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1BA S I C F O R M A L I S M

1.1 dirac adjoint notes

I have got the textbook [3] now for the QM I course I will be taking in the
fall, and have started some light perusing. Starting things off is the Dirac
bra ket notation. Some aspects of that notation, or the explanation in the
text, are not quite obvious to me so here I try to make sense of things.

There are a pair of relations given to define the Dirac adjoint. These are
1.26 and 1.27 respectively:

(A |α⟩)∗ = ⟨α| A†

⟨β| A |α⟩∗ = ⟨α| A† |β⟩
(1.1)

Is there some redundancy to these definitions. Namely is 1.27 a conse-
quence of 1.26?

Since the ket was defined as the conjugate of the bra, we can probably
rewrite 1.26 as

⟨α| A∗ = ⟨α| A† (1.2)

The operational word here is "probably". This seems somewhat dubious.
For example with the identity operator this would mean

(|α⟩)∗ = ⟨α| , (1.3)

and I am unsure that this makes sense. If one assumes that it does, then
one can find that 1.26 implies 1.27, as follows.

Left “multiplication”, by the ket |β⟩ gives

(⟨α| A†) |β⟩ = (⟨α| A∗) |β⟩

= ⟨β| (A |α⟩)∗
(1.4)

Again the dubious operation ⟨α|∗ = |α⟩ has been employed implicitly.
Also note that I have added and retained parenthesis to retain the opera-

tional direction. Is that operational direction not important? For example,
given an operator like p = −i h̄∂x, it makes a big difference whether the
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operator operates to the left or to the right. In the text, this last relation is
equation 1.27 once the parens are dropped, so it does appear that 1.27 is
a consequence of 1.26. This also then seems to imply that in a bra opera-
tor ket sandwich, the operator implicitly operates on the ket (to the right),
while an adjoint operator implicitly operates on the bra (to the left).

Let us compare this to the simpler and more pedestrian notation found
in an old fashioned book like Bohm’s [1]. His expectation values explic-
itly use an integral definition, and his adjoint definition is very explicit
about order of operations. Namely∫

ϕ∗(Aψ) ≡
∫

ψ(A†ϕ∗) (1.5)

Starting with a concrete definition like this seems a bit easier. Suppose we
also define the bra ket sandwich based on the integral as follows

⟨ϕ| A |ψ⟩ ≡ ⟨ϕ| (A |ψ⟩)

≡

∫
ϕ∗(Aψ)

(1.6)

Now, we can rewrite eq. (1.5), as∫
ϕ∗(Aψ) ≡

∫
ψ(A†ϕ∗)

=⇒

⟨ϕ| (A |ψ⟩) =
〈
ψ∗

∣∣∣ (A† ∣∣∣ϕ∗〉)
=⇒

(⟨ϕ| (A |ψ⟩))∗ = (⟨ϕ| A†) |ψ⟩

(1.7)

When starting off with the integral we see the notational requirement for
non-adjoint operators to operate implicitly to the right, and the adjoint
operators to operate implicitly to the left. With that notation requirement
we can drop the parens and recover 1.27.

A couple clarification goals are now complete. The first is seeing how
equation 1.26 in the text implies 1.27 (provided the plain old conjuga-
tion of a bra creates a ket). We also have reconciled the Dirac notation
with the familiar integral inner product notation, and seen two different
ways that clarify the implicit operator directionality in the bra operator
ket sandwiches.

Update. Vatche, my professor for the course, also had trouble with 1.26.
He feels it ought to be

(A |α⟩)† = ⟨α| A†. (1.8)



1.2 lecture notes: review 3

Matrix notation was used to demonstrate this, since conjugation only
changes the element values and does not transpose the matrix. Use of
the identity operator makes his point particularly clear.

1.2 lecture notes: review

Information about systems comes from vectors and operators. Express
the vector |ϕ⟩ describing the system in terms of eigenvectors |an⟩ , n ∈
1, 2, 3, · · · of some operator A.

|ϕ⟩ =
∑

n

cn |an⟩ =
∑

n

|cnan⟩ (1.9)

What are the coefficients cn? Act on both sides by ⟨am| to find

⟨am|ϕ⟩ =
∑

n

⟨am| |cnan⟩

=
∑

n

cn ⟨am|an⟩

=
∑

n

cn ⟨am|an⟩

Kronecker delta

=
∑

cnδmn

= cm

(1.10)

So our coefficients are

cm = ⟨am|ϕ⟩ . (1.11)

The complete decomposition in terms of the chosen basis of A is then

|ϕ⟩ =
∑

n

⟨an|ϕ⟩ |an⟩ =

∑
n

|an⟩ ⟨an|

 |ϕ⟩ . (1.12)

Note carefully the physics convention for this complex inner product. We
have linearity in the second argument

⟨ψ|aϕ⟩ = a ⟨ψ|ϕ⟩ , (1.13)

whereas the normal mathematics convention is to define complex inner
products as linear in the first argument

⟨aψ, ϕ⟩ = a⟨ψ, ϕ⟩. (1.14)
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We can make an analogy with 3D Euclidean inner products easily

v =
∑

i

viei (1.15)

e1 · v =
∑

i

vie1 · ei = v1 (1.16)

Physical information comes from the probability for obtaining a measure-
ment of the physical entity associated with operator A. The probability of
obtaining outcome am, an eigenvalue of A, is |cm|

2

1.3 problems

Exercise 1.1 Matrix representation ([3] pr 1.1)

FIXME: description?
Answer for Exercise 1.1

With

|α1⟩ ≡

10


|α2⟩ ≡

01


⟨α1| ≡
[
1 0

]
⟨α2| ≡

[
0 1

]
(1.17)
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i. Orthonormal Straight multiplication is sufficient to show this and we
get

⟨α1|α1⟩ =
[
1 0

] 10
 = [

1
]

⟨α2|α2⟩ =
[
0 1

] 01
 = [

1
]

⟨α1|α2⟩ =
[
1 0

] 01
 = [

0
]

⟨α2|α1⟩ =
[
0 1

] 10
 = [

0
]

(1.18)

ii. Linear combinations for state vectorsab
 = a |α1⟩ + b |α2⟩ (1.19)

iii. Outer products We have

|α1⟩ ⟨α2| =

10
 [0 1

]
=

0 1

0 0


|α2⟩ ⟨α1| =

01
 [1 0

]
=

0 0

1 0


|α1⟩ ⟨α1| =

10
 [1 0

]
=

1 0

0 0


|α2⟩ ⟨α2| =

01
 [0 1

]
=

0 0

0 1



(1.20)

iv. Completeness relation From the above outer products, summation
over just the diagonal terms we have

|α1⟩ ⟨α1| + |α2⟩ ⟨α2| =

1 0

0 0

 +
0 0

0 1

 = I (1.21)
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v. Arbitrary matrix as sum of outer products By inspectiona b

c d

 = a |α1⟩ ⟨α1| + b |α1⟩ ⟨α2| + c |α2⟩ ⟨α1| + d |α2⟩ ⟨α2| (1.22)

vi. Spin matrix Given

A |α1⟩ = + |α1⟩

A |α2⟩ = − |α1⟩
(1.23)

Our matrix elements are

⟨α1| A |α1⟩ = 1

⟨α2| A |α1⟩ = 0

⟨α1| A |α2⟩ = 0

⟨α2| A |α2⟩ = −1

(1.24)

Thus the matrix representation of the operator A with respect to basis
{α1, α2} is

{A} =

1 0

0 −1

 (1.25)

Exercise 1.2 Derivative of inverse operator ([3] pr 1.2)

FIXME: describe. For an operator that is a function of λ, show that

dA−1

dλ
= −A−1 dA

dλ
A−1. (1.26)

Answer for Exercise 1.2

We take derivatives of the identity operator, giving

0 =
dI
dλ

=
d(AA−1)

dλ

=
dA
dλ

A−1 + A
dA−1

dλ

(1.27)

left multiplication by A−1 and rearranging we have

dA−1

dλ
= −A−1 dA

dλ
A−1 (1.28)

as desired.
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Exercise 1.3 Unitary representations ([3] pr 1.3)

Show that a unitary operator U can be written

U =
1 + iK
1 − iK

, (1.29)

where K is a Hermitian operator.
Answer for Exercise 1.3

A commutation assumption for the numerator and denominator Before
tackling the problem, note that with the fraction written this way, and not
as

U = (1 + iK)
1

1 − iK
, (1.30)

or

U =
1

1 − iK
(1 + iK), (1.31)

there appears to be an implicit assumption that the numerator and denom-
inator commute. How can that be justified?

Suppose that the denominator can be expanded in Taylor series

1
1 − iK

= 1 + iK + (iK)2 + (iK)3 + · · · (1.32)

If this converges, this series does in fact commute with the numerator
since both are polynomials in K. Another way of looking at this would be
to apply a spectral decomposition to the operators (assumed to be matrices
now) where using K = VΣV† for a unitary V and diagonal Σ, we can write

U =
1

1 − iK
(1 + iK) =

1
1 − iΣ

(1 + iΣ) (1.33)

Both the numerator and denominator are now diagonal and thus commute.
Generalizing either of these commutation justifications to infinite dimen-
sional Hilbert operators or where that inverse power series in K does not
converge would take further thought.
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That this representation is unitary From eq. (1.30) we have

UU† = (1 + iK)
1

1 − iK
1

1 + iK
(1 − iK)

=
1 + K2

1 + K2

= 1

(1.34)

So this operator is unitary for all Hermitian K. However, is there a K for
any unitary U that is Hermitian and for which this identity holds true? We
can rearrange for K to get

K = i
U − 1
U + 1

(1.35)

Is this Hermitian? If so then K − K† = 0, so let us evaluate that.

K − K† = i
U − 1
U + 1

+ i
U† − 1
U† + 1

(1.36)

Multiplying by −i(U + 1)(U† + 1) we have

−i(U + 1)(U† + 1)(K − K†) = (U − 1)(U† + 1) + (U† − 1)(U + 1)

= UU† − 1 −U† +U +U†U −U +U† − 1

= 0.
(1.37)

Therefore, provided 2+U +U† , 0 (if it does we only showed that 0 = 0),
the operator K is Hermitian. The expression eq. (1.35) then allows any
unitary operator to be expressed as the fraction eq. (1.30).

An exponential representation Show that one can also write

U = eiC , (1.38)

where C is Hermitian. Utilizing the power series we have

(eiC)† =
∞∑

k=0

1
k!

((iC)k)†

=

∞∑
k=0

1
k!

((−iC)k)

= e−iC .

(1.39)
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The operators iC and −iC commute, so we can write

(eiC)†eiC = e−iC+iC = 1, (1.40)

which shows that this exponential construction is in fact unitary for any
Hermitian C. The remainder of the exercise requires a demonstration that
we can find such an operator C for any given unitary operator U. Rear-
ranging, we have

C = −i ln(U). (1.41)

How can we give this some meaning? One way, with the presumption
that working with the matrix representation of the operator is allowable,
is to utilize the spectral theorem for normal matrices. Normal here means
that the matrix and its Hermitian conjugate commute, which is implied by
UU† = 1 = U†U. So we can write, for a diagonal matrix Σ, and a unitary
matrix V ,

U = VΣV†, (1.42)

so the logarithm of eq. (1.41) can be reduced, and we are left with

C = −iV ln(Σ)V†. (1.43)

Here the logarithm of the diagonal matrix is nothing more than the diago-
nal matrix of the eigenvalues.

We still have to show that C as defined in eq. (1.43) is Hermitian. At
a glance it looks like this may be anti Hermitian C† = −C, but we really
need a characterization of the eigenvalues to say. That conjugate is

C† = iV(ln(Σ))†V†. (1.44)

It seems worthwhile to work an example to see if we are even on the right
track. Let us pick the 2 dimensional rotation matrix, and express it using
its eigenvalue decomposition. That is

U =

 cos θ sin θ

− sin θ cos θ

 , (1.45)
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with decomposition

V =
1
√

2

1 1

i −i


Σ =

eiθ 0

0 e−iθ


U = VΣV†.

(1.46)

We have

ln Σ =

iθ 0

0 −iθ

 . (1.47)

Ah. This is purely imaginary, and accounts for the Hermiticity of C in this
specific example. Are the logs of the eigenvalues of unitary matrices all
purely imaginary? That seems like a lot to ask for.

Incidentally, for this example, C = −iV ln ΣV† gives us

C = iθ

0 −1

1 0


= θσ2,

(1.48)

So, in a rather neat way, we have an matrix exponential expression for the
standard planar rotation matrix, in terms of one of the Pauli matrices. It is
straight forward to verify that

U = eiσ2θ, (1.49)

does in fact recover eq. (1.45). This follows directly from (iσ2)2 = −I,
allowing us to write

U = cos θI + iσ2 sin θ. (1.50)

Okay. With that example worked out, we come to the conclusion that the
operator specified in eq. (1.43), can be Hermitian.

Having worked an example, we are left to prove the more general case.
To do this we have only to note that the eigenvalues of a Unitary matrix
have unit norm, so they must all be of the form eiα. Suppose we write for
the diagonal matrix

Σ =
[
eiαkδk j

]
k
. (1.51)
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The logarithm and its conjugate are then

ln Σ =
[
iαkδk j

]
k

(ln Σ)† = − ln Σ.
(1.52)

This completes the required proof, showing that the matrix C is Hermitian

C = −iV ln(Σ)V† = C†. (1.53)

I initially relied on wikipedia [15] for the hint that Unitary matrices have
unit norm eigenvalues (and the wiki article references Shankar, which I
do not have). However, this is straightforward to show. Suppose that x is
an eigenvector for U with eigenvalue λ, then we have

⟨Ux|Ux⟩ =
〈
U†Ux

∣∣∣x〉
= ⟨x|x⟩ ,

(1.54)

but we also have

⟨Ux|Ux⟩ = ⟨λx|λx⟩

= |λ|2 ⟨x|x⟩ .
(1.55)

We must then have |λ|2 = 1, or λ = eiα for some real α.

Commuting real and imaginary parts If

U = A + iB, (1.56)

show that A and B commute.
We can form the matrices A, and B with the usual real and imaginary

decomposition, but using Hermitian conjugation. That is

A =
1
2

(U +U†)

B =
1
2i

(U −U†).
(1.57)

Then the commutation question essentially just requires that we show the
commutator is zero

AB− BA =
1
4i

(
(U +U†)(U −U†) − (U −U†)(U +U†)

)
=

1
4i

(
U2 + (U†)2 + 1 − 1 − (U2 + (U†)2 − 1 + 1)

)
= 0. □

(1.58)
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Now, if U = eiC = A + iB, we can expand U trigonometrically, with the
typical power series expansions, and can also write

A = cos C

B = sin C
(1.59)

We can also use the spectral decomposition of U and C above in eq. (1.43),
to write

A = V cosh(ln Σ)V†

B = −V sinh(ln Σ)V†,
(1.60)

and again here the functions of matrices are nothing more than diagonal
evaluation of the respective functions to each of the eigenvalues of Σ.

Exercise 1.4 Determinant of exponential in terms of trace. ([3] pr 1.4)

Show

det(eA) = etr A. (1.61)

The problem does not put constraints (ie: no statement that A is Hermi-
tian), so we can not assume a Unitary diagonalization is possible. We can
however assume an upper triangular similarity transformation of the form

A = WJW−1, (1.62)

where W is invertible, but not necessarily unitary, and J is in Jordan
Canonical form. That form is upper triangular with the eigenvalues on
the diagonal, and only ones or zeros above the diagonal (however, for the
purposes of this problem we only need to know that it is upper triangular).
Answer for Exercise 1.4

The determinant of eA is then

det(eA) = det(W) det(eJ) det(W−1)

= det(eJ).
(1.63)

Note that the exponential of a triangular matrix has the exponentials of the
eigenvalues along the diagonal. We can see this by computing the square
of an upper triangular matrix in block form. A general proof of this is
straightforward, but one gets the idea by considering the two by two casea c

0 b


a c

0 b

 =
a2 (a + b)c

0 b2

 . (1.64)
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Forming the exponential series, one is left with exponentials of the eigen-
values along the diagonal. So we have for our determinant

det(eA) = det(eJ)

=
∏

k

eλk

= e
∑

k λk

= etr(A). □

(1.65)

Exercise 1.5 Trace of an outer product operator ([3] pr 1.5)

Show that

tr(|α⟩ ⟨β|) = ⟨β|α⟩ . (1.66)

Answer for Exercise 1.5

Let A = |α⟩ ⟨β|, and introduce a complete basis |ek⟩. The trace with
respect to this basis (or any) is thus

tr(A) =
∑

k

⟨ek| A |ek⟩

=
∑

k

⟨ek| (|α⟩ ⟨β|) |ek⟩

=
∑

k

⟨β|ek⟩ ⟨ek|α⟩

= ⟨β|

∑
k

|ek⟩ ⟨ek|

 |α⟩
= ⟨β| I |α⟩

= ⟨β|α⟩ . □

(1.67)

Exercise 1.6 eigen calculation ([3] pr 1.6)

For operator(s)

A = |α⟩ ⟨α| + λ |β⟩ ⟨α| + λ∗ |α⟩ ⟨β| ± |β⟩ ⟨β| , (1.68)

where ⟨α|β⟩ = 0, and ⟨α|α⟩ = ⟨β|β⟩ = 1, find the eigenvalues and vectors
for (i) λ = 1, and (ii) λ = i.
Answer for Exercise 1.6
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Without using matrix representation Our eigenvector must be some lin-
ear combination of the two kets, so lets look for one of the form |e⟩ =
|α⟩ + a |β⟩, and use this to find eigenvalues for

A |e⟩ = b |e⟩ . (1.69)

This means we seek solutions to

|α⟩ + λ |β⟩ + aλ∗ |α⟩ ± a |β⟩ = b(|α⟩ + a |β⟩). (1.70)

This supplies a pair of simultaneous equations

1 + aλ∗ = b

λ ± a = ba.
(1.71)

We have our eigenvalue b in terms of the constant a immediately, so for a
we wish to solve the quadratic

λ ± a = (1 + aλ∗)a (1.72)

Let us treat these four cases separately, starting the two λ = 1 operators.
Those quadratics are

1 + a = (1 + a)a

1 − a = (1 + a)a
(1.73)

with respective solutions

a = ±1

a = ±
√

2 − 1
(1.74)

Summarizing the operator, eigenvalue, and eigenvector triplets for this
λ = 1 case we have

A = |α⟩ ⟨α| + |β⟩ ⟨α| + |α⟩ ⟨β| + |β⟩ ⟨β|

|e⟩± = |α⟩ ± |β⟩

λ± = 1 ± 1

(1.75a)

and

A = |α⟩ ⟨α| + |β⟩ ⟨α| + |α⟩ ⟨β| − |β⟩ ⟨β|

|e⟩± = |α⟩ + (±
√

2 − 1) |β⟩

λ± = ±
√

2

(1.76a)
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Now for the pair of λ = i operators, our quadratic is

i ± a = (1 − ia)a, (1.77)

or separately

a2 + 1 = 0

(a + i)2 + 2 = 0
(1.78)

The respective solutions are

a = ±i

a = i(−1 ±
√

2),
(1.79)

with eigenvalues b = 1 − ia, which are respectively

b = 1 ± 1

b = ±
√

2.
(1.80)

Summarizing the results, we have

A = |α⟩ ⟨α| + i |β⟩ ⟨α| − i |α⟩ ⟨β| + |β⟩ ⟨β|

|e⟩± = |α⟩ ± i |β⟩

λ± = 2, 0

(1.81a)

and

A = |α⟩ ⟨α| + i |β⟩ ⟨α| − i |α⟩ ⟨β| + |β⟩ ⟨β|

|e⟩± = |α⟩ + i(−1 ±
√

2) |β⟩

λ± = ±
√

2

(1.82a)

So it appears we got the same eigenvalues and vectors for both λ = 1
and λ = i. Is there a higher order principle that this follows from? Perhaps
the fact that both terms with λ coefficients were conjugate pairs? That is
something perhaps worth thinking about.

Using matrix representation In the matrix notation with basis {σ1, σ2} =

{(1, 0), (0, 1)}, and Amn = ⟨σm| A |σn⟩, we have

A11 = ⟨σ1| A |σ1⟩ = ⟨α|α⟩ = 1

A22 = ⟨σ2| A |σ2⟩ = µ ⟨β|β⟩ = µ

A12 = ⟨σ1| A |σ2⟩ = λ
∗

A21 = ⟨σ2| A |σ1⟩ = λ

(1.83)
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Or in whole matrix notation, we have

{A} =

1 λ∗

λ µ

 . (1.84)

Finding the eigenvalues and vectors becomes a straightforward, albeit
somewhat tedious, algebraic job, solving for |A −σI| = 0, for eigenval-
ues σ. Doing this, I get

• λ = 1, µ = 1

σ = 2, 0

|σ2⟩ =
1
√

2
(1, 1)

|σ0⟩ =
1
√

2
(1,−1)

(1.85)

Alternatively, for the σ = 2 case we have

|σ2⟩ =
1
√

2
(|α⟩ + |β⟩) , (1.86)

and for the σ = 0 case we have

|σ0⟩ =
1
√

2
(|α⟩ − |β⟩) . (1.87)

Ignoring the normalization constant used here, this is consistent
with eq. (1.75) as it should be.

• λ = 1, µ = −1

σ = ±
√

2

|σ±⟩ ∝ (1,−1 ±
√

2)
(1.88)

Normalization was not bothered with this time due to pesky
√

2
terms. The eigenstates expressed in terms of the original basis vec-
tors are

|σ±⟩ = |α⟩ + (−1 ±
√

2) |β⟩ (1.89)

This is consistent with eq. (1.76) as expected.
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• λ = i, µ = 1

σ = 2, 0

|σ0⟩ =
1
√

2
(i, 1)

|σ2⟩ =
1
√

2
(−i, 1)

(1.90)

In terms of the original basis vectors this is

|σ0⟩ =
1
√

2
(i |α⟩ + |β⟩) (1.91)

|σ2⟩ =
1
√

2
(−i |α⟩ + |β⟩) (1.92)

Checking against eq. (1.81) shows that |σ2⟩ above only differs by a
constant as expected.

• λ = i, µ = −1

σ = ±
√

2

|σ±⟩ ∝ (1,−i(1 ∓
√

2))
(1.93)

Or, in terms of the original basis,

|σ±⟩ = |α⟩ + i(−1 ±
√

2) |β⟩ . (1.94)

This matches the previous calculation summarized by eq. (1.82).

Exercise 1.7 problem set 1.

Assume that X and P = −i h̄∂/∂x are the x-direction position and mo-
mentum operators. Show that [X, P] = i h̄1. Find ⟨x| (XP − PX) |x′⟩ using
the above definitions. What is the physical meaning of this expression?
Answer for Exercise 1.7
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Avoiding Dirac notation We can get a rough idea where we are going
by temporarily avoiding the Dirac notation that complicates things. To do
so, consider the commutator action on an arbitrary wave function ψ(x)

(xP − Px)ψ = xPψ + i h̄
∂

∂x
(xψ)

= xPψ + i h̄
(
ψ +

∂ψ

∂x

)
= xPψ + i h̄ψ − xPψ

= i h̄ψ

(1.95)

Since this is true for all ψ(x) we can make the identification

xP − Px = i h̄1 (1.96)

Having evaluated the commutator, the matrix element is simple to com-
pute. It is

⟨x| XP − PX
∣∣∣x′〉 = ⟨x| i h̄1

∣∣∣x′〉
= i h̄

〈
x
∣∣∣x′〉 . (1.97)

This braket has a delta function action, so this matrix element reduces to

⟨x| XP − PX
∣∣∣x′〉 = i h̄δ(x − x′). (1.98)

This could perhaps be considered the end of the problem (barring the
physical meaning interpretation requirement to come). However, given
that the Dirac notation that is so central to the lecture notes and course
text, it seems like cheating to avoid it. It seems reasonable to follow this
up with the same procedure utilizing the trickier Dirac notation, and this
will be done next. If nothing else, this should provide some experience
with what sort of manipulations are allowed.

Using Dirac notation Intuition says that we need to consider the action
of the commutator within a matrix element of the form

⟨x| XP − PX |ψ⟩ =
∫

dx′ ⟨x| XP − PX
∣∣∣x′〉 〈x′

∣∣∣ψ〉
=

∫
dx′ ⟨x| XP − PX

∣∣∣x′〉ψ(x′).
(1.99)

Observe above that with the introduction of an identity operation, such
an expression also includes the matrix element to be evaluated in the sec-
ond part of this problem. Because of this, if we can show that ⟨x| XP −
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PX |ψ⟩ = i h̄ψ(x), then as a side effect we will also have shown that the
matrix element ⟨x| XP − PX |x′⟩ = i h̄δ(x − x′), as well as demonstrated
the commutator relation XP − PX = i h̄1.

Proceeding with a reduction of the right most integral in eq. (1.99)
above, we have∫

dx′ ⟨x| XP − PX
∣∣∣x′〉ψ(x′)

=

∫
dx′ ⟨x| xP − Px′

∣∣∣x′〉ψ(x′)

=

∫
dx′ ⟨x| xPψ(x′) − Px′ψ(x′)

∣∣∣x′〉
= −i h̄

∫
dx′ ⟨x| x

∂ψ(x′)
∂x

−
∂

∂x
(x′ψ(x′))

∣∣∣x′〉
= i h̄

∫
dx′ ⟨x| − x

∂ψ(x′)
∂x

+
∂x′

∂x
ψ(x′) + x′

∂ψ(x′)
∂x

∣∣∣x′〉
= i h̄

∫
dx′

(
−x

∂ψ(x′)
∂x

+
∂x′

∂x
ψ(x′) + x′

∂ψ(x′)
∂x

) 〈
x
∣∣∣x′〉

= i h̄
∫

dx′
(
−x

∂ψ(x′)
∂x

+
∂x′

∂x
ψ(x′) + x′

∂ψ(x′)
∂x

)
δ(x − x′)

=

(
i h̄
∂x′

∂x
ψ(x′) + i h̄(x′ − x)

∂ψ(x′)
∂x

)∣∣∣∣∣∣
x′=x

= i h̄
∂x
∂x
ψ(x) + i h̄(x − x)

∂ψ(x)
∂x

= i h̄ψ(x)

(1.100)

The convolution with the delta function leaves us with only functions of
x, allowing all the derivatives to be evaluated. In the manipulations above
the wave function ψ(x′) could be brought into the braket since it is just a
(complex) scalar. What was a bit sneaky, is the restriction of the action of
the operator P to ψ(x′), and x′ψ(x′), but not to |x′⟩. That was a key step
in the reduction since it allows all the resulting terms to be brought out of
the braket, leaving the delta function.

What is a good justification for not allowing P to act on the ket? A
pragmatic one is that the desired result would not have been obtained oth-
erwise. After the fact I also see that this is consistent with [11], which
states (without citation) that −i h̄∇ |ψ⟩ is an abuse of notation since the op-
erator should be viewed as operating on projections (ie: wave functions).

Another point to follow up on later is the justification for the order of
operations. If the derivatives had been evaluated first before the evaluation
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at x = x′, then we would have nothing left due to the ∂x′/∂x = 0. Perhaps
a good answer for that is that the zero times delta function is not well
behaved. One has to eliminate the delta function first to see if the magni-
tudes of the zero of that we would have from a pre-evaluated ∂x′/∂x is
"more zero", than the infinity of the delta function at x = x′. This proce-
dure still screams out ad-hoc, and the only real resolution is likely in the
framework of distribution theory.

Anyways, assuming the correctness of all the manipulations above, let
us return to the problem. We refer back to eq. (1.99) and see that we now
have

⟨x| XP − PX |ψ⟩ = i h̄ψ(x)

= i h̄ ⟨x|ψ⟩

= ⟨x| i h̄1 |ψ⟩
=⇒

0 = ⟨x| XP − PX − i h̄1 |ψ⟩

(1.101)

Since this is true for all ⟨x|, and |ψ⟩, we must have XP − PX = i h̄1 as
desired.

Also referring back to eq. (1.99) we can write∫
dx′ ⟨x| XP − PX

∣∣∣x′〉ψ(x′) = i h̄ψ(x)

=

∫
dx′i h̄δ(x − x′)ψ(x′).

(1.102)

Taking differences we have for all ψ(x′)∫
dx′(⟨x| XP − PX

∣∣∣x′〉 − i h̄δ(x − x′))ψ(x′) = 0, (1.103)

which we utilize to produce the identification

⟨x| XP − PX
∣∣∣x′〉 = i h̄δ(x − x′) (1.104)

This completes all the non-interpretation parts of this problem.

The physical meaning of this expression The remaining part of this
question ties the mathematics to some reality.

One nice description of a general matrix element can be found in [10],
where the author states “We see that the "matrix element" of an operator
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with respect to a continuous basis is nothing but the kernel of the integral
transform that represents the action of that operator in the given basis.”

While that characterizes this sort of continuous matrix element nicely,
it does not provide any physical meaning, so we have to look further.

The most immediate observation that we can make of this matrix ele-
ment is not one that assigns physical meaning, but instead points out a
non-physical characteristic. Note that in the LHS when x = x′ this is an
expectation value for the commutator. Because this expectation “value” is
purely imaginary (an i h̄ scaled delta function, with the delta function pre-
sumed to be a positive real infinity), we are able to note that this position
momentum commutator operator cannot itself represent an observable. It
must also be non-Hermitian as a consequence, and that is easy enough
to verify directly. Perhaps it would be more interesting to ask the ques-
tion what the meaning of the matrix element of the Hermitian operator
−i [X, P] is? That operator (an h̄ scaled identity) would at least represent
an observable.

How about asking the question of what physical meaning we have for
a general commutator, before considering the matrix element of such a
commutator. Given two operators A, and B representing observables, a
non-zero commutator [A, B] of these operators means that simultaneous
precise measurement of the two observables is not possible. This property
can also be thought of as a meaning for the matrix element ⟨x′| [A, B] |x⟩ of
such a commutator. For the position momentum commutator, this matrix
element ⟨x| [X, P] |x′⟩ = i h̄δ(x − x′) would also be zero if simultaneous
measurement of the operators was possible.

Because this matrix element of this commutator is non-zero (despite
the fact that the delta function is zero almost everywhere) we know that a
measurement of position will disturb the momentum of the particle, and
conversely, a measurement of momentum will disturb the position. An
illustration of this is in the slit diffraction experiment. Narrowing an ini-
tial wide slot to "measure" the position of the photon or electron passing
through the slit more accurately, has an effect of increasing the scattering
range of the particle (ie: reducing the uncertainty in the position measure-
ment imparts momentum in the scattering plane).

Exercise 1.8 problem set 1.

The state of a one-dimensional system is given by |x0⟩. Does this sys-
tem obey the position-momentum uncertainty relation? Explain your an-
swer.
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Answer for Exercise 1.8

Yes, the system obeys the position-momentum uncertainty relation. Note
that in long form the uncertainty relation takes the following form:√〈

(X − ⟨X⟩)2〉√〈
(P − ⟨P⟩)2〉 ≥ h̄

2
. (1.105)

Each of these expectation values is with respect to some specific state

⟨X⟩ ≡ ⟨ψ| X |ψ⟩ , (1.106)

so one could write this out in still longer form:√
⟨ψ| (X − ⟨ψ| X |ψ⟩)2 |ψ⟩

√
⟨ψ| (P − ⟨ψ| P |ψ⟩)2 |ψ⟩ ≥

h̄
2
. (1.107)

This inequality holds for all states |ψ⟩ that the system could be observed
in. This includes the state |x0⟩ of this problem, associated with a specific
observation of the system.

My grade I completely misunderstood this, and got only 0.5/5 on it.
What he was looking for was that if |x0⟩ is a position eigenstate in a con-
tinuous vector space, then one cannot form the expectation with respect
to this state, let alone the variance. For example with respect to this state
we have

⟨X⟩ = ⟨x0| X |x0⟩

= x0 ⟨x0|x0⟩

= x0δ(x0 − x0)

(1.108)

We cannot evaluate this delta function, since it blows up at zero. The
implication would be that we have complete uncertainty of position in
the one dimensional continuous vector space with respect to this state.
Despite bombing on the question, it is a nice one, since it points out some
of the implicit assumptions for the uncertainty relation. We can only say
that the uncertainty relation applies with respect to normalizable states.
That said, is it a fair question? I think the original question was fairly
vague, and I would not consider the question well posed.

Exercise 1.9 Parity operator (2007 PHY355H1F 1b)

If Π is the parity operator, defined by Π |x⟩ = |−x⟩, where |x⟩ is the
eigenket of the position operator X with eigenvalue x), and P is the mo-
mentum operator conjugate to X, show (carefully) that ΠPΠ = −P.
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Answer for Exercise 1.9

Consider the matrix element ⟨−x′| [Π, P] |x⟩. This is〈
−x′

∣∣∣ [Π, P] |x⟩ =
〈
−x′

∣∣∣ ΠP − PΠ |x⟩

=
〈
−x′

∣∣∣ ΠP |x⟩ − ⟨−x| PΠ |x⟩

=
〈
x′
∣∣∣ P |x⟩ − ⟨−x| P |−x⟩

= −i h̄


δ(x′ − x)

∂

∂x
− δ(−x − (−x′))

= δ(x′ − x) = δ(x − x′)

∂

∂−x


= −2i h̄δ(x′ − x)

∂

∂x
= 2

〈
x′
∣∣∣ P |x⟩

= 2
〈
−x′

∣∣∣ ΠP |x⟩

(1.109)

We have taken advantage of the Hermitian property of P and Π here, and
can rearrange for〈

−x′
∣∣∣ ΠP − PΠ − 2ΠP |x⟩ = 0 (1.110)

Since this is true for all ⟨−x| and |x⟩ we have

ΠP + PΠ = 0. (1.111)

Right multiplication by Π and rearranging we have

ΠPΠ = −PΠΠ = −P. (1.112)

Exercise 1.10 Unitary trace invariance (2008 PHY355H1F final 1b.)

Show that the trace of an operator is invariant under unitary transforms,
i.e. if A′ = U†AU, where U is a unitary operator, prove tr(A′) = tr(A).
Answer for Exercise 1.10
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The bulk of this question is really to show that commutation of opera-
tors leaves the trace invariant (unless this is assumed). To show that we
start with the definition of the trace

tr(AB) =
∑

n

⟨n| AB |n⟩

=
∑
nm

⟨n| A |m⟩ ⟨m| B |n⟩

=
∑
nm

⟨m| B |n⟩ ⟨n| A |m⟩

=
∑

m

⟨m| BA |m⟩ .

(1.113)

Thus we have

tr(AB) = tr(BA). (1.114)

For the unitarily transformed operator we have

tr(A′) = tr(U†AU)

= tr(U†(AU))

= tr((AU)U†)

= tr(A(UU†))

= tr(A) □

(1.115)

Exercise 1.11 Trace and det of an exp() operator.

If A is an Hermitian operator, show that

det(exp A) = exp(tr(A)) (1.116)

where the determinant (det) of an operator is the product of all its eigen-
vectors.
Answer for Exercise 1.11

The eigenvalues clue in the question provides the starting point. We
write the exponential in its series form

eA = 1 +
∞∑

k=1

1
k!

Ak (1.117)

Now, suppose that we have the following eigenvalue relationships for A

A |n⟩ = λn |n⟩ . (1.118)
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From this the exponential is

eA |n⟩ = |n⟩ +
∞∑

k=1

1
k!

Ak |n⟩

= |n⟩ +
∞∑

k=1

1
k!

(λn)k |n⟩

= eλn |n⟩ .

(1.119)

We see that the eigenstates of eA are those of A, with eigenvalues eλn .
By the definition of the determinant given we have

det(eA) =
∏

n

eλn

= e
∑

n λn

= etr (A). □

(1.120)
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2.1 rotations using matrix exponentials

In [3] it is noted in problem 1.3 that any Unitary operator can be expressed
in exponential form

U = eiC , (2.1)

where C is Hermitian. This is a powerful result hiding away in this prob-
lem. I have not actually managed to prove this yet to my satisfaction, but
working through some examples is highly worthwhile. In particular it is
interesting to compute the matrix C for a rotation matrix. One finds that
the matrix for such a rotation operator is in fact one of the Pauli spin ma-
trices, and I found it interesting that this falls out so naturally. Addition-
ally, it is rather slick that one is able to so concisely express the rotation
in exponential form, something that is natural and powerful in complex
variable algebra, and also possible using Geometric Algebra using expo-
nentials of bivectors. Here we can do it after all with nothing more than
the plain old matrix algebra that everybody is already comfortable with.

The logarithm of the Unitary matrix By inspection we can invert eq. (2.1)
for C, by taking the logarithm

C = −i ln U. (2.2)

The problem becomes one of evaluating the logarithm, or even giving
meaning to it. I will assume that the functions of matrices that we are
interested in are all polynomial in powers of the matrix, as in

f (U) =
∑

k

αkUk, (2.3)

and that such series are convergent. Then using a spectral decomposition,
possible since Unitary matrices are normal, we can write for diagonal
Σ =

[
λi

]
i

U = VΣV†, (2.4)
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and

f (U) = V

∑
k

αkΣk

 V† = V
[
f (λi)

]
i
V†. (2.5)

Provided the logarithm has a convergent power series representation for
U, we then have for our Hermitian matrix C

C = −iV(ln Σ)V† (2.6)

Evaluate this logarithm for an x, y plane rotation Given the rotation
matrix

U =

 cos θ sin θ

− sin θ cos θ

 , (2.7)

We find that the eigenvalues are e±iθ, with eigenvectors proportional to
(1,±i) respectively. Our decomposition for U is then given by eq. (2.4),
and

V =
1
√

2

1 1

i −i


Σ =

eiθ 0

0 e−iθ

 .
(2.8)

Taking logs we have

C =
1
2

1 1

i −i


θ 0

0 −θ


1 −i

1 i


=

1
2

1 1

i −i


 θ −iθ

−θ −iθ


=

0 −iθ

iθ 0

 .
(2.9)

With the Pauli matrix

σ2 =

0 −i

i 0

 , (2.10)
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we then have for an x, y plane rotation matrix just:

C = θσ2 (2.11)

and

U = eiθσ2 . (2.12)

Immediately, since σ2
2 = I, this also provides us with a trigonometric

expansion

U = I cos θ + iσ2 sin θ. (2.13)

By inspection one can see that this takes us full circle back to the original
matrix form eq. (2.7) of the rotation. The exponential form of eq. (2.12)
has a beauty that is however far superior to the plain old trigonometric
matrix that we are comfortable with. All without any geometric algebra
or bivector exponentials.

Three dimensional exponential rotation matrices By inspection, we can
augment our matrix C for a three dimensional rotation in the x, y plane, or
a y, z rotation, or a x, z rotation. Those are, respectively

Ux,y = exp


0 θ 0

−θ 0 0

0 0 i


Uy,z = exp


i 0 0

0 0 θ

0 −θ 0


Ux,z = exp


0 0 θ

0 i 0

−θ 0 0



(2.14)

Each of these matrices can be related to each other by similarity transfor-
mation using the permutation matrices

0 0 1

0 1 0

1 0 0

 , (2.15)



30 commutator and time evolution

and 
1 0 0

0 0 1

0 1 0

 . (2.16)

Exponential matrix form for a Lorentz boost The next obvious thing to
try with this matrix representation is a Lorentz boost.

L =

 coshα − sinhα

− sinhα coshα

 , (2.17)

where coshα = γ, and tanhα = β. This matrix has a spectral decomposi-
tion given by

V =
1
√

2

 1 1

−1 1


Σ =

eα 0

0 e−α

 .
(2.18)

Taking logs and computing C we have

C = −
i
2

 1 1

−1 1


α 0

0 −α


1 −1

1 1


= −

i
2

 1 1

−1 1


 α −α

−α −α


= iα

0 1

1 0

 .
(2.19)

Again we have one of the Pauli spin matrices. This time it is

σ1 =

0 1

1 0

 . (2.20)

So we can write our Lorentz boost eq. (2.17) as just

L = e−ασ1 = I coshα −σ1 sinhα. (2.21)
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By inspection again, we can come full circle by inspection from this last
hyperbolic representation back to the original explicit matrix representa-
tion. Quite nifty!

It occurred to me after the fact that the Lorentz boost is not Unitary. The
fact that the eigenvalues are not a purely complex phase term, like those
of the rotation is actually a good hint that looking at how to characterize
the eigenvalues of a unitary matrix can be used to show that the matrix
C = −iV ln ΣV† is Hermitian.

2.2 on commutation of exponentials

Previously while working a Liboff problem, I wondered about what the
conditions were required for exponentials to commute. In those problems
the exponential arguments were operators. Exponentials of bivectors as
in quaternion like spatial or Lorentz boosts are also good examples of
(sometimes) non-commutative exponentials. It appears likely that the key
requirement is that the exponential arguments commute, but how does one
show this? Here this is explored a bit. If one could show that it was true
that

exey = ex+y. (2.22)

Then it would also imply that

exey = eyex. (2.23)

Let us perform the school boy exercise to prove eq. (2.22) and explore
the restrictions for such a proof. We assume a power series definition of
the exponential operator, and do not assume the values x, y are numeric,
instead just that they can be multiplied. A commutative multiplication will
not be assumed.

By virtue of the power series exponential definition we have

exey =

∞∑
k=0

1
k!

xk
∞∑

m=0

1
m!

ym. (2.24)

To attempt to put this into ex+y form we will need to change the order
that we evaluate the double sum, and here a picture fig. 2.1 is helpful.

https://peeterjoot.wordpress.com/2010/05/23/effect-of-sinusoid-operators/
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Figure 2.1: Double sum diagonal ordering

For somebody who has seen this summation trick before the picture
probably says it all. We want to iterate over all pairs (k,m), and could
do so in {(k, 0), (k, 1), · · · (k,∞), k ∈ [0,∞]} order as in our sum. This is
all the pairs of points in the upper right hand side of the grid. We can
also cover these grid coordinates in a different order. In particular, these
can be iterated over the diagonals. The first diagonal having the point
(0, 0), the second with the points {(0, 1), (1, 0)}, the third with the points
{(0, 2), (1, 1), (2, 0)}.

Observe that along each diagonal the sum of the coordinates is constant,
and increases by one. Also observe that the number of points in each
diagonal is this sum. These observations provide a natural way to index
the new grid traversal. Labeling each of these diagonals with index j, and
points on that subset with n = 0, 1, · · · , j, we can express the original loop
indices k and m in terms of these new (coupled) loop indices j and n as
follows

k = j − n (2.25)

m = n. (2.26)

Our sum becomes
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exey =

∞∑
j=0

j∑
n=0

1
( j − n)!

x j−n 1
n!

yn. (2.27)

With one small rearrangement, by introducing a j! in both the numera-
tor and the denominator, the goal is almost reached.

exey =

∞∑
j=0

1
j!

j∑
n=0

j!
( j − n)! n!

x j−nyn =

∞∑
j=0

1
j!

j∑
n=0

(
n
j

)
x j−nyn. (2.28)

This shows where we have a requirement that x and y commute, be-
cause only in that case do we have a binomial expansion

(x + y) j =

j∑
n=0

(
n
j

)
x j−nyn, (2.29)

in the interior sum. This reduced the problem to a consideration of the
implication of possible non-commutation have on the binomial expansion.
Consider the simple special case of (x + y)2. If x and y do not necessarily
commute, then we have

(x + y)2 = x2 + xy + yx + y2 (2.30)

whereas the binomial expansion formula has no such allowance for non-
commutative multiplication and just counts the number of times a product
can occur in any ordering as in

(x + y)2 = x2 + 2xy + y2 = x2 + 2yx + y2. (2.31)

One sees the built in requirement for commutative multiplication here.
Now this does not prove that exey!= eyex unconditionally if x and y do
not commute, but we do see that a requirement for commutative multipli-
cation is sufficient if we want equality of such commuted exponentials. In
particular, the end result of the Liboff calculation where we had

ei f̂ e−i f̂ , (2.32)

and was assuming this to be unity even for the differential operators f̂
under consideration is now completely answered (since we have (i f̂ )(−i f̂ )ψ =
(−i f̂ )(i f̂ )ψ).
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2.3 canonical commutator

Based on the canonical relationship [X, P] = i h̄, and ⟨x′|x⟩ = δ(x′ − x),
Desai determines the form of the P operator in continuous space. A con-
sequence of this is that the matrix element of the momentum operator is
found to have a delta function specification

〈
x′
∣∣∣ P |x⟩ = δ(x − x′)

(
−i h̄

d
dx

)
. (2.33)

In particular the matrix element associated with the state |ϕ⟩ is found to
be 〈

x′
∣∣∣ P |ϕ⟩ = −i h̄

d
dx′

ϕ(x′). (2.34)

Compare this to [9], where this last is taken as the definition of the mo-
mentum operator, and the relationship to the delta function is not spelled
out explicitly. This canonical commutator approach, while more abstract,
seems to have less black magic involved in the setup. We do require the
commutator relationship [X, P] = i h̄ to be pulled out of a magic hat, but
at least the magic show is a structured one based on a small set of core
assumptions.

It will likely be good to come back to this later when trying to rec-
oncile this new (for me) Dirac notation with the more basic notation I
am already comfortable with. When trying to compare the two, it will be
good to note that there is a matrix element that is implied in the more
old fashioned treatment in a book such as [1]. There is one fundamental
assumption that appears to be made in this section that is not justified by
anything except the end result. That is the assumption that P is a deriva-
tive like operator, acting with a product rule action. That is used to obtain
(2.28) and is a fairly black magic operation. This same assumption, is also
hiding, somewhat sneakily, in the manipulation for (2.44). If one has to
make that assumption that P is a derivative like operator, I do not feel this
method of introducing it is any less arbitrary seeming. It is still pulled out
of a magic hat, only because the answer is known ahead of time. The ap-
proach of [1], where the derivative nature is presented as consequence of
transforming (via Fourier transforms) from the position to the momentum
representation, seems much more intuitive and less arbitrary.
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2.4 generalized momentum commutator

It is stated that

[P, Xn] = −ni h̄Xn−1. (2.35)

Let us prove this. The n = 1 case is the canonical commutator, which
is assumed. Is there any good way to justify that from first principles, as
presented in the text? We have to prove this for n, given the relationship
for n − 1. Expanding the nth power commutator we have

[P, Xn] = PXn − XnP

= PXn−1X − XnP
(2.36)

Rearranging the n − 1 result we have

PXn−1 = Xn−1P − (n − 1)i h̄Xn−2, (2.37)

and can insert that in our [P, Xn] expansion for

[P, Xn] =
(
Xn−1P − (n − 1)i h̄Xn−2

)
X − XnP

= Xn−1(PX) − (n − 1)i h̄Xn−1 − XnP

= Xn−1(XP − i h̄) − (n − 1)i h̄Xn−1 − XnP

= −Xn−1i h̄ − (n − 1)i h̄Xn−1

= −ni h̄Xn−1 □

(2.38)

2.5 uncertainty principle

The origin of the statement [∆A,∆B] = [A, B] is not something that
seemed obvious. Expanding this out however is straightforward, and clar-
ifies things. That is

[∆A,∆B] = (A − ⟨A⟩)(B− ⟨B⟩) − (B− ⟨B⟩)(A − ⟨A⟩)

= (AB− ⟨A⟩ B− ⟨B⟩ A + ⟨A⟩ ⟨B⟩) − (BA − ⟨B⟩ A − ⟨A⟩ B+ ⟨B⟩ ⟨A⟩)

= AB− BA

= [A, B] □
(2.39)
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2.6 size of a particle

I found it curious that using ∆x∆p ≈ h̄ instead of ∆x∆p ≥ h̄/2, was
sufficient to obtain the hydrogen ground state energy Emin = −e2/2a0,
without also having to do any factor of two fudging.

2.7 space displacement operator

Initial notes I had be curious to know if others find the loose use of
equality for approximation after approximation slightly disturbing too?

I also find it curious that (2.140) is written

D(x) = exp
(
−i

P
h̄

x
)
, (2.40)

and not

D(x) = exp
(
−ix

P
h̄

)
. (2.41)

Is this intentional? It does not seem like P ought to be acting on x in this
case, so why order the terms that way?

Expanding the application of this operator, or at least its first order Tay-
lor series, is helpful to get an idea about this. Doing so, with the original
∆x′ value used in the derivation of the text we have to start

D(∆x′) |ϕ⟩ ≈
(
1 − i

P
h̄

∆x′
)
|ϕ⟩

=

(
1 − i

(
−i h̄δ(x − x′)

∂

∂x

)
1
h̄

∆x′
)
|ϕ⟩

(2.42)

This shows that the ∆x factor can be commuted with the momentum op-
erator, as it is not a function of x′, so the question of Px, vs xP above
appears to be a non-issue.
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Regardless of that conclusion, it seems worthy to continue an attempt
at expanding this shift operator action on the state vector. Let us do so,
but do so by computing the matrix element ⟨x′|D(∆x′) |ϕ⟩. That is〈

x′
∣∣∣ D(∆x′) |ϕ⟩ ≈

〈
x′
∣∣∣ϕ〉 − 〈

x′
∣∣∣ δ(x − x′)

∂

∂x
∆x′ |ϕ⟩

= ϕ(x′) −
∫ 〈

x′
∣∣∣ δ(x − x′)

∂

∂x
∆x′

∣∣∣x′〉 〈x′
∣∣∣ϕ〉 dx′

= ϕ(x′) − ∆x′
∫

δ(x − x′)
∂

∂x
〈
x′
∣∣∣ϕ〉 dx′

= ϕ(x′) − ∆x′
∂

∂x′
〈
x′
∣∣∣ϕ〉

= ϕ(x′) − ∆x′
∂

∂x′
ϕ(x′)

(2.43)

This is consistent with the text. It is interesting, and initially surprising
that the space displacement operator when applied to a state vector in-
troduces a negative shift in the wave function associated with that state
vector. In the derivation of the text, this was associated with the use of
integration by parts (ie: due to the sign change in that integration). Here
we see it sneak back in, due to the i2 once the momentum operator is
expanded completely.

As last note and question. The first order Taylor approximation of the
momentum operator was used. If the higher order terms are retained, as
in

exp
(
−i∆x′

P
h̄

)
= 1 − ∆x′δ(x − x′)

∂

∂x
+

1
2

(
−∆x′δ(x − x′)

∂

∂x

)2

+ · · · ,

(2.44)

then how does one evaluate a squared delta function (or Nth power)?
Talked to Vatche about this after class. The key to this is sequential

evaluation. Considering the simple case for P2, we evaluate one operator
at a time, and never actually square the delta function〈

x′
∣∣∣ P2 |ϕ⟩ (2.45)

I was also questioned why I was including the delta function at this point.
Why would I do that. Thinking further on this, I see that is not a reasonable
thing to do. That delta function only comes into the mix when one takes
the matrix element of the momentum operator as in〈

x′
∣∣∣ P |x⟩ = −i h̄δ(x − x′)

d
dx′

. (2.46)
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This is very much like the fact that the delta function only shows up in the
continuous representation in other context where one has matrix elements.
The most simple example of which is just〈

x′
∣∣∣x〉 = δ(x − x′). (2.47)

I also see now that the momentum operator is directly identified with the
derivative (no delta function) in two other places in the text. These are
equations (2.32) and (2.46) respectively:

P(x) = −i h̄
d
dx

P = −i h̄
d

dX
.

(2.48)

In the first, (2.32), I thought the P(x) was somehow different, just a helpful
expression found along the way, but now it occurs to me that this was
intended to be an unambiguous representation of the momentum operator
itself.

A second try Getting a feel for this Dirac notation takes a bit of adjust-
ment. Let us try evaluating the matrix element for the space displacement
operator again, without abusing the notation, or thinking that we have a re-
quirement for squared delta functions and other weirdness. We start with

D(∆x′) |ϕ⟩ = e−
iP∆x′

h̄ |ϕ⟩

=

∫
dxe−

iP∆x′
h̄ |x⟩ ⟨x|ϕ⟩

=

∫
dxe−

iP∆x′
h̄ |x⟩ ϕ(x).

(2.49)

Now, to evaluate e−
iP∆x′

h̄ |x⟩, we can expand in series

e−
iP∆x′

h̄ |x⟩ = |x⟩ +
∞∑

k=1

1
k!

(
−i∆x′

h̄

)k

Pk |x⟩ . (2.50)

It is tempting to left multiply by ⟨x′| and commute that past the Pk, then
write Pk = −i h̄d/dx. That probably produces the correct result, but is
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abusive of the notation. We can still left multiply by ⟨x′|, but to be proper,
I think we have to leave that on the left of the Pk operator. This yields

〈
x′
∣∣∣ D(∆x′) |ϕ⟩ =

∫
dx

〈x′
∣∣∣x〉 + ∞∑

k=1

1
k!

(
−i∆x′

h̄

)k 〈
x′
∣∣∣ Pk |x⟩

 ϕ(x)

=

∫
dxδ(x′ − x)ϕ(x) +

∞∑
k=1

1
k!

(
−i∆x′

h̄

)k ∫
dx

〈
x′
∣∣∣ Pk |x⟩ ϕ(x).

(2.51)

The first integral is just ϕ(x′), and we are left with integrating the higher
power momentum matrix elements, applied to the wave function ϕ(x). We
can proceed iteratively to expand those integrals∫

dx
〈
x′
∣∣∣ Pk |x⟩ ϕ(x) =

"
dxdx′′

〈
x′
∣∣∣ Pk−1

∣∣∣x′′〉 〈x′′
∣∣∣ P |x⟩ ϕ(x) (2.52)

Now we have a matrix element that we know what to do with. Namely,
⟨x′′| P |x⟩ = −i h̄δ(x′′ − x)∂/∂x, which yields∫

dx
〈
x′
∣∣∣ Pk |x⟩ ϕ(x) = −i h̄

"
dxdx′′

〈
x′
∣∣∣ Pk−1

∣∣∣x′′〉 δ(x′′ − x)
∂

∂x
ϕ(x)

= −i h̄
∫

dx
〈
x′
∣∣∣ Pk−1 |x⟩

∂ϕ(x)
∂x

.

(2.53)

Each similar application of the identity operator brings down another −i h̄
and derivative yielding∫

dx
〈
x′
∣∣∣ Pk |x⟩ ϕ(x) = (−i h̄)k ∂

kϕ(x′)
∂x′k

. (2.54)

Going back to our displacement operator matrix element, we now have

〈
x′
∣∣∣ D(∆x′) |ϕ⟩ = ϕ(x′) +

∞∑
k=1

1
k!

(
−i∆x′

h̄

)k

(−i h̄)k ∂
kϕ(x′)
∂x′k

= ϕ(x′) +
∞∑

k=1

1
k!

(
−∆x′

∂

∂x′

)k

ϕ(x′)

= ϕ(x′ − ∆x′).

(2.55)
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This shows nicely why the sign goes negative and it is no longer surprising
when one observes that this can be obtained directly by using the adjoint
relationship〈

x′
∣∣∣ D(∆x′) |ϕ⟩ = (D†(∆x′)

∣∣∣x′〉)† |ϕ⟩
= (D(−∆x′)

∣∣∣x′〉)† |ϕ⟩
=

∣∣∣x′ − ∆x′
〉†
|ϕ⟩

=
〈
x′ − ∆x′

∣∣∣ϕ〉
= ϕ(x′ − ∆x′)

(2.56)

That is a whole lot easier than the integral manipulation, but at least shows
that we now have a feel for the notation, and have confirmed the exponen-
tial formulation of the operator nicely.

2.8 time evolution operator

The phrase “we identify time evolution with the Hamiltonian”. What a
magic hat maneuver! Is there a way that this would be logical without
already knowing the answer?

2.9 dispersion delta function representation

The Principle part notation here I found a bit unclear. He writes

lim
ϵ→0

(x′ − x)
(x′ − x)2 + ϵ2 = P

(
1

x′ − x

)
. (2.57)

In complex variables the principle part is the negative power series terms.
For example for f (z) =

∑
akzk, the principle part is

−1∑
k=−∞

akzk (2.58)

This does not vanish at z = 0 as the principle part in this section is stated
to. In (2.202) he pulls the P out of the integral, but I think the intention is
really to keep this associated with the 1/(x′ − x), as in

lim
ϵ→0

1
π

∫ ∞

0
dx′

f (x′)
x′ − x − iϵ

=
1
π

∫ ∞

0
dx′ f (x′)P

(
1

x′ − x

)
+ i f (x) (2.59)

Will this even have any relevance in this text?
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2.10 unitary exponential sandwich

One of the chapter II exercises in [3] involves a commutator exponential
sandwich of the form

eiF Be−iF (2.60)

where F is Hermitian. Asking about commutators on physicsforums I was
told that such sandwiches (my term) preserve expectation values, and also
have a Taylor series like expansion involving the repeated commutators.
Let us derive the commutator relationship.

It turns out that the solution of this sandwich expansion is also known
as the “Baker-Campbell-Hausdorff” formula [17] . Let us expand a sand-
wich of this form in series, and shuffle the summation order so that we
sum over all the index plane diagonals k +m = constant. That is

eABe−A =

∞∑
k,m=0

1
k! m!

AkB(−A)m

=

∞∑
r=0

r∑
m=0

1
(r −m)! m!

Ar−mB(−A)m

=

∞∑
r=0

1
r!

r∑
m=0

r!
(r −m)! m!

Ar−mB(−A)m

=

∞∑
r=0

1
r!

r∑
m=0

(
r
m

)
Ar−mB(−A)m.

(2.61)

Assuming that these interior sums can be written as commutators, we will
shortly have an induction exercise. Let us write these out for a couple
values of r to get a feel for things.

• r = 1 (
1
0

)
AB+

(
1
1

)
B(−A) = [A, B] (2.62)

• r = 2(
2
0

)
A2B+

(
2
1

)
AB(−A)+

(
2
2

)
B(−A)2 = A2B− 2ABA+ BA (2.63)

This compares exactly to the double commutator:

[A, [A, B]] = A(AB− BA) − (AB− BA)A

= A2B− ABA − ABA + BA2

= A2B− 2ABA + BA2

(2.64)
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• r = 3 (
3
0

)
A3B+

(
3
1

)
A2B(−A) +

(
3
2

)
AB(−A)2 +

(
3
3

)
B(−A)3

= A3B− 3A2BA + 3ABA2 − BA3.

(2.65)

And this compares exactly to the triple commutator

[A, [A, [A, B]]] = A3B− 2A2BA + ABA2 − (A2BA − 2ABA2 + BA3)

= A3B− 3A2BA + 3ABA2 − BA3

(2.66)

The induction pattern is clear. Let us write the r fold commutator as

Cr(A, B) ≡ [A, [A, · · · , [A,

r times

B]] · · ·] =
r∑

m=0

(
r
m

)
Ar−mB(−A)m, (2.67)

and calculate this for the r + 1 case to verify the induction hypothesis. We
have

Cr+1(A, B)

=

r∑
m=0

(
r
m

) (
Ar−m+1B(−A)m − Ar−mB(−A)mA

)
=

r∑
m=0

(
r
m

) (
Ar−m+1B(−A)m + Ar−mB(−A)m+1

)
= Ar+1B+

r∑
m=1

(
r
m

)
Ar−m+1B(−A)m +

r−1∑
m=0

(
r
m

)
Ar−mB(−A)m+1 + B(−A)r+1

= Ar+1B+
r−1∑
k=0

(
r

k + 1

)
Ar−kB(−A)k+1 +

r−1∑
m=0

(
r
m

)
Ar−mB(−A)m+1 + B(−A)r+1

= Ar+1B+
r−1∑
k=0

((
r

k + 1

)
+

(
r
k

))
Ar−kB(−A)k+1 + B(−A)r+1

(2.68)

We now have to sum those binomial coefficients. I like the search and
replace technique for this, picking two visibly distinct numbers for r, and
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k that are easy to manipulate without abstract confusion. How about r = 7,
and k = 3. Using those we have(

7
3 + 1

)
+

(
7
3

)
=

7!
(3 + 1)! (7 − 3 − 1)!

+
7!

3! (7 − 3)!

=
7! (7 − 3)

(3 + 1)! (7 − 3)!
+

7! (3 + 1)
(3 + 1)! (7 − 3)!

=
7! (7 − 3 + 3 + 1)
(3 + 1)! (7 − 3)!

=
(7 + 1)!

(3 + 1)! ((7 + 1) − (3 + 1))!
.

(2.69)

Straight text replacement of 7 and 3 with r and k respectively now gives
the harder to follow, but more general identity(

r
k + 1

)
+

(
r
k

)
=

r!
(k + 1)! (r − k − 1)!

+
r!

k! (r − k)!

=
r! (r − k)

(k + 1)! (r − k)!
+

r! (k + 1)
(k + 1)! (r − k)!

=
r! (r − k + k + 1)
(k + 1)! (r − k)!

=
(r + 1)!

(k + 1)! ((r + 1) − (k + 1))!

=

(
r + 1
k + 1

)
(2.70)

For our commutator we now have

Cr+1(A, B) = Ar+1B+
r−1∑
k=0

(
r + 1
k + 1

)
Ar−kB(−A)k+1 + B(−A)r+1

= Ar+1B+
r∑

s=1

(
r + 1

s

)
Ar+1−sB(−A)s + B(−A)r+1

=

r+1∑
s=0

(
r + 1

s

)
Ar+1−sB(−A)s □

(2.71)

That completes the inductive proof and allows us to write

eABe−A =

∞∑
r=0

1
r!

Cr(A, B), (2.72)

Or, in explicit form

eABe−A = B+
1
1!

[A, B] +
1
2!

[A, [A, B]] + · · · (2.73)
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2.11 lecture notes: review

Deal with operators that have continuous eigenvalues and eigenvectors.
We now express

|ϕ⟩ =

∫
dk f (k)

coefficients analogous to cn

|k⟩ (2.74)

Now if we project onto k′

〈
k′
∣∣∣ϕ〉 = ∫

dk f (k)
〈
k′
∣∣∣k〉

Dirac delta

=

∫
dk f (k)δ(k′ − k)

= f (k′)

(2.75)

Unlike the discrete case, this is not a probability. Probability density for
obtaining outcome k′ is | f (k′)|2.

Example 2.

|ϕ⟩ =

∫
dk f (k) |k⟩ (2.76)

Now if we project x onto both sides

⟨x|ϕ⟩ =
∫

dk f (k) ⟨x|k⟩ (2.77)

With ⟨x|k⟩ = uk(x)

ϕ(x) ≡ ⟨x|ϕ⟩

=

∫
dk f (k)uk(x)

=

∫
dk f (k)

1
√

L
eikx

(2.78)

This is with periodic boundary value conditions for the normalization. The
infinite normalization is also possible.

ϕ(x) =
1
√

L

∫
dk f (k)eikx (2.79)
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Multiply both sides by e−ik′x/
√

L and integrate. This is analogous to mul-
tiplying |ϕ⟩ =

∫
f (k) |k⟩ dk by ⟨k′|. We get∫

ϕ(x)
1
√

L
e−ik′xdx =

1
L

"
dk f (k)ei(k−k′)xdx

=

∫
dk f (k)(

1
L

∫
ei(k−k′)x)

=

∫
dk f (k)δ(k − k′)

= f (k′)

(2.80)

f (k′) =
∫

ϕ(x)
1
√

L
e−ik′xdx (2.81)

We can talk about the state vector in terms of its position basis ϕ(x) or
in the momentum space via Fourier transformation. This is the equivalent
thing, but just expressed different. The question of interpretation in terms
of probabilities works out the same. Either way we look at the probability
density.

The quantity

|ϕ⟩ =

∫
dk f (k) |k⟩ (2.82)

is also called a wave packet state since it involves a superposition of many
stats |k⟩. Example: See Fig 4.1 (Gaussian wave packet, with |ϕ|2 as the
height). This wave packet is a snapshot of the wave function amplitude at
one specific time instant. The evolution of this wave packet is governed
by the Hamiltonian, which brings us to chapter 3.

2.12 problems

Exercise 2.1 Cauchy-Schwartz identity ([3] pr 2.1)

FIXME: describe.
Answer for Exercise 2.1

We wish to find the value of λ that is just right to come up with the
desired identity. The starting point is the expansion of the inner product

⟨a + λb|a + λb⟩ = ⟨a|a⟩ + λλ∗ ⟨b|b⟩ + λ ⟨a|b⟩ + λ∗ ⟨b|a⟩ . (2.83)
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There is a trial and error approach to this problem, where one magically
picks λ ∝ ⟨b|a⟩ /⟨b|b⟩n, and figures out the proportionality constant and
scale factor for the denominator to do the job. A nicer way is to set up the
problem as an extreme value exercise. We can write this inner product as
a function of λ, and proceed with setting the derivative equal to zero

f (λ) = ⟨a|a⟩ + λλ∗ ⟨b|b⟩ + λ ⟨a|b⟩ + λ∗ ⟨b|a⟩ . (2.84)

The derivative is

d f
dλ
=

(
λ∗ + λ

dλ∗

dλ

)
⟨b|b⟩ + ⟨a|b⟩ +

dλ∗

dλ
⟨b|a⟩

= λ∗ ⟨b|b⟩ + ⟨a|b⟩ +
dλ∗

dλ
(λ ⟨b|b⟩ + ⟨b|a⟩)

(2.85)

Now, we have a bit of a problem with dλ∗/dλ, since that does not actually
exist. However, that problem can be side stepped if we insist that the factor
that multiplies it is zero. That provides a value for λ that also kills of the
remainder of d f /dλ. That value is

λ = −
⟨b|a⟩
⟨b|b⟩

. (2.86)

Back substitution yields

⟨a + λb|a + λb⟩ = ⟨a|a⟩ − ⟨a|b⟩ ⟨b|a⟩ /⟨b|b⟩ ≥ 0. (2.87)

This is easily rearranged to obtain the desired result:

⟨a|a⟩ ⟨b|b⟩ ≥ ⟨b|a⟩ ⟨a|b⟩ . (2.88)

Exercise 2.2 Uncertainty relation ([3] pr 2.2)

FIXME: describe.
Answer for Exercise 2.2

Using the Schwartz inequality of problem 1, and a symmetric and anti-
symmetric (anticommutator and commutator) sum of products that

|∆A∆B|2 ≥
1
4

∣∣∣[A, B]∣∣∣2, (2.89)

and that this result implies

∆x∆p ≥
h̄
2
. (2.90)
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The solution This problem seems somewhat misleading, since the Schwartz
inequality appears to have nothing to do with showing eq. (2.89), but only
with the split of the operator product into symmetric and antisymmetric
parts. Another possible tricky thing about this problem is that there is no
mention of the anticommutator in the text at this point that I can find, so if
one does not know what it is defined as, it must be figured out by context.

I have also had an interpretation problem with this since ∆x∆p in
eq. (2.90) cannot mean the operators as is the case of eq. (2.89). My as-
sumption is that in eq. (2.90) these deltas are really absolute expectation
values, and that we really want to show

|⟨∆X⟩||⟨∆P⟩| ≥
h̄
2
. (2.91)

However, I am unable to demonstrate this. Instead I am able to show two
things:

〈
(∆X)2

〉 〈
(∆P)2

〉
≥

h̄2

4

|⟨∆X∆P⟩| ≥
h̄
2

(2.92)

Is one of these the result to be shown? Note that only the first of these
required the Schwartz inequality. Also, it seems strange that we want the
expectation of the operator ∆X∆P?

Starting with the first part of the problem, note that we can factor any
operator product into a linear combination of two Hermitian operators
using the commutator and anticommutator. That is

CD =
1
2
(CD + DC) +

1
2
(CD − DC)

=
1
2
(CD + DC) +

1
2i

(CD − DC) i

≡
1
2
{C,D} +

1
2i

[C,D] i

(2.93)
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For Hermitian operators C, and D, using (CD)† = D†C† = DC, we can
show that the two operator factors are Hermitian,(

1
2
{C,D}

)†
=

1
2
(CD + DC)†

=
1
2

(
D†C† +C†D†

)
=

1
2
(DC +CD)

=
1
2
{C,D},

(2.94)

(
1
2
[C,D] i

)†
= −

i
2
(CD − DC)†

= −
i
2

(
D†C† −C†D†

)
= −

i
2
(DC −CD)

=
1
2
[C,D] i

(2.95)

So for the absolute squared value of the expectation of product of two
operators we have

⟨CD⟩2 =

∣∣∣∣∣∣
〈

1
2
{C,D} +

1
2i

[C,D] i
〉∣∣∣∣∣∣2

=

∣∣∣∣∣12 ⟨{C,D}⟩ + 1
2i

〈
[C,D] i

〉∣∣∣∣∣2.
(2.96)

Now, these expectation values are real, given the fact that these operators
are Hermitian. Suppose we write a = ⟨{C,D}⟩ /2, and b =

〈
[C,D] i

〉
/2,

then we have∣∣∣∣∣12 ⟨{C,D}⟩ + 1
2i

〈
[C,D] i

〉∣∣∣∣∣2 = |a − bi|2

= (a − bi)(a + bi)

= a2 + b2

(2.97)
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So we have for the squared expectation value of the operator product CD

⟨CD⟩2 =
1
4
⟨{C,D}⟩2 +

1
4

〈
[C,D] i

〉2

=
1
4
|⟨{C,D}⟩|2 +

1
4

∣∣∣〈[C,D] i
〉∣∣∣2

=
1
4
|⟨{C,D}⟩|2 +

1
4

∣∣∣〈[C,D]
〉∣∣∣2

≥
1
4

∣∣∣〈[C,D]
〉∣∣∣2.

(2.98)

With C = ∆A, and D = ∆B, this almost completes the first part of the
problem. The remaining thing to note is that [∆A,∆B] = [A, B]. This last
is straight forward to show

[∆A,∆B] = [A − ⟨A⟩, B− ⟨B⟩]

= (A − ⟨A⟩)(B− ⟨B⟩) − (B− ⟨B⟩)(A − ⟨A⟩)

= (AB− ⟨A⟩ B− ⟨B⟩ A + ⟨A⟩ ⟨B⟩) − (BA − ⟨B⟩ A − ⟨A⟩ B+ ⟨B⟩ ⟨A⟩)

= AB− BA

= [A, B] .
(2.99)

Putting the pieces together we have

⟨∆A∆B⟩2 ≥
1
4

∣∣∣〈[A, B]〉∣∣∣2. (2.100)

With expectation value implied by the absolute squared, this reproduces
relation eq. (2.89) as desired.

For the remaining part of the problem, with |α⟩ = ∆A |ψ⟩, and |β⟩ =
∆B |ψ⟩, and noting that (∆A)† = ∆A for Hermitian operator A (or B too in
this case), the Schwartz inequality

⟨α|α⟩ ⟨β|β⟩ ≥ |⟨β|α⟩|2, (2.101)

takes the following form

⟨ψ| (∆A)†∆A |ψ⟩ ⟨ψ| (∆B)†B |ψ⟩ ≥
∣∣∣⟨ψ| (∆B)†A |ψ⟩

∣∣∣2. (2.102)

These are expectation values, and allow us to use eq. (2.100) to show〈
(∆A)2

〉 〈
(∆B)2

〉
≥ |⟨∆B∆A⟩|2

=
1
4

∣∣∣〈[B, A]〉∣∣∣2. (2.103)
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For A = X, and B = P, this is

〈
(∆X)2

〉 〈
(∆P)2

〉
≥

h̄2

4
(2.104)

Hmm. This does not look like it is quite the result that I expected? We
have

〈
(∆X)2

〉 〈
(∆P)2

〉
instead of ⟨∆X⟩2 ⟨∆P⟩2? Let us step back slightly.

Without introducing the Schwartz inequality the result eq. (2.100) of the
commutator manipulation, and [X, P] = i h̄ gives us

⟨∆X∆P⟩2 ≥
h̄2

4
, (2.105)

and taking roots we have

|⟨∆X∆P⟩| ≥
h̄
2
. (2.106)

Is this really what we were intended to show?
Attempting to answer this myself, I refer to [9], where I find he uses a

loose notation for this too, and writes in his equation 3.36

(∆C)2 =
〈
(C − ⟨C⟩)2

〉
=

〈
C2

〉
− ⟨C⟩2 (2.107)

This usage seems consistent with that, so I think that it is a reasonable as-
sumption that uncertainty relation ∆x∆p ≥ h̄/2 is really shorthand nota-
tion for the more cumbersome relation involving roots of the expectations
of mean-square deviation operators√〈

(X − ⟨X⟩)2〉√〈
(P − ⟨P⟩)2〉 ≥ h̄

2
. (2.108)

This is in fact what was proved arriving at eq. (2.104).
Ah ha! Found it. Referring to equation 2.93 in the text, I see that a lower

case notation ∆x =
√

(∆X)2, was introduced. This explains what seemed
like ambiguous notation ... it was just tricky notation, perfectly well ex-
plained, but done in passing in the text in a somewhat hidden seeming
way.

Exercise 2.3 Hermitian radial differential operator ([3] pr 2.5)

Show that the operator

R = −i h̄
∂

∂r
, (2.109)
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is not Hermitian, and find the constant a so that

T = −i h̄
(
∂

∂r
+

a
r

)
, (2.110)

is Hermitian.
Answer for Exercise 2.3

For the first part of the problem we can show that(〈
ψ̂
∣∣∣ R ∣∣∣ϕ̂〉)∗ , 〈

ϕ̂
∣∣∣ R ∣∣∣ψ̂〉

. (2.111)

For the RHS we have〈
ϕ̂
∣∣∣ R ∣∣∣ψ̂〉

= −i h̄
$

drdθdϕr2 sin θϕ̂∗
∂ψ̂

∂r
(2.112)

and for the LHS we have(〈
ψ̂
∣∣∣ R ∣∣∣ϕ̂〉)∗ = i h̄

$
drdθdϕr2 sin θψ̂

∂ϕ̂
∗

∂r

= −i h̄
$

drdθdϕ sin θ
(
2rψ̂ + r2 ∂r

∂ψ̂

)
ϕ̂
∗

(2.113)

So, unless rψ̂ = 0, the operator R is not Hermitian.
Moving on to finding the constant a such that T is Hermitian we calcu-

late(〈
ψ̂
∣∣∣ T ∣∣∣ϕ̂〉)∗ = i h̄

$
drdθdϕr2 sin θψ̂

(
∂

∂r
+

a
r

)
ϕ̂
∗

= i h̄
$

drdθdϕ sin θψ̂
(
r2 ∂

∂r
+ ar

)
ϕ̂
∗

= −i h̄
$

drdθdϕ sin θ
(
r2 ∂ψ̂

∂r
+ 2rψ̂ − arψ̂

)
ϕ̂
∗

(2.114)

and 〈
ϕ̂
∣∣∣ T ∣∣∣ψ̂〉

= −i h̄
$

drdθdϕr2 sin θϕ̂∗
(
r2 ∂ψ̂

∂r
+ arψ̂

)
(2.115)

So, for T to be Hermitian, we require

2r − ar = ar. (2.116)

So a = 1, and our Hermitian operator is

T = −i h̄
(
∂

∂r
+

1
r

)
. (2.117)
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Exercise 2.4 Radial directional derivative operator ([3] pr 2.6)

Show that

D = p · r̂ + r̂ · p, (2.118)

is Hermitian. Expand this operator in spherical coordinates. Compare re-
sult to problem 5.
Answer for Exercise 2.4

Tackling the spherical coordinates expression of the operator D, we
have

1
−i h̄

DΨ = (∇ · r̂ + r̂ ·∇)Ψ

= (∇ · r̂)Ψ + (∇Ψ) · r̂ + r̂ · (∇Ψ)

= (∇ · r̂)Ψ + 2r̂ · (∇Ψ) .

(2.119)

Here braces have been used to denote the extend of the operation of the
gradient. In spherical polar coordinates, our gradient is

∇ ≡ r̂
∂

∂r
+ θ̂

1
r
∂

∂θ
+ ϕ̂

1
r sin θ

∂

∂ϕ
. (2.120)

This gets us most of the way there, and we have

1
−i h̄

DΨ = 2
∂Ψ
∂r
+

(
r̂ ·
∂r̂
∂r
+

1
r
θ̂ ·

∂r̂
∂θ
+

1
r sin θ

ϕ̂ ·
∂r̂
∂ϕ

)
Ψ. (2.121)

Since ∂r̂/∂r = 0, we are left with evaluating θ̂ · ∂r̂/∂θ, and ϕ̂ · ∂r̂/∂ϕ. To
do so I chose to employ the (Geometric Algebra) exponential form of the
spherical unit vectors [6]

I = e1e2e3

ϕ̂ = e2 exp(Ie3ϕ)

r̂ = e3 exp(Iϕ̂θ)

θ̂ = e1e2ϕ̂ exp(Iϕ̂θ).

(2.122)

The partials of interest are then

∂r̂
∂θ
= e3Iϕ̂ exp(Iϕ̂θ) = θ̂, (2.123)
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and

∂r̂
∂ϕ
=

∂

∂ϕ
e3

(
cos θ + Iϕ̂ sin θ

)
= e1e2 sin θ

∂ϕ̂

∂ϕ

= e1e2 sin θe2e1e2 exp(Ie3ϕ)

= sin θϕ̂.

(2.124)

Only after computing these, did I find exactly these results for the partials
of interest, in mathworld’s Spherical Coordinates page, which confirms
these calculations. Note that a different angle convention is used there, so
one has to exchange ϕ, and θ and the corresponding unit vector labels.

Substitution back into our expression for the operator we have

D = −2i h̄
(
∂

∂r
+

1
r

)
, (2.125)

an operator that is exactly twice the operator of problem 5, already shown
to be Hermitian. Since the constant numerical scaling of a Hermitian op-
erator leaves it Hermitian, this shows that D is Hermitian as expected.

θ̂ directional momentum operator Let us try this for the other unit vec-
tor directions too. We also want(

∇ · θ̂ + θ̂ ·∇
)

Ψ = 2θ̂ · (∇Ψ) +
(
∇ · θ̂

)
Ψ. (2.126)

The work consists of evaluating

∇ · θ̂ = r̂ ·
∂θ̂

∂r
+

1
r
θ̂ ·

∂θ̂

∂θ
+

1
r sin θ

ϕ̂ ·
∂θ̂

∂ϕ
. (2.127)

This time we need the ∂θ̂/∂θ, ∂θ̂/∂ϕ partials, which are

∂θ̂

∂θ
= e1e2ϕ̂Iϕ̂ exp(Iϕ̂θ)

= −e3 exp(Iϕ̂θ)

= −r̂.

(2.128)

This has no θ̂ component, so does not contribute to ∇ · θ̂. Noting that

∂ϕ̂

∂ϕ
= −e1 exp(Ie3ϕ) = e2e1ϕ̂, (2.129)

http://mathworld.wolfram.com/SphericalCoordinates.html
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the ϕ partial is

∂θ̂

∂ϕ
= e1e2

(
∂ϕ̂

∂ϕ
exp(Iϕ̂θ) + ϕ̂I sin θ

∂ϕ̂

∂ϕ

)
= ϕ̂

(
exp(Iϕ̂θ) + I sin θe2e1ϕ̂

)
,

(2.130)

with ϕ̂ component

ϕ̂ ·
∂θ̂

∂ϕ
=

〈
exp(Iϕ̂θ) + I sin θe2e1ϕ̂

〉
= cos θ + e3 · ϕ̂ sin θ

= cos θ.

(2.131)

Assembling the results, and labeling this operator Θ we have

Θ ≡
1
2

(
p · θ̂ + θ̂ · p

)
= −i h̄

1
r

(
∂

∂θ
+

1
2

cot θ
)
.

(2.132)

It would be reasonable to expect this operator to also be Hermitian, and
checking this explicitly by comparing ⟨Φ|Θ |Ψ⟩∗ and ⟨Ψ|Θ |Φ⟩, shows
that this is in fact the case.

ϕ̂ directional momentum operator Let us try this for the other unit vec-
tor directions too. We also want(

∇ · ϕ̂ + ϕ̂ ·∇
)

Ψ = 2ϕ̂ · (∇Ψ) +
(
∇ · ϕ̂

)
Ψ. (2.133)

The work consists of evaluating

∇ · ϕ̂ = r̂ ·
∂ϕ̂

∂r
+

1
r
θ̂ ·

∂ϕ̂

∂θ
+

1
r sin θ

ϕ̂ ·
∂ϕ̂

∂ϕ
. (2.134)

This time we need the ∂ϕ̂/∂θ, ∂ϕ̂/∂ϕ = e2e1ϕ̂ partials. The θ partial is

∂ϕ̂

∂θ
=

∂

∂θ
e2 exp(Ie3ϕ)

= 0.
(2.135)

We conclude that ∇ · ϕ̂ = 0, and expect that we have one more Hermitian
operator

Φ ≡
1
2

(
p · ϕ̂ + ϕ̂ · p

)
= −i h̄

1
r sin θ

∂

∂ϕ
.

(2.136)
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It is simple to confirm that this is Hermitian since the integration by
parts does not involve any of the volume element. In fact, any opera-
tor −i h̄ f (r, θ)∂/∂ϕ would also be Hermitian, including the simplest case
−i h̄∂/∂ϕ. Have to dig out my Bohm text again, since I seem to recall that
one used in the spherical Harmonics chapter.

A note on the Hermitian test and Dirac notation I have been a bit loose
with my notation. I have stated that my demonstrations of the Hermitian
nature have been done by showing

⟨ϕ| A |ψ⟩∗ − ⟨ψ| A |ϕ⟩ = 0. (2.137)

However, what I have actually done is show that(∫
d3xϕ∗(x)A(x)ψ(x)

)∗
−

∫
d3xψ∗(x)A(x)ϕ(x) = 0. (2.138)

To justify this note that

⟨ϕ| A |ψ⟩∗ =
("

d3rd3s ⟨ϕ|r⟩ ⟨r| A |s⟩ ⟨s|ψ⟩
)∗

=

"
d3rd3sϕ(r)δ3(r − s)A∗(s)ψ(s)

=

∫
d3rϕ(r)A∗(r)ψ(r),

(2.139)

and

⟨ϕ| A |ψ⟩∗ =
"

d3rd3s ⟨ψ|r⟩ ⟨r| A |s⟩ ⟨s|ϕ⟩

=

"
d3rd3s ⟨r|ψ(r)δ3(r − s)A(s)ϕ(s)

=

∫
d3rψ(r)A(r)ϕ(r).

(2.140)

Working backwards one sees that the comparison of the wave function
integrals in explicit inner product notation is sufficient to demonstrate the
Hermitian property.

Exercise 2.5 Some commutators ([3] pr 2.7)

For D in problem 6, obtain

• i) [D, xi]
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• ii) [D, pi]

• iii) [D, Li], where Li = ei · (r × p).

• iv) Show that eiαD/ h̄xie−iαD/ h̄ = eαxi

Answer for Exercise 2.5

Expansion of [D, xi] While expressing the operator as D = −2i h̄(1/r)(1+
∂r) has less complexity than the D = p · r̂+ r̂ ·p, since no operation on r̂ is
required, this does not look particularly convenient for use with Cartesian
coordinates. Slightly better perhaps is

D = −2i h̄
1
r

(r ·∇ + 1) (2.141)

[D, xi]Ψ = DxiΨ − xiDΨ

= −2i h̄
1
r
(r ·∇ + 1) xiΨ + 2i h̄xi

1
r
(r ·∇ + 1)Ψ

= −2i h̄
1
r

r ·∇xiΨ + 2i h̄xi
1
r

r ·∇Ψ

= −2i h̄
1
r

r · (∇xi)Ψ − 2i h̄xi
1
r

r ·∇Ψ + 2i h̄xi
1
r

r ·∇Ψ

= −2i h̄
1
r

r · eiΨ.

(2.142)

So this first commutator is:

[D, xi] = −2i h̄
xi

r
. (2.143)

Alternate expansion of [D, xi] Let us try this instead completely in co-
ordinate notation to verify. I will use implicit summation for repeated
indices, and write ∂k = ∂/∂xk. A few intermediate results will be required

∂k
1
r
= ∂k(xmxm)−1/2

= −
1
2

2xk(xmxm)−3/2
(2.144)

Or

∂k
1
r
= −

xk

r3 (2.145)
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∂k
xi

r
=
δik

r
−

xi

r3 (2.146)

∂k
xk

r
=

3
r
−

xk

r3 (2.147)

The action of the momentum operators on the coordinates is

pkxiΨ = −i h̄∂kxiΨ

= −i h̄ (δik + xi∂k)Ψ

= −i h̄δik + xi pk

(2.148)

pkxkΨ = −i h̄∂kxkΨ

= −i h̄ (3 + xk∂k)Ψ
(2.149)

Or

pkxi = −i h̄δik + xi pk

pkxk = −3i h̄ + xk pk
(2.150)

And finally

pk
1
r

Ψ = (pk
1
r

)Ψ +
1
r

pkΨ

= −i h̄
(
−

xk

r3

)
Ψ +

1
r

pkΨ
(2.151)

So

pk
1
r
= i h̄

xk

r3 +
1
r

pk (2.152)

We can use these to rewrite D

D = pk
xk

r
+

xk

r
pk

= pkxk
1
r
+

xk

r
pk

= (−3i h̄ + xk pk)
1
r
+

xk

r
pk

= −
3i h̄

r
+ xk

(
i h̄

xk

r3 +
1
r

pk

)
+

xk

r
pk

(2.153)
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D =
2
r

(−i h̄ + xk pk) (2.154)

This leaves us in the position to compute the commutator

[D, xi] =
2
r

(−i h̄ + xk pk)xi −
2xi

r
(−i h̄ + xk pk)

=
2
r

xk(−i h̄δik + xi pk) −
2xi

r
xk pk

= −
2i h̄xi

r

(2.155)

So, unless I am doing something fundamentally wrong, the same way in
both methods, this appears to be the desired result. I question my answer
since utilizing this for the later computation of eiαD/ h̄xie−iαD/ h̄ did not
yield the expected answer.

{D, pi}

[D, pi] = −
2i h̄

r
(1 + xk pk)pi + 2i h̄pi

1
r

(1 + xk pk)

= −
2i h̄

r

(
pi + xk pk pi −

(
i h̄

xi

r2 + pi

)
(1 + xk pk)

)
= −

2i h̄
r

(
xk pk pi − i h̄

xi

r2 − i h̄
xixk

r2 pk − (−i h̄δki + xk pi) pk

)
= −

2i h̄
r

(
−i h̄

xi

r2 − i h̄
xixk

r2 pk + i h̄pi

)
= −

i h̄
r

( xi

r
D + 2i h̄pi

)
□

(2.156)

If there is some significance to this expansion, other than to get a feel for
operator manipulation, it escapes me.

{D, Li} To expand [D, Li], it will be sufficient to consider any specific
index i ∈ {1, 2, 3} and then utilize cyclic permutation of the indices in the
result to generalize. Let us pick i = 1, for which we have

L1 = x2 p3 − x3 p2 (2.157)
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It appears we will want to know

pmD = −2i h̄pm
1
r

(1 + xk pk)

= −2i h̄
(
i h̄

xm

r3 +
1
r

pm

)
(1 + xk pk)

= −2i h̄
(
i h̄

xm

r3 +
1
r

pm + i h̄
xmxk

r3 pk +
1
r

pmxk pk

)
= −

2i h̄
r

(
i h̄

xm

r2 + pm + i h̄
xmxk

r2 pk − i h̄pm + xk pm pk

)
(2.158)

and we also want

Dxm = −
2i h̄

r
(1 + xk pk)xm

= −
2i h̄

r
(xm + xk(−i h̄δkm + xm pk))

= −
2i h̄

r
(xm − i h̄xm + xmxk pk)

(2.159)

This also happens to be Dxm = xmD + 2(i h̄)2 xm
r , but does that help at all?

Assembling these we have

[D, L1] = Dx2 p3 − Dx3 p2 − x2 p3D + x3 p2D

= −
2i h̄

r
(x2 − i h̄x2 + x2xk pk)p3 +

2i h̄
r

(x3 − i h̄x3 + x3xk pk)p2

+
2i h̄x2

r

(
i h̄

x3

r2 + p3 + i h̄
x3xk

r2 pk − i h̄p3 + xk p3 pk

)
−

2i h̄x3

r

(
i h̄

x2

r2 + p2 + i h̄
x2xk

r2 pk − i h̄p2 + xk p2 pk

)
(2.160)

With a bit of brute force it is simple enough to verify that all these terms
mystically cancel out, leaving us zero

[D, L1] = 0 (2.161)

There surely must be an easier way to demonstrate this. Likely utilizing
the commutator relationships derived earlier.

eiαD/ h̄xie−iαD/ h̄ We will need to evaluate Dkxi. We have the first power
from our commutator relation

Dxi = xi

(
D −

2i h̄
r

)
(2.162)
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A successive application of this operator therefore yields

D2xi = Dxi

(
D −

2i h̄
r

)
= xi

(
D −

2i h̄
r

)2 (2.163)

So we have

Dkxi = xi

(
D −

2i h̄
r

)k

(2.164)

This now preps us to expand the first product in the desired exponential
sandwich

eiαD/ h̄xi = xi +

∞∑
k=1

1
k!

( iD
h̄

)k
xi

= xi +

∞∑
k=1

1
k!

( i
h̄

)k
Dkxi

= xi +

∞∑
k=1

1
k!

( i
h̄

)k
xi

= xie
iα
h̄ (D− 2i h̄

r )

= xie2α/reiαD/ h̄.

(2.165)

The exponential sandwich then produces

eiαD/ h̄xie−iαD/ h̄ = e2α/r xi (2.166)

Note that this is not the value we are supposed to get. Either my value for
Dxi is off by a factor of 2/r or the problem in the text contains a typo.

Exercise 2.6 Fundamental commutator relation. ([3] pr 2.8)

Using the fundamental commutation relation

[p, x] = −i h̄, (2.167)

which we can also write as

px = xp − i h̄, (2.168)

expand
[
x, p2

]
,
[
x2, p

]
, and

[
x2, p2

]
.
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Answer for Exercise 2.6

The first is[
x, p2

]
= xp2 − p2x

= xp2 − p(px)

= xp2 − p(xp − i h̄)

= xp2 − (xp − i h̄)p + i h̄p

= 2i h̄p

(2.169)

The second is[
x2, p

]
= x2 p − px2

= x2 p − (xp − i h̄)x

= x2 p − x(xp − i h̄) + i h̄x

= 2i h̄x

(2.170)

Note that it is helpful for the last reduction of this problem to observe that
we can write this as

px2 = x2 p − 2i h̄x (2.171)

Finally for this last we have[
x2, p2

]
= x2 p2 − p2x2

= x2 p2 − p(x2 p − 2i h̄x)

= x2 p2 − (x2 p − 2i h̄x)p + 2i h̄(xp − i h̄)

= 4i h̄xp − 2(i h̄)2

(2.172)

That is about as reduced as this can be made, but it is not very tidy looking.
From this point we can simplify it a bit by factoring[

x2, p2
]
= 4i h̄xp − 2(i h̄)2

= 2i h̄(2xp − i h̄)

= 2i h̄(xp + px)

= 2i h̄{x, p}

(2.173)

Exercise 2.7 Finite displacement operator ([3] pr 2.9)
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Consider the operator which corresponds to finite displacement

F(d) = e−ipd/ h̄. (2.174)

Show that

[x, F(d)] = dF(d). (2.175)

If for a state |αd⟩ = F(d) |α⟩, then show that the expectation value with
respect to the two states satisfy

⟨x⟩d = ⟨x⟩ + d. (2.176)

Answer for Exercise 2.7

Part I For

F(d) = e−ipd/ h̄, (2.177)

the first part of this problem is to show that

[x, F(d)] = xF(d) − F(d)x = dF(d) (2.178)

We need to evaluate

e−ipd/ h̄x =
∞∑

k=0

1
k!

(
−ipd

h̄

)k

x. (2.179)

To do so requires a reduction of pkx. For k = 2 we have

p2x = p(xp − i h̄)

= (xp − i h̄)p − i h̄p

= xp2 − 2i h̄p.

(2.180)

For the cube we get p3x = xp3 − 3i h̄p2, supplying confirmation of an
induction hypothesis pkx = xpk − ki h̄pk−1, which can be verified

pk+1x = p(xpk − ki h̄pk−1)

= (xp − i h̄)pk − ki h̄pk

= xpk+1 − (k + 1)i h̄pk □

(2.181)
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For our exponential we then have

e−ipd/ h̄x = x +
∞∑

k=1

1
k!

(
−id

h̄

)k

(xpk − ki h̄pk−1)

= xe−ipd/ h̄ +

∞∑
k=1

1
(k − 1)!

(
−ipd

h̄

)k−1

(−id/ h̄)(−i h̄)

= (x − d)e−ipd/ h̄.

(2.182)

Put back into our commutator we have[
x, e−ipd/ h̄

]
= de−ipd/ h̄, (2.183)

completing the proof.

Part II For state |α⟩ with |αd⟩ = F(d) |α⟩, show that the expectation
values satisfy

⟨X⟩d = ⟨X⟩ + d (2.184)

⟨X⟩d = ⟨αd | X |αd⟩

=

"
dx′dx′′

〈
αd

∣∣∣x′〉 〈x′
∣∣∣ X

∣∣∣x′′〉 〈x′′
∣∣∣αd

〉
=

"
dx′dx′′α∗d x′δ(x′ − x′′)x′αd(x′′)

=

∫
dx′α∗d(x′)x′αd(x′)

(2.185)

But

αd(x′) = exp
(
−

id
h̄

(−i h̄)
∂

∂x′

)
α(x′)

= e−d ∂
∂x′ α(x′)

= α(x′ − d),

(2.186)

so our position expectation is

⟨X⟩d =
∫

dx′α∗(x′ − d)x′α(x′ − d). (2.187)
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A change of variables x = x′ − d gives us

⟨X⟩d =
∫

dxα∗(x)(x + d)α(x)

⟨X⟩ + d + d
∫

dxα∗xα(x) □
(2.188)

Exercise 2.8 Hamiltonian commutators ([3] pr 2.10)

For

H =
1

2m
p2 + V(x) (2.189)

calculate [H, x], and [[H, x], x].
Answer for Exercise 2.8

These are

[H, x] =
1

2m
p2x + V(x)x −

1
2m

xp2 − xV(x)

=
1

2m
p(xp − i h̄) −

1
2m

xp2

=
1

2m
((xp − i h̄)p − i h̄p) −

1
2m

xp2

= −
i h̄p
m

(2.190)

and

[[H, x], x] = −
i h̄
m

[p, x]

=
(−i h̄)2

m

= −
h̄2

m

(2.191)

We also have to show that∑
k

(Ek − En)|⟨k| x |n⟩|2 =
h̄2

2m
(2.192)
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Expanding the absolute value in terms of conjugates we have∑
k

(Ek − En)|⟨k| x |n⟩|2 =
∑

k

(Ek − En) ⟨k| x |n⟩ ⟨n| x |k⟩

=
∑

k

⟨k| x |n⟩ ⟨n| xEk |k⟩ − ⟨k| xEn |n⟩ ⟨n| x |k⟩

=
∑

k

⟨n| xH |k⟩ ⟨k| x |n⟩ − ⟨n| x |k⟩ ⟨k| xH |n⟩

= ⟨n| xHx |n⟩ − ⟨n| xxH |n⟩

= ⟨n| x [H, x] |n⟩

= −
i h̄
m
⟨n| xp |n⟩

(2.193)

It is not obvious where to go from here. Taking the clue from the problem
that the result involves the double commutator, we have

−
h̄2

m
= ⟨n| [[H, x], x] |n⟩

= ⟨n|Hx2 − 2xHx + x2H |n⟩

= 2En ⟨n| x2 |n⟩ − 2 ⟨n| xHx |n⟩

= 2En ⟨n| x2 |n⟩ − 2 ⟨n| (− [H, x] + Hx)x |n⟩

= 2 ⟨n| [H, x] x |n⟩

= −
2i h̄
m
⟨n| px |n⟩

= −
2i h̄
m
⟨n| xp − i h̄ |n⟩

= −
2i h̄
m
⟨n| xp |n⟩ +

2(i h̄)2

m

(2.194)

So, somewhat flukily by working backwards, with a last rearrangement,
we now have

−
i h̄
m
⟨n| xp |n⟩ =

h̄2

m
−

h̄2

2m

=
h̄2

2m

(2.195)

Substitution above gives the desired result. This is extremely ugly, and
does not follow any sort of logical progression. Is there a good way to
sequence this proof?
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Exercise 2.9 Another double commutator. ([3] pr 2.11)

FIXME: describe.
Answer for Exercise 2.9

Attempt 1. Incomplete

H =
p2

2m
+ V(r) (2.196)

use
[[

H, eik·r
]
, e−ik·r

]
to obtain∑

n

(En − Es)
∣∣∣⟨n| eik·r |s⟩

∣∣∣2 (2.197)

First evaluate the commutators. The first is[
H, eik·r

]
=

1
2m

[
p2, eik·r

]
(2.198)

The Laplacian applied to this exponential is

∇
2eik·rΨ = ∂m∂meikn xn Ψ

= ∂m(ikmeik·rΨ + eik·r∂mΨ)

= −k2eik·rΨ + ieik·rk ·∇Ψ + ieik·rk ·∇Ψ + eik·r
∇

2Ψ

(2.199)

Factoring out the exponentials this is

∇
2eik·r = eik·r

(
−k2 + 2ik ·∇ +∇2

)
, (2.200)

and in terms of p, we have

p2eik·r = eik·r
(
( h̄k)2 + 2( h̄k) · p + p2

)
= eik·r( h̄k + p)2 (2.201)

So, finally, our first commutator is[
H, eik·r

]
=

1
2m

eik·r
(
( h̄k)2 + 2( h̄k) · p

)
(2.202)

The double commutator is then[[
H, eik·r

]
, e−ik·r

]
= eik·r h̄k

m
·
(
pe−ik·r − e−ik·rp

)
(2.203)

To simplify this we want

k ·∇e−ik·rΨ = kn∂ne−ikm xm Ψ

= e−ik·r (kn(−ikn)Ψ + kn∂nΨ)

= e−ik·r
(
−ik2 + k ·∇

)
Ψ

(2.204)
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The double commutator is then left with just[[
H, eik·r

]
, e−ik·r

]
= −

1
m

( h̄k)2 (2.205)

Now, returning to the energy expression∑
n

(En − Es)
∣∣∣⟨n| eik·r |s⟩

∣∣∣2 =∑
n

(En − Es) ⟨s| e−ik·r |n⟩ ⟨n| eik·r |s⟩

=
∑

n

⟨s| e−ik·rH |n⟩ ⟨n| eik·r |s⟩ − ⟨s| e−ik·r |n⟩ ⟨n| eik·rH |s⟩

= ⟨s| e−ik·rHeik·r |s⟩ − ⟨s| e−ik·reik·rH |s⟩

= ⟨s| e−ik·r
[
H, eik·r

]
|s⟩

=
1

2m
⟨s| e−ik·reik·r

(
( h̄k)2 + 2( h̄k) · p

)
|s⟩

=
1

2m
⟨s| ( h̄k)2 + 2( h̄k) · p |s⟩

=
( h̄k)2

2m
+

1
m
⟨s| ( h̄k) · p |s⟩

(2.206)

I can not figure out what to do with the h̄k ·p expectation, and keep going
around in circles.

I figure there is some trick related to the double commutator, so expand-
ing the expectation of that seems appropriate

−
1
m

( h̄k)2 = ⟨s|
[[

H, eik·r
]
, e−ik·r

]
|s⟩

= ⟨s|
[
H, eik·r

]
e−ik·r − e−ik·r

[
H, eik·r

]
|s⟩

=
1

2m
⟨s| eik·r(( h̄k)2 + 2 h̄k · p)e−ik·r − e−ik·reik·r(( h̄k)2 + 2 h̄k · p) |s⟩

=
1
m
⟨s| eik·r( h̄k · p)e−ik·r − h̄k · p |s⟩

(2.207)

Attempt 2 I was going in circles above. With the help of betel on physics-
forums , I got pointed in the right direction. Here is a rework of this prob-
lem from scratch, also benefiting from hindsight.

Our starting point is the same, with the evaluation of the first commu-
tator [

H, eik·r
]
=

1
2m

[
p2, eik·r

]
. (2.208)

https://www.physicsforums.com/threads/double-commutator-used-to-obtain-energy-relationship-summed-over-energy-differences.432923/
https://www.physicsforums.com/threads/double-commutator-used-to-obtain-energy-relationship-summed-over-energy-differences.432923/
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To continue we need to know how the momentum operator acts on an
exponential of this form

pe±ik·rΨ = −i h̄em∂me±ikn xn Ψ

= e±ik·r (−i h̄(±iemkm)Ψ − i h̄em∂mΨ) .
(2.209)

This gives us the helpful relationship

pe±ik·r = e±ik·r(p ± h̄k). (2.210)

Squared application of the momentum operator on the positive exponen-
tial found in the first commutator eq. (2.208), gives us

p2eik·r = eik·r( h̄k + p)2 = eik·r(( h̄k)2 + 2 h̄k · p + p2), (2.211)

with which we can evaluate this first commutator.[
H, eik·r

]
=

1
2m

eik·r(( h̄k)2 + 2 h̄k · p). (2.212)

For the double commutator we have

2m
[[

H, eik·r
]
, e−ik·r

]
= eik·r(( h̄k)2 + 2 h̄k · p)e−ik·r − (( h̄k)2 + 2 h̄k · p)

= eik·r2( h̄k · p)e−ik·r − 2 h̄k · p
= 2 h̄k · (p − h̄k) − 2 h̄k · p,

(2.213)

so for the double commutator we have just a scalar[[
H, eik·r

]
, e−ik·r

]
= −

( h̄k)2

m
. (2.214)

Now consider the expectation of this double commutator, expanded with
some unintuitive steps that have been motivated by working backwards

⟨s|
[[

H, eik·r
]
, e−ik·r

]
|s⟩

= ⟨s| 2H − eik·rHe−ik·r − e−ik·rHeik·r |s⟩

= ⟨s| 2e−ik·reik·rH − 2e−ik·rHeik·r |s⟩

= 2
∑

n

⟨s| e−ik·r |n⟩ ⟨n| eik·rH |s⟩ − ⟨s| e−ik·rH |n⟩ ⟨n| eik·r |s⟩

= 2
∑

n

Es ⟨s| e−ik·r |n⟩ ⟨n| eik·r |s⟩ − En ⟨s| e−ik·r |n⟩ ⟨n| eik·r |s⟩

= 2
∑

n

(Es − En)
∣∣∣⟨n| eik·r |s⟩

∣∣∣2
(2.215)
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By eq. (2.214), we have completed the problem∑
n

(En − Es)
∣∣∣⟨n| eik·r |s⟩

∣∣∣2 = ( h̄k)2

2m
. (2.216)

There is one subtlety above that is worth explicit mention before moving
on, in particular, I did not find it intuitive that the following was true

⟨s| eik·rHe−ik·r + e−ik·rHeik·r |s⟩ = ⟨s| 2e−ik·rHeik·r |s⟩ . (2.217)

However, observe that both of these exponential sandwich operators eik·rHe−ik·r,
and e−ik·rHeik·r are Hermitian, since we have for example

(eik·rHe−ik·r)† = (e−ik·r)†H†(eik·r)†

= eik·rHe−ik·r (2.218)

Also observe that these operators are both complex conjugates of each
other, and with k · r = α for short, can be written

eiαHe−iα = cosαH cosα + sinαH sinα + i sinαH cosα − i cosαH sinα

e−iαHeiα = cosαH cosα + sinαH sinα − i sinαH cosα + i cosαH sinα
(2.219)

Because H is real valued, and the expectation value of a Hermitian op-
erator is real valued, none of the imaginary terms can contribute to the
expectation values, and in the summation of eq. (2.217) we can thus pick
and double either of the exponential sandwich terms, as desired.

Exercise 2.10 ps II

A particle of mass m is free to move along the x-direction such that
V(X) = 0. Express the time evolution operator U(t, t0) defined by Eq.
(2.166) using the momentum eigenstates |p⟩ with delta-function normal-
ization. Find ⟨x|U(t, t0) |x′⟩, where |x⟩ and |x′⟩ are position eigenstates.
What is the physical meaning of this expression?
Answer for Exercise 2.10

We can expand the time evolution operator in series

U(t, t0) = e−iH(t−t0)/ h̄

= e−iP2(t−t0)/2m h̄

= 1 +
∞∑

k=1

1
k!

(
−i

P2(t − t0)
2m h̄

)k

.

(2.220)
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We can now evaluate the momentum matrix element ⟨p|U(t, t0) |p′⟩, which
will essentially require the value of ⟨p| P2k |p′⟩. That is

⟨p| P2k
∣∣∣p′〉 = ⟨p| P2k−1P

∣∣∣p′〉
= ⟨p| P2k−1

∣∣∣p′〉 p′

= · · ·

=
〈
p
∣∣∣p′〉 (p′)2k.

(2.221)

The momentum matrix element is therefore reduced to

⟨p|U(t, t0)
∣∣∣p′〉 = 〈

p
∣∣∣p′〉 exp

(
−i

p2(t − t0)
2m h̄

)
= δ(p− p′) exp

(
−i

p2(t − t0)
2m h̄

)
(2.222)

Position matrix element For the position matrix element we have a sim-
ilar sum

⟨x|U(t, t0)
∣∣∣x′〉 = 〈

x
∣∣∣x′〉 + ∞∑

k=1

1
k!
⟨x|

(
−i

P2(t − t0)
2m h̄

)k ∣∣∣x′〉 , (2.223)

and require ⟨x| P2k |x′⟩ to continue. That is

⟨x| P2k
∣∣∣x′〉 = ∫

dx′′ ⟨x| P2k−1
∣∣∣x′′〉 〈x′′

∣∣∣ P
∣∣∣x′〉

=

∫
dx′′ ⟨x| P2k−1

∣∣∣x′′〉 δ(x′′ − x′)(−i h̄)
d

dx′

= ⟨x| P2k−1
∣∣∣x′〉 (−i h̄)

d
dx′

= · · ·

=
〈
x
∣∣∣x′〉 ((−i h̄)

d
dx′

)2k

(2.224)

Our position matrix element is therefore the differential operator

⟨x|U(t, t0)
∣∣∣x′〉 = 〈

x
∣∣∣x′〉 exp

(
i(t − t0) h̄

2m
d2

dx′2

)
= δ(x− x′) exp

(
i(t − t0) h̄

2m
d2

dx′2

)
(2.225)

Physical interpretation of the position matrix element operator Finally,
we need to determine the physical meaning of such a matrix element op-
erator.
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With the delta function that this matrix element operator includes it
really only takes on a meaning with a convolution integral. The simplest
such integral would be∫

dx′ ⟨x|U
∣∣∣x′〉 〈x′

∣∣∣ϕ0
〉
= ⟨x|U |ϕ0⟩

= ⟨x|ϕ(t)⟩

= ϕ(x, t),

(2.226)

or

ϕ(x, t) =
∫

dx′ ⟨x|U
∣∣∣x′〉 ϕ(x′, 0) (2.227)

The LHS has a physical meaning, and in the absolute square∫ x0+∆x

x0

|ϕ(x, t)|2dx, (2.228)

provides the probability that the particle will be found in the region [x0, x0+

∆x].
If we ignore the absolute square requirement and think of the (pre-

sumed normalized) wave function ϕ(x, t) more loosely as representing a
probability directly, then we can in turn give a meaning to the matrix ele-
ment ⟨x|U |x′⟩ for the time evolution operator. This provides an operator
valued weighting function that provides us with the probability that a par-
ticle initially at position x′ will be at position x at time t. This probability
is indirect since we need to absolute square and sum over a finite interval
to obtain the probability of finding the particle in that interval.

Observe that the integral on the RHS of eq. (2.228) is a summation
over all x′, so we can think of this as adding the probabilities that the
particle was at each point to arrive at the total probability for finding it at
the new location x. The time evolution operator matrix element provides
the weighting in this conditional probability.

In eq. (2.225) we found that the time evolution operators matrix ele-
ment is differential operator in the position representation. In the general
case this means that this probability weighting is not just numeric since
the operation of the matrix element initial time wave function can produce
wave functions for additional states. In some special cases, we may find
that this weighting is strictly numeric, and one such example would be
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the Gaussian wave packet ϕ(x′, 0) = e−ax′2 . Application of the differen-
tial operations would then produce polynomial weighted multiples of the
original Gaussian. In this special case we would be able to write

ϕ(x, t) =
∫

dx′ ⟨x|U
∣∣∣x′〉 ϕ(x′, 0) =

∫
dx′K(x, x′, t)ϕ(x′, 0) (2.229)

Where K(x, x′, t) is a polynomial valued function (and is in fact another
exponential), and now just provides a numerical weighting for the condi-
tional probability for the particle to move from x′ to x in time t. In [9],
this K(x, x′, t) is called the Propagator function. It is perhaps justifiable to
also call our similar operator valued matrix element a Propagator.

Exercise 2.11 ps III.

A particle of mass m is free to move along the x-direction such that
V(X) = 0. The state of the system is represented by the wavefunction Eq.
(4.74)

ψ(x, t) =
1
√

2π

∫ ∞

−∞

dkeikxe−iωt f (k) (2.230)

with f (k) given by Eq. (4.59).

f (k) = Ne−αk2
(2.231)

Note that I have inserted a 1/
√

2π factor above that is not in the text,
because otherwise ψ(x, t) will not be unit normalized (assuming f (k) is
normalized in wavenumber space).

a. What is the group velocity associated with this state?

b. What is the probability for measuring the particle at position x =
x0 > 0 at time t = t0 > 0?

c. What is the probability per unit length for measuring the particle
at position x = x0 > 0 at time t = t0 > 0?

d. Explain the physical meaning of the above results.

Answer for Exercise 2.11

Part a. Group velocity To calculate the group velocity we need to know
the dependence of ω on k.

Let us step back and consider the time evolution action on ψ(x, 0). For
the free particle case we have

H =
p2

2m
= −

h̄2

2m
∂xx. (2.232)
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Writing N′ = N/
√

2π we have

−
it
h̄

Hψ(x, 0) =
it h̄
2m

N′
∫ ∞

−∞

dk(ik)2eikx−αk2

= N′
∫ ∞

−∞

dk
−it h̄k2

2m
eikx−αk2

(2.233)

Each successive application of −iHt/ h̄ will introduce another power of
−it h̄k2/2m, so once we sum all the terms of the exponential series U(t) =
e−iHt/ h̄ we have

ψ(x, t) = N′
∫ ∞

−∞

dk exp
(
−it h̄k2

2m
+ ikx − αk2

)
. (2.234)

Comparing with eq. (2.230) we find

ω(k) =
h̄k2

2m
. (2.235)

This completes this section of the problem since we are now able to cal-
culate the group velocity

vg =
∂ω(k)
∂k

=
h̄k
m
. (2.236)

Part b. Measurement probability In order to evaluate the probability, it
looks desirable to evaluate the wave function integral eq. (2.234). Writing
2β = i/(α + it h̄/2m), the exponent of that integral is

−k2
(
α +

it h̄
2m

)
+ ikx = −

(
α +

it h̄
2m

) k2 −
ikx

α + it h̄
2m


= −

i
2β

(
(k − xβ)2 − x2β2

) (2.237)

The x2 portion of the exponential

ix2β2

2β
=

ix2β

2
= −

x2

4(α + it h̄/2m)
(2.238)

then comes out of the integral. We can also make a change of variables
q = k − xβ to evaluate the remainder of the Gaussian and are left with

ψ(x, t) = N′
√

π

α + it h̄/2m
exp

(
−

x2

4(α + it h̄/2m)

)
. (2.239)
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Observe that from eq. (2.231) we can compute N = (2α/π)1/4, which
could be substituted back into eq. (2.239) if desired.

Our probability density is

|ψ(x, t)|2 =
1

2π
N2

∣∣∣∣∣ π

α + it h̄/2m

∣∣∣∣∣ exp
(
−

x2

4

(
1

(α + it h̄/2m)
+

1
(α − it h̄/2m)

))
=

1
2π

√
2α
π

π√
α2 + (t h̄/2m)2

×

exp
(
−

x2

4
1

α2 + (t h̄/2m)2 (α − it h̄/2m + α + it h̄/2m)

)
.

(2.240)

With a final regrouping of terms, this is

|ψ(x, t)|2 =
√

α

2π(α2 + (t h̄/2m)2 ) exp
(
−

x2

2
α

α2 + (t h̄/2m)2

)
. (2.241)

As a sanity check we observe that this integrates to unity for all t as de-
sired. The probability that we find the particle at position x > x0 is then

Px>x0(t) =
√

α

2π(α2 + (t h̄/2m)2 )
∫ ∞

x=x0

dx exp
(
−

x2

2
α

α2 + (t h̄/2m)2

)
(2.242)

The only simplification we can make is to rewrite this in terms of the
complementary error function

erfc(x) =
2
√
π

∫ ∞

x
e−t2dt. (2.243)

Writing

β(t) =
α

α2 + (t h̄/2m)2 , (2.244)

we have

Px>x0(t0) =
1
2

erfc
( √

β(t0)/2x0
)

(2.245)

Sanity checking this result, we note that since erfc(0) = 1 the probability
for finding the particle in the x > 0 range is 1/2 as expected.
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Part c. Probability density for positive position and time This unit length
probability is thus

Px>x0+1/2(t0) − Px>x0−1/2(t0)

=
1
2

erfc


√
β(t0)

2

(
x0 +

1
2

) − 1
2

erfc


√
β(t0)

2

(
x0 −

1
2

)
(2.246)

Part d. Physical meaning To get an idea what the group velocity means,
observe that we can write our wavefunction eq. (2.230) as

ψ(x, t) =
1
√

2π

∫ ∞

−∞

dkeik(x−vgt) f (k) (2.247)

We see that the phase coefficient of the Gaussian f (k) “moves” at the rate
of the group velocity vg. Also recall that in the text it is noted that the
time dependent term eq. (2.244) can be expressed in terms of position
and momentum uncertainties (∆x)2, and (∆p)2 = h̄2(∆k)2. That is

1
β(t)
= (∆x)2 +

(∆p)2

m2 t2 ≡ (∆x(t))2 (2.248)

This makes it evident that the probability density flattens and spreads over
time with the rate equal to the uncertainty of the group velocity ∆p/m =
∆vg (since vg = h̄k/m). It is interesting that something as simple as this
phase change results in a physically measurable phenomena. We see that
a direct result of this linear with time phase change, we are less able to
find the particle localized around it is original time x = 0 position as more
time elapses.

Grading comments I lost one mark on the group velocity response. In-
stead of eq. (2.236) he wanted

vg =
∂ω(k)
∂k

∣∣∣∣∣
k=k0

=
h̄k0

m
= 0 (2.249)

since f (k) peaks at k = 0.
I will have to go back and think about that a bit, because I am unsure

of the last bits of the reasoning there.
I also lost 0.5 and 0.25 (twice) because I did not explicitly state that

the probability that the particle is at x0, a specific single point, is zero.
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I thought that was obvious and did not have to be stated, but it appears
expressing this explicitly is what he was looking for.

Curiously, one thing that I did not loose marks on was, the wrong an-
swer for the probability per unit length. What he was actually asking for
was the following

lim
ϵ→0

1
ϵ

∫ x0+ϵ/2

x0−ϵ/2
|Ψ(x0, t0)|2dx = |Ψ(x0, t0)|2 (2.250)

That is a whole lot more sensible seeming quantity to calculate than what
I did, but I do not think that I can be faulted too much since the phrase
was never used in the text nor in the lectures.
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3.1 lecture notes: review

For

|ϕ⟩ =

∫
dk f (k) |k⟩ (3.1)

How do we find |ϕ(t)⟩, the time evolved state? Here we have the option of
choosing which of the pictures (Schrödinger, Heisenberg, interaction) we
deal with. Since the Heisenberg picture deals with time evolved operators,
and the interaction picture with evolving Hamiltonians, neither of these is
required to answer this question. Consider the Schrödinger picture which
gives

|ϕ(t)⟩ =
∫

dk f (k) |k⟩ e−iEkt/ h̄ (3.2)

where Ek is the eigenvalue of the Hamiltonian operator H.

3.2 problems

Exercise 3.1 Virial Theorem ([3] pr 3.1)

With the assumption that ⟨r · p⟩ is independent of time, and

H =
p2

2m
+ V(r) = T + V, (3.3)

show that

2 ⟨T ⟩ = ⟨r ·∇V⟩ . (3.4)

Answer for Exercise 3.1

I floundered with this a bit, but found the required hint in physicsforums
. We can start with the Hamiltonian time derivative relation

i h̄
dAH

dt
= [AH ,H] . (3.5)

https://www.physicsforums.com/threads/three-dimensional-virial-theorem-quantum-mechanics.164682/
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So, with the assumption that ⟨r · p⟩ is independent of time, and the use of
a stationary state |ψ⟩ for the expectation calculation we have

0 =
d
dt
⟨r · p⟩

=
d
dt
⟨ψ| r · p |ψ⟩

= ⟨ψ|
d
dt

(r · p) |ψ⟩

=
1
i h̄

〈
[r · p,H]

〉
= −

〈[
r ·∇,

p2

2m

]〉
−

〈
[r ·∇,V(r)]

〉
.

(3.6)

The exercise now becomes one of evaluating the remaining commutators.
For the Laplacian commutator we have[

r ·∇,∇2
]
ψ = xm∂m∂n∂nψ − ∂n∂nxm∂mψ

= xm∂m∂n∂nψ − ∂n∂nψ − ∂nxm∂n∂mψ

= xm∂m∂n∂nψ − ∂n∂nψ − ∂n∂nψ − xm∂n∂n∂mψ

= −2∇2ψ

(3.7)

For the potential commutator we have

[r ·∇,V(r)]ψ = xm∂mVψ − V xm∂mψ

= xm(∂mV)ψxmV∂mψ − V xm∂mψ

= (r · (∇V))ψ

(3.8)

Putting all the h̄ factors back in, we get

2
〈

p2

2m

〉
= ⟨r · (∇V)⟩ , (3.9)

which is the desired result.
Followup: why assume ⟨r · p⟩ is independent of time?

Exercise 3.2 Application of virial theorem ([3] pr 3.2)

Calculate ⟨T ⟩ with V = λ ln(r/a).
Answer for Exercise 3.2
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r ·∇V = rr̂ · r̂λ
∂ln(r/a)
∂r

= λr
1
a

a
r

= λ

=⇒

⟨T ⟩ = λ/2

(3.10)

Exercise 3.3 Heisenberg Position operator representation ([3] pr 3.3)

Answer for Exercise 3.3

Part I Express x as an operator xH for H = p2/2m.
With

⟨ψ| x |ψ⟩ = ⟨ψ0|U†xU |ψ0⟩ (3.11)

We want to expand

xH = U†xU

= eiHt/ h̄xe−iHt/ h̄

=

∞∑
k,l=0

1
k!

1
l!

( iHt
h̄

)k
x
(
−iHt

h̄

)l
.

(3.12)

We to evaluate HkxHl to proceed. Using pnx = −i h̄npn−1 + xpn, we have

Hkx =
1

(2m)k p2kx

=
1

(2m)k

(
−i h̄(2k)p2k−1 + xp2k

)
= xHk +

1
2m

(−i h̄)(2k)pp2(k−1)/(2m)k−1

= xHk −
i h̄k
m

pHk−1.

(3.13)

This gives us

xH = x −
i h̄p
m

∞∑
k,l=0

k
k!

1
l!

( it
h̄

)k
Hk−1+l

(
−it
h̄

)l

= x −
i h̄pit
m h̄

(3.14)
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Or

xH = x +
pt
m

(3.15)

Part II Express x as an operator xH for H = p2/2m + V with V = λxm.
In retrospect, for the first part of this problem, it would have been better

to use the series expansion for this exponential sandwich
Or, in explicit form

eABe−A = B+
1
1!

[A, B] +
1
2!

[A, [A, B]] + · · · (3.16)

Doing so, we would find for the first commutator

it
2m h̄

[
p2, x

]
=

tp
m
, (3.17)

so that the series has only the first two terms, and we would obtain the
same result. That seems like a logical approach to try here too. For the
first commutator, we get the same tp/m result since [V, x] = 0.

Employing

xn p = i h̄nxn−1 + pxn, (3.18)

I find ( it
h̄

)2
[H, [H, x]] =

iλt2

h̄m
[xn, p]

= −
nt2λ

m
xn−1

= −
nt2V
mx

(3.19)

The triple commutator gets no prettier, and I get( it
h̄

)3
[H, [H, [H, x]]] =

it
h̄

[
p2

2m
+ λxn,−

nt2V
mx

]
= −

it
h̄

nt2

m
λ

2m

[
p2, xn−1

]
= · · ·

=
n(n − 1)t3V

2m2x3 (i h̄n + 2px).

(3.20)
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Putting all the pieces together this gives

xH = eiHt/ h̄xe−iHt/ h̄ = x+
tp
m
−

nt2V
2mx

+
n(n − 1)t3V

12m2x3 (i h̄n+ 2px)+ · · ·

(3.21)

If there is a closed form for this it is not obvious to me. Would a fixed
lower degree potential function shed any more light on this. How about
the Harmonic oscillator Hamiltonian

H =
p2

2m
+

mω2

2
x2 (3.22)

... this one works out nicely since there is an even-odd alternation.
Get

xH = x cos(ω2t2/2) +
pt
m

sin(ω2t2/2)
ω2t2/2

(3.23)

I had not expect such a tidy result for an arbitrary V(x) = λxn potential.

Exercise 3.4 Feynman-Hellman relation ([3] pr 3.4)

Answer for Exercise 3.4

For continuously parameterized eigenstate, eigenvalue and Hamilto-
nian |ψ(λ)⟩, E(λ) and H(λ) respectively, we can relate the derivatives

∂

∂λ
(H |ψ⟩) =

∂

∂λ
(E |ψ⟩)

=⇒

∂H
∂λ
|ψ⟩ + H

∂|ψ⟩

∂λ
=
∂E
∂λ
|ψ⟩ + E

∂|ψ⟩

∂λ

(3.24)

Left multiplication by ⟨ψ| gives

⟨ψ|
∂H
∂λ
|ψ⟩ + ⟨ψ|H

∂|ψ⟩

∂λ
= ⟨ψ|

∂E
∂λ
|ψ⟩ + E ⟨ψ|

∂|ψ⟩

∂λ

=⇒

⟨ψ|
∂H
∂λ
|ψ⟩ + (⟨ψ| E)

∂|ψ⟩

∂λ
= ⟨ψ|

∂E
∂λ
|ψ⟩ + E ⟨ψ|

∂|ψ⟩

∂λ

=⇒

⟨ψ|
∂H
∂λ
|ψ⟩ =

∂E
∂λ
⟨ψ|ψ⟩ ,

(3.25)
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which provides the desired identity

∂E
∂λ
= ⟨ψ(λ)|

∂H
∂λ
|ψ(λ)⟩ (3.26)

Exercise 3.5 ([3] pr 3.5)

With eigenstates |ϕ1⟩ and |ϕ2⟩, of H with eigenvalues E1 and E2, respec-
tively, and

|χ1⟩ =
1
√

2
(|ϕ1⟩ + |ϕ2⟩)

|χ2⟩ =
1
√

2
(|ϕ1⟩ − |ϕ2⟩)

(3.27)

and |ψ(0)⟩ = |χ1⟩, determine |ψ(t)⟩ in terms of |ϕ1⟩ and |ϕ2⟩.
Answer for Exercise 3.5

|ψ(t)⟩ = e−iHt/ h̄ |ψ(0)⟩

= e−iHt/ h̄ |χ1⟩

=
1
√

2
e−iHt/ h̄(|ϕ1⟩ − |ϕ2⟩)

=
1
√

2
(e−iE1t/ h̄ |ϕ1⟩ − e−iE2t/ h̄ |ϕ2⟩) □

(3.28)

Exercise 3.6 ([3] pr 3.6)

Consider a Coulomb like potential −λ/r with angular momentum l = 0.
If the eigenfunction is

u(r) = u0e−βr (3.29)

determine u0, β, and the energy eigenvalue E in terms of λ, and m.
Answer for Exercise 3.6

We can start with the normalization constant u0 by integrating

1 = u2
0

∫ ∞

0
dre−βre−βr

= u2
0

e−2βr

−2β

∣∣∣∣∣∣
0∞

= u2
0

1
2β

(3.30)
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u0 =
√

2β (3.31)

To go further, we need the Hamiltonian. Note that we can write the Lapla-
cian with the angular momentum operator factored out using

∇
2 =

1
x2

(
(x ·∇)2 + x ·∇ + (x ×∇)2

)
(3.32)

With zero for the angular momentum operator x ×∇, and switching to
spherical coordinates, we have

∇
2 =

1
r
∂r +

1
r
∂rr∂r

=
1
r
∂r +

1
r
∂r +

1
r

r∂rr

=
2
r
∂r + ∂rr

(3.33)

We can now write the Hamiltonian for the zero angular momentum case

H = −
h̄2

2m

(
2
r
∂r + ∂rr

)
−
λ

r
(3.34)

With application of this Hamiltonian to the eigenfunction we have

Eu0e−βr =

(
−

h̄2

2m

(
2
r
∂r + ∂rr

)
−
λ

r

)
u0e−βr

=

(
−

h̄2

2m

(
2
r

(−β) + β2
)
−
λ

r

)
u0e−βr.

(3.35)

In particular for r = ∞ we have

−
h̄2β2

2m
= E (3.36)

−
h̄2β2

2m
=

(
−

h̄2

2m

(
2
r

(−β) + β2
)
−
λ

r

)
=⇒

h̄2

2m
2
r
β =

λ

r

(3.37)
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Collecting all the results we have

β =
λm

h̄2

E = −
λ2m

2 h̄2

u0 =

√
2λm
h̄

(3.38)

Exercise 3.7 ([3] pr 3.7)

A particle in a uniform field E0. Show that the expectation value of the
position operator ⟨r⟩ satisfies

m
d2 ⟨r⟩

dt2 = eE0. (3.39)

Answer for Exercise 3.7
This follows from Ehrenfest’s theorem once we formulate the force

eE0 = −∇ϕ, in terms of a potential ϕ. That potential is

ϕ = −eE0 · (x, y, z) (3.40)

The Hamiltonian is therefore

H =
p2

2m
− eE0 · (x, y, z). (3.41)

Ehrenfest’s theorem gives us

d
dt
⟨xk⟩ =

1
m
⟨pk⟩

d
dt
⟨pk⟩ = −

〈
∂V
∂xk

〉
,

(3.42)

or

d2

dt2 ⟨xk⟩ = −
1
m

〈
∂V
∂xk

〉
. (3.43)

∂V
∂xk
= −e(E0)k (3.44)

Putting all the last bits together, and summing over the directions ek we
have

m
d2

dt2 ek ⟨xk⟩ = ek ⟨e(E0)k⟩ = eE0 □ (3.45)
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Exercise 3.8 ([3] pr 3.8)

For Hamiltonian eigenstates |En⟩, C = AB, A = [B,H], obtain the
matrix element ⟨Em|C |En⟩ in terms of the matrix element of A.
Answer for Exercise 3.8

I was able to get most of what was asked for here, with a small excep-
tion. I started with the matrix element for A, which is

⟨Em| A |En⟩ = ⟨Em| BH − HB |En⟩ = (En − Em) ⟨Em| B |En⟩ (3.46)

Next, computing the matrix element for C we have

⟨Em|C |En⟩ = ⟨Em| BHB− HB2 |En⟩

=
∑

a

⟨Em| BH |Ea⟩ ⟨Ea| B |En⟩ − Em ⟨Em| B |Ea⟩ ⟨Ea| B |En⟩

=
∑

a

Ea ⟨Em| B |Ea⟩ ⟨Ea| B |En⟩ − Em ⟨Em| B |Ea⟩ ⟨Ea| B |En⟩

=
∑

a

(Ea − Em) ⟨Em| B |Ea⟩ ⟨Ea| B |En⟩

=
∑

a

⟨Em| A |Ea⟩ ⟨Ea| B |En⟩

= ⟨Em| A |En⟩ ⟨En| B |En⟩ +
∑
a,n

⟨Em| A |Ea⟩ ⟨Ea| B |En⟩

= ⟨Em| A |En⟩ ⟨En| B |En⟩ +
∑
a,n

⟨Em| A |Ea⟩
⟨Ea| A |En⟩

En − Ea

(3.47)

Except for the ⟨En| B |En⟩ part of this expression, the problem as stated is
complete. The relationship eq. (3.46) is no help for with n = m, so I see
no choice but to leave that small part of the expansion in terms of B.

Exercise 3.9 ([3] pr 3.9)

Operator A has eigenstates |ai⟩, with a unitary change of basis opera-
tion U |ai⟩ = |bi⟩. Determine in terms of U, and A the operator B and its
eigenvalues for which |bi⟩ are eigenstates.
Answer for Exercise 3.9

Consider for motivation the matrix element of A in terms of |bi⟩. We
will also let A |ai⟩ = αi |ai⟩. We then have

⟨ai| A
∣∣∣a j

〉
= ⟨bi|UAU†

∣∣∣b j
〉

(3.48)
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We also have

⟨ai| A
∣∣∣a j

〉
= a j ⟨ai|

∣∣∣a j
〉

= a jδi j
(3.49)

So it appears that the operator UAU† has the orthonormality relation re-
quired. In terms of action on the basis {|bi⟩}, let us see how it behaves. We
have

UAU† |bi⟩ = UA |ai⟩

= Uαi |ai⟩

= αi |bi⟩

(3.50)

So we see that the operators A and B = UAU† have common eigenvalues.

Exercise 3.10 ([3] pr 3.10)

With H |n⟩ = En |n⟩, A = [H, F] and ⟨0| F |0⟩ = 0, show that∑
n,0

⟨0| A |n⟩ ⟨n| A |0⟩
En − E0

= ⟨0| AF |0⟩ (3.51)

Answer for Exercise 3.10

⟨0| AF |0⟩ = ⟨0|HFF − FHF |0⟩

=
∑

n

E0 ⟨0| F |n⟩ ⟨n| F |0⟩ − En ⟨0| F |n⟩ ⟨n| F |0⟩

=
∑

n

(E0 − En) ⟨0| F |n⟩ ⟨n| F |0⟩

=
∑
n,0

(E0 − En) ⟨0| F |n⟩ ⟨n| F |0⟩

(3.52)

We also have

⟨0| A |n⟩ ⟨n| A |0⟩ = ⟨0|HF − FH |n⟩ ⟨n| A |0⟩

= (E0 − En) ⟨0| F |n⟩ ⟨n|HF − FH |0⟩

= −(E0 − En)2 ⟨0| F |n⟩ ⟨n| F |0⟩

(3.53)

Or, for n , 0,

⟨0| F |n⟩ ⟨n| F |0⟩ = −
⟨0| A |n⟩ ⟨n| A |0⟩

(E0 − En)2 . (3.54)



3.2 problems 87

This gives

⟨0| AF |0⟩ = −
∑
n,0

(E0 − En)
⟨0| A |n⟩ ⟨n| A |0⟩

(E0 − En)2

=
∑
n,0

⟨0| A |n⟩ ⟨n| A |0⟩
En − E0

□
(3.55)

Exercise 3.11 Angular momentum commutators. ([3] pr 3.11)

Show that [L,H] = 0, where H = p2/2m + V(r).
Answer for Exercise 3.11

This follows by considering
[
L,p2

]
, and [L,V(r)]. Let

L jk = x j pk − xk p j, (3.56)

so that

L = eiϵi jkL jk. (3.57)

We now need to consider the commutators of the operators L jk with p2

and V(r).
Let us start with p2. In particular

p2xm pn = pk pkxm pn

= pk(pkxm)pn

= pk(−i h̄δkm + xm pk)pn

= −i h̄pm pn + (pkxm)pk pn

= −i h̄pm pn + (−i h̄δkm + xm pk)pk pn

= −2i h̄pm pn + xm pnp2.

(3.58)

So our commutator with p2 is[
L jk,p2

]
= (x j pk − x j pk)p2 − (−2i h̄p j pk + x j pkp2 + 2i h̄pk p j − xk p jp2).

(3.59)

Since p j pk = pk p j, all terms cancel out, and the problem is reduced to
showing that

[L,H] = [L,V(r)] = 0. (3.60)
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Now assume that V(r) has a series representation

V(r) =
∑

j

a jr j =
∑

j

a j(xkxk) j/2 (3.61)

We would like to consider the action of xm pn on this function

xm pnV(r)Ψ = −i h̄xm

∑
j

a j∂n(xkxk) j/2Ψ

= −i h̄xm

∑
j

a j( jxn(xkxk) j/2−1 + r j∂nΨ)

= −
i h̄xmxn

r2

∑
j

a j jr j + xmV(r)pnΨ

(3.62)

LmnV(r) = (xm pn − xn pm)V(r)

= −
i h̄xmxn

r2

∑
j

a j jr j +
i h̄xnxm

r2

∑
j

a j jr j + V(r)(xm pn − xn pm)

= V(r)Lmn

(3.63)

Thus [Lmn,V(r)] = 0 as expected, implying [L,H] = 0.

Exercise 3.12 Two level quantum system (2008 PHY355H1F final 2.)

Consider a two-level quantum system, with basis states {|a⟩ , |b⟩}. Sup-
pose that the Hamiltonian for this system is given by

H =
h̄∆
2

(|b⟩ ⟨b| − |a⟩ ⟨a|) + i
h̄Ω
2

(|a⟩ ⟨b| − |b⟩ ⟨a|) (3.64)

where ∆ and Ω are real positive constants.
Find the energy eigenvalues and the normalized energy eigenvectors

(expressed in terms of the {|a⟩ , |b⟩} basis).
Write the time evolution operator U(t) = e−iHt/ h̄ using these eigenvec-

tors.
Answer for Exercise 3.12

The eigenvalue part of this problem is probably easier to do in matrix
form. Let

|a⟩ =

10


|b⟩ =

01
 .

(3.65)
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Our Hamiltonian is then

H =
h̄
2

 −∆ iΩ

−iΩ ∆

 . (3.66)

Computing det H − λI = 0, we get

λ = ±
h̄
2

√
∆2 +Ω2. (3.67)

Let δ =
√

∆2 +Ω2. Our normalized eigenvectors are found to be

|±⟩ =
1√

2δ(δ ± ∆)

 iΩ

∆ ± δ

 . (3.68)

In terms of |a⟩ and |b⟩, we then have

|±⟩ =
1√

2δ(δ ± ∆)
(iΩ |a⟩ + (∆ ± δ) |b⟩) . (3.69)

Note that our Hamiltonian has a simple form in this basis. That is

H =
δ h̄
2

(|+⟩ ⟨+| − |−⟩ ⟨−|) (3.70)

Observe that once we do the diagonalization, we have a Hamiltonian that
appears to have the form of a scaled projector for an open Stern-Gerlach
apparatus.

Observe that the diagonalized Hamiltonian operator makes the time
evolution operator’s form also simple, which is, by inspection

U(t) = e−it δ2 |+⟩ ⟨+| + eit δ2 |−⟩ ⟨−| . (3.71)

Since we are asked for this in terms of |a⟩, and |b⟩, the projectors |±⟩ ⟨±|
are required. These are

|±⟩ ⟨±| =
1

2δ(δ ± ∆)
(iΩ |a⟩ + (∆ ± δ) |b⟩)(−iΩ ⟨a| + (∆ ± δ) ⟨b|) (3.72)

|±⟩ ⟨±| =
1

2δ(δ ± ∆)
(Ω2 |a⟩ ⟨a|+ (δ±δ)2 |b⟩ ⟨b|+ iΩ(∆±δ)(|a⟩ ⟨b| − |b⟩ ⟨a|))

(3.73)



90 dynamical equations

Substitution into eq. (3.71) and a fair amount of algebra leads to

U(t) = cos(δt/2)(|a⟩ ⟨a| + |b⟩ ⟨b|)

+ i
Ω
δ

sin(δt/2)
(
|a⟩ ⟨a| − |b⟩ ⟨b| − i(|a⟩ ⟨b| − |b⟩ ⟨a|)

)
.

(3.74)

Note that while a big cumbersome, we can also verify that we can recover
the original Hamiltonian from eq. (3.70) and eq. (3.73).

Q: (b) Suppose that the initial state of the system at time t = 0 is
|ϕ(0)⟩ = |b⟩. Find an expression for the state at some later time t > 0,
|ϕ(t)⟩.

A: Most of the work is already done. Computation of |ϕ(t)⟩ = U(t) |ϕ(0)⟩
follows from eq. (3.74)

|ϕ(t)⟩ = cos(δt/2) |b⟩ − i
Ω
δ

sin(δt/2)(|b⟩ + i |a⟩). (3.75)

Q: (c) Suppose that an observable, specified by the operator X = |a⟩ ⟨b|+
|b⟩ ⟨a|, is measured for this system. What is the probability that, at time t,
the result 1 is obtained? Plot this probability as a function of time, show-
ing the maximum and minimum values of the function, and the corre-
sponding values of t.

A: The language of questions like these attempt to bring some physics
into the mathematics. The phrase “the result 1 is obtained”, is really a
statement that the operator X, after measurement is found to have the
eigenstate with numeric value 1.

We can calculate the eigenvectors for this operator easily enough and
find them to be ±1. For the positive eigenvalue we can also compute the
eigenstate to be

|X+⟩ =
1
√

2
(|a⟩ + |b⟩). (3.76)

The question of what the probability for this measurement is then really a
question asking for the computation of the amplitude∣∣∣∣∣∣ 1

√
2
⟨(a + b)|ϕ(t)⟩

∣∣∣∣∣∣2 (3.77)
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From eq. (3.75) we find this probability to be∣∣∣∣∣∣ 1
√

2
⟨(a + b)|ϕ(t)⟩

∣∣∣∣∣∣2 = 1
2

(cos(δt/2) +
Ω
δ

sin(δt/2)
)2

+
Ω2 sin2(δt/2)

δ2


=

1
4

(
1 + 3

Ω2

δ2 +
∆2

δ2 cos(δt) + 2
Ω
δ

sin(δt)
)

(3.78)

We have a simple superposition of two sinusoids out of phase, periodic
with period 2π/δ. I had attempted a rough sketch of this on paper, but will
not bother scanning it here or describing it further.

Q: (d) Suppose an experimenter has control over the values of the pa-
rameters ∆ and Ω. Explain how she might prepare the state (|a⟩+ |b⟩)/

√
2.

A: For this part of the question I was not sure what approach to take. I
thought perhaps this linear combination of states could be made to equal
one of the energy eigenstates, and if one could prepare the system in that
state, then for certain values of δ and ∆ one would then have this desired
state.

To get there I note that we can express the states |a⟩, and |b⟩ in terms of
the eigenstates by inverting|+⟩

|−⟩

 = 1
√

2δ


iΩ√
δ + ∆

√
δ + ∆

iΩ√
δ − ∆

−
√
δ − ∆


|a⟩
|b⟩

 . (3.79)

Skipping all the algebra one finds|a⟩
|b⟩

 =
−i
√
δ − ∆ −i

√
δ + ∆

Ω√
δ − ∆

− Ω√
δ + ∆


|+⟩
|−⟩

 . (3.80)

Unfortunately, this does not seem helpful. I find

1
√

2
(|a⟩+ |b⟩) =

|+⟩
√
δ − ∆

(Ω− i(δ−∆))−
|−⟩
√
δ + ∆

(Ω+ i(δ+∆)) (3.81)

There is no obvious way to pick Ω and ∆ to leave just |+⟩ or |−⟩. When
I did this on paper originally I got a different answer for this sum, but
looking at it now, I can not see how I managed to get that answer (it had
no factors of i in the result as the one above does).
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A physical system for this Hamiltonian I wondered what physical sys-
tem such a Hamiltonian would correspond to, and noted that this bore
some similarity to the up vs. down states of the Ammonia atom as dis-
cussed in [4]. In that text the Hamiltonian is reasoned to have the form

H = E0(|b⟩⟨b| + |a⟩⟨a|) − A(|a⟩⟨b| + |b⟩⟨a|). (3.82)

In Feynman’s treatment, the Hamiltonian is just specified by giving val-
ues to Hi j, but the expression can easily seen to be equivalent. While these
do not look equivalent on the surface, they both have the same diagonal-
ization, which allows us to give a physical interpretation to this sort of
problem (one which is recurrant in the old QMI exams).



4F R E E PA RT I C L E S

4.1 antisymmetric tensor summation identity∑
i

ϵi jkϵiab = δ jaδkb − δ jbδka (4.1)

This is obviously the coordinate equivalent of the dot product of two bivec-
tors

(e j ∧ ek) · (ea ∧ eb) = ((e j ∧ ek) · ea) · eb) = δkaδ jb − δ jaδkb (4.2)

We can prove eq. (4.1) by expanding the LHS of eq. (4.2) in coordinates

(e j ∧ ek) · (ea ∧ eb) =
∑

ie

〈
ϵi jke jekϵeabeaeb

〉
=

∑
ie

ϵi jkϵeab
〈
(eiei)e jek(eeee)eaeb

〉
=

∑
ie

ϵi jkϵeab
〈
eieeI2

〉
= −

∑
ie

ϵi jkϵeabδie

= −
∑

i

ϵi jkϵiab □

(4.3)

4.2 question on raising and lowering arguments

How equation (4.240) was arrived at is not clear. In (4.239) he writes∫ 2π

0

∫ π

0
dθdϕ(L−Ylm)†L−Ylm sin θ (4.4)

Should not that Hermitian conjugation be just complex conjugation? if so
one would have∫ 2π

0

∫ π

0
dθdϕL∗−Y∗lmL−Ylm sin θ. (4.5)
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How does he end up with the L− and the Y∗lm interchanged. What justifies
this commutation?

A much clearer discussion of this can be found in The operators L±,
where Dirac notation is used for the normalization discussion.

Vatche’s explanation Asked Vatche about this and had it explained nicely.
He also used the braket notation, and wrote

⟨θ, ϕ|l,m⟩ ≡ Ylm(θ, ϕ) (4.6)

and introduces the identity

I =
∫ π

0
dθ sin θ

∫ 2π

0
dϕ |θ, ϕ⟩ ⟨θ, ϕ| (4.7)

Now, if we want to normalize the state L− |l,m⟩ we write

⟨l,m|L†−L− |l,m⟩

=

∫ π

0
dθ sin θ

∫ 2π

0
dϕ

∫ π

0
dθ′ sin θ′∫ 2π

0
dϕ′ ⟨l,m|θ, ϕ⟩ ⟨θ, ϕ| L+L−

∣∣∣θ′, ϕ′〉 〈θ′, ϕ′∣∣∣l,m〉
=

∫ π

0
dθ sin θ

∫ 2π

0
dϕ

∫ π

0
dθ′ sin θ′∫ 2π

0
dϕ′Y∗lm(θ, ϕ) ⟨θ, ϕ| L+L−

∣∣∣θ′, ϕ′〉 Ylm(θ′, ϕ′)

(4.8)

Now he points out that the matrix element has both the differential opera-
tor portion, as well as a delta function portion, so we would have

⟨θ, ϕ| L+L−
∣∣∣θ′, ϕ′〉 = 1

sin θ
δ(θ − θ′)δ(ϕ − ϕ′)L+(θ, ϕ)L−(θ, ϕ) (4.9)

where the raising and lowering operators are now in their differential form

L+(θ, ϕ)L−(θ, ϕ) = h̄eiθ (∂θ + i cot θ∂ϕ) h̄e−iθ (−∂θ + i cot θ∂ϕ) (4.10)

http://quantummechanics.ucsd.edu/ph130a/130_notes/node217.html
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This now gives us

⟨l,m| L†−L− |l,m⟩

=

∫ π

0
dθ

∫ 2π

0
dϕ

∫ π

0
dθ′ sin θ′∫ 2π

0
dϕ′Y∗lm(θ, ϕ)L+(θ, ϕ)L−(θ, ϕ)Ylm(θ′, ϕ′)δ(θ − θ′)δ(ϕ − ϕ′)

=

∫ π

0
dθ sin θ

∫ 2π

0
dϕY∗lm(θ, ϕ)L+(θ, ϕ)L−(θ, ϕ)Ylm(θ, ϕ)

(4.11)

This now fills in the reasoning (and notational) gap that the text has be-
tween (4.239) and (4.240). It is now clear that in 4.239 (where Hermitian
conjugation seemed out of place), that it should just have been regular
complex number conjugation. In the context of the normalization integral,
Hermitian conjugation plays no role. Here the L−Ylm used in the text are
just functions.

4.3 another question on raising and lowering arguments

The reasoning leading to (4.238) is not clear to me. I fail to see how the
L− commutation with L2 implies this?

4.4 lecture notes: review

For three dimensions with V(x, y, z) = 0

H =
1

2m
p2

p =
∑

i

piei
(4.12)

In the position representation, where

pi = −i h̄
d

dxi
(4.13)

the Schrödinger equation is

Hu(x, y, z) = Eu(x, y, z)

H = −
h̄2

2m
∇

2

= −
h̄2

2m

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

) (4.14)
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Separation of variables assumes it is possible to let

u(x, y, z) = X(x)Y(y)Z(z) (4.15)

(these capital letters are functions, not operators).

−
h̄2

2m

(
YZ

∂2X
∂x2 + XZ

∂2Y
∂y2 + YZ

∂2Z
∂z2

)
= EXYZ (4.16)

Dividing as usual by XYZ we have

−
h̄2

2m

(
1
X
∂2X
∂x2 +

1
Y
∂2Y
∂y2 +

1
Z
∂2Z
∂z2

)
= E (4.17)

The curious thing is that we have these three derivatives, which is sup-
posed to be related to an Energy, which is independent of any x, y, z, so it
must be that each of these is separately constant. We can separate these
into three individual equations

−
h̄2

2m
1
X
∂2X
∂x2 = E1

−
h̄2

2m
1
Y
∂2Y
∂x2 = E2

−
h̄2

2m
1
Z
∂2Z
∂x2 = E3

(4.18)

or

∂2X
∂x2 =

(
−

2mE1

h̄2

)
X

∂2Y
∂x2 =

(
−

2mE2

h̄2

)
Y

∂2Z
∂x2 =

(
−

2mE3

h̄2

)
Z

(4.19)

We have then

X(x) = C1eikx (4.20)

with

E1 =
h̄2k2

1

2m
=

p2
1

2m

E2 =
h̄2k2

2

2m
=

p2
2

2m

E3 =
h̄2k2

3

2m
=

p2
3

2m

(4.21)
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We are free to use any sort of normalization procedure we wish (periodic
boundary conditions, infinite Dirac, ...)

4.5 problems

Exercise 4.1 ([3] pr 4.1)

Write down the free particle Schrödinger equation for two dimensions in
(i) Cartesian and (ii) polar coordinates. Obtain the corresponding wave-
function.
Answer for Exercise 4.1

Cartesian case For the Cartesian coordinates case we have

H = −
h̄2

2m
(∂xx + ∂yy) = i h̄∂t (4.22)

Application of separation of variables with Ψ = XYT gives

−
h̄2

2m

(
X′′

X
+

Y ′′

Y

)
= i h̄

T ′

T
= E. (4.23)

Immediately, we have the time dependence

T ∝ e−iEt/ h̄, (4.24)

with the PDE reduced to

X′′

X
+

Y ′′

Y
= −

2mE

h̄2 . (4.25)

Introducing separate independent constants

X′′

X
= a2

Y ′′

Y
= b2

(4.26)

provides the pre-normalized wave function and the constraints on the con-
stants

Ψ = Ceaxebye−iEt/ h̄

a2 + b2 = −
2mE

h̄2 .
(4.27)
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Rectangular normalization We are now ready to apply normalization
constraints. One possibility is a rectangular periodicity requirement.

eax = ea(x+λx)

eay = ea(y+λy),
(4.28)

or

aλx = 2πim

aλy = 2πin.
(4.29)

This provides a more explicit form for the energy expression

Emn =
1

2m
4π2 h̄2

 m2

λx
2 +

n2

λy
2

 . (4.30)

We can also add in the area normalization using

⟨ψ|ϕ⟩ =

∫ λx

x=0
dx

∫ λx

y=0
dyψ∗(x, y)ϕ(x, y). (4.31)

Our eigenfunctions are now completely specified

umn(x, y, t) =
1√
λxλy

e2πix/λxe2πiy/λye−iEt/ h̄. (4.32)

The interesting thing about this solution is that we can make arbitrary
linear combinations

f (x, y) = amnumn (4.33)

and then “solve” for amn, for an arbitrary f (x, y) by taking inner products

amn = ⟨umn| f ⟩ =
∫ λx

x=0
dx

∫ λx

y=0
dy f (x, y)umn∗(x, y). (4.34)

This gives the appearance that any function f (x, y) is a solution, but the
equality of eq. (4.33) only applies for functions in the span of this func-
tion vector space. The procedure works for arbitrary square integrable
functions f (x, y), but the equality really means that the RHS will be the
periodic extension of f (x, y).
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Infinite space normalization An alternate normalization is possible by
using the Fourier transform normalization, in which we substitute

2πm
λx
= kx

2πn
λy
= ky

(4.35)

Our inner product is now

⟨ψ|ϕ⟩ =

∫ ∞

−∞

dx
∫ ∞

∞

dyψ∗(x, y)ϕ(x, y). (4.36)

And the corresponding normalized wavefunction and associated energy
constant E are

uk(x, y, t) =
1

2π
eikx xeikyye−iEt/ h̄ =

1
2π

eik·xe−iEt/ h̄

E =
h̄2k2

2m

(4.37)

Now via this Fourier inner product we are able to construct a solution from
any square integrable function. Again, this will not be an exact equality
since the Fourier transform has the effect of averaging across discontinu-
ities.

Polar case In polar coordinates our gradient is

∇ = r̂∂r +
θ̂

r
∂θ. (4.38)

with

r̂ = e1ee1e2θ

θ̂ = e2ee1e2θ.
(4.39)

Squaring the gradient for the Laplacian we will need the partials, which
are

∂rr̂ = 0

∂rθ̂ = 0

∂θr̂ = θ̂
∂θθ̂ = −r̂.

(4.40)
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The Laplacian is therefore

∇
2 = (r̂∂r +

θ̂

r
∂θ) · (r̂∂r +

θ̂

r
∂θ)

= ∂rr +
θ̂

r
· ∂θr̂∂r

θ̂

r
· ∂θ

θ̂

r
∂θ

= ∂rr +
θ̂

r
· (∂θr̂)∂r +

θ̂

r
·
θ̂

r
∂θθ +

θ̂

r
· (∂θθ̂)

1
r
∂θ.

(4.41)

Evaluating the derivatives we have

∇
2 = ∂rr +

1
r
∂r +

1
r2 ∂θθ, (4.42)

and are now prepared to move on to the solution of the Hamiltonian H =
−( h̄2/2m)∇2. With separation of variables again using Ψ = R(r)Θ(θ)T (t)
we have

−
h̄2

2m

(
R′′

R
+

R′

rR
+

1
r2

Θ′′

Θ

)
= i h̄

T ′

T
= E. (4.43)

Rearranging to separate the Θ term we have

r2R′′

R
+

rR′

R
+

2mE

h̄2 r2E = −
Θ′′

Θ
= λ2. (4.44)

The angular solutions are given by

Θ =
1
√

2π
eiλθ (4.45)

Where the normalization is given by

⟨ψ|ϕ⟩ =

∫ 2π

0
dθψ∗(θ)ϕ(θ). (4.46)

And the radial by the solution of the PDE

r2R′′ + rR′ +
(
2mE

h̄2 r2E − λ2
)

R = 0 (4.47)

Exercise 4.2 ([3] pr 4.2)

Use the orthogonality property of Pl(cos θ)∫ 1

−1
dxPl(x)Pl′(x) =

2
2l + 1

δll′ , (4.48)
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confirm that at least the first two terms of (4.171)

eikr cos θ =

∞∑
l=0

(2l + 1)il jl(kr)Pl(cos θ) (4.49)

are correct.
Answer for Exercise 4.2

Taking the inner product using the integral of eq. (4.48) we have∫ 1

−1
dxeikrxP′l(x) = 2il jl(kr) (4.50)

To confirm the first two terms we need

P0(x) = 1

P1(x) = x

j0(ρ) =
sin ρ
ρ

j1(ρ) =
sin ρ
ρ2 −

cos ρ
ρ

.

(4.51)

On the LHS for l′ = 0 we have∫ 1

−1
dxeikrx = 2

sin kr
kr

(4.52)

On the LHS for l′ = 1 note that∫
dxxeikrx =

∫
dxx

d
dx

eikrx

ikr

= x
eikrx

ikr
−

eikrx

(ikr)2 .

(4.53)

So, integration in [−1, 1] gives us∫ 1

−1
dxeikrx = −2i

cos kr
kr
+ 2i

1
(kr)2 sin kr. (4.54)

Now compare to the RHS for l′ = 0, which is

2 j0(kr) = 2
sin kr

kr
, (4.55)

which matches eq. (4.52). For l′ = 1 we have

2i j1(kr) = 2i
1
kr

(
sin kr

kr
− cos kr

)
, (4.56)

which in turn matches eq. (4.54), completing the exercise.
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Exercise 4.3 ([3] pr 4.3)

Obtain the commutation relations [Li, L j] by calculating the vector L×
L using the definition L = r× p directly instead of introducing a differen-
tial operator.
Answer for Exercise 4.3

Expressing the product L ×L in determinant form sheds some light on
this question. That is∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

L1 L2 L3

L1 L2 L3

∣∣∣∣∣∣∣∣∣∣∣ = e1 [L2, L3] + e2 [L3, L1] + e3 [L1, L2] = eiϵi jk [L j, Lk]

(4.57)

We see that evaluating this cross product in turn requires evaluation of
the set of commutators. We can do that with the canonical commutator
relationships directly using Li = ϵi jkr j pk like so

[Li, L j] = ϵimnrm pnϵ jabra pb − ϵ jabra pbϵimnrm pn

= ϵimnϵ jabrm(pnra)pb − ϵ jabϵimnra(pbrm)pn

= ϵimnϵ jabrm(ra pn − i h̄δan)pb − ϵ jabϵimnra(rm pb − i h̄δmb)pn

= ϵimnϵ jab(rmra pn pb − rarm pb pn) − i h̄(ϵimnϵ jnbrm pb − ϵ jamϵimnra pn).
(4.58)

The first two terms cancel, and we can employ (4.179) to eliminate the
antisymmetric tensors from the last two terms

[Li, L j] = i h̄(ϵnimϵn jbrm pb − ϵm jaϵminra pn)

= i h̄((δi jδmb − δibδm j)rm pb − (δ jiδan − δ jnδai)ra pn)

= i h̄(δi jδmbrm pb − δ jiδanra pn − δibδm jrm pb + δ jnδaira pn)

= i h̄(δi jrm pm − δ jira pa − r j pi + ri p j)

(4.59)

For k , i, j, this is i h̄(r × p)k, so we can write

L ×L = i h̄ekϵki j(ri p j − r j pi) = i h̄L = i h̄ekLk = i h̄L. (4.60)

In [9], the commutator relationships are summarized this way, instead of
using the antisymmetric tensor (4.224)

[Li, L j] = i h̄ϵi jkLk (4.61)

as here in Desai. Both say the same thing.
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Exercise 4.4 ([3] pr 4.5)

A free particle is moving along a path of radius R. Express the Hamil-
tonian in terms of the derivatives involving the polar angle of the particle
and write down the Schrödinger equation. Determine the wavefunction
and the energy eigenvalues of the particle.
Answer for Exercise 4.4

In classical mechanics our Lagrangian for this system is

L =
1
2

mR2θ̇2, (4.62)

with the canonical momentum

pθ =
∂L

∂θ̇
= mR2θ̇. (4.63)

Thus the classical Hamiltonian is

H =
1

2mR2 pθ2. (4.64)

By analogy the QM Hamiltonian operator will therefore be

H = −
h̄2

2mR2 ∂θθ.
(4.65)

For Ψ = Θ(θ)T (t), separation of variables gives us

−
h̄2

2mR2

Θ′′

Θ
= i h̄

T ′

T
= E, (4.66)

from which we have

T ∝ e−iEt/ h̄

Θ ∝ e±i
√

2mERθ/ h̄.
(4.67)

Requiring single valued Θ, equal at any multiples of 2π, we have

e±i
√

2mER(θ+2π)/ h̄ = e±i
√

2mERθ/ h̄, (4.68)

or

±
√

2mE
R
h̄

2π = 2πn, (4.69)
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Suffixing the energy values with this index we have

En =
n2 h̄2

2mR2 .
(4.70)

Allowing both positive and negative integer values for n we have

Ψ =
1
√

2π
einθe−iEnt/ h̄, (4.71)

where the normalization was a result of the use of a [0, 2π] inner product
over the angles

⟨ψ|ϕ⟩ ≡

∫ 2π

0
ψ∗(θ)ϕ(θ)dθ. (4.72)

Exercise 4.5 ([3] pr 4.6)

Determine [Li, r] and [Li, r].
Answer for Exercise 4.5

Since Li contain only θ and ϕ partials, [Li, r] = 0. For the position
vector, however, we have an angular dependence, and are left to evaluate
[Li, r] = r [Li, r̂]. We will need the partials for r̂. We have

r̂ = e3eIϕ̂θ

ϕ̂ = e2ee1e2ϕ

I = e1e2e3

(4.73)

Evaluating the partials we have

∂θr̂ = r̂Iϕ̂ (4.74)

With

θ̂ = R̃e1R

ϕ̂ = R̃e2R

r̂ = R̃e3R

(4.75)

where R̃R = 1, and θ̂ϕ̂r̂ = e1e2e3, we have

∂θr̂ = R̃e3e1e2e3e2R = R̃e1R = θ̂ (4.76)
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For the ϕ partial we have

∂ϕr̂ = e3 sin θIϕ̂e1e2

= sin θϕ̂
(4.77)

We are now prepared to evaluate the commutators. Starting with the easi-
est we have

[Lz, r̂]Ψ = −i h̄(∂ϕr̂Ψ − r̂∂ϕΨ)

= −i h̄(∂ϕr̂)Ψ
(4.78)

So we have

[Lz, r̂] = −i h̄ sin θϕ̂ (4.79)

Observe that by virtue of chain rule, only the action of the partials on
r̂ itself contributes, and all the partials applied to Ψ cancel out due to
the commutator differences. That simplifies the remaining commutator
evaluations. For reference the polar form of Lx, and Ly are

Lx = −i h̄(−S ϕ∂θ −Cϕ cot θ∂ϕ)

Ly = −i h̄(Cϕ∂θ − S ϕ cot θ∂ϕ),
(4.80)

where the sines and cosines are written with S , and C respectively for
short.

We therefore have

[Lx, r̂] = −i h̄(−S ϕ(∂θr̂) −Cϕ cot θ(∂ϕr̂))

= −i h̄(−S ϕθ̂ −Cϕ cot θS θϕ̂)

= −i h̄(−S ϕθ̂ −CϕCθϕ̂)

(4.81)

and

[Ly, r̂] = −i h̄(Cϕ(∂θr̂) − S ϕ cot θ(∂ϕr̂))

= −i h̄(Cϕθ̂ − S ϕCθϕ̂).
(4.82)

Adding back in the factor of r, and summarizing we have

[Li, r] = 0

[Lx, r] = −i h̄r(− sin ϕθ̂ − cos ϕ cos θϕ̂)

[Ly, r] = −i h̄r(cos ϕθ̂ − sin ϕ cos θϕ̂)

[Lz, r] = −i h̄r sin θϕ̂

(4.83)





5S P I N 1 / 2

5.1 lecture notes: review

HOMEWORK: go through the steps to understand how to formulate ∇2

in spherical polar coordinates. This is a lot of work, but is good prac-
tice and background for dealing with the Hydrogen atom, something with
spherical symmetry that is most naturally analyzed in the spherical polar
coordinates. In spherical coordinates (We will not go through this here,
but it is good practice) with

x = r sin θ cos ϕ

y = r sin θ sin ϕ

z = r cos θ

(5.1)

we have with u = u(r, θ, ϕ)

−
h̄2

2m

(
1
r
∂rr(ru) +

1
r2 sin θ

∂θ(sin θ∂θu) +
1

r2 sin2 θ
∂ϕϕu

)
= Eu (5.2)

We see the start of a separation of variables attack with u = R(r)Y(θ, ϕ).
We end up with

−
h̄2

2m

(
r
R

(rR′)′ +
1

Y sin θ
∂θ(sin θ∂θY) +

1
Y sin2 θ

∂ϕϕY
)

(5.3)

r(rR′)′ +
(
2mE

h̄2 r2 − λ

)
R = 0 (5.4)

1
Y sin θ

∂θ(sin θ∂θY) +
1

Y sin2 θ
∂ϕϕY = −λ (5.5)

Application of separation of variables again, with Y = P(θ)Q(ϕ) gives us

1
P sin θ

∂θ(sin θ∂θP) +
1

Q sin2 θ
∂ϕϕQ = −λ (5.6)
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sin θ
P

∂θ(sin θ∂θP) + λ sin2 θ +
1
Q
∂ϕϕQ = 0 (5.7)

sin θ
P

∂θ(sin θ∂θP) + λ sin2 θ − µ = 0
1
Q
∂ϕϕQ = −µ (5.8)

or

1
P sin θ

∂θ(sin θ∂θP) + λ −
µ

sin2 θ
= 0 (5.9)

∂ϕϕQ = −µQ (5.10)

The equation for P can be solved using the Legendre function Pm
l (cos θ)

where λ = l(l + 1) and l is an integer
Replacing µ with m2, where m is an integer

d2Q
dϕ2 = −m2Q (5.11)

Imposing a periodic boundary condition Q(ϕ) = Q(ϕ + 2π), where (m =
0,±1,±2, · · ·) we have

Q =
1
√

2π
eimϕ (5.12)

There is the overall solution r(r, θ, ϕ) = R(r)Y(θ, ϕ) for a free particle. The
functions Y(θ, ϕ) are

Ylm(θ, ϕ) = N
(

1
√

2π
eimϕ

)
Pm

l (cos θ)

−l ≤ m ≤ l
(5.13)

where N is a normalization constant, and m = 0,±1,±2, · · ·. Ylm is an
eigenstate of the L2 operator and Lz (two for the price of one). There is
no specific reason for the direction z, but it is the direction picked out of
convention. Angular momentum is given by

L = r × p (5.14)
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where

R = xx̂ + yŷ + zẑ (5.15)

and

p = pxx̂ + pyŷ + pzẑ (5.16)

The important thing to remember is that the aim of following all the math
is to show that

L2Ylm = h̄2l(l + 1)Ylm (5.17)

and simultaneously

LzYlm = h̄mYlm (5.18)

Part of the solution involves working with [Lz, L+], and [Lz, L−], where

L+ = Lx + iLy

L− = Lx − iLy
(5.19)

An exercise (not in the book) is to evaluate

[Lz, L+] = LzLx + iLzLy − LxLz − iLyLz (5.20)

where

[Lx, Ly] = i h̄Lz

[Ly, Lz] = i h̄Lx

[Lz, Lx] = i h̄Ly

(5.21)

Substitution back in eq. (5.20) we have

[Lz, L+] = [Lz, Lx] + i [Lz, Ly]

= i h̄(Ly − iLx)

= h̄(iLy + Lx)

= h̄L+

(5.22)
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5.2 lecture: orbital and intrinsic momentum

Last time, we started thinking about angular momentum. This time, we
will examine orbital and intrinsic angular momentum.

Orbital angular momentum in classical physics and quantum physics is
expressed as

L = r × p, (5.23)

and

L = R × P, (5.24)

where R and P are quantum mechanical operators corresponding to posi-
tion and momentum

R = Xx̂ + Y ŷ + Zẑ
P = Pxx̂ + Pyŷ + Pzẑ
L = Lxx̂ + Lyŷ + Lzẑ

(5.25)

Example 5.1: Angular momentum commutators

Determine the commutators [Lx, Ly] , [Ly, Lz] , [Lz, Lx] and

[Lx, Ly] = (ry pz − rz py)(rz px − rx pz) − (rz px − rx pz)(ry pz − rz py)

= ry pz(rz px − rx pz) − rz py(rz px − rx pz)

− rz px(ry pz − rz py) + rx pz(ry pz − rz py)

= ry pzrz px − ry pzrx pz − rz pyrz px + rz pyrx pz

− rz pxry pz + rz pxrz py + rx pzry pz − rx pzrz py

(5.26)

With pir j = r j pi − i h̄δi j, we have

[Lx, Ly] = ryrz pz px − ryrz px pz − rzry pz px + rzry px pz

− rzrx py pz + rzrx pz py + rxrz py pz − rxrz pz py + −i h̄ (ry px − rx py) .
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Since the pi p j operators commute, all the first terms cancel, leaving
just

[Lx, Ly] = i h̄Lz (5.27)

Example 5.2: Lz in spherical coordinates

The answer is

Lz ↔ −i h̄
∂

∂ϕ
(5.28)

FIXME: Work through this.

Part of the task in this intro QM treatment is to carefully determine the
eigenfunctions for these operators.

The spherical harmonics are given by Ylm(θ, ϕ) such that

Ylm(θ, ϕ) ∝ eimϕ (5.29)

LzYlm(θ, ϕ) = −i h̄
∂

∂ϕ
Ylm(θ, ϕ)

= −i h̄
∂

∂ϕ
constants(eimϕ)

= h̄mconstantseimϕ

= h̄mYlm(θ, ϕ)

(5.30)

The z-component is quantized since, m is an integer m = 0,±1,±2, ....
The total angular momentum

L2 = L ·L = L2
x + L2

y + L2
z (5.31)

is also quantized (details in the book).
The eigenvalue properties here represent very important physical fea-

tures. This is also important in the hydrogen atom problem. In the hydro-
gen atom problem, the particle is effectively free in the angular compo-
nents, having only r dependence. This allows us to apply the work for the
free particle to our subsequent potential bounded solution.
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Note that for the above, we also have the alternate, abstract ket notation,
method of writing the eigenvalue behavior.

Lz |lm⟩ = h̄m |lm⟩ (5.32)

Just like

X |x⟩ = x |x⟩

P |p⟩ = p |p⟩
(5.33)

For the total angular momentum our spherical harmonic eigenfunctions
have the property

L2 |lm⟩ = h̄2l(l + 1) |lm⟩ (5.34)

with l = 0, 1, 2, · · ·.
Alternately in plain old non-abstract notation we can write this as

L2Ylm(θ, ϕ) = h̄2l(l + 1)Ylm(θ, ϕ) (5.35)

Now we can introduce the Raising and Lowering Operators, which are

L+ = Lx + iLy

L− = Lx − iLy,
(5.36)

respectively. These are abstract quantities, but also physically important
since they relate quantum levels of the angular momentum. How do we
show this?

Last time, we saw that

[Lz, L+] = + h̄L+
[Lz, L−] = − h̄L−

(5.37)

Note that it is implied that we are operating on ket vectors

Lz(L− |lm⟩) (5.38)

with

|lm⟩ ↔ Ylm(θ, ϕ) (5.39)

Question: What is L− |lm⟩?
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Substitute

LzL− − L−Lz = − h̄L−
=⇒

LzL− = L−Lz − h̄L−

(5.40)

Lz (L− |lm⟩) = L−Lz |lm⟩ − h̄L− |lm⟩

= L−m h̄ |lm⟩ − L− |lm⟩

= h̄ (mL− |lm⟩ − L− |lm⟩)

= h̄(m − 1) (L− |lm⟩)

(5.41)

So L− |lm⟩ = |ψ⟩ is another spherical harmonic, and we have

Lz |ψ⟩ = h̄(m − 1) |ψ⟩ (5.42)

This lowering operator quantity causes a physical change in the state of
the system, lowering the observable state (ie: the eigenvalue) by h̄.

Now we want to normalize |ψ⟩ = L− |lm⟩, via ⟨ψ|ψ⟩ = 1.

1 = ⟨ψ|ψ⟩

= ⟨lm| L†−L− |ψ⟩

= ⟨lm| L+L− |ψ⟩

(5.43)

We can use

L+L− = L2 − L2
z + h̄Lz, (5.44)

So, knowing (how exactly?) that

L− |lm⟩ = C |l,m − 1⟩ (5.45)

we have from eq. (5.44)

|C|2 = ⟨lm| (L2 − L2
z + h̄Lz) |ψ⟩

= ⟨lm|lm⟩

= 1

(
h̄2l(l + 1) − ( h̄m)2 + h̄2m

)
= h̄2

(
l(l + 1) −m2 +m

)
.

(5.46)
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we have

|C|2 ⟨l,m − 1|l,m − 1⟩

1

= h̄2
(
l(l + 1) −m2 +m

)
. (5.47)

and can normalize the functions |ψ⟩ as

L− |lm⟩ = h̄
(
l(l + 1) −m2 +m

)1/2
|l,m − 1⟩ (5.48)

Abstract notation side note:

⟨θ, ϕ|lm⟩ = Ylm(θ, ϕ) (5.49)

Generalizing orbital angular momentum To explain the results of the
Stern-Gerlach experiment, assume that there is an intrinsic angular mo-
mentum S that has most of the same properties as L. But S has no classical
counterpart such as r × p.

This experiment is the classic QM experiment because the silver atoms
not only have the orbital angular momentum, but also have an additional
observed intrinsic spin in the outermost electron. In turns out that if you
combine relativity and QM, you can get out something that looks like the
S operator. That marriage produces the Dirac electron theory.

We assume the commutation relations

[S x, S y] = i h̄S z

[S y, S z] = i h̄S x

[S z, S x] = i h̄S y

(5.50)

Where we have the analogous eigenproperties

S2 |sm⟩ = h̄2s(s + 1) |sm⟩

S z |sm⟩ = h̄m |sm⟩
(5.51)

with s = 0, 1/2, 1, 3/2, ...
Electrons and protons are examples of particles that have spin one half.
Note that there is no position representation of |sm⟩. We cannot project

these states.
This basic quantum mechanics end up applying to quantum computing

and cryptography as well, when we apply the mathematics we are learning
here to explain the Stern-Gerlach experiment to photon spin states.
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(DRAWS Stern-Gerlach picture with spin up and down labeled |z+⟩,
and |z−⟩ with the magnetic field oriented in along the z axis.)

Silver atoms have s = 1/2 and m = ±1/2, where m is the quantum
number associated with the z-direction intrinsic angular momentum. The
angular momentum that is being acted on in the Stern-Gerlach experiment
is primarily due to the outermost electron.

S z |z+⟩ =
h̄
2
|z+⟩

S z |z−⟩ = −
h̄
2
|z−⟩

S2 |z±⟩ =
1
2

(
1
2
+ 1

)
h̄2 |z±⟩

(5.52)

where

|z+⟩ =
∣∣∣∣∣12 1

2

〉
|z−⟩ =

∣∣∣∣∣12 − 1
2

〉 (5.53)

What about S x? We can leave the detector in the x, z plane, but rotate
the magnet so that it lies in the x direction.

We have the correspondence

S z ↔
h̄
2

0 1

1 0

 , (5.54)

but this is perhaps more properly viewed as the matrix representation of
the less specific form

S z =
h̄
2
(|z+⟩ ⟨z+| − |z−⟩ ⟨z−|) . (5.55)

Where the translation to the form of eq. (5.54) is via the matrix elements

⟨z+| S z |z+⟩

⟨z+| S z |z−⟩

⟨z−| S z |z+⟩

⟨z−| S z |z−⟩ .

(5.56)
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We can work out the same for S x using S + and S −, or equivalently for σx

using σ+ and σ−, where

S x =
h̄
2
σx

S y =
h̄
2
σy

S z =
h̄
2
σz

(5.57)

The operators σx, σy, σz are the Pauli operators, and avoid the pesky h̄/2
factors.

We find

σx =

0 1

1 0


σy =

0 −i

i 0


σz =

1 0

0 −1


(5.58)

And from |σx − λI| = (−λ)2 − 1, we have eigenvalues λ = ±1 for the σx

operator.
The corresponding eigenkets in column matrix notation are found∓1 1

1 ∓1


a1

a2

 = 0

=⇒ ∓a1 + a2 = 0

=⇒ a2 = ±a1

(5.59)

Or

|x±⟩ ∝

a1

a2

 = a1

 1

±1

 (5.60)

which can be normalized as

|x±⟩ =
1
√

2

 1

±1

 (5.61)
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We see that this is different from

|z+⟩ =

10
 (5.62)

We will still end up with two spots, but there has been a projection of spin
in a different fashion? Does this mean the measurement will be different.
There is still a lot more to learn before understanding exactly how to relate
the spin operators to a real physical system.

5.3 problems

Exercise 5.1 ([3] pr 5.1)

Obtain S x, S y, S z for spin 1 in the representation in which S z and S 2 are
diagonal.
Answer for Exercise 5.1

For spin 1, we have

S 2 = 1(1 + 1) h̄21 (5.63)

and are interested in the states |1,−1⟩ , |1, 0⟩ , and |1, 1⟩. If, like angular
momentum, we assume that we have for ms = −1, 0, 1

S z |1,ms⟩ = ms h̄ |1,ms⟩ (5.64)

and introduce a column matrix representations for the kets as follows

|1, 1⟩ =


1

0

0


|1, 0⟩ =


0

1

0


|1,−1⟩ =


0

0

−1

 ,

(5.65)
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then we have, by inspection

S z = h̄


1 0 0

0 0 0

0 0 −1

 . (5.66)

Note that, like the Pauli matrices, and unlike angular momentum, the spin
states |−1,ms⟩ , |0,ms⟩ have not been considered. Do those have any phys-
ical interpretation?

That question aside, we can proceed as in the text, utilizing the ladder
operator commutators

S ± = S x ± iS y, (5.67)

to determine the values of S x and S y indirectly. We find

[S +, S −] = 2 h̄S z

[S +, S z] = − h̄S +
[S −, S z] = h̄S −.

(5.68)

Let

S + =


a b c

d e f

g h i

 . (5.69)

Looking for equality between [S z, S +] / h̄ = S +, we find
0 b 2c

−d 0 f

−2g −h 0

 =

a b c

d e f

g h i

 , (5.70)

so we must have

S + =


0 b 0

0 0 f

0 0 0

 . (5.71)

Furthermore, from [S +, S −] = 2 h̄S z, we find
|b|2 0 0

0 | f |2 − |b|2 0

0 0 −| f |2

 = 2 h̄2


1 0 0

0 0 0

0 0 −1

 . (5.72)
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We must have |b|2 = | f |2 = 2 h̄2. We could probably pick any b =
√

2 h̄eiϕ,
and f =

√
2 h̄eiθ, but assuming we have no reason for a non-zero phase

we try

S + =
√

2 h̄


0 1 0

0 0 1

0 0 0

 . (5.73)

Putting all the pieces back together, with S x = (S + + S −)/2, and S y =

(S + − S −)/2i, we finally have

S x =
h̄
√

2


0 1 0

1 0 1

0 1 0


S y =

h̄
√

2i


0 1 0

−1 0 1

0 −1 0


S z = h̄


1 0 0

0 0 0

0 0 −1

 .

(5.74)

A quick calculation verifies that we have S 2
x + S 2

y + S 2
z = 2 h̄1, as ex-

pected.

Exercise 5.2 ([3] pr 5.2)

Obtain eigensolution for operator A = aσy + bσz. Call the eigenstates
|1⟩ and |2⟩, and determine the probabilities that they will correspond to
σx = +1.
Answer for Exercise 5.2

The first part is straight forward, and we have

A = a

0 −i

i 0

 + b

1 0

0 −1


=

b −ia

ia −b

 .
(5.75)
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Taking |A − λI| = 0 we get

λ = ±
√

a2 + b2, (5.76)

with eigenvectors proportional to

|±⟩ =

 ia

b ∓
√

a2 + b2

 (5.77)

The normalization constant is 1/
√

2(a2 + b2) ∓ 2b
√

a2 + b2. Now we can
call these |1⟩, and |2⟩ but what does the last part of the question mean?
What is meant by σx = +1?

Asking the prof about this, he says:
“I think it means that the result of a measurement of the x component

of spin is +1. This corresponds to the eigenvalue of σx being +1. The spin
operator S x has eigenvalue + h̄/2”.

Aside: Question to consider later. Is it significant that ⟨1|σx |1⟩ = ⟨2|σx |2⟩ =
0?

So, how do we translate this into a mathematical statement?
First let us recall a couple of details. Recall that the x spin operator has

the matrix representation

σx =

0 1

1 0

 . (5.78)

This has eigenvalues ±1, with eigenstates (1,±1)/
√

2. At the point when
the x component spin is observed to be +1, the state of the system was
then

|x+⟩ =
1
√

2

11
 (5.79)

Let us look at the ways that this state can be formed as linear combinations
of our states |1⟩, and |2⟩. That is

1
√

2

11
 = α |1⟩ + β |2⟩ , (5.80)



5.3 problems 121

or 11
 = α√

(a2 + b2) − b
√

a2 + b2

 ia

b −
√

a2 + b2


+

β√
(a2 + b2) + b

√
a2 + b2

 ia

b +
√

a2 + b2


(5.81)

Letting c =
√

a2 + b2, this is11
 = α√

c2 − bc

 ia

b − c

 + β√
c2 + bc

 ia

b + c

 . (5.82)

We can solve the α and β with Cramer’s rule, yielding∣∣∣∣∣∣∣1 ia

1 b − c

∣∣∣∣∣∣∣ = β√
c2 + bc

∣∣∣∣∣∣∣ ia ia

b + c b − c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣1 ia

1 b + c

∣∣∣∣∣∣∣ = α√
c2 − bc

∣∣∣∣∣∣∣ ia ia

b − c b + c

∣∣∣∣∣∣∣ ,
(5.83)

or

α =
(b + c − ia)

√
c2 − bc

2iac

β =
(b − c − ia)

√
c2 + bc

−2iac

(5.84)

It is |α|2 and |β|2 that are probabilities, and after a bit of algebra we find
that those are

|α|2 = |β|2 =
1
2
, (5.85)

so if the x spin of the system is measured as +1, we have a 50% chance
that the measured eigenvalue for the operator A would be

√
a2 + b2 (ie:

with state |1⟩.
Is that what the question was asking? I think that I have actually got

it backwards. I think that the question was asking for the probability of
finding state |x+⟩ (measuring a spin 1 value for σx) given the state |1⟩ or
|2⟩.
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So, suppose that we have

µ+ |x+⟩ + ν+ |x−⟩ = |1⟩

µ− |x+⟩ + ν− |x−⟩ = |2⟩ ,
(5.86)

or (considering both cases simultaneously),

µ±

11
 + ν±

 1

−1

 = 1√
c2 ∓ bc

 ia

b ∓ c


=⇒

µ±

∣∣∣∣∣∣∣1 1

1 −1

∣∣∣∣∣∣∣ = 1√
c2 ∓ bc

∣∣∣∣∣∣∣ ia 1

b ∓ c −1

∣∣∣∣∣∣∣ ,
(5.87)

or

µ± =
ia + b ∓ c

2
√

c2 ∓ bc
. (5.88)

Unsurprisingly, this mirrors the previous scenario and we find that we
have a probability |µ|2 = 1/2 of measuring a spin 1 value for σx when the
state of the operator A has been measured as ±

√
a2 + b2 (ie: in the states

|1⟩, or |2⟩ respectively).
No measurement of the operator A = aσy + bσz gives a biased predic-

tion of the state of the state σx. Loosely, this seems to justify calling these
operators orthogonal. This is consistent with the geometrical antisymmet-
ric nature of the spin components where we have σyσx = −σxσy, just like
two orthogonal vectors under the Clifford product.

Exercise 5.3 ([3] pr 5.3)

Obtain the expectation values of S x, S y, S z for the case of a spin 1/2
particle with the spin pointed in the direction of a vector with azimuthal
angle β and polar angle α.
Answer for Exercise 5.3

Let us work with σk instead of S k to eliminate the h̄/2 factors. Before
considering the expectation values in the arbitrary spin orientation, let us
consider just the expectation values for σk. Introducing a matrix represen-
tation (assumed normalized) for a reference state

|ψ⟩ =

ab
 , (5.89)
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we find

⟨ψ|σx |ψ⟩ =
[
a∗ b∗

] 0 1

1 0


ab

 = a∗b + b∗a

⟨ψ|σy |ψ⟩ =
[
a∗ b∗

] 0 −i

i 0


ab

 = −ia∗b + ib∗a

⟨ψ|σx |ψ⟩ =
[
a∗ b∗

] 1 0

0 −1


ab

 = a∗a − b∗b

(5.90)

Each of these expectation values are real as expected due to the Hermitian
nature of σk. We also find that

3∑
k=1

⟨ψ|σk |ψ⟩
2 = (|a|2 + |b|2)2 = 1 (5.91)

So a vector formed with the expectation values as components is a unit
vector. This does not seem too unexpected from the section on the pro-
jection operators in the text where it was stated that ⟨χ|σ |χ⟩ = p, where
p was a unit vector, and this seems similar. Let us now consider the arbi-
trarily oriented spin vector σ · n, and look at its expectation value. With n
as the rotated image of ẑ by an azimuthal angle β, and polar angle α, we
have

n = (sinα cos β, sinα sin β, cosα). (5.92)

That is

σ · n = sinα cos βσx + sinα sin βσy + cosασz. (5.93)

The k = x, y, y projections of this operator

1
2

trσk(σ · n)σk, (5.94)

are just the Pauli matrices scaled by the components of n

1
2

trσx(σ · n)σx = sinα cos βσx

1
2

trσy(σ · n)σy = sinα sin βσy

1
2

trσz(σ · n)σz = cosασz,

(5.95)
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so our S k expectation values are by inspection

⟨ψ| S x |ψ⟩ =
h̄
2

sinα cos β(a∗b + b∗a)

⟨ψ| S y |ψ⟩ =
h̄
2

sinα sin β(−ia∗b + ib∗a)

⟨ψ| S z |ψ⟩ =
h̄
2

cosα(a∗a − b∗b)

(5.96)

Is this correct? While (σ · n)2 = n2 = I is a unit norm operator, we find
that the expectation values of the coordinates of σ · n cannot be viewed
as the coordinates of a unit vector. Let us consider a specific case, with
n = (0, 0, 1), where the spin is oriented in the x, y plane. That gives us

σ · n = σz (5.97)

so the expectation values of S k are

⟨S x⟩ = 0〈
S y

〉
= 0

⟨S z⟩ =
h̄
2

(a∗a − b∗b)

(5.98)

Given this is seems reasonable that from eq. (5.96) we find∑
k

⟨ψ| S k |ψ⟩
2 , h̄2/4, (5.99)

(since we do not have any reason to believe that in general (a∗a−b∗b)2 = 1
is true).

The most general statement we can make about these expectation val-
ues (an average observed value for the measurement of the operator) is
that

|⟨S k⟩| ≤
h̄
2

(5.100)

with equality for specific states and orientations only.

Exercise 5.4 ([3] pr 5.4)

FIXME: describe.
Answer for Exercise 5.4
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Take the azimuthal angle, β = 0, so that the spin is in the x-z plane at an
angle αwith respect to the z-axis, and the unit vector is n = (sinα, 0, cosα).
Write

|χn+⟩ = |+α⟩ (5.101)

for this case. Show that the probability that it is in the spin-up state in the
direction θ with respect to the z-axis is

|⟨+θ|+α⟩|2 = cos2
(
α − θ

2

)
(5.102)

Also obtain the expectation value of σ · n with respect to the state |+θ⟩.

Solution For this orientation we have

σ · n = sinα

0 1

1 0

 + cosα

1 0

0 −1

 =
cosα sinα

sinα − cosα

 (5.103)

Confirmation that our eigenvalues are ±1 is simple, and our eigenstates
for the +1 eigenvalue is found to be

|+α⟩ ∝

 sinα

1 − cosα

 =
sinα/2 cosα/2

2 sin2 α/2

 ∝
cosα/2

sinα/2

 (5.104)

This last has unit norm, so we can write

|+α⟩ =

cosα/2

sinα/2

 (5.105)

If the state has been measured to be

|ϕ⟩ = 1 |+α⟩ + 0 |−α⟩ , (5.106)

then the probability of a second measurement obtaining |+θ⟩ is

|⟨+θ|ϕ⟩|2 = |⟨+θ|+α⟩|2. (5.107)

Expanding just the inner product first we have

⟨+θ|+α⟩ =
[
Cθ/2 S θ/2

] Cα/2

S α/2


= S θ/2S α/2 +Cθ/2Cα/2

= cos
(
θ − α

2

) (5.108)
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So our probability of measuring spin up state |+θ⟩ given the state was
known to have been in spin up state |+α⟩ is

|⟨+θ|+α⟩|2 = cos2
(
θ − α

2

)
(5.109)

Finally, the expectation value for σ · n with respect to |+θ⟩ is

[
Cθ/2 S θ/2

] Cα S α

S α −Cα


Cθ/2

S θ/2


=

[
Cθ/2 S θ/2

] CαCθ/2 + S αS θ/2

S αCθ/2 −CαS θ/2


= Cθ/2CαCθ/2 +Cθ/2S αS θ/2 + S θ/2S αCθ/2 − S θ/2CαS θ/2

= Cα(C2
θ/2 − S 2

θ/2) + 2S αS θ/2Cθ/2

= CαCθ + S αS θ

= cos(α − θ)
(5.110)

Sanity checking this we observe that we have +1 as desired for the α = θ
case.

Exercise 5.5 ([3] pr 5.5)

Consider an arbitrary density matrix, ρ, for a spin 1/2 system. Express
each matrix element in terms of the ensemble averages [S i] where i =
x, y, z.
Answer for Exercise 5.5

Let us omit the spin direction temporarily and write for the density
matrix

ρ = w+ |+⟩ ⟨+| +w− |−⟩ ⟨−|

= w+ |+⟩ ⟨+| + (1 −w+) |−⟩ ⟨−|

= |−⟩ ⟨−| +w+(|+⟩ ⟨+| − |+⟩ ⟨+|)

(5.111)

For the ensemble average (no sum over repeated indices) we have

[S ] = ⟨S ⟩av = w+ ⟨+| S |+⟩ +w− ⟨−| S |−⟩

=
h̄
2

(w+ −w−)

=
h̄
2

(w+ − (1 −w+))

= h̄w+ −
1
2

(5.112)
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This gives us

w+ =
1
h̄

[S ] +
1
2

(5.113)

and our density matrix becomes

ρ =
1
2

(|+⟩ ⟨+| + |−⟩ ⟨−|) +
1
h̄

[S ](|+⟩ ⟨+| − |+⟩ ⟨+|)

=
1
2

I +
1
h̄

[S ](|+⟩ ⟨+| − |+⟩ ⟨+|)
(5.114)

Utilizing

|x+⟩ =
1
√

2

11


|x−⟩ =
1
√

2

 1

−1


|y+⟩ =

1
√

2

11


|y−⟩ =
1
√

2

 1

−i


|z+⟩ =

10


|z−⟩ =

01


(5.115)

We can easily find

|x+⟩ ⟨x+| − |x+⟩ ⟨x+| =

0 1

1 0

 = σx

|y+⟩ ⟨y+| − |y+⟩ ⟨y+| =

0 −i

i 0

 = σy

|z+⟩ ⟨z+| − |z+⟩ ⟨z+| =

1 0

0 −1

 = σz

(5.116)

So we can write the density matrix in terms of any of the ensemble aver-
ages as

ρ =
1
2

I +
1
h̄

[S i]σi =
1
2

(I + [σi]σi) (5.117)
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Alternatively, defining Pi = [σi]ei, for any of the directions i = 1, 2, 3 we
can write

ρ =
1
2

(I +σ · Pi) (5.118)

In equation (5.109) we had a similar result in terms of the polarization
vector P = ⟨α|σ |α⟩, and the individual weights wα, and wβ, but we see
here that this (wα − wβ)P factor can be written exclusively in terms of
the ensemble average. Actually, this is also a result in the text, down in
(5.113), but we see it here in a more concrete form having picked specific
spin directions.

Exercise 5.6 ([3] pr 5.6)

If a Hamiltonian is given byσ ·n where n = (sinα cos β, sinα sin β, cosα),
determine the time evolution operator as a 2 x 2 matrix. If a state at t = 0
is given by

|ϕ(0)⟩ =

ab
 , (5.119)

then obtain |ϕ(t)⟩.
Answer for Exercise 5.6

Before diving into the meat of the problem, observe that a tidy factor-
ization of the Hamiltonian is possible as a composition of rotations. That
is

H = σ · n
= sinασ1(cos β +σ1σ2 sin β) + cosασ3

= σ3
(
cosα + sinασ3σ1eiσ3β

)
= σ3 exp (αiσ2 exp (βiσ3))

(5.120)

So we have for the time evolution operator

U(∆t) = exp(−i∆tH/ h̄) = exp
(
−

∆t
h̄

iσ3 exp(αiσ2 exp (βiσ3))

)
.

(5.121)

Does this really help? I guess not, but it is nice and tidy.
Returning to the specifics of the problem, we note that squaring the

Hamiltonian produces the identity matrix

(σ · n)2 = In2 = I. (5.122)
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This allows us to exponentiate H by inspection utilizing

eiµ(σ·n) = I cos µ + i(σ · n) sin µ (5.123)

Writing sin µ = S µ, and cos µ = Cµ, we have

σ · n =

 Cα S αe−iβ

S αeiβ −Cα

 , (5.124)

and thus

U(∆t) = exp(−i∆tH/ h̄) =

C∆t/ h̄ − iS ∆t/ h̄Cα −iS ∆t/ h̄S αe−iβ

−iS ∆t/ h̄S αeiβ C∆t/ h̄ + iS ∆t/ h̄Cα

 .
(5.125)

Note that as a sanity check we can calculate that U(∆t)U(∆t)† = 1 as
expected.

Now for ∆t = t, we have

U(t, 0)

ab
 =

aCt/ h̄ − aiS t/ h̄Cα − biS t/ h̄S αe−iβ

−aiS t/ h̄S αeiβ + bCt/ h̄ + biS t/ h̄Cα

 . (5.126)

It does not seem terribly illuminating to multiply this all out, but we can
factor the results slightly to tidy it up. That gives us

U(t, 0)

ab
 = cos(t/ h̄)

ab
 + sin(t/ h̄) cosα

−a

b

 + i sin(t/ h̄) sinα

be−iβ

−aeiβ


(5.127)

Exercise 5.7 ([3] pr 5.7)

Consider a system of spin 1/2 particles in a mixed ensemble containing
a mixture of 25% with spin given by |z+⟩ and 75% with spin given by
|x−⟩. Determine the density matrix ρ and ensemble averages ⟨σi⟩av for
i = x, y, z.
Answer for Exercise 5.7
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We have

ρ =
1
4
|z+⟩ ⟨z+| +

3
4
|x−⟩ ⟨x−|

=
1
4

10
 [1 0

]
+

3
4

1
2

 1

−1

 [1 −1
]

=
1
4

1
2

2 0

0 0

 + 3
2

 1 −1

−1 1




(5.128)

Giving us

ρ =
1
8

 5 −3

−3 3

 . (5.129)

Note that we can also factor the identity out of this for

ρ =
1
2

 5/4 −3/4

−3/4 3/4


=

1
2

I +

 1/4 −3/4

−3/4 −1/4




(5.130)

which is just:

ρ =
1
2

(
I +

1
4
σz −

3
4
σx

)
(5.131)

Recall that the ensemble average is related to the trace of the density and
operator product

tr(ρA) =
∑
β

⟨β| ρA |β⟩

=
∑
β

⟨β|

∑
α

wα |α⟩ ⟨α|

 A |β⟩

=
∑
α,β

wα ⟨β|α⟩ ⟨α| A |β⟩

=
∑
α,β

wα ⟨α| A |β⟩ ⟨β|α⟩

=
∑
α

wα ⟨α| A

∑
β

|β⟩ ⟨β|

 |α⟩
=

∑
α

wα ⟨α| A |α⟩

(5.132)
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But this, by definition of the ensemble average, is just

tr(ρA) = ⟨A⟩av . (5.133)

We can use this to compute the ensemble averages of the Pauli matrices

⟨σx⟩av = tr

1
8

 5 −3

−3 3


0 1

1 0


 = −3

4

〈
σy

〉
av
= tr

1
8

 5 −3

−3 3


0 −i

i 0


 = 0

⟨σz⟩av = tr

1
8

 5 −3

−3 3


1 0

0 −1


 = 1

4

(5.134)

We can also find without the explicit matrix multiplication from eq. (5.131)

⟨σx⟩av = tr
1
2

(
σx +

1
4
σzσx −

3
4
σ2

x

)
= −

3
4〈

σy
〉

av
= tr

1
2

(
σy +

1
4
σzσy −

3
4
σxσy

)
= 0

⟨σz⟩av = tr
1
2

(
σz +

1
4
σ2

z −
3
4
σxσz

)
=

1
4
.

(5.135)

(where to do so we observe that trσiσ j = 0 for i , j and trσi = 0, and
trσ2

i = 2.)
We see that the traces of the density operator and Pauli matrix products

act very much like dot products extracting out the ensemble averages,
which end up very much like the magnitudes of the projections in each of
the directions.

Exercise 5.8 ([3] pr 5.8)

Show that the quantity σ · pV(r)σ · p, when simplified, has a term pro-
portional to L ·σ.
Answer for Exercise 5.8

Consider the operation

σ · pV(r)Ψ = −i h̄σk∂kV(r)Ψ

= −i h̄σk(∂kV(r))Ψ + V(r)(σ · p)Ψ
(5.136)
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With r =
√∑

j x2
j , we have

∂kV(r) =
1
2

1
r

2xk
∂V(r)
∂r

, (5.137)

which gives us the commutator

[σ · p,V(r)] = −
i h̄
r
∂V(r)
∂r

(σ · x) (5.138)

Insertion into the operator in question we have

σ · pV(r)σ · p = −
i h̄
r
∂V(r)
∂r

(σ · x)(σ · p) + V(r)(σ · p)2 (5.139)

With decomposition of the (σ ·x)(σ ·p) into symmetric and antisymmetric
components, we should have in the second term our σ ·L

(σ · x)(σ · p) =
1
2
{σ · x,σ · p} +

1
2
[σ · x,σ · p] (5.140)

where we expect σ ·L ∝ [σ · x,σ · p]. Alternately in components

(σ · x)(σ · p) = σkxkσ j p j

= xk pkI +
∑
j,k

σkσ jxk p j

= xk pkI + i
∑

m

ϵk jmσmxk p j

= I(x · p) + i(σ ·L)

(5.141)

Exercise 5.9 ps III, p2.

A particle with intrinsic angular momentum or spin s = 1/2 is prepared
in the spin-up with respect to the z-direction state | f ⟩ = |z+⟩. Determine(

⟨ f | (S z − ⟨ f | S z | f ⟩ 1)2
| f ⟩

)1/2 (5.142)

and (
⟨ f | (S x − ⟨ f | S x | f ⟩ 1)2

| f ⟩
)1/2 (5.143)

and explain what these relations say about the system.
Answer for Exercise 5.9
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Solution: Uncertainty of S z with respect to |z+⟩ Noting that S z | f ⟩ =
S z |z+⟩ = h̄/2 |z+⟩ we have

⟨ f | S z | f ⟩ =
h̄
2

(5.144)

The average outcome for many measurements of the physical quantity
associated with the operator S z when the system has been prepared in the
state | f ⟩ = |z+⟩ is h̄/2.

(S z − ⟨ f | S z | f ⟩ 1) | f ⟩ =
h̄
2
| f ⟩ −

h̄
2
| f ⟩ = 0 (5.145)

We could also compute this from the matrix representations, but it is
slightly more work.

Operating once more with S z − ⟨ f | S z | f ⟩ 1 on the zero ket vector still
gives us zero, so we have zero in the root for eq. (5.142)(

⟨ f | (S z − ⟨ f | S z | f ⟩ 1)2
| f ⟩

)1/2
= 0 (5.146)

What does eq. (5.146) say about the state of the system? Given many
measurements of the physical quantity associated with the operator V =
(S z − ⟨ f | S z | f ⟩ 1)2, where the initial state of the system is always | f ⟩ =
|z+⟩, then the average of the measurements of the physical quantity asso-
ciated with V is zero. We can think of the operator V1/2 = S z − ⟨ f | S z | f ⟩ 1
as a representation of the observable, “how different is the measured result
from the average ⟨ f | S z | f ⟩”.

So, given a system prepared in state | f ⟩ = |z+⟩, and performance of
repeated measurements capable of only examining spin-up, we find that
the system is never any different than its initial spin-up state. We have no
uncertainty that we will measure any difference from spin-up on average,
when the system is prepared in the spin-up state.

Solution: Uncertainty of S x with respect to |z+⟩ For this second part of
the problem, we note that we can write

| f ⟩ = |z+⟩ =
1
√

2
(|x+⟩ + |x−⟩). (5.147)

So the expectation value of S x with respect to this state is

⟨ f | S x | f ⟩ =
1
2

(|x+⟩ + |x−⟩)S x(|x+⟩ + |x−⟩)

= h̄(|x+⟩ + |x−⟩)(|x+⟩ − |x−⟩)

= h̄(1 + 0 + 0 − 1)

= 0

(5.148)
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After repeated preparation of the system in state | f ⟩, the average measure-
ment of the physical quantity associated with operator S x is zero. In terms
of the eigenstates for that operator |x+⟩ and |x−⟩we have equal probability
of measuring either given this particular initial system state.

For the variance calculation, this reduces our problem to the calculation
of ⟨ f | S 2

x | f ⟩, which is

⟨ f | S 2
x | f ⟩ =

1
2

(
h̄
2

)2

(|x+⟩ + |x−⟩)((+1)2 |x+⟩ + (−1)2 |x−⟩)

=

(
h̄
2

)2

,

(5.149)

so for eq. (5.150) we have(
⟨ f | (S x − ⟨ f | S x | f ⟩ 1)2

| f ⟩
)1/2
=

h̄
2

(5.150)

The average of the absolute magnitude of the physical quantity associated
with operator S x is found to be h̄/2 when repeated measurements are
performed given a system initially prepared in state | f ⟩ = |z+⟩. We saw
that the average value for the measurement of that physical quantity itself
was zero, showing that we have equal probabilities of measuring either
± h̄/2 for this experiment. A measurement that would show the system
was in the x-direction spin-up or spin-down states would find that these
states are equi-probable.



6G AU G E I N VA R I A N C E , A N G U L A R M O M E N T U M
A N D S P I N

6.1 interaction with orbital angular momentum

In §6.5 it is stated that we take

A =
1
2

(B × r) (6.1)

and that this reproduces the gauge condition ∇ ·A = 0, and the require-
ment ∇ ×A = B.

These seem to imply that B is constant, which also accounts for the fact
that he writes µ ·L = L · µ.

Consider the gauge condition first, by expanding the divergence of a
cross product

∇ · (F ×G) =
〈
∇ − I

FG −GF
2

〉
= −

1
2
⟨I∇FG − I∇GF⟩

= −
1
2

〈
IG(

→

∇ F) − IF(
→

∇ G) + I(G
←

∇)F − I(F
←

∇)G
〉

= −
1
2

〈
IG(

→

∇ ∧F) − IF(
→

∇ ∧G) + I(G∧
←

∇)F − I(F∧
←

∇)G
〉

=
1
2

〈
G(
→

∇ ×F) − F(
→

∇ ×G) + (G×
←

∇)F − (F×
←

∇)G
〉

=
1
2
(G · (∇ × F) − F · (∇ ×G) − F · (∇ ×G) +G · (∇ × F))

(6.2)

This gives us

∇ · (F ×G) = G · (∇ × F) − F · (∇ ×G) (6.3)

With A = (B × r)/2 we then have

∇ ·A =
1
2

r · (∇ ×B) −
1
2

B · (∇ × r) =
1
2

r · (∇ ×B) (6.4)
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Unless ∇ ×B is always perpendicular to r we can only have a zero diver-
gence when B is constant.

Now, let us look at ∇ ×A. We need another auxiliary identity

∇ × (F ×G) = −I∇∧ (F ×G)

= −
1
2

〈
I
→

∇ (F ×G) − I(F ×G)
←

∇

〉
1

=
1
2

(
−
→

∇ ·(F∧G) + (F∧G)·
←

∇

)
=

1
2

(
−(
→

∇ ·F)G + (
→

∇ ·G)F + F(G·
←

∇) −G(F·
←

∇)
)

=
1
2
(−(∇ · F)G + (∇ ·G)F + (∇ ·G)F − (∇ · F)G)

(6.5)

Here the gradients are all still acting on both F and G. Expanding this out
by chain rule we have

2∇ × (F ×G) = − (F ·∇)G −G(∇ · F) + F(∇ ·G) + (G ·∇)F
+ F(∇ ·G) + (G ·∇)F − (F ·∇)G −G(∇ · F)

(6.6)

or

∇ × (F ×G) = F(∇ ·G) − (F ·∇)G + (G ·∇)F −G(∇ · F) (6.7)

With F = B/2, and G = r, we have

∇ ×A =
1
2

B(∇ · r) −
1
2

(B ·∇)r +
1
2

(r ·∇)B −
1
2

r(∇ ·B) (6.8)

We note that ∇ · r = 3, and

(B ·∇)r = Bk∂kxmem

= Bkδkmem

= B
(6.9)

If B is constant, we have

∇ ×A =
3B
2
−

B
2
= B, (6.10)

as desired. Now this would all likely be a lot more intuitive if one started
with constant B and derived from that what the vector potential was. That
is probably worth also thinking about.



7S T E R N - G E R L AC H

7.1 lecture: stern gerlach

Short class today since 43 minutes was wasted since the feedback given
the Prof was so harsh that he wants to cancel the mid-term because stu-
dents have said they are not prepared. How ironic that this wastes more
time that could be getting us prepared!

7.2 why do this (dirac notation) math?

Because of the Stern-Gerlach Experiment. Explaining the Stern-Gerlach
experiment is just not possible with wave functions and the “old style”
Schrödinger equation that operates on wave functions

−
h̄2

2m
∇

2Ψ(x, t) + V(x)Ψ(x, t) = i h̄
∂Ψ(x, t)
∂t

. (7.1)

Review all of Chapter I so that you understand the idea of a Hermitian
operator and its associated eigenvalues and eigenvectors.

Hermitian operation A is associated with a measurable quantity.

Example 7.1: Spin-up

S z is associated with the measurement of “spin-up” |z+⟩ or “spin-
down” |z−⟩ states in silver atoms in the Stern-Gerlach experiment.

Each operator has associated with it a set of eigenvalues, and those
eigenvalues are the outcomes of possible measurements.

S z can be represented as

S z =
h̄
2

1 0

0 −1

 , (7.2)

or

S z =
h̄
2
(|z+⟩ ⟨z+| − |z−⟩ ⟨z−|) . (7.3)
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Find the eigenvalues of S z in order to establish the possible outcomes
of measurements of the z-component of the intrinsic angular momen-
tum.

This is the point of the course. It is to find the possible outcomes.
You have to appreciate that the measurement in the Stern-Gerlach ex-
periment are trying to find the possible outcomes of the z-component
measurement. The eigenvalues of this operator give us those possible
outcomes.

Example 7.2: What if you put a brick in the experiment?

In the Stern-Gerlach experiment the “spin down” along the z-direction
are atoms are blocked. Diagram: silver going through a hole, with a
brick between the detector and the spin-down location on the screen:

FIXME: scan it. Oct 26, Fig 1.
What is the probability of measuring an outcome of + h̄/2 along

the x-direction?
Recall from Chapter I

|ϕ⟩ =
∑

n

cn |an⟩ (7.4)

We can express an arbitrary state |ϕ⟩ in terms of basis vectors (could
be eigenstates of an operator A, but could be for example the eigen-
states of the operator B, say.) Note that here in physics we will only
work with orthonormal basis sets. The generality. To calculate the
c′ns we take inner products

⟨am|ϕ⟩ =
∑

n

cn ⟨am|an⟩ =
∑

n

cnδmn = cm (7.5)

The probability for measured outcome am is

|cm|
2 = |⟨am|ϕ⟩|

2 (7.6)

In the end we have to appreciate that part of QM is figuring out what
the possible outcomes are and the probabilities of those outcomes.
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Appreciate that |ϕ⟩ = |z+⟩ in this case. This is a superposition
of eigenstates of S z. Why is it a superposition? Because one of the
coefficients is 1, and the other is 0.

|ϕ⟩ = c1 |z+⟩ + c2 |z−⟩ = c1 |z+⟩ + 0 |z−⟩ (7.7)

So

c1 = 1 (7.8)

recall that

S z =
h̄
2

1 0

0 −1


|z+⟩ ↔

10


|z+⟩ ↔

01


(7.9)

Also recall that

S x =
h̄
2

0 1

1 0


|x+⟩ ↔

1
√

2

11


|x−⟩ ↔
1
√

2

 1

−1


(7.10)

(with eigenvalues ± h̄/2).
These eigenvectors are expressed in terms of |z+⟩ and |z−⟩, so that

|x+⟩ =
1
√

2
(|z+⟩ + |z−⟩)

|x−⟩ =
1
√

2
(|z+⟩ − |z−⟩) .

(7.11)
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Outcome + h̄/2 along the x-direction has an associated state |x+⟩.
That probability is

|⟨x+|ϕ⟩|2 =

∣∣∣∣∣∣ 1
√

2
(⟨z+| + ⟨z−|) |ϕ⟩

∣∣∣∣∣∣2
=

1
2
|⟨z+|ϕ⟩ + ⟨z−|ϕ⟩|2

=
1
2
|⟨z+|z+⟩ + ⟨z−|z+⟩|2

=
1
2
|1 + 0|2

=
1
2

(7.12)

Example 7.3: Variation. With a third splitter (SGZ)

The probability for outcome + h̄/2 along z after the second SGZ mag-
nets is∣∣∣〈z+∣∣∣ϕ′〉∣∣∣2 = |⟨z+|x+⟩|2

=

∣∣∣∣∣∣⟨z+| 1
√

2
(|z+⟩ + |z−⟩)

∣∣∣∣∣∣2
=

1
2
|⟨z+|z+⟩ + ⟨z+|z−⟩|2

=
1
2

(7.13)

My question: what is the point of the brick when the second splitter
is already only being fed by the “spin up” stream. Answer: just to en-
sure that the states are prepared in the expected way. If the beams are
two close together, without the brick perhaps we end up with some
spin up in the upper stream. Note that the beam separation here is
on the order of centimeters. ie: imagine that it is hard to redirect just
one of the beams to the next stage splitter without blocking one of
the beams or else the next splitter inevitably gets fed with some of
both. Might be nice to see a real picture of the Stern-Gerlach appara-
tus complete with scale.
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Why silver? Silver has 47 electrons, all of which but one are in
spin pairs. Only the “outermost” electron is free to have independent
spin.

Aside: Note that we have the term “Collapse” to describe the now-
known state after measurement. There is some debate about the ap-
plicability of this term, and the interpretation that this imposes. Will
not be discussed here.

7.3 on section 5.11, the complete wavefunction

Aside: section 5.12 (Pauli exclusion principle and Fermi energy) excluded.
The complete wavefunction

|ϕ⟩ = the complete state of an atomic in the Stern-Gerlach experiment

= |u⟩ ⊗ |χ⟩
(7.14)

We also write

|u⟩ ⊗ |χ⟩ = |u⟩ |χ⟩ (7.15)

where |u⟩ is associate with translation, and |χ⟩ is associated with spin.
This is a product state where the ⊗ is a symbol for states in two or more
different spaces.





8L E C T U R E : M A K I N G S E N S E O F Q UA N T U M
M E C H A N I C S

8.0.1 Discussion

Desai: “Quantum Theory is a linear theory ...” We can discuss SHM
without using sines and cosines or complex exponentials, say, only using
polynomials, but it would be HARD to do so, and much more work. We
want the framework of Hilbert space, linear operators and all the rest to
make our life easier.

Dirac: “All the same the Mathematics is only a tool and one should
learn to hold the physical ideas on one’s mind without reference to the
mathematical form” You have to be able to understand the concepts and
apply the concepts as well as the mathematics.

Deyirmenjian: “Think before you compute.” Joke: With his name in-
cluded it is the 3Ds. There is a lot of information included in the question,
so read it carefully.

Q: The equation A |an⟩ = an |an⟩ for operator A, eigenvalue an, n = 1, 2
and eigenvector |an⟩ that is identified by the eigenvalue an says that

• (a) measuring the physical quantity associated with A gives result
an

• (b) A acting on the state |an⟩ gives outcome an

• (c) the possible outcomes of measuring the physical quantity asso-
ciated with A are the eigenvalues an

• (d) Quantum mechanics is hard.

|an⟩ is a vector in a vector space or Hilbert space identified by some
quantum number an, n ∈ 1, 2, · · ·.

The an values could be expressions. Example, Angular momentum is
describe by states |lm⟩ , l = 0, 1, 2, · · · and m = 0,±1,±2
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Recall that the problem is

L2 |lm⟩ = l(l + 1) h̄2 |lm⟩

Lz |lm⟩ = m h̄ |lm⟩
(8.1)

We have respectively eigenvalues l(l + 1) h̄2, and m h̄.

A: Answer is (c). an is not a measurement itself. These represent possi-
bilities. Contrast this to classical mechanics where time evolution is given
without probabilities

Fnet = ma
x(0), x′(0) =⇒ x(t), x′(t)

(8.2)

The eigenvalues are the possible outcomes, but we only know statistically
that these are the possibilities.

(a),(b) are incorrect because we do not know what the initial state is,
nor what the final outcome is. We also can not say “gives result an”. That
statement is too strong!

Q: We would not say that A acts on pure state |an⟩, instead. If the state
of the system is |ψ⟩ = |a5⟩, the probability of measuring outcome a5 is

• (a) a5

• (b) a2
5

• (c) ⟨a5|ψ⟩ = ⟨a5|a5⟩ = 1.

• (d) |⟨a5|ψ⟩|
2 = |⟨a5|a5⟩|

2 = |1|2 = 1.

A: (d) The eigenformula equation does not say anything about any spe-
cific outcome. We want to talk about probability amplitudes. When the
system is prepared in a particular pure eigenstate, then we have a guaran-
tee that the probability of measuring that state is unity. We would not say
(c) because the probability amplitudes are the absolute square of the com-
plex number ⟨an|an⟩. The probability of outcome an, given initial state |Ψ⟩
is |⟨an|Ψ⟩|2.

Wave function collapse: When you make a measurement of the phys-
ical quantity associated with A, then the state of the system will be the
value |a5⟩. The state is not the number (eigenvalue) a5.
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Example: SGZ. With a “spin-up” measurement in the z-direction, the
state of the system is |z+⟩. The state before the measurement, by the mag-
net, was |Ψ⟩. After the measurement, the state describing the system is
|ϕ⟩ = |z+⟩. The measurement outcome is + h̄

2 for the spin angular momen-
tum along the z-direction.

FIXME: SGZ picture here.
There is an interaction between the magnet and the silver atoms coming

out of the oven. Before that interaction we have a state described by |Ψ⟩.
After the measurement, we have a new state |ϕ⟩. We call this the collapse
of the wave function. In a future course (QM interpretations) the language
used and interpretations associated with this language can be discussed.

Q: Express Hermitian operator A in terms of its eigenvectors.

Q: The above question is vague because

• (a) The eigenvectors may form a discrete set.

• (b) The eigenvectors may form a continuous set.

• (c) The eigenvectors may not form a complete set.

• (d) The eigenvectors are not given.

A: None of the above. A Hermitian operator is guaranteed to have a
complete set of eigenvectors. The operator may also be both discrete and
continuous (example: the complete spin wave function).

discrete:

A = A1

= A

∑
n

|an⟩ ⟨an|


=

∑
n

(A |an⟩) ⟨an|

=
∑

n

(an |an⟩) ⟨an|

=
∑

n

an |an⟩ ⟨an|

(8.3)
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continuous:

A = A1

= A
(∫

dα |α⟩ ⟨α|
)

=

∫
dα(A |α⟩) ⟨α|

=

∫
dα(α |α⟩) ⟨α|

=

∫
dαα |α⟩ ⟨α|

(8.4)

An example is the position eigenstate |x⟩, eigenstate of the Hermitian op-
erator X. α is a label indicating the summation.

general case with both discrete and continuous:

A = A1

= A

∑
n

|an⟩ ⟨an| +

∫
dα |α⟩ ⟨α|


=

∑
n

(A |an⟩) ⟨an| +

∫
dα (A |α⟩) ⟨α|

=
∑

n

(an |an⟩) ⟨an| +

∫
dα (α |α⟩) ⟨α|

=
∑

n

an |an⟩ ⟨an| +

∫
dαα |α⟩ ⟨α|

(8.5)

Problem Solving

• MODEL – Quantum, linear vector space

• VISUALIZE – Operators can have discrete, continuous or both dis-
crete and continuous eigenvectors.

• SOLVE – Use the identity operator.

• CHECK – Does the above expression give A |an⟩ = an |an⟩.
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Check

A |am⟩ =
∑

n

an |an⟩ ⟨an|am⟩ +

∫
dαα |α⟩ ⟨α|an⟩

=
∑

n

an |an⟩ δnm

= am |am⟩

(8.6)

What remains to be shown, used above, is that the continuous and discrete
eigenvectors are orthonormal. He has an example vector space, not yet
discussed.

Q: what is ⟨Ψ1| A |Ψ1⟩, where A is a Hermitian operator, and |Ψ1⟩ is a
general state.

A: ⟨Ψ1| A |Ψ1⟩ = average outcome for many measurements of the phys-
ical quantity associated with A such that the system is prepared in state
|Ψ1⟩ prior to each measurement.

Q: What if the preparation is |Ψ2⟩. This is not necessarily an eigenstate
of A, it is some linear combination of eigenstates. It is a general state.

A: ⟨Ψ2| A |Ψ2⟩ = average of the physical quantity associated with A,
but the preparation is |Ψ2⟩, not |Ψ1⟩.

Q: What if our initial state is a little bit of |Ψ1⟩, and a little bit of |Ψ2⟩,
and a little bit of |ΨN⟩. ie: how to describe what comes out of the oven
in the Stern-Gerlach experiment. That spin is a statistical mixture. We
could understand this as only a statistical mix. This is a physical relevant
problem.

A: To describe that statistical situation we have the following.

⟨A⟩average =
∑

j

w j
〈
Ψ j

∣∣∣ A
∣∣∣Ψ j

〉
(8.7)

We sum up all the expectation values modified by statistical weighting
factors. These w j’s are statistical weighting factors for a preparation asso-
ciated with

∣∣∣Ψ j
〉
, real numbers (that sum to unity). Note that these states∣∣∣Ψ j

〉
are not necessarily orthonormal.
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With insertion of the identity operator we have

⟨A⟩average =
∑

j

w j
〈
Ψ j

∣∣∣ 1A
∣∣∣Ψ j

〉
=

∑
j

w j
〈
Ψ j

∣∣∣ ∑
n

|an⟩ ⟨an|

 A
∣∣∣Ψ j

〉
=

∑
j

∑
n

w j
〈
Ψ j

∣∣∣an
〉
⟨an| A

∣∣∣Ψ j
〉

=
∑

j

∑
n

w j ⟨an| A
∣∣∣Ψ j

〉 〈
Ψ j

∣∣∣an
〉

=
∑

n

⟨an| A

∑
j

w j
∣∣∣Ψ j

〉 〈
Ψ j

∣∣∣ |an⟩

(8.8)

This inner bit is called the density operator ρ

ρ ≡
∑

j

w j
∣∣∣Ψ j

〉 〈
Ψ j

∣∣∣ (8.9)

Returning to the average we have

⟨A⟩average =
∑

n

⟨an| Aρ |an⟩ ≡ tr(Aρ) (8.10)

The trace of an operator A is

tr(A) =
∑

j

〈
a j

∣∣∣ A
∣∣∣a j

〉
=

∑
j

A j j (8.11)

8.1 projection operator

Returning to the last lecture. From chapter 1, we have

Pn = |an⟩ ⟨an| (8.12)

is called the projection operator. This is physically relevant. This takes a
general state and gives you the component of that state associated with
that eigenvector. Observe

Pn |ϕ⟩ = |an⟩ ⟨an|ϕ⟩ = ⟨an|ϕ⟩

coefficient

|an⟩

(8.13)
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Example 8.1: Projection operator for the |z+⟩ state

Pz+ = |z+⟩ ⟨z+| (8.14)

We see that the density operator

ρ ≡
∑

j

w j
∣∣∣Ψ j

〉 〈
Ψ j

∣∣∣ , (8.15)

can be written in terms of the Projection operators∣∣∣Ψ j
〉 〈

Ψ j
∣∣∣ = Projection operator for state

∣∣∣Ψ j
〉

(8.16)

The projection operator is like a dot product, determining the quan-
tity of a state that lines in the direction of another state.

Q: What is the projection operator for spin-up along the z-direction.

A:

Pz+ = |z+⟩ ⟨z+| (8.17)

Or in matrix form with

⟨z+| =

10


⟨z−| =

01
 ,

(8.18)

so

Pz+ = |z+⟩ ⟨z+| =

10
 [1 0

]
=

1 0

0 0

 (8.19)

Example 8.2: A harder problem.
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What is Pχ, where

|χ⟩ =

c1

c2

 (8.20)

Note: We want normalized states, with ⟨χ|χ⟩ = |c1|
2 + |c2|

2 = 1.

A:

Pχ = |χ⟩ ⟨χ| =

c∗1c∗2

 [c1 c2

]
=

c∗1c1 c∗1c2

c∗2c1 c∗2c2

 (8.21)

Observe that this has the proper form of a projection operator is that
the square is itself

(|χ⟩ ⟨χ|)(|χ⟩ ⟨χ|) = |χ⟩ (⟨χ|χ⟩) ⟨χ|

= |χ⟩ ⟨χ|
(8.22)

Example 8.3: Projection

Show that Pχ = a01+a ·σ, where a = (ax, ay, az) andσ = (σx, σy, σz).

A: See Section 5.9. Note the following about computing (σ · a)2.

(σ · a)2 = (axσx + ayσy + azσz)(axσx + ayσy + azσz)

= axaxσxσx + axayσxσy + axazσxσz

+ ayaxσyσx + ayayσyσy + ayazσyσz

+ azaxσzσx + azayσzσy + azazσzσz

= (a2
x + a2

y + a2
z )I + axay(σxσy +σyσx)

+ ayaz(σyσz +σzσy) + azax(σzσx +σxσz)

= |x|2I

(8.23)

So we have

(σ · a)2 = (a · a)1 ≡ a2 (8.24)



8.1 projection operator 151

Where the matrix representations

σx ↔

0 1

1 0


σy ↔

0 −i

i 0


σz ↔

1 0

0 −1

 ,
(8.25)

would be used to show that

σ2
x = σ

2
y = σ

2
z = I (8.26)

and

σxσy = −σyσx

σyσz = −σzσy

σzσx = −σxσz

(8.27)





9B O U N D S TAT E P RO B L E M S

9.1 hydrogen like atom , and laguerre polynomials

For the hydrogen atom, after some variable substitutions the radial part of
the Schrödinger equation takes the form

d2Rl

dρ2 +
2
ρ

dRl

dρ
+

(
λ

ρ
−

l(l + 1)
ρ2 −

1
4

)
Rl = 0 (9.1)

In [3] §8.8 it is argued that the functions Rl are of the form

Rl = ρ
sL(ρ)e−ρ/2 (9.2)

where L is a polynomial in ρ, specifically Laguerre polynomials. Let us
look at some of those details a bit more closely. The first part of the ar-
gument comes from considering the ρ → ∞ case, where Schrödinger’s
equation is approximately

d2Rl

dρ2 −
1
4

Rl ≈ 0. (9.3)

This large ρ approximation has solutions e±ρ/2, and we take the negative
sign case as physically meaningful in order for the wave function to be
normalizable.

Next it is argued that polynomial multiples of this will also be ap-
proximate solutions. Utilizing monomial multiple of the decreasing ex-
ponential as a trial solution, let us compute how this fits into the radial
Schrödinger’s equation eq. (9.1) above. Write

Rl = ρ
se−ρ/2 (9.4)

The derivatives are

R′l = ρ
s−1

(
s −

ρ

2

)
e−ρ/2

R′′l = ρ
s−2

(
s(s − 1) − sρ +

1
4
ρ2

)
e−ρ/2

(9.5)
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and substitution yields

ρs−2e−ρ/2 ((s − ρ)(s + 1) + λρ − l(l + 1)) (9.6)

There are two things that this can show. The first is that for ρ → ∞ this
produces a polynomial with degree s− 2 and s− 1 terms multiplied by the
exponential, and we have approximately

ρs−1e−ρ/2(λ − s − 1) (9.7)

The s − 1 terms will dominate the polynomial, but the exponential domi-
nate all, approaching zero for ρ → ∞, just as the non-polynomial multi-
plied e−ρ/2 approximate solution will. This confirms that in the limit this
polynomial multiplied exponential still has the desired behavior in the
large ρ limit. Also observe that in the limit of small ρ we have approxi-
mately

ρs−2e−ρ/2 (s(s + 1) − l(l + 1)) (9.8)

Since ρs−2 → ∞ as ρ → 0, we require either a different trial solution, or
s = l to have a normalizable wavefunction.

Before settling on s = l let us compute the derivatives for a more gen-
eral trial function, of the form eq. (9.2), and substitute those. After a bit
of computation we find

R′l = ρ
s−1e−ρ/2

((
s −

ρ

2

)
L + ρL′

)
(9.9)

R′′l = ρ
s−2e−ρ/2

((
s(s − 1) − sρ +

ρ2

4

)
L +

(
2sρ − ρ2

)
L′ + ρ2L′′

)
(9.10)

Putting these together and substitution back into eq. (9.1) yields

0 = ρs−2e−ρ/2
(
L ((s − ρ)(s + 1) + ρλ − l(l + 1)) + ρL′ (2(s + 1) − ρ) + ρ2L′′

)
(9.11)

In the ρ→ 0 limit where the ρs−2 terms dominate eq. (9.12) becomes

0 ≈ ρs−2L (s(s + 1) − l(l + 1)) (9.12)

Again, this provides the s = l or s = −(l + 1) possibilities from the text,
and we discard s = −(l + 1) due to non-normalizability. A side question.
How does one solve integer equations like this?
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What remains? With s = l killing off the ρs−2 terms, what is our differ-
ential equation for L?

0 = ρL′′ + L′ (2(l + 1) − ρ) + L (λ − (l + 1)) (9.13)

Comparing this to [14] we have something pretty close to the stated dif-
ferential equation for the Laguerre polynomial. Ours is of the form

0 = ρL′′ + L′ (m + 1 − ρ) + Ln, (9.14)

where the differential equation in the wikipedia article has m = 0. No
change of variables involving a scalar multiplicative factor for ρ appears
to be able to get it into that form, and I am guessing this is the differential
equation for the associated Laguerre polynomial (something not stated in
the wikipedia article).

Let us derive the recurrence relations for the coefficients, and work out
the first few such polynomials to compare. Plugging in a polynomial of
the form

L =
r∑

k=0

akρ
k, (9.15)

where ar is assumed to be non-zero. We also assume that this polynomial
is not an infinite series (ruling out the infinite series with convergence
arguments is covered nicely in the text).

we have for eq. (9.14)

0 =
r∑

k=0

ak
(
k(k − 1)ρk−1 + k(m + 1)ρk−1 − kρk + nρk

)
=

r∑
k′=1

ρk′−1ak′k′ (k′ − 1 + (m + 1)) +
r∑

k=0

ρkak (−k + n)

=

r−1∑
k=0

ρkak+1(k + 1) (k + (m + 1)) +
r∑

k=0

ρkak (−k + n)

=

r−1∑
k=0

ρk(ak+1(k + 1)(k +m + 1) + ak(n − k)) + ar(n − r)ρr

(9.16)

Observe first that since we have assumed ar , 0, we must have r = n.
Requiring termwise equality with zero gives us the recurrence relation
between the coefficients, for k ∈ [0, n − 1]

ak+1 = ak
k − n

(k + 1)(k +m + 1)
. (9.17)
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Repeated application shows the pattern for these coefficients, and with
a0 = 1 we have

a1 = −
n − 0

(1)(m + 1)

a2 =
(n − 1)(n − 0)

(2)(1)(m + 2)(m + 1)

a3 = −
(n − 2)(n − 1)(n − 0)

(3)(2)(1)(m + 3)(m + 2)(m + 1)
,

(9.18)

With

ak =
(−1)k(n − (k − 1)) · · · (n − 1)(n − 0)

k! (m + k) · · · (m + 2)(m + 1)

=
(−1)kn! m!

k! (m + k)! (n − (k − 1) − 1)!
,

(9.19)

Or

ak =
(−1)kn! m!

k! (m + k)! (n − k)!
. (9.20)

Forming the complete series, we can get at the form of the associated
Laguerre polynomials in the wikipedia article without too much trouble

Lm
n (ρ) ∝ 1 +

n∑
k=1

(−1)k

k!
n! m!

(n − k)! (m + k)!
ρk

∝
(n +m)!

n! m!
+

n∑
k=1

(−1)k

k!
(n +m)!

(n − k)! (m + k)!
ρk.

(9.21)

Dropping the proportionality, this simplifies to just

Lm
n (ρ) =

n∑
k=0

(−1)k

k!

(
n +m
m + k

)
ρk (9.22)

This is not necessarily the form of the polynomials used in the text. To
see if that is the case, we need to check the normalization.

According to the wikipedia article we have for the associated Laguerre
polynomials as defined above∫ ∞

0
ρme−ρLm

n (ρ)Lm
n′(ρ)dρ =

(n +m)!
n!

δn,n′ (9.23)
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whereas in the text we have∫ ∞

0
ρ2l+2e−ρ

(
L2l+1

n+l (ρ)
)2

dρ =
2n((n + l)! )3

(n − l − 1)!
. (9.24)

It seems clear that two different notations are being used. In this physical
context of wave functions we want the normalization defined by

1 =
∫ ∞

0
ρ2R2

l (ρ)dρ =
∫ ∞

0
ρ2l+2e−ρL2(ρ)dρ (9.25)

Using the wikipedia notation, with

L(ρ) = AL2l+1
n , (9.26)

we want

1 =
∫

ρ2l+2e−ρL2(ρ)dρ

= A2
n∑

a,b=0

(−1)a+b

a! b!

(
n + 2l + 1
2l + 1 + a

)(
n + 2l + 1
2l + 1 + b

) ∫ ∞

0
dρρ2l+2+a+be−ρ

(9.27)

Since
∫ ∞

0 dρρae−ρ = Γ(a + 1) = a! we have

1 = A2
n∑

a,b=0

(−1)a+b

a! b!

(
n +m
m + a

)(
n +m
m + b

)
(m + 1 + a + b)! (9.28)

It looks like there is probably some way to simplify this, and if so we
would be able to map the notation used (without definition) used in the
text, to the notation used in the wikipedia article. If we do not care about
that, nor the specifics of the normalization constant then there is not too
much more to say.

This is an ugly kind of place to leave things, but that is enough for today.
It is too bad that the text is not just more explicit, and it is probably best to
refer elsewhere for any more detail. With no specifics about the functions
themselves in any form, one has to do that anyways.

9.2 examples

Motivation. Motivation for today’s physics is solar Cell technology and
quantum dots.
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Example 9.1

What are the eigenvalues and eigenvectors for an electron trapped in
a 1D potential well?

MODEL Quantum state |Ψ⟩ describes the particle. What V(X) should
we choose? Try a quantum well with infinite barriers first.

These spherical quantum dots are like quantum wells. When you
trap electrons in this scale you will get energy quantization.

VISUALIZE Draw a picture for V(X) with infinite spikes at ±a. (ie:
figure 8.1 in the text).

SOLVE First task is to solve the time independent Schrödinger
equation.

H |Ψ⟩ = E |Ψ⟩ (9.29)

derivable from

H |Ψ⟩ = i h̄
∂

∂t
|Ψ⟩ (9.30)

In the position representation, we project ⟨x| onto H |Ψ⟩ and solve
for ⟨x|Ψ⟩ = Ψ(x). For the problems in Chapter 8,

H =
P2

2m
+ V(X,Y,Z), (9.31)

where

P = momentum operator

X = position operator

m = electron mass

(9.32)

We should be careful to be strict about the notation, and not inter-
change the operators and their specific representations (ie: not inter-
changing “little-x” and “big-x”) as we see in the text in this chapter.

Here the potential energy operator V(X,Y,Z) is time independent.
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If i h̄ d|Ψ⟩
dt = H |Ψ⟩ and H is time independent then |Ψ⟩ = |u⟩ e−iEt/ h̄

implies

i h̄
−iE

h̄
|u⟩ e−iEt/ h̄ = H |u⟩ e−iEt/ h̄ (9.33)

or

E |u⟩ = H |u⟩ (9.34)

Here E is the energy eigenvalue, and |u⟩ is the energy eigenstate. Our
differential equation now becomes

−
h̄2

2m
d2u(x)

dx2 + V(x)u(x) = Eu(x) (9.35)

where V(x) = 0 for |x| < a. We will not find anything like this for
real, but this is our first approximation to the quantum dot.

Our differential equation in the well is now

−
h̄2

2m
d2u(x)

dx2 = Eu(x) (9.36)

or with α =
√

2mE/ h̄2

d2u(x)
dx2 u(x) = −

2mE

h̄2 u(x) = −α2u(x) (9.37)

Our solution for |x| < a is then

u(x) = A cosαx + B sinαx (9.38)

and for |x| > a we have u(x) = 0 since V(x) = ∞.
Setting u(a) = u(−a) = 0 we have

A cosαa + B sinαa = 0

A cosαa − B sinαa = 0
(9.39)
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Type I B = 0, A cosαa = 0. For A , 0 we must have

cosαa = 0 (9.40)

or αa = nπ2 , where n = 1, 3, 5, ..., so our solution is

u(x) = A cos
(nπ
2a

x
)

(9.41)

Type II A = 0, B sinαa = 0. For B , 0 we must have

sinαa = 0 (9.42)

or αa = nπ2 , where n = 1, 2, 4, ..., so our solution is

u(x) = B sin
(nπ
2a

x
)

(9.43)

Via determinant We could also writecosαa sinαa

cosαa − sinαa


AB

 = 0 (9.44)

and then must have zero determinant, or

−2 sinαa cosαa = − sin 2αa (9.45)

so we must have

2αa = nπ (9.46)

or

α =
nπ
2a

(9.47)

regardless of A and B. We can then determine the solutions eq. (9.41),
and eq. (9.43) simply by noting that this value for α kills off either
the sine or cosine terms of eq. (9.38) depending on whether n is even
or odd.
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CHECK

un(x) = A cos
(nπ
2a

x
)

un(x) = B sin
(nπ
2a

x
) (9.48)

satisfy the time independent Schrödinger equation, and the corre-
sponding eigenvalues from from

α =

√
2mE

h̄2 , (9.49)

or

E =
h̄2α2

2m
=

h̄2

2m

(nπ
2a

)2
(9.50)

for n = 1, 2, 3, · · ·.

On the derivative of u at the boundaries Integrating

−
h̄2

2m
d2u(x)

dx2 u(x) + V(x)u(x) = Eu(x), (9.51)

over [a − ϵ, a + ϵ] we have

−
h̄2

2m

∫ a−ϵ

a−ϵ

d2u(x)
dx2 dx +

∫ a−ϵ

a−ϵ
V(x)u(x)dx =

∫ a−ϵ

a−ϵ
Eu(x)dx

−
h̄2

2m

(
du
dx

∣∣∣∣∣a+ϵ
a−ϵ
+ 0 = 0

) (9.52)

which gives us

du
dx

∣∣∣∣∣
a+ϵ
−

du
dx

∣∣∣∣∣
a−ϵ
= 0 (9.53)

or

du
dx

∣∣∣∣∣
a+ϵ
=

du
dx

∣∣∣∣∣
a−ϵ

(9.54)
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We can infer how the derivative behaves over the potential discon-
tinuity, so in the limit where ϵ → 0 we must have wave function
continuity at despite the potential discontinuity.

This sort of analysis, which is potential dependent, we see that for
this infinite potential well, our derivative must be continuous at the
boundary.
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Example 9.2: Non-infinite step well potential.

Given a zero potential in the well |x| < a

−
h̄2

2m
d2u(x)

dx2 u(x) + 0 = Eu(x), (9.55)

and outside of the well |x| > a

−
h̄2

2m
d2u(x)

dx2 u(x) + V0u(x) = Eu(x) (9.56)

Inside of the well, we have the solution worked previously, with α =√
2mE/ h̄2

u(x) = A cosαx + B sinαx (9.57)

Then we have outside of the well the same form

−
h̄2

2m
d2u(x)

dx2 u(x) = (E − V0)u(x) (9.58)

With β =
√

2m(V0 − E)/ h̄2, this is

d2u(x)
dx2 u(x) = β2u(x) (9.59)

If V0 − E > 0, we have V0 > E, and the states are “bound” or “local-
ized” in the well.

Our solutions for this V0 > E case are then

u(x) = Deβx

u(x) = Ce−βx (9.60)

for x ≤ a, and x ≥ a respectively.
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Question: Why can we not have

u(x) = Deβx +Ce−βx (9.61)

for x ≤ −a?

Answer: As x→ −∞ we would then have

u(x)→ Ceβ∞ → ∞ (9.62)

This is a non-physical solution, and we discard it based on our nor-
malization requirement.

Our total solution, in regions x < −a, |x| ≤ a, and x > a respec-
tively

u1(x) = Deβx

u2(x) = A cosαx + B sinαx

u3(x) = Ce−βx

(9.63)

To find the coefficients, set u1(−a) = u2(−a), u2(a) = u3(a) u′1(−a) =
u′2(−a), u′2(a) = u′3(a), and NORMALIZE u(x).

Now, how about in region 2 (x < −a), V0 < E implies that our
equation is

d2u(x)
dx2 u(x) = −

2m

h̄2 (E − V0)u(x) = −k2u(x) (9.64)

We no longer have quantized energy for such a solution. These corre-
spond to the “unbound” or “continuum” states. Even though we do
not have quantized energy we still have quantum effects. Our solu-
tion becomes

u1(x) = C2eikx + D2e−ikx

u2(x) = Aeiαx + Be−iαx

u3(x) = C3eikx

(9.65)

Question. Why no D2e−ikx, in the u3(x) term? Answer. We can,
but this is not physically relevant. Why is because we associate eikx

with an incoming wave, with reflection in the x < −a interval, and
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both e±iαx in the |x| < a interval, but just an outgoing wave eikx in the
x > a region.

FIXME: scan picture: 9.1 in my notebook.
Observe that this is not normalizable as is. We require “delta-

function” normalization. What we can do is ask about current densi-
ties. How much passes through the barrier, and so forth.

Note to self. We probably really we want to consider a wave packet
of states, something like:

Ψ1(x) =
∫

dk f1(k)eikx

Ψ2(x) =
∫

dα f2(α)eiαx

Ψ3(x) =
∫

dk f3(k)eikx

(9.66)

Then we would have something that we can normalize. Play with
this later.

9.3 lecture: hydrogen atom

Introduce the center of mass coordinates We will want to solve this
using the formalism we have discussed. The general problem is a proton,
positively charged, with a nearby negative charge (the electron).

Our equation to solve is

(
−

h̄2

2m1
∇

2
1 −

h̄2

2m2
∇

2
2

)
u(r1, r2) + V(r1, r2)u(r1, r2) = Eu(r1, r2).

(9.67)

Here
(
− h̄2

2m1
∇2

1 −
h̄2

2m2
∇2

2

)
is the total kinetic energy term. For hydrogen

we can consider the potential to be the Coulomb potential energy function
that depends only on r1 − r2. We can transform this using a center of
mass transformation. Introduce the center of mass coordinate and relative
coordinate vectors
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R =
m1r1 +m2r2

m1 +m2
(9.68)

r = r1 − r2. (9.69)

The notation ∇2
k represents the Laplacian for the positions of the k’th

particle, so that if r1 = (x1, x2, x3) is the position of the first particle, the
Laplacian for this is:

∇
2
1 =

∂2

∂x2
1

+
∂2

∂y2
1

+
∂2

∂z2
1

(9.70)

Here R is the center of mass coordinate, and r is the relative coordinate.
With this transformation we can reduce the problem to a single coordinate
PDE.

We set u(r1, r2) = u(r)U(R) and E = Erel + Ecm, and get

−
h̄2

2µ
∇r

2u(r) + V(r)u(r) = Erelu(r) (9.71)

and

−
h̄2

2M
∇R

2U(R) = EcmU(R) (9.72)

where M = m1 + m2 is the total mass, and µ = m1m2/M is the reduced
mass.

Aside: WHY do we care (slide of Hydrogen line spectrum shown)?
This all started because when people looked at the spectrum for the hy-
drogen atom, a continuous spectrum was not found. Instead what was
found was quantized frequencies. All this abstract Hilbert space notation
with its bras and kets is a way of representing observable phenomena.

Also note that we have the same sort of problems in electrodynamics
and mechanics, so we are able to recycle this sort of work, either applying
it in those problems later, or using those techniques here.

In Electromagnetism these are the problems involving the solution to

∇ ·E = 0 (9.73)

or for

E = −∇Φ (9.74)
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∇
2Φ = 0, (9.75)

where E is the electric field and Φ is the electric potential.
We need sol solve eq. (9.71) for u(r). In spherical coordinates

−
h̄2

2m
1
r

d2

dr2 (rRl) +
(
V(r) +

h̄2

2m
l(l + 1)

)
Rl = ERl (9.76)

where

u(r) = Rl(r)Ylm(θ, ϕ) (9.77)

This all follows by the separation of variables technique that we will use
here, in E and M, in PDEs, and so forth.

FIXME: picture drawn. Theta measured down from e3 axis to the posi-
tion r and ϕmeasured in the x, y plane measured in the e1 to e2 orientation.

For the hydrogen atom, we have

V(r) = −
Ze2

r
(9.78)

Here is what this looks like.
We introduce

ρ = αr (9.79)

α =

√
−8mE

h̄2 (9.80)

λ =
2mZe2

h̄2α
(9.81)

2m(−E)
h̄2α2

=
1
4

(9.82)

and write

d2Rl

dρ2 +
2
ρ

dRl

dρ
+

(
λ

ρ
−

l(l + 1)
ρ2 −

1
4

)
Rl = 0 (9.83)

http://www.wolframalpha.com/input/?i=graph+-1/r


168 bound state problems

Large ρ limit For ρ→ ∞, eq. (9.83) becomes

d2Rl

dρ2 −
1
4

Rl = 0 (9.84)

which implies solutions of the form

Rl(ρ) = e±ρ/2 (9.85)

but keep Rl(ρ) = e−ρ/2 and note that Rl(ρ) = F(ρ)e−ρ/2 is also a solution
in the limit of ρ→ ∞, where F(ρ) is a polynomial.

Let F(ρ) = ρsL(ρ) where L(ρ) = a0 + a1ρ + · · · aνρν + · · ·.

Small ρ limit We also want to consider the small ρ limit, and piece to-
gether the information that we find. Think about the following. The small
ρ→ 0 or r → 0 limit gives

d2Rl

dρ2 −
l(l + 1)
ρ2 Rl = 0 (9.86)

Question: Is this correct? Not always. Also: we will also think about
the l = 0 case later (where λ/ρ would probably need to be retained.)

We need:

d2Rl

dρ2 +
2
ρ

dRl

dρ
−

l(l + 1)
ρ2 Rl = 0 (9.87)

Instead of using eq. (9.86) as in the text, we must substitute Rl = ρ
s into

the above to find

s(s − 1)ρs−2 + 2sρs−2 − l(l + 1)ρs−2 = 0 (9.88)

(s(s − 1) + 2s − l(l + 1)) ρs−2 = (9.89)

for this equality for all ρ we need

s(s − 1) + 2s − l(l + 1) = 0 (9.90)

Solutions s = l and s = −(l + 1) can be found to this, and we need s
positive for normalizability, which implies

Rl(ρ) = ρlL(ρ)e−ρ/2. (9.91)
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Now we need to find what restrictions we must have on L(ρ). Recall that
we have L(ρ) =

∑
aνρν. Substitution into eq. (9.86) gives

ρ
d2L
dρ
+ (2(l + 1) − ρ)

dL
dρ
+ (λ − l − 1)L = 0 (9.92)

We get

A0 + A1ρ + · · · Aνρν + · · · = 0 (9.93)

For this to be valid for all ρ,

aν+1 ((ν + 1)(ν + 2l + 2)) − aν (ν − λ + l + 1) = 0 (9.94)

or

aν+1

aν
=

ν − λ + l + 1
(ν + 1)(ν + 2l + 2)

(9.95)

For large ν we have

aν+1

aν
=

1
ν + 1

→
1
ν

(9.96)

Recall that for the exponential Taylor series we have

eρ = 1 + ρ +
ρ2

2!
+ · · · (9.97)

for which we have

aν+1

aν
→

1
ν

(9.98)

L(ρ) is behaving like eρ, and if we had that

Rl(ρ) = ρlL(ρ)e−ρ/2 → ρleρe−ρ/2 = ρleρ/2 (9.99)

This is divergent, so for normalizable solutions we require L(ρ) to be a
polynomial of a finite number of terms.

The polynomial L(ρ) must stop at ν = n′, and we must have

aν+1 = an′+1 = 0 (9.100)

an′ , 0 (9.101)
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From eq. (9.94) we have

an′ (n′ − λ + l + 1) = 0 (9.102)

so we require

n′ = λ − l − 1 (9.103)

Let λ = n, an integer and n′ = 0, 1, 2, · · · so that n′ + l + 1 = n says for
n = 1, 2, · · ·

l ≤ n − 1 (9.104)

If

λ = n =
2mZe2

h̄2α
(9.105)

we have

E = En = −
Z2e2

2a0

1
n2 (9.106)

where a0 = h̄2/me2 is the Bohr radius, and α =
√
−8mE/ h̄2. In the

lecture m was originally used for the reduced mass. I have switched to µ
earlier so that this cannot be mixed up with this use of m for the azimuthal
quantum number associated with LzYlm = m h̄Ylm.

PICTURE ON BOARD. Energy level transitions on 1/n2 graph with
differences between n = 2 to n = 1 shown, and photon emitted as a result
of the n = 2 to n = 1 transition.

From Chapter 4 and the story of the spherical harmonics, for a given l,
the quantum number m varies between −l and l in integer steps. The radial
part of the solution of this separation of variables problem becomes

Rl = ρ
lL(ρ)e−ρ/2 (9.107)

where the functions L(ρ) are the Laguerre polynomials, and our complete
wavefunction is

unlm(r, θ, ϕ) = Rl(ρ)Ylm(θ, ϕ) (9.108)

n = 1, 2, · · · (9.109)

l = 0, 1, 2, · · · , n − 1 (9.110)

m = −l,−l + 1, · · · 0, 1, 2, · · · , l − 1, l (9.111)

Note that for n = 1, l = 0, R10 ∝ e−r/a0 , as graphed here.

http://www.wolframalpha.com/input/?i=graph+e^{-r}
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9.4 problems

Exercise 9.1 ps 4, p1.

Is it possible to derive the eigenvalues and eigenvectors presented in Sec-
tion 8.2 from those in Section 8.1.2? What does this say about the poten-
tial energy operator in these two situations?

For reference 8.1.2 was a finite potential barrier, V(x) = V0, |x| > a,
and zero in the interior of the well. This had trigonometric solutions in
the interior, and died off exponentially past the boundary of the well.

On the other hand, 8.2 was a delta function potential V(x) = −gδ(x),
which had the solution u(x) =

√
βe−β|x|, where β = mg/ h̄2.

Answer for Exercise 9.1

The pair of figures in the text [3] for these potentials does not make
it clear that there are possibly any similarities. The attractive delta func-
tion potential is not illustrated (although the delta function is, but with
opposite sign), and the scaling and the reference energy levels are differ-
ent. Let us illustrate these using the same reference energy level and sign
conventions to make the similarities more obvious.

Figure 9.1: 8.1.2 Finite Well potential (with energy shifted downwards by V0)
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Figure 9.2: 8.2 Delta function potential

The physics is not changed by picking a different point for the reference
energy level, so let us compare the two potentials, and their solutions
using V(x) = 0 outside of the well for both cases. The method used to
solve the finite well problem in the text is hard to follow, so re-doing this
from scratch in a slightly tidier way does not hurt.

Schrödinger’s equation for the finite well, in the |x| > a region is

−
h̄2

2m
u′′ = Eu = −EBu, (9.112)

where a positive bound state energy EB = −E > 0 has been introduced.
Writing

β =

√
2mEB

h̄2 , (9.113)

the wave functions outside of the well are

u(x) =

 u(−a)eβ(x+a) x < −a

u(a)e−β(x−a) x > a
(9.114)

Within the well Schrödinger’s equation is

−
h̄2

2m
u′′ − V0u = Eu = −EBu, (9.115)
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or

h̄2

2m
u′′ = −

2m

h̄2 (V0 − EB)u, (9.116)

Noting that the bound state energies are the EB < V0 values, let α2 =

2m(V0 − EB)/ h̄2, so that the solutions are of the form

u(x) = Aeiαx + Be−iαx. (9.117)

As was done for the wave functions outside of the well, the normalization
constants can be expressed in terms of the values of the wave functions
on the boundary. That provides a pair of equations to solve u(a)

u(−a)

 =
 eiαa e−iαa

e−iαa eiαa


AB

 . (9.118)

Inverting this and substitution back into eq. (9.117) yields

u(x) =
[
eiαx e−iαx

] AB


=
[
eiαx e−iαx

] 1
e2iαa − e−2iαa

 eiαa −e−iαa

−e−iαa eiαa


 u(a)

u(−a)


=

[
sin(α(a+x))

sin(2αa)
sin(α(a−x))

sin(2αa)

]  u(a)

u(−a)

 .
(9.119)

Expanding the last of these matrix products the wave function is close to
completely specified.

u(x) =


u(−a)eβ(x+a) x < −a

u(a) sin(α(a+x))
sin(2αa) + u(−a) sin(α(a−x))

sin(2αa) |x| < a

u(a)e−β(x−a) x > a

(9.120)

There are still two unspecified constants u(±a) and the constraints on EB

have not been determined (both α and β are functions of that energy level).
It should be possible to eliminate at least one of the u(±a) by computing
the wavefunction normalization, and since the well is being narrowed the
α term will not be relevant. Since only the vanishingly narrow case where
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a → 0, x ∈ [−a, a] is of interest, the wave function in that interval ap-
proaches

u(x)→
1
2

(u(a)+ u(−a))+
x
2

(u(a)− u(−a))→
1
2

(u(a)+ u(−a)). (9.121)

Since no discontinuity is expected this is just u(a) = u(−a). Let us write
lima→0 u(a) = A for short, and the limited width well wave function be-
comes

u(x) =

 Aeβx x < 0

Ae−βx x > 0
(9.122)

This is now the same form as the delta function potential, and normaliza-
tion also gives A =

√
β.

One task remains before the attractive delta function potential can be
considered a limiting case for the finite well, since the relation between
a,V0, and g has not been established. To do so integrate the Schrödinger
equation over the infinitesimal range [−a, a]. This was done in the text for
the delta function potential, and that provided the relation

β =
mg

h̄2 (9.123)

For the finite well this is∫ a

−a
−

h̄2

2m
u′′ − V0

∫ a

−a
u = −EB

∫ a

−a
u (9.124)

In the limit as a→ 0 this is

h̄2

2m
(u′(a) − u′(−a)) + V02au(0) = 2EBau(0). (9.125)

Some care is required with the V0a term since a → 0 as V0 → ∞, but the
EB term is unambiguously killed, leaving

h̄2

2m
u(0)(−2βe−βa) = −V02au(0). (9.126)

The exponential vanishes in the limit and leaves

β =
m(2a)V0

h̄2 (9.127)

Comparing to eq. (9.123) from the attractive delta function completes the
problem. The conclusion is that when the finite well is narrowed with a→
0, also letting V0 → ∞ such that the absolute area of the well g = (2a)V0

is maintained, the finite potential well produces exactly the attractive delta
function wave function and associated bound state energy.
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Grading notes Lost 3/20 marks, all in the first question.
I did not show that u(a) = u(−a).
I did not explain why the odd terms disappear in eq. (9.121).
I also did not get agreement with my statement that “but the EB term is

unambiguously killed”, where I have assumed that it remains finite. Since
V0 → ∞, EB could tend to infinity too.

Some references Some references that I found helpful to provide some
of the context for WHY to consider the delta function potential in the first
place are [16], [2], [8], [5].

Exercise 9.2 ps4, p2.

For the hydrogen atom, determine ⟨nlm| (1/R) |nlm⟩ and 1/⟨nlm|R |nlm⟩
such that (nlm) = (211) and R is the radial position operator (X2 + Y2 +

Z2)1/2. What do these quantities represent physically and are they the
same?
Answer for Exercise 9.2

Both of the computation tasks for the hydrogen like atom require ex-
pansion of a braket of the following form

⟨nlm| A(R) |nlm⟩ , (9.128)

where A(R) = R = (X2 + Y2 + Z2)1/2 or A(R) = 1/R. The spherical repre-
sentation of the identity resolution is required to convert this braket into
integral form

1 =
∫

r2 sin θdrdθdϕ |rθϕ⟩ ⟨rθϕ| , (9.129)

where the spherical wave function is given by the braket ⟨rθϕ|nlm⟩ =
Rnl(r)Ylm(θ, ϕ).

Additionally, the radial form of the delta function will be required,
which is

δ(x − x′) =
1

r2 sin θ
δ(r − r′)δ(θ − θ′)δ(ϕ − ϕ′) (9.130)
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Two applications of the identity operator to the braket yield

⟨nlm| A(R) |nlm⟩ = ⟨nlm| 1A(R)1 |nlm⟩

=

∫
drdθdϕdr′dθ′dϕ′r2 sin θr′2 sin θ′

⟨nlm|rθϕ⟩ ⟨rθϕ| A(R)
∣∣∣r′θ′ϕ′〉 〈r′θ′ϕ′∣∣∣nlm

〉
=

∫
drdθdϕdr′dθ′dϕ′r2 sin θr′2 sin θ′

Rnl(r)Y∗lm(θ, ϕ) ⟨rθϕ| A(R)
∣∣∣r′θ′ϕ′〉 Rnl(r′)Ylm(θ′, ϕ′)

(9.131)

To continue an assumption about the matrix element ⟨rθϕ| A(R) |r′θ′ϕ′⟩ is
required. It seems reasonable that this would be

⟨rθϕ| A(R)
∣∣∣r′θ′ϕ′〉 = δ(x−x′)A(r) =

1
r2 sin θ

δ(r− r′)δ(θ− θ′)δ(ϕ−ϕ′)A(r).

(9.132)

The braket can now be written completely in integral form as

⟨nlm| A(R) |nlm⟩

=

∫
drdθdϕdr′dθ′dϕ′r2 sin θr′2 sin θ′

Rnl(r)Y∗lm(θ, ϕ)
1

r2 sin θ
δ(r − r′)δ(θ − θ′)δ(ϕ − ϕ′)A(r)Rnl(r′)Ylm(θ′, ϕ′)

=

∫
drdθdϕr′2 sin θ′dr′dθ′dϕ′Rnl(r)Y∗lm(θ, ϕ)

δ(r − r′)δ(θ − θ′)δ(ϕ − ϕ′)A(r)Rnl(r′)Ylm(θ′, ϕ′)
(9.133)

Application of the delta functions then reduces the integral, since the only
θ, and ϕ dependence is in the (orthonormal) Ylm terms they are found to
drop out

⟨nlm| A(R) |nlm⟩ =
∫

drdθdϕr2 sin θRnl(r)Y∗lm(θ, ϕ)A(r)Rnl(r)Ylm(θ, ϕ)

=

∫
drr2Rnl(r)A(r)Rnl(r)

∫
sin θdθdϕY∗lm(θ, ϕ)Ylm(θ, ϕ)

= 1

(9.134)



9.4 problems 177

This leaves just the radial wave functions in the integral

⟨nlm| A(R) |nlm⟩ =
∫

drr2R2
nl(r)A(r) (9.135)

As a consistency check, observe that with A(r) = 1, this integral evaluates
to 1 according to equation (8.274) in the text, so we can think of (rRnl(r))2

as the radial probability density for functions of r.
The problem asks specifically for these expectation values for the |211⟩

state. For that state the radial wavefunction is found in (8.277) as

R21(r) =
(

Z
2a0

)3/2 Zr

a0
√

3
e−Zr/2a0 (9.136)

The braket can now be written explicitly

⟨21m| A(R) |21m⟩ =
1
24

(
Z
a0

)5 ∫ ∞

0
drr4e−Zr/a0 A(r) (9.137)

Now, let us consider the two functions A(r) separately. First for A(r) = r
we have

⟨21m|R |21m⟩ =
1
24

(
Z
a0

)5 ∫ ∞

0
drr5e−Zr/a0

=
a0

24Z

∫ ∞

0
duu5e−u

(9.138)

The last integral evaluates to 120, leaving

⟨21m|R |21m⟩ =
5a0

Z
. (9.139)

The expectation value associated with this |21m⟩ state for the radial po-
sition is found to be proportional to the Bohr radius. For the hydrogen
atom where Z = 1 this average value for repeated measurements of the
physical quantity associated with the operator R is found to be 5 times the
Bohr radius for n = 2, l = 1 states.

Our problem actually asks for the inverse of this expectation value, and
for reference this is

1/⟨21m|R |21m⟩ =
Z

5a0
(9.140)
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Performing the same task for A(R) = 1/R

⟨21m| 1/R |21m⟩ =
1
24

(
Z
a0

)5 ∫ ∞

0
drr3e−Zr/a0

=
1
24

Z
a0

∫ ∞

0
duu3e−u.

(9.141)

This last integral has value 6, and we have the second part of the compu-
tational task complete

⟨21m| 1/R |21m⟩ =
1
4

Z
a0

(9.142)

The question of whether or not eq. (9.140), and eq. (9.142) are equal is
answered. They are not.

Still remaining for this problem is the question of the what these quan-
tities represent physically.

The quantity ⟨nlm|R |nlm⟩ is the expectation value for the radial posi-
tion of the particle measured from the center of mass of the system. This is
the average outcome for many measurements of this radial distance when
the system is prepared in the state |nlm⟩ prior to each measurement.

Interestingly, the physical quantity that we associate with the operator
R has a different measurable value than the inverse of the expectation
value for the inverted operator 1/R. Regardless, we have a physical (ob-
servable) quantity associated with the operator 1/R, and when the system
is prepared in state |21m⟩ prior to each measurement, the average out-
come of many measurements of this physical quantity produces this value
⟨21m| 1/R |21m⟩ = Z/n2a0, a quantity inversely proportional to the Bohr
radius.

ASIDE: Comparing to the general case As a confirmation of the re-
sults obtained, we can check eq. (9.140), and eq. (9.142) against the
general form of the expectation values ⟨Rs⟩ for various powers s of the
radial position operator. These can be found in locations such as far-
side.ph.utexas.edu which gives for Z = 1 (without proof), and in [9]
(where these and harder looking ones expectation values are left as an
exercise for the reader to prove). Both of those give:

⟨R⟩ =
a0

2
(3n2 − l(l + 1))

⟨1/R⟩ =
1

n2a0

(9.143)

http://farside.ph.utexas.edu/teaching/qmech/lectures/node81.html
http://farside.ph.utexas.edu/teaching/qmech/lectures/node81.html
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It is curious to me that the general expectation values noted in eq. (9.143)
we have a l quantum number dependence for ⟨R⟩, but only the n quantum
number dependence for ⟨1/R⟩. It is not obvious to me why this would be
the case.

Exercise 9.3 Hydrogen atom (2007 PHY355H1F 4)

This problem deals with the hydrogen atom, with an initial ket

|ψ(0)⟩ =
1
√

3
|100⟩ +

1
√

3
|210⟩ +

1
√

3
|211⟩ , (9.144)

where

⟨r|100⟩ = Φ100(r), (9.145)

etc.
Answer for Exercise 9.3

If no measurement is made until time t = t0,

t0 =
π h̄

3
4 (13.6eV)

=
4π h̄
3EI

, (9.146)

what is the ket |ψ(t)⟩ just before the measurement is made?

A: Our time evolved state is

|ψt0⟩ =
1
√

3
e−iE1t0/ h̄ |100⟩ +

1
√

3
e−iE2t0/ h̄(|210⟩ + |211⟩). (9.147)

Also observe that this initial time was picked to make the exponential
values come out nicely, and we have

Ent0
h̄
= −

EIπ h̄
3
4 EIn2 h̄

= −
4π
3n2 ,

(9.148)

so our time evolved state is just

|ψ(t0)⟩ =
1
√

3
e−i4π/3 |100⟩ +

1
√

3
e−iπ/3(|210⟩ + |211⟩). (9.149)

Q: (b) Suppose that at time t0 an Lz measurement is made, and the
outcome 0 is recorded. What is the appropriate ket ψafter(t0) right after the
measurement?
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A: A measurement with outcome 0, means that the Lz operator measure-
ment found the state at that point to be the eigenstate for Lz eigenvalue 0.
Recall that if |ϕ⟩ is an eigenstate of Lz we have

Lz |ϕ⟩ = m h̄ |ϕ⟩ , (9.150)

so a measurement of Lz with outcome zero means that we have m = 0.
Our measurement of Lz at time t0 therefore filters out all but the m = 0
states and our new state is proportional to the projection over all m = 0
states as follows

|ψafter(t0)⟩ ∝

∑
nl

|nl0⟩ ⟨nl0|

 |ψ(t0)⟩

∝ (|100⟩ ⟨100| + |210⟩ ⟨210|) |ψ(t0)⟩

=
1
√

3
e−i4π/3 |100⟩ +

1
√

3
e−iπ/3 |210⟩

(9.151)

A final normalization yields

|ψafter(t0)⟩ =
1
√

2
(|210⟩ − |100⟩) (9.152)

Q: (c) Right after this Lz measurement, what is |ψafter(t0)|2?

A: Our amplitude is

⟨r|ψafter(t0)⟩ =
1
√

2
(⟨r|210⟩ − ⟨r|100⟩)

=
1√
2πa3

0

 r

4
√

2a0
e−r/2a0 cos θ − e−r/a0


=

1√
2πa3

0

e−r/2a0

 r

4
√

2a0
cos θ − e−r/2a0

 ,
(9.153)

so the probability density is

|⟨r|ψafter(t0)⟩|2 =
1

2πa3
0

e−r/a0

 r

4
√

2a0
cos θ − e−r/2a0

2

(9.154)

Q: (d) If then a position measurement is made immediately, which if
any components of the expectation value of R will be non-vanishing?
Justify your answer.
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A: The expectation value of this vector valued operator with respect to
a radial state |ψ⟩ =

∑
nlm anlm |nlm⟩ can be expressed as

⟨R⟩ =
3∑

i=1

ei

∑
nlm,n′l′m′

a∗nlman′l′m′ ⟨nlm| Xi
∣∣∣n′l′m′〉 , (9.155)

where X1 = X = R sin Θ cos Φ, X2 = Y = R sin Θ sin Φ, X3 = Z =
R cos Φ.

Consider one of the matrix elements, and expand this by introducing
an identity twice

⟨nlm| Xi
∣∣∣n′l′m′〉

=

∫
r2 sin θdrdθdϕr′2 sin θ′dr′dθ′dϕ′

⟨nlm|rθϕ⟩ ⟨rθϕ| Xi
∣∣∣r′θ′ϕ′〉 〈r′θ′ϕ′∣∣∣n′l′m′〉

=

∫
r2 sin θdrdθdϕr′2 sin θ′dr′dθ′dϕ′

Rnl(r)Y∗lm(θ, ϕ)δ3(x − x′)xiRn′l′(r′)Yl′m′(θ′, ϕ′)

=

∫
r2 sin θdrdθdϕr′2 sin θ′dr′dθ′dϕ′Rnl(r)Y∗lm(θ, ϕ)

r′2 sin θ′δ(r − r′)δ(θ − θ′)δ(ϕ − ϕ′)xiRn′l′(r′)Yl′m′(θ′, ϕ′)

=

∫
r2 sin θdrdθdϕdr′dθ′dϕ′Rnl(r)Y∗lm(θ, ϕ)

δ(r − r′)δ(θ − θ′)δ(ϕ − ϕ′)xiRn′l′(r′)Yl′m′(θ′, ϕ′)

=

∫
r2 sin θdrdθdϕRnl(r)Rn′l′(r)Y∗lm(θ, ϕ)Yl′m′(θ, ϕ)xi

(9.156)

Because our state has only m = 0 contributions, the only ϕ dependence for
the X and Y components of R come from those components themselves.
For X, we therefore integrate

∫ 2π
0 cos ϕdϕ = 0, and for Y we integrate∫ 2π

0 sin ϕdϕ = 0, and these terms vanish. Our expectation value for R for
this state, therefore lies completely on the z axis.
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10.1 setup

Why study this problem? It is relevant to describing the oscillation of
molecules, quantum states of light, vibrations of the lattice structure of a
solid, and so on.

FIXME: projected picture of masses on springs, with a ladle shaped
well, approximately Harmonic about the minimum of the bucket.

The problem to solve is the one dimensional Hamiltonian

V(X) =
1
2

KX2

K = mω2

H =
P2

2m
+ V(X)

(10.1)

where m is the mass, ω is the frequency, X is the position operator, and
P is the momentum operator. Of these quantities, ω and m are classical
quantities.

This problem can be used to illustrate some of the reasons why we study
the different pictures (Heisenberg, Interaction and Schrödinger). This is a
problem well suited to all of these (FIXME: lookup an example of this
with the interaction picture. The book covers H and S methods.

We attack this with a non-intuitive, but cool technique. Introduce the
raising a† and lowering a operators:

a =
√

mω
2 h̄

(
X + i

P
mω

)
a† =

√
mω
2 h̄

(
X − i

P
mω

) (10.2)

Question: are we using the dagger for more than Hermitian conjugation
in this case.
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Answer: No, this is precisely the Hermitian conjugation operation. Solv-
ing for X and P in terms of a and a†, we have

a + a† =
√

mω
2 h̄

2X

a − a† =
√

mω
2 h̄

2i
P

mω

(10.3)

or

X =

√
h̄

2mω
(a† + a)

P = i

√
h̄mω

2
(a† − a)

(10.4)

Express H in terms of a and a†

H =
P2

2m
+

1
2

KX2

=
1

2m

i
√

h̄mω
2

(a† − a)

2

+
1
2

mω2

√ h̄
2mω

(a† + a)

2

=
− h̄ω

4

(
a†a† + a2 − aa† − a†a

)
+

h̄ω
4

(
a†a† + a2 + aa† + a†a

)
(10.5)

H =
h̄ω
2

(
aa† + a†a

)
=

h̄ω
2

(
2a†a +

[
a, a†

])
(10.6)

Since [X, P] = i h̄1 then we can show that
[
a, a†

]
= 1. Solve for

[
a, a†

]
as

follows

i h̄ = [X, P]

=

√ h̄
2mω

(a† + a), i

√
h̄mω

2
(a† − a)


=

√
h̄

2mω
i

√
h̄mω

2

[
a† + a, a† − a

]
=

i h̄
2

([
a†, a†

]
−

[
a†, a

]
+

[
a, a†

]
− [a, a]

)
=

i h̄
2

(
0 + 2

[
a, a†

]
− 0

)
(10.7)

Comparing LHS and RHS we have as stated[
a, a†

]
= 1 (10.8)
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and thus from eq. (10.6) we have

H = h̄ω
(
a†a +

1
2

)
(10.9)

Let |n⟩ be the eigenstate of H so that H |n⟩ = En |n⟩. From eq. (10.9) we
have

H |n⟩ = h̄ω
(
a†a +

1
2

)
|n⟩ (10.10)

or

a†a |n⟩ +
|n⟩
2
=

En

h̄ω
|n⟩ (10.11)

a†a |n⟩ =
(

En

h̄ω
−

1
2

)
|n⟩ = λn |n⟩ (10.12)

We wish now to find the eigenstates of the “Number” operator a†a, which
are simultaneously eigenstates of the Hamiltonian operator.

Observe that we have

a†a(a† |n⟩) = a†(aa† |n⟩)

= a†(1 + a†a) |n⟩
(10.13)

where we used
[
a, a†

]
= aa† − a†a = 1.

a†a(a† |n⟩) = a†
(
1 +

En

h̄ω
−

1
2

)
|n⟩

= a†
(

En

h̄ω
+

1
2

)
|n⟩ ,

(10.14)

or

a†a(a† |n⟩) = (λn + 1)(a† |n⟩) (10.15)

The new state a† |n⟩ is presumed to lie in the same space, expressible as a
linear combination of the basis states in this space. We can see the effect
of the operator aa† on this new state, we find that the energy is changed,
but the state is otherwise unchanged. Any state a† |n⟩ is an eigenstate of
a†a, and therefore also an eigenstate of the Hamiltonian.
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Play the same game and win big by discovering that

a†a(a |n⟩) = (λn − 1)(a |n⟩) (10.16)

There will be some state |0⟩ such that

a |0⟩ = 0 |0⟩ (10.17)

which implies

a†(a |0⟩) = (a†a) |0⟩ = 0 (10.18)

so from eq. (10.12) we have

λ0 = 0 (10.19)

Observe that we can identify λn = n for

λn =

(
En

h̄ω
−

1
2

)
= n, (10.20)

or

En

h̄ω
= n +

1
2

(10.21)

or

En = h̄ω
(
n +

1
2

)
(10.22)

where n = 0, 1, 2, · · ·.
We can write

h̄ω
(
a†a +

1
2

1
)
|n⟩ = En |n⟩

a†a |n⟩ +
1
2
|n⟩ =

En

h̄ω
|n⟩

(10.23)

or

a†a |n⟩ =
(

En

h̄ω
−

1
2

)
|n⟩ = λn |n⟩ = n |n⟩ (10.24)

We call this operator a†a = N, the number operator, so that

N |n⟩ = n |n⟩ (10.25)
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10.2 relating states

Recall the calculation we performed for

L+ |lm⟩ = C+ |l,m + 1⟩

L− |lm⟩ = C+ |l,m − 1⟩
(10.26)

Where C+, and C+ are constants. The next game we are going to play is
to work out Cn for the lowering operation

a |n⟩ = Cn |n − 1⟩ (10.27)

and the raising operation

a† |n⟩ = Bn |n + 1⟩ . (10.28)

For the Hermitian conjugate of a |n⟩ we have

(a |n⟩)† = (Cn |n − 1⟩)† = C∗n |n − 1⟩ (10.29)

So

(⟨n| a†)(a |n⟩) = CnC∗n ⟨n − 1|n − 1⟩ = |Cn|
2 (10.30)

Expanding the LHS we have

|Cn|
2 = ⟨n| a†a |n⟩

= ⟨n| n |n⟩

= n ⟨n|n⟩

= n

(10.31)

For

Cn =
√

n (10.32)

Similarly

(⟨n| a†)(a |n⟩) = BnB∗n ⟨n + 1|n + 1⟩ = |Bn|
2 (10.33)

and

|Bn|
2 = ⟨n| aa†

aa† − a†a = 1

|n⟩

= ⟨n|
(
1 + a†a

)
|n⟩

= (1 + n) ⟨n|n⟩

= 1 + n

(10.34)
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for

Bn =
√

n + 1 (10.35)

10.3 heisenberg picture

How does the lowering operator a evolve in time?

A: Recall that for a general operator A, we have for the time evolution
of that operator

i h̄
dA
dt
= [A,H] (10.36)

Let us solve this one.

i h̄
da
dt
= [a,H]

=
[
a, h̄ω(a†a + 1/2)

]
= h̄ω

[
a, (a†a + 1/2)

]
= h̄ω

[
a, a†a

]
= h̄ω

(
aa†a − a†aa

)
= h̄ω

(
(aa†)a − a†aa

)
= h̄ω

(
(a†a + 1)a − a†aa

)
= h̄ωa

(10.37)

Even though a is an operator, it can undergo a time evolution and we can
think of it as a function, and we can solve for a in the differential equation

da
dt
= −iωa (10.38)

This has the solution

a = a(0)e−iωt (10.39)

here a(0) is an operator, the value of that operator at t = 0. The exponential
here is just a scalar (not effected by the operator so we can put it on either
side of the operator as desired).
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CHECK:

a′ = a(0)
d
dt

e−iωt = a(0)(−iω)e−iωt = −iωa (10.40)

10.4 a couple comments on the schrödinger picture

We do not do this in class, but it is very similar to the approach of the
hydrogen atom. See the text for full details.

In the Schrödinger picture,

−
h̄2

2m
d2u
dx2 +

1
2

mω2x2u = Eu (10.41)

This does directly to the wave function representation, but we can relate
these by noting that we get this as a consequence of the identification
u = u(x) = ⟨x|u⟩.

In eq. (10.41), we can switch to dimensionless quantities with

ξ = “xi (z)” = αx (10.42)

with

α =

√
mω

h̄
(10.43)

This gives, with λ = 2E/ h̄ω,

d2u
dξ2 + (λ − ξ2)u = 0 (10.44)

We can use polynomial series expansion methods to solve this, and find
that we require a terminating expression, and write this in terms of the
Hermite polynomials (courtesy of the clever French once again).

When all is said and done we will get the energy eigenvalues once again

E = En = h̄ω
(
n +

1
2

)
(10.45)

10.5 back to the heisenberg picture

Let us express

⟨x|n⟩ = un(x) (10.46)
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With

a |0⟩ = 0, (10.47)

we have

0 =
(
X + i

P
mω

)
|0⟩ , (10.48)

and

0 = ⟨x|
(
X + i

P
mω

)
|0⟩

= ⟨x| X |0⟩ + i
1

mω
⟨x| P |0⟩

= x ⟨x|0⟩ + i
1

mω
⟨x| P |0⟩

(10.49)

Recall that our matrix operator is

〈
x′
∣∣∣ P |x⟩ = δ(x − x′)

(
−i h̄

d
dx

)
(10.50)

⟨x| P |0⟩ = ⟨x| P
∫ ∣∣∣x′〉 〈x′

∣∣∣ dx′

= 1

|0⟩

=

∫
⟨x| P

∣∣∣x′〉 〈x′
∣∣∣0〉 dx′

=

∫
δ(x − x′)

(
−i h̄

d
dx

) 〈
x′
∣∣∣0〉 dx′

=

(
−i h̄

d
dx

)
⟨x|0⟩

(10.51)

We have then

0 = xu0(x) +
h̄

mω
du0(x)

dx
(10.52)

NOTE: picture of the solution to this LDE on slide.... but I did not look
closely enough.
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10.6 problems

Exercise 10.1 ([3] pr 9.1)

Assume x(t) and p(t) to be Heisenberg operators with x(0) = x0 and
p(0) = p0. For a Hamiltonian corresponding to the harmonic oscillator
show that

x(t) = x0 cosωt +
p0

mω
sinωt

p(t) = p0 cosωt −mωx0 sinωt.
(10.53)

Answer for Exercise 10.1

Recall that the Hamiltonian operators were defined by factoring out the
time evolution from a set of states

⟨α(t)| A |β(t)⟩ = ⟨α(0)| eiHt/ h̄Ae−iHt/ h̄ |β(0)⟩ . (10.54)

So one way to complete the task is to compute these exponential sand-
wiches. Recall from the appendix of chapter 10, that we have

eABe−A = B+ [A, B] +
1
2!

[A, [A, B]] + · · · (10.55)

Perhaps there is also some smarter way to do this, but lets first try the
obvious way.

Let us summarize the variables we will work with

α =

√
mω

h̄

X =
1

α
√

2
(a + a†)

P = −i h̄
α
√

2
(a − a†)

H = h̄ω(a†a + 1/2)[
a, a†

]
= 1

(10.56)

The operator in the exponential sandwich is

A = iHt/ h̄ = iωt(a†a + 1/2) (10.57)
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Note that the constant 1/2 factor will commute with all operators, which
reduces the computation required

[iHt/ h̄, B] = (iωt)
[
a†a, B

]
(10.58)

For B = X, or B = P, we will want some intermediate results[
a†a, a

]
= a†aa − aa†a

= a†aa − (a†a + 1)a

= −a,

(10.59)

and [
a†a, a†

]
= a†aa† − a†a†a

= a†aa† − a†(aa† − 1)

= a†
(10.60)

Using these we can evaluate the commutators for the position and momen-
tum operators. For position we have

[iHt/ h̄, X] = (iωt)
1

α
√

2

[
a†a, a + a†

]
= (iωt)

1

α
√

2
(−a + a†)

=
ωt
α2

−i h̄α
√

2
(a − a†).

(10.61)

Since α2 h̄ = mω, we have

[iHt/ h̄, X] = (ωt)
P

mω
. (10.62)

For the momentum operator we have

[iHt/ h̄, P] = (iωt)
−i h̄α
√

2

[
a†a, a − a†

]
= (iωt)

i h̄α
√

2
(a + a†)

= (ωt)( h̄α2)X

(10.63)

So we have

[iHt/ h̄, P] = (−ωt)(mω)X (10.64)
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The expansion of the exponential series of nested commutators can now
be written down by inspection and we get

XH = X + (ωt)
P

mω
−

(ωt)2

2!
X −

(ωt)3

3!
P

mω
+ · · · (10.65)

PH = P − (ωt)(mω)X −
(ωt)2

2!
P +

(ωt)3

3!
(mω)X + · · · (10.66)

Collection of terms gives us the desired answer

XH = X cos(ωt) +
P

mω
sin(ωt) (10.67)

PH = P cos(ωt) − (mω)X sin(ωt) (10.68)

Exercise 10.2 ([3] pr X.2)

On the basis of the results already derived for the harmonic oscillator,
determine the energy eigenvalues and the ground-state wavefunction for
the truncated oscillator

V(x) =
1
2

Kx2θ(x) (10.69)

Answer for Exercise 10.2

We require u(0) = 0, so our solutions are limited to the truncated odd
harmonic oscillator solutions. The normalization will be different since
only the x > 0 integration range is significant. Our energy eigenvalues are

En =

(
n +

1
2

)
h̄ω, n = 1, 3, 5, · · · (10.70)

And its wave function is

v1(x) ∝ u1(x)θ(x) = Axe−α
2 x2/2θ(x) (10.71)

where u1(x) is the first odd wavefunction for the non-truncated oscillator.
Normalizing this we find A2 √π/4α3 = 1, or

v1(x) = 2
(
α3
√
π

)1/2

xe−α
2 x2/2θ(x) (10.72)
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Exercise 10.3 ([3] pr X.3)

Show that for the harmonic oscillator in the state |n⟩, the following
uncertainty product holds.

∆x∆p =
(
n +

1
2

)
h̄ (10.73)

Answer for Exercise 10.3

I tried this first explicitly with the first two wave functions

u0(x) =
(
α2

π

)1/4

e−α
2 x2/2

u1(x) =
√

2α2

(
α2

π

)1/4

xe−α
2 x2/2

(10.74)

For the |0⟩ state we find easily that ⟨X⟩ = 0

⟨0| X |0⟩ =
∫

dx ⟨0| X |x⟩ ⟨x|0⟩

=

∫
dxx|⟨x|0⟩|2

=

∫
dxx|u0(x)|2

∝

∫
dxxe−α

2 x2

(10.75)

and this is zero since we are integrating an odd function over an even
range (presuming that we take the principle value of the integral).

For the |1⟩ state this we have

⟨0| X |0⟩ ∝
∫

dxx5e−α
2 x2
= 0 (10.76)

Since each un(x) is a polynomial times a e−α
2 x2/2 factor we have ⟨X⟩ = 0

for all states |n⟩.
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The momentum expectation values for states |0⟩ and |1⟩ are also fairly
simple to compute. We have

⟨n| P |n⟩ =
∫

dx ⟨n| P |x⟩ ⟨x|n⟩

=

∫
dx′dx

〈
n
∣∣∣x′〉 ⟨x| P |x⟩ ⟨x|n⟩

= −i h̄
∫

dx′dxu∗n(x′)δ(x − x′)
∂

∂x
un(x)

= −i h̄
∫

dxu∗n(x)
∂

∂x
un(x)

(10.77)

For the |0⟩ state our derivative is odd since a factor of x is brought down,
and we are again integrating an odd function over an even range. For the
|1⟩ case our derivative is proportional to

∂

∂x
u1(x) ∝

∂

∂x

(
xe−α

2 x2)
=

(
1 − 2α2x2

)
e−α

2 x2 (10.78)

Again, this is an even function, while u1(x) is odd, so we have zero. Noting
that we can express each un(x) in terms of Hankel functions

un(x) =
(

α
√
π2nn!

)1/2

Hn(αx)e−α
2 x2/2 (10.79)

where H2n(x) is even and H2n−1(x) is odd, we note that this expectation
value will always be zero since we will have an even times odd function
in the integration kernel.

Knowing that the position and momentum expectation values are zero
reduces this problem to the calculation of ⟨n| X2 |n⟩ ⟨n| P2 |n⟩. Either of
these expectation values are again not too hard to compute for n = 0, 1.
However, we now have to keep track of the proportionality constants. As
expected this yields

⟨0| X2 |0⟩ ⟨0| P2 |0⟩ = h̄2/4

⟨1| X2 |1⟩ ⟨1| P2 |1⟩ = 9 h̄2/4
(10.80)

These are respectively

∆x∆p =
(
0 +

1
2

)
h̄

∆x∆p =
(
1 +

1
2

)
h̄

(10.81)
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However, these integrals were only straightforward (albeit tedious) to cal-
culate because we had explicit representations for u0(x) and u1(x). For
the general wave function, what we have to work with is either the Han-
kel function representation of eq. (10.79) or the derivative form

un(x) = (−1)n
(

α
√
π2nn!

)1/2

eα
2 x2/2 dn

d(αx)n e−α
2 x2 (10.82)

Expanding this explicitly for arbitrary n is not going to be feasible. We can
reduce the scope of the problem by trying to be lazy and see how some
work can be avoided. One possible trick is noting that we can express the
squared momentum expectation in terms of the Hamiltonian

⟨n| P2 |n⟩ = ⟨n| 2m
(
H −

1
2

mω2X2
)
|n⟩

=

(
n +

1
2

)
2m h̄ω −m2ω2 ⟨n| X2 |n⟩

=

(
n +

1
2

)
2 h̄2α2 − h̄2α4 ⟨n| X2 |n⟩

(10.83)

So we can get away with only calculating ⟨n| X2 |n⟩, an exercise in integra-
tion by parts

⟨n| X2 |n⟩ =
α

√
π2nn!

∫
dxx2eα

2 x2
(

dn

d(αx)n e−α
2 x2

)2

=
1

α2
√
π2nn!

∫
dyy2ey2

(
dn

dyn e−y2
)2

=
1

α2
√
π2nn!

∫
dy

1
2

y
d
dy

ey2
(

dn

dyn e−y2
)2

=
1

α2
√
π2nn!

1
−2

∫
dyey2 d

dy

y (
dn

dyn e−y2
)2

=
1

α2
√
π2nn!

1
−2

∫
dyey2

( dn

dyn e−y2
)2

+ 2y
dn

dyn e−y2 dn+1

dyn+1 e−y2


= −

1
2α2 −

1
α2
√
π2nn!

1
2

∫
dy

d
dy

ey2 dn

dyn e−y2 dn+1

dyn+1 e−y2

= −
1

2α2 +
1

α2
√
π2nn!

1
2

∫
dyey2

(
dn+1

dyn+1 e−y2 dn+1

dyn+1 e−y2
+

dn

dyn e−y2 dn+2

dyn+2 e−y2
)

(10.84)
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The second term in this remaining integral is proportional to ⟨n|n + 2⟩ = 0,
which leaves us with

⟨n| X2 |n⟩ = −
1

2α2 +
n + 1
α2 =

1
α2

(
n +

1
2

)
(10.85)

Our squared momentum expectation value is then

⟨n| P2 |n⟩ =
(
n +

1
2

)
2 h̄2α2 − h̄2α4 ⟨n| X2 |n⟩

=

(
n +

1
2

)
h̄2α2

(10.86)

This completes the problem, and we are left with

∆x∆p =
(
n +

1
2

)
h̄. (10.87)

Exercise 10.4 ([3] pr X.4)

Consider the following two-dimensional harmonic oscillator problem:

−
h̄2

2m
∂2u
∂x2 −

h̄2

2m
∂2u
∂y2 +

1
2

K1x2u +
1
2

K2y2u = Eu (10.88)

where (x, y) are the coordinates of the particle. Use the separation of vari-
ables technique to obtain the energy eigenvalues. Discuss the degeneracy
in the eigenvalues if K1 = K2.
Answer for Exercise 10.4

Write u = A(x)B(y). Substitute and dividing throughout by u we have(
−

h̄2

2m
A′′

A
+

1
2

K1x2
)
+

(
−

h̄2

2m
B′′

B
+

1
2

K2y2
)
= E (10.89)

Introduction of a pair of constants E1, E2 for each of the independent
terms we have

H1A = −
h̄2

2m
A′′ +

1
2

K1x2A = E1A

H2B = −
h̄2

2m
B′′ +

1
2

K1y2B = E2B

H = H1 + H2

E = E1 + E2

(10.90)
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For each of these equations we have a set of quantized eigenvalues and
can write

E1m =

(
m +

1
2

)
h̄

√
K1

m

E2n =

(
n +

1
2

)
h̄

√
K2

m

H1Am(x) = E1mAm(x)

H2An(y) = E2nBn(y)

(10.91)

The complete eigenstates are then

umn(x, y) = Am(x)Bn(y) (10.92)

with total energy satisfying

Humn(x, y) =
h̄
√

m

((
m +

1
2

) √
K1 +

(
n +

1
2

) √
K2

)
umn(x, y) (10.93)

A general state requires a double sum over the possible combinations of
states Ψ =

∑
mn cmnumn, however if K1 = K2 = K, we cannot distinguish

between umn and unm based on the energy eigenvalues

Humn(x, y) = h̄

√
K
m
(m + n + 1) umn(x, y) = Hunm(x, y) (10.94)

In this case, we can write the wave function corresponding to a general
state for the system as just Ψ =

∑
m+n=constant cmnumn. This reduction in

the cardinality of this set of basis eigenstates is the degeneracy to be dis-
cussed.

Exercise 10.5 ([3] pr X.5,6)

Consider now a variation on Problem 4 in which we have a coupled
oscillator with the potential given by

V(x, y) =
1
2

K(x2 + y2 + 2λxy) (10.95)

Obtain the energy eigenvalues by changing variables (x, y) to (x′, y′) such
that the new potential is quadratic in (x′, y′), without the coupling term.
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Answer for Exercise 10.5

This has the look of a diagonalization problem so we write the potential
in matrix form

V(x, y) =
1
2

K
[
x y

] 1 λ

λ 1


x

y

 = 1
2

KX̃MX (10.96)

The similarity transformation required is

M =
1
√

2

1 1

1 −1


1 + λ 0

0 1 − λ

 1
√

2

1 1

1 −1

 (10.97)

Our change of variables is therefore

X′ =
1
√

2

1 1

1 −1

 X =
1
√

2

x + y

x − y

 (10.98)

Our Laplacian should also remain diagonal under this orthonormal trans-
formation, but we can verify this by expanding out the partials explicitly

∂

∂x
=
∂x′

∂x
∂

∂x′
+
∂y′

∂x
∂

∂y′
=

1
√

2

(
∂

∂x′
+

∂

∂y′

)
∂

∂y
=
∂x′

∂y
∂

∂x′
+
∂y′

∂y
∂

∂y′
=

1
√

2

(
∂

∂x′
−

∂

∂y′

) (10.99)

Squaring and summing we have

∂2

∂x2 +
∂2

∂y2 =
1
2

(
∂

∂x′
+

∂

∂y′

)2

+
1
2

(
∂

∂x′
−

∂

∂y′

)2

=
∂2

∂x′2
+

∂2

∂y′2

(10.100)

Our transformed Hamiltonian operator is thus

−
h̄2

2m
∂2u
∂x′2

−
h̄2

2m
∂2u
∂y′2
+

1
2

K(1 + λ)x′2u +
1
2

K(1 − λ)y′2u = Eu (10.101)

So, provided |λ| < 1, the energy eigenvalue equation is given by eq. (10.93)
with K1 = K(1 + λ), and K2 = K(1 − λ).
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Exercise 10.6 ([3] pr X.7)

Consider two coupled harmonic oscillators in one dimension of natural
length a and spring constant K connecting three particles located at x1, x2,
and x3. The corresponding Schrödinger equation is given as

−
h̄2

2m
∂2u
∂x12 −

h̄2

2m
∂2u
∂x22 −

h̄2

2m
∂2u
∂x32 +

K
2

(
(x2 − x1 − a)2 + (x3 − x2 − a)2

)
u = Eu

(10.102)

Obtain the energy eigenvalues using the matrix method.
Answer for Exercise 10.6

Let us start with an initial simplifying substitution to get rid of the
factors of a. Write

r1 = x1 + a

r2 = x2

r3 = x3 − a

(10.103)

These were picked so that the differences in our quadratic terms involve
only factors of rk

x2 − x1 − a = r2 − r1

x3 − x2 − a = r3 − r2
(10.104)

Schrödinger’s equation is now

−
h̄2

2m
∂2u
∂r12 −

h̄2

2m
∂2u
∂r22 −

h̄2

2m
∂2u
∂r32 +

K
2

(
(r2 − r1)2 + (r3 − r2)2

)
u = Eu

(10.105)

Putting our potential into matrix form, we have

V(r1, r2, r3) =
K
2

(
(r2 − r1)2 + (r3 − r2)2

)
=

K
2

[
r1 r2 r3

] 
1 −1 0

−1 2 −1

0 −1 1



r1

r2

r3


(10.106)

This symmetric matrix, let us call it M

M =


1 −1 0

−1 2 −1

0 −1 1

 (10.107)
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has eigenvalues 0, 1, 3, with orthonormal eigenvectors

e0 =
1
√

3


1

1

1


e1 =

1
√

2


1

0

−1


e3 =

1
√

6


1

−2

1



(10.108)

Writing

U = [e0e1e3] =


1√
3

1√
2

1√
6

1√
3

0 − 2√
6

1√
3
− 1√

2
1√
6


(10.109)

M = U


0 0 0

0 1 0

0 0 3

 Ũ = UDŨ (10.110)

Writing R′ = ŨR, and ∇′ = Ũ∇, we see that the Laplacian has no mixed
partial terms after transformation

∇
′ ·∇′ = (Ũ∇)̃Ũ∇

= ∇̃∇

= ∇ ·∇

(10.111)

Schrödinger’s equation is then just(
−

h̄2

2m
∇
′2 +

K
2

R̃′DR′
)

u = Eu (10.112)

Or

−
h̄2

2m
∂2u

∂r′1
2 −

h̄2

2m
∂2u

∂r′2
2 −

h̄2

2m
∂2u

∂r′3
2 +

K
2

(
r′2

2
+ 3r′3

2
)

u = Eu (10.113)
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Separation of variables provides us with one free particle wave equation,
and two harmonic oscillator equations

−
h̄2

2m
∂2u1

∂r′1
2 = E1u1

−
h̄2

2m
∂2u

∂r′2
2 +

K
2

r′2
2u2 = E2u2

−
h̄2

2m
∂2u

∂r′3
2 +

3K
2

r′3
2u3 = E3u3

(10.114)

We can borrow the Harmonic oscillator energy eigenvalues from problem
4 again with K1 = K, and K2 = 3K.

Exercise 10.7 ([3] pr X.8)

As a variation of Problem 7 assume that the middle particle at x2 has
a different mass M. Reduce this problem to the form of Problem 7 by a
scale change in x2 and then use the matrix method to obtain the energy
eigenvalues.
Answer for Exercise 10.7

We write
√

Mx2 =
√

mx′2, x1+a = x′1, x3−a = x′3, and then Schrödinger’s
equation takes the form(

−
h̄2

2m
∇
′2 + V(X′)

)
u = Eu (10.115)

V(X′) =
K
2

(
√

m
M

x′2 − x′1

)2

+

(
−

√
m
M

x′2 + x′3

)2 (10.116)

With µ =
√

m/M, we have

V(X′) =
K
2

X̃′


1 −µ 0

−µ 2µ2 −µ

0 −µ 1

 X′ (10.117)
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We find that this symmetric matrix has eigenvalues 0, 1, 1+2µ2, and eigen-
vectors

e0 =
1√

1 + 2µ2


µ

1

µ


e1 =

1
√

2


1

0

−1


e1+2µ2 =

1√
2 + 4µ2


1

−2µ

1



(10.118)

The rest of the problem is now no different than the tail end of Problem 7,
and we end up with K1 = K, K2 = (1 + 2µ2)K.

Exercise 10.8 ps V. p1.

A particle of mass m moves along the x-direction such that V(X) =
1
2 KX2. Is the state

u(ξ) = Bξe+ξ
2/2, (10.119)

where ξ is given by Eq. (9.60), B is a constant, and time t = 0, an energy
eigenstate of the system? What is probability per unit length for measur-
ing the particle at position x = 0 at t = t0 > 0? Explain the physical
meaning of the above results.
Answer for Exercise 10.8

Is this state an energy eigenstate? Recall that ξ = αx, α =
√

mω/ h̄,
and K = mω2. With this variable substitution Schrödinger’s equation for
this harmonic oscillator potential takes the form

d2u
dξ2 − ξ

2u = −
2E
h̄ω

u (10.120)
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While we can blindly substitute a function of the form ξeξ
2/2 into this to

get

1
B

(
d2u
dξ2 − ξ

2u
)
=

d
dξ

(
1 + ξ2

)
eξ

2/2 − ξ3eξ
2/2

=
(
2ξ + ξ + ξ3

)
eξ

2/2 − ξ3eξ
2/2

= 3ξeξ
2/2

(10.121)

and formally make the identification E = −3ω h̄/2 = −(1 + 1/2)ω h̄, this
is not a normalizable wavefunction, and has no physical relevance, unless
we set B = 0.

By changing the problem, this state could be physically relevant. We
would require a potential of the form

V(x) =


f (x) if x < a
1
2 Kx2 if a < x < b

g(x) if x > b

(10.122)

For example, f (x) = V1, g(x) = V2, for constant V1,V2. For such a poten-
tial, within the harmonic well, a general solution of the form

u(x, t) =
∑

n

Hn(ξ)(Ane−ξ
2/2 + Bneξ

2/2)e−iEnt/ h̄, (10.123)

is possible since normalization would not prohibit non-zero Bn values in
that situation. For the wave function to be a physically relevant, we require
it to be (absolute) square integrable, and must also integrate to unity over
the entire interval.

Probability per unit length at x = 0 We cannot answer the question for
the probability that the particle is found at the specific x = 0 position at
t = t0 (that probability is zero in a continuous space), but we can answer
the question for the probability that a particle is found in an interval sur-
rounding a specific point at this time. By calculating the average of the
probability to find the particle in an interval, and dividing by that inter-
val’s length, we arrive at plausible definition of probability per unit length
for an interval surrounding x = x0

P = Probability per unit length near x = x0

= lim
ϵ→0

1
ϵ

∫ x0+ϵ/2

x0−ϵ/2
|Ψ(x, t0)|2dx = |Ψ(x0, t0)|2.

(10.124)
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By this definition, the probability per unit length is just the probability
density itself, evaluated at the point of interest.

Physically, for an interval small enough that the probability density is
constant in magnitude over that interval, this probability per unit length
times the length of this small interval, represents the probability that we
will find the particle in that interval.

Probability per unit length for the non-normalizable state given It seems
possible, albeit odd, that this question is asking for the probability per
unit length for the non-normalizable E1 wavefunction eq. (10.119). Since
normalization requires B = 0, that probability density is simply zero (or
undefined, depending on one’s point of view).

Probability per unit length for some more interesting harmonic oscillator
states Suppose we form the wavefunction for a superposition of all the
normalizable states

u(x, t) =
∑

n

AnHn(ξ)e−ξ
2/2e−iEnt/ h̄ (10.125)

Here it is assumed that the An coefficients yield unit probability∫
|u(x, 0)|2dx =

∑
n

|An|
2 = 1 (10.126)

For the impure state of eq. (10.125) we have for the probability density

|u|2 =
∑
m,n

AnA∗mHn(ξ)Hm(ξ)e−ξ
2
e−i(En−Em)t0/ h̄

=
∑

n

|An|
2(Hn(ξ))2e−ξ

2
+

∑
m,n

AnA∗mHn(ξ)Hm(ξ)e−ξ
2
e−i(En−Em)t0/ h̄

=
∑

n

|An|
2(Hn(ξ))2e−ξ

2
+

∑
m,n

AnA∗mHn(ξ)Hm(ξ)e−ξ
2
e−i(En−Em)t0/ h̄

=
∑

n

|An|
2(Hn(ξ))2e−ξ

2

+
∑
m<n

Hn(ξ)Hm(ξ)
(
AnA∗me−ξ

2
e−i(En−Em)t0/ h̄ + AmA∗ne−ξ

2
e−i(Em−En)t0/ h̄

)
=

∑
n

|An|
2(Hn(ξ))2e−ξ

2
+ 2

∑
m<n

Hn(ξ)Hm(ξ)e−ξ
2

Re
(
AnA∗me−i(En−Em)t0/ h̄

)
=

∑
n

|An|
2(Hn(ξ))2e−ξ

2
+ 2

∑
m<n

Hn(ξ)Hm(ξ)e−ξ
2

(
Re(AnA∗m) cos((n −m)ωt0) + Im(AnA∗m) sin((n −m)ωt0)

)
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(10.127)

Evaluation at the point x = 0, we have

|u(0, t0)|2 =
∑

n

|An|
2(Hn(0))2 + 2

∑
m<n

Hn(0)Hm(0)(
Re(AnA∗m) cos((n −m)ωt0) + Im(AnA∗m) sin((n −m)ωt0)

)
(10.128)

It is interesting that the probability per unit length only has time depen-
dence for a mixed state.

For a pure state and its wavefunction u(x, t) = NnHn(ξ)e−ξ
2/2e−iEnt/ h̄

we have just

|u(0, t0)|2 = N2
n (Hn(0))2 =

α
√
π2nn!

Hn(0)2 (10.129)

This is zero for odd n. For even n is appears that (Hn(0))2 may equal
2n (this is true at least up to n=4). If that is the case, we have for non-
mixed states, with even numbered energy quantum numbers, at x = 0 a
probability per unit length value of |u(0, t0)|2 = α√

πn!
.

Grading notes I lost 3/10 marks on this assignment. Two of these due
to a sign error in eq. (10.120) (now corrected).

One mark lost for the sign error itself, and one for the conclusion that
could have been drawn from the negative energy:

“Without that sign error, E −−3 h̄ω < Vmin = 0, so clearly not physical
since a particle has to have at least as much energy as the potential.”

It was also pointed out that in the discussion of probability per unit
length, the B = 0 condition means no wave function, and thus no particle,
and that undefined is the way to discuss this since it does not make sense
to ask about a probability for this particle.

The last mark lost was due to my explaination associated with the mod-
ified potential eq. (10.122). I did not clearly explain that this modified
potential would not have the wave function of eq. (10.119) since it must
be different outside of the harmonic interval. What they wanted to see
explained is that one must modify the wave function (for example, by in-
troducing a cut off), for it to be normalizable. In my eyes, it then would
not be a solution to the original Hamiltonian equation, so if you want
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solutions that include both positive and negative coefficients in the expo-
nentials, you would also have to have a modified potential. Given the sign
error that was also made, and the negative energy associated with the wave
function eq. (10.119) I am not so sure that any modify-the-wave-function
argument is even appropriate.

Also note that the question was not asking for elaboration on the "more
interesting normalizable states". Basically, the intent was to ask for just
discussion on the un-normalizable aspects of the proposed wave function
as if it was a real one. That seemed too easy to me (but obviously keeping
track of my signs was not too easy).

Exercise 10.9 Free particle propagator (2007 PHY355H1F 1f)

For a free particle moving in one-dimension, the propagator (i.e. the
coordinate representation of the evolution operator),

G(x, x′; t) = ⟨x|U(t)
∣∣∣x′〉 (10.130)

is given by

G(x, x′; t) =
√

m
2πi h̄t

eim(x−x′)2/(2 h̄t). (10.131)

Answer for Exercise 10.9

This problem is actually fairly straightforward, but it is nice to work it
having had a similar problem set question where we were asked about this
time evolution operator matrix element (ie: what it is physical meaning is).
Here we have a concrete example of the form of this matrix operator.
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Proceeding directly, we have

⟨x|U
∣∣∣x′〉 = ∫ 〈

x
∣∣∣p′〉 〈p′

∣∣∣ U |p⟩ 〈p
∣∣∣x′〉 dpdp′

=

∫
up′(x)

〈
p′

∣∣∣ e−iP2t/(2m h̄) |p⟩ u∗p(x′)dpdp′

=

∫
up′(x)e−ip2t/(2m h̄)δ(p − p′)u∗p(x′)dpdp′

=

∫
up(x)e−ip2t/(2m h̄)u∗p(x′)dp

=
1

(
√

2π h̄)2

∫
eip(x−x′)/ h̄e−ip2t/(2m h̄)dp

=
1

2π h̄

∫
eip(x−x′)/ h̄e−ip2t/(2m h̄)dp

=
1

2π

∫
eik(x−x′)e−i h̄k2t/(2m)dk

=
1

2π

∫
dke−(k2 i h̄t

2m−ik(x−x′))

=
1

2π

∫
dke

− i h̄t
2m

(
k−i 2m

i h̄t
(x−x′)

2

)2
−

i22m(x−x′)2
4i h̄t

=
1

2π
√
π

√
2m
i h̄t

e
im(x−x′)2

2 h̄t ,

(10.132)

which is the desired result. Now, let us look at how this would be used.
We can express our time evolved state using this matrix element by intro-
ducing an identity

⟨x|ψ(t)⟩ = ⟨x|U |ψ(0)⟩

=

∫
dx′ ⟨x|U

∣∣∣x′〉 〈x′
∣∣∣ψ(0)

〉
=

√
m

2πi h̄t

∫
dx′eim(x−x′)2/(2 h̄t) 〈x′

∣∣∣ψ(0)
〉 (10.133)

This gives us

ψ(x, t) =
√

m
2πi h̄t

∫
dx′eim(x−x′)2/(2 h̄t)ψ(x′, 0) (10.134)

However, note that our free particle wave function at time zero is

ψ(x, 0) =
eipx/ h̄

√
2π h̄

(10.135)
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So the convolution integral eq. (10.134) does not exist. We likely have to
require that the solution be not a pure state, but instead a superposition of
a set of continuous states (a wave packet in position or momentum space
related by Fourier transforms). That is

ψ(x, 0) =
1
√

2π h̄

∫
ψ̂(p, 0)eipx/ h̄dp

ψ̂(p, 0) =
1
√

2π h̄

∫
ψ(x′′, 0)e−ipx′′/ h̄dx′′

(10.136)

The time evolution of this wave packet is then determined by the propaga-
tor, and is

ψ(x, t) =
√

m
2πi h̄t

1
√

2π h̄

∫
dx′dpeim(x−x′)2/(2 h̄t)ψ̂(p, 0)eipx′/ h̄, (10.137)

or in terms of the position space wave packet evaluated at time zero

ψ(x, t) =
√

m
2πi h̄t

1
2π

∫
dx′dx′′dkeim(x−x′)2/(2 h̄t)eik(x′−x′′)ψ(x′′, 0)

(10.138)

We see that the propagator also ends up with a Fourier transform structure,
and we have

ψ(x, t) =
∫

dx′U(x, x′; t)ψ(x′, 0)

U(x, x′; t) =
√

m
2πi h̄t

1
2π

∫
dudkeim(x−x′−u)2/(2 h̄t)eiku

(10.139)

Does that Fourier transform exist? I had not be surprised if it ended up
with a delta function representation. I will hold off attempting to evaluate
and reduce it until another day.

Exercise 10.10 SHO creation operator (2008 PHY355H1F final 1e.)

Prove that the only eigenvector of the Harmonic oscillator creation op-
erator is |null⟩.
Answer for Exercise 10.10

Recall that the creation (raising) operator was given by

a† =
√

mω
2 h̄

X −
i

√
2mω h̄

P =
1

α
√

2
X −

iα
√

2 h̄
P, (10.140)
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where α =
√

h̄/mω. Now assume that a† |ϕ⟩ = λ |ϕ⟩ so that

⟨x| a† |ϕ⟩ = ⟨x| λ |ϕ⟩ . (10.141)

Write ⟨x|ϕ⟩ = ϕ(x), and expand the LHS using eq. (10.140) for

λϕ(x) = ⟨x| a† |ϕ⟩

= ⟨x|
(

1

α
√

2
X −

iα
√

2 h̄
P
)
|ϕ⟩

=
xϕ(x)

α
√

2
−

iα
√

2 h̄
(−i h̄)

∂

∂x
ϕ(x)

=
xϕ(x)

α
√

2
−

α
√

2

∂ϕ(x)
∂x

.

(10.142)

As usual write ξ = x/α, and rearrange. This gives us

∂ϕ

∂ξ
+
√

2λϕ − ξϕ = 0. (10.143)

Observe that this can be viewed as a homogeneous LDE of the form

∂ϕ

∂ξ
− ξϕ = 0, (10.144)

augmented by a forcing term
√

2λϕ. The homogeneous equation has the
solution ϕ = Aeξ

2/2, so for the complete equation we assume a solution

ϕ(ξ) = A(ξ)eξ
2/2. (10.145)

Since ϕ′ = (A′ + Aξ)eξ
2/2, we produce a LDE of

0 = (A′ + Aξ − ξA +
√

2λA)eξ
2/2

= (A′ +
√

2λA)eξ
2/2,

(10.146)

or

0 = A′ +
√

2λA. (10.147)

This has solution A = Be−
√

2λξ, so our solution for eq. (10.143) is

ϕ(ξ) = Beξ
2/2−

√
2λξ = B′e(ξ−λ

√
2)2/2. (10.148)

This wave function is an imaginary Gaussian with minimum at ξ = λ
√

2.
It is also unnormalizable since we require B′ = 0 for any λ if

∫
|ϕ|2 < ∞.

Since ⟨ξ|ϕ⟩ = ϕ(ξ) = 0, we must also have |ϕ⟩ = 0, completing the
exercise.
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Exercise 10.11 1D harmonic oscillator (2008 PHY355H1F final 3.)

Consider a one-dimensional harmonic oscillator with the Hamiltonian

H =
1

2m
P2 +

1
2

mω2X2 (10.149)

Denote the ground state of the system by |0⟩, the first excited state by |1⟩
and so on.

a. Evaluate ⟨n| X |n⟩ and ⟨n| X2 |n⟩ for arbitrary |n⟩.

b. Suppose that at t = 0 the system is prepared in the state

|ψ(0)⟩ =
1
√

2
(|0⟩ + i |1⟩). (10.150)

If a measurement of position X were performed immediately, sketch
the probability distribution P(x) that a particle would be found
within dx of x. Justify how you construct the sketch.

c. Now suppose the state given in (b) above were allowed to evolve
for a time t, determine the expectation value of X and ∆X at that
time.

d. Now suppose that initially the system were prepared in the ground
state |0⟩, and then the resonance frequency is changed abruptly
from ω to ω′ so that the Hamiltonian becomes

H =
1

2m
P2 +

1
2

mω′2X2. (10.151)

Immediately, an energy measurement is performed ; what is the
probability of obtaining the result E = h̄ω′(3/2)?

Answer for Exercise 10.11

Part a. Writing X in terms of the raising and lowering operators we
have

X =
α
√

2
(a† + a), (10.152)

so ⟨X⟩ is proportional to

⟨n| a† + a |n⟩ =
√

n + 1 ⟨n|n + 1⟩ +
√

n ⟨n|n − 1⟩ = 0. (10.153)
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For
〈
X2

〉
we have

〈
X2

〉
=
α2

2
⟨n| (a† + a)(a† + a) |n⟩

=
α2

2
⟨n| (a† + a)

(√
n + 1 |n + 1⟩ +

√
n − 1 |n − 1⟩

)
=
α2

2
⟨n| (n + 1) |n⟩ +

α2

2
⟨n|

√
n(n − 1) |n − 2⟩

+
α2

2
⟨n|

√
(n + 1)(n + 2) |n + 2⟩ +

α2

2
⟨n| n |n⟩ .

(10.154)

We are left with just〈
X2

〉
=

h̄
2mω

(2n + 1). (10.155)

Part b. The probability that we started in state |ψ(0)⟩ and ended up in
position x is governed by the amplitude ⟨x|ψ(0)⟩, and the probability of
being within an interval ∆x, surrounding the point x is given by∫ x+∆x/2

x′=x−∆x/2

∣∣∣〈x′
∣∣∣ψ(0)

〉∣∣∣2dx′. (10.156)

In the limit as ∆x → 0, this is just the squared amplitude itself evaluated
at the point x, so we are interested in the quantity

|⟨x|ψ(0)⟩|2 =
1
2
|⟨x|0⟩ + i ⟨x|1⟩|2. (10.157)

We are given these wave functions in the supplemental formulas. Namely,

⟨x|0⟩ = ψ0(x) =
e−x2/2α2√
α
√
π

⟨x|1⟩ = ψ1(x) =
e−x2/2α2

2x

α

√
2α
√
π

.

(10.158)

Substituting these into eq. (10.157) we have

|⟨x|ψ(0)⟩|2 =
1
2

e−x2/α2 1
α
√
π

∣∣∣∣∣∣1 + 2ix

α
√

2

∣∣∣∣∣∣2 = e−x2/α2

2α
√
π

(
1 +

2x2

α2

)
. (10.159)

This is parabolic near the origin and then quickly tapers off.

http://www.wolframalpha.com/input/?i=graph+e^(-x^2)+(1+%2B+2x^2)
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Part c. Our time evolved state is

U(t) |ψ(0)⟩ =
1
√

2

(
e−i h̄ω(0+ 1

2 )t/ h̄
|0⟩ + ie−i h̄ω(1+ 1

2 )t/ h̄
|0⟩

)
=

1
√

2

(
e−iωt/2 |0⟩ + ie−3iωt/2 |1⟩

)
.

(10.160)

The position expectation is therefore

⟨ψ(t)| X |ψ(t)⟩ =
α

2
√

2

(
eiωt/2 ⟨0| − ie3iωt/2 ⟨1|

)
(a† + a)

(
e−iωt/2 |0⟩ + ie−3iωt/2 |1⟩

)
(10.161)

We have already demonstrated that ⟨n| X |n⟩ = 0, so we must only expand
the cross terms, but those are just ⟨0| a† + a |1⟩ = 1. This leaves

⟨ψ(t)| X |ψ(t)⟩ =
α

2
√

2

(
−ieiωt + ie−iωt

)
=

√
h̄

2mω
cos(ωt) (10.162)

For the squared position expectation

⟨ψ(t)| X2 |ψ(t)⟩

=
α2

4(2)

(
eiωt/2 ⟨0| − ie3iωt/2 ⟨1|

)
(a† + a)2

(
e−iωt/2 |0⟩ + ie−3iωt/2 |1⟩

)
=

1
2

(⟨0| X2 |0⟩ + ⟨1| X2 |1⟩) + i
α2

8
(−eiωt ⟨1| (a† + a)2 |0⟩ + e−iωt ⟨0| (a† + a)2 |1⟩)

(10.163)

Noting that (a†+a) |0⟩ = |1⟩, and (a†+a)2 |0⟩ = (a†+a) |1⟩ =
√

2 |2⟩+ |0⟩,
so we see the last two terms are zero. The first two we can evaluate using
our previous result eq. (10.155) which was

〈
X2

〉
= α2

2 (2n+ 1). This leaves

⟨ψ(t)| X2 |ψ(t)⟩ = α2 (10.164)

Since ⟨X⟩2 = α2 cos2(ωt)/2, we have

(∆X)2 =
〈
X2

〉
− ⟨X⟩2 = α2

(
1 −

1
2

cos2(ωt)
)

(10.165)
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Part d. This energy measurement E = h̄ω′(3/2) = h̄ω′(1 + 1/2), cor-
responds to an observation of state |1′⟩, after an initial observation of |0⟩.
The probability of such a measurement is∣∣∣〈1′∣∣∣0〉∣∣∣2 (10.166)

Note that〈
1′

∣∣∣0〉 = ∫
dx

〈
1′

∣∣∣x〉 ⟨x|0⟩
=

∫
dxψ∗1′ψ0(x)

(10.167)

The wave functions above are

ϕ1′(x) =
2xe−x2/2α′2

α′
√

2α′
√
π

ϕ0(x) =
e−x2/2α2√
α
√
π

(10.168)

Putting the pieces together we have

〈
1′

∣∣∣0〉 = 2

α′
√

2α′απ

∫
dxxe

− x2
2

(
1
α′2
+ 1
α2

)
(10.169)

Since this is an odd integral kernel over an even range, this evaluates
to zero, and we conclude that the probability of measuring the specified
energy is zero when the system is initially prepared in the ground state as-
sociated with the original Hamiltonian. Intuitively this makes some sense,
if one thinks of the Fourier coefficient problem: one cannot construct an
even function from linear combinations of purely odd functions.



11C O H E R E N T S TAT E S

11.1 interaction with a electric field

In §10.3 (interaction with a electric field), Green’s functions are intro-
duced to solve the first order differential equation

da
dt
+ iω0a = −iω0λ(t) (11.1)

A simpler way is to use the usual trick of assuming that we can take the
constant term in the homogeneous solution and allow it to vary with time.

Since our homogeneous solution is of the form

aH(t) = aH(0)e−iω0t, (11.2)

we can look for a specific solution to the forcing term equation of the form

aS (t) = f (t)e−iω0t (11.3)

We get

f ′ = −iω0λ(t)eiω0t (11.4)

which can be integrate directly to find the non-homogeneous solution

aS (t) = aS (t0)e−iω0(t−t0) − iω0

∫ t

t0
λ(t′)e−iω0(t−t′)dt′ (11.5)

Setting t0 = −∞, with a requirement that aS (−∞) = 0 and adding in a
general homogeneous solution one then has 10.92 without the complica-
tions of Green’s functions or the associated contour integrals. I suppose
the author wanted to introduce this as a general purpose tool and this was
a simple way to do so.

His introduction of Green’s functions this way I did not personally find
very clear. Specifically, he does not actually define what a Green’s func-
tion is, and the Appendix 20.13 he refers to only discusses the subtleties
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of the associated Contour integration. I did not understand where equation
10.83 came from in the first place.

Something like the following would have been helpful (the type of ar-
gument found in [13]) Given a linear operator L, such that Lu(x) = f (x),
we search for the Green’s function G(x, s) such that LG(x, s) = δ(x − s).
For such a function we have∫

LG(x, s) f (s)ds =
∫

δ(x − s) f (s)ds

= f (x)
(11.6)

and by linearity we also have

f (x) =
∫

LG(x, s) f (s)ds

= L
∫

G(x, s) f (s)ds
(11.7)

and can therefore identify u(x) =
∫

G(x, s) f (s)ds as the desired solution
to Lu(x) = f (x) once the Green’s function G(x, s) associated with operator
L has been determined.



12ROTAT I O N S A N D A N G U L A R M O M E N T U M

12.1 rotations (chapter 26)

Why are we doing the math? Because it applies to physical systems. Slides
of IBM’s SEM quantum coral and others shown and discussed.

PICTURE: Standard right handed coordinate system with point (x, y, z).
We would like to discuss how to represent this point in other coordinate
systems, such as one with the x, y axes rotated to x′, y′ through an angle
ϕ.

Our problem is to find in the rotated coordinate system from (x, y, z) to
(x′, y′, z′).

There is clearly a relationship between the representations. That rela-
tionship between x′, y′, z′ and x, y, z for a counter-clockwise rotation about
the z axis is

x′ = x cos ϕ − y sin ϕ

y′ = x sin ϕ + y cos ϕ

z′ = z

(12.1)

Treat (x, y, z) and (x′, y′, z′) like vectors and write
x′

y′

z′

 =

cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0

0 0 1



x

y

z

 (12.2)

Or 
x′

y′

z′

 = Rz(ϕ)


x

y

z

 (12.3)

Q: Is Rz(ϕ) a unitary operator? Definition U is unitary if U†U = 1,
where 1 is the identity operator. We take Hermitian conjugates, which in
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this case is just the transpose since all elements of the matrix are real, and
multiply

(Rz(ϕ))†Rz(ϕ) =


cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0

0 0 1



cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0

0 0 1


=


cos2 ϕ + sin2 ϕ − sin ϕ cos ϕ + sin ϕ cos ϕ 0

− cos ϕ sin ϕ + cos ϕ sin ϕ cos2 ϕ + sin2 ϕ 0

0 0 1


=


1 0 0

0 1 0

0 0 1


= 1

(12.4)

Apply the above to a vector v = (vx, vy, vz) and write v′ = (v′x, v
′
y, v
′
z).

These are related as

v = Rz(ϕ)v (12.5)

Now we want to consider the infinitesimal case where we allow the ro-
tation angle to get arbitrarily small. Consider this specific z axis rotation
case, and assume that ϕ is very small. Let ϕ = ϵ and write

v′ =


v′x
v′y
v′z

 = Rz(ϕ)


vx

vy

vz

 =

cos ϵ − sin ϵ 0

sin ϵ cos ϵ 0

0 0 1

 v

≈


1 −ϵ 0

ϵ 1 0

0 0 1

 v =



1 0 0

0 1 0

0 0 1

 +

0 −ϵ 0

ϵ 0 0

0 0 0


 v

(12.6)

Define

S z = i h̄


0 −1 0

1 0 0

0 0 0

 (12.7)
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which is the generator of infinitesimal rotations about the z axis.
Our rotated coordinate vector becomes

v′ =



1 0 0

0 1 0

0 0 1

 + i h̄ϵ
i h̄


0 −1 0

1 0 0

0 0 0


 v

=

(
1 +

ϵ

i h̄
S z

)
v

(12.8)

Or

v′ =
(
1 −

iϵ
h̄

S z

)
v (12.9)

Many infinitesimal rotations can be combined to create a finite rotation
via

lim
N→∞

(
1 +

α

N

)N
= eα (12.10)

α = −iϕS z/ h̄ (12.11)

For a finite rotation

v′ = e−i ϕS z
h̄ v (12.12)

Now think about transforming g(x, y, z), an arbitrary function. Take ϵ is
very small so that

x′ = x cos ϕ − y sin ϕ = x cos ϵ − y sin ϵ ≈ x − yϵ

y′ = x sin ϕ + y cos ϕ = x sin ϵ + y cos ϵ ≈ xϵ + y

z′ = z

(12.13)

Question: Why can we assume that ϵ is small?

Answer: We declare it to be small because it is simpler, and eventually
build up to the general case where it is larger. We want to master the easy
task before moving on to the more difficult ones. Our function is now
transformed

g(x′, y′, z′) ≈ g(x − yϵ, y + xϵ, z)

= g(x, y, z) − ϵy
∂g
∂x
+ ϵx

∂g
∂y
+ · · ·

=

(
1 − ϵy

∂

∂x
+ ϵx

∂

∂y

)
g(x, y, z)



220 rotations and angular momentum

(12.14)

Recall that the coordinate definition of the angular momentum operator is

Lz = −i h̄
(
x
∂

∂y
− y

∂

∂x

)
= xpy − ypx (12.15)

We can now write

g(x′, y′, z′) =
(
1 +
−i h̄ϵ
−i h̄

(
x
∂

∂y
− y

∂

∂x

))
g(x, y, z)

=

(
1 +

iϵ
h̄

Lz

)
g(x, y, z)

(12.16)

For a finite rotation with angle ϕ we have

g(x′, y′, z′) = ei ϕLz
h̄ g(x, y, z) (12.17)

Question: Somebody says that the rotation is clockwise not counter-
clockwise? I did not follow the reasoning briefly mentioned on the board
since it looks right to me. Perhaps this is the age old mixup between ro-
tating the coordinates and the basis vectors. Review what is in the text
carefully. Can also check by

If you rotate a ket, and examine how the state representation of that ket
changes under rotation, we have∣∣∣x′, y′, z′〉 = |x − ϵy, y + ϵx, z⟩ (12.18)

Or 〈
Ψ

∣∣∣x′, y′, z′〉 = Ψ∗(x′, y′, z′)

= Ψ∗(x − ϵy, y + ϵx, z)

= Ψ∗(x, y, z) − ϵ
∂Ψ∗

∂y
+ ϵ

∂Ψ∗

∂x

=

(
1 +

iϵ
h̄

Lz

)
Ψ∗(x, y, z)

(12.19)

Taking the complex conjugate we have

Ψ(x′, y′, z′)
(
1 −

iϵ
h̄

Lz

)
Ψ(x, y, z) (12.20)

For infinitesimal rotations about the z axis we have for functions

Ψ(x′, y′, z′) = e−
iϵ
h̄ Lz Ψ(x, y, z) (12.21)
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For finite rotations of a vector about the z axis we have

v′ = e−
iϕS z

h̄ v (12.22)

and for functions

Ψ(x′, y′, z′) = e−
iϕLz

h̄ Ψ(x, y, z) (12.23)

Vatche has mentioned some devices being researched right now where
there is an attempt to isolate the spin orientation so that, say, only spin
up or spin down electrons are allowed to flow. There are some possible
interesting applications here to Quantum computation. Can we actually
make a quantum computing device that is actually usable? We can make
NAND devices as mentioned in the article above. Can this be scaled? We
do not know how to do this yet.

Recall that one description of a “particle” that has both a position and
spin representation is

|Ψ⟩ = |u⟩ ⊗ |sm⟩ (12.24)

where we have a tensor product of kets. One usually just writes the simpler

|u⟩ ⊗ |sm⟩ ≡ |u⟩ |sm⟩ (12.25)

An example of the above is
u1(r)

u2(r)

u3(r)

 = (⟨r| ⟨sm|) |Ψ⟩ (12.26)

where u1 is spin component one. For s = 1 this would be m = −1, 0, 1.
Here we have also used

|r⟩ = |x⟩ ⊗ |y⟩ ⊗ |z⟩
= |x⟩ |y⟩ |z⟩

= |xyz⟩

(12.27)

We can now ask the question of how this thing transforms. We transform
each component of this as a vector. The transformation of

u1(r)

u2(r)

u3(r)

 (12.28)

https://plato.stanford.edu/entries/qt-quantcomp/#QuanGate
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results in
u1(r)

u2(r)

u3(r)


′

= e−iϕ(S z+Lz)/ h̄


u1(r)

u2(r)

u3(r)

 (12.29)

Or with Jz = S z + Lz∣∣∣Ψ′〉 = e−iϕJz/ h̄ |Ψ⟩ (12.30)

Observe that this separates out nicely with the S z operation acting on the
vector parts, and the Lz operator acting on the functional dependence.

12.2 trig relations

To verify equations 26.3-5 in the text it is worth noting that

cos(a + b) = Re(eiaeib)

= Re((cos a + i sin a)(cos b + i sin b))

= cos a cos b − sin a sin b

(12.31)

and

sin(a + b) = Im(eiaeib)

= Im((cos a + i sin a)(cos b + i sin b))

= cos a sin b + sin a cos b

(12.32)

So, for

x = ρ cosα

y = ρ sinα
(12.33)

the transformed coordinates are

x′ = ρ cos(α + ϕ)

= ρ(cosα cos ϕ − sinα sin ϕ)

= x cos ϕ − y sin ϕ

(12.34)

and

y′ = ρ sin(α + ϕ)

= ρ(cosα sin ϕ + sinα cos ϕ)

= x sin ϕ + y cos ϕ

(12.35)
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This allows us to read off the rotation matrix. Without all the messy trig,
we can also derive this matrix with geometric algebra.

v′ = e−e1e2ϕ/2vee1e2ϕ/2

= v3e3 + (v1e1 + v2e2)ee1e2ϕ

= v3e3 + (v1e1 + v2e2)(cos ϕ + e1e2 sin ϕ)

= v3e3 + e1(v1 cos ϕ − v2 sin ϕ) + e2(v2 cos ϕ + v1 sin ϕ)

(12.36)

Here we use the Pauli-matrix like identities

e2
k = 1

eie j = −e jei, i , j
(12.37)

and also note that e3 commutes with the bivector for the x, y plane e1e2.
We can also read off the rotation matrix from this.

12.3 infinitesimal transformations

Recall that in the problems of Chapter 5, one representation of spin one
matrices were calculated 5.3. Since the choice of the basis vectors was
arbitrary in that exercise, we ended up with a different representation. For
S x, S y, S z as found in (26.20) and (26.23) we can also verify easily that we
have eigenvalues 0,± h̄. We can also show that our spin kets in this non-
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diagonal representation have the following column matrix representations:

|1,±1⟩x =
1
√

2


0

1

±i


|1, 0⟩x =


1

0

0


|1,±1⟩y =

1
√

2


±i

0

1


|1, 0⟩y =


0

1

0


|1,±1⟩z =

1
√

2


1

±i

0


|1, 0⟩z =


0

0

1



(12.38)

12.4 verifying the commutator relations

Given the (summation convention) matrix representation for the spin one
operators

(S i) jk = −i h̄ϵi jk, (12.39)
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let us demonstrate the commutator relation of (26.25).

[S i, S j]rs = (S iS j − S jS i)rs

=
∑

t

(S i)rt(S j)ts − (S j)rt(S i)ts

= (−i h̄)2
∑

t

ϵirtϵ jts − ϵ jrtϵits

= −(−i h̄)2
∑

t

ϵtirϵt js − ϵt jrϵtis

(12.40)

Now we can employ the summation rule for sums products of antisym-
metric tensors over one free index (4.179)∑

i

ϵi jkϵiab = δ jaδkb − δ jbδka. (12.41)

Continuing we get

[S i, S j]rs = −(−i h̄)2 (δi jδrs − δisδr j − δ jiδrs + δ jsδri)

= (−i h̄)2 (δisδ jr − δirδ js)

= (−i h̄)2
∑

t

ϵti jϵtsr

= i h̄
∑

t

ϵti j(S t)rs □

(12.42)

12.5 general infinitesimal rotation

Equation (26.26) has for an infinitesimal rotation counterclockwise around
the unit axis of rotation vector n

V′ = V + ϵn ×V. (12.43)

Let us derive this using the geometric algebra rotation expression for the
same

V′ = e−Inα/2VeInα/2

= e−Inα/2 ((V · n)n + (V∧ n)n) eInα/2

= (V · n)n + (V∧ n)neInα
(12.44)

We note that In and thus the exponential commutes with n, and the projec-
tion component in the normal direction. Similarly In anticommutes with
(V∧ n)n. This leaves us with

V′ = (V · n)n (+(V∧ n)n) (cosα + In sinα) (12.45)
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For α = ϵ → 0, this is

V′ = (V · n)n + (V∧ n)n(1 + Inϵ)
= (V · n)n + (V∧ n)n + ϵI2(V × n)n2

= V + ϵ(n ×V) □

(12.46)

12.6 position and angular momentum commutator

Equation (26.71) is

[xi, L j] = i h̄ϵi jkxk. (12.47)

Let us derive this. Recall that we have for the position-momentum com-
mutator

[xi, p j] = i h̄δi j, (12.48)

and for each of the angular momentum operator components we have

Lm = ϵmabxa pb. (12.49)

The commutator of interest is thus

[xi, L j] = xiϵ jabxa pb − ϵ jabxa pbxi

= ϵ jabxa (xi pb − pbxi)

= ϵ jabxai h̄δib

= i h̄ϵ jaixa

= i h̄ϵi jaxa □

(12.50)

12.7 angular momentum operator exponential sandwiches

In (26.73-74) we have

eiϵLz/ h̄xe−iϵLz/ h̄ = x +
iϵ
h̄
[Lz, x] (12.51)

Observe that

[x, [Lz, x]] = 0 (12.52)

so from the first two terms of (10.99)

eABe−A = B+ [A, B] +
1
2
[A, [A, B]] · · · (12.53)

we get the desired result.
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12.8 trace relation to the determinant

Going from (26.90) to (26.91) we appear to have a mystery identity

det (1 + µA) = 1 + µ tr A (12.54)

According to wikipedia, under derivative of a determinant, [12], this is
good for small µ, and related to something called the Jacobi identity.
Someday I should really get around to studying determinants in depth,
and will take this one for granted for now.

12.9 problems

Exercise 12.1 A problem of spherical harmonics (2010 PHY356 final exam)

One of the PHY356 exam questions from the final I recall screwing up on,
and figuring it out after the fact on the drive home. The question actually
clarified a difficulty I had, but unfortunately I had not had the good luck
to perform such a question, to help figure this out before the exam.

From what I recall the question provided an initial state, with some
degeneracy in m, perhaps of the following form

|ϕ(0)⟩ =

√
1
7
|12⟩ +

√
2
7
|10⟩ +

√
4
7
|20⟩ , (12.55)

and a Hamiltonian of the form

H = αLz (12.56)

Answer for Exercise 12.1

Evolved state One part of the question was to calculate the evolved
state. Application of the time evolution operator gives us

|ϕ(t)⟩ = e−iαLzt/ h̄

√1
7
|12⟩ +

√
2
7
|10⟩ +

√
4
7
|20⟩

 . (12.57)

Now we note that Lz |12⟩ = 2 h̄ |12⟩, and Lz |l0⟩ = 0 |l0⟩, so the exponen-
tials reduce this nicely to just

|ϕ(t)⟩ =

√
1
7

e−2iαt |12⟩ +

√
2
7
|10⟩ +

√
4
7
|20⟩ . (12.58)
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Probabilities for Lz measurement outcomes I believe we were also asked
what the probabilities for the outcomes of a measurement of Lz at this
time would be. Here is one place that I think that I messed up, and it is
really a translation error, attempting to get from the English description
of the problem to the math description of the same. I had trouble with
this process a few times in the problems, and managed to blunder through
use of language like “measure”, and “outcome”, but do not think I really
understood how these were used properly.

What are the outcomes that we measure? We measure operators, but
the result of a measurement is the eigenvalue associated with the opera-
tor. What are the eigenvalues of the Lz operator? These are the m h̄ values,
from the operation Lz |lm⟩ = m h̄ |lm⟩. So, given this initial state, there are
really two outcomes that are possible, since we have two distinct eigen-
values. These are 2 h̄ and 0 for m = 2, and m = 0 respectively.

A measurement of the “outcome” 2 h̄, will be the probability associated
with the amplitude ⟨12|ϕ(t)⟩ (ie: the absolute square of this value). That is

|⟨12|ϕ(t)⟩|2 =
1
7
. (12.59)

Now, the only other outcome for a measurement of Lz for this state is a
measurement of 0 h̄, and the probability of this is then just 1 − 1

7 =
6
7 .

On the exam, I think I listed probabilities for three outcomes, with values
1
7 ,

2
7 ,

4
7 respectively, but in retrospect that seems blatantly wrong.

Probabilities for L2 measurement outcomes What are the probabilities
for the outcomes for a measurement of L2 after this? The first question
is really what are the outcomes. That is really a question of what are the
possible eigenvalues of L2 that can be measured at this point. Recall that
we have

L2 |lm⟩ = h̄2l(l + 1) |lm⟩ (12.60)

So for a state that has only l = 1, 2 contributions before the measurement,
the eigenvalues that can be observed for the L2 operator are respectively
2 h̄2 and 6 h̄2 respectively.

For the l = 2 case, our probability is 4/7, leaving 3/7 as the probability
for measurement of the l = 1 (2 h̄2) eigenvalue. We can compute this two
ways, and it seems worthwhile to consider both. This first method makes
use of the fact that the Lz operator leaves the state vector intact, but it
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also seems like a bit of a cheat. Consider instead two possible results of
measurement after the Lz observation. When an Lz measurement of 0 h̄ is
performed our state will be left with only the m = 0 kets. That is

|ψa⟩ =
1
√

3

(
|10⟩ +

√
2 |20⟩

)
, (12.61)

whereas, when a 2 h̄ measurement of Lz is performed our state would then
only have the m = 2 contribution, and would be

|ψb⟩ = e−2iαt |12⟩ . (12.62)

We have two possible ways of measuring the 2 h̄2 eigenvalue for L2. One
is when our state was |ψa⟩ (, and the resulting state has a |10⟩ component,
and the other is after the m = 2 measurement, where our state is left with
a |12⟩ component.

The resulting probability is then a conditional probability result

6
7
|⟨10|ψa⟩|

2 +
1
7
|⟨12|ψb⟩|

2 =
3
7

(12.63)

The result is the same, as expected, but this is likely a more convincing
argument.
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angular momentum operator, 220,

226
antisymmetric tensor, 93

boost, 30
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braket, 3

Cartesian coordinates, 97
Cauchy-Schwartz identity, 45
center of mass, 165
commutation, 23
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Hamiltonian, 64
commutator relations, 224
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completeness relation, 5
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continuous eigenvectors, 44

delta function, 40
density matrix, 126
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adjoint, 1
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eigenvector, 3
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expectation, 2
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exponential, 12
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Feynman-Hellman relation, 81

gauge invariance, 135
Green’s function, 216

Hankel function, 195
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Heisenberg picture, 77, 188

position operator, 79
Hermitian, 12, 27
Hermitian conjugation, 183
Hermitian operator, 145
Hermitian test, 55
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spherical, 175

infinite potential, 158
infinite potential well, 162
infinitesimal rotation, 225
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Jacobi identity, 227
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lowering operation, 187
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matrix element, 38
momentum, 69
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matrix representation, 4
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momentum operator, 53

normalization
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operator, 3
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lowering, 183
momentum, 17
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radial directional derivative,
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raising, 183
unitary, 7

orbital angular momentum, 114
outcome, 4
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Pauli
spin matrix, 30

Pauli operators, 116
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position commutator, 226
probability, 4
probability density, 44
projection operator, 148
pure state, 144

raising, 93
raising operation, 187
rotation, 217

generator, 219
infinitesimal, 219
matrix exponential, 27

Schrödinger picture, 77, 189
Schwartz inequality, 47, 50
spectral decomposition, 30
spherical harmonics, 227
spherical polar coordinates, 107
spin

one, 224
time evolution, 128

spin 1, 117
spin 1/2, 107
spin matrix, 6
spin up, 137
step well, 163
Stern-Gerlach, 114, 137

time evolution, 40, 188
trace, 12, 13, 227

invariance, 23
trigonometric identities, 222
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uncertainty, 133
uncertainty principle, 35
uncertainty relation, 21, 50
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