivially since both the derivatives are zero. If the integration region was to be
more specific instead of a 0 + 0 = 0 relationship, we would have the power flux ∂H/∂t equal
in magnitude to the momentum change through a bounding surface. For a more general surface
the time and spatial dependencies should not necessarily vanish, but we should still have this
radiation energy momentum conservation.
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51B O H R M O D E L

51.1 motivation

The Bohr model is taught as early as high school chemistry when the various orbitals are dis-
cussed (or maybe it was high school physics). I recall that the first time I saw this I did not see
where all the ideas came from. With a bit more math under my belt now, reexamine these ideas
as a lead up to the proper wave mechanics.

51.2 calculations

51.2.1 Equations of motion

A prerequisite to discussing electron orbits is first setting up the equations of motion for the two
charged particles (ie: the proton and electron).

With the proton position at rp, and the electron at re, we have two equations, one for the
force on the proton from the electron and the other for the force on the proton from the electron.
These are respectively

1
4πϵ0

e2 re − rp∣∣∣re − rp
∣∣∣3 = mp

d2rp

dt2

−
1

4πϵ0
e2 re − rp∣∣∣re − rp

∣∣∣3 = me
d2re

dt2

(51.1)

In lieu of a picture, setting rp = 0 works to check signs, leaving an inwards force on the electron
as desired.

As usual for a two body problem, use of the difference vector and center of mass vector is
desirable. That is

x = re − rp

M = me +mp

R =
1
M

(mere +mprp)

(51.2)
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Solving for rp and re in terms of R and x we have

re =
mp

M
x +R

rp =
−me

M
x +R

(51.3)

Substitution back into eq. (51.1) we have

1
4πϵ0

e2 x
|x|3
= mp

d2

dt2

(
−me

M
x +R

)
−

1
4πϵ0

e2 x
|x|3
= me

d2

dt2

(mp

M
x +R

)
,

(51.4)

and sums and (scaled) differences of that give us our reduced mass equation and constant center-
of-mass velocity equation

d2x
dt2 = −

1
4πϵ0

e2 x
|x|3

(
1

me
+

1
mp

)
d2R
dt2 = 0

(51.5)

writing 1/µ = 1/me + 1/mp, and k = e2/4πϵ0, our difference vector equation is thus

µ
d2x
dt2 = −k

x
|x|3

(51.6)

51.2.2 Circular solution

The Bohr model postulates that electron orbits are circular. It is easy enough to verify that a
circular orbit in the center of mass frame is a solution to equation eq. (51.6). Write the path in
terms of the unit bivector for the plane of rotation i and an initial vector position x0

x = x0eiωt (51.7)

For constant i and ω, we have

µx0(iω)2eiωt = −k
x0

|x0|
3 eiωt (51.8)

This provides the angular velocity in terms of the reduced mass of the system and the charge
constants

ω2 =
k

µ|x0|
3 =

e2

4πϵ0µ|x0|
3 . (51.9)
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Although not relevant to the quantum theme, it is hard not to call out the observation that this is
a Kepler’s law like relation for the period of the circular orbit given the radial distance from the
center of mass

T 2 =
16π3ϵ0µ

e2 |x0|
3 (51.10)

Kepler’s law also holds for elliptical orbits, but this takes more work to show.

51.2.3 Angular momentum conservation

Now, the next step in the Bohr argument was that the angular momentum, a conserved quantity
is also quantized. To give real meaning to the conservation statement we need the equivalent
Lagrangian formulation of eq. (51.6). Anti-differentiation gives

∇v

(
1
2
µv2

)
= kx̂∂x

1
x

= −∇x

(
−k

1
|x|

)
= ϕ

(51.11)

So, our Lagrangian is

L = K − ϕ =
1
2
µv2 + k

1
|x|

(51.12)

The essence of the conservation argument, an application of Noether’s theorem, is that a rota-
tional transformation of the Lagrangian leaves this energy relationship unchanged. Repeating
the angular momentum example from [17] (which was done for the more general case of any
radial potential), we write B̂ for the unit bivector associated with a rotational plane. The position
vector is transformed by rotation in this plane as follows

x→ x′

x′ = RxR†

R = exp B̂θ/2

(51.13)

The magnitude of the position vector is rotation invariant

(x′)2 = RxR†RxR† = x2, (51.14)

as is our the square of the transformed velocity. The transformed velocity is

dx′

dt
= ṘxR + RẋR† + RxṘ† (51.15)
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but with θ̇ = 0, Ṙ = 0 its square is just

(v′)2 = RvR†Rv̇R† = v2. (51.16)

We therefore have a Lagrangian that is invariant under this rotational transformation

L → L′ = L, (51.17)

and by Noether’s theorem (essentially application of the chain rule), we have

dL′

dθ
=

d
dt

(
dx′

dθ
· ∇v′L

)
=

d
dt

(
(B̂ · x′) · µv′

)
.

(51.18)

But dL′/dθ = 0, so we have for any B̂

(B̂ · x′) · (µv′) = B̂ · (x′ ∧ (µv′)) = constant (51.19)

Dropping primes this is

L = x∧ (µv) = constant, (51.20)

a constant bivector for the conserved center of mass (reduced-mass) angular momentum associ-
ated with the Lagrangian of this system.

51.2.4 Quantized angular momentum for circular solution

In terms of the circular solution of eq. (51.7) the angular momentum bivector is

L = x∧ (µv) =
〈
x0eiωtµx0iωeiωt

〉
2

=
〈
e−iωtx0µx0ωeiωti

〉
2

= (x0)2µωi

= ie

√
µ|x0|

4πϵ0

(51.21)

Now if this angular momentum is quantized with quantum magnitude l we have we have for
the bivector angular momentum the values

L = inl = ie

√
µ|x0|

4πϵ0
(51.22)
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Which with l = h̄ (where experiment in the form of the spectral hydrogen line values is required
to fix this constant and relate it to Plank’s black body constant) is the momentum equation in
terms of the Bohr radius x0 at each energy level. Writing that radius rn = |x0| explicitly as a
function of n, we have

rn =
4πϵ0

µ

(
n h̄
e

)2
(51.23)

51.2.4.1 Velocity

One of the assumptions of this treatment is a |ve| << c requirement so that Coulombs law is
valid (ie: slow enough that all the other Maxwell’s equations can be neglected). Let us evaluate
the velocity numerically at the some of the quantization levels and see how this compares to the
speed of light.

First we need an expression for the velocity itself. This is

v2 = (x0iωeiωt)2

=
e2

4πϵ0µrn

=
e4

(4πϵ0)2(n h̄)2 .

(51.24)

For

vn =
e2

4πϵ0n h̄
= 2.1 × 106m/s

(51.25)

This is the 1/137 of the speed of light value that one sees googling electron speed in hydrogen,
and only decreases with quantum number so the non-relativistic speed approximation holds (γ =
1.00002663). This speed is still pretty zippy, even if it is not relativistic, so it is not unreasonable
to attempt to repeat this treatment trying to incorporate the remainder of Maxwell’s equations.

Interestingly the velocity is not a function of the reduced mass at all, but just the charge and
quantum numbers. One also gets a good hint at why the Bohr theory breaks down for larger
atoms. An electron in circular orbit around an ion of Gold would have a velocity of 79/137 the
speed of light!





52S C H RÖ D I N G E R E Q UAT I O N P RO BA B I L I T Y C O N S E RVAT I O N

52.1 motivation

In [22] is a one dimensional probability conservation derivation from Schrödinger’s equation.
Do this for the three dimensional case.

52.2

Consider the time rate of change of the probability as expressed in terms of the wave function

∂ρ

∂t
=
∂ψ∗ψ

∂t

=
∂ψ∗

∂t
ψ + ψ∗

∂ψ

∂t

(52.1)

This can be calculated from Schrödinger’s equation and its complex conjugate

∂tψ =

(
−

h̄
2mi
∇

2 +
1
i h̄

V
)
ψ

∂tψ
∗ =

(
h̄

2mi
∇

2 −
1
i h̄

V
)
ψ∗

(52.2)

Multiplying by the conjugate wave functions and adding we have

∂ρ

∂t
= ψ∗

(
−

h̄
2mi
∇

2 +
1
i h̄

V
)
ψ + ψ

(
h̄

2mi
∇

2 −
1
i h̄

V
)
ψ∗

=
h̄

2mi

(
−ψ∗∇2ψ + ψ∇2ψ∗

) (52.3)

So we have the following conservation law

∂ρ

∂t
+

h̄
2mi

(
ψ∗∇2ψ − ψ∇2ψ∗

)
= 0 (52.4)
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The text indicates that the second order terms here can be written as a divergence. Somewhat
loosely, by treating ψ as a scalar field one can show that this is the case

∇ · (ψ∗∇ψ − ψ∇ψ∗) =
〈
∇ (ψ∗∇ψ − ψ∇ψ∗)

〉
=

〈
(∇ψ∗)(∇ψ) − (∇ψ)(∇ψ∗) + ψ∗∇2ψ − ψ∇2ψ∗

〉
=

〈
2(∇ψ∗)∧ (∇ψ) + ψ∗∇2ψ − ψ∇2ψ∗

〉
= ψ∗∇2ψ − ψ∇2ψ∗

(52.5)

Assuming that this procedure is justified. Equation (52.4) therefore can be written in terms of a
probability current very reminiscent of the current density vector of electrodynamics

J =
h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗)

0 =
∂ρ

∂t
+∇ · J

(52.6)

Regarding justification, this should be revisited. It appears to give the right answer, despite the
fact that ψ is a complex (mixed grade) object, which likely has some additional significance.

52.3

Now, having calculated the probability conservation eq. (52.6), it is interesting to note the simi-
larity to the relativistic spacetime divergence from Maxwell’s equation. We can write

0 =
∂ρ

∂t
+∇ · J = ∇ · (cργ0 + Jγ0) (52.7)

and form something that has the appearance of a relativistic four vector, re-writing the conser-
vation equation as

J = cργ0 + Jγ0

0 = ∇ · J
(52.8)

Expanding this four component vector shows an interesting form:

J = cργ0 +
h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗) γ0 (52.9)

Now, if one assumes the wave function can be represented as a even grade object with the
following complex structure

ψ = α + γm ∧ γnβmn (52.10)
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then γ0 will commute with ψ. Noting that ∇γ0 =
∑

k γk∂k = −γ
k∂k, we have

mJ = mcψ∗ψγ0 +
i h̄
2

(
ψ∗γk∂kψ − ψγ

k∂kψ
∗
)

(52.11)

Now, this is an interesting form. In particular compare this to the Dirac Lagrangian, as given in
the wikipedia Dirac equation article.

L = mcψψ −
i h̄
2

(ψγµ(∂µψ) − (∂µψ)γµψ) (52.12)

Although the Schrödinger equation is a non-relativistic equation, it appears that the probability
current, when we add the γ0∂0 term required to put this into a covariant form, is in fact the
Lagrangian density for the Dirac equation (when scaled by mass).

I do not know enough yet about QM to see what exactly the implications of this are, but I
suspect that there is something of some interesting significance to this particular observation.

52.4 on the grades of the qm complex numbers

To get to eq. (52.4), no assumptions about the representation of the field variable ψ were re-
quired. However, to make the identification

ψ∗∇2ψ − ψ∇2ψ∗ = ∇ ·
(
ψ∗∇2ψ − ψ∇2ψ∗

)
(52.13)

we need some knowledge or assumptions about the representation. The assumption made ini-
tially was that we could treat ψ as a scalar, but then we later see there is value trying to switch
to the Dirac representation (which appears to be the logical way to relativistically extend the
probability current).

For example, with a geometric algebra multivector representation we have many ways to
construct complex quantities. Assuming a Euclidean basis we can construct a complex number
we can factor out one of the basis vectors

σ1x1 +σ2x2 = σ1(x1 +σ1σ2x2) (52.14)

However, this is not going to commute with vectors (ie: such as the gradient), unless that vector
is perpendicular to the plane spanned by this vector. As an example

i = σ1σ2 (52.15)

iσ1 = −σ1i

iσ2 = −σ2i

iσ3 = σ3i

(52.16)

https://en.wikipedia.org/wiki/Dirac_equation#Adjoint_equation_and_Dirac_current
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What would work is a complex representation using the R3 pseudoscalar (aka the Dirac pseu-
doscalar).

ψ = α +σ1σ2σ3β = α + γ0γ1γ2γ3β (52.17)
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53.1 dirac lagrangian with feynman slash notation

Wikipedia’s Dirac Lagrangian entry lists the Lagrangian as

L = ψ(i h̄c��D −mc2)ψ (53.1)

"where ψis a Dirac spinor, ψ = ψ†γ0 is its Dirac adjoint, Dis the gauge covariant derivative, and
��D is Feynman slash notation|Feynman notation for γσDσ."

Let us decode this. First, what is Dσ?
From Gauge theory

Dµ := ∂µ − ieAµ (53.2)

where Aµ is the electromagnetic vector potential.
So, in four-vector notation we have

��D = γµ∂µ − ieγµAµ
= ∇− ieA

(53.3)

So our Lagrangian written out in full is left as

L = ψ†γ0(i h̄c∇ + h̄ceA −mc2)ψ (53.4)

How about this γ0i∇ term? If we assume that i = γ0γ1γ2γ3 is the four space pseudoscalar, then
this is

γ0i∇ = −iγ0(γ0∂0 + γ
i∂i)

= −i(∂0 +σi∂i)
(53.5)

So, operationally, we have the dual of a quaternion like gradient operator. If ψ is an even grade
object, as I had guess can be implied by the term spinor, then there is some sense to requiring a
gradient operation that has scalar and spacetime bivector components.

Let us write this

γ0∇ = ∂0 +σi∂i = ∇0,2 (53.6)

https://en.wikipedia.org/wiki/Lagrangian#Dirac_Lagrangian
https://en.wikipedia.org/wiki/Gauge_covariant_derivative
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Now, how about the meaning of ψ = ψ†γ0? I initially assumed that ψ† was the reverse operation.
However, looking in the quantum treatment of [8] and their earlier relativity content, I see that
they explicitly avoid dagger as a reverse in a relativistic context since it is used for “something-
else” in a quantum context. It appears that their mapping from matrix algebra to Clifford algebra
is

ψ† ≡ γ0ψ̃γ0, (53.7)

where tilde is used for the reverse operation.
This then implies that

ψ = ψ†γ0 = γ0ψ̃ (53.8)

We now have an expression of the Lagrangian in full in terms of geometric objects

L = γ0ψ̃(i h̄c∇ + h̄ceA −mc2)ψ. (53.9)

Assuming that this is now the correct geometric interpretation of the Lagrangian, why bother
having that first γ0 factor. It should not change the field equations (just as a constant factor
should not make a difference). It seems more natural to instead write the Lagrangian as just

L = ψ̃
(
i∇ + eA −

mc
h̄

)
ψ, (53.10)

where both the constant vector factor γ0, the redundant common factor of c have been removed,
and we divide throughout by h̄ to tidy up a bit. Perhaps this tidy up should be omitted since it
sacrifices the energy dimensionality of the original.

53.1.1 Dirac adjoint field

The reverse sandwich operation of γ0ψ̃γ0 to produce the Dirac adjoint field from ψ can be recog-
nized as very similar to the mechanism used to split the Faraday bivector for the electromagnetic
field into electric and magnetic terms. There addition and subtraction of the sandwich’ed fields
with the original acted as a spacetime split operation, producing separate electric field spacetime
(Pauli) bivectors and pure spatial bivectors (magnetic components) from the total field. Here we
have a quaternion like field variable with scalar and bivector terms. Is there a physical (observ-
ables) significance only for a subset of the six possible bivectors that make up the spinor field?
If so, then this adjoint operation can be used as a filter to select only the desired components.

Recall that the Faraday bivector is

F = E + icB
= E jσ j + icB jσ j

= E jγ jγ0 + icB jγ jγ0

(53.11)
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So we have

γ0Fγ0 = E jγ0γ j + γ0icB jγ j

= −E jσ j + icB jσ j

= −E + icB
(53.12)

So we have

1
2
(F − γ0Fγ0) = E

1
2i

(F + γ0Fγ0) = cB
(53.13)

How does this sandwich operation act on other grade objects?

• scalar

γ0αγ0 = α (53.14)

• vector

γ0γµγ0 = (2γ0 · γµ − γµγ0) γ0

= 2(γ0 · γµ)γ0 − γµ

=

 γ0 if µ = 0

−γi if µ = i , 0

(53.15)

• trivector

For the duals of the vectors we have the opposite split, where for the dual of γ0 we have
a sign toggle

γ0γiγ jγkγ0 = −γiγ jγk (53.16)

whereas for the duals of γk we have invariant sign under sandwich

γ0γiγ jγ0γ0 = γiγ jγ0 (53.17)

• pseudoscalar

γ0iγ0 = γ0γ0γ1γ2γ3γ0

= −i
(53.18)
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Ah ha! Recalling the conjugation results from 55, one sees that this sandwich operation is in
fact just the equivalent of the conjugate operation on Dirac matrix algebra elements. So we can
write

ψ∗ ≡ γ0ψγ0 (53.19)

and can thus identify γ0ψ̃γ0 = ψ
† as the reverse of that conjugate quantity. That is

ψ† = (ψ∗)̃ (53.20)

This does not really help identify the significance of this term but this identification may prove
useful later.

53.1.2 Field equations

Now, how to recover the field equation from eq. (53.10) ? If one assumes that the Euler-
Lagrange field equations

∂L

∂η
− ∂µ

∂L

∂(∂µη)
= 0 (53.21)

hold for these even grade field variables ψ, then treating ψ and ψ as separate field variables one
has for the reversed field variable

∂L

∂ψ̃
− ∂µ

∂L

∂(∂µψ̃)
= 0(

i∇ + eA −
mc
h̄

)
ψ − (0) = 0

(53.22)

Or

h̄(i∇ + eA)ψ = mcψ (53.23)

Except for the additional eA term here, this is the Dirac equation that we get from taking square
roots of the Klein-Gordon equation. Should A be considered a field variable? More likely is that
this is a supplied potential as in the V of the non-relativistic Schrödinger’s equation.

Being so loose with the math here (ie: taking partials with respect to non-scalar variables)
is somewhat disturbing but developing some intuition is worthwhile before getting the details
down.
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53.1.3 Conjugate field equation

Our Lagrangian is not at all symmetric looking, having derivatives of ψ, but not ψ. Compare
this to the Lagrangians for the Schrödinger’s equation, and Klein-Gordon equation respectively,
which are

L =
h̄2

2m
(∇ψ) · (∇ψ∗) + Vψψ∗ + i h̄ (ψ∂tψ

∗ − ψ∗∂tψ)

L = −∂νψ∂νψ
∗ +

m2c2

h̄2 ψψ∗.

(53.24)

With these Lagrangians one gets the field equation for ψ, differentiating with respect to the
conjugate field ψ∗, and the conjugate equation with differentiation with respect to ψ (where ψ
and ψ∗ are treated as independent field variables).

It is not obvious that evaluating the Euler-Lagrange equations will produce a similarly regular
result, so let us compute the derivatives with respect to the ψ field variables to compute the
equations for ψ or ψ̃ to see what results. Written out in coordinates so that we can apply the
Euler-Lagrange equations, our Lagrangian (with A terms omitted) is

L = ψ̃
(
iγµ∂µ + eA −

mc
h̄

)
ψ (53.25)

Again abusing the Euler Lagrange equations, ignoring the possible issues with commuting par-
tials taken with respect to spinors (not scalar variables), blinding plugging into the formulas we
have

∂L

∂ψ
= ∂µ

∂L

∂∂µψ

ψ̃
(
eA −

mc
h̄

)
= ∂µ (ψ̃iγµ)

(53.26)

reversing this entire equation we have(
eA −

mc
h̄

)
ψ = γµi∂µψ = −i∇ψ (53.27)

Or

h̄ (i∇ + eA)ψ = mcψ (53.28)

So we do in fact get the same field equation regardless of which of the two field variables one
differentiates with. That is not obvious looking at the Lagrangian.
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53.2 alternate dirac lagrangian with antisymmetric terms

Now, the wikipedia article Adjoint equation and Dirac current lists the Lagrangian as

L = mcψψ −
1
2

i h̄(ψγµ(∂µψ) − (∂µψ)γµψ) (53.29)

Computing the Euler Lagrange equations for this potential free Lagrangian we have

mcψ −
1
2

i h̄γµ∂µψ = ∂µ

(
1
2

i h̄γµψ
)

(53.30)

Or,

mcψ = i h̄∇ψ (53.31)

And the same computation, treating ψ as the independent field variable of interest we have

mcψ +
1
2

i h̄∂µψγµ = −
1
2

i h̄∂µψγµ (53.32)

which is

mcψ = −i h̄∂µψγµ

mcγ0ψ̃ = −i h̄∂µγ0ψ̃γ
µ

mcψ̃ = i h̄∂µψ̃γµ

mcψ = h̄∇ψi

(53.33)

Or,

i h̄∇ψ = −mcψ (53.34)

FIXME: This differs in sign from the same calculation with the Lagrangian of eq. (53.25). Based
on the possibility of both roots in the Klein-Gordon equation, I suspect I have made a sign error
in the first calculation.

53.3 appendix

53.3.1 Pseudoscalar reversal

The pseudoscalar reverses to itself

ĩ = γ3210

= −γ2103

= −γ1023

= γ0123

= i,

(53.35)

https://en.wikipedia.org/wiki/Dirac_equation#Adjoint_equation_and_Dirac_current
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53.3.2 Form of the spinor

The specific structure of the spinor has not been defined here. It has been assumed to be quater-
nion like, and contain only even grades, but in the Dirac/Minkowski algebra that gives us two
possibilities

ψ = α + Paγaγ0

= α + Paσa
(53.36)

Or

ψ = α + Pcγa ∧ γb

= α − Pcσa ∧σb

= α − iϵabcPcσc

(53.37)

Spinors in Doran/Lasenby appear to use the latter form of dual Pauli vectors (wedge products
of the Pauli spatial basis elements). This actually makes sense since one wants a spatial bivector
for rotation (ie: “spin”), and not the spacetime bivectors, which provide a Lorentz boost action.
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54.1 motivation

Having learned Geometric (Clifford) Algebra from [8], [15], [9], and other sources before study-
ing any quantum mechanics, trying to work with (and talk to people familiar with) the Pauli and
Dirac matrix notation as used in traditional quantum mechanics becomes difficult.

The aim of these notes is to work through equivalents to many Clifford algebra expressions
entirely in commutator and anticommutator notations. This will show the mapping between
the (generalized) dot product and the wedge product, and also show how the different grade
elements of the Clifford algebra C{3,0} manifest in their matrix forms.

54.2 pauli matrices

The matrices in question are:

σ1 =

0 1

1 0


σ2 =

0 −i

i 0


σ3 =

1 0

0 −1


(54.1)

These all have positive square as do the traditional Euclidean unit vectors ei, and so can be used
algebraically as a vector basis for R3. So any vector that we can write in coordinates

x = xiei, (54.2)

we can equivalently write (an isomorphism) in terms of the Pauli matrix’s

x = xiσi. (54.3)
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54.2.1 Pauli Vector

[31] introduces the Pauli vector as a mechanism for mapping between a vector basis and this
matrix basis

σ =
∑

σiei (54.4)

This is a curious looking construct with products of 2x2 matrices and R3 vectors. Obviously
these are not the usual 3x1 column vector representations. This Pauli vector is thus really a
notational construct. If one takes the dot product of a vector expressed using the standard or-
thonormal Euclidean basis {ei} basis, and then takes the dot product with the Pauli matrix in a
mechanical fashion

x ·σ = (xiei) ·
∑

σ je j

=
∑
i, j

xiσ jei · e j

= xiσi

(54.5)

one arrives at the matrix representation of the vector in the Pauli basis {σi}. Does this construct
have any value? That I do not know, but for the rest of these notes the coordinate representation
as in equation eq. (54.3) will be used directly.

54.2.2 Matrix squares

It was stated that the Pauli matrices have unit square. Direct calculation of this is straightforward,
and confirms the assertion

σ1
2 =

0 1

1 0


0 1

1 0

 =
1 0

0 1

 = I

σ2
2 =

0 −i

i 0


0 −i

i 0

 = i2
0 −1

1 0


0 −1

1 0

 =
1 0

0 1

 = I

σ3
2 =

1 0

0 −1


1 0

0 −1

 =
1 0

0 1

 = I

(54.6)

Note that unlike the vector (Clifford) square the identity matrix and not a scalar.

54.2.3 Length

If we are to operate with Pauli matrices how do we express our most basic vector operation, the
length?
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Examining a vector lying along one direction, say, a = αx̂ we expect

a2 = a · a = α2x̂ · x̂ = α2. (54.7)

Lets contrast this to the Pauli square for the same vector y = ασ1

y2 = α2σ1
2 = α2I (54.8)

The wiki article mentions trace, but no application for it. Since tr (I) = 2, an observable appli-
cation is that the trace operator provides a mechanism to convert a diagonal matrix to a scalar.
In particular for this scaled unit vector y we have

α2 =
1
2

tr
(
y2

)
(54.9)

It is plausible to guess that the squared length will be related to the matrix square in the general
case as well

|x|2 =
1
2

tr
(
x2

)
(54.10)

Let us see if this works by performing the coordinate expansion

x2 = (xiσi)(x jσ j)

= xix jσiσ j
(54.11)

A split into equal and different indices thus leaves

x2 =
∑
i< j

xix j(σiσ j +σ jσi) +
∑

i

(xi)2σi
2

(54.12)

As an algebra that is isomorphic to the Clifford Algebra C{3,0} it is expected that the σiσ j

matrices anticommute for i , j. Multiplying these out verifies this

σ1σ2 = i

0 1

1 0


0 −1

1 0

 = i

1 0

0 −1

 = iσ3

σ2σ1 = i

0 −1

1 0


0 1

1 0

 = i

−1 0

0 1

 = −iσ3

σ3σ1 =

1 0

0 −1


0 1

1 0

 =

 0 1

−1 0

 = iσ2

σ1σ3 =

0 1

1 0


1 0

0 −1

 =

0 −1

1 0

 = −iσ2

σ2σ3 = i

0 −1

1 0


1 0

0 −1

 = i

0 1

1 0

 = iσ1

σ3σ2 = i

1 0

0 −1


0 −1

1 0

 = i

 0 −1

−1 0

 = −iσ3

. (54.13)
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Thus in eq. (54.12) the sum over the {i < j} = {12, 23, 13} indices is zero.
Having computed this, our vector square leaves us with the vector length multiplied by the

identity matrix

x2 =
∑

i

(xi)2I. (54.14)

Invoking the trace operator will therefore extract just the scalar length desired

|x|2 =
1
2

tr
(
x2

)
=

∑
i

(xi)2. (54.15)

54.2.3.1 Aside: Summarizing the multiplication table

It is worth pointing out that the multiplication table above used to confirm the antisymmetric
behavior of the Pauli basis can be summarized as

σaσb = 2iϵabcσc (54.16)

54.2.4 Scalar product

Having found the expression for the length of a vector in the Pauli basis, the next logical desir-
able identity is the dot product. One can guess that this will be the trace of a scaled symmetric
product, but can motivate this without guessing in the usual fashion, by calculating the length
of an orthonormal sum.

Consider first the length of a general vector sum. To calculate this we first wish to calculate
the matrix square of this sum.

(x + y)2 = x2 + y2 + xy + yx (54.17)

If these vectors are perpendicular this equals x2 + y2. Thus orthonormality implies that

xy + yx = 0 (54.18)

or,

yx = −xy (54.19)

We have already observed this by direct calculation for the Pauli matrices themselves. Now, this
is not any different than the usual description of perpendicularity in a Clifford Algebra, and it is
notable that there are not any references to matrices in this argument. One only requires that a
well defined vector product exists, where the squared vector has a length interpretation.
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One matrix dependent observation that can be made is that since the left hand side and the
x2, and y2 terms are all diagonal, this symmetric sum must also be diagonal. Additionally, for
the length of this vector sum we then have

|x + y|2 = |x|2 + |y|2 +
1
2

tr (xy + yx) (54.20)

For correspondence with the Euclidean dot product of two vectors we must then have

x • y =
1
4

tr (xy + yx) . (54.21)

Here x • y has been used to denote this scalar product (ie: a plain old number), since x · y will
be used later for a matrix dot product (this times the identity matrix) which is more natural in
many ways for this Pauli algebra.

Observe the symmetric product that is found embedded in this scalar selection operation. In
physics this is known as the anticommutator, where the commutator is the antisymmetric sum.
In the physics notation the anticommutator (symmetric sum) is

{x, y} = xy + yx (54.22)

So this scalar selection can be written

x • y =
1
4

tr {x, y} (54.23)

Similarly, the commutator, an antisymmetric product, is denoted:

[x, y] = xy − yx, (54.24)

A close relationship between this commutator and the wedge product of Clifford Algebra is
expected.

54.2.5 Symmetric and antisymmetric split

As with the Clifford product, the symmetric and antisymmetric split of a vector product is a
useful concept. This can be used to write the product of two Pauli basis vectors in terms of the
anticommutator and commutator products

xy =
1
2
{x, y} +

1
2
[x, y]

yx =
1
2
{x, y} −

1
2
[x, y]

(54.25)



360 pauli matrices

These follows from the definition of the anticommutator eq. (54.22) and commutator eq. (54.24)
products above, and are the equivalents of the Clifford symmetric and antisymmetric split into
dot and wedge products

xy = x · y + x ∧ y

yx = x · y − x ∧ y
(54.26)

Where the dot and wedge products are respectively

x · y =
1
2

(xy + yx)

x ∧ y =
1
2

(xy − yx)
(54.27)

Note the factor of two differences in the two algebraic notations. In particular very handy Clif-
ford vector product reversal formula

yx = −xy + 2x · y (54.28)

has no factor of two in its Pauli anticommutator equivalent

yx = −xy + {x, y} (54.29)

54.2.6 Vector inverse

It has been observed that the square of a vector is diagonal in this matrix representation, and
can therefore be inverted for any non-zero vector

x2 = |x|2I

(x2)−1 = |x|−2I

=⇒

x2(x2)−1 = I

(54.30)

So it is therefore quite justifiable to define

x−2 =
1
x2 ≡ |x|

−2I (54.31)

This allows for the construction of a dual sided vector inverse operation.

x−1 ≡
1

|x|2
x

=
1
x2 x

= x
1
x2

(54.32)
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This inverse is a scaled version of the vector itself.
The diagonality of the squared matrix or the inverse of that allows for commutation with x.

This diagonality plays the same role as the scalar in a regular Clifford square. In either case the
square can commute with the vector, and that commutation allows the inverse to have both left
and right sided action.

Note that like the Clifford vector inverse when the vector is multiplied with this inverse, the
product resides outside of the proper R3 Pauli basis since the identity matrix is required.

54.2.7 Coordinate extraction

Given a vector in the Pauli basis, we can extract the coordinates using the scalar product

x =
∑

i

1
4

tr {x, σi}σi (54.33)

But do not need to convert to strict scalar form if we are multiplying by a Pauli matrix. So in
anticommutator notation this takes the form

x = xiσi =
∑

i

1
2
{x, σi}σi

xi =
1
2
{x, σi}

(54.34)

54.2.8 Projection and rejection

The usual Clifford algebra trick for projective and rejective split maps naturally to matrix form.
Write

x = xaa−1

= (xa)a−1

=

(
1
2
{x, a} +

1
2
[x, a]

)
a−1

=

(
1
2
(xa + ax) +

1
2
(xa − ax)

)
a−1

=
1
2

(
x + axa−1

)
+

1
2

(
x − axa−1

)
(54.35)

Since {x, a} is diagonal, this first term is proportional to a−1, and thus lines in the direction of a
itself. The second term is perpendicular to a.
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These are in fact the projection of x in the direction of a and rejection of x from the direction
of a respectively.

x = x∥ + x⊥

x∥ = Proja(x) =
1
2
{x, a}a−1 =

1
2

(
x + axa−1

)
x⊥ = Reja(x) =

1
2
[x, a] a−1 =

1
2

(
x − axa−1

) (54.36)

To complete the verification of this note that the perpendicularity of the x⊥ term can be verified
by taking dot products

1
2
{a, x⊥} =

1
4

(
a
(
x − axa−1

)
+

(
x − axa−1

)
a
)

=
1
4

(
ax − aaxa−1 + xa − axa−1a

)
=

1
4
(ax − xa + xa − ax)

= 0

(54.37)

54.2.9 Space of the vector product

Expansion of the anticommutator and commutator in coordinate form shows that these entities
lie in a different space than the vectors itself.

For real coordinate vectors in the Pauli basis, all the commutator values are imaginary multi-
ples and thus not representable

[x, y] = xaσaybσb − yaσaxbσb

= (xayb − yaxb)σaσb

= 2i(xayb − yaxb)ϵabcσc

(54.38)
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Similarly, the anticommutator is diagonal, which also falls outside the Pauli vector basis:

{x, y} = xaσaybσb + yaσaxbσb

= (xayb + yaxb)σaσb

= (xayb + yaxb)(Iδab + iϵabcσc)

=
∑

a

(xaya + yaxa)I +
∑
a<b

(xayb + yaxb)i( ϵabc + ϵbac

= 0

)σc

=
∑

a

(xaya + yaxa)I

= 2
∑

a

xayaI,

(54.39)

These correspond to the Clifford dot product being scalar (grade zero), and the wedge defining
a grade two space, where grade expresses the minimal degree that a product can be reduced to.
By example a Clifford product of normal unit vectors such as

e1e3e4e1e3e4e3 ∝ e3

e2e3e4e1e3e4e3e5 ∝ e1e2e3e5
(54.40)

are grade one and four respectively. The proportionality constant will be dependent on metric
of the underlying vector space and the number of permutations required to group terms in pairs
of matching indices.

54.2.10 Completely antisymmetrized product of three vectors

In a Clifford algebra no imaginary number is required to express the antisymmetric (commu-
tator) product. However, the bivector space can be enumerated using a dual basis defined by
multiplication of the vector basis elements with the unit volume trivector. That is also the case
here and gives a geometrical meaning to the imaginaries of the Pauli formulation.

How do we even write the unit volume element in Pauli notation? This would be

σ1 ∧σ2 ∧σ3 = (σ1 ∧σ2)∧σ3

=
1
2
[σ1, σ2] ∧σ3

=
1
4
([σ1, σ2]σ3 +σ3 [σ1, σ2])

(54.41)

So we have

σ1 ∧σ2 ∧σ3 =
1
8

{
[σ1, σ2] , σ3

}
(54.42)



364 pauli matrices

Similar expansion of σ1 ∧σ2 ∧σ3 = σ1 ∧ (σ2 ∧σ3), or σ1 ∧σ2 ∧σ3 = (σ3 ∧σ1)∧σ2 shows
that we must also have{

[σ1, σ2] , σ3
}
=

{
σ1, [σ2, σ3]

}
=

{
[σ3, σ1] , σ2

}
(54.43)

Until now the differences in notation between the anticommutator/commutator and the dot/wedge
product of the Pauli algebra and Clifford algebra respectively have only differed by factors of
two, which is not much of a big deal. However, having to express the naturally associative
wedge product operation in the non-associative looking notation of equation eq. (54.42) is rather
unpleasant seeming. Looking at an expression of the form gives no mnemonic hint of the un-
derlying associativity, and actually seems obfuscating. I suppose that one could get used to it
though.

We expect to get a three by three determinant out of the trivector product. Let us verify this
by expanding this in Pauli notation for three general coordinate vectors{

[x, y] , z
}
=

{[
xaσa, ybσb

]
, zcσc

}
= 2iϵabd xaybzc{σd, σc}

= 4iϵabd xaybzcδcdI

= 4iϵabcxaybzcI

= 4i

∣∣∣∣∣∣∣∣∣∣∣
xa xb xc

ya yb yc

za zb zc

∣∣∣∣∣∣∣∣∣∣∣ I

(54.44)

In particular, our unit volume element is

σ1 ∧σ2 ∧σ3 =
1
4

{
[σ1, σ2] , σ3

}
= iI (54.45)

So one sees that the complex number i in the Pauli algebra can logically be replaced by the unit
pseudoscalar iI, and relations involving i, like the commutator expansion of a vector product, is
restored to the expected dual form of Clifford algebra

σa ∧σb =
1
2
[σa, σb]

= iϵabcσc

= (σa ∧σb ∧σc)σc

(54.46)

Or

σa ∧σb = (σa ∧σb ∧σc) ·σc (54.47)
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54.2.11 Duality

We have seen that multiplication by i is a duality operation, which is expected since iI is the
matrix equivalent of the unit pseudoscalar. Logically this means that for a vector x, the product
(iI)x represents a plane quantity (torque, angular velocity/momentum, ...). Similarly if B is a
plane object, then (iI)B will have a vector interpretation.

In particular, for the antisymmetric (commutator) part of the vector product xy

1
2
[x, y] =

1
2

xayb [σa, σb]

= xaybiϵabcσc

(54.48)

a “vector” in the dual space spanned by {iσa} is seen to be more naturally interpreted as a plane
quantity (bivector in Clifford algebra).

As in Clifford algebra, we can write the cross product in terms of the antisymmetric product

a × b =
1
2i

[a, b] . (54.49)

With the factor of 2 in the denominator here (like the exponential form of sine), it is interesting
to contrast this to the cross product in its trigonometric form

a × b = |a||b| sin(θ)n̂

= |a||b|
1
2i

(eiθ − e−iθ)n̂
(54.50)

This shows we can make the curious identity[
â, b̂

]
= (eiθ − e−iθ)n̂ (54.51)

If one did not already know about the dual sides half angle rotation formulation of Clifford
algebra, this is a hint about how one could potentially work towards that. We have the commu-
tator (or wedge product) as a rotation operator that leaves the normal component of a vector
untouched (commutes with the normal vector).

54.2.12 Complete algebraic space

Pauli equivalents for all the elements in the Clifford algebra have now been determined.

• scalar

α→ αI (54.52)
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• vector

uiσi →

 0 u1

u1 0

 +
 0 −iu2

iu2 0

 +
u3 0

0 −u3


=

 u3 u1 − iu2

u1 + iu2 −u3


(54.53)

• bivector

σ1σ2σ3vaσa → ivaσa

=

 iv3 iv1 + v2

iv1 − v2 −iv3

 (54.54)

• pseudoscalar

βσ1σ2σ3 → iβI (54.55)

Summing these we have the mapping from Clifford basis to Pauli matrix as follows

α + βI + uiσi + Ivaσa →

 (α + u3) + i(β + v3) (u1 + v2) + i(−u2 + v1)

(u1 − v2) + i(u2 − v1) (α − u3) + i(β − v3)

 (54.56)

Thus for any given sum of scalar, vector, bivector, and trivector elements we can completely
express this in Pauli form as a general 2x2 complex matrix.

Provided that one can also extract the coordinates for each of the grades involved, this also
provides a complete Clifford algebra characterization of an arbitrary complex 2x2 matrix.

Computationally this has some nice looking advantages. Given any canned complex matrix
software, one should be able to easily cook up with little work a working R3 Clifford calculator.

As for the coordinate extraction, part of the work can be done by taking real and imaginary
components. Let an element of the general algebra be denoted

P =

z11 z12

z21 z22

 (54.57)

We therefore have

Re(P) =

α + u3 u1 + v2

u1 − v2 α − u3


Im(P) =

 β + v3 −u2 + v1

u2 + v1 β − v3


(54.58)
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By inspection, symmetric and antisymmetric sums of the real and imaginary parts recovers the
coordinates as follows

α =
1
2

Re(z11 + z22)

u3 =
1
2

Re(z11 − z22)

u1 =
1
2

Re(z12 + z21)

v2 =
1
2

Re(z12 − z21)

β =
1
2

Im(z11 + z22)

v3 =
1
2

Im(z11 − z22)

v1 =
1
2

Im(z12 + z21)

u2 =
1
2

Im(−z12 + z21)

(54.59)

In terms of grade selection operations the decomposition by grade

P = ⟨P⟩ + ⟨P⟩1 + ⟨P⟩2 + ⟨P⟩3, (54.60)

is

⟨P⟩ =
1
2

Re(z11 + z22) =
1
2

Re(tr P)

⟨P⟩1 =
1
2
(Re(z12 + z21)σ1 + Im(−z12 + z21)σ2 +Re(z11 − z22)σ3)

⟨P⟩2 =
1
2
(Im(z12 + z21)σ2 ∧σ3 +Re(z12 − z21)σ3 ∧σ1 + Im(z11 − z22)σ1 ∧σ2)

⟨P⟩3 =
1
2

Im(z11 + z22)I =
1
2

Im(tr P)σ1 ∧σ2 ∧σ3

(54.61)

Employing Im(z) = Re(−iz), and Re(z) = Im(iz) this can be made slightly more symmetrical,
with Real operations selecting the vector coordinates and imaginary operations selecting the
bivector coordinates.

⟨P⟩ =
1
2

Re(z11 + z22) =
1
2

Re(tr P)

⟨P⟩1 =
1
2
(Re(z12 + z21)σ1 +Re(iz12 − iz21)σ2 +Re(z11 − z22)σ3)

⟨P⟩2 =
1
2
(Im(z12 + z21)σ2 ∧σ3 + Im(iz12 − iz21)σ3 ∧σ1 + Im(z11 − z22)σ1 ∧σ2)

⟨P⟩3 =
1
2

Im(z11 + z22)I =
1
2

Im(tr P)σ1 ∧σ2 ∧σ3

(54.62)
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Finally, returning to the Pauli algebra, this also provides the following split of the Pauli multi-
vector matrix into its geometrically significant components P = ⟨P⟩ + ⟨P⟩1 + ⟨P⟩2 + ⟨P⟩3,

⟨P⟩ =
1
2

Re(z11 + z22)I

⟨P⟩1 =
1
2
(Re(z12 + z21)σ1 +Re(iz12 − iz21)σ2 +Re(z11 − z22)σ3)

⟨P⟩2 =
1
2
(Im(z12 + z21)iσ1 + Im(iz12 − iz21)iσ2 + Im(z11 − z22)iσk)

⟨P⟩3 =
1
2

Im(z11 + z22)iI

(54.63)

54.2.13 Reverse operation

The reversal operation switches the order of the product of perpendicular vectors. This will
change the sign of grade two and three terms in the Pauli algebra. Since σ2 is imaginary, con-
jugation does not have the desired effect, but Hermitian conjugation (conjugate transpose) does
the trick.

Since the reverse operation can be written as Hermitian conjugation, one can also define the
anticommutator and commutator in terms of reversion in a way that seems particularly natural
for complex matrices. That is

{a, b} = ab + (ab)∗

[a, b] = ab − (ab)∗
(54.64)

54.2.14 Rotations

Rotations take the normal Clifford, dual sided quaterionic form. A rotation about a unit normal
n will be

R(x) = e−inθ/2xeinθ/2 (54.65)

The Rotor R = e−inθ/2 commutes with any component of the vector x that is parallel to the
normal (perpendicular to the plane), whereas it anticommutes with the components in the plane.
Writing the vector components perpendicular and parallel to the plane respectively as x = x⊥ +
x∥, the essence of the rotation action is this selective commutation or anti-commutation behavior

Rx∥R∗ = x∥R∗

Rx⊥R∗ = x⊥RR∗ = x⊥
(54.66)
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Here the exponential has the obvious meaning in terms of exponential series, so for this bivector
case we have

exp(in̂θ/2) = cos(θ/2)I + in̂ sin(θ/2) (54.67)

The unit bivector B = in̂ can also be defined explicitly in terms of two vectors a, and b in the
plane

B =
1∣∣∣[a, b]∣∣∣ [a, b] (54.68)

Where the bivector length is defined in terms of the conjugate square (bivector times bivector
reverse)∣∣∣[a, b]∣∣∣2 = [a, b] [a, b]∗ (54.69)

Examples to complete this subsection would make sense. As one of the most powerful and use-
ful operations in the algebra, it is a shame in terms of completeness to skimp on this. However,
except for some minor differences like substitution of the Hermitian conjugate operation for
reversal, the use of the identity matrix I in place of the scalar in the exponential expansion, the
treatment is exactly the same as in the Clifford algebra.

54.2.15 Grade selection

Coordinate equations for grade selection were worked out above, but the observation that re-
version and Hermitian conjugation are isomorphic operations can partially clean this up. In
particular a Hermitian conjugate symmetrization and anti-symmetrization of the general matrix
provides a nice split into quaternion and dual quaternion parts (say P = Q + R respectively).
That is

Q = ⟨P⟩ + ⟨P⟩1 =
1
2

(P + P∗)

R = ⟨P⟩2 + ⟨P⟩3 =
1
2

(P − P∗)
(54.70)

Now, having done that, how to determine ⟨Q⟩, ⟨Q⟩1, ⟨R⟩2, and ⟨R⟩3 becomes the next question.
Once that is done, the individual coordinates can be picked off easily enough. For the vector
parts, a Fourier decomposition as in equation eq. (54.34) will retrieve the desired coordinates.

The dual vector coordinates can be picked off easily enough taking dot products with the dual
basis vectors

B = Bkiσk =
∑

k

1
2

{
B,

1
iσk

}
iσk

Bk =
1
2

{
B,

1
iσk

} (54.71)
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For the quaternion part Q the aim is to figure out how to isolate or subtract out the scalar part.
This is the only tricky bit because the diagonal bits are all mixed up with the σ3 term which is
also real, and diagonal. Consideration of the sum

aI + bσ3 =

a + b 0

0 a − b

 , (54.72)

shows that trace will recover the value 2a, so we have

⟨Q⟩ =
1
2

tr (Q) I

⟨Q⟩1 = Q −
1
2

tr (Q) I.
(54.73)

Next is isolation of the pseudoscalar part of the dual quaternion R. As with the scalar part,
consideration of the sum of the iσ3 term and the iI term is required

iaI + ibσ3 =

ia + ib 0

0 ia − ib

 , (54.74)

So the trace of the dual quaternion provides the 2a, leaving the bivector and pseudoscalar grade
split

⟨R⟩3 =
1
2

tr (R) I

⟨R⟩2 = R −
1
2

tr (R) I.
(54.75)

A final assembly of these results provides the following coordinate free grade selection opera-
tors

⟨P⟩ =
1
4

tr (P + P∗) I

⟨P⟩1 =
1
2

(P + P∗) −
1
4

tr (P + P∗) I

⟨P⟩2 =
1
2

(P − P∗) −
1
4

tr (P − P∗) I

⟨P⟩3 =
1
4

tr (P − P∗) I

(54.76)

54.2.16 Generalized dot products

Here the equivalent of the generalized Clifford bivector/vector dot product will be computed, as
well as the associated distribution equation

(a∧ b) · c = a(b · c) − b(a · c) (54.77)
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To translate this write

(a∧ b) · c =
1
2
((a∧ b)c − c(a∧ b)) (54.78)

Then with the identifications

a · b ≡
1
2
{a, b}

a∧ b ≡
1
2
[a, b]

(54.79)

we have

(a∧ b) · c ≡
1
4
[[a, b], c]

=
1
2
(a{b, c} − {b, c}a)

(54.80)

From this we also get the strictly Pauli algebra identity

[[a, b], c] = 2 (a{b, c} − {b, c}a) (54.81)

But the geometric meaning of this is unfortunately somewhat obfuscated by the notation.

54.2.17 Generalized dot and wedge product

The fundamental definitions of dot and wedge products are in terms of grade

⟨A⟩r · ⟨B⟩s = ⟨AB⟩|r−s| (54.82)

⟨A⟩r ∧ ⟨B⟩s = ⟨AB⟩r+s (54.83)

Use of the trace and Hermitian conjugate split grade selection operations above, we can calcu-
late these for each of the four grades in the Pauli algebra.

54.2.17.1 Grade zero

There are three dot products consider, vector/vector, bivector/bivector, and trivector/trivector. In
each case we want to compute

A · B = ⟨A⟩B

=
1
4

tr (AB+ (AB)∗) I

=
1
4

tr (AB+ B∗A∗) I

(54.84)
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For vectors we have a∗ = a, since the Pauli basis is Hermitian, whereas for bivectors and
trivectors we have a∗ = −a. Therefore, in all cases where A, and B have equal grades we have

A · B = ⟨A⟩BI

=
1
4

tr (AB+ BA) I

=
1
4

tr {A, B}I

(54.85)

54.2.17.2 Grade one

We have two dot products that produce vectors, bivector/vector, and trivector/bivector, and in
each case we need to compute

⟨AB⟩1 =
1
2

(AB+ (AB)∗) −
1
4

tr (AB+ (AB)∗) (54.86)

For the bivector/vector dot product we have

(Ba)∗ = −aB (54.87)

For bivector B = ibkσk, and vector a = akσk our symmetric Hermitian sum in coordinates is

Ba + (Ba)∗ = Ba − aB

= ibkσkamσm − amσmibkσk
(54.88)

Any m = k terms will vanish, leaving only the bivector terms, which are traceless. We therefore
have

B · a = ⟨Ba⟩1

=
1
2

(Ba − aB)

=
1
2
[B, a] .

(54.89)

This result was borrowed without motivation from Clifford algebra in equation eq. (54.78), and
thus not satisfactory in terms of a logically derived sequence.

For a trivector T dotted with bivector B we have

(BT )∗ = (−T )(−B) = T B = BT. (54.90)

This is also traceless, and the trivector/bivector dot product is therefore reduced to just

B · T = ⟨BT ⟩1

=
1
2
{B,T }

= BT

= T B.

(54.91)
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This is the duality relationship for bivectors. Multiplication by the unit pseudoscalar (or any
multiple of it), produces a vector, the dual of the original bivector.

54.2.17.3 Grade two

We have two products that produce a grade two term, the vector wedge product, and the vec-
tor/trivector dot product. For either case we must compute

⟨AB⟩2 =
1
2

(AB− (AB)∗) −
1
4

tr (AB− (AB)∗) (54.92)

For a vector a, and trivector T we need the antisymmetric Hermitian sum

aT − (aT )∗ = aT + Ta = 2aT = 2Ta (54.93)

This is a pure bivector, and thus traceless, leaving just

a · T = ⟨aT ⟩2
= aT

= Ta

(54.94)

Again we have the duality relation, pseudoscalar multiplication with a vector produces a bivec-
tor, and is equivalent to the dot product of the two.

Now for the wedge product case, with vector a = amσm, and b = bkσk we must compute

ab − (ab)∗ = ab − ba

= amσmbkσk − bkσkamσm
(54.95)

All the m = n terms vanish, leaving a pure bivector which is traceless, so only the first term of
eq. (54.92) is relevant, and is in this case a commutator

a∧ b = ⟨ab⟩2

=
1
2
[a, b]

(54.96)

54.2.17.4 Grade three

There are two ways we can produce a grade three term in the algebra. One is a wedge of a vector
with a bivector, and the other is the wedge product of three vectors. The triple wedge product is
the grade three term of the product of the three

a∧ b∧ c = ⟨abc⟩3

=
1
4

tr (abc − (abc)∗)

=
1
4

tr (abc − cba)

(54.97)
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With a split of the bc and cb terms into symmetric and antisymmetric terms we have

abc − cba =
1
2

(a{b, c} − {c, b}a) +
1
2

(a [b, c] − [c, b] a) (54.98)

The symmetric term is diagonal so it commutes (equivalent to scalar commutation with a vector
in Clifford algebra), and this therefore vanishes. Writing B = b ∧ c = 1

2 [b, c], and noting that
[b, c] = − [c, b] we therefore have

a∧ B = ⟨aB⟩3

=
1
4

tr (aB+ Ba)

=
1
4

tr {a, B}

(54.99)

In terms of the original three vectors this is

a∧ b∧ c = ⟨aB⟩3

=
1
8

tr
{
a, [b, c]

}
.

(54.100)

Since this could have been expanded by grouping ab instead of bc we also have

a∧ b∧ c =
1
8

tr
{
[a, b] , c

}
. (54.101)

54.2.18 Plane projection and rejection

Projection of a vector onto a plane follows like the vector projection case. In the Pauli notation
this is

x = xB
1
B

=
1
2
{x, B}

1
B
+

1
2
[x, B]

1
B

(54.102)

Here the plane is a bivector, so if vectors a, and b are in the plane, the orientation and attitude
can be represented by the commutator

So we have

x =
1
2

{
x, [a, b]

} 1
[a, b]

+
1
2
[x, [a, b]]

1
[a, b]

(54.103)

Of these the second term is our projection onto the plane, while the first is the normal component
of the vector.
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54.3 examples

54.3.1 Radial decomposition

54.3.1.1 Velocity and momentum

A decomposition of velocity into radial and perpendicular components should be straightfor-
ward in the Pauli algebra as it is in the Clifford algebra.

With a radially expressed position vector

x = |x|x̂, (54.104)

velocity can be written by taking derivatives

v = x′ = |x|′ x̂ + |x|x̂′ (54.105)

or as above in the projection calculation with

v = v
1
x

x

=
1
2

{
v,

1
x

}
x +

1
2

[
v,

1
x

]
x

=
1
2
{v, x̂}x̂ +

1
2
[v, x̂] x̂

(54.106)

By comparison we have

|x|′ =
1
2
{v, x̂}

x̂′ =
1

2|x|
[v, x̂] x̂

(54.107)

In assembled form we have

v =
1
2
{v, x̂}x̂ + xω (54.108)

Here the commutator has been identified with the angular velocity bivector ω

ω =
1

2x2 [x, v] . (54.109)

Similarly, the linear and angular momentum split of a momentum vector is

p∥ =
1
2
{p, x̂}x̂

p⊥ =
1
2
[p, x̂] x̂

(54.110)
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and in vector form

p =
1
2
{p, x̂}x̂ +mxω (54.111)

Writing J = mx2 for the moment of inertia we have for our commutator

L =
1
2
[x, p] = mx2ω = Jω (54.112)

With the identification of the commutator with the angular momentum bivector L we have the
total momentum as

p =
1
2
{p, x̂}x̂ +

1
x

L (54.113)

54.3.1.2 Acceleration and force

Having computed velocity, and its radial split, the next logical thing to try is acceleration.
The acceleration will be

a = v′ = |x|′′ x̂ + 2|x|′ x̂′ + |x|x̂′′ (54.114)

We need to compute x̂′′ to continue, which is

x̂′′ =
(

1
2|x|3

[v, x] x
)′

=
−3

2|x|4
|x|′ [v, x] x +

1
2|x|3

[a, x] x +
1

2|x|3
[v, x] v

=
−3

4|x|5
{v, x} [v, x] x +

1
2|x|3

[a, x] x +
1

2|x|3
[v, x] v

(54.115)

Putting things back together is a bit messy, but starting so gives

a = |x|′′ x̂ + 2
1

4|x|4
{v, x} [v, x] x +

−3
4|x|4
{v, x} [v, x] x +

1
2|x|2

[a, x] x +
1

2|x|2
[v, x] v

= |x|′′ x̂ −
1

4|x|4
{v, x} [v, x] x +

1
2|x|2

[a, x] x +
1

2|x|2
[v, x] v

= |x|′′ x̂ +
1

4|x|4
[v, x]

(
−{v, x}x + 2x2v

)
+

1
2|x|2

[a, x] x

(54.116)

The anticommutator can be eliminated above using

vx =
1
2
{v, x} +

1
2
[v, x]

=⇒

−{v, x}x + 2x2v = −(2vx − [v, x])x + 2x2v

= [v, x] x

(54.117)
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Finally reassembly of the assembly is thus

a = |x|′′ x̂ +
1

4|x|4
[v, x]2 x +

1
2|x|2

[a, x] x

= |x|′′ x̂ +ω2x +
1
2
[a, x]

1
x

(54.118)

The second term is the inwards facing radially directed acceleration, while the last is the rejec-
tive component of the acceleration.

It is usual to express this last term as the rate of change of angular momentum (torque).
Because [v, v] = 0, we have

d [x, v]
dt

= [x, a] (54.119)

So, for constant mass, we can write the torque as

τ =
d
dt

(
1
2
[x, p]

)
=

dL
dt

(54.120)

and finally have for the force

F = m|x|′′ x̂ +mω2x +
1
x

dL
dt

= m

|x|′′ −
∣∣∣ω2

∣∣∣
|x|

 x̂ +
1
x

dL
dt

(54.121)

54.4 conclusion

Although many of the GA references that can be found downplay the Pauli algebra as unneces-
sarily employing matrices as a basis, I believe this shows that there are some nice computational
and logical niceties in the complete formulation of the R3 Clifford algebra in this complex ma-
trix formulation. If nothing else it takes some of the abstraction away, which is good for devel-
oping intuition. All of the generalized dot and wedge product relationships are easily derived
showing specific examples of the general pattern for the dot and blade product equations which
are sometimes supplied as definitions instead of consequences.

Also, the matrix concepts (if presented right which I likely have not done) should also be
accessible to most anybody out of high school these days since both matrix algebra and complex
numbers are covered as basics these days (at least that is how I recall it from fifteen years back;)
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Hopefully, having gone through the exercise of examining all the equivalent constructions
will be useful in subsequent Quantum physics study to see how the matrix algebra that is used
in that subject is tied to the classical geometrical vector constructions.

Expressions that were scary and mysterious looking like

[Lx, Ly] = i h̄Lz (54.122)

are no longer so bad since some of the geometric meaning that backs this operator expression
is now clear (this is a quantization of angular momentum in a specific plane, and encodes the
plane orientation as well as the magnitude). Knowing that [a, b] was an antisymmetric sum, but
not realizing the connection between that and the wedge product previously made me wonder
“where the hell did the i come from”?

This commutator equation is logically and geometrically a plane operation. It can therefore be
expressed with a vector duality relationship employing the R3 unit pseudoscalar iI = σ1σ2σ3.
This is a good nice step towards taking some of the mystery out of the math behind the physics
of the subject (which has enough intrinsic mystery without the mathematical language adding
to it).

It is unfortunate that QM uses this matrix operator formulation and none of classical physics
does. By the time one gets to QM learning an entirely new language is required despite the fact
that there are many powerful applications of this algebra in the classical domain, not just for
rotations which is recognized (in [12] for example where he uses the Pauli algebra to express
his rotation quaternions.)
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55.1 dirac matrices

The Dirac matrices γµ can be used as a Minkowski basis. The basic defining relationship is the
Minkowski metric, where the dot products satisfy

γµ • γν = ±δµν

(γ0 • γ0)(γa • γa) = −1 where a ∈ {1, 2, 3}
(55.1)

There is freedom to pick the positive square for either γ0 or γa, and both conventions are com-
mon.

One of the matrix representations for these vectors listed in the Dirac matrix wikipedia article
is

γ0 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


γ1 =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0



γ2 =


0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0


γ3 =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0



(55.2)

For this particular basis we have a + − −− metric signature. In the matrix form this takes the
specific meaning that (γ0)2 = I, and (γa)2 = −I.

A table of all the possible product variants of eq. (55.2) can be found below in the appendix.

55.1.1 anticommutator product

Noting that the matrices square in the fashion just described and that they reverse sign when
multiplication order is reversed allows for summarizing the dot products relationships as follows

{
γµ, γν

}
= γµγν + γνγµ

= 2ηµνI,
(55.3)

https://en.wikipedia.org/wiki/Gamma_matrices
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where the metric tensor ηµν = γµ • γν is commonly summarized as coordinates of a matrix as in

[
ηµν

]
=


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(55.4)

The relationship eq. (55.3) is taken as the defining relationship for the Dirac matrices, but can
be seen to be just a matricized statement of the Clifford vector dot product.

55.1.2 Written as Pauli matrices

Using the Pauli matrices

σ1 =

0 1

1 0

 σ2 =

0 −i

i 0

 σ3 =

1 0

0 −1

 (55.5)
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one can write the Dirac matrices and all their products (reading from the multiplication table)
more concisely as

γ0 =

I 0

0 −I


γa =

 0 σa

−σa 0


γ0γa =

 0 σa

σa 0


γaγb = −iϵabc

σc 0

0 σc


γ1γ2γ3 = i

0 −I

I 0


γ0γ1γ2 = i

−σ1 0

0 σ1


γ3γ0γ1 = i

σ2 0

0 −σ2


γ0γ1γ2 = i

−σ3 0

0 σ3



(55.6)

55.1.3 Deriving properties using the Pauli matrices

From the multiplication table a number of properties can be observed. Using the Pauli matrices
one can arrive at these more directly using the multiplication identity for those matrices

σaσb = 2iϵabcσc (55.7)

Actually taking the time to type this out in full does not seem worthwhile and is a fairly straight-
forward exercise.
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55.1.4 Conjugation behavior

Unlike the Pauli matrices, the Dirac matrices do not split nicely via conjugation. Instead we
have the time basis vector and its dual are Hermitian

(γ0)∗ = γ0

(γ1γ2γ3)∗ = γ1γ2γ3 (55.8)

whereas the spacelike basis vectors and their duals are all anti-Hermitian

(γa)∗ = −γa

(γaγbγc)∗ = −γaγbγc.
(55.9)

For the scalar and the pseudoscalar parts we have a Hermitian split

I∗ = I

(γ0γ1γ2γ3)∗ = −(γ0γ1γ2γ3)∗
(55.10)

and finally, also have a Hermitian split of the bivector parts into spacetime (relative vectors),
and the purely spatial bivectors

(γ0γa)∗ = γ0γa

(γaγb)∗ = −γaγb (55.11)

Is there a logical and simple set of matrix operations that splits things nicely into scalar, vector,
bivector, trivector, and pseudoscalar parts as there was with the Pauli matrices?

55.2 appendix . table of all generated products

A small C++ program using boost::numeric::ublas and std::complex, plus some perl to generate
part of that, was written to generate the multiplication table for the gamma matrix products for
this particular basis. The metric tensor and the antisymmetry of the wedge products can be seen
from these.

γ0γ0 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


γ1γ1 =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(55.12)
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γ2γ2 =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


γ3γ3 =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(55.13)

γ0γ1 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


γ1γ0 =


0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0


(55.14)

γ0γ2 =


0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0


γ2γ0 =


0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0


(55.15)

γ0γ3 =


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0


γ3γ0 =


0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0


(55.16)

γ1γ2 =


−i 0 0 0

0 i 0 0

0 0 −i 0

0 0 0 i


γ2γ1 =


i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 −i


(55.17)

γ1γ3 =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


γ3γ1 =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


(55.18)
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γ2γ3 =


0 −i 0 0

−i 0 0 0

0 0 0 −i

0 0 −i 0


γ3γ2 =


0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0


(55.19)

γ1γ2γ3 =


0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0


γ2γ3γ0 =


0 −i 0 0

−i 0 0 0

0 0 0 i

0 0 i 0


(55.20)

γ3γ0γ1 =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


γ0γ1γ2 =


−i 0 0 0

0 i 0 0

0 0 i 0

0 0 0 −i


(55.21)

γ0γ1γ2γ3 =


0 0 −i 0

0 0 0 −i

−i 0 0 0

0 −i 0 0


(55.22)



56B I V E C T O R F O R M O F Q UA N T U M A N G U L A R M O M E N T U M
O P E R AT O R

56.1 spatial bivector representation of the angular momentum operator

Reading [3] on the angular momentum operator, the form of the operator is suggested by anal-
ogy where components of x × p with the position representation p ∼ −i h̄∇ used to expand the
coordinate representation of the operator.

The result is the following coordinate representation of the operator

L1 = −i h̄(x2∂3 − x3∂2)

L2 = −i h̄(x3∂1 − x1∂3)

L3 = −i h̄(x1∂2 − x2∂1)

(56.1)

It is interesting to put these in vector form, and then employ the freedom to use for i = σ1σ2σ3

the spatial pseudoscalar.

L = −σ1(σ1σ2σ3) h̄(x2∂3 − x3∂2) −σ2(σ2σ3σ1) h̄(x3∂1 − x1∂3) −σ3(σ3σ1σ2) h̄(x1∂2 − x2∂1)

= −σ2σ3 h̄(x2∂3 − x3∂2) −σ3σ1 h̄(x3∂1 − x1∂3) −σ1σ2 h̄(x1∂2 − x2∂1)

= − h̄(σ1x1 +σ2x2 +σ3x3)∧ (σ1∂1 +σ2∂2 +σ3∂3)
(56.2)

The choice to use the pseudoscalar for this imaginary seems a logical one and the end result is
a pure bivector representation of angular momentum operator

L = − h̄x∧∇ (56.3)

The choice to represent angular momentum as a bivector x ∧ p is also natural in classical me-
chanics (encoding the orientation of the plane and the magnitude of the momentum in the bivec-
tor), although its dual form the axial vector x × p is more common, at least in introductory
mechanics. Observe that there is no longer any explicit imaginary in eq. (56.3), since the bivec-
tor itself has an implicit complex structure.

56.2 factoring the gradient and laplacian

The form of eq. (56.3) suggests a more direct way to extract the angular momentum operator
from the Hamiltonian (i.e. from the Laplacian). Bohm uses the spherical polar representation
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of the Laplacian as the starting point. Instead let us project the gradient itself in a specific
constant direction a, much as we can do to find the polar form angular velocity and acceleration
components.

Write

∇ =
1
a

a∇

=
1
a

(a ·∇ + a∧∇)
(56.4)

Or

∇ = ∇a
1
a

= (∇ · a +∇∧ a)
1
a

= (a ·∇ − a∧∇)
1
a

(56.5)

The Laplacian is therefore

∇
2 =

〈
∇

2
〉

=

〈
(a ·∇ − a∧∇)

1
a

1
a

(a ·∇ + a∧∇)
〉

=
1
a2 ⟨(a ·∇ − a∧∇)(a ·∇ + a∧∇)⟩

=
1
a2 ((a ·∇)2 − (a∧∇)2)

(56.6)

So we have for the Laplacian a representation in terms of projection and rejection components

∇
2 = (â ·∇)2 −

1
a2 (a∧∇)2

= (â ·∇)2 − (â∧∇)2
(56.7)

The vector a was arbitrary, and just needed to be constant with respect to the factorization
operations. Setting a = x, the radial position from the origin one may guess that we have

∇
2 =

∂2

∂r2 −
1
x2 (x∧∇)2 (56.8)

however, with the switch to a non-constant position vector x, this cannot possibly be right.



56.3 the coriolis term 387

56.3 the coriolis term

The radial factorization of the gradient relied on the direction vector a being constant. If we
evaluate eq. (56.8), then there should be a non-zero remainder compared to the Laplacian. Eval-
uation by coordinate expansion is one way to verify this, and should produce the difference. Let
us do this in two parts, starting with the scalar part of (x ∧ ∇)2. Summation will be implied by
mixed indices, and for generality a general basis and associated reciprocal frame will be used.〈

(x ∧∇)2
〉

f = ((xµγµ)∧ (γν∂ν)) · ((xαγα)∧ (γβ∂β)) f

= (γµ ∧ γν) · (γα ∧ γβ)xµ∂ν(xα∂β) f

= (δµβδνα − δµαδνβ)xµ∂ν(xα∂β) f

= xµ∂ν((xν∂µ) − xµ∂ν) f

= xµ(∂νxν)∂µ f − xµ(∂νxµ)∂ν f

+ xµxν∂ν∂µ f − xµxµ∂ν∂ν f

= (n − 1)x · ∇ f + xµxν∂ν∂µ f − x2∇2 f

(56.9)

For the dot product we have〈
(x · ∇)2

〉
f = xµ∂µ(xν∂ν) f

= xµ(∂µxν)∂ν f + xµxν∂µ∂ν f

= xµ∂µ f + xµxν∂ν∂µ f

= x · ∇ f + xµxν∂ν∂µ f

(56.10)

So, forming the difference we have

(x · ∇)2 f −
〈
(x ∧∇)2

〉
f = −(n − 2)x · ∇ f + x2∇2 f (56.11)

Or

∇2 =
1
x2 (x · ∇)2 −

1
x2

〈
(x ∧∇)2

〉
+ (n − 2)

1
x
· ∇ (56.12)

56.4 on the bivector and quadvector components of the squared angular mo-
mentum operator

The requirement for a scalar selection on all the (x ∧ ∇)2 terms is a bit ugly, but omitting it
would be incorrect for two reasons. One reason is that this is a bivector operator and not a
bivector (where the squaring operates on itself). The other is that we derived a result for arbitrary
dimension, and the product of two bivectors in a general space has grade 2 and grade 4 terms in
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addition to the scalar terms. Without taking only the scalar parts, lets expand this product a bit
more carefully, starting with

(x ∧∇)2 = (γµ ∧ γν)(γα ∧ γβ)xµ∂νxα∂β (56.13)

Just expanding the multivector factor for now, we have

2(γµ ∧ γν)(γα ∧ γβ)

= γµγν(γα ∧ γβ) − γνγµ(γα ∧ γβ)

= γµ
(
δν
αγβ − δν

βγα + γν ∧ γ
α ∧ γβ

)
− γν

(
δµ
αγβ − δµ

βγα + γµ ∧ γ
α ∧ γβ

)
= δν

αδµ
β − δν

βδµ
α − δµ

αδν
β + δµ

βδν
α

+ γµ ∧ γν ∧ γ
α ∧ γβ − γν ∧ γµ ∧ γ

α ∧ γβ

+ γµ · (γν ∧ γα ∧ γβ) − γν · (γµ ∧ γα ∧ γβ)

(56.14)

Our split into grades for this operator is then, the scalar〈
(x ∧∇)2

〉
= (x ∧∇) · (x ∧∇)

=
(
δν
αδµ

β − δν
βδµ

α
)

xµ∂νxα∂β
(56.15)

the pseudoscalar (or grade 4 term in higher than 4D spaces).〈
(x ∧∇)2

〉
4
= (x ∧∇)∧ (x ∧∇)

=
(
γµ ∧ γν ∧ γ

α ∧ γβ
)

xµ∂νxα∂β
(56.16)

If we work in dimensions less than or equal to three, we will have no grade four term since this
wedge product is zero (irrespective of the operator action), so in 3D we have only a bivector
term in excess of the scalar part of this operator.

The bivector term deserves some reduction, but is messy to do so. This has been done sepa-
rately in (58)

We can now write for the squared operator

(x ∧∇)2 = (n − 2)(x ∧∇) + (x ∧∇)∧ (x ∧∇) + (x ∧∇) · (x ∧∇) (56.17)

and then eliminate the scalar selection from the eq. (56.12)

∇2 =
1
x2 (x · ∇)2 + (n− 2)

1
x
· ∇ −

1
x2

(
(x ∧∇)2 − (n − 2)(x ∧∇) − (x ∧∇)∧ (x ∧∇)

)
(56.18)

In 3D this is

∇
2 =

1
x2 (x ·∇)2 +

1
x
·∇ −

1
x2 (x∧∇ − 1) (x∧∇) (56.19)
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Wow, that was an ugly mess of algebra. The worst of it for the bivector grades was initially
incorrect and the correct handling omitted. There is likely a more clever coordinate free way
to do the same expansion. We will see later that at least a partial verification of eq. (56.19)
can be obtained by considering of the Quantum eigenvalue problem, examining simultaneous
eigenvalues of x ∧∇, and

〈
x∧∇)2

〉
. However, lets revisit this after examining the radial terms

in more detail, and also after verifying that at least in the scalar selection form, this factorized
Laplacian form has the same structure as the Laplacian in scalar r, θ, and ϕ operator form.

FIXME: the reduction of the scalar selection term doesn’t look right: and appears to leave a
bivector term in an otherwise scalar equation. With that term in place, this doens’t match the
same identity [26] eq. 6.16, whereas eq. (56.107) does. Does that cancel out when (x∧∇)2 is
expanded?

56.5 correspondence with explicit radial form

We have seen above that we can factor the 3D Laplacian as

∇
2ψ =

1
x2 ((x ·∇)2 + x ·∇ −

〈
(x∧∇)2

〉
)ψ (56.20)

Contrast this to the explicit r, θ, ϕ form as given in (Bohm’s [3], 14.2)

∇
2ψ =

1
r
∂2

∂r2 (rψ) +
1
r2

(
1

sin θ
∂θ sin θ∂θ +

1
sin2 θ

+ ∂ϕϕ

)
ψ (56.21)

Let us expand out the non-angular momentum operator terms explicitly as a partial verification
of this factorization. The radial term in Bohm’s Laplacian formula expands out to

1
r
∂2

∂r2 (rψ) =
1
r
∂r(∂rrψ)

=
1
r
∂r(ψ + r∂rψ)

=
1
r
∂rψ +

1
r

(∂rψ + r∂rrψ)

=
2
r
∂rψ + ∂rrψ

(56.22)
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On the other hand, with x = rr̂, what we expect to correspond to the radial term in the vector
factorization is

1
x2 ((x ·∇)2 + x ·∇)ψ =

1
r2 ((rr̂ ·∇)2 + rr̂ ·∇)ψ

=
1
r2 ((r∂r)2 + r∂r)ψ

=
1
r2 (r∂rψ + r2∂rrψ + r∂rψ)

=
2
r
∂rψ + ∂rrψ

(56.23)

Okay, good. It is a brute force way to verify things, but it works. With x∧∇ = I(x ×∇) we can
eliminate the wedge product from the factorization expression eq. (56.20) and express things
completely in quantities that can be understood without any resort to Geometric Algebra. That
is

∇
2ψ =

1
r
∂2

∂r2 (rψ) +
1
r2

〈
(x ×∇)2

〉
ψ (56.24)

Bohm resorts to analogy and an operatorization of Lc = ϵabc(xa pb − xb pa), then later a spherical
polar change of coordinates to match exactly the L2 expression with eq. (56.21). With the GA
formalism we see this a bit more directly, although it is not the least bit obvious that the operator
x×∇ has no radial dependence. Without resorting to a comparison with the explicit r, θ, ϕ form
that would not be so easy to see.

56.6 raising and lowering operators in ga form

Having seen in (57) that we have a natural GA form for the l = 1 spherical harmonic eigenfunc-
tions ψm

1 , and that we have the vector angular momentum operator x×∇ showing up directly in
a sort-of-radial factorization of the Laplacian, it is natural to wonder what the GA form of the
raising and lowering operators are. At least for the l = 1 harmonics use of i = Ie3 (unit bivector
for the x − y plane) for the imaginary ended up providing a nice geometric interpretation.

Let us see what that provides for the raising and lowering operators. First we need to express
Lx and Ly in terms of our bivector angular momentum operator. Let us switch notations and
drop the −i h̄ factor from eq. (56.3) writing just

L = x∧∇ (56.25)

We can now write this in terms of components with respect to the basis bivectors Iek. That is

L =
∑

k

(
(x∧∇) ·

1
Iek

)
Iek (56.26)
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These scalar product results are expected to match the Lx, Ly, and Lz components at least up to
a sign. Let us check, picking Lz as representative

(x∧∇) ·
1

Ie3
= (σm ∧σ

k) · −σ1σ2σ3σ3xm∂k

= (σm ∧σ
k) · −σ1σ2xm∂k

= −(x2∂1 − x1∂2)

(56.27)

With the −i h̄ factors dropped this is Lz = L3 = x1∂2 − x2∂1, the projection of L onto the x − y
plane Iek. So, now how about the raising and lowering operators

Lx ± iLy = Lx ± Ie3Ly

= L ·
1

Ie1
± Ie3L ·

1
Ie2

= −e1I
(
Ie1L ·

1
Ie1
± Ie2L ·

1
Ie2

) (56.28)

Or

(Ie1)Lx ± iLy = Ie1L ·
1

Ie1
± Ie2L ·

1
Ie2

(56.29)

Compare this to the projective split of L eq. (56.26). We have projections of the bivector angular
momentum operator onto the bivector directions Ie1 and Ie2 (really the bivectors for the planes
perpendicular to the x̂ and ŷ directions).

We have the Laplacian in explicit vector form and have a clue how to vectorize (really bivec-
torize) the raising and lowering operators. We have also seen how to geometrize the first spheri-
cal harmonics. The next logical step is to try to apply this vector form of the raising and lowering
operators to the vector form of the spherical harmonics.

56.7 explicit expansion of the angular momentum operator

There is a couple of things to explore before going forward. One is an explicit verification that
x ∧ ∇ has no radial dependence (something not obvious). Another is that we should be able
to compare the x−2(x ∧ ∇)2 (as done for the x · ∇ terms) the explicit r, θ, ϕ expression for the
Laplacian to verify consistency and correctness.

For the spherical polar rotation we use the rotor

R = ee31θ/2ee12ϕ/2 (56.30)

Our position vector and gradient in spherical polar coordinates are

x = rR̃e3R (56.31)
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∇ = r̂∂r + θ̂
1
r
∂θ + ϕ̂

1
r sin θ

∂ϕ (56.32)

with the unit vectors translate from the standard basis as
r̂
θ̂

ϕ̂

 = R̃


e3

e1

e2

 R (56.33)

This last mapping can be used to express the gradient unit vectors in terms of the standard basis,
as we did for the position vector x. That is

∇ = R̃
(
e3R∂r + e1R

1
r
∂θ + e2R

1
r sin θ

∂ϕ

)
(56.34)

Okay, we have now got all the pieces collected, ready to evaluate x∧∇

x∧∇ = r
〈
R̃e3RR̃

(
e3R∂r + e1R

1
r
∂θ + e2R

1
r sin θ

∂ϕ

)〉
2

= r
〈
R̃

(
R∂r + e3e1R

1
r
∂θ + e3e2R

1
r sin θ

∂ϕ

)〉
2

(56.35)

Observe that the e3
2 contribution is only a scalar, so bivector selection of that is zero. In the

remainder we have cancellation of r/r factors, leaving just

x∧∇ = R̃
(
e3e1R∂θ + e3e2R

1
sin θ

∂ϕ

)
(56.36)

Using eq. (56.33) this is

x∧∇ = r̂
(
θ̂∂θ + ϕ̂

1
sin θ

∂ϕ

)
(56.37)

As hoped, there is no explicit radial dependence here, taking care of the first of the desired
verifications.

Next we want to square this operator. It should be noted that in the original derivation where
we “factored” the gradient operator with respect to the reference vector x our Laplacian really
followed by considering (x ∧ ∇)2 ≡

〈
(x∧∇)2

〉
. That is worth noting since a regular bivector

would square to a negative constant, whereas the operator factors of the vectors in this expres-
sion do not intrinsically commute.
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An additional complication for evaluating the square of x ∧∇ using the result of eq. (56.37)
is that θ̂ and r̂ are functions of θ and ϕ, so we would have to operate on those too. Without that
operator subtlety we get the wrong answer

−
〈
(x∧∇)2

〉
=

〈
R̃

(
e1R∂θ +

e2R
sin θ

∂ϕ

)
R̃

(
e1R∂θ +

e2R
sin θ

∂ϕ

)〉
, ∂θθ +

1
sin2 θ

∂ϕϕ

(56.38)

Equality above would only be if the unit vectors were fixed. By comparison we also see that this
is missing a cot θ∂θ term. That must come from the variation of the unit vectors with position in
the second application of x∧∇.

56.8 derivatives of the unit vectors

To properly evaluate the angular momentum square we will need to examine the ∂θ and ∂ϕ
variation of the unit vectors r̂, θ̂, and ϕ̂. Some part of this question can be evaluated without
reference to the specific vector or even which derivative is being evaluated. Writing e for one of
e1, e2, or ek, and σ = R̃eR for the mapping of this vector under rotation, and ∂ for the desired θ
or ϕ partial derivative, we have

∂(R̃eR) = (∂R̃)eR + R̃e(∂R) (56.39)

Since R̃R = 1, we have

0 = ∂(R̃R)

= (∂R̃)R + R̃(∂R)
(56.40)

So substitution of (∂R̃) = −R̃(∂R)R̃, back into eq. (56.39) supplies

∂(R̃eR) = −R̃(∂R)R̃eR + R̃e(∂R)

= −R̃(∂R)(R̃eR) + (R̃eR)R̃(∂R)

= −R̃(∂R)σ +σR̃(∂R)

(56.41)

Writing the bivector term as

Ω = R̃(∂R) (56.42)

The change in the rotated vector is seen to be entirely described by the commutator of that
vectors image under rotation with Ω. That is

∂σ = [σ,Ω] (56.43)
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Our spherical polar rotor was given by

R = ee31θ/2ee12ϕ/2 (56.44)

Lets calculate the Ω bivector for each of the θ and ϕ partials. For θ we have

Ωθ = R̃∂θR

=
1
2

e−e12ϕ/2e−e31θ/2e31ee31θ/2ee12ϕ/2

=
1
2

e−e12ϕ/2e31ee12ϕ/2

=
1
2

e3e−e12ϕ/2e1ee12ϕ/2

=
1
2

e31ee12ϕ

(56.45)

Explicitly, this is the bivector Ωθ = (e31 cos θ + e32 sin θ)/2, a wedge product of a vectors in ẑ
direction with one in the perpendicular x− y plane (curiously a vector in the x− y plane rotated
by polar angle θ, not the equatorial angle ϕ).

FIXME: picture. Draw this plane cutting through the sphere.
For the ϕ partial variation of any of our unit vectors our bivector rotation generator is

Ωϕ = R̃∂ϕR

=
1
2

e−e12ϕ/2e−e31θ/2ee31θ/2e12ee12ϕ/2

=
1
2

e12

(56.46)

This one has no variation at all with angle whatsoever. If this is all correct so far perhaps that
is not surprising given the fact that we expect an extra cot θ in the angular momentum operator
square, so a lack of ϕ dependence in the rotation generator likely means that any additional ϕ
dependence will cancel out. Next step is to take these rotation generator bivectors, apply them
via commutator products to the r̂, θ̂, and ϕ̂ vectors, and see what we get.

56.9 applying the vector derivative commutator (or not)

Let us express the θ̂ and ϕ̂ unit vectors explicitly in terms of the standard basis. Starting with θ̂
we have

θ̂ = R̃e1R

= e−e12ϕ/2e−e31θ/2e1ee31θ/2ee12ϕ/2

= e−e12ϕ/2e1ee31θee12ϕ/2

= e−e12ϕ/2(e1 cos θ − e3 sin θ)ee12ϕ/2

= e1 cos θee12ϕ − e3 sin θ

(56.47)
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Explicitly in vector form, eliminating the exponential, this is θ̂ = e1 cos θ cos ϕ+ e2 cos θ sin ϕ−
e3 sin θ, but it is more convenient to keep the exponential as is. For ϕ̂ we have

ϕ̂ = R̃e2R

= e−e12ϕ/2e−e31θ/2e2ee31θ/2ee12ϕ/2

= e−e12ϕ/2e2ee12ϕ/2

= e2ee12ϕ

(56.48)

Again, explicitly this is ϕ̂ = e2 cos ϕ− e1 sin ϕ, but we will use the exponential form above. Last
we want r̂

r̂ = R̃e3R

= e−e12ϕ/2e−e31θ/2e3ee31θ/2ee12ϕ/2

= e−e12ϕ/2e3ee31θee12ϕ/2

= e−e12ϕ/2(e3 cos θ + e1 sin θ)ee12ϕ/2

= e3 cos θ + e1 sin θee12ϕ

(56.49)

Summarizing we have

θ̂ = e1 cos θee12ϕ − e3 sin θ

ϕ̂ = e2ee12ϕ

r̂ = e3 cos θ + e1 sin θee12ϕ

(56.50)

Or without exponentials

θ̂ = e1 cos θ cos ϕ + e2 cos θ sin ϕ − e3 sin θ

ϕ̂ = e2 cos ϕ − e1 sin ϕ

r̂ = e3 cos θ + e1 sin θ cos ϕ + e2 sin θ sin ϕ

(56.51)

Now, having worked out the cool commutator result, it appears that it will actually be harder to
use it, then to just calculate the derivatives directly (at least for the ϕ̂ derivatives). For those we
have

∂θϕ̂ = ∂θe2ee12ϕ

= 0
(56.52)

and

∂ϕϕ̂ = ∂ϕe2ee12ϕ

= e2e12ee12ϕ

= −e12ϕ̂

(56.53)
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This multiplication takes ϕ̂ a vector in the x, y plane and rotates it 90 degrees, leaving an inwards
facing radial unit vector in the x,y plane.

Now, having worked out the commutator method, lets at least verify that it works.

∂θϕ̂ =
[
ϕ̂,Ωθ

]
= ϕ̂Ωθ −Ωθϕ̂

=
1
2

(ϕ̂e31ee12ϕ − e31ee12ϕϕ̂)

=
1
2

(e2e3e1e−e12ϕee12ϕ − e3e1e2e−e12ϕee12ϕ)

=
1
2

(−e3e2e1 − e3e1e2)

= 0

(56.54)

Much harder this way compared to taking the derivative directly, but we at least get the right
answer. For the ϕ derivative using the commutator we have

∂ϕϕ̂ =
[
ϕ̂,Ωϕ

]
= ϕ̂Ωϕ −Ωϕϕ̂

=
1
2

(ϕ̂e12 − e12ϕ̂)

=
1
2

(e2ee12ϕe12 − e12e2ee12ϕ)

=
1
2

(−e12e2ee12ϕ − e12e2ee12ϕ)

= −e12ϕ̂

(56.55)

Good, also consistent with direct calculation. How about our θ̂ derivatives? Lets just calculate
these directly without bothering at all with the commutator. This is

∂ϕθ̂ = e1 cos θe12ee12ϕ

= e2 cos θee12ϕ

= cos θϕ̂

(56.56)

and

∂θθ̂ = −e1 sin θee12ϕ − e3 cos θ

= −e12 sin θϕ̂ − e3 cos θ
(56.57)

Finally, last we have the derivatives of r̂. Those are

∂ϕr̂ = e2 sin θee12ϕ

= sin θϕ̂
(56.58)
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and

∂θr̂ = −e3 sin θ + e1 cos θee12ϕ

= −e3 sin θ + e12 cos θϕ̂
(56.59)

Summarizing, all the derivatives we need to evaluate the square of the angular momentum
operator are

∂θϕ̂ = 0

∂ϕϕ̂ = −e12ϕ̂

∂θθ̂ = −e12 sin θϕ̂ − e3 cos θ

∂ϕθ̂ = cos θϕ̂

∂θr̂ = −e3 sin θ + e12 cos θϕ̂

∂ϕr̂ = sin θϕ̂

(56.60)

Bugger. We actually want the derivatives of the bivectors r̂θ̂ and r̂ϕ̂ so we are not ready to
evaluate the squared angular momentum. There is three choices, one is to use these results and
apply the chain rule, or start over and directly take the derivatives of these bivectors, or use the
commutator result (which did not actually assume vectors and we can apply it to bivectors too
if we really wanted to).

An attempt to use the chain rule get messy, but it looks like the bivectors reduce nicely,
making it pointless to even think about the commutator method. Introducing some notational
conveniences, first write i = e12. We will have to be a bit careful with this since it commutes
with e3, but anticommutes with e1 or e2 (and therefore ϕ̂). As usual we also write I = e1e2e3 for
the Euclidean pseudoscalar (which commutes with all vectors and bivectors).

r̂θ̂ = (e3 cos θ + i sin θϕ̂)(cos θiϕ̂ − e3 sin θ)

= e3 cos2 θiϕ̂ − i sin2 θϕ̂e3 + (iϕ̂iϕ̂ − e3e3) cos θ sin θ

= ie3(cos2 θ + sin2 θ)ϕ̂ + (−ϕ̂i2ϕ̂ − 1) cos θ sin θ

(56.61)

This gives us just

r̂θ̂ = Iϕ̂ (56.62)

and calculation of the bivector partials will follow exclusively from the ϕ̂ partials tabulated
above. Our other bivector does not reduce quite as cleanly. We have

r̂ϕ̂ = (e3 cos θ + i sin θϕ̂)ϕ̂ (56.63)

So for this one we have

r̂ϕ̂ = e3ϕ̂ cos θ + i sin θ (56.64)
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Tabulating all the bivector derivatives (details omitted) we have

∂θ(r̂θ̂) = 0

∂ϕ(r̂θ̂) = e3ϕ̂

∂θ(r̂ϕ̂) = −e3ϕ̂ sin θ + i cos θ = ieIϕ̂θ

∂ϕ(r̂ϕ̂) = −Iϕ̂ cos θ

(56.65)

Okay, we should now be armed to do the squaring of the angular momentum.

56.10 squaring the angular momentum operator

It is expected that we have the equivalence of the squared bivector form of angular momentum
with the classical scalar form in terms of spherical angles ϕ, and θ. Specifically, if no math errors
have been made playing around with this GA representation, we should have the following
identity for the scalar part of the squared angular momentum operator

−
〈
(x∧∇)2

〉
=

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2 (56.66)

To finally attempt to verify this we write the angular momentum operator in polar form, using
i = e1e2 as

x∧∇ = r̂
(
θ̂∂θ + ϕ̂

1
sin θ

∂ϕ

)
(56.67)

Expressing the unit vectors in terms of ϕ̂ and after some rearranging we have

x∧∇ = Iϕ̂
(
∂θ + ieIϕ̂θ 1

sin θ
∂ϕ

)
(56.68)

Using this lets now compute the partials. First for the θ partials we have

∂θ(x∧∇) = Iϕ̂
(
∂θθ + iIϕ̂eIϕ̂θ 1

sin θ
∂ϕ + ieIϕ̂θ cos θ

sin2 θ
∂ϕ + ieIϕ̂θ 1

sin θ
∂θϕ

)
= Iϕ̂

(
∂θθ + i(Iϕ̂eIϕ̂θ sin θ + eIϕ̂θ cos θ)

1
sin2 θ

∂ϕ + ieIϕ̂θ 1
sin θ

∂θϕ

)
= Iϕ̂

(
∂θθ + ie2Iϕ̂θ 1

sin2 θ
∂ϕ + ieIϕ̂θ 1

sin θ
∂θϕ

) (56.69)

Premultiplying by Iϕ̂ and taking scalar parts we have the first part of the application of eq. (56.68)
on itself,〈

Iϕ̂∂θ(x∧∇)
〉
= −∂θθ (56.70)
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For the ϕ partials it looks like the simplest option is using the computed bivector ϕ partials
∂ϕ(r̂θ̂) = e3ϕ̂, ∂ϕ(r̂ϕ̂) = −Iϕ̂ cos θ. Doing so we have

∂ϕ(x∧∇) = ∂ϕ

(
r̂θ̂∂θ + r̂ϕ̂

1
sin θ

∂ϕ

)
= e3ϕ̂∂θ + +r̂θ̂∂ϕθ − Iϕ̂ cot θ∂ϕ + r̂ϕ̂

1
sin θ

∂ϕϕ

(56.71)

So the remaining terms of the squared angular momentum operator follow by premultiplying
by r̂ϕ̂/sin θ, and taking scalar parts. This is〈

r̂ϕ̂
1

sin θ
∂ϕ(x∧∇)

〉
=

1
sin θ

〈
−r̂e3∂θ + −ϕ̂θ̂∂ϕθ − r̂I cot θ∂ϕ

〉
−

1
sin2 θ

∂ϕϕ (56.72)

The second and third terms in the scalar selection have only bivector parts, but since r̂ =
e3 cos θ + e1 sin θee12ϕ has component in the e3 direction, we have〈

r̂ϕ̂
1

sin θ
∂ϕ(x∧∇)

〉
= − cot θ∂θ −

1
sin2 θ

∂ϕϕ (56.73)

Adding results from eq. (56.70), and eq. (56.73) we have

−
〈
(x∧∇)2

〉
= ∂θθ + cot θ∂θ +

1
sin2 θ

∂ϕϕ (56.74)

A final verification of eq. (56.66) now only requires a simple calculus expansion

1
sin θ

∂

∂θ
sin θ

∂

∂θ
ψ =

1
sin θ

∂

∂θ
sin θ∂θψ

=
1

sin θ
(cos θ∂θψ + sin θ∂θθψ)

= cot θ∂θψ + ∂θθψ

(56.75)

Voila. This exercise demonstrating that what was known to have to be true, is in fact explicitly
true, is now done. There is no new or interesting results in this in and of itself, but we get some
additional confidence in the new methods being experimented with.

56.11 3d quantum hamiltonian

Going back to the quantum Hamiltonian we do still have the angular momentum operator as one
of the distinct factors of the Laplacian. As operators we have something akin to the projection
of the gradient onto the radial direction, as well as terms that project the gradient onto the
tangential plane to the sphere at the radial point

−
h̄2

2m
∇

2 + V = −
h̄2

2m

(
1
x2 (x ·∇)2 −

1
x2

〈
(x∧∇)2

〉
+

1
x
·∇

)
+ V (56.76)
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Using the result of eq. (56.19) and the radial formulation for the rest, we can write this

0 =
(
∇

2 −
2m

h̄2 (V − E)
)
ψ

=
1
r
∂

∂r
r
∂ψ

∂r
−

1
r2 (x∧∇ − 1) (x∧∇)ψ −

2m

h̄2 (V − E)ψ
(56.77)

If V = V(r), then a radial split by separation of variables is possible. Writing ψ = R(r)Y , we get

r
R
∂

∂r
r
∂R
∂r
−

2mr2

h̄2 (V(r) − E) =
1
Y
(x∧∇ − 1) (x∧∇)Y = constant (56.78)

For the constant, lets use c, and split this into a pair of equations

r
∂

∂r
r
∂R
∂r
−

2mr2R

h̄2 (V(r) − E) = cR (56.79)

(x∧∇ − 1) (x∧∇)Y = cY (56.80)

In this last we can examine simultaneous eigenvalues of x∧∇, and
〈
(x∧∇)2

〉
. Suppose that Yλ

is an eigenfunction of x∧∇ with eigenvalue λ. We then have〈
(x∧∇)2

〉
Yλ = (x∧∇ − 1) (x∧∇)Yλ

= (x∧∇ − 1) λYλ
= λ (λ − 1) Yλ

(56.81)

We see immediately that Yλ is then also an eigenfunction of
〈
(x∧∇)2

〉
, with eigenvalue

λ (λ − 1) (56.82)

Bohm gives results for simultaneous eigenfunctions of Lx, Ly, or Lz with L2, in which case
the eigenvalues match. He also shows that eigenfunctions of raising and lowering operators,
Lx ± iLy are also simultaneous eigenfunctions of L2, but having m(m ± 1) eigenvalues. This
is something slightly different since we are not considering any specific components, but we
still see that eigenfunctions of the bivector angular momentum operator x∧∇ are simultaneous
eigenfunctions of the scalar squared angular momentum operator ⟨x∧∇⟩ (Q: is that identical
to the scalar operator L2).

Moving on, the next order of business is figuring out how to solve the multivector eigenvalue
problem

(x∧∇)Yλ = λYλ (56.83)
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56.12 angular momentum polar form , factoring out the raising and lowering
operators , and simultaneous eigenvalues

After a bit more manipulation we find that the angular momentum operator polar form represen-
tation, again using i = e1e2, is

x∧∇ = Iϕ̂(∂θ + i cot θ∂ϕ + e23eiϕ∂ϕ) (56.84)

Observe how similar the exponential free terms within the braces are to the raising operator as
given in Bohm’s equation (14.40)

Lx + iLy = eiϕ(∂θ + i cot θ∂ϕ)

Lz =
1
i
∂ϕ

(56.85)

In fact since e23eiϕ = e−iϕe23, the match can be made even closer

x∧∇ = Iϕ̂e−iϕ( eiϕ(∂θ + i cot θ∂ϕ)

= Lx + iLy

+ e13
1
i
∂ϕ

= Lz

) (56.86)

This is a surprising factorization, but noting that ϕ̂ = e2eiϕ we have

x∧∇ = e31

(
eiϕ(∂θ + i cot θ∂ϕ) + e13

1
i
∂ϕ

)
(56.87)

It appears that the factoring out from the left of a unit bivector (in this case e31) from the bivector
angular momentum operator, leaves as one of the remainders the raising operator.

Similarly, noting that e13 anticommutes with i = e12, we have the right factorization

x∧∇ =
(
e−iϕ(∂θ − i cot θ∂ϕ) − e13

1
i
∂ϕ

)
e31 (56.88)

Now in the remainder, we see the polar form representation of the lowering operator Lx − iLy =

e−iϕ(∂θ − i cot θ∂ϕ).
I was not expecting the raising and lowering operators “to fall out” as they did by simply

expressing the complete bivector operator in polar form. This is actually fortuitous since it
shows why this peculiar combination is of interest.

If we find a zero solution to the raising or lowering operator, that is also a solution of the
eigenproblem (∂ϕ −λ)ψ = 0, then this is necessarily also an eigensolution of x∧∇. A secondary
implication is that this is then also an eigensolution of

〈
(x∧∇)2

〉
ψ = λ′ψ. This was the starting

point in Bohm’s quest for the spherical harmonics, but why he started there was not clear to me.
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Saying this without the words, let us look for eigenfunctions for the non-raising portion of
eq. (56.87). That is

e31e13
1
i
∂ϕ f = λ f (56.89)

Since e31e13 = 1 we want solutions of

∂ϕ f = iλ f (56.90)

Solutions are

f = κ(θ)eiλϕ (56.91)

A demand that this is a zero eigenfunction for the raising operator, means we are looking for
solutions of

e31eiϕ(∂θ + i cot θ∂ϕ)κ(θ)eiλϕ = 0 (56.92)

It is sufficient to find zero eigenfunctions of

(∂θ + i cot θ∂ϕ)κ(θ)eiλϕ = 0 (56.93)

Evaluation of the ϕ partials and rearrangement leaves us with an equation in θ only

∂κ

∂θ
= λ cot θκ (56.94)

This has solutions κ = A(ϕ)(sin θ)λ, where because of the partial derivatives in eq. (56.94) we
are free to make the integration constant a function of ϕ. Since this is the functional dependence
that is a zero of the raising operator, including this at the θ dependence of eq. (56.91) means
that we have a simultaneous zero of the raising operator, and an eigenfunction of eigenvalue λ
for the remainder of the angular momentum operator.

f (θ, ϕ) = (sin θ)λeiλϕ (56.95)

This is very similar seeming to the process of adding homogeneous solutions to specific ones,
since we augment the specific eigenvalued solutions for one part of the operator by ones that
produce zeros for the rest.

As a check lets apply the angular momentum operator to this as a test and see if the results
match our expectations.

(x∧∇)(sin θ)λeiλϕ = r̂
(
θ̂∂θ + ϕ̂

1
sin θ

∂ϕ

)
(sin θ)λeiλϕ

= r̂
(
θ̂λ(sin θ)λ−1 cos θ + ϕ̂

1
sin θ

(sin θ)λ(iλ)
)

eiλϕ

= λr̂
(
θ̂ cos θ + ϕ̂i

)
eiλϕ(sin θ)λ−1

(56.96)
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From eq. (56.64) we have

r̂ϕ̂i = e3ϕ̂i cos θ − sin θ

= e32ieiϕ cos θ − sin θ

= e13eiϕ cos θ − sin θ

(56.97)

and from eq. (56.62) we have

r̂θ̂ = Iϕ̂

= e31eiϕ (56.98)

Putting these together shows that (sin θ)λeiλϕ is an eigenfunction of x∧∇,

(x∧∇)(sin θ)λeiλϕ = −λ(sin θ)λeiλϕ (56.99)

This negation surprised me at first, but I do not see any errors here in the arithmetic. Observe
that this provides a verification of messy algebra that led to eq. (56.19). That was〈

(x∧∇)2
〉 ?
= (x∧∇ − 1) (x∧∇) (56.100)

Using this and eq. (56.99) the operator effect of
〈
(x∧∇)2

〉
for the eigenvalue we have is〈

(x∧∇)2
〉
(sin θ)λeiλϕ = (x∧∇ − 1) (x∧∇)(sin θ)λeiλϕ

= ((−λ)2 − (−λ))(sin θ)λeiλϕ
(56.101)

So the eigenvalue is λ(λ + 1), consistent with results obtained with coordinate and scalar polar
form tools.

56.13 summary

Having covered a fairly wide range in the preceding Geometric Algebra exploration of the
angular momentum operator, it seems worthwhile to attempt to summarize what was learned.

The exploration started with a simple observation that the use of the spatial pseudoscalar for
the imaginary of the angular momentum operator in its coordinate form

L1 = −i h̄(x2∂3 − x3∂2)

L2 = −i h̄(x3∂1 − x1∂3)

L3 = −i h̄(x1∂2 − x2∂1)

(56.102)

allowed for expressing the angular momentum operator in its entirety as a bivector valued oper-
ator

L = − h̄x∧∇ (56.103)
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The bivector representation has an intrinsic complex behavior, eliminating the requirement for
an explicitly imaginary i as is the case in the coordinate representation.

It was then assumed that the Laplacian can be expressed directly in terms of x ∧∇. This is
not an unreasonable thought since we can factor the gradient with components projected onto
and perpendicular to a constant reference vector â as

∇ = â(â ·∇) + â(â∧∇) (56.104)

and this squares to a Laplacian expressed in terms of these constant reference directions

∇
2 = (â ·∇)2 − (â ·∇)2 (56.105)

a quantity that has an angular momentum like operator with respect to a constant direction. It
was then assumed that we could find an operator representation of the form

∇
2 =

1
x2

(
(x ·∇)2 −

〈
(x ·∇)2

〉
+ f (x,∇)

)
(56.106)

Where f (x,∇) was to be determined, and was found by subtraction. Thinking ahead to relativis-
tic applications this result was obtained for the n-dimensional Laplacian and was found to be

∇2 =
1
x2

(
(n − 2 + x · ∇)(x · ∇) −

〈
(x ∧∇)2

〉)
(56.107)

For the 3D case specifically this is

∇
2 =

1
x2

(
(1 + x ·∇)(x ·∇) −

〈
(x∧∇)2

〉)
(56.108)

While the scalar selection above is good for some purposes, it interferes with observations
about simultaneous eigenfunctions for the angular momentum operator and the scalar part of
its square as seen in the Laplacian. With some difficulty and tedium, by subtracting the bivector
and quadvector grades from the squared angular momentum operator (x∧∇)2 it was eventually
found in eq. (56.19) that eq. (56.107) can be written as

∇2 =
1
x2 ((n − 2 + x · ∇)(x · ∇) + (n − 2 − x ∧∇)(x ∧∇) + (x ∧∇)∧ (x ∧∇)) (56.109)

In the 3D case the quadvector vanishes and eq. (56.108) with the scalar selection removed is
reduced to

∇
2 =

1
x2 ((1 + x ·∇)(x ·∇) + (1 − x∧∇)(x∧∇)) (56.110)

FIXME: This doesn’t look right, since we have a bivector 1
x2 x ∧∇ on the RHS and everything

else is a scalar.
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In 3D we also have the option of using the duality relation between the cross and the wedge
a∧ b = i(a × b) to express the Laplacian

∇
2 =

1
x2 ((1 + x ·∇)(x ·∇) + (1 − i(x ×∇))i(x ×∇)) (56.111)

Since it is customary to express angular momentum as L = −i h̄(x × ∇), we see here that the
imaginary in this context should perhaps necessarily be viewed as the spatial pseudoscalar. It
was that guess that led down this path, and we come full circle back to this considering how
to factor the Laplacian in vector quantities. Curiously this factorization is in no way specific to
Quantum Theory.

A few verifications of the Laplacian in eq. (56.111) were made. First it was shown that the
directional derivative terms containing x ·∇, are equivalent to the radial terms of the Laplacian
in spherical polar coordinates. That is

1
x2 (1 + x ·∇)(x ·∇)ψ =

1
r
∂2

∂r2 (rψ) (56.112)

Employing the quaternion operator for the spherical polar rotation

R = ee31θ/2ee12ϕ/2

x = rR̃e3R
(56.113)

it was also shown that there was explicitly no radial dependence in the angular momentum
operator which takes the form

x∧∇ = R̃
(
e3e1R∂θ + e3e2R

1
sin θ

∂ϕ

)
= r̂

(
θ̂∂θ + ϕ̂

1
sin θ

∂ϕ

) (56.114)

Because there is a θ, and ϕ dependence in the unit vectors r̂, θ̂, and ϕ̂, squaring the angular
momentum operator in this form means that the unit vectors are also operated on. Those vectors
were given by the triplet

r̂
θ̂

ϕ̂

 = R̃


e3

e1

e2

 R (56.115)

Using I = e1e2e3 for the spatial pseudoscalar, and i = e1e2 (a possibly confusing switch of nota-
tion) for the bivector of the x-y plane we can write the spherical polar unit vectors in exponential
form as

ϕ̂

r̂
θ̂

 =


e2eiϕ

e3eIϕ̂θ

iϕ̂eIϕ̂θ

 (56.116)
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These or related expansions were used to verify (with some difficulty) that the scalar squared
bivector operator is identical to the expected scalar spherical polar coordinates parts of the
Laplacian

−
〈
(x∧∇)2

〉
=

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2 (56.117)

Additionally, by left or right dividing a unit bivector from the angular momentum operator, we
are able to find that the raising and lowering operators are left as one of the factors

x∧∇ = e31

(
eiϕ(∂θ + i cot θ∂ϕ) + e13

1
i
∂ϕ

)
x∧∇ =

(
e−iϕ(∂θ − i cot θ∂ϕ) − e13

1
i
∂ϕ

)
e31

(56.118)

Both of these use i = e1e2, the bivector for the plane, and not the spatial pseudoscalar. We are
then able to see that in the context of the raising and lowering operator for the radial equation
the interpretation of the imaginary should be one of a plane.

Using the raising operator factorization, it was calculated that (sin θ)λeiλϕ was an eigenfunc-
tion of the bivector operator x ∧∇ with eigenvalue −λ. This results in the simultaneous eigen-
value of λ(λ + 1) for this eigenfunction with the scalar squared angular momentum operator.

There are a few things here that have not been explored to their logical conclusion.
The bivector Fourier projections Iek(x ∧ ∇) · (−Iek) do not obey the commutation relations

of the scalar angular momentum components, so an attempt to directly use these to construct
raising and lowering operators does not produce anything useful. The raising and lowering
operators in a form that could be used to find eigensolutions were found by factoring out e13

from the bivector operator. Making this particular factorization was a fluke and only because it
was desirable to express the bivector operator entirely in spherical polar form. It is curious that
this results in raising and lowering operators for the x,y plane, and understanding this further
would be nice.

In the eigen solutions for the bivector operator, no quantization condition was imposed. I do
not understand the argument that Bohm used to do so in the traditional treatment, and revisiting
this once that is done is in order.

I am also unsure exactly how Bohm knows that the inner product for the eigenfunctions
should be a surface integral. This choice works, but what drives it. Can that be related to any-
thing here?
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l = 1

57.1 first observations

In Bohm’s QT [3], 14.17), the properties of l = 1 associated Legendre polynomials are exam-
ined under rotation. Wikipedia ([33] calls these eigen functions the spherical harmonics.

The unnormalized eigenfunctions are given (eqn (14.47) in Bohm) for s ∈ [0, l], with cos θ =
ζ by

ψl−s
l =

ei(l−s)ϕ

(1 − ζ2)(l−s)/2

∂s

∂ζ s (1 − ζ2)l (57.1)

The normalization is provided by a surface area inner product

(u, v) =
∫ π

θ=0

∫ 2π

ϕ=0
uv∗ sin θdθdϕ (57.2)

Computing these for l = 1, and disregarding any normalization these eigenfunctions can be
found to be

ψ1
1 = sin θeiϕ

ψ0
1 = cos θ

ψ−1
1 = sin θe−iϕ

(57.3)

There is a direct relationship between these eigenfunctions with a triple of vectors associated
with a point on the unit sphere. Referring to fig. 57.1, observe the three doubled arrow vectors,
all associated with a point on the unit sphere x = (x, y, z) = (sin θ cos ϕ, sin θ cos ϕ, cos θ). The
normal to the x, y plane from x, designated n has the vectorial value

n = cos θe3. (57.4)

From the origin to the point of the x, y plane intersection to the normal we have

ρ = sin θ(cos ϕe1 + sin ϕe2) = e1 sin θee1e2ϕ (57.5)

and finally in the opposite direction also in the plane and mirroring ρ we have the last of this
triplet of vectors

ρ− = sin θ(cos ϕe1 − sin ϕe2) = e1 sin θe−e1e2ϕ. (57.6)
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Figure 57.1: Vectoring the l = 1 associated Legendre polynomials

So, if we choose to use i = e1e2 (the bivector for the plane normal to the z-axis), then we
can in fact vectorize these eigenfunctions. The vectors ρ (i.e. ψ1

1), and ρ− (i.e. ψ−1
1 ) are both

normal to n (i.e. ψ0
1), but while the vectors ρ and ρ− are both in the plane one is produced with

a counterclockwise rotation of e1 by ϕ in the plane and the other with an opposing rotation.
Summarizing, we can write the unnormalized vectors the relations

ψ1
1 = e1ρ = sin θee1e2ϕ

ψ0
1 = e3n = cos θ

ψ−1
1 = e1ρ− = sin θe−e1e2ϕ

I have no familiarity yet with the l = 2 or higher Legendre eigenfunctions. Do they also admit
a geometric representation?

57.2 expressing legendre eigenfunctions using rotations

We can express a point on a sphere with a pair of rotation operators. First rotating e3 towards e1

in the z, x plane by θ, then in the x, y plane by ϕ we have the point x in fig. 57.1
Writing the result of the first rotation as e′3 we have

e′3 = e3ee31θ = e−e31θ/2e3ee31θ/2 (57.7)



57.2 expressing legendre eigenfunctions using rotations 409

One more rotation takes e′3 to x. That is

x = e−e12ϕ/2e′3ee12ϕ/2 (57.8)

All together, writing Rθ = ee31θ/2, and Rϕ = ee12ϕ/2, we have

x = R̃ϕR̃θe3RθRϕ (57.9)

It is worth a quick verification that this produces the desired result.

R̃ϕR̃θe3RθRϕ = R̃ϕe3ee31θRϕ
= e−e12ϕ/2(e3 cos θ + e1 sin θ)ee12ϕ/2

= e3 cos θ + e1 sin θee12ϕ

(57.10)

This is the expected result

x = e3 cos θ + sin θ(e1 sin θ + e2 cos θ) (57.11)

The projections onto the e3 and the x, y plane are then, respectively,

xz = e3(e3 · x) = e3 cos θ

xx,y = e3(e3 ∧ x) = sin θ(e1 sin θ + e2 cos θ)
(57.12)

So if x± is the point on the unit sphere associated with the rotation angles θ,±ϕ, then we have
for the l = 1 associated Legendre polynomials

ψ0
1 = e3 · x

ψ±1
1 = e1e3(e3 ∧ x±)

(57.13)

Note that the ± was omitted from x for ψ0
1 since either produces the same e3 component. This

gives us a nice geometric interpretation of these eigenfunctions. We see that ψ0
1 is the biggest

when x is close to straight up, and when this occurs ψ±1
1 are correspondingly reduced, but when

x is close to the x, y plane where ψ±1
1 will be greatest the z-axis component is reduced.





58B I V E C T O R G R A D E S O F T H E S Q UA R E D A N G U L A R M O M E N T U M
O P E R AT O R

58.1 motivation

The aim here is to extract the bivector grades of the squared angular momentum operator〈
(x ∧∇)2

〉
2

?
= · · · (58.1)

I had tried this before and believe gotten it wrong. Take it super slow and dumb and careful.

58.2 non-operator expansion

Suppose P is a bivector, P = (γk ∧ γm)Pkm, the grade two product with a different unit bivector
is 〈

(γa ∧ γb)(γk ∧ γm)
〉

2
Pkm

=
〈
(γaγb − γa · γb)(γk ∧ γm)

〉
2
Pkm

=
〈
γa(γb · (γk ∧ γm))

〉
2
Pkm +

〈
γa(γb ∧ (γk ∧ γm))

〉
2
Pkm − (γa · γb)(γk ∧ γm)Pkm

= (γa ∧ γ
m)Pbm − (γa ∧ γ

k)Pkb − (γa · γb)(γk ∧ γm)Pkm

+ (γa · γb)(γk ∧ γm)Pkm − (γb ∧ γ
m)Pam + (γb ∧ γ

k)Pka

= (γa ∧ γ
c)(Pbc − Pcb) + (γb ∧ γ

c)(Pca − Pac)

(58.2)

This same procedure will be used for the operator square, but we have the complexity of having
the second angular momentum operator change the first bivector result.

58.3 operator expansion

In the first few lines of the bivector product expansion above, a blind replacement γa → x, and
γb → ∇ gives us〈

(x ∧∇)(γk ∧ γm)
〉

2
Pkm

=
〈
(x∇− x · ∇)(γk ∧ γm)

〉
2
Pkm

=
〈
x(∇ · (γk ∧ γm))

〉
2
Pkm +

〈
x(∇∧ (γk ∧ γm))

〉
2
Pkm − (x · ∇)(γk ∧ γm)Pkm

(58.3)
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Using Pkm = xk∂m, eliminating the coordinate expansion we have an intermediate result that
gets us partway to the desired result〈

(x ∧∇)2
〉

2
= ⟨x(∇ · (x ∧∇))⟩2 + ⟨x(∇∧ (x ∧∇))⟩2 − (x · ∇)(x ∧∇) (58.4)

An expansion of the first term should be easier than the second. Dropping back to coordinates
we have

⟨x(∇ · (x ∧∇))⟩2 =
〈
x(∇ · (γk ∧ γm))

〉
2
xk∂m

=
〈
x(γa∂

a · (γk ∧ γm))
〉

2
xk∂m

=
〈
xγm∂k

〉
2
xk∂m −

〈
xγk∂m

〉
2
xk∂m

= x ∧ (∂kxkγ
m∂m) − x ∧ (∂mγkxk∂m)

(58.5)

Okay, a bit closer. Backpedaling with the reinsertion of the complete vector quantities we have

⟨x(∇ · (x ∧∇))⟩2 = x ∧ (∂kxk∇) − x ∧ (∂mx∂m) (58.6)

Expanding out these two will be conceptually easier if the functional operation is made explicit.
For the first

x ∧ (∂kxk∇)ϕ = x ∧ xk∂
k(∇ϕ) + x ∧ ((∂kxk)∇)ϕ

= x ∧ ((x · ∇)(∇ϕ)) + n(x ∧∇)ϕ
(58.7)

In operator form this is

x ∧ (∂kxk∇) = n(x ∧∇) + x ∧ ((x · ∇)∇) (58.8)

Now consider the second half of eq. (58.6). For that we expand

x ∧ (∂mx∂m)ϕ = x ∧ (x∂m∂
mϕ) + x ∧ ((∂mx)∂mϕ) (58.9)

Since x ∧ x = 0, and ∂mx = ∂mxkγ
k = γm, we have

x ∧ (∂mx∂m)ϕ = x ∧ (γm∂m)ϕ

= (x ∧∇)ϕ
(58.10)

Putting things back together we have for eq. (58.6)

⟨x(∇ · (x ∧∇))⟩2 = (n − 1)(x ∧∇) + x ∧ ((x · ∇)∇) (58.11)

This now completes a fair amount of the bivector selection, and a substitution back into eq. (58.4)
yields 〈

(x ∧∇)2
〉

2
= (n − 1 − x · ∇)(x ∧∇) + x ∧ ((x · ∇)∇) + x · (∇∧ (x ∧∇)) (58.12)
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The remaining task is to explicitly expand the last vector-trivector dot product. To do that we
use the basic alternation expansion identity

a · (b∧ c∧ d) = (a · b)(c∧ d) − (a · c)(b∧ d) + (a · d)(b∧ c) (58.13)

To see how to apply this to the operator case lets write that explicitly but temporarily in coordi-
nates

x · ((∇∧ (x ∧∇))ϕ = (xµγµ) · ((γν∂ν)∧ (xαγα ∧ (γβ∂β)))ϕ

= x · ∇(x ∧∇)ϕ − x · γα∇∧ xα∇ϕ + xµ∇∧ xγµ · γβ∂βϕ

= x · ∇(x ∧∇)ϕ − xα∇∧ xα∇ϕ + xµ∇∧ x∂µϕ

(58.14)

Considering this term by term starting with the second one we have

xα∇∧ xα∇ϕ = xα(γµ∂µ)∧ xα∇ϕ

= xαγµ ∧ (∂µxα)∇ϕ + xαγµ ∧ xα∂µ∇ϕ

= xµγµ ∧∇ϕ + xαxαγµ ∧ ∂µ∇ϕ

= x ∧∇ϕ + x2∇∧∇ϕ

(58.15)

The curl of a gradient is zero, since summing over an product of antisymmetric and symmetric
indices γµ ∧ γν∂µν is zero. Only one term remains to evaluate in the vector-trivector dot product
now

x · (∇∧ x ∧∇) = (−1 + x · ∇)(x ∧∇) + xµ∇∧ x∂µ (58.16)

Again, a completely dumb and brute force expansion of this is

xµ∇∧ x∂µϕ = xµ(γν∂ν)∧ (xαγα)∂µϕ

= xµγν ∧ (∂ν(xαγα))∂µϕ + xµγν ∧ (xαγα)∂ν∂µϕ

= xµ(γα ∧ γα)∂µϕ + xµγν ∧ x∂ν∂µϕ

(58.17)

With γµ = ±γµ, the wedge in the first term is zero, leaving

xµ∇∧ x∂µϕ = −xµx ∧ γν∂ν∂µϕ

= −xµx ∧ γν∂µ∂νϕ

= −x ∧ xµ∂µγν∂νϕ

(58.18)

In vector form we have finally

xµ∇∧ x∂µϕ = −x ∧ (x · ∇)∇ϕ (58.19)

The final expansion of the vector-trivector dot product is now

x · (∇∧ x ∧∇) = (−1 + x · ∇)(x ∧∇) − x ∧ (x · ∇)∇ϕ (58.20)
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This was the last piece we needed for the bivector grade selection. Incorporating this into
eq. (58.12), both the x · ∇x ∧∇, and the x ∧ (x · ∇)∇ terms cancel leaving the surprising simple
result 〈

(x ∧∇)2
〉

2
= (n − 2)(x ∧∇) (58.21)

The power of this result is that it allows us to write the scalar angular momentum operator from
the Laplacian as〈

(x ∧∇)2
〉
= (x ∧∇)2 −

〈
(x ∧∇)2

〉
2
− (x ∧∇)∧ (x ∧∇)

= (x ∧∇)2 − (n − 2)(x ∧∇) − (x ∧∇)∧ (x ∧∇)

= (−(n − 2) + (x ∧∇) − (x ∧∇)∧)(x ∧∇)

(58.22)

The complete Laplacian is

∇2 =
1
x2 (x · ∇)2 + (n − 2)

1
x
· ∇ −

1
x2

(
(x ∧∇)2 − (n − 2)(x ∧∇) − (x ∧∇)∧ (x ∧∇)

)
(58.23)

In particular in less than four dimensions the quad-vector term is necessarily zero. The 3D
Laplacian becomes

∇
2 =

1
x2 (1 + x ·∇)(x ·∇) +

1
x2 (1 − x∧∇)(x∧∇) (58.24)

So any eigenfunction of the bivector angular momentum operator x ∧∇ is necessarily a simul-
taneous eigenfunction of the scalar operator.
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59F O U R I E R S O L U T I O N S T O H E AT A N D WAV E E Q UAT I O N S

59.1 motivation

Stanford iTunesU has some Fourier transform lectures by Prof. Brad Osgood. He starts with
Fourier series and by Lecture 5 has covered this and the solution of the Heat equation on a ring
as an example.

Now, for these lectures I get only sound on my ipod. I can listen along and pick up most of
the lectures since this is review material, but here is some notes to firm things up.

Since this heat equation

∇2u = κ∂tu (59.1)

is also the Schrödinger equation for a free particle in one dimension (once the constant is fixed
appropriately), we can also apply the Fourier technique to a particle constrained to a circle. It
would be interesting afterwards to contrast this with Susskind’s solution of the same problem
(where he used the Fourier transform and algebraic techniques instead).

59.2 preliminaries

59.2.1 Laplacian

Osgood wrote the heat equation for the ring as

1
2

uxx = ut (59.2)

where x represented an angular position on the ring, and where he set the heat diffusion constant
to 1/2 for convenience. To apply this to the Schrödinger equation retaining all the desired units
we want to be a bit more careful, so let us start with the Laplacian in polar coordinates.

In polar coordinates our gradient is

∇ = θ̂
1
r
∂

∂θ
+ r̂

∂

∂r
(59.3)
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squaring this we have

∇2 = ∇ · ∇ = θ̂
1
r
∂

∂θ
·

(
θ̂

1
r
∂

∂θ

)
+ r̂

∂

∂r
·

(
r̂
∂

∂r

)
=
−1
r3

∂r
∂θ

∂

∂θ
+

1
r2

∂2

∂θ2 +
∂2

∂r2

=
1
r2

∂2

∂θ2 +
∂2

∂r2

(59.4)

So for the circularly constrained where r is constant case we have simply

∇2 =
1
r2

∂2

∂θ2
(59.5)

and our heat equation to solve becomes

∂2u(θ, t)
∂θ2 = (r2κ)

∂u(θ, t)
∂t

(59.6)

59.2.2 Fourier series

Now we also want Fourier series for a given period. Assuming the absence of the "Rigor Police"
as Osgood puts it we write for a periodic function f (x) known on the interval I = [a, a + T ]

f (x) =
∑

cke2πikx/T (59.7)

∫
∂I

f (x)e−2πinx/T =
∑

ck

∫
∂I

e2πi(k−n)x/T

= cnT
(59.8)

So our Fourier coefficient is

f̂ (n) = cn =
1
T

∫
∂I

f (x)e−2πinx/T (59.9)

59.3 solution of heat equation

59.3.1 Basic solution

Now we are ready to solve the radial heat equation

uθθ = r2κut, (59.10)
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by assuming a Fourier series solution.
Suppose

u(θ, t) =
∑

cn(t)e2πinθ/T

=
∑

cn(t)einθ
(59.11)

Taking derivatives of this assumed solution we have

uθθ =
∑

(in)2cneinθ

ut =
∑

c′neinθ
(59.12)

Substituting this back into eq. (59.10) we have∑
−n2cneinθ =

∑
c′nr2κeinθ (59.13)

equating components we have

c′n = −
n2

r2κ
cn (59.14)

which is also just an exponential.

cn = An exp
(
−

n2

r2κ
t
)

(59.15)

Reassembling we have the time variation of the solution now fixed and can write

u(θ, t) =
∑

An exp
(
−

n2

r2κ
t + inθ

)
(59.16)

59.3.2 As initial value problem

For the heat equation case, we can assume a known initial heat distribution f (θ). For an initial
time t = 0 we can then write

u(θ, 0) =
∑

Aneinθ = f (θ) (59.17)

This is just another Fourier series, with Fourier coefficients

An =
1

2π

∫
∂I

f (v)e−invdv (59.18)

Final reassembly of the results gives us

u(θ, t) =
∑

exp
(
−

n2

r2κ
t + inθ

)
1

2π

∫
∂I

f (v)e−invdv (59.19)
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59.3.3 Convolution

Osgood’s next step, also with the rigor police in hiding, was to exchange orders of integration
and summation, to write

u(θ, t) =
∫
∂I

f (v)dv
1

2π

∞∑
n=−∞

exp
(
−

n2

r2κ
t − in(v − θ)

)
(59.20)

Introducing a Green’s function g(v, t), we then have the complete solution in terms of convolu-
tion

g(v, t) =
1

2π

∞∑
n=−∞

exp
(
−

n2

r2κ
t − inv

)
u(θ, t) =

∫
∂I

f (v)g(v − θ, t)dv

(59.21)

Now, this Green’s function is fairly interesting. By summing over paired negative and positive
indices, we have a set of weighted Gaussians.

g(v, t) =
1

2π
+

∞∑
n=1

exp
(
−

n2

r2κ
t
)

cos(nv)
π

(59.22)

Recalling that the delta function can be expressed as a limit of a sinc function, seeing something
similar in this Green’s function is not entirely unsurprising seeming.

59.4 wave equation

The QM equation for a free particle is

−
h̄2

2m
∇2ψ = i h̄∂tψ (59.23)

This has the same form of the heat equation, so for the free particle on a circle our wave equation
is

ψθθ = −
2mir2

h̄
∂tψ ie: κ = −2mi/ h̄ (59.24)

So, if the wave equation was known at an initial time ψ(θ, 0) = ϕ(θ), we therefore have by
comparison the time evolution of the particle’s wave function is

g(w, t) =
1

2π
+

∞∑
n=1

exp
(
−

i h̄n2t
2mr2

)
cos(nw)

π

ψ(θ, t) =
∫
∂I
ϕ(v)g(v − θ, t)dv

(59.25)
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59.5 fourier transform solution

Now, lets try this one dimensional heat problem with a Fourier transform instead to compare.
Here we do not try to start with an assumed solution, but instead take the Fourier transform of
both sides of the equation directly.

F(uxx) = κF(ut) (59.26)

Let us start with the left hand side, where we can evaluate by integrating by parts

F(uxx) =
∫ ∞

−∞

uxx(x, t)e−2πisxdx

=

∫ ∞

−∞

∂ux(x, t)
∂x

e−2πisxdx

=

(
ux(x, t)e−2πisx

∣∣∣∞
x=−∞ − (−2πis)

∫ ∞

−∞

ux(x, t)e−2πisxdx
) (59.27)

So if we assume (or require) that the derivative of our unknown function u is zero at infinity,
and then similarly require the function itself to be zero there, we have

F(uxx) = (2πis)
∫ ∞

−∞

∂ux(x, t)
∂x

e−2πisxdx

= (2πis)2
∫ ∞

−∞

u(x, t)e−2πisxdx

= (2πis)2F(u)

(59.28)

Now, for the time derivative. We want

F(ut) =
∫ ∞

−∞

ut(x, t)e−2πisxdx (59.29)

But can pull the derivative out of the integral for

F(ut) =
∂

∂t

(∫ ∞

−∞

u(x, t)e−2πisxdx
)

=
∂F(u)
∂t

(59.30)

So, now we have an equation relating time derivatives only of the Fourier transformed solution.
Writing F(u) = û this is

(2πis)2û = κ
∂û
∂t

(59.31)
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With a solution of

û = A(s)e−4π2 s2t/κ (59.32)

Here A(s) is an arbitrary constant in time integration constant, which may depend on s since it
is a solution of our simpler frequency domain partial differential equation eq. (59.31).

Performing an inverse transform to recover u(x, t) we thus have

u(x, t) =
∫ ∞

−∞

ûe2πixsds

=

∫ ∞

−∞

A(s)e−4π2 s2t/κe2πixsds
(59.33)

Now, how about initial conditions. Suppose we have u(x, 0) = f (x), then

f (x) =
∫ ∞

−∞

A(s)e2πixsds (59.34)

Which is just an inverse Fourier transform in terms of the integration “constant” A(s). We can
therefore write the A(s) in terms of the initial time domain conditions.

A(s) =
∫ ∞

−∞

f (x)e−2πisxdx

= f̂ (s)
(59.35)

and finally have a complete solution of the one dimensional Heat equation. That is

u(x, t) =
∫ ∞

−∞

f̂ (s)e−4π2 s2t/κe2πixsds (59.36)

59.5.1 With Green’s function?

If we put in the integral for f̂ (s) explicitly and switch the order as was done with the Fourier
series will we get a similar result? Let us try

u(x, t) =
∫ ∞

−∞

(∫ ∞

−∞

f (u)e−2πisudu
)

e−4π2 s2t/κe2πixsds

=

∫ ∞

−∞

du f (u)
∫ ∞

−∞

e−4π2 s2t/κe2πi(x−u)sds
(59.37)

Cool. So, with the introduction of a Green’s function g(w, t) for the fundamental solution of the
heat equation, we therefore have our solution in terms of convolution with the initial conditions.
It does not get any more general than this!

g(w, t) =
∫ ∞

−∞

exp
(
−

4π2s2t
κ
+ 2πiws

)
ds

u(x, t) =
∫ ∞

−∞

f (u)g(x − u, t)du
(59.38)
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Compare this to eq. (59.21), the solution in terms of Fourier series. The form is almost identical,
but the requirement for periodicity has been removed by switch to the continuous frequency
domain!

59.5.2 Wave equation

With only a change of variables, setting κ = −2mi/ h̄ we have the general solution to the one
dimensional zero potential wave equation eq. (59.23) in terms of an initial wave function. How-
ever, we have a form of the Fourier transform that obscures the physics has been picked here
unfortunately. Let us start over in super speed mode directly from the wave equation, using the
form of the Fourier transform that substitutes 2πs→ k for wave number. We want to solve

−
h̄2

2m
ψxx = i h̄ψt (59.39)

Now calculate

F(ψxx) =
1

2π

∫ ∞

−∞

ψxx(x, t)e−ikxdx

=
1

2π
ψx(x, t)e−ikx

∣∣∣∞
−∞
− (−ik)

1
2π

∫ ∞

−∞

ψx(x, t)e−ikxdx

= · · ·

=
1

2π
(ik)2ψ̂(k)

(59.40)

So we have

−
h̄2

2m
(ik)2ψ̂(k, t) = i h̄

∂ψ̂(k, t)
∂t

(59.41)

This provides us the fundamental solutions to the wave function in the wave number domain

ψ̂(k, t) = A(k) exp
(
−

i h̄k2

2m
t
)

ψ(x, t) =
1
√

2π

∫ ∞

−∞

A(k) exp
(
−

i h̄k2

2m
t
)

exp(ikx)dk
(59.42)

In particular, as before, with an initial time wave function ψ(x, 0) = ϕ(x) we have

ϕ(x) = ψ(x, 0) =
1
√

2π

∫ ∞

−∞

A(k) exp(ikx)dk

= F−1(A(k))
(59.43)
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So, A(k) = ϕ̂, and we have

ψ(x, t) =
1
√

2π

∫ ∞

−∞

ϕ̂(k) exp
(
−

i h̄k2

2m
t
)

exp(ikx)dk (59.44)

So, ending the story we have finally, the general solution for the time evolution of our one
dimensional wave function given initial conditions

ψ(x, t) = F−1
(
ϕ̂(k) exp

(
−

i h̄k2

2m
t
))

(59.45)

or, alternatively, in terms of momentum via k = p/ h̄ we have

ψ(x, t) = F−1
(
ϕ̂(p) exp

(
−

ip2

2m h̄
t
))

(59.46)

Pretty cool! Observe that in the wave number or momentum domain the time evolution of the
wave function is just a continual phase shift relative to the initial conditions.

59.5.3 Wave function solutions by Fourier transform for a particle on a circle

Now, thinking about how to translate this Fourier transform method to the wave equation for a
particle on a circle (as done by Susskind in his online lectures) makes me realize that one is free
to use any sort of integral transform method appropriate for the problem (Fourier, Laplace, ...).
It does not have to be the Fourier transform. Now, if we happen to pick an integral transform
with θ ∈ [0, π] bounds, what do we have? This is nothing more than the inner product for the
Fourier series, and we come full circle!

Now, the next thing to work out in detail is how to translate from the transform methods to
the algebraic bra ket notation. This looks like it will follow immediately if one calls out the
inner product in use explicitly, but that is an exploration for a different day.



60P O I S S O N A N D R E TA R D E D P OT E N T I A L G R E E N ’ S F U N C T I O N S
F RO M F O U R I E R K E R N E L S

60.1 motivation

Having recently attempted a number of Fourier solutions to the Heat, Schrödinger, Maxwell vac-
uum, and inhomogeneous Maxwell equation, a reading of [24] inspired me to have another go.
In particular, he writes the Poisson equation solution explicitly in terms of a Green’s function.

The Green’s function for the Poisson equation

G(x − x′) =
1

4π|x − x′|
(60.1)

is not really derived, rather is just pointed out. However, it is a nice closed form that does not
have any integrals. Contrast this to the Fourier transform method, where one ends up with a
messy threefold integral that is not particularly obvious how to integrate.

In the PF thread Fourier transform solution to electrostatics Poisson equation? I asked if
anybody knew how to reduce this integral to the potential kernel of electrostatics. Before getting
any answer from PF I found it in [5], a book recently purchased, but not yet read.

Go through this calculation here myself in full detail to get more comfort with the ideas. Some
of these ideas can probably also be applied to previous incomplete Fourier solution attempts. In
particular, the retarded time potential solutions likely follow. Can these same ideas be applied
to the STA form of the Maxwell equation, explicitly inverting it, as [8] indicate is possible (but
do not spell out).

60.2 poisson equation

60.2.1 Setup

As often illustrated with the Heat equation, we seek a Fourier transform solution of the electro-
statics Poisson equation

∇2ϕ = −ρ/ϵ0 (60.2)

https://www.physicsforums.com/threads/fourier-transform-solution-to-electrostatics-poisson-equation.293550/
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Our 3D Fourier transform pairs are defined as

f̂ (k) =
1

(
√

2π)3

$
f (x)e−ik·xd3x

f (x) =
1

(
√

2π)3

$
f̂ (k)eik·xd3k

(60.3)

Applying the transform we get

ϕ(x) =
1
ϵ0

$
ρ(x′)G(x − x′)d3x′

G(x) =
1

(2π)3

$
1
k2 eik·xd3k

(60.4)

Green’s functions are usually defined by their delta function operational properties. Doing so,
as defined above we have

∇2G(x) = −4πδ3(x) (60.5)

(note that there are different sign conventions for this delta function identification.)
Application to the Poisson equation eq. (60.2) gives∫

∇2G(x − x′)ϕ(x′) =
∫

(−4πδ3(x − x′))ϕ(x′) = −4πϕ(x) (60.6)

and with expansion in the alternate sequence∫
∇2G(x − x′)ϕ(x′) =

∫
G(x − x′)(∇′2ϕ(x′)) = −

1
ϵ0

∫
G(x − x′)ρ(x′) (60.7)

With prior knowledge of electrostatics we should therefore find

G(x) =
1

4π|x|
. (60.8)

Our task is to actually compute this from the Fourier integral.

60.2.2 Evaluating the convolution kernel integral

60.2.2.1 Some initial thoughts

Now it seems to me that this integral G only has to be evaluated around a small neighborhood
of the origin. For example if one evaluates one of the integrals∫ ∞

−∞

1
k1

2 + k2
2 + k3

3 eik1 x1dk1 (60.9)
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using a an upper half plane contour the result is zero unless k2 = k3 = 0. So one is left with
something loosely like

G(x) = lim
ϵ→0

1
(2π)3

∫ ϵ

k1=−ϵ
dk1

∫ ϵ

k2=−ϵ
dk2

∫ ϵ

k3=−ϵ
dk3

1
k2 eik·x (60.10)

How to reduce this? Somehow it must be possible to take this Fourier convolution kernel and
somehow evaluate the integral to produce the electrostatics potential.

60.2.2.2 An attempt

The answer of how to do so, as pointed out above, was found in [5]. Instead of trying to evaluate
this integral which has a pole at the origin, they cleverly evaluate a variant of it

I =
$

1
k2 + a2 eik·xd3k (60.11)

which splits and shifts the repeated pole into two first order poles away from the origin. After
a change to spherical polar coordinates, the new integral can be evaluated, and the Poisson
Green’s function in potential form follows by letting a tend to zero.

Very cool. It seems worthwhile to go through the motions of this myself, omitting no details
I would find valuable.

First we want the volume element in spherical polar form, and our vector. That is

ρ = k cos ϕ

dA = (ρdθ)(kdϕ)

d3k = dkdA = k2 cos ϕdθdϕdk

k = (ρ cos θ, ρ sin θ, k sin θ)

= k(cos ϕ cos θ, cos ϕ sin θ, sin ϕ)

(60.12)

FIXME: scan picture to show angle conventions picked. This produces

I =
∫ 2π

θ=0

∫ π/2

ϕ=−π/2
k2

∫ ∞

k=0
cos ϕdθdϕdk

1
k2 + a2 exp (ik(cos ϕ cos θx1 + cos ϕ sin θ + x2 + sin ϕx3))

(60.13)

Now, this is a lot less tractable than the Byron/Fuller treatment. In particular they were able to
make a t = cos ϕ substitution, and if I try this I get

I = −
∫ 2π

θ=0

∫ 1

t=−1

∫ ∞

k=0

1
k2 + a2 exp

(
ik(t cos θx1 + t sin θx2 +

√
1 − t2x3)

)
k2dtdθdk (60.14)
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Now, this is still a whole lot different, and in particular it has ik(t sin θx2 +
√

1 − t2x3) in the
exponential. I puzzled over this for a while, but it becomes clear on writing. Freedom to orient
the axis along a preferable direction has been used, and some basis for which x = x je j+ = xe1

has been used! We are now left with

I = −
∫ 2π

θ=0

∫ 1

t=−1

∫ ∞

k=0

1
k2 + a2 exp (ikt cos θx) k2dtdθdk

= −

∫ 2π

θ=0

∫ ∞

k=0

2
(k2 + a2) cos θ

sin (kt cos θx) kdθdk

= −

∫ 2π

θ=0

∫ ∞

k=−∞

1
(k2 + a2) cos θ

sin (kt cos θx) kdθdk

(60.15)

Here the fact that our integral kernel is even in k has been used to double the range and half the
kernel.

However, looking at this, one can see that there is trouble. In particular, we have cos θ in the
denominator, with a range that allows zeros. How did the text avoid this trouble?

60.2.3 Take II

After mulling it over for a bit, it appears that aligning x with the x-axis is causing the trouble.
Aligning with the z-axis will work out much better, and leave only one trig term in the expo-
nential. Essentially we need to use a volume of rotation about the z-axis, integrating along all
sets of constant k · x. This is a set of integrals over concentric ring volume elements (FIXME:
picture).

Our volume element, measuring θ ∈ [0, π] from the z-axis, and ϕ as our position on the ring

k · x = kx cos θ

ρ = k sin θ

dA = (ρdϕ)(kdθ)

d3k = dkdA = k2 sin θdθdϕdk

(60.16)

This gives us

I =
∫ π

θ=0

∫ 2π

ϕ=0

∫ ∞

k=0

1
k2 + a2 exp (ikx cos θ) k2 sin θdθdϕdk (60.17)



60.2 poisson equation 429

Now we can integrate immediately over ϕ, and make a t = cos θ substitution (dt = − sin θdθ)

I = −2π
∫ −1

t=1

∫ ∞

k=0

1
k2 + a2 exp (ikxt) k2dtdk

= −
2π
ix

∫ ∞

k=0

1
k2 + a2

(
e−ikx − eikx

)
kdk

=
2π
ix

∫ ∞

k=0

1
k2 + a2 eikxkdk −

2π
ix

∫ −∞

k=−0

1
k2 + a2 eikx(−k)(−dk)

=
2π
ix

∫ ∞

k=−∞

1
k2 + a2 eikxkdk

=
2π
ix

∫ ∞

k=−∞

1
k − ia

keikx

(k + ia)
dk

(60.18)

Now we have something that is in form for contour integration. In the upper half plane we have
a pole at k = ia. Assuming that the integral over the big semicircular arc vanishes, we can
just pick up the residue at that pole contributing. The assumption that this vanishes is actually
non-trivial looking since the k/(k + ia) term at a big radius R tends to 1. This is probably where
Jordan’s lemma comes in, so some study to understand that looks well justified.

0 = I − 2πi
2π
ix

keikx

(k + ia)

∣∣∣∣∣∣
k=ia

= I − 2πi
2π
ix

e−ax

2

(60.19)

So we have

I =
2π2

x
e−ax (60.20)

Now that we have this, the Green’s function of eq. (60.4) is

G(x) = lim
a→0

1
(2π)3

2π2

x
e−ax

=
1

4π|x|

(60.21)

Which gives

ϕ(x) =
1

4πϵ0

∫
ρ(x′)
|x − x′|

dV ′ (60.22)

Awesome! All following from the choice to set E = −∇ϕ, we have a solution for ϕ following
directly from the divergence equation ∇ ·E = ρ/ϵ0 via Fourier transformation of this equation.
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60.3 retarded time potentials for the 3d wave equation

60.3.1 Setup

If we look at the general inhomogeneous Maxwell equation

∇F = J/ϵ0c (60.23)

In terms of potential F = ∇∧ A and employing in the Lorentz gauge ∇ · A = 0, we have

∇2A =
(

1
c2 ∂tt −

∑
∂ j j

)
A = J/ϵ0c (60.24)

As scalar equations with A = Aµγµ, J = Jνγν we have four equations all of the same form.
A Green’s function form for such wave equations was previously calculated in 62. That was 1

c2

∂2

∂t2 −
∑

j

∂2

∂x j2

ψ = g (60.25)

ψ(x, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x′, t′)G(x − x′, t − t′)d3x′dt′

G(x, t) = θ(t)
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

c
(2π)3|k|

sin(|k|ct) exp (ik · x) d3k
(60.26)

Here θ(t) is the unit step function, which meant we only sum the time contributions of the charge
density for t − t′ > 0, or t′ < t. That is the causal variant of the solution, which was arbitrary
mathematically (t > t′ would have also worked).

60.3.2 Reducing the Green’s function integral

Let us see if the spherical polar method works to reduce this equation too. In particular we want
to evaluate

I =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
|k|

sin(|k|ct) exp (ik · x) d3k (60.27)

Will we have a requirement to introduce a pole off the origin as above? Perhaps like∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
|k| + α

sin(|k|ct) exp (ik · x) d3k (60.28)
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Let us omit it for now, but make the same spherical polar substitution used successfully above,
writing

I =
∫ π

θ=0

∫ 2π

ϕ=0

∫ ∞

k=0

1
k

sin (kct) exp (ikx cos θ) k2 sin θdθdϕdk

= 2π
∫ π

θ=0

∫ ∞

k=0
sin (kct) exp (ikx cos θ) k sin θdθdk

(60.29)

Let τ = cos θ, −dτ = sin θdθ, for

I = 2π
∫ −1

τ=1

∫ ∞

k=0
sin (kct) exp (ikxτ) k(−dτ)dk

= −2π
∫ ∞

k=0
sin (kct)

2
2ikx

(exp (−ikx) − exp (ikx)) kdk

=
4π
x

∫ ∞

k=0
sin (kct) sin (kx) dk

=
2π
x

∫ ∞

k=0
(cos (k(x − ct)) − cos (k(x + ct))) dk

(60.30)

Okay, this is much simpler, but still not in a form that is immediately obvious how to apply
contour integration to, since it has no poles. The integral kernel here is however an even function,
so we can use the trick of doubling the integral range.

I =
π

x

∫ ∞

k=−∞
(cos (k(x − ct)) − cos (k(x + ct))) dk (60.31)

Having done this, this integral is not really any more well defined. With the Rigor police on
holiday, let us assume we want the principle value of this integral

I = lim
R→∞

π

x

∫ R

k=−R
(cos (k(x − ct)) − cos (k(x + ct))) dk

= lim
R→∞

π

x

∫ R

k=−R
d
(
sin (k(x − ct))

x − ct
−

sin (k(x + ct))
x + ct

)
= lim

R→∞

2π2

x

(
sin (R(x − ct))
π(x − ct)

−
sin (R(x + ct))
π(x + ct)

) (60.32)

This sinc limit has been seen before being functionally identified with the delta function (the
wikipedia article calls these “nascent delta function”), so we can write

I =
2π2

x
(δ(x − ct) − δ(x + ct)) (60.33)
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For our Green’s function we now have

G(x, t) = θ(t)
c

(2π)3

2π2

|x|
(δ(x − ct) − δ(x + ct))

= θ(t)
c

4π|x|
(δ(x − ct) − δ(x + ct))

(60.34)

And finally, our wave function (switching variables to convolve with the charge density) instead
of the Green’s function

ψ(x, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, t − t′)θ(t′)
c

4π|x′|
δ(

∣∣∣x′∣∣∣ − ct′)d3x′dt′

−

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, t − t′)θ(t′)
c

4π|x′|
δ(

∣∣∣x′∣∣∣ + ct′)d3x′dt′
(60.35)

Let us break these into two parts

ψ(x, t) = ψ−(x, t) + ψ+(x, t) (60.36)

Where the first part, ψ− is for the −ct′ delta function and one ψ− for the +ct′. Making a τ = t− t′

change of variables, this first portion is

ψ−(x, t) = −
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, τ)θ(t − τ)
c

4π|x′|
δ(

∣∣∣x′∣∣∣ − ct + cτ)d3x′dτ

= −

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′′, t −
∣∣∣x′′∣∣∣/c)

c
4π|x′′|

d3x′′
(60.37)

One more change of variables, x′ = x − x′′, d3x′′ = −d3x, gives the final desired retarded
potential result. The ψ+ result is similar (see below), and assembling all we have

ψ−(x, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x′, t −
∣∣∣x − x′

∣∣∣/c)
c

4π|x − x′|
d3x′

ψ+(x, t) = −
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x, t +
∣∣∣x − x′

∣∣∣/c)
c

4π|x − x′|
d3x′

(60.38)

It looks like my initial interpretation of the causal nature of the unit step in the original func-
tional form was not really right. It is not until the Green’s function is “integrated” do we get
this causal and non-causal split into two specific solutions. In the first of these solutions is only
charge contributions at the position in space offset by the wave propagation speed effects the
potential (this is the causal case). On the other hand we have a second specific solution to the
wave equation summing the charge contributions at all the future positions, this time offset by
the time it takes a wave to propagate backwards from that future spacetime

The final mathematical result is consistent with statements seen elsewhere, such as in [10],
although it is likely that the path taken by others to get this result was less ad-hoc than mine. It is
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been a couple years since seeing this for the first time in Feynman’s text. It was not clear to me
how somebody could possibly come up with those starting with Maxwell’s equations. Here by
essentially applying undergrad Engineering Fourier methods, we get the result in an admittedly
ad-hoc fashion, but at least the result is not pulled out of a magic hat.

60.3.3 Omitted Details. Advanced time solution

Similar to the above for ψ+ we have

ψ+(x, t) = −
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, t − t′)θ(t′)
c

4π|x′|
δ(

∣∣∣x′∣∣∣ + ct′)d3x′dt′

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, τ)θ(t − τ)
c

4π|x′|
δ(

∣∣∣x′∣∣∣ + c(t − τ))d3x′dτ

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, τ)θ(t − τ)
c

4π|x′|
δ(

∣∣∣x′∣∣∣ + ct − cτ)d3x′dτ

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x − x′, t +
∣∣∣x′∣∣∣/c)

c
4π|x′|

d3x′

= −

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

g(x, t +
∣∣∣x − x′

∣∣∣/c)
c

4π|x − x′|
d3x′

(60.39)

Is there an extra factor of −1 here?

60.4 1d wave equation

It is somewhat irregular seeming to treat the 3D case before what should be the simpler 1D case,
so let us try evaluating the Green’s function for the 1D wave equation too. We have found that
Fourier transforms applied to the forced wave equation(

1
v2 ∂tt − ∂xx

)
ψ = g(x, t) (60.40)

result in the following integral solution.

ψ(x, t) =
∫ ∞

x′=−∞

∫ ∞

t′=0
g(x − x′, t − t′)G(x′, t′)dx′dt′

G(x, t) =
∫ ∞

k=−∞

v
2πk

sin(kvt) exp(ikx)dk
(60.41)

As in the 3D case above can this reduced to something that does not involve such an unpalatable
integral. Given the 3D result, it would be reasonable to get a result involving g(x ± vt) terms.
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First let us get rid of the sine term, and express G entirely in exponential form. That is

G(x, t) =
∫ ∞

k=−∞

v
4πki

(exp(kvt) − exp(−kvt)) exp(ikx)dk

=

∫ ∞

k=−∞

v
4πki

(
ek(x+vt) − ek(x−vt)

)
dk

(60.42)

Using the unit step function identification from eq. (60.53), we have

G(x, t) =
v
2
(θ(x + vt) − θ(x − vt)) (60.43)

If this identification works our solution then becomes

ψ(x, t) =
∫ ∞

x′=−∞

∫ ∞

t′=0
g(x − x′, t − t′)

v
2
(θ(x′ + vt′) − θ(x′ − vt′)) dx′dt′

=

∫ ∞

x′=−∞

∫ ∞

s=0
g(x − x′, t − s/v)

1
2
(θ(x′ + s) − θ(x′ − s)) dx′ds

(60.44)

This is already much simpler than the original, but additional reduction should be possible by
breaking this down into specific intervals. An alternative, perhaps is to use integration by parts
and the delta function as the derivative of the unit step identification.

Let us try a pair of variable changes

ψ(x, t) =
∫ ∞

u=−∞

∫ ∞

s=0
g(x − u + s, t − s/v)

1
2
θ(u)duds

−

∫ ∞

u=−∞

∫ ∞

s=0
g(x − u − s, t − s/v)

1
2
θ(u)duds

(60.45)

Like the retarded time potential solution to the 3D wave equation, we now have the wave func-
tion solution entirely specified by a weighted sum of the driving function

ψ(x, t) =
1
2

∫ ∞

u=0

∫ ∞

s=0
(g(x − u + s, t − s/v) − g(x − u − s, t − s/v)) duds (60.46)

Can this be tidied at all? Let us do a change of variables here, writing −τ = t − s/v.

ψ(x, t) =
1
2

∫ ∞

u=0

∫ ∞

τ=−t
(g(x + vt − (u − vτ), τ) − g(x − vt − (u + vτ), τ)) dudτ

=
1
2

∫ ∞

u=0

∫ t

τ=−∞
(g(x + vt − (u + vτ),−τ) − g(x − vt − (u − vτ),−τ)) dudτ

(60.47)

Is that any better? I am not so sure, and intuition says there is a way to reduce this to a single
integral summing only over spatial variation.
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60.4.1 Followup to verify

There has been a lot of guessing and loose mathematics here. However, if this is a valid so-
lution despite all that, we should be able to apply the wave function operator 1

v2 ∂tt + ∂xx as a
consistency check and get back g(x, t) by differentiating under the integral sign.

FIXME: First have to think about how exactly to do this differentiation.

60.5 appendix

60.5.1 Integral form of unit step function

The wiki article on the Heaviside unit step function lists an integral form

Iϵ =
1

2πi
PV

∫ ∞

−∞

eixτ

τ − iϵ
dτ

θ(x) = lim
ϵ→0

Iϵ
(60.48)

How does this make sense? For x > 0 we can evaluate this with an upper half plane semi-circular
contour (FIXME: picture). Along the arc z = Reiϕ we have

|Iϵ | =

∣∣∣∣∣∣ 1
2πi

∫ π

ϕ=0

eiR(cos ϕ+i sin ϕ)

Reiϕ − iϵ
Rieiϕdϕ

∣∣∣∣∣∣
≈

∣∣∣∣∣∣ 1
2π

∫ π

ϕ=0
eiR cos ϕe−R sin ϕdϕ

∣∣∣∣∣∣
≤

1
2π

∫ π

ϕ=0
e−R sin ϕdϕ

≤
1

2π

∫ π

ϕ=0
e−Rdϕ

=
1
2

e−R

(60.49)

This tends to zero as R→ ∞, so evaluating the residue, we have for x > 0

Iϵ = −(−2πi)
1

2πi
eixτ

∣∣∣
τ=iϵ

= e−xϵ
(60.50)
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Now for x < 0 an upper half plane contour will diverge, but the lower half plane can be used.
This gives us Iϵ = 0 in that region. All that remains is the x = 0 case. There we have

Iϵ(0) =
1

2πi
PV

∫ ∞

−∞

1
τ − iϵ

dτ

=
1

2πi
lim

R→∞
ln

( R − iϵ
−R − iϵ

)
→

1
2πi

ln (−1)

=
1

2πi
iπ

(60.51)

Summarizing we have

Iϵ(x) =


e−xϵ if x > 0
1
2 if x = 0

0 if x < 0

(60.52)

So in the limit this does work as an integral formulation of the unit step. This will be used to
(very loosely) identify

θ(x) ∼
1

2πi
PV

∫ ∞

−∞

eixτ

τ
dτ (60.53)
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61.1 mechanical wave equation solution

We want to solve(
1
v2 ∂tt − ∂xx

)
ψ = 0 (61.1)

A separation of variables treatment of this has been done in 12, and some logical followup for
that done in 14 in the context of Maxwell’s equation for the vacuum field.

Here the Fourier transform will be used as a tool.

61.2 one dimensional case

Following the heat equation treatment in 59, we take Fourier transforms of both parts of eq. (61.1).

F

(
1
v2 ∂ttψ

)
= F (∂xxψ) (61.2)

For the x derivatives we can integrate by parts twice

F (∂xxψ) =
1
√

2π

∫ ∞

−∞

(∂xxψ) exp (−ikx) dx

= −
1
√

2π

∫ ∞

−∞

(∂xψ) ∂x (exp (−ikx)) dx

= −
−ik
√

2π

∫ ∞

−∞

(∂xψ) exp (−ikx) dx

=
(−ik)2
√

2π

∫ ∞

−∞

ψ exp (−ikx) dx

(61.3)

Note that this integration by parts requires that ∂xψ = ψ = 0 at ±∞. We are left with

F (∂xxψ) = −k2ψ̂(k, t) (61.4)
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Now, for the left hand side, for the Fourier transform of the time partials we can pull the deriva-
tive operation out of the integral

F

(
1
v2 ∂ttψ

)
=

1
√

2π

∫ ∞

−∞

(
1
v2 ∂ttψ

)
exp (−ikx) dx

=
1
v2 ∂ttψ̂(k, t)

(61.5)

We are left with our harmonic oscillator differential equation for the transformed wave function

1
v2 ∂ttψ̂(k, t) = −k2ψ̂(k, t). (61.6)

Since we have a partial differential equation, for the integration constant we are free to pick any
function of k. The solutions of this are therefore of the form

ψ̂(k, t) = A(k) exp (±ivkt) (61.7)

Performing an inverse Fourier transform we now have the wave equation expressed in terms of
this unknown (so far) frequency domain function A(k). That is

ψ(x, t) =
1
√

2π

∫ ∞

−∞

A(k) exp (±ivkt + ikx) dk (61.8)

Now, suppose we fix the boundary value conditions by employing a known value of the wave
function at t = 0, say ψ(x, 0) = ϕ(x). We then have

ϕ(x) =
1
√

2π

∫ ∞

−∞

A(k) exp (ikx) dk (61.9)

From which we have A(k) in terms of ϕ by inverse transform

A(k) =
1
√

2π

∫ ∞

−∞

ϕ(x) exp (−ikx) dx (61.10)

One could consider the problem fully solved at this point, but it can be carried further. Let us
substitute eq. (61.10) back into eq. (61.8). This is

ψ(x, t) =
1
√

2π

∫ ∞

−∞

(
1
√

2π

∫ ∞

−∞

ϕ(u) exp (−iku) du
)

exp (±ivkt + ikx) dk (61.11)

With the Rigor police on holiday, exchange the order of integration

ψ(x, t) =
∫ ∞

−∞

ϕ(u)du
1

2π

∫ ∞

−∞

exp (−iku ± ivkt + ikx) dk

=

∫ ∞

−∞

ϕ(u)du
1

2π

∫ ∞

−∞

exp (ik(x − u ± vt)) dk
(61.12)
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The principle value of this inner integral is

PV
1

2π

∫ ∞

−∞

exp (ik(x − u ± vt)) dk = lim
R→∞

1
2π

∫ R

−R
exp (ik(x − u ± vt)) dk

= lim
R→∞

sin (R(x − u ± vt))
π(x − u ± vt)

(61.13)

And here we make the usual identification with the delta function δ(x− u± vt). We are left with

ψ(x, t) =
∫ ∞

−∞

ϕ(u)δ(x − u ± vt)du

= ϕ(x ± vt)
(61.14)

We find, amazingly enough, just by application of the Fourier transform, that the time evolution
of the wave function follows propagation of the initial wave packet down the x-axis in one of
the two directions with velocity v.

This is a statement well known to any first year student taking a vibrations and waves course,
but it is nice to see it follow from the straightforward application of transform techniques
straight out of the Engineer’s toolbox.

61.3 two dimensional case

Next, using a two dimensional Fourier transform

f̂ (k,m) =
1

(
√

2π)2

∫ ∞

−∞

f (x, y) exp (−ikx − imy) dxdy

f (x, y) =
1

(
√

2π)2

∫ ∞

−∞

f̂ (k,m) exp (ikx + imy) dkdm,
(61.15)

let us examine the two dimensional wave equation

F

((
1
v2 ∂tt − ∂xx − ∂yy

)
ψ = 0

)
(61.16)

Applying the same technique as above we have

1
v2 ∂ttψ̂(k,m, t) =

(
(−ik)2 + (−im)2

)
ψ̂(k,m, t) (61.17)

With a solution

ψ̂(k,m, t) = A(k,m) exp
(
±i

√
k2 +m2vt

)
. (61.18)
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Inverse transforming we have our spatial domain function

ψ(x, y, t) =
1

(
√

2π)2

∫ ∞

−∞

A(k,m) exp
(
ikx + imy ± i

√
k2 +m2vt

)
dkdm (61.19)

Again introducing an initial value function ψ(x, y, 0) = ϕ(x, y) we have

A(k,m) = ϕ̂(k,m)

=
1

(
√

2π)2

∫ ∞

−∞

ϕ(u,w) exp (−iku − imw) dudw
(61.20)

From which we can produce a final solution for the time evolution of an initial wave function,
in terms of a Green’s function for the wave equation.

ψ(x, y, t) =
∫ ∞

−∞

ϕ(u,w)G(x − u, y −w, t)dudw

G(x, y, t) =
1

(2π)2

∫ ∞

−∞

exp
(
ikx + imy ± i

√
k2 +m2vt

)
dkdm

(61.21)

Pretty cool even if it is incomplete.

61.3.1 A (busted) attempt to reduce this Green’s function to deltas

Now, for this inner integral kernel in eq. (61.21), our Green’s function, or fundamental solution
for the wave equation, we expect to have the action of a delta function. If it weare not for that
root term we could make that identification easily since it could be factored into independent
bits:

1
(2π)2

∫ ∞

−∞

exp (ik(x − u) + im(y −w)) dkdm

=

(
1

2π

∫ ∞

−∞

exp (ik(x − u)) dk
) (

1
2π

∫ ∞

−∞

exp (im(y −w)) dm
)

∼ δ(x − u)δ(y −w)

(61.22)
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Having seen previously that functions of the form f (k̂ · x− vt) are general solutions to the wave
equation in higher dimensions suggests rewriting the integral kernel of the wave function in the
following form

1
(2π)2

∫ ∞

−∞

exp
(
ik(x − u) + im(y −w) ± i

√
k2 +m2vt

)
dkdm

=
1

2π

∫ ∞

−∞

dk exp (ik(x − u ± vt))

×
1

2π

∫ ∞

−∞

dm exp (im(y −w ± vt))

× exp
(
±ivt(

√
k2 +m2 − k −m)

)
(61.23)

Now, the first two integrals have the form that we associate with one dimensional delta functions,
and one can see that when either k or m separately large (and positive) relative to the other than
the third factor is approximately zero. In a loose fashion one can guesstimate that this combined
integral has the following delta action

1
(2π)2

∫ ∞

−∞

exp
(
ik(x − u) + im(y −w) ± i

√
k2 +m2vt

)
dkdm

∼ δ(x − u ± vt)δ(y −w ± vt)
(61.24)

If that is the case then our final solution becomes

ψ(x, y, t) =
∫ ∞

−∞

ϕ(u,w)δ(x − u ± vt)δ(y −w ± vt)dudw

= ϕ(x ± vt, y ± vt)
(61.25)

This is a bit different seeming than the unit wave number dot product form, but lets see if it
works. We want to expand(

1
v2 ∂tt − ∂xx − ∂yy

)
ψ (61.26)

Let us start with the time partials

∂ttϕ(x ± vt, y ± vt) = ∂t∂tϕ(x ± vt, y ± vt)

= ∂t(∂xϕ(±v) + ∂yϕ(±v))

= (±v)(∂x∂tϕ + ∂y∂tϕ)

= (±v)2(∂x(∂xϕ + ∂yϕ) + ∂y(∂xϕ + ∂yϕ))

= (±v)2(∂xxϕ + ∂yyϕ + ∂yxϕ + ∂xyϕ)

(61.27)
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So application of this test solution to the original wave equation is not zero, since these cross
partials are not necessarily zero(

1
v2 ∂tt − ∂xx − ∂yy

)
ψ = ∂yxϕ + ∂xyϕ (61.28)

This indicates that an incorrect guess was made about the delta function action of the integral
kernel found via this Fourier transform technique. The remainder of that root term does not in
fact cancel out, which appeared may occur, but was just too convenient. Oh well.

61.4 three dimensional wave function

It is pretty clear that a three dimensional Fourier transform

f̂ (k,m, n) =
1

(
√

2π)3

∫ ∞

−∞

f (x, y, z) exp (−ikx − imy − inz) dxdydz

f (x, y, z) =
1

(
√

2π)3

∫ ∞

−∞

f̂ (k,m, n) exp (ikx + imy + inz) dkdmdn,
(61.29)

applied to a three dimensional wave equation

F

((
1
v2 ∂tt − ∂xx − ∂yy − ∂zz

)
ψ = 0

)
(61.30)

will lead to the similar results, but since this result did not work, it is not worth perusing this
more general case just yet.

Despite the failure in the hopeful attempt to reduce the Green’s function to a product of delta
functions, one still gets a general solution from this approach for the three dimensional case.

ψ(x, y, z, t) =
∫ ∞

−∞

ϕ(u,w, r)G(x − u, y −w, z − r, t)dudwdr

G(x, y, z, t) =
1

(2π)3

∫ ∞

−∞

exp
(
ikx + imy + inz ± i

√
k2 +m2 + n2vt

)
dkdmdn

(61.31)

So, utilizing this or reducing it to the familiar f (k̂ · x ± vt) solutions becomes the next step.
Intuition says that we need to pick a different inner product to get that solution. For the two
dimensional case that likely has to be an inner product with a circular contour, and for the three
dimensional case a spherical surface inner product of some sort.

Now, also interestingly, one can see hints here of the non-vacuum Maxwell retarded time
potential wave solutions. This inspires an attempt to try to tackle that too.
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62.1 motivation

In 61 a Green’s function solution to the homogeneous wave equation(
1
v2 ∂tt − ∂xx − ∂yy − ∂zz

)
ψ = 0 (62.1)

was found to be

ψ(x, y, z, t) =
∫ ∞

−∞

ϕ(u,w, r)G(x − u, y −w, z − r, t)dudτdr

G(x, y, z, t) =
1

(2π)3

∫ ∞

−∞

exp
(
ikx + imy + inz ± i

√
k2 +m2 + n2vt

)
dkdmdn

(62.2)

The aim of this set of notes is to explore the same ideas to the forced wave equations for the
four vector potentials of the Lorentz gauge Maxwell equation.

Such solutions can be used to find the Faraday bivector or its associated tensor components.
Note that the specific form of the Fourier transform used in these notes continues to be

f̂ (k) =
1

(
√

2π)n

∫ ∞

−∞

f (x) exp (−ik · x) dnx

f (x) =
1

(
√

2π)n

∫ ∞

−∞

f̂ (k) exp (ik · x) dnk
(62.3)

62.2 forced wave equation

62.2.1 One dimensional case

A good starting point is the reduced complexity one dimensional forced wave equation(
1
v2 ∂tt − ∂xx

)
ψ = g (62.4)

Fourier transforming to the wave number domain, with application of integration by parts twice
(each toggling the sign of the spatial derivative term) we have

1
v2 ψ̂tt − (−ik)2ψ̂ = ĝ. (62.5)



444 fourier transform solutions to maxwell’s equation

This leaves us with a linear differential equation of the following form to solve

f ′′ + α2 f = h. (62.6)

Out of line solution of this can be found below in eq. (62.48), where we have f = ψ̂, α = kv,
and h = ĝv2. Our solution for the wave function in the wave number domain is now completely
specified

ψ̂(k, t) =
∣∣∣∣∣vk

∣∣∣∣∣ ∫ t

u=t0(k)
ĝ(u) sin(|kv|(t − u))du. (62.7)

Because of the partial differentiation we have the flexibility to make the initial time a function
of the wave number k, but it is probably more natural to just set t0 = −∞. Also let us explicitly
pick v > 0 so that absolutes are only required on the factors of k

ψ̂(k, t) =
v
|k|

∫ t

u=−∞
ĝ(k, u) sin(|k|v(t − u))du (62.8)

But seeing the integral in this form suggests a change of variables τ = t − u, which gives us our
final wave function in the wave number domain with all the time dependency removed from the
integration limits

ψ̂(k, t) =
v
|k|

∫ ∞

τ=0
ĝ(k, t − τ) sin(|k|vτ)dτ (62.9)

With this our wave function is

ψ(x, t) =
1
√

2π

∫ ∞

−∞

(
v
k

∫ ∞

τ=0
ĝ(k, t − τ) sin(|k|vτ)dτ

)
exp(ikx)dk (62.10)

But we also have

ĝ(k, t) =
1
√

2π

∫ ∞

−∞

g(x, t) exp(−ikx)dx (62.11)

Reassembling we have

ψ(x, t) =
∫ ∞

k=−∞

∫ ∞

τ=0

∫ ∞

y=−∞

v
2π|k|

g(y, t − τ) sin(|k|vτ) exp(ik(x − y))dydτdk (62.12)

Rearranging a bit, and noting that sinc(|k|x) = sinc(kx) we have

ψ(x, t) =
∫ ∞

x′=−∞

∫ ∞

t′=0
g(x − x′, t − t′)G(x′, t′)dx′dt′

G(x, t) =
∫ ∞

k=−∞

v
2πk

sin(kvt) exp(ikx)dk
(62.13)
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We see that our charge density summed over all space contributes to the wave function, but it is
the charge density at that spatial location as it existed at a specific previous time.

The Green’s function that we convolve with in eq. (62.13) is a rather complex looking func-
tion. As seen later in 60 it was possible to evaluate a 3D variant of such an integral in ad-hoc
methods to produce a form in terms of retarded time and advanced time delta functions. A simi-
lar reduction, also in 60, of the Green’s function above yields a unit step function identification

G(x, t) =
v
2
(θ(x + vt) − θ(x − vt)) (62.14)

(This has to be verified more closely to see if it works).

62.2.2 Three dimensional case

Now, lets move on to the 3D case that is of particular interest for electrodynamics. Our wave
equation is now of the form 1

v2

∂2

∂t2 −
∑

j

∂2

∂x j2

ψ = g (62.15)

and our Fourier transformation produces almost the same result, but we have a wave number
contribution from each of the three dimensions

1
v2 ψ̂tt + k2ψ̂ = ĝ (62.16)

Our wave number domain solution is therefore

ψ̂(k, t) =
v
|k|

∫ ∞

τ=0
ĝ(k, t − τ) sin(|k|vτ)dτ (62.17)

But our wave number domain charge density is

ĝ(k, t) =
1

(
√

2π)3

∫ ∞

−∞

g(x, t) exp (−ik · x) d3x (62.18)

Our wave number domain result in terms of the charge density is therefore

ψ̂(k, t) =
v
|k|

∫ ∞

τ=0

 1

(
√

2π)3

∫ ∞

−∞

g(r, t − τ) exp (−ik · r) d3r
 sin(|k|vτ)dτ (62.19)

And finally inverse transforming back to the spatial domain we have a complete solution for the
inhomogeneous wave equation in terms of the spatial and temporal charge density distribution

ψ(x, t) =
∫ ∞

−∞

∫ ∞

t′=0
g(x − x′, t − t′)G(x′, t′)d3x′dt′

G(x, t) =
∫ ∞

−∞

v
(2π)3|k|

sin(|k|vt) exp (ik · x) d3k
(62.20)
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For computational purposes we are probably much better off using eq. (62.17), however, from
an abstract point of form this expression is much prettier.

One can also see the elements of the traditional retarded time expressions for the potential
hiding in there. See 60 for an evaluation of this integral (in an ad-hoc non-rigorous fashion)
eventually producing the retarded time solution.

62.2.2.1 Tweak this a bit to put into proper Green’s function form

Now, it makes sense to redefine G(x, t) above so that we can integrate uniformly over all space
and time. To do so we can add a unit step function into the definition, so that G(x, t < 0) = 0.
Additionally, if we express this convolution it is slightly tidier (and consistent with the normal
Green’s function notation) to put the parameter differences in the kernel term. Such a change of
variables will alter the sign of the integral limits by a factor of (−1)4, but we also have a (−1)4

term from the differentials. After making these final adjustments we have a final variation of
our integral solution

ψ(x, t) =
∫ ∞

−∞

g(x′, t′)G(x − x′, t − t′)d3x′dt′

G(x, t) = θ(t)
∫ ∞

−∞

v
(2π)3|k|

sin(|k|vt) exp (ik · x) d3k
(62.21)

Now our inhomogeneous solution is expressed nicely as the convolution of our current density
over all space and time with an integral kernel. That integral kernel is precisely the Green’s
function for this forced wave equation.

This solution comes with a large number of assumptions. Along the way we have the assump-
tion that both our wave function and the charge density was Fourier transformable, and that the
wave number domain products were inverse transformable. We also had an assumption that the
wave function is sufficiently small at the limits of integration that the intermediate contributions
from the integration by parts vanished, and finally the big assumption that we were perfectly
free to interchange integration order in an extremely ad-hoc and non-rigorous fashion!

62.3 maxwell equation solution

Having now found Green’s function form for the forced wave equation, we can now move to
Maxwell’s equation

∇F = J/ϵ0c (62.22)

In terms of potentials we have F = ∇∧ A, and may also impose the Lorentz gauge ∇ · A = 0, to
give us our four charge/current forced wave equations

∇2A = J/ϵ0c (62.23)
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As scalar equations these are 1
c2

∂2

∂t2 −
∑

j

∂2

∂x j2

 Aµ =
Jµ

ϵ0c
(62.24)

So, from above, also writing x0 = ct, we have

Aµ(x) =
1
ϵ0c

∫
Jµ(x′)G(x − x′)d4x′

G(x) = θ(x0)
∫

1
(2π)3|k|

sin(|k|x0) exp (ik · x) d3k
(62.25)

62.3.1 Four vector form for the Green’s function

Can we put the sine and exponential product in a more pleasing form? It would be nice to merge
the x and ct terms into a single four vector form. One possibility is merging the two

sin(|k|x0) exp (ik · x)

=
1
2i

(
exp

(
i
(
k · x + |k|x0

))
− exp

(
i
(
k · x − |k|x0

)))
=

1
2i

(
exp

(
i|k|

(
k̂ · x + x0

))
− exp

(
i|k|

(
k̂ · x − x0

))) (62.26)

Here we have a sort of sine like conjugation in the two exponentials. Can we tidy this up? Let
us write the unit wave number vector in terms of direction cosines

k̂ =
∑

m

σmαm

=
∑

m

γmγ0αm

(62.27)

Allowing us to write∑
m

γmαm = −k̂γ0 (62.28)

This gives us

k̂ · x + x0 = αmxm + x0

= (αmγ
m) · (γ jx j) + γ0 · γ0x0

= (−k̂γ0 + γ0) · γµxµ

= (−k̂γ0 + γ0) · x

(62.29)
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Similarly we have

k̂ · x − x0 = (−k̂γ0 − γ0) · x (62.30)

and can now put G in explicit four vector form

G(x) =
θ(x · γ0)
(2π)32i

∫
(exp (i((|k| − k)γ0) · x) − exp (−i((|k| + k)γ0) · x))

d3k
|k|

(62.31)

Hmm, is that really any better? Intuition says that this whole thing can be written as sine with
some sort of geometric product conjugate terms.

I get as far as writing

i(k · x ± |k|x0) = (iγ0)∧ (k ± |k|) · x (62.32)

But that does not quite have the conjugate form I was looking for (or does it)? Have to go back
and look at Hestenes’s multivector conjugation operation. Think it had something to do with
reversion, but do not recall.

Failing that tidy up the following

G(x) =
θ(x · γ0)

(2π)3

∫
sin(|k|x · γ0) exp (−i(kγ0) · x)

d3k
|k|

(62.33)

is probably about as good as it gets for now. Note the interesting feature that we end up essen-
tially integrating over a unit ball in our wave number space. This suggests the possibility of
simplification using the divergence theorem.

62.3.2 Faraday tensor

Attempting to find a tidy four vector form for the four vector potentials was in preparation for
taking derivatives. Specifically, applied to eq. (62.25) we have

Fµν = ∂µAν − ∂νAµ (62.34)

subject to the Lorentz gauge constraint

0 = ∂µAµ (62.35)

If we switch the convolution indices for our potentials

Aµ(x, t) =
1
ϵ0c

∫
Jµ(x − x′)G(x′)d4x′ (62.36)
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Then the Lorentz gauge condition, after differentiation under the integral sign, is

0 = ∂µAµ =
1
ϵ0c

∫
(∂µJµ(x − x′))G(x′)d4x′ (62.37)

So we see that the Lorentz gauge seems to actually imply the continuity equation

∂µJµ(x) = 0 (62.38)

Similarly, it appears that we can write our tensor components in terms of current density deriva-
tives

Fµν =
1
ϵ0c

∫
(∂µJν(x − x′) − ∂νJµ(x − x′))G(x′)d4x′ (62.39)

Logically, I suppose that one can consider the entire problem solved here, pending the comple-
tion of this calculus exercise.

In terms of tidiness, it would be nicer seeming use the original convolution, and take deriva-
tive differences of the Green’s function. However, how to do this is not clear to me since this
function has no defined derivative at the t = 0 points due to the unit step.

62.4 appendix . mechanical details

62.4.1 Solving the wave number domain differential equation

We wish to solve equation the inhomogeneous eq. (62.6). Writing this in terms of a linear
operator equation this is

L(y) = y′′ + α2y

L(y) = h
(62.40)

The solutions of this equation will be formed from linear combinations of the homogeneous
problem plus a specific solution of the inhomogeneous problem

By inspection the homogeneous problem has solutions in span{eiαx, e−iαx}. We can find a
solution to the inhomogeneous problem using the variation of parameters method, assuming a
solution of the form

y = ueiαx + ve−iαx (62.41)

Taking derivatives we have

y′ = u′eiαx + v′e−iαx + iα(ueiαx − ve−iαx) (62.42)
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The trick to solving this is to employ the freedom to set the u′, and v′ terms above to zero

u′eiαx + v′e−iαx = 0 (62.43)

Given this choice we then have

y′ = iα(ueiαx − ve−iαx)

y′′ = (iα)2(ueiαx + ve−iαx)iα(u′eiαx − v′e−iαx)
(62.44)

So we have

L(y) = (iα)2(ueiαx + ve−iαx)

+ iα(u′eiαx − v′e−iαx) + (α)2(ueiαx + ve−iαx)

= iα(u′eiαx − v′e−iαx)

(62.45)

With this and eq. (62.43) we have a set of simultaneous first order linear differential equations
to solveu′v′

 =
eiαx −e−iαx

eiαx e−iαx


−1 h/iα0


=

1
2

e−iαx e−iαx

−eiαx eiαx


h/iα0


=

h
2iα

e−iαx

−eiαx


(62.46)

Substituting back into the assumed solution we have

y =
1

2iα

(
eiαx

∫
he−iαx − e−iαx

∫
heiαx

)
=

1
2iα

∫ x

u=x0

h(u)
(
e−iα(u−x) − eiα(u−x)

)
du

(62.47)

So our solution appears to be

y =
1
α

∫ x

u=x0

h(u) sin(α(x − u))du (62.48)

A check to see if this is correct is in order to verify this. Differentiating using eq. (62.57) we
have

y′ =
1
α

h(u) sin(α(x − u))
∣∣∣∣∣
u=x
+

1
α

∫ x

u=x0

∂

∂x
h(u) sin(α(x − u))du

=

∫ x

u=x0

h(u) cos(α(x − u))du
(62.49)
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and for the second derivative we have

y′′ = h(u) cos(α(x − u))|u=x − α

∫ x

u=x0

h(u) sin(α(x − u))du

= h(x) − α2y(x)
(62.50)

Excellent, we have y′′ + α2y = h as desired.

62.4.2 Differentiation under the integral sign

Given an function that is both a function of the integral limits and the integrals kernel

f (x) =
∫ b(x)

u=a(x)
G(x, u)du, (62.51)

lets recall how to differentiate the beastie. First let G(x, u) = ∂F(x, u)/∂u so we have

f (x) = F(x, b(x)) − F(x, a(x)) (62.52)

and our derivative is

f ′(x) =
∂F
∂x

(x, b(x))
∂F
∂u

(x, b(x))b′ −
∂F
∂x

(x, a(x)) −
∂F
∂u

(x, a(x))a′

= G(x, b(x))b′ −G(x, a(x))a′ +
∂F
∂x

(x, b(x)) −
∂F
∂x

(x, a(x))
(62.53)

Now, we want ∂F/∂x in terms of G, and to get there, assuming sufficient continuity, we have
from the definition

∂

∂x
G(x, u) =

∂

∂x
∂F(x, u)
∂u

=
∂

∂u
∂F(x, u)
∂x

(62.54)

Integrating both sides with respect to u we have∫
∂G
∂x

du =
∫

∂

∂u
∂F(x, u)
∂x

du

=
∂F(x, u)
∂x

(62.55)

This allows us to write

∂F
∂x

(x, b(x)) −
∂F
∂x

(x, a(x)) =
∫ b

a

∂G
∂x

(x, u)du (62.56)

and finally

d
dx

∫ b(x)

u=a(x)
G(x, u)du = G(x, b(x))b′ −G(x, a(x))a′ +

∫ b(x)

a(x)

∂G
∂x

(x, u)du (62.57)
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62.4.2.1 Argument logic error above to understand

Is the following not also true∫
∂G
∂x

du =
∫

∂

∂u
∂F(x, u)
∂x

du

=

∫
∂

∂u

(
∂F(x, u)
∂x

+ A(x)
)

du

=
∂F(x, u)
∂x

+ A(x)u + B

(62.58)

In this case we have

∂F
∂x

(x, b(x)) −
∂F
∂x

(x, a(x)) =
∫ b

a

∂G
∂x

(x, u)du − A(x)(b(x) − a(x)) (62.59)

How to reconcile this with the answer I expect (and having gotten it, I believe matches my
recollection)?



63F I R S T O R D E R F O U R I E R T R A N S F O R M S O L U T I O N O F M A X W E L L’ S
E Q UAT I O N

63.1 motivation

In 62 solutions of Maxwell’s equation via Fourier transformation of the four potential forced
wave equations were explored.

Here a first order solution is attempted, by directly Fourier transforming the Maxwell’s equa-
tion in bivector form.

63.2 setup

Again using a 3D spatial Fourier transform, we want to put Maxwell’s equation into an explicit
time dependent form, and can do so by premultiplying by our observer’s time basis vector γ0

γ0∇F = γ0
J
ϵ0c

(63.1)

On the left hand side we have

γ0∇ = γ0
(
γ0∂0 + γ

k∂k
)

= ∂0 − γ
kγ0∂k

= ∂0 +σ
k∂k

= ∂0 +∇

(63.2)

and on the right hand side we have

γ0
J
ϵ0c
= γ0

cργ0 + Jkγk

ϵ0c

=
cρ − Jkσk

ϵ0c

=
ρ

ϵ0
−

j
ϵ0c

(63.3)

Both the spacetime gradient and the current density four vector have been put in a quaternion-
ic form with scalar and bivector grades in the STA basis. This leaves us with the time centric
formulation of Maxwell’s equation

(∂0 +∇) F =
ρ

ϵ0
−

j
ϵ0c

(63.4)
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Except for the fact that we have objects of various grades here, and that this is a first instead of
second order equation, these equations have the same form as in the previous Fourier transform
attacks. Those were Fourier transform application for the homogeneous and inhomogeneous
wave equations, and the heat and Schrödinger equation.

63.3 fourier transforming a mixed grade object

Now, here we make the assumption that we can apply 3D Fourier transform pairs to mixed
grade objects, as in

ψ̂(k, t) =
1

(
√

2π)3

∫ ∞

−∞

ψ(x, t) exp (−ik · x) d3x

ψ(x, t) = PV
1

(
√

2π)3

∫ ∞

−∞

ψ̂(k, t) exp (ik · x) d3k
(63.5)

Now, because of linearity, is it clear enough that this will work, provided this is a valid transform
pair for any specific grade. We do however want to be careful of the order of the factors since
we want the flexibility to use any particular convenient representation of i, in particular i =
γ0γ1γ2γ3 = σ1σ2σ3.

Let us repeat our an ad-hoc verification that this transform pair works as desired, being careful
with the order of products and specifically allowing for ψ to be a non-scalar function. Writing
k = kmσ

m, r = σmrm, x = σmxm, that is an expansion of

PV
1

(
√

2π)3

∫  1

(
√

2π)3

∫
ψ(r, t) exp (−ik · r) d3r

 exp (ik · x) d3k

=

∫
ψ(r, t)d3r PV

1
(2π)3

∫
exp (ik · (x − r)) d3k

=

∫
ψ(r, t)d3r

3∏
m=1

PV
1

2π

∫
exp (ikm(xm − rm)) dkm

=

∫
ψ(r, t)d3r

3∏
m=1

lim
R→∞

sin (R(xm − rm))
π(xm − rm)

∼

∫
ψ(r, t)δ(x1 − r1)δ(x2 − r2)δ(x3 − r3)d3r

= ψ(x, t)

(63.6)

In the second last step above we make the ad-hoc identification of that sinc limit with the Dirac
delta function, and recover our original function as desired (the Rigor police are on holiday
again).
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63.3.1 Rotor form of the Fourier transform?

Although the formulation picked above appears to work, it is not the only choice to potentially
make for the Fourier transform of multivector. Would it be more natural to pick an explicit Rotor
formulation? This perhaps makes more sense since it is then automatically grade preserving.

ψ̂(k, t) =
1

(
√

2π)n

∫ ∞

−∞

exp
(
1
2

ik · x
)
ψ(x, t) exp

(
−

1
2

ik · x
)

dnx

ψ(x, t) = PV
1

(
√

2π)n

∫ ∞

−∞

exp
(
−

1
2

ik · x
)
ψ̂(k, t) exp

(
1
2

ik · x
)

dnk
(63.7)

This is not a moot question since I later tried to make an assumption that the grade of a trans-
formed object equals the original grade. That does not work with the Fourier transform defini-
tion that has been picked in eq. (63.5). It may be necessary to revamp the complete treatment,
but for now at least an observation that the grades of transform pairs do not necessarily match
is required.

Does the transform pair work? For the n = 1 case this is

F( f ) = f̂ (k) =
1
√

2π

∫ ∞

−∞

exp
(
1
2

ikx
)

f (x) exp
(
−

1
2

ikx
)

dx

F−1( f̂ ) = f (x) = PV
1
√

2π

∫ ∞

−∞

exp
(
−

1
2

ikx
)

f̂ (k) exp
(
1
2

ikx
)

dk
(63.8)

Will the computation of F−1(F( f (x))) produce f (x)? Let us try

F−1(F( f (x)))

= PV
1

2π

∫ ∞

−∞

exp
(
−

1
2

ikx
) (∫ ∞

−∞

exp
(
1
2

iku
)

f (u) exp
(
−

1
2

iku
)

du
)

exp
(
1
2

ikx
)

dk

= PV
1

2π

∫ ∞

−∞

exp
(
−

1
2

ik(x − u)
)

f (u) exp
(
1
2

ik(x − u)
)

dudk

(63.9)

Now, this expression can not obviously be identified with the delta function as in the single
sided transformation. Suppose we decompose f into grades that commute and anticommute
with i. That is

f = f∥ + f⊥
f∥i = i f∥
f⊥i = −i f⊥

(63.10)
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This is also sufficient to determine how these components of f behave with respect to the expo-
nentials. We have

eiθ =
∑

m

(iθ)m

m!

= cos(θ) + i sin(θ)
(63.11)

So we also have

f∥eiθ = eiθ f∥
f⊥eiθ = e−iθ f⊥

(63.12)

This gives us

F−1(F( f (x))) = PV
1

2π

∫ ∞

−∞

f∥(u)dudk + PV
1

2π

∫ ∞

−∞

f⊥(u) exp (ik(x − u)) dudk

=
1

2π

∫ ∞

−∞

dk
∫ ∞

−∞

f∥(u)du +
∫ ∞

−∞

f⊥(u)δ(x − u)du
(63.13)

So, we see two things. First is that any f∥ , 0 produces an unpleasant infinite result. One could,
in a vague sense, allow for odd valued f∥, however, if we were to apply this inversion transfor-
mation pair to a function time varying multivector function f (x, t), this would then require that
the function is odd for all times. Such a function must be zero valued.

The second thing that we see is that if f entirely anticommutes with i, we do recover it with
this transform pair, obtaining f⊥(x).

With respect to Maxwell’s equation this immediately means that this double sided transform
pair is of no use, since our pseudoscalar i = γ0γ1γ2γ3 commutes with our grade two field
bivector F.

63.4 fourier transforming the spacetime split gradient equation

Now, suppose we have a Maxwell like equation of the form

(∂0 +∇)ψ = g (63.14)

Let us take the Fourier transform of this equation. This gives us

∂0ψ̂ +σ
mF(∂mψ) = ĝ (63.15)

Now, we need to look at the middle term in a bit more detail. For the wave, and heat equations
this was evaluated with just an integration by parts. Was there any commutation assumption in
that previous treatment? Let us write this out in full to make sure we are cool.

F(∂mψ) =
1

(
√

2π)3

∫
(∂mψ(x, t)) exp (−ik · x) d3x (63.16)



63.5 back to specifics . maxwell’s equation in wave number domain 457

Let us also expand the integral completely, employing a permutation of indices π(1, 2, 3) =
(m, n, p).

F(∂mψ) =
1

(
√

2π)3

∫
∂xp

dxp
∫
∂xn

dxn
∫
∂xm

dxm (∂mψ(x, t)) exp (−ik · x) (63.17)

Okay, now we are ready for the integration by parts. We want a derivative substitution, based
on

∂m (ψ(x, t) exp (−ik · x))
= (∂mψ(x, t)) exp (−ik · x) + ψ(x, t)∂m exp (−ik · x)
= (∂mψ(x, t)) exp (−ik · x) + ψ(x, t)(−ikm) exp (−ik · x)

(63.18)

Observe that we do not wish to assume that the pseudoscalar i commutes with anything except
the exponential term, so we have to leave it sandwiched or on the far right. We also must take
care to not necessarily commute the exponential itself with ψ or its derivative. Having noted
this we can rearrange as desired for the integration by parts

(∂mψ(x, t)) exp (−ik · x) = ∂m (ψ(x, t) exp (−ik · x)) − ψ(x, t)(−ikm) exp (−ik · x) (63.19)

and substitute back into the integral

σmF(∂mψ) =
1

(
√

2π)3

∫
∂xp

dxp
∫
∂xn

dxn (σmψ(x, t) exp (−ik · x))
∣∣∣
∂xm

−
1

(
√

2π)3

∫
∂xp

dxp
∫
∂xn

dxn
∫
∂xm

dxmσmψ(x, t)(−ikm) exp (−ik · x)
(63.20)

So, we find that the Fourier transform of our spatial gradient is

F(∇ψ) = kψ̂i (63.21)

This has the specific ordering of the vector products for our possibility of non-commutative
factors.

From this, without making any assumptions about grade, we have the wave number domain
equivalent for the spacetime split of the gradient eq. (63.14)

∂0ψ̂ + kψ̂i = ĝ (63.22)

63.5 back to specifics . maxwell’s equation in wave number domain

For Maxwell’s equation our field variable F is grade two in the STA basis, and our specific
transform pair is:

(∂0 +∇) F = γ0J/ϵ0c

∂0F̂ + kF̂i = γ0 Ĵ/ϵ0c
(63.23)
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Now, exp(iθ) and i commute, and i also commutes with both F and k. This is true since our field
F as well as the spatial vector k are grade two in the STA basis. Two sign interchanges occur as
we commute with each vector factor of these bivectors.

This allows us to write our transformed equation in the slightly tidier form

∂0F̂ + (ik)F̂ = γ0 Ĵ/ϵ0c (63.24)

We want to find a solution to this equation. If the objects in question were all scalars this would
be simple enough, and is a problem of the form

B′ + AB = Q (63.25)

For our electromagnetic field our transform is a summation of the following form

(E + icB)(cos θ + i sin θ) = (E cos θ − cB sin θ) + i(E sin θ + cB cos θ) (63.26)

The summation of the integral itself will not change the grades, so F̂ is also a grade two mul-
tivector. The dual of our spatial wave number vector ik is also grade two with basis bivectors
γmγn very much like the magnetic field portions of our field vector icB.

Having figured out the grades of all the terms in eq. (63.24), what does a grade split of this
equation yield? For the equation to be true do we not need it to be true for all grades? Our grade
zero, four, and two terms respectively are

(ik) · F̂ = ρ̂/ϵ0

(ik)∧ F̂ = 0

∂0F̂ + (ik) × F̂ = −ĵ/ϵ0c

(63.27)

Here the (antisymmetric) commutator product ⟨ab⟩2 = a× b = (ab− ba)/2 has been used in the
last equation for this bivector product.

It is kind of interesting that an unmoving charge density contributes nothing to the time
variation of the field in the wave number domain, instead only the current density (spatial)
vectors contribute to our differential equation.

63.5.1 Solving this first order inhomogeneous problem

We want to solve the inhomogeneous scalar equation eq. (63.25) but do so in a fashion that is
also valid for the grades for the Maxwell equation problem.

Application of variation of parameters produces the desired result. Let us write this equation
in operator form

L(B) = B′ + AB (63.28)
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and start with the solution of the homogeneous problem

L(B) = 0 (63.29)

This is

B′ = −AB (63.30)

so we expect exponential solutions will do the trick, but have to get the ordering right due to the
possibility of non-commutative factors. How about one of

B = Ce−At

B = e−AtC
(63.31)

Where C is constant, but not necessarily a scalar, and does not have to commute with A. Taking
derivatives of the first we have

B′ = C(−A)e−At (63.32)

This does not have the desired form unless C and A commute. How about the second possibility?
That one has the derivative

B′ = (−A)e−AtC

= −AB
(63.33)

which is what we want. Now, for the inhomogeneous problem we want to use a test solution
replacing C with an function to be determined. That is

B = e−AtU (63.34)

For this we have
L(B) = (−A)e−AtU + e−AtU′ + AB

= e−AtU′
(63.35)

Our inhomogeneous problem L(B) = Q is therefore reduced to

e−AtU′ = Q (63.36)

Or

U =
∫

eAtQ(t)dt (63.37)

As an indefinite integral this gives us

B(t) = e−At
∫

eAtQ(t)dt (63.38)

And finally in definite integral form, if all has gone well, we have a specific solution to the
forced problem

B(t) =
∫ t

t0
e−A(t−τ)Q(τ)dτ (63.39)
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63.5.1.1 Verify

With differentiation under the integral sign we have

dB
dt
= e−A(t−τ)Q(τ)

∣∣∣
τ=t +

∫ t

t0
−Ae−A(t−τ)Q(τ)dτ

= Q(t) − AB
(63.40)

Great!

63.5.2 Back to Maxwell’s

Switching to explicit time derivatives we have

∂tF̂ + (ick)F̂ = γ0 Ĵ/ϵ0 (63.41)

By eq. (63.39), this has, respectively, homogeneous and inhomogeneous solutions

F̂(k, t) = e−icktC(k)

F̂(k, t) =
1
ϵ0

∫ t

t0(k)
e−(ick)(t−τ)γ0 Ĵ(k, τ)dτ

(63.42)

For the homogeneous term at t = 0 we have

F̂(k, 0) = C(k) (63.43)

So, C(k) is just the Fourier transform of an initial wave packet. Reassembling all the bits in
terms of fully specified Fourier and inverse Fourier transforms we have

F(x, t) =
1

(
√

2π)3

∫  1

(
√

2π)3

∫
e−icktF(u, 0)e−ik·ud3u

 eik·xd3k

=
1

(2π)3

∫
e−icktF(u, 0)eik·(x−u)d3ud3k

(63.44)

We have something like a double sided Green’s function, with which we do a spatial convolution
over all space with to produce a function of wave number. One more integration over all wave
numbers gives us our inverse Fourier transform. The final result is a beautiful closed form
solution for the time evolution of an arbitrary wave packet for the field specified at some specific
initial time.

Now, how about that forced term? We want to inverse Fourier transform our Ĵ based equation
in eq. (63.42). Picking our t0 = −∞ this is

F(x, t) =
1

(
√

2π)3

∫ (
1
ϵ0

∫ t

τ=−∞
e−(ick)(t−τ)γ0 Ĵ(k, τ)dτ

)
eik·xd3k

=
1

ϵ0(2π)3

∫ ∫ t

τ=−∞
e−(ick)(t−τ)γ0J(u, τ)eik·(x−u)dτd3ud3k

(63.45)
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Again we have a double sided Green’s function. We require a convolution summing the four
vector current density contributions over all space and for all times less than t.

Now we can combine the vacuum and charge present solutions for a complete solution to
Maxwell’s equation. This is

F(x, t) =
1

(2π)3

∫
e−ickt

(
F(u, 0) +

1
ϵ0

∫ t

τ=−∞
eickτγ0J(u, τ)dτ

)
eik·(x−u)d3ud3k (63.46)

Now, this may not be any good for actually computing with, but it sure is pretty!
There is a lot of verification required to see if all this math actually works out, and also a fair

amount of followup required to play with this and see what other goodies fall out if this is used.
I had expect that this result ought to be usable to show familiar results like the Biot-Savart law.

How do our energy density and Poynting energy momentum density conservation relations,
and the stress energy tensor terms, look given a closed form expression for F?

It is also kind of interesting to see the time phase term coupled to the current density here
in the forcing term. That looks awfully similar to some QM expressions, although it could be
coincidental.
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64.1 notation

Please see ?? for a summary of much of the notation used here.

64.2 motivation

In 63, a solution of the first order Maxwell equation

∇F =
J
ϵ0c

(64.1)

was found to be

F(x, t) =
1

(2π)3

∫
e−ickt

(
F(u, 0) +

1
ϵ0

∫ t

τ=−∞
eickτγ0J(u, τ)dτ

)
eik·(x−u)d3ud3k (64.2)

This does not have the spacetime uniformity that is expected for a solution of a Lorentz invariant
equation.

Similarly, in 62 solutions of the second order Maxwell equation in the Lorentz gauge ∇ · A =
0

F = ∇∧ A

∇2A = J/ϵ0c
(64.3)

were found to be

Aµ(x) =
1
ϵ0c

∫
Jµ(x′)G(x − x′)d4x′

G(x) =
u(x · γ0)

(2π)3

∫
sin(|k|x · γ0) exp (−i(kγ0) · x)

d3k
|k|

(64.4)

Here our convolution kernel G also does not exhibit a uniform four vector form that one could
logically expect.

In these notes an attempt to rework these problems using a 4D spacetime Fourier transform
will be made.
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64.3 4d fourier transform

As before we want a multivector friendly Fourier transform pair, and choose the following

ψ̂(k) =
1

(
√

2π)4

∫ ∞

−∞

ψ(x) exp (−ik · x) d4x

ψ(x) = PV
1

(
√

2π)4

∫ ∞

−∞

ψ̂(k) exp (ik · x) d4k
(64.5)

Here we use i = γ0γ1γ2γ3 as our pseudoscalar, and have to therefore be careful of order of
operations since this does not necessarily commute with multivector ψ or ψ̂ functions.

For our dot product and vectors, with summation over matched upstairs downstairs indices
implied, we write

x = xµγµ = xµγµ

k = kµγµ = kµγµ

x · k = xµkµ = xµkµ
(64.6)

Finally our differential volume elements are defined to be

d4x = dx0dx1dx2dx3

d4k = dk0dk1dk2dk3
(64.7)

Note the opposite pairing of upstairs and downstairs indices in the coordinates.

64.4 potential equations

64.4.1 Inhomogeneous case

First for the attack is the Maxwell potential equations. As well as using a 4D transform, having
learned how to do Fourier transformations of multivectors, we will attack this one in vector
form as well. Our equation to invert is

∇2A = J/ϵ0c (64.8)

There is nothing special to do for the transformation of the current term, but the left hand side
will require two integration parts

F(∇2A) =
1

(2π)2

∫ ∞

−∞

∂00 −
∑

m

∂mm

 A

 e−ikµxµd4x

=
1

(2π)2

∫ ∞

−∞

A

(−ik0)2 −
∑

m

(−ikm)2

 e−ikµxµd4x

(64.9)
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As usual it is required that A and ∂µA vanish at infinity. Now for the scalar in the interior we
have

(−ik0)2 −
∑

m

(−ikm)2 = −(k0)2 +
∑

m

(km)2
(64.10)

But this is just the (negation) of the square of our wave number vector

k2 = kµγµ · kνγν

= kµkνγµ · γν

= k0k0γ0 · γ
0 −

∑
a,b

kakbγa · γ
b

= (k0)2 −
∑

a

(ka)2

(64.11)

Putting things back together we have for our potential vector in the wave number domain

Â =
Ĵ

−k2ϵ0c
(64.12)

Inverting, and substitution for Ĵ gives us our spacetime domain potential vector in one fell
swoop

A(x) =
1

(
√

2π)4

∫ ∞

−∞

 1
−k2ϵ0c

1

(
√

2π)4

∫ ∞

−∞

J(x′)e−ik·x′d4x′
 eik·xd4k

=
1

(2π)4

∫ ∞

−∞

J(x′)
1

−k2ϵ0c
eik·(x−x′)d4kd4x′

(64.13)

This allows us to write this entire specific solution to the forced wave equation problem as a
convolution integral

A(x) =
1
ϵ0c

∫ ∞

−∞

J(x′)G(x − x′)d4x′

G(x) =
−1

(2π)4

∫ ∞

−∞

eik·x

k2 d4k
(64.14)

Pretty slick looking, but actually also problematic if one thinks about it. Since k2 is null in
some cases G(x) may blow up in some conditions. My assumption however, is that a well
defined meaning can be associated with this integral, I just do not know what it is yet. A way to
define this more exactly may require picking a more specific orthonormal basis once the exact
character of J is known.

FIXME: In 60 I worked through how to evaluate such an integral (expanding on a too brief
treatment found in [5]). To apply such a technique here, where our Green’s function has pre-
cisely the same form as the Green’s function for the Poisson’s equation, a way to do the equiva-
lent of a spherical polar parametrization will be required. How would that be done in 4D? Have



466 4d fourier transforms applied to maxwell’s equation

seen such treatments in [11] for hypervolume and surface integration, but they did not make
much sense then. Perhaps they would now?

64.4.2 The homogeneous case

The missing element here is the addition of any allowed homogeneous solutions to the wave
equation. The form of such solutions cannot be obtained with the 4D transform since that pro-
duces

−k2Â = 0 (64.15)

and no meaningful inversion of that is possible.
For the homogeneous problem we are forced to re-express the spacetime Laplacian with

an explicit bias towards either time or a specific direction in space, and attack with a Fourier
transform on the remaining coordinates. This has been done previously, but we can revisit this
using our new vector transform.

Now we switch to a spatial Fourier transform

ψ̂(k, t) =
1

(
√

2π)3

∫ ∞

−∞

ψ(x, t) exp (−ik · x) d3x

ψ(x, t) = PV
1

(
√

2π)3

∫ ∞

−∞

ψ̂(k, t) exp (ik · x) d3k
(64.16)

Using a spatial transform we have

F((∂00 −
∑

m

∂mm)A) = ∂00Â −
∑

m

Â(−ikm)2
(64.17)

Carefully keeping the pseudoscalar factors all on the right of our vector as the integration by
parts was performed does not make a difference since we just end up with a scalar in the end.
Our equation in the wave number domain is then just

∂ttÂ(k, t) + (c2k2)Â(k, t) = 0 (64.18)

with exponential solutions

Â(k, t) = C(k) exp(±ic|k|t) (64.19)

In particular, for t = 0 we have

Â(k, 0) = C(k) (64.20)
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Reassembling then gives us our homogeneous solution

A(x, t) =
1

(
√

2π)3

∫ ∞

−∞

 1

(
√

2π)3

∫ ∞

−∞

A(x′, 0)e−ik·x′d3x′
 e±ic|k|teik·xd3k (64.21)

This is

A(x, t) =
∫ ∞

−∞

A(x′, 0)G(x − x′)d3x′

G(x) =
1

(2π)3

∫ ∞

−∞

exp (ik · x ± ic|k|t) d3k
(64.22)

Here also we have to be careful to keep the Green’s function on the right hand side of A since
they will not generally commute.

64.4.3 Summarizing

Assembling both the homogeneous and inhomogeneous parts for a complete solution we have
for the Maxwell four vector potential

A(x) =
∫ ∞

−∞

(
A(x′, 0)H(x − x′) +

1
ϵ0c

∫ ∞

−∞

J(x′)G(x − x′)dx0
)

dx1dx2dx3

H(x) =
1

(2π)3

∫ ∞

−∞

exp (ik · x ± ic|k|t) d3k

G(x) =
−1

(2π)4

∫ ∞

−∞

eik·x

k2 d4k

(64.23)

Here for convenience both four vectors and spatial vectors were used with

x = xµγµ
x = xmσm = x ∧ γ0

(64.24)

As expected, operating where possible in a Four vector context does produce a simpler convo-
lution kernel for the vector potential.

64.5 first order maxwell equation treatment

Now we want to Fourier transform Maxwell’s equation directly. That is

F(∇F = J/ϵ0c) (64.25)
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For the LHS we have

F(∇F) = F(γµ∂µF)

= γµ
1

(2π)2

∫ ∞

−∞

(∂µF)e−ik·xd4x

= −γµ
1

(2π)2

∫ ∞

−∞

F∂µ(e−ikσxσ)d4x

= −γµ
1

(2π)2

∫ ∞

−∞

F(−ikµ)e−ik·xd4x

= −iγµkµ
1

(2π)2

∫ ∞

−∞

Fe−ik·xd4x

= −ikF̂

(64.26)

This gives us

−ikF̂ = Ĵ/ϵ0c (64.27)

So to solve the forced Maxwell equation we have only to inverse transform the following

F̂ =
1

−ikϵ0c
Ĵ (64.28)

This is

F =
1

(
√

2π)4

∫ ∞

−∞

1
−ikϵ0c

 1

(
√

2π)4

∫ ∞

−∞

J(x′)e−ik·x′d4x′
 eik·xd4k (64.29)

Adding to this a solution to the homogeneous equation we now have a complete solution in
terms of the given four current density and an initial field wave packet

F =
1

(2π)3

∫
e−icktF(x′, 0)eik·(x−x′)d3x′d3k +

1
(2π)4ϵ0c

∫
i
k

J(x′)eik·(x−x′)d4kd4x′ (64.30)

Observe that we can not make a single sided Green’s function to convolve J with since the
vectors k and J may not commute.

As expected working in a relativistic context for our inherently relativistic equation turns out
to be much simpler and produce a simpler result. As before trying to actually evaluate these
integrals is a different story.
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65.1 motivation

In [3], after finding a formulation of Maxwell’s equations that he likes, his next step is to assume
the electric and magnetic fields can be expressed in a 3D Fourier series form, with periodicity
in some repeated volume of space, and then proceeds to evaluate the energy of the field.

65.1.1 Notation

See the notational table ?? for much of the notation assumed here.

65.2 setup

Let us try this. Instead of using the sine and cosine Fourier series which looks more complex
than it ought to be, use of a complex exponential ought to be cleaner.

65.2.1 3D Fourier series in complex exponential form

For a multivector function f (x, t), periodic in some rectangular spatial volume, let us assume
that we have a 3D Fourier series representation.

Define the element of volume for our fundamental wavelengths to be the region bounded by
three intervals in the x1, x2, x3 directions respectively

I1 = [a1, a1 + λ1]

I2 = [a2, a2 + λ2]

I3 = [a3, a3 + λ3]

(65.1)

Our assumed Fourier representation is then

f (x, t) =
∑

k
f̂k(t) exp

−∑
j

2πik jx j

λ j

 (65.2)

Here f̂k = f̂{k1,k2,k3} is indexed over a triplet of integer values, and the k1, k2, k3 indices take on
all integer values in the [−∞,∞] range.
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Note that we also wish to allow i to not just be a generic complex number, but allow for the
use of either the Euclidean or Minkowski pseudoscalar

i = γ0γ1γ2γ3 = σ1σ2σ3 (65.3)

Because of this we should not assume that we can commute i, or our exponentials with the
functions f (x, t), or f̂k(t).∫

x1=∂I1

∫
x2=∂I2

∫
x3=∂I3

f (x, t)e2πim j x j/λ jdx1dx2dx3

=
∑

k
f̂k(t)

∫
x1=∂I1

∫
x2=∂I2

∫
x3=∂I3

dx1dx2dx3e2πi(m j−k j)x j/λ jdx1dx2dx3
(65.4)

But each of these integrals is just δk,mλ1λ2λ3, giving us

f̂k(t) =
1

λ1λ2λ3

∫
x1=∂I1

∫
x2=∂I2

∫
x3=∂I3

f (x, t) exp

∑
j

2πik jx j

λ j

 dx1dx2dx3 (65.5)

To tidy things up lets invent (or perhaps abuse) some notation to tidy things up. As a subscript
on our Fourier coefficients we have used k as an index. Let us also use it as a vector, and define

k ≡ 2π
∑

m

σmkm

λm
(65.6)

With our spatial vector x written

x =
∑

m

σmxm
(65.7)

We now have a k · x term in the exponential, and can remove when desirable the coordinate
summation. If we write V = λ1λ2λ3 it leaves a nice tidy notation for the 3D Fourier series over
the volume

f (x, t) =
∑

k
f̂k(t)e−ik·x

f̂k(t) =
1
V

∫
f (x, t)eik·xd3x

(65.8)

This allows us to proceed without caring about the specifics of the lengths of the sides of the
rectangular prism that defines the periodicity of the signal in question.
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65.2.2 Vacuum equation

Now that we have a desirable seeming Fourier series representation, we want to apply this to
Maxwell’s equation for the vacuum. We will use the STA formulation of Maxwell’s equation,
but use the unit convention of Bohm’s book.

In 47 the STA equivalent to Bohm’s notation for Maxwell’s equations was found to be

F = E + iH

J = (ρ + j)γ0

∇F = 4πJ

(65.9)

This is the CGS form of Maxwell’s equation, but with the old style H for cB, and E for E. In
more recent texts E (as a non-vector) is reserved for electromotive flux. In this set of notes I use
Bohm’s notation, since the aim is to clarify for myself aspects of his treatment.

For the vacuum equation, we make an explicit spacetime split by premultiplying with γ0

γ0∇ = γ0
(
γ0∂0 + γ

k∂k
)

= ∂0 − γ
kγ0∂k

= ∂0 + γkγ0∂k

= ∂0 +σk∂k

= ∂0 +∇

(65.10)

So our vacuum equation is just

(∂0 +∇)F = 0 (65.11)

65.3 first order vacuum solution with fourier series

65.3.1 Basic solution in terms of undetermined coefficients

Now that a notation for the 3D Fourier series has been established, we can assume a series
solution for our field of the form

F(x, t) =
∑

k
F̂k(t)e−2πik j x j/λ j

(65.12)
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can now apply this to the vacuum Maxwell equation eq. (65.11). This gives us∑
k

(
∂tF̂k(t)

)
e−2πik j x j/λ j = −c

∑
k,m

σmF̂k(t)
∂

∂xm e−2πik j x j/λ j

= −c
∑
k,m

σmF̂k(t)
(
−2π

km

λm

)
e−2πik j x j/λ j

= 2πc
∑

k

∑
m

σmkm

λm
F̂k(t)ie−2πik j x j/λ j

(65.13)

Note that i commutes with k and since F is also an STA bivector i commutes with F. Putting
all this together we have∑

k

(
∂tF̂k(t)

)
e−ik·x = ic

∑
k

kF̂k(t)e−ik·x
(65.14)

Term by term we now have a (big ass, triple infinite) set of very simple first order differential
equations, one for each k triplet of indices. Specifically this is

F̂′k = ickF̂k (65.15)

With solutions

F̂0 = C0

F̂k = exp (ickt)Ck
(65.16)

Here Ck is an undetermined STA bivector. For now we keep this undetermined coefficient on
the right hand side of the exponential since no demonstration that it commutes with a factor
of the form exp(ikϕ). Substitution back into our assumed solution sum we have a solution to
Maxwell’s equation, in terms of a set of as yet undetermined (bivector) coefficients

F(x, t) = C0 +
∑
k,0

exp (ickt)Ck exp(−ik · x) (65.17)

The special case of k = 0 is now seen to be not so special and can be brought into the sum.

F(x, t) =
∑

k
exp (ickt)Ck exp(−ik · x) (65.18)

We can also take advantage of the bivector nature of Ck, which implies the complex exponential
can commute to the left, since the two fold commutation with the pseudoscalar with change sign
twice.

F(x, t) =
∑

k
exp (ikct) exp (−ik · x)Ck (65.19)
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65.3.2 Solution as time evolution of initial field

Now, observe the form of this sum for t = 0. This is

F(x, 0) =
∑

k
Ck exp(−ik · x) (65.20)

So, the Ck coefficients are precisely the Fourier coefficients of F(x, 0). This is to be expected
having repeatedly seen similar results in the Fourier transform treatments of 62, 63, and 64. We
then have an equation for the complete time evolution of any spatially periodic electrodynamic
field in terms of the field value at all points in the region at some initial time. Summarizing so
far this is

F(x, t) =
∑

k
exp (ickt)Ck exp(−ik · x)

Ck =
1
V

∫
F(x′, 0) exp (ik · x′) d3x′

(65.21)

Regrouping slightly we can write this as a convolution with a Fourier kernel (a Green’s function).
That is

F(x, t) =
1
V

∫ ∑
k

exp (ikct) exp (ik · (x′ − x)) F(x′, 0)d3x′ (65.22)

Or

F(x, t) =
∫

G(x − x′, t)F(x′, 0)d3x′

G(x, t) =
1
V

∑
k

exp (ikct) exp (−ik · x)
(65.23)

Okay, that is cool. We have now got the basic periodicity result directly from Maxwell’s equa-
tion in one shot. No need to drop down to potentials, or even the separate electric or magnetic
components of our field F = E + iH.

65.3.3 Prettying it up? Questions of commutation

Now, it is tempting here to write eq. (65.19) as a single exponential

F(x, t) =
∑

k
exp (ikct − ik · x)Ck VALID? (65.24)

This would probably allow for a prettier four vector form in terms of x = xµγµ replacing the
separate x and x0 = ct terms. However, such a grouping is not allowable unless one first demon-
strates that eiu, and eiα, for spatial vector u and scalar α commute!
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To demonstrate that this is in fact the case note that exponential of this dual spatial vector can
be written

exp(iu) = cos(u) + i sin(u) (65.25)

This spatial vector cosine, cos(u), is a scalar (even powers only), and our sine, sin(u) ∝ u,
is a spatial vector in the direction of u (odd powers leaves a vector times a scalar). Spatial
vectors commute with i (toggles sign twice percolating its way through), therefore pseudoscalar
exponentials also commute with i.

This will simplify a lot, and it shows that eq. (65.24) is in fact a valid representation.
Now, there is one more question of commutation here. Namely, does a dual spatial vector

exponential commute with the field itself (or equivalently, one of the Fourier coefficients).
Expanding such a product and attempting term by term commutation should show

eiuF = (cos u + i sin u)(E + iH)

= i sin u(E + iH) + (E + iH) cos u
= i(sin u)E − (sin u)H + F cos u
= i(−E sin u + 2E · sin u) + (H sin u − 2H · sin u) + F cos u
= 2 sin u · (E −H) + F(cos u − i sin u)

(65.26)

That is

eiuF = 2 sin u · (E −H) + Fe−iu (65.27)

This exponential has one anticommuting term, but also has a scalar component introduced by
the portions of the electric and magnetic fields that are colinear with the spatial vector u.

65.4 field energy and momentum

Given that we have the same structure for our four vector potential solutions as the complete
bivector field, it does not appear that there is much reason to work in the second order quantities.
Following Bohm we should now be prepared to express the field energy density and momentum
density in terms of the Fourier coefficients, however unlike Bohm, let us try this using the first
order solutions found above.

In CGS units (see 47 for verification) these field energy and momentum densities (Poynting
vector P) are, respectively

E =
1

8π

(
E2 +H2

)
P =

1
4π

(E ×H)
(65.28)
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Given that we have a complete field equation without an explicit separation of electric and
magnetic components, perhaps this is easier to calculate from the stress energy four vector for
energy/momentum. In CGS units this must be

T (γ0) =
1

8π
Fγ0F̃ (65.29)

An expansion of this to verify the CGS conversion seems worthwhile.

T (γ0) =
1

8π
Fγ0F̃

=
−1
8π

(E + iH)γ0(E + iH)

=
1

8π
(E + iH)(E − iH)γ0

=
1

8π

(
E2 − (iH)2 + i(HE − EH)

)
γ0

=
1

8π

(
E2 +H2 + 2i2H × E

)
γ0

=
1

8π

(
E2 +H2

)
γ0 +

1
4π

(E ×H) γ0

(65.30)

Good, as expected we have

E = T (γ0) · γ0

P = T (γ0)∧ γ0
(65.31)

FIXME: units here for P are off by a factor of c. This does not matter so much in four vector
form T (γ0) where the units naturally take care of themselves.

Okay, let us apply this to our field eq. (65.22), and try to percolate the γ0 through all the terms
of F̃(x, t)

γ0F̃(x, t) = −γ0F(x, t)

= −γ0
1
V

∫ ∑
k

exp (ikct) exp (ik · (x′ − x)) F(x′, 0)d3x′
(65.32)

Taking one factor at a time

γ0 exp (ikct) = γ0(cos (kct) + i sin (kct))

= cos (kct) γ0 − iγ0 sin (kct))

= cos (kct) γ0 − i sin (kct))γ0

= exp (−ikct) γ0

(65.33)
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Next, percolate γ0 through the pseudoscalar exponential.

γ0eiϕ = γ0(cos ϕ + i sin ϕ)

= cos ϕγ0 − iγ0 sin ϕ

= e−iϕγ0

(65.34)

Again, the percolation produces a conjugate effect. Lastly, as noted previously F commutes
with i. We have therefore

F̃(x, t)γ0F(x, t)γ0 =
1

V2

∫ ∑
k,m

F(a, 0)eik·(a−x)eikcte−imcte−im·(b−x)F(b, 0)d3ad3b

=
1

V2

∫ ∑
k,m

F(a, 0)eik·a−im·b+i(k−m)ct−i(k−m)·xF(b, 0)d3ad3b

=
1

V2

∫ ∑
k

F(a, 0)F(b, 0)eik·(a−b)d3ad3b

+
1

V2

∫ ∑
k,m

F(a, 0)eik·a−im·b+i(k−m)ct−i(k−m)·xF(b, 0)d3ad3b

=
1

V2

∫ ∑
k

F(a, 0)F(b, 0)eik·(a−b)d3ad3b

+
1

V2

∫ ∑
m,k,0

F(a, 0)eim·(a−b)+ik·(a−x)+ikctF(b, 0)d3ad3b

(65.35)

Hmm. Messy. The scalar bits of the above are our energy. We have a F2 like term in the first
integral (like the Lagrangian density), but it is at different points, and we have to integrate those
with a sort of vector convolution. Given the reciprocal relationships between convolution and
multiplication moving between the frequency and time domains in Fourier transforms I had
expect that this first integral can somehow be turned into the sum of the squares of all the
Fourier coefficients∑

k
C2

k (65.36)

which is very much like a discrete version of the Rayleigh energy theorem as derived in ??, and
is in this case a constant (not a function of time or space) and is dependent on only the initial
field. That would mean that the remainder is the Poynting vector, which looks reasonable since
it has the appearance of being somewhat antisymmetric.
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Hmm, having mostly figured it out without doing the math in this case, the answer pops out.
This first integral can be separated cleanly since the pseudoscalar exponentials commute with
the bivector field. We then have

1
V2

∫ ∑
k

F(a, 0)F(b, 0)eik·(a−b)d3ad3b

=
1
V

∫ ∑
k

F(a, 0)eik·ad3a
∫

F(b, 0)e−ik·bd3b

=
∑

k
F̂−kF̂k

(65.37)

A side note on subtle notational sneakiness here. In the assumed series solution of eq. (65.12)
F̂k(t) was the k Fourier coefficient of F(x, t), whereas here the use of F̂k has been used to
denote the k Fourier coefficient of F(x, 0). An alternative considered and rejected was some-
thing messier like F(t = 0) ̂F(t = 0)k, or the use of the original, less physically significant, Ck
coefficients.

The second term could also use a simplification, and it looks like we can separate these a and
b integrals too

1
V2

∫ ∑
m,k,0

F(a, 0)eim·(a−b)+ik·(a−x)+ikctF(b, 0)d3ad3b

=
1
V

∫ ∑
m,k,0

F(a, 0)ei(m+k)·ad3aeikct−ik·x 1
V

∫
F(b, 0)e−im·bd3b

=
∑
m

∑
k,0

F̂−m−keikct−ik·xF̂m

(65.38)

Making an informed guess that the first integral is a scalar, and the second is a spatial vector,
our energy and momentum densities (Poynting vector) respectively are

U ?
=

1
8π

∑
k

F̂−kF̂k

P ?
=

1
8π

∑
m

∑
k,0

F̂−m−keikct−ik·xF̂m

(65.39)

Now that much of the math is taken care of, more consideration about the physics implications
is required. In particular, relating these abstract quantities to the frequencies and the harmonic
oscillator model as Bohm did is desirable (that was the whole point of the exercise).

On the validity of eq. (65.39), it is not unreasonable to expect that ∂U/∂t = 0, and ∇ · P = 0
separately in these current free conditions from the energy momentum conservation relation

∂

∂t
1

8π

(
E2 +H2

)
+

1
4π
∇ · (E ×H) = −E · j (65.40)
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Note that an SI derivation of this relation can be found in 40. So it therefore makes some sense
that all the time dependence ends up in what has been labeled as the Poynting vector. A proof
that the spatial divergence of this quantity is zero would help validate the guess made (or perhaps
invalidate it).

Hmm. Again on the validity of identifying the first sum with the energy. It does not appear to
work for the k = 0 case, since that gives you

1
8πV2

∫
F(a, 0)F(b, 0)d3ad3b (65.41)

That is only a scalar if the somehow all the non-scalar parts of that product somehow magically
cancel out. Perhaps it is true that the second sum has no scalar part, and if that is the case one
would have

U ?
=

1
8π

∑
k

〈
F̂−kF̂k

〉
(65.42)

An explicit calculation of T (γ0) · γ0 is probably justified to discarding all other grades, and get
just the energy.

So, instead of optimistically hoping that the scalar and spatial vector terms will automatically
fall out, it appears that we have to explicitly calculate the dot and wedge products, as in

U = −
1

16π
(Fγ0Fγ0 + γ0Fγ0F)

P = −
1

16π
(Fγ0Fγ0 − γ0Fγ0F)

(65.43)

and then substitute our Fourier series solution for F to get the desired result. This appears to
be getting more complex instead of less so unfortunately, but hopefully following this to a
logical conclusion will show in retrospect a faster way to the desired result. A first attempt to
do so shows that we have to return to our assumed Fourier solution and revisit some of the
assumptions made.

65.5 return to the assumed solutions to maxwell’s equation

An initial attempt to expand eq. (65.39) properly given the Fourier specification of the Maxwell
solution gets into trouble. Consideration of some special cases for specific values of k shows
that there is a problem with the grades of the solution. Let us reexamine the assumed solution
of eq. (65.22) with respect to grade

F(x, t) =
1
V

∫ ∑
k

exp (ikct) exp (ik · (x′ − x)) F(x′, 0)d3x′ (65.44)
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For scalar Fourier approximations we are used to the ability to select a subset of the Fourier
terms to approximate the field, but except for the k = 0 term it appears that a term by term
approximation actually introduces noise in the form of non-bivector grades.

Consider first the k = 0 term. This gives us a first order approximation of the field which is

F(x, t) ≈
1
V

∫
F(x′, 0)d3x′ (65.45)

As summation is grade preserving this spatial average of the initial field conditions does have
the required grade as desired. Next consider a non-zero Fourier term such as k = {1, 0, 0}. For
this single term approximation of the field let us write out the field term as

Fk(x, t) =
1
V

∫
eik̂|k|ct+ik·(x′−x)(E(x′, 0) + iH(x′, 0))d3x′ (65.46)

Now, let us expand the exponential. This was shorthand for the product of the exponentials,
which seemed to be a reasonable shorthand since we showed they commute. Expanded out this
is

exp(ik̂|k|ct + ik · (x′ − x))

= (cos(kct) + ik̂ sin(|k|ct))(cos(k · (x′ − x)) + i sin(k · (x′ − x)))
(65.47)

For ease of manipulation write k · (x′ − x) = k∆x, and kct = ωt, we have

exp(iωt + ik∆x) = cos(ωt) cos(k∆x) + i cos(ωt) sin(k∆x)

+ i sin(ωt) cos(k∆x) − sin(ωt) sin(k∆x)
(65.48)

Note that cos(ωt) is a scalar, whereas sin(ωt) is a (spatial) vector in the direction of k. Multiply-
ing this out with the initial time field F(x′, 0) = E(x′, 0)+ iH(x′, 0) = E′ + iH′ we can separate
into grades.

exp(iωt + ik∆x)(E′ + iH′)

= cos(ωt)(E′ cos(k∆x) −H′ sin(k∆x)) + sin(ωt) × (H′ sin(k∆x) − E′ cos(k∆x))

+ i cos(ωt)(E′ sin(k∆x) +H′ cos(k∆x)) − i sin(ωt) × (E′ sin(k∆x) +H′ cos(k∆x))

− sin(ωt) · (E′ sin(k∆x) +H′ cos(k∆x))

+ i(sin(ωt) · (E′ cos(k∆x) −H′ sin(k∆x))

(65.49)

The first two lines, once integrated, produce the electric and magnetic fields, but the last two
are rogue scalar and pseudoscalar terms. These are allowed in so far as they are still solutions
to the differential equation, but do not have the desired physical meaning.
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If one explicitly sums over pairs of {k,−k} of index triplets then some cancellation occurs.
The cosine cosine products and sine sine products double and the sine cosine terms cancel. We
therefore have

1
2

exp(iωt + ik∆x)(E′ + iH′)

= cos(ωt)E′ cos(k∆x) + sin(ωt) ×H′ sin(k∆x)

+ i cos(ωt)H′ cos(k∆x) − i sin(ωt) × E′ sin(k∆x)

− sin(ωt) · E′ sin(k∆x)

− i sin(ωt) ·H′ sin(k∆x)

= (E′ + iH′) cos(ωt) cos(k∆x) − i sin(ωt) × (E′ + iH′) sin(k∆x)

− sin(ωt) · (E′ + iH) sin(k∆x)

(65.50)

Here for grouping purposes i is treated as a scalar, which should be justifiable in this specific
case. A final grouping produces

1
2

exp(iωt + ik∆x)(E′ + iH′) = (E′ + iH′) cos(ωt) cos(k∆x)

− ik̂ × (E′ + iH′) sin(|ω|t) sin(k∆x)

− sin(ωt) · (E′ + iH′) sin(k∆x)

(65.51)

Observe that despite the grouping of the summation over the pairs of complementary sign index
triplets we still have a pure scalar and pure pseudoscalar term above. Allowable by the math
since the differential equation had no way of encoding the grade of the desired solution. That
only came from the initial time specification of F(x′, 0), but that is not enough.

Now, from above, we can see that one way to reconcile this grade requirement is to require
both k̂ ·E′ = 0, and k̂ ·H′ = 0. How can such a requirement make sense given that k ranges over
all directions in space, and that both E′ and H′ could conceivably range over many different
directions in the volume of periodicity.

With no other way out, it seems that we have to impose two requirements, one on the allow-
able wavenumber vector directions (which in turn means we can only pick specific orientations
of the Fourier volume), and another on the field directions themselves. The electric and mag-
netic fields must therefore be directed only perpendicular to the wave number vector direction.
Wow, that is a pretty severe implication following strictly from a grade requirement!

Thinking back to eq. (65.27), it appears that an implication of this is that we have

eiωtF(x′, 0) = F(x′, 0)e−iωt (65.52)

Knowing this is a required condition should considerably simplify the energy and momentum
questions.



66P L A N E WAV E F O U R I E R S E R I E S S O L U T I O N S T O T H E M A X W E L L
VAC U U M E Q UAT I O N

66.1 motivation

In 65 an exploration of spatially periodic solutions to the electrodynamic vacuum equation was
performed using a multivector formulation of a 3D Fourier series. Here a summary of the results
obtained will be presented in a more coherent fashion, followed by an attempt to build on them.
In particular a complete description of the field energy and momentum is desired.

A conclusion from the first analysis was that the orientation of both the electric and magnetic
field components must be perpendicular to the angular velocity and wave number vectors within
the entire spatial volume. This was a requirement for the field solutions to retain a bivector grade
(STA/Dirac basis).

Here a specific orientation of the Fourier volume so that two of the axis lie in the direction
of the initial time electric and magnetic fields will be used. This is expected to simplify the
treatment.

Also note that having obtained some results in a first attempt hindsight now allows a few
choices of variables that will be seen to be appropriate. The natural motivation for any such
choices can be found in the initial treatment.

66.1.1 Notation

Conventions, definitions, and notation used here will largely follow 65. Also of possible aid in
that document is a table of symbols and their definitions.
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66.2 a concise review of results

66.2.1 Fourier series and coefficients

A notation for a 3D Fourier series for a spatially periodic function and its Fourier coefficients
was developed

f (x) =
∑

k
f̂ke−ik·x

f̂k =
1
V

∫
f (x)eik·xd3x

(66.1)

In the vector context k is

k = 2π
∑

m

σm km

λm
(66.2)

Where λm are the dimensions of the volume of integration, V = λ1λ2λ3 is the volume, and in an
index context k = {k1, k2, k3} is a triplet of integers, positive, negative or zero.

66.2.2 Vacuum solution and constraints

We want to find (STA) bivector solutions F to the vacuum Maxwell equation

∇F = γ0(∂0 +∇)F = 0 (66.3)

We start by assuming a Fourier series solution of the form

F(x, t) =
∑

k
F̂k(t)e−ik·x

(66.4)

For a solution term by term identity is required

∂

∂t
F̂k(t)e−ik·x = −cσmF̂k(t)

∂

∂xm exp
(
−i2π

k jx j

λ j

)
= ickF̂k(t)e−ik·x

(66.5)

With ω = ck, we have a simple first order single variable differential equation

F̂′k(t) = iωF̂k(t) (66.6)

with solution

F̂k(t) = eiωtF̂k (66.7)
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Here, the constant was written as F̂k given prior knowledge that this is will be the Fourier
coefficient of the initial time field. Our assumed solution is now

F(x, t) =
∑

k
eiωtF̂ke−ik·x

(66.8)

Observe that for t = 0, we have

F(x, 0) =
∑

k
F̂ke−ik·x

(66.9)

which is confirmation of the Fourier coefficient role of F̂k

F̂k =
1
V

∫
F(x′, 0)eik·x′d3x′ (66.10)

F(x, t) =
1
V

∑
k

∫
eiωtF(x′, 0)eik·(x′−x)d3x′ (66.11)

It is straightforward to show that F(x, 0), and pseudoscalar exponentials commute. Specifically
we have

Feik·x = eik·xF (66.12)

This follows from the (STA) bivector nature of F.
Another commutativity relation of note is between our time phase exponential and the pseu-

doscalar exponentials. This one is also straightforward to show and will not be done again here

eiωteik·x = eik·xeiωt (66.13)

Lastly, and most importantly of the commutativity relations, it was also found that the initial
field F(x, 0) must have both electric and magnetic field components perpendicular to all ω ∝
k at all points x in the integration volume. This was because the vacuum Maxwell equation
eq. (66.3) by itself does not impose any grade requirement on the solution in isolation. An
additional requirement that the solution have bivector only values imposes this inherent planar
nature in a charge free region, at least for solutions with spatial periodicity. Some revisiting of
previous Fourier transform solutions attempts at the vacuum equation is required since similar
constraints are expected there too.

The planar constraint can be expressed in terms of dot products of the field components,
but an alternate way of expressing the same thing was seen to be a statement of conjugate
commutativity between this dual spatial vector exponential and the complete field

eiωtF = Fe−iωt (66.14)
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The set of Fourier coefficients considered in the sum must be restricted to those values that
eq. (66.14) holds. An effective way to achieve this is to pick a specific orientation of the coor-
dinate system so the angular velocity bivector is quantized in the same plane as the field. This
means that the angular velocity takes on integer multiples k of this value

iωk = 2πick
σ

λ
(66.15)

Here σ is a unit vector describing the perpendicular to the plane of the field, or equivalently via
a duality relationship iσ is a unit bivector with the same orientation as the field.

66.2.3 Conjugate operations

In order to tackle expansion of energy and momentum in terms of Fourier coefficients, some
conjugation operations will be required.

Such a conjugation is found when computing electric and magnetic field components and
also in the T (γ0) ∝ Fγ0F energy momentum four vector. In both cases it involves products with
γ0.

66.2.4 Electric and magnetic fields

From the total field one can obtain the electric and magnetic fields via coordinates as in

E = σm(F ·σm)

H = σm((−iF) ·σm)
(66.16)

However, due to the conjugation effect of γ0 (a particular observer’s time basis vector) on F, we
can compute the electric and magnetic field components without resorting to coordinates

E =
1
2

(F − γ0Fγ0)

H =
1
2i

(F + γ0Fγ0)
(66.17)

Such a split is expected to show up when examining the energy and momentum of our Fourier
expressed field in detail.

66.2.5 Conjugate effects on the exponentials

Now, since γ0 anticommutes with i we have a conjugation operation on percolation of γ0

through the products of an exponential

γ0eik·x = e−ik·xγ0 (66.18)
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However, since γ0 also anticommutes with any spatial basis vector σk = γkγ0, we have for a
dual spatial vector exponential

γ0eiωt = eiωtγ0 (66.19)

We should now be armed to consider the energy momentum questions that were the desired
goal of the initial treatment.

66.3 plane wave energy and momentum in terms of fourier coefficients

66.3.1 Energy momentum four vector

To obtain the energy component U of the energy momentum four vector (given here in CGS
units)

T (γ0) =
1

8π
Fγ0F̃ =

−1
8π

(Fγ0F) (66.20)

we want a calculation of the field energy for the plane wave solutions of Maxwell’s equation

U = T (γ0) · γ0

= −
1

16π
(Fγ0Fγ0 + γ0Fγ0F)

(66.21)

Given the observed commutativity relationships, at least some parts of this calculation can be
performed by direct multiplication of eq. (66.11) summed over two sets of wave number vector
indices as in.

F(x, t) =
1
V

∑
k

∫
eiωkt+ik·(a−x)F(a, 0)d3a

=
1
V

∑
m

∫
eiωmt+im·(b−x)F(b, 0)d3b

(66.22)

However, this gets messy fast. Looking for an alternate approach requires some mechanism for
encoding the effect of the γ0 sandwich on the Fourier coefficients of the field bivector. It has
been observed that this operation has a conjugate effect. The form of the stress energy four
vector suggests that a natural conjugate definition will be

F† = γ0F̃γ0 (66.23)

where F̃ is the multivector reverse operation.
This notation for conjugation is in fact what , for Quantum Mechanics, [8] calls the Hermitian

adjoint.
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In this form our stress energy vector is

T (γ0) =
1

8π
FF†γ0 (66.24)

While the trailing γ0 term here may look a bit out of place, the energy density and the Poynting
vector end up with a very complementary structure

U =
1

16π

(
FF† + (FF†)̃

)
P =

1
16πc

(
FF† − (FF†)̃

) (66.25)

Having this conjugate operation defined it can also be applied to the spacetime split of the
electric and the magnetic fields. That can also now be written in a form that calls out the inherent
complex nature of the fields

E =
1
2

(F + F†)

H =
1
2i

(F − F†)
(66.26)

66.3.2 Aside. Applications for the conjugate in non-QM contexts

Despite the existence of the QM notation, it does not appear used in the text or ptIII notes
outside of that context. For example, in addition to the stress energy tensor and the spacetime
split of the fields, an additional non-QM example where the conjugate operation could be used,
is in the ptIII hout8 where Rotors that satisfy

v · γ0 =
〈
γ0Rγ0R̃

〉
=

〈
R†R

〉
> 0 (66.27)

are called proper orthochronous. There are likely other places involving a time centric projec-
tions where this conjugation operator would have a natural fit.

66.3.3 Energy density. Take II

For the Fourier coefficient energy calculation we now take eq. (66.8) as the starting point.
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We will need the conjugate of the field

F† = γ0

∑
k

eiωtF̂ke−ik·x
˜γ0

= γ0

∑
k

(e−ik·x)̃(−F̂k)(eiωt )̃γ0

= −γ0

∑
k

e−ik·xF̂ke−iωtγ0

= −
∑

k
eik·xγ0F̂kγ0e−iωt

(66.28)

This is

F† =
∑

k
eik·x(F̂k)†e−iωt

(66.29)

So for the energy we have

calF† + F†F =
∑
m,k

eiωmtF̂mei(k−m)·x(F̂k)†e−iωkt + eik·x(F̂k)†ei(ωm−ωk)tF̂me−im·x

=
∑
m,k

eiωmtF̂m(F̂k)†ei(k−m)·x−iωkt + eik·x(F̂k)†F̂me−i(ωm−ωk)t−im·x

=
∑
m,k

F̂m(F̂k)†ei(k−m)·x−i(ωk−ωm)t + (F̂k)†F̂mei(ωk−ωm)t+i(k−m)·x

=
∑

k
F̂k(F̂k)† + (F̂k)†F̂k

+
∑
m,k

F̂m(F̂k)†ei(k−m)·x−i(ωk−ωm)t + (F̂k)†F̂mei(ωk−ωm)t+i(k−m)·x

(66.30)

In the first sum all the time dependence and all the spatial dependence that is not embedded
in the Fourier coefficients themselves has been eliminated. What is left is something that looks
like it is a real quantity (to be verified) Assuming (also to be verified) that F̂k commutes with its
conjugate we have something that looks like a discrete version of what [14] calls the Rayleigh
energy theorem∫ ∞

−∞

f (x) f ∗(x)dx =
∫ ∞

−∞

f̂ (k) f̂ ∗(k)dk (66.31)

Here f̂ (k) is the Fourier transform of f (x).
Before going on it is expected that the k , m terms all cancel. Having restricted the orien-

tations of the allowed angular velocity bivectors to scalar multiples of the plane formed by the
(wedge of) the electric and magnetic fields, we have only a single set of indices to sum over (ie:
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k = 2πσk/λ). In particular we can sum over k < m, and k > m cases separately and add these
with expectation of cancellation. Let us see if this works out.

Write ω = 2πσ/λ, ωk = kω, and k = ω/c then we have for these terms∑
m,k

ei(k−m)ω·x/c
(
F̂m(F̂k)†e−i(k−m)ωt + (F̂k)†F̂mei(k−m)ωt

)
(66.32)

66.3.3.1 Hermitian conjugate identities

To get comfortable with the required manipulations, let us find the Hermitian conjugate equiva-
lents to some of the familiar complex number relationships.

Not all of these will be the same as in “normal” complex numbers. For instance, while for
complex numbers, the identities

z + z = 2ℜ(z)
1
i
(z − z) = 2ℑ(z)

(66.33)

are both real numbers, we have seen for the electric and magnetic fields that we do not get
scalars from the Hermitian conjugates, instead get a spatial vector where we would get a real
number in complex arithmetic. Similarly we get a (bi)vector in the dual space for the field minus
its conjugate.

Some properties:

• Hermitian conjugate of a product

(ab)† = γ0(ab)̃γ0

= γ0(b)̃(a)̃γ0

=
(
γ0(b)̃γ0

) (
γ0(a)̃γ0

) (66.34)

This is our familiar conjugate of a product is the inverted order product of conjugates.

(ab)† = b†a† (66.35)

• conjugate of a pure pseudoscalar exponential(
eiα

)†
= γ0 (cos(α) + i sin(α))˜γ0

= cos(α) − iγ0 sin(α)γ0

(66.36)

But that is just(
eiα

)†
= e−iα (66.37)

Again in sync with complex analysis. Good.
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• conjugate of a dual spatial vector exponential(
eik

)†
= γ0 (cos(k) + i sin(k))˜γ0

= γ0 (cos(k) − sin(k)i) γ0

= cos(k) − i sin(k)

(66.38)

So, we have(
eik

)†
= e−ik (66.39)

Again, consistent with complex numbers for this type of multivector object.

• dual spatial vector exponential product with a conjugate.

F†eik = γ0F̃γ0eik

= γ0F̃eikγ0

= γ0e−ikF̃γ0

= eikγ0F̃γ0

(66.40)

So we have conjugate commutation for both the field and its conjugate

F†eik = e−ikF†

Feik = e−ikF
(66.41)

• pseudoscalar exponential product with a conjugate.

For scalar α

F†eiα = γ0F̃γ0eiα

= γ0F̃e−iαγ0

= γ0e−iαF̃γ0

= eiαγ0F̃γ0

(66.42)

In opposition to the dual spatial vector exponential, the plain old pseudoscalar exponen-
tials commute with both the field and its conjugate.

F†eiα = eiαF†

Feiα = eiαF
(66.43)

• Pauli vector conjugate.

(σk)† = γ0γ0γkγ0 = σk (66.44)

Jives with the fact that these in matrix form are called Hermitian.
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• pseudoscalar conjugate.

i† = γ0iγ0 = −i (66.45)

• Field Fourier coefficient conjugate.

(F̂k)† =
1
V

∫
e−ik·xF†(x, 0)d3x = F†F̂†−k (66.46)

The conjugate of the k Fourier coefficient is the −k Fourier coefficient of the conjugate
field.

Observe that the first three of these properties would have allowed for calculation of eq. (66.29)
by inspection.

66.3.4 Products of Fourier coefficient with another conjugate coefficient

To progress a relationship between the conjugate products of Fourier coefficients may be re-
quired.

66.4 fixme: finish this

I am getting tired of trying to show (using Latex as a tool and also on paper) that the k , m
terms vanish and am going to take a break, and move on for a bit. Come back to this later, but
start with a electric field and magnetic field expansion of the (F̂k)†F̂k + F̂k(F̂k)† term to verify
that this ends up being a scalar as desired and expected (this is perhaps an easier first step than
showing the cross terms are zero).
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67.1 motivation

In 65 a first order Fourier solution of the Vacuum Maxwell equation was performed. Here a
comparative potential solution is obtained.

67.1.1 Notation

The 3D Fourier series notation developed for this treatment can be found in the original notes
65. Also included there is a table of notation, much of which is also used here.

67.2 second order treatment with potentials

67.2.1 With the Lorentz gauge

Now, it appears that Bohm’s use of potentials allows a nice comparison with the harmonic
oscillator. Let us also try a Fourier solution of the potential equations. Again, use STA instead
of the traditional vector equations, writing A = (ϕ + a)γ0, and employing the Lorentz gauge
∇ · A = 0 we have for F = ∇∧ A in CGS units

FIXME: Add a, and ψ to notational table below with definitions in terms of E, and H (or the
other way around).

∇2A = 4πJ (67.1)

Again with a spacetime split of the gradient

∇ = γ0(∂0 +∇) = (∂0 −∇)γ0 (67.2)

our four Laplacian can be written

(∂0 −∇)γ0γ
0(∂0 +∇) = (∂0 −∇)(∂0 +∇)

= ∂00 −∇
2 (67.3)

Our vacuum field equation for the potential is thus

∂ttA = c2
∇

2A (67.4)
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Now, as before assume a Fourier solution and see what follows. That is

A(x, t) =
∑

k
Âk(t)e−ik·x

(67.5)

Applied to each component this gives us

Â′′k e−ik·x = c2Âk(t)
∑

m

∂2

(∂xm)2 e−2πi
∑

j k j x j/λ j

= c2Âk(t)
∑

m

(−2πikm/λm)2e−ik·x

= −c2k2Âke−ik·x

(67.6)

So we are left with another big ass set of simplest equations to solve

Â′′k = −c2k2Âk (67.7)

Note that again the origin point k = (0, 0, 0) is a special case. Also of note this time is that Âk has
vector and trivector parts, unlike F̂k which being derived from dual and non-dual components
of a bivector was still a bivector.

It appears that solutions can be found with either left or right handed vector valued integration
constants

Âk(t) = exp(±ickt)Ck

= Dk exp(±ickt)
(67.8)

Since these are equal at t = 0, it appears to imply that these commute with the complex ex-
ponentials as was the case for the bivector field. For the k = 0 special case we have solutions

Âk(t) = D0t +C0 (67.9)

It does not seem unreasonable to require D0 = 0. Otherwise this time dependent DC Fourier
component will blow up at large and small values, while periodic solutions are sought.

Putting things back together we have

A(x, t) =
∑

k
exp(±ickt)Ck exp(−ik · x) (67.10)

Here again for t = 0, our integration constants are found to be determined completely by the
initial conditions

A(x, 0) =
∑

k
Cke−ik·x

(67.11)



67.2 second order treatment with potentials 493

So we can write

Ck =
1
V

∫
A(x′, 0)eik·x′d3x′ (67.12)

In integral form this is

A(x, t) =
∫ ∑

k
exp(±ikct)A(x′, 0) exp(ik · (x − x′)) (67.13)

This, somewhat surprisingly, is strikingly similar to what we had for the bivector field. That
was:

F(x, t) =
∫

G(x − x′, t)F(x′, 0)d3x′

G(x, t) =
1
V

∑
k

exp (ikct) exp (−ik · x)
(67.14)

We cannot however commute the time phase term to construct a one sided Green’s function
for this potential solution (or perhaps we can but if so shown or attempted to show that this
is possible). We also have a plus or minus variation in the phase term due to the second order
nature of the harmonic oscillator equations for our Fourier coefficients.

67.2.2 Comparing the first and second order solutions

A consequence of working in the Lorentz gauge (∇ · A = 0) is that our field solution should be
a gradient

F = ∇∧ A

= ∇A
(67.15)

FIXME: expand this out using eq. (67.13) to compare to the first order solution.
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Ampere Maxwell law, 108
Ampere-Maxwell equation, 101
angular momentum conservation, 339
angular momentum operator, 385

bivector grades, 411
anticommutator, 379
antisymmetric sum

Pauli matrix, 359

Biot Savart, 101
Bohr model, 337
boost, 17

cgs, 165
charge conservation, 63
charge density, 61
commutator, 185
conjugation, 382
continuity equation, 71
convolution, 420
curl, 87
current density, 61
current density conservation, 63

Dirac
matrix, 379

Dirac Lagrangian, 347
divergence, 86, 327
Doppler equation

relativistic, 41

electric field
transverse, 165

electrostatics, 105
energy, 316

electrodynamic field, 313
energy conservation

electromagnetic, 245
energy density, 486
energy momentum, 485

Faraday bivector, 82
Faraday tensor, 448
Faraday’s law, 107
four potential, 137
four vector, 73
four velocity, 17
four-Laplacian, 148
Fourier series, 418
Fourier transform

4D, 463
heat equation, 417
vacuum potential, 491
wave equation, 417, 437

Galilean transformation, 6
gamma matrices, 379
gamma matrix, 379
gauge freedom, 102
gauge invariance, 183
gauge transformation, 317, 326, 327
Gauss’s law, 78, 105, 106
gradient, 147
Gravito-electromagnetism, 35
Green’s function, 422, 447

Hamiltonian, 317
heat equation

Fourier transform, 417
Hermitian conjugate, 488

497
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Hermitian transpose, 190

Laplacian, 147, 417
Poisson solution, 304

Lienard-Wiechert potential, 189
line charge, 93
line element, 97
Lorentz boost, 185
Lorentz force, 215

boost, 207
energy momentum tensor, 279, 282
rotor, 221
tensor, 224, 281
vector form, 282

Lorentz gauge, 83, 139, 491
Lorentz invariance, 23
Lorentz transformation

wave equation, 3

magnetic field
parallel wires, 89
transverse, 165

magnetostatics, 106
Maxwell equation

covariant, 179
energy and momentum, 323
Fourier series, 481
Fourier transform, 323
in matter, 179
space-time algebra, 153
transverse solution, 171

Maxwell’s equation, 69, 149, 199
Fourier transform, 443, 453

Maxwell’s equations, 55, 59
Fourier series, 469
projection, 105
rejection, 105
tensor, 125

metric, 141
momentum, 316

Pauli matrices, 355, 380
Pauli vector, 356
phasor

energy, 307
momentum, 307

plane wave, 199
Poincare transformation, 45
Poisson equation, 103
Poisson potential

Green’s function, 425
Poynting vector, 245

conservation law, 253
pseudoscalar, 146, 352, 370

rapidity, 208
Rayleigh-Jeans law, 297
reciprocal frame, 144
rest frame, 17
retarded potential

Green’s function, 425
rotation invariance, 24

scalar product
Pauli matrix, 358

Schrödinger equation
probability conservation, 343

separation of variables, 81
spacetime gradient

Lorentz transformation, 31
spherical harmonics, 407
stress tensor, 257
symmetric sum

Pauli matrix, 359

vector derivative, 147
vector potential, 137, 326

wave equation, 73, 81, 149, 423
forced, 443
Fourier transform, 417, 437
light, 62
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