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1M AT R I X M E T H O D S I N G E O M E T R I C O P T I C S .

1.1 missing content.

I was late. Glancing at somebody else’s notes very quickly, it
looked like I missed

• A derivation of Snell’s law from Fermat’s principle.

• The focal point formula

1
f

=
1
s

+
1
s′

. (1.1)

• The paraxial approximation was defined (small angles only,
looking only near the center of a lens).

I was going to scrounge for notes to scan from somebody else
so I can fill in missing content, but instead think I’ll fill in with
some self assigned problems.

Suggested reading for this lecture is §5 from [8].

1.2 matrix methods .

Referring to fig. 1.1 we can define a transfer out matrix, or ABCD

Figure 1.1: Matrix method.



2 matrix methods in geometric optics .

matrix taking pairs of coordinates describing rays[
y

α

]
(1.2)

so that the transition of the ray through the interface is described
as [

y f

α f

]
=

[
A B

C D

] [
yi

αi

]
(1.3)

1.2.1 Free propagation.

Referring to fig. 1.2 we see that

Figure 1.2: Free propagation.

tan α =
∆y
L

≈ α, (1.4)

so that

y′ = y + ∆y ≈ y + Lα, (1.5)

so that our matrix describing free propagation is[
y f

α f

]
=

[
1 L

0 1

] [
yi

αi

]
(1.6)

1.2.2 Refraction off of a flat lens.

Referring to fig. 1.3 where



1.2 matrix methods . 3

Figure 1.3: Refraction at flat surface.

n sin α = n′ sin α′. (1.7)

We employ the paraxial approximation

nα ∼ n′α′, (1.8)

or

α′ =
n′

n
α, (1.9)

allowing for the description of refraction off of a flat lens by[
y f

α f

]
=

[
1 0

0 n′
n

] [
yi

αi

]
(1.10)

1.2.3 Refraction of a curved surface.

1.2.3.1 Convex refraction.

Referring to fig. 1.4 we see that

ϕ ≈ y
R

, (1.11)

and can also employ Snell’s law in the approximation

nθ = n′θ′. (1.12)

From the figure we see that

θ = α + ϕ. (1.13a)



4 matrix methods in geometric optics .

Figure 1.4: Refraction of convex surface.

θ′ = α + ϕ′. (1.13b)

or

n(α + ϕ) = n′(α′ + ϕ). (1.14)

Using eq. (1.11) this is

n
(

α +
y
R

)
= n′

(
α′ +

y
R

)
, (1.15)

which we can rearrange to find

α′ =
y
R

( n
n′ − 1

)
+

n
n′ α. (1.16)

This can now be put into matrix form, yielding[
y f

α f

]
=

[
1 0

1
R

( n
n′ − 1

) n
n′

] [
yi

αi

]
(1.17)

Observe that for R → ∞ we have the same result as a flat surface.

1.2.3.2 Concave refraction.

Now, let’s consider an input ray against a concave surface. We
have just to flip around some of the labels as in fig. 1.5. From
the figure the only difference is that the coordinate of the focus is
now at (−R, 0) whereas it was (R, 0) before. So if we write R′ = −R,
with R being positive we find for a ray incident on a concave lens[

y f

α f

]
=

[
1 0

1
R′
( n

n′ − 1
) n

n′

] [
yi

αi

]
(1.18)
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Figure 1.5: Refraction against concave surface.

Alternatively, and this is what we do, is that we allow for R to be
signed, in which case this formula is true for both R > 0 (convex)
and R < 0 (concave). We employ the following sign convention
fig. 1.6 where −R is used for concave, and +R is used for convex.

Figure 1.6: Concave curvature.

The sign conventions are illustrated in fig. 1.7 and fig. 1.8.

1.2.4 ABCD matrix for a lens.

Consider the lens illustrated in fig. 1.9 where once again we use
the paraxial approximation, assuming we are considering only
close enough to the middle that we can neglect any variation in
thickness. In this approximation we have a geometry of the form
fig. 1.10 where y ≪ R1, R2.

Our complete transfer matrix is then given by[
y f

α f

]
= M3M2M1

[
yi

αi

]
= M

[
yi

αi

]
. (1.19)
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Figure 1.7: Sign convention.

Figure 1.8: Convex curvature.

Figure 1.9: matrix for lens.
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Figure 1.10: Lens paraxial approximation.

We’ve described M1, M2, M3 individually above, and they are

M1 =

[
1 0

1
R1

( n
n′ − 1

) n
n′

]
(1.20a)

M2 =

[
1 t

0 1

]
(1.20b)

M3 =

 1 0
1

R2

(
n′
n − 1

)
n′
n

 (1.20c)

The matrix M is the mess

M =

 1 0
1

R2

(
n′
n − 1

)
n′
n

 [1 t

0 1

] [
1 0

1
R1

( n
n′ − 1

) n
n′

]
(1.21)

With only the ratio n′/n showing up, let’s make the substitution

n′

n
→ n, (1.22)
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effectively working with n = 1 outside of the lens. This gives us

M =

[
1 0

n−1
R2

n

] [
1 t

0 1

] [
1 0

1
n−1
R1

1
n

]

=

[
1 t

n−1
R2

t(n−1)
R2

+ n

] [
1 0

1
n−1
R1

1
n

]

=

 1 +
t( 1

n−1)
R1

t
n

n−1
R2

− n−1
R1

+ t(n−1)
R1R2

( 1
n − 1

) t(− 1
n +1)

R2
+ 1


=

 1 +
t( 1

n−1)
R1

t 1
n

− (n − 1)
(

1
R1

− 1
R2

+ t
nR1R2

(n − 1)
)

1 − t( 1
n−1)
R2



(1.23)

Writing the C term as −1/ f we have what’s called the Lens mak-
ers formula (for a thick lens in this case), and putting back in n
and n′ we have

1
f

=
(

n′

n
− 1
)(

1
R1

− 1
R2

+
nt

n′R1R2

(
n′

n
− 1
))

. (1.24)

Observe that for a thin lens where t → 0 we have the approxima-
tion

M =

[
1 0

−1/ f 1

]
. (1.25)

For our focus in eq. (1.24) we get

1
f

=
n′ − n

n

(
1

R1
− 1

R2

)
. (1.26)

This is called the (thin lens) Lens makers formula. This, and n ≈
1.5 is enough to construct many lens designs. Our sign conven-
tions for f are illustrated by fig. 1.11. where f > 0 is convex and
f < 0 is concave.

1.2.5 Properties of the transfer matrix.

1. The determinant of the transfer matrix is described by index
of refraction of just the initial and final media, and det M =
n0/n f . Examples
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Figure 1.11: Lens.

a) Thin lens

M =

[
1 0

−1/ f 1

]
(1.27)

b) Free propagation

M =

[
1 L

0 1

]
(1.28)

In particular, if imaging something in air, where we have
n0 = n f we have |M| = 1.

2. How about |M| = 0. There are a couple of cases. One is D = 0
where

α f = Cyi +���Dαi. (1.29)

output → input is focus, as illustrated in fig. 1.12.

3. We also have zero determinant when A = 0, in which case
we have

y f = �
�Ayi + Bαi. (1.30)

The output location is only a function of the input angle as
illustrated in fig. 1.13.

4. How about if B = 0. Now we have

α f = �
�Byi + Cαi, (1.31)
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Figure 1.12: D = 0.

Figure 1.13: A = 0.

Figure 1.14: B = 0.
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so that we see that the output is an image of the input, but
scaled (a magnifier or reducer). This is illustrated in fig. 1.14.

5. And finally if C = 0 we have

α f = �
�Cyi + Dαi, (1.32)

and we find out system is telescopic, magnifying the angle,
as illustrated in fig. 1.15.

Figure 1.15: C = 0.

1.3 problems .

Exercise 1.1 Derive Snell’s law.

Fermat’s theorem, that light takes the path of least time, can be
used to derive Snell’s law without resorting to Maxwell’s equa-
tions.

Note that a proof of Fermat’s theorem using the Ray equation
can be found in §3.3.2 [2].
Answer for Exercise 1.1

We refer to fig. 1.16, and seek to express the optical path length.
Since n(s) = c/v(s), the time spent along any portion of the path is
proportional to n(s)ds. For the two leg linear route that is

OPL = nr + n′r′. (1.33)

Since

r =
√

h2 + (L − x)2. (1.34a)
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Figure 1.16: Snell’s law light paths.

r′ =
√

h′2 + x2. (1.34b)

We want to find x such that

0 =
d(OPL)

dx

=
d

dx

(
n
√

h2 + (L − x)2 + n′
√

h′2 + x2
)

= n
1
2r

2(L − x)(−1) + n′ 1
2r′

2x

= −n sin θ + n′ sin θ′.

(1.35)

This gives us

n sin θ = n′ sin θ′, (1.36)

as desired.

Exercise 1.2 Image distance for an ideal lens.

For the lens illustrated in fig. 1.17, use geometrical arguments
to derive the image location formula

1
s

+
1
s′

=
1
f

. (1.37)

Answer for Exercise 1.2

Note that we have

tan θ =
a
x

=
b
f

=
a + b

s
. (1.38a)
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Figure 1.17: Thin paraxial lens with image in input and output conjugate
planes.

tan β =
b
x′

=
a
f

=
a + b

s′
. (1.38b)

We have respectively

b
a

=
f
x

. (1.39a)

b
a

=
x′

f
. (1.39b)

Now we can eliminate the x and x′ variables using x = s − f and
x′ = s′ − f

b
a

=
f

s − f
=

s′ − f
f

. (1.40)

Rearranging we have

f 2 = (s′ − f )(s − f ) = ss′ − f s − s′ f + f 2, (1.41)

or

ss′ = f s + f s′. (1.42)

Dividing through by f ss′ we have

1
f

=
1
s′

+
1
s

, (1.43)

as expected.
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Exercise 1.3 Newton’s lens focus formula.

Demonstrate the equivalence of Newton’s lens focus formula
to the inverse distance result shown above. Also referring to the
figure where the distances x and x′ were labeled, show that this is
equivalent to

xx′ = f 2. (1.44)

Answer for Exercise 1.3
In the class notes, the magnification of the thin lens system de-

scribed by eq. (1.43) was given by

m = − s′

s
. (1.45)

Other than the negation, this is a logical definition, the ratio of the
output size with respect to the input size. I’m guessing that this is
defined as negated because the image is inverted. From eq. (1.39b)
we have

b
a

=
x′

f
. (1.46)

Dividing the last two equalities in eq. (1.38) we have

b
a

=
s′

s
. (1.47)

We can conclude that the magnification, expressed in x′ and f is

m = − s′

s
=

x′

f
, (1.48)

and that fig. 1.17 with the distances as labeled describes the same
system. The remainder of the task is therefore algebraic. We have

0 = − 1
f

+
1
s

+
1
s′

= − 1
f

+
1

x + f
+

1
x′ + f

. (1.49)

Multiplying through by f (x + f )(x′ + f ) we have

0 = −(x + f )(x′ + f ) + f (x′ + f ) + f (x + f )

= −xx′ −�
�f x′ −��f x −�

�f 2 +�
�f x′ +�

�f 2 +��f x + f 2,
(1.50)

or

xx′ = f 2. (1.51)

Let’s try to solve exercise 1.4.
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Exercise 1.4 Solve the geometry of a convex lens exactly.

Solve this lens geometry exactly and show how we obtain the
ABCD matrix result in the limit.
Answer for Exercise 1.4

Our geometry is illustrated in fig. 1.18. We have using the law

Figure 1.18: Convex lens refraction.

of sines

sin θ1

R
=

sin(π − θ)
s + R

=
sin θ

s + R
, (1.52)

and also have

sin θ2

R
=

sin ϕ

s′ − R
. (1.53)

Dividing these we have a Snell’s law ratio

n′

n
=

sin θ

sin ϕ
=

(s + R) sin θ1
R

(s′ − R) sin θ2
R

, (1.54)

or

n′

n
=

(s + R)
(s′ − R)

sin θ1

sin θ2
. (1.55)

This is the exact result. Let’s verify that this matches our parax-
ial ABCD matrix result.

Introducing signed angles

α = θ1. (1.56a)
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α′ = −θ2. (1.56b)

The paraxial approximation gives

s′ =
y

sin θ2
∼ − y

α′ (1.57a)

s =
y

sin θ1
∼ y

α
(1.57b)

n′

n
= − (s + R)

(s′ − R)
α

α′ = −
( y

α + R
)(

− y
α′ − R

) α

α′ =
(y + Rα)

(y + Rα′)
. (1.58)

We want to solve for α′, and find

α′ = − y
R

+
n
n′

(
α +

y
R

)
=

y
R

( n
n′ − 1

)
+

n
n′ α. (1.59)

With y = y′ we have in matrix form[
y′

α′

]
=

[
1 0

1
R

( n
n′ − 1

) n
n′

] [
y

α

]
, (1.60)

which is the ABCD result as desired.

Exercise 1.5 Solve the geometry of a concave spherical mirror.

After solving, apply the paraxial approximation to find the ABCD
matrix result.
Answer for Exercise 1.5

Our system is illustrated in fig. 1.19. From the figure, employing
the law of sines, we have

t sin θ = r sin α = (r − s′) sin θ2, (1.61)

or

r − s′√
s2 + y2

sin θ2 = sin(γ + θ1) = sin γ cos θ1 + cos γ sin θ1, (1.62)
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Figure 1.19: Concave spherical reflector.

but since

γ = atan
y
s

, (1.63)

and

cos atan x =
1√

1 + x2
. (1.64a)

sin atan x =
x√

1 + x2
, (1.64b)

we have

r − s′√
s2 + y2

sin θ2 =
y/s√

1 + (y/s)2
cos θ1 +

1√
1 + (y/s)2

sin θ1

=
y√

s2 + y2
cos θ1 +

s√
s2 + y2

sin θ1,
(1.65)

or

(r − s′) sin θ2 = y cos θ1 + s sin θ1. (1.66)

This is the exact result desired. Application of the paraxial ap-
proximation gives us

(r − s′)θ2 ∼ y + sθ1. (1.67)

With

θ2 ∼ y′

s′
. (1.68a)
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θ1 ∼ ∆y
r + s

. (1.68b)

we have

sθ1 ∼ −rθ1 + ∆y. (1.69)

s′θ2 ∼ y′. (1.70)

rθ2 − y′ ∼ y − rθ1 + ∆y, (1.71)

or

θ2 ∼ 2
r

y′ − θ1. (1.72)

We need to fix the sign conventions for the ABCD matrices, so
write

α′ = −θ2. (1.73a)

R = −r. (1.73b)

α = θ1. (1.73c)

A final substitution into eq. (1.72) gives us

α′ ∼ 2
R

y′ + α. (1.74)

or in matrix form[
y′

α′

]
=

[
1 0
2
R 1

] [
y

α

]
. (1.75)

This is the ABCD matrix we were given in class.
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Exercise 1.6 ABCD Matrices. (2012 Ps1, P1)

Using the ABCD matrices from the lecture, prove these well-
known rules of geometric optics. In each case, make an illustra-
tion, tracing some important rays that illustrate the rule.

(a) An image is formed when 1/ f = 1/so + 1/si. Solve this problem
using the result we found in class: when B=0 for a system
matrix, the input and output are conjugate planes.

(b) An image with magnification −x′/ f is formed when xx′ = f 2.
Repeat part (a), but in “Newton’s form”: replace so with f +
x, and replace si with f + x′.

(c) The position distribution at the focus of a lens is the angular posi-
tion of the incident beam. (In other words, a lens does a kind
of Fourier transform, as you may know already.) Find where
the input plane has to be located for yo = f αi.

(d) Two identical lenses spaced by 2 f image an object at f with unity
magnification.

(e) Two identical lenses spaced by 2 f are telecentric, meaning
that an object at f + x from the first lens has a magnification
independent of x, in contrast to a simple lens.

(f) A lens and a flat mirror spaced by distance f create a cat’s eye.
What are its properties? Consider, in particular, an emitter
located f in front of the Cat’s eye and located at yi = 0.

Answer for Exercise 1.6

(a) Our system and the associated transfer matrices labels are
illustrated in fig. 1.20. We form the system transfer matrix
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Figure 1.20: Input and output conjugate planes for paraxial thin lens.

by applying first a free propagation matrix, then a thin lens
paraxial matrix, and one more free propagation matrix

M = M3M2M1

=

[
1 s′

01

] [
1 0

−1/ f 1

] [
1 s

01

]

=

[
1 − s′/ f s′

−1/ f 1

] [
1 s

01

]

=

[
1 − s′/ f s + s′ − ss′/ f

−1/ f −s/ f + 1

]
.

(1.76)

Consider ray (B) from the figure, where we have[
0

α

]
→ α

[
s + s′ − ss′/ f

−s/ f + 1

]
=

[
0

α′

]
. (1.77)

With

y = y′ = α(s + s′ − ss′/ f ) = 0, (1.78)

for all α. We must have

s + s′ =
ss′

f
. (1.79)

Dividing through by ss′ we have

1
s′

+
1
s

=
1
f

, (1.80)

as expected.
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(b) Let’s consider the system as the compound action of three
transfer matrices as illustrated in fig. 1.21, this time labeling
the figure in terms of the variables for this problem. Com-

Figure 1.21: Newton’s form, an image with magnification.

pounding the transfer matrices we have

M = M3M2M1

=

[
1 x′ + f

0 1

] [
1 0

−1/ f 1

] [
1 x + f

0 1

]

=

[
−x′/ f x′ + f

−1/ f 1

] [
1 x + f

0 1

]

= − 1
f

[
x′ xx′ − f 2

1 x

]
.

(1.81)

Consider the ray A where the effect is[
y

0

]
→ − 1

f

[
yx′

y

]
. (1.82)

We see that y′ = −yx′/ f or

m = − x′

f
=

y′

y
. (1.83)

The quantity defined as the magnification is in fact the ratio
of the output to the input size as intuitively expected. Now
consider a ray C originating at y = 0 at the image source,
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and landing at y = 0 on the conjugate output plane. For this
ray we have[

0

α

]
→ − 1

f

[
xx′ − f 2

x

]
θ =

[
0

α′

]
. (1.84)

Since this holds for all input angles originating at y = 0 from
the input plane, we must have

xx′ = f 2, (1.85)

as desired.

(c) Here we refer to fig. 1.22, this time considering no ray that
passes the focus past the lens. Our system transfer matrix,
given the reduced free propagation distance past the lens is

Figure 1.22: Position distribution at the focus of a lens.

M = M3M2M1

=

[
1 f

0 1

] [
1 0

−1/ f 1

] [
1 x + f

0 1

]

=

[
0 f

−1/ f 1

] [
1 x + f

0 1

]

=

[
0 f

−1/ f −x/ f

]
.

(1.86)

A ray is transformed according to[
y

θ

]
→
[

0 f

−1/ f −x/ f

] [
y

θ

]
=

[
f θ

− 1
f (y − xθ)

]
. (1.87)
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In particular

y′ = f θ, (1.88)

demonstrating the claim that at the focus, the position is
an angular distribution of the incident beam. This is clearly
independent of x so the input plane position is irrelevant.

(d) Consider fig. 1.23. The transfer matrix M = M5M4M3M2M1

Figure 1.23: Two identical lenses separated by twice focus.

for the system is

M = M5M4M3M2M1

=

[
1 x + f

0 1

] [
1 0

−1/ f 1

] [
1 2 f

0 1

] [
1 0

−1/ f 1

] [
1 x + f

0 1

]

=

[
−x/ f x + f

−1/ f 1

] [
1 2 f

0 1

] [
1 x + f

−1/ f −x/ f

]

=

[
−x/ f −x + f

−1/ f −1

] [
1 x + f

−1/ f −x/ f

]

=

[
−1 −2x

0 −1

]
.

(1.89)

Consider any ray from the source going towards the lens
along the horizontal. We have[

y

0

]
→
[
−y

0

]
, (1.90)
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The ratio of the output to the input height to be

y′

y
= −1, (1.91)

which is the unit magnitude magnification as desired.

(e) This is actually demonstrated above.

(f) Here we consider fig. 1.24. Our system transfer matrix is

Figure 1.24: Cat’s eye. Lens with mirror behind at focus.

M = M7M6M5M4M3M2M1

=

[
1 s′

0 1

] [
1 0

−1/ f 1

] [
1 f

0 1

] [
1 0

0 1

] [
1 f

0 1

] [
1 0

−1/ f 1

] [
1 s

0 1

]

=

[
1 − s′/ f s′

−1/ f 1

] [
1 2 f

0 1

] [
1 s

−1/ f −s/ f + 1

]

=

[
1 − s′/ f 2 f − s′

−1/ f −1

] [
1 s

−1/ f −s/ f + 1

]

=

[
−1 2 f − s′ − s

0 −1

]
(1.92)

We see that the angle of the output light is unchanged ex-
cept for sign, so we have no scattering in the paraxial limit.
Observe that if the emitter is positioned at s = f we have

M =

[
−1 f − s′

0 −1

]
(1.93)
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so

y′ = −y + ( f − s′)α. (1.94)

The image is magnified (negatively) for any position |s′| > f
without any angular distortion. In fact, if the observation
is also made at the focus, then the image magnification is
unity. Notice that at the focus we have both a sign change
in the position and the angle coordinate, meaning that the
output image is exactly the same as in the input image. In
retrospect, this is exactly the same system mathematically as
the 2 f spaced lenses of parts (d) and (e), and we could have
done the matrix products just once for all those parts of the
problem!





2G E O M E T R I C O P T I C S : R AY S A N D O P T I C S W I T H
G R A D E D I N D E X .

2.1 reading .

Reading: §3.1.1 [2]

2.2 eikonal equation.

We want to find the rays in Maxwell’s equations.

∇ · D = 0

∇ · B = 0

∇× E = −1
c

∂B
∂t

∇× B =
1
c

∂D
∂t

.

(2.1)

Assume

1. Material has no magnetic dependence (µ = 1) so that we
have 1

n =
√

ϵ. (2.4)

We’ll neglect loss, with zero for the imaginary part of n

1 Note the choice of units here, with no c in the definition of n. In SI we’d write

n =
c
v

=
c

1/
√

ϵµ
≈ c

√
ϵ. (2.2)

however, with these units (and µ = 1) the wave equation operator takes the form

∇2 − ϵ

c2 ∂tt . (2.3)

From this we deduce the wave velocity is c/
√

ϵ, and then find n = c/v matches
eq. (2.4) above.
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2. Short wavelength limit λ ≪ d, any other length scale in prob-
lem.

If n = constant, we know that plane waves are solutions. Try[
E

B

]
=

[
E0(r)

B0(r)

]
eiϕ(r)−iωt. (2.5)

We know that for plane waves we’ll have

E0(r) → E

B0(r) → B

ϕ(r) → k · r.

(2.6)

The time derivatives are

1
c

∂

∂t

[
E

B

]
= −i

ω

c

[
E

B

]
= −ik0

[
E

B

]
. (2.7)

For the spatial derivatives we have

∇ · E = e−iωt
(

eiϕ(r)∇ · E0(r)

neglect this

+ E0(r) ·
(
∇eiϕ(r)

))
, (2.8)

and

∇× E = e−iωt
(

eiϕ(r)∇× E0(r)

neglect this

− E0(r) ×
(
∇eiϕ(r)

))
. (2.9)

We can computing the phase gradient directly

∇eiϕ = em∂meiϕ

= iem∂mϕeiϕ

= i(∇ϕ)eiϕ,

(2.10)

and use this to justify the neglect of the gradients products of E0

above. Since

1
En

0

dEn
0

dxp
≪ 1

λ
. (2.11)
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for all xp ∈ {x, y, z}. Since

∇ϕ ≈ k0 ∼ 2π

λ
. (2.12)

we see that the non-neglected terms above are of order |E0|/λ,
which justifies the action.

This leaves us with

∇ · E ≈ ieiϕ−iωtE0(r) ·∇ϕ. (2.13)

∇× E ≈ −ieiϕ−iωtE0(r) ×∇ϕ. (2.14)

Maxwell’s equations now take the form

E0 ·∇ϕ = 0. (2.15a)

B0 ·∇ϕ = 0. (2.15b)

∇ϕ × E0 = k0B0. (2.15c)

∇ϕ × B0 = −ϵk0E0. (2.15d)

Crossing ∇ϕ with eq. (2.15c) we have

∇ϕ × (∇ϕ × E0) = k0(∇ϕ × B0)

∇ϕ (����∇ϕ · E0)− E0(∇ϕ)2 = −ϵk2
0E0

(2.16)

This is called the Eikonal equation and can be written as

|∇ϕ|2 = k2
0ϵ(r). (2.17)

or

|∇ϕ| = k0n(r) (2.18)

If n = constant

|∇ϕ| = k0n. (2.19)

This can be illustrated as in fig. 2.1. If n ̸= constant only locally
would we have plane waves as in fig. 2.2.
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Figure 2.1: Plane waves for constant index of refraction.

Figure 2.2: Plane waves only locally with variation of index of refraction.

2.3 poynting vector .

How about the Poynting vector? This is the direction of the “ray”,
the direction of the transport of energy and momentum. That is

S =
c

4π
Re E × Re B, (2.20)

and after some math, taking the average we have

⟨S⟩time =
c

8πk0
|E0|2∇ϕ. (2.21)

We see that the rays point along ∇ϕ.

2.4 ray equation.

Referring to fig. 2.3 we let

s = distance along ray. (2.22)



2.4 ray equation. 31

Figure 2.3: Unit tangents on a curve.

t = tangent =
dr(s)

ds
. (2.23)

The unit vector, parallel to ∇ϕ is

dr(s)
ds

= t =
∇ϕ

|∇ϕ|

=
∇ϕ

n(r)k0
,

(2.24)

So we have

n(r)
dr
ds

=
1
k0
∇ϕ. (2.25)

We’d like to get rid of the pesky dependence on the phase. Let’s
take another derivative to attempt to get rid of ∇ϕ. Will this work?

d
ds

(
n(r)

dr
ds

)
=

1
k0

d
ds

∇ϕ

=
1
k0

(
dr
ds

·∇
)
∇ϕ

=
1
k0

(
1

k0n(r)
∇ϕ ·∇

)
∇ϕ

(2.26)

Here we’ve used the convective derivative

d
ds

=
∂

∂s
+

∂r
∂s

·∇ =
dr
ds

·∇. (2.27)
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In exercise 2.2 we show that

(∇ϕ ·∇)∇ϕ = k2
0n∇n, (2.28)

which gives us the Ray equation

d
ds

(
n(r)

dr
ds

)
= ∇n(r) (2.29)

Note that this almost looks like a F = ma type of equation
with time parameterization replaced by arc length along the ray
(should we ignore the index of refraction on the LHS), and also
ignore the lack of a minus sign.

The lack of minus sign we can interpret as something like “bend-
ing to higher n”.

2.5 grin (graded refractive index) optics .

With a constant index we have

d
ds

(
n

dr
ds

)
= ∇n = 0. (2.30)

So

d2

ds2 r(s) = 0. (2.31)

Integrating twice we see this is the straight ray that we expect

r = sa + r0. (2.32)

We can compute the unit tangent

dr
ds

= a =
1

nk0
∇ϕ, (2.33)

finding that our constant vector a, in this case, is a unit vector in
the direction of the gradient. This shows that the gradient of the
phase lies along the ray path of wave front.

The ray r(t) for a fixed phase front (not a general expression)
can be implicitly defined by

ϕ(r, t) = ωt, (2.34)



2.6 trap a ray. 33

Or more generally

r ·∇ϕ(r) = ωt. (2.35)

We find

a · r =
ωt

nω/c
=

c
n

t = vt, (2.36)

so the phase front of the wave moves with speed c/n along the ray
direction.

2.6 trap a ray.

Let’s have some fun with non-constant n. Can we trap a ray of
light as in fig. 2.4? If we have a circular trajectory

Figure 2.4: Ray trap.

r = R

cos θ(s)

sin θ(s)

0

 . (2.37)

We can imagine any sort of variation of n with r, such as fig. 2.5,
but we want to figure out exactly what n(r) has to be. We can do
so by plugging into eq. (2.29). We’ll assume that n(r) is radially
symmetric, so that given the constant radius of the ray (a circle)
we have dn/ds = 0. This gives

d2

ds2 r(s) =
∇n(r)

n(r)
, (2.38)
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Figure 2.5: Imagined possible relationship between index of refraction
and position..

Taking derivatives, we have

dr
ds

= R

− sin θ(s)

cos θ(s)

0

 dθ

ds
. (2.39)

Since s = Rθ, we have dθ/ds = 1/R, and

dr
ds

=

− sin θ(s)

cos θ(s)

0

 . (2.40)

Taking the next derivative we have

d2r
ds2 =

− cos θ(s)

− sin θ(s)

0

 1
R

= − 1
R2 r. (2.41)

We find

d2r
ds2 =

∇n
n

. (2.42)

or

∇n = −n
r

R2 . (2.43)

Trap your own ray today!
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2.7 gradium lens .

Reading : §6.4 [8].
We’ll use Fermat’s theorem

Definition 2.1: Fermat’s theorem

The pathlength is the same for all rays.

Looking to fig. 2.6 we will now consider a cylindrical lens con-
structed out of a non-uniform index material. Suppose we have
an index of refraction that is distributed parabolicly

Figure 2.6: Gradium lens.

n(ρ) = n0 −
1
2

αρ2. (2.44)

Consider the ray paths that pass through the lens at ρ = 0. These
will have pathlength

OPL|ρ=0 = OPLB1 + OPLB2 = dn0 + f . (2.45)

Note that we assume n = 1 outside of the lens so that portion of
the pathlength is f and not noutside f . A ray passing through the
lens at ρ ̸= 0 will have a pathlength of approximately (neglecting
any curvature or ray angle within the lens)

OPL|ρ ̸=0 = OPLA1 + OPLA2 = dn(ρ) +
√

f 2 + ρ2. (2.46)

For these to come together to the same focal point, the two path-
lengths must be equal (Fermat’s theorem), so we have

n(ρ) = −1
d

√
f 2 + ρ2 + n0 +

f
d

. (2.47)
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Assuming a paraxial approximation where ρ ≪ f we have

n(ρ) = n0 +
f
d

1 −
√

1 +
(

ρ

f

)2


∼ n0 +
f
d

(
1 −

(
1 +

1
2

(
ρ

f

)2
))

= n0 −
1
2

ρ2

f d
.

(2.48)

We write

α =
1

2 f d
, (2.49)

and seek to solve the Ray equation

d
ds

(
n(ρ)

d
ds

(ρ + zẑ)
)

= ∇n(ρ). (2.50)

With ∇n(ρ) · ẑ = 0, we can consider only the radial portion of this
equation

d
ds

(
n(ρ)

dρ

ds

)
= ∇n(ρ). = −αρ. (2.51)

We seek a relationship as potentially illustrated in fig. 2.7 where
given a paraxial approximation we have

Figure 2.7: Arc length.

ds = dz

√
1 +
∣∣∣∣dρ

dz

∣∣∣∣2 ∼ dz, (2.52)
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and can reduce the Ray equation to

d
dz

(
n0 −

α

2
ρ2
) dρ

dz
= −αρ. (2.53)

We’d like to drop the ρ2 term above, and can do that provided

ρ ≪
√

2n0

α
= 2
√

n0 f d. (2.54)

This leaves us with a plain old SHO

n0
d2

dz2 ρ = −αρ (2.55)

Let’s write this out

ρ(z) =

[
x(z)

y(z)

]
=

A cos
(√

α
n0

z
)

+ B sin
(√

α
n0

z
)

C cos
(√

α
n0

z
)

+ D sin
(√

α
n0

z
) (2.56)

We have 4 constants determined by the initial conditions

ρ(0) =

[
A

C

]
(2.57)

dρ

dz

∣∣∣∣
0

=
√

α

n0

[
B

D

]
. (2.58)

If we set ρ(0) = 0, then we are left with just

ρ(z) =

[
B

D

]
sin
(√

α

n0
z
)

. (2.59)

This vectoral solution r = ρ + zẑ + z0 (with z0 = 0) is illustrated in
fig. 2.8. Observe that the nodes are placed at

√
α/n0 = nπ with a

complete cycle in distance as illustrated in fig. 2.9.

L = 2π

√
n0

α
. (2.60)

If the length is an integer L as in fig. 2.10. If the length is a half
integer L as in fig. 2.11. If length =

(
n + 1

4

)
L as in fig. 2.12. It

was mentioned that this solved a problem with regular fiber optic
cables illustrated in fig. 2.13 so that for the GRIN configuration
we have something more like fig. 2.14. This phenomena is well
described in §5.6.1 [8].
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Figure 2.8: Ray variation with position through GRIN material.

Figure 2.9: Nodal distribution.

Figure 2.10: first order solution.



2.7 gradium lens . 39

Figure 2.11: second order solution.

Figure 2.12: third order solution.

Figure 2.13: regular fiber effects.
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Figure 2.14: step index fiber.

2.7.1 Phase delay in GRIN lens?

Are path lengths equal? Instead of dropping all but the dz term
in our ds approximation eq. (2.52), how about we retain the first
order Taylor expansion

τ =
∫ L

0

ds
c/n(r)

=
1
c

∫ L

0
dz

√
1 +
∣∣∣∣dρ

dz

∣∣∣∣2 (n0 −
α

2
ρ2
)

≈ n0

c

∫ L

0
dz

(
1 +

1
2

∣∣∣∣dρ

dz

∣∣∣∣2
)(

1 − α

2n0
ρ2
)

≈ n0

c

∫ L

0
dz

(
1 +

1
2

∣∣∣∣dρ

dz

∣∣∣∣2 − α

2n0
ρ2

)
+ O(higher order corrections).

(2.61)

But

d
dz

(
ρ · dρ

dz

)
≈
∣∣∣∣dρ

dz

∣∣∣∣2 + ρ · d2ρ

d2z
, (2.62)

so our approximate path length can be written

τ =
n0

c

∫ L

0
dz
(

1 +
1
2

d
dz

(
ρ · dρ

dz

)
− 1

2
ρ · d2ρ

d2z
− 1

2
α

n0
ρ2
)

. (2.63)
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But

−1
2

ρ · d2ρ

d2z
− 1

2
α

n0
ρ2 = −1

2

(
d2

dz2 ρ − α

n0
ρ

)= 0 by Eikonal

· ρ. (2.64)

so

τ =
n0L

c
+

n0

2c
ρ · dρ

dz

∣∣∣∣L
0

= 0 if refocused

. (2.65)

Here if refocused means ρ = 0 at both sides, as we had for L =
2π
√

n0/α. The conclusion is that when light traverses focal point
to focal point within the GRIN material of this sort, it propagates
without any sort of phase delay.

2.8 ray equation and action minimization.

Reading : §3 of [2] for details on this topic.
Ray equation gives paths of stationary action
In general our action is

S =
∫ t2

t1

dtL. (2.66)

where L is the Lagrangian. We recall Hamilton’s principle which
states that if

δS = 0, (2.67)

(a path variation as illustrated in fig. 2.15 ), then the statement
eq. (2.67) gives us Hamiltonian dynamics (Hamilton’s equations).

Why does this work? One explanation is that we have in quan-
tum mechanics the most general action

amplitude(path) = exp(iS[path]/ h̄), (2.68)

This is called Feynman’s Path Integral.
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Figure 2.15: Action minimization.

We have a Lagrangian for electromagnetism

LEM =
1
c

ρϕ +
1
c

j · A +
1

8π
E2 − 1

8π
B2. (2.69)

Using this we can derive Maxwell’s equations.
As a problem we are going to calculate the amplitude for the

Cornu spiral fig. 2.16. Propose some experiments

Figure 2.16: Cornu spiral path of interest.

1) Block the primary path fig. 2.17. 2) Block 2 paths fig. 2.18. 3)
Block half paths fig. 2.19. 4) Allow paths with the same phase.

Figure 2.20. We’ll see that the Action principle does in fact pro-
vide us all the real physical effects (Fresnel diffraction, multi-slit
diffraction, ...)

2.9 problems .

Exercise 2.1 Calculate the Poynting vector time average.
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Figure 2.17: Single slit.

Figure 2.18: Double slit.

Figure 2.19: Wall blocking half path.
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Figure 2.20: Many slits.

Demonstrate eq. (2.21).
Answer for Exercise 2.1

In exercise B.1 we have shown that

⟨S⟩ = ⟨E × B⟩ =
1
2

Re(E0 × B∗
0), (2.70)

where the fields were specified by the phasor relations

E = Re
(

E0eik·x−ωt
)

(2.71)

B = Re
(

B0eik·x−ωt
)

. (2.72)

Given that, switching to cgs units, the exercise is reduced to
showing that

Re(E0 × B∗
0) =

1
k0
|E0|2∇ϕ. (2.73)

From back to Maxwell’s equation, in particular eq. (2.15c), we have

E0 × B∗
0 = E0 ×

(
1
k0
∇ϕ × E0

)∗

=
1
k0

E0 × (∇ϕ × E∗
0)

= − 1
k0

(
(����E0 ·∇ϕ)E∗

0 − |E0|2∇ϕ
)

=
1
k0
|E0|2∇ϕ,

(2.74)

as desired.
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Exercise 2.2 Second order product in Ray equation.

Derive eq. (2.28).

Answer for Exercise 2.2

Let’s expand out the gradients in Cartesian coordinates

(∇ϕ ·∇)∇ϕ = (∂kϕ∂k) em∂mϕ

= em∂kϕ∂m∂kϕ

=
1
2

em∂m (∂kϕ∂kϕ)

=
1
2
∇ (∇ϕ)2 .

(2.75)

Now we use Eikonal eq. (2.17)

(∇ϕ ·∇)∇ϕ =
1
2
∇(k0n)2

= k2
0n∇n.

(2.76)

Exercise 2.3 Solve the Ray trapping equation.

Can we easily solve eq. (2.43)?

Answer for Exercise 2.3

We have n = n(r) so that

∇n =
(

r̂
∂

∂r
+

θ̂

r
∂

∂θ
+ ẑ

∂

∂z

)
n(r) = r̂

∂n
∂r

= −n
r̂
R

. (2.77)

Cancelling r̂ factors, we find that this is separable∫ dn
n

= −
∫ dr

R
, (2.78)

or

ln n = −r + ln n(0). (2.79)

Exponentiating we have

n = n(0)e−r. (2.80)
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Exercise 2.4 Eikonal equation, Geometric Algebra.

Express eq. (2.15) in it’s Geometric Algebra form, and figure out
how eq. (2.17) follows from that directly.
Answer for Exercise 2.4

We write Maxwell’s equations for the assumed phasor solution
more symmetrically (and re-introducing µ temporarily for gener-
ality)

∇ · ϵE = 0. (2.81a)

∇ · B = 0. (2.81b)

∇× E = −1
c

∂B
∂t

. (2.81c)

∇× B =
µϵ

c
∂E
∂t

. (2.81d)

Observe that we have [∇] = [(1/c)∂/∂t] = 1/L, so E and B have
the same dimensions in cgs and µϵ is dimensionless.

Employing the usual notation for the 3D unit pseudoscalar I =
e1e2e3 and the identity

ab = a · b + I(a × b), (2.82)

we can perform a first amalgamation of Maxwell’s equations into
two multivector equations

∇E = − I
c

∂B
∂t

. (2.83a)

∇B =
Iµϵ

c
∂E
∂t

. (2.83b)

With knowledge that the wave velocity in cgs units is v = c/
√

µϵ

(which will be confirmed shortly) we can rescale

∇E = −
√

µϵ

c
∂

∂t
IB√
µϵ

. (2.84a)
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∇ IB√
µϵ

= −
√

µϵ

c
∂E
∂t

. (2.84b)

and do a final amalgamation of Maxwell’s equations into multi-
vector form(

∇ +
√

µϵ

c
∂

∂t

)(
E +

I√
µϵ

B
)

= 0. (2.85)

For the multivector electrodynamic field we write

F = E +
I√
µϵ

B = E +
I
n

B. (2.86)

Observe that the wave equation can be found by left multiplying
with ∇− (

√
µϵ/c)∂t(

∇2 − µϵ

c2 ∂tt

)
F = 0. (2.87)

This confirms that the velocity of the wave is
√

µϵ/c. Note that
since this scalar operator equation must hold separately for both
the vector and pseudoscalar components of this equation, it also
applies separately to E and B independently as expected.

Okay, we’ve got our starting point. Let’s now assume a phasor
solution for F as in class

F = F0(r)eiϕ(r)−iωt. (2.88)

Application of Maxwell’s equation eq. (2.85) to this we find(
∇ +

√
µϵ

c
∂

∂t

)
F0eiϕ−iωt

= eiϕ−iωt∇F0 + e−iωtekF0∂keiϕ + eiϕF0(−iω)
√

µϵ

c
e−iωt

= eiϕ−iωt
(
∇ + i(∇ϕ) − iω

√
µϵ

c

)
F0.

(2.89)

Neglecting the ∇F0 term, writing ω/c = k0 and requiring this to
hold for any phase we have

(∇ϕ)F0 = k0n(r)F0. (2.90)
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Left multiplication by ∇ϕ gives us

(∇ϕ)2F0 = k0n(∇ϕ)F0 = k2
0n2F0, (2.91)

yielding the Eikonal equation as desired

(∇ϕ)2 = k2
0n2. (2.92)

From this we observe that k̂ propagation direction unit vector that
we are used to is generalized to a spatially dependent form

k̂(r) =
∇ϕ

k0n
. (2.93)

Using that, the equation to solve takes the form

k̂F0 = F0. (2.94)

Let’s check that this matches our expectations by multiplying out
this equation explicitly

E +
I
n

B = k̂
(

E +
I
n

B
)

= k̂ · E +
I
n

k̂ · Bk̂ ∧ E +
I
n

k̂ ∧ B.
(2.95)

Grouping by scalar, trivector, vector, and bivector terms we find

k̂ · E0 = 0. (2.96a)

k̂ · B0 = 0. (2.96b)

E0 = −k̂ × B0

n
. (2.96c)

B0

n
= k̂ × E0. (2.96d)

Good, this matches with eq. (2.15) as derived in class.
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As another check, observe that the wave equation can be found
by left multiplying with ∇− (

√
µϵ/c)∂t(

∇2 − µϵ

c2 ∂tt

)
F = 0. (2.97)

This confirms that the velocity of the wave is
√

µϵ/c. Note that
since this scalar operator equation must hold separately for both
the vector and pseudoscalar components of this equation, it also
applies separately to E and B independently as expected.

Okay, with some sanity checking done, we’ve got our starting
point. Let’s now assume a phasor solution for F as in class

F = F0(r)eiϕ(r)−iωt. (2.98)

Application of Maxwell’s equation eq. (2.85) to this we find(
∇ +

√
µϵ

c
∂

∂t

)
F0eiϕ−iωt

= eiϕ−iωt∇F0 + e−iωtekF0∂keiϕ + eiϕF0(−iω)
√

µϵ

c
e−iωt

= eiϕ−iωt
(
∇ + i(∇ϕ) − iω

√
µϵ

c

)
F0.

(2.99)

Neglecting the ∇F0 term, writing ω/c = k0 and requiring this to
hold for any phase we have

(∇ϕ)F0 = k0n(r)F0. (2.100)

Left multiplication by ∇ϕ gives us

(∇ϕ)2F0 = k0n(∇ϕ)F0 = k2
0n2F0, (2.101)

yielding the Eikonal equation as desired

(∇ϕ)2 = k2
0n2. (2.102)

Note that it almost looks like eq. (2.102) could be observed directly
from eq. (2.93). However, at that point we hadn’t actually proved
that k̂ was a unit vector, but had sneakily just used notation that
implied it.

Having shown now that k̂ is a unit vector, and because eq. (2.94)
is now no longer any different than the result for linear media
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with a phasor assumed to be of the form F0eik·x−iωt, we must also
have as the general solution to Maxwell’s equation given our ap-
proximation

F0 = (1 + k̂)C. (2.103)

where C · k̂ = 0. However, in this case, we have to allow k̂ and C
to covary spatially.

Exercise 2.5 Ray in a linear index gradient. (2012 Ps1, P2)

What is the shape of a ray moving into a linear index gradient
fig. 2.21? You’d expect something like a parabola from the intu-
ition that the Ray Equation is ‘Newton-like’. Find out what you
actually get! To establish some conventions: take n(y) = n0 − βy;
choose parameterization of the ray so that s = 0 at the top of the
trajectory: r(0) = 0, and dr/ds = x̂ at s = 0. In this case the ray will
remain in the xy plane, so your task is to find x(s) and y(s).

x

y

n

y

0

n0
�∇n

Figure 2.21: .

(a) Start with the Ray Equation d
ds{n d

ds r} = ∇n. Integrate both
sides with respect to s, and use initial conditions to deter-
mine constants of integration. You should be left with two
first-order differential equations.

(b) Solve the dy/ds equation first, by integrating again with re-
spect to s. Give an exact expression for z(s). Also give ap-
proximate expressions for y(s) in two limits: small s, and
large s.

(c) Now solve the dx/ds equation. Again, give an exact expres-
sion for x(s), and approximate expressions for x(s) in two
limits: small s, and large s.



2.9 problems . 51

(d) Combine your results to give x(y). (This may seem strange,
but an exact result for y(x) is hard to write down. You’ll have
to restrict yourself to x > 0 for this curve to be functional.)
You can again find an exact result, an small-s approximation,
and a large-s approximation.

(e) Is the trajectory of an optical ray a parabola in any limit? If
so, what is gravitational acceleration?

(f) Use your favourite software (Mathematica, ...) to make a plot
of x(s), y(s), and x(y). In each plot, compare the exact ex-
pression (as a solid line) to the two limiting expressions (as
dashed lines). Nondimensionalize in terms of L = n0/β: in
other words, use the variables x/L, y/L, and s/L.

Answer for Exercise 2.5

(a) Our ray equation, after computation of the gradient of the
index of refraction for the material becomes

d
ds

(
n(r)

dr
ds

)
= ∇n(r) = ∇ (n0 − βy) = −βŷ. (2.104)

In components this is

d
ds

(
(n0 − βy)

dx
ds

)
= 0

d
ds

(
(n0 − βy)

dy
ds

)
= −β

d
ds

(
(n0 − βy)

dz
ds

)
= 0

(2.105)

Integrating once, with the introduction of n0 factors in our
integration constant (which will clearly make life easier), we
have

(n0 − βy)
dx
ds

= An0

(n0 − βy)
dy
ds

= −βs + Bn0

(n0 − βy)
dz
ds

= Cn0

(2.106)
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In particular, at s = 0, where x(0) = y(0) = z(0) = 0, x′(0) = 1
and y′(0) = z′(0) = 0, we have

n0(1) = An0

n0(0) = Bn0

n0(0) = Cn0

(2.107)

Our equations of motion become

(n0 − βy)
dx
ds

= n0

(n0 − βy)
dy
ds

= −βs

(n0 − βy)
dz
ds

= 0.

(2.108)

We have two non-trivial differential equations to solve.

(b) First observe that unless n0 = βy(s) for all s, then z(s) must be
constant. However, our boundary condition r(0) = 0 means
that this constant is zero

z(s) = constant = z(0) = 0. (2.109)

Solving for y(s) next we have after rearranging∫
(n0 − βy) dy = −β

∫
sds. (2.110)

This yields

n0y − β

2
y2 = −β

2
s2 + C. (2.111)

Noting that y(0) = 0 we have C = 0

y2 − s2 − 2
n0

β
y = 0. (2.112)

Completing the square(
y − n0

β

)2

= s2 +
(

n0

β

)2

. (2.113)
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or

y =
n0

β
±
√

s2 +
(

n0

β

)2

. (2.114)

Given the y(0) = 0 boundary constraint, we can only pick the
negative root. Borrowing the L = n0/β notation from later in
the problem, we have

y(s) = L

(
1 −

√( s
L

)2
+ 1

)
. (2.115)

Let’s look at the small limit where s ≪ L

y(s) ∼ L
(

1 −
(

1 +
1
2

( s
L

)2
))

, (2.116)

y(s) ∼ − s2

2L
when s ≪ L. (2.117)

In the large limit for s ≫ L the s2 term dominates, leaving

y(s) ∼ −s when s ≫ L. (2.118)

A plot of y/L, −s/L, and −s2/2L2 can be found in fig. 2.22

and fig. 2.23.

1 2 3 4 5

s

L

-4

-3

-2

-1

Figure 2.22: Plots of y(s) and corresponding big and small limiting
forms, scaled for small limit.
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5 10 15 20 25 30

s

L

-30

-25

-20

-15

-10

-5

Figure 2.23: Plots of y(s) and corresponding big and small limiting
forms, scaled for large limit.

(c) We are now set to solve our x component ray equation

(L − y)
dx
ds

= L, (2.119)

or
√

s2 + L2 dx
ds

= L. (2.120)

Integrating we have

x = L
∫ s

0

ds′√
s′2 + L2

= L
∫ s

0

ds′√
s′2 + L2

= L
∫ s/L

0

dt√
t2 + 1

= L ln
(

t +
√

t2 + 1
)∣∣∣s/L

0
.

(2.121)

This is

x(s) = L ln

(
s
L

+

√( s
L

)2
+ 1

)
. (2.122)

In the large limit for s ≫ L the s2 term in the square root
dominates, leaving

x(s) ∼ L ln
(

2s
L

)
when s ≫ L. (2.123)
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In the small limit s ≪ L

x(s) ∼ L ln
( s

L
+ 1
)

= L
(

s
L
− 1

2

( s
L

)2
+

1
3

( s
L

)3
− · · ·

)
,

(2.124)

or

x(s) ∼ s when s ≪ L. (2.125)

With t = s/L, we have a plot of u(t) = x(Lt)/L, and the small
and large limit approximations above in fig. 2.24.

1 2 3 4

s

L

0.5

1.0

1.5

2.0

Figure 2.24: Plots of x(s) and corresponding big and small limiting
forms.

(d) With t = s/L, u = x/L, and v = y/L we have

u = ln
(

t +
√

t2 + 1
)

. (2.126a)

v = 1 −
√

t2 + 1. (2.126b)

Rearranging for t and
√

1 + t2, we have
√

t2 + 1 = 1 − v. (2.127a)

t =
√

(1 − v)2 − 1, (2.127b)

so

u(v) = ln
(√

v2 − 2v + 1 − v
)

. (2.128)
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or

x(y) = L ln

(√( y
L

)2
− 2

y
L

+ 1 − y
L

)
. (2.129)

Now, for the approximations. Noting that the range of y is
(−∞, 0] let’s write w = −v = |v| in eq. (2.128) so that we have

u(w) = ln
(√

w2 + 2w + 1 + w
)

. (2.130)

For w >> 1 we have
√

w2 + w ∼
√

w2 = w = −y/L. (2.131)

so that

x(y) ∼ L ln
(
−2y

L

)
when −y/L ≫ 1. (2.132)

In the small limit w << 1 we also have w2 ≪ w, so that

u(w) ∼ ln(
√

w + 1) ∼
√

w − 1
2

(
√

w)2 +
1
3

(
√

w)3 − · · · ∼
√

w,

(2.133)

or

x(y) ∼ L
√
− y

L
when −y/L ≪ 1. (2.134)

A plot of x(y/L)/L, and the small and large limit approxima-
tions can be found in fig. 2.25 and fig. 2.26.

(e) In the small limit we found

x(s) ∼ s. (2.135a)

y(s) ∼ − s2

2L
, (2.135b)



2.9 problems . 57

-5 -4 -3 -2 -1

s

L

0.5

1.0

1.5

2.0

2.5

Figure 2.25: Plots of x(y/L)/L and corresponding big and small limiting
forms, scaled for small limit.
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Figure 2.26: Plots of x(y/L)/L and corresponding big and small limiting
forms, scaled for large limit.
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so we have

y ∼ − x2

2L
, (2.136)

a parabolic trajectory. Comparing to y′′ = g, where y = gt2/2 +
y′0t + y0, the quantity that’s analogous to the gravitational ac-
celeration in eq. (2.136) is

− 1
L

= − β

n0
→ g. (2.137)

(f) These plots were included above. Good asymptotic matching
in the large limit was found to be fairly range dependent,
also shown above. This can be observed in modernOptic-
sProblemSet1.cdf , where dynamic (Manipulate) graphs are
available for each of the graphs above, where the range is
slider parameterized.

Exercise 2.6 Ray equation at a surface. (2012 Ps1, P3)

Show that Snell’s law can be derived from the transverse com-
ponent of the ray equation applied at an index step. Set up the
problem with an index step from n1 in the half-plane x < 0;
and n2 in the half-plane x > 0 fig. 2.27. Define your rays accord-
ing to two straight-line trajectories: a ray in the xy plane defined
by x = s cos θ1 and y = s sin θ1 for x < 0; and x = s cos θ2 and
y = s sin θ2 for x > 0.

(a) Solve the transverse (or y-) component of the Ray Equation.
Show that it gives Snell’s law.

(b) Show that the normal (or x-) component of the Ray Equa-
tion is contradictory, unless the limit of a small index step is
taken. Why is this? What is missing?

x

y

θ1

θ2

n1 n2
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Figure 2.27: .

Answer for Exercise 2.6

(a) The index of refraction n(x) has no y-component, so we have

ŷ ·∇n = 0. (2.138)

The y-component of the Ray equation

d
ds

(
n(x)

dy
ds

)
= 0, (2.139)

can therefore be integrated directly

n(x)
dy
ds

= constant. (2.140)

With the chosen ray parameterization we have for x < 0 the
y-component of the ray “velocity”

ŷ · dr1

ds
= ŷ · d

ds
s(cos θ1, sin θ1) = ŷ · (cos θ1, sin θ1) = sin θ1.

(2.141)

Similarly for the y-component in the x > 0 region we have

ŷ · dr2

ds
= sin θ2. (2.142)

We want to use this in the integrated Ray equation eq. (2.140)
which takes the form

n1
dy1

ds
= constant = n2

dy2

ds
, (2.143)

but since we have found that dy1/ds = sin θ1 and dy2/ds =
sin θ2, we have Snell’s law

n2 sin θ2 = n1 sin θ1. (2.144)
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(b) We can produce a contradictory result if we avoid the origin
when treating the x-component of the Ray equation. Repeat-
ing the argument above for |x| > 0 where ∇n = 0 would
give us

n
dx
ds

= constant. (2.145)

With dx1/ds = cos θ1 and dx2/ds = cos θ2 we would have

n2 cos θ2 = n1 cos θ1, (2.146)

which contradicts Snell’s law.

This conclusion isn’t valid because we have avoided the ori-
gin, where the index of refraction is not continuous. What
is missing is proper treatment of this step discontinuity. To
frame this properly, let’s express the index of refraction a bit
more precisely. That is

n(x) = n1 + ∆nθ(x). (2.147)

where ∆n = n2 − n1. We now have a non-zero gradient

∇n = x̂∆nδ(x). (2.148)

The Ray equation, split by coordinates, now takes the form

d
ds

(
(θ(x)n2 + θ(−x)n1)

dx
ds

)
= ∆nδ(x)

(θ(x)n2 + θ(−x)n1)
dy
ds

= constant.
(2.149)

Note that any solution of the above must also take into ac-
count the dependence between s, x and y

ds2 = dx2 + dy2, (2.150)

or

1 = (dx/ds)2 + (dy/ds)2. (2.151)

While we can still directly integrate the y-component equa-
tion once (as done above), our original assumed parameteri-
zation of r(s) = s(cos θ, sin θ) looses it’s convenient form since
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we now have θ = θ(s) in the neighborhood of the origin. Once
we choose to not neglect the step discontinuity, we have a
coupled, much more difficult, system to deal with.

Can this system, or one for which a limiting form of the unit
step and delta functions is used (i.e. the sinc representation
of the delta function), be solved exactly?

n
dr
ds

= ∇ϕ. (2.152)

Because ∇×∇ϕ = 0 we have

∇×
(

n
dr
ds

)
= 0, (2.153)

and can now apply a differential loop boundary condition to
find that only the tangential component contributes, which
leads to Snell’s law.





3D I F F R A C T I O N .

3.1 context.

We start the class with a green laser setup, where the light is dis-
played on the screen, then also after going through a single and
double slit, as illustrated in fig. 3.1. We see also that a blue laser

Figure 3.1: Laser on screen.

diffracts less. The bigger the wavelength, the harder it is to ignore.
We can consider this a breakdown of geometric optics.

3.2 diffraction.

We’ll want to consider systems of this sort (light source, object in
between, goes some distance, then observed) mathematically. We
consider the geometry of fig. 3.2 where R = r − r′, and Rs = rs − r′,
and R = |R|, Rs = |Rs|. We have two approximations to the full
problem

1. A scalar theory can suffice.

2. The region of interest (and source) are paraxial.

Why a scalar theory? If we have a plane wave polarization

E(r, t) = (E1x̂ + E2ŷ) eik·r−iωt. (3.1)
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Figure 3.2: Diffracting object (i.e. aperture).

With the principle of superposition

1. Solve for the x polarization.

2. Solve for the y polarization.

3. Vector addition of result.

We will assume no mixing, so that we can treat just one compo-
nent.

Reading: §8.3.1 [2], §9.8 [9]. The first goes and proves that the
scalar theory is sufficient under this conditions.

We’d like to solve the wave equation with these approximations.

∇2E =
1
c2

∂2E
∂t2 . (3.2)

We will use a monochromatic wave so that we can write the elec-
tric field magnitude as a vector function times a time phase term

E = Ψ(r)e−iωt. (3.3)

We find (
∇2 + k2

)
Ψ(r) = 0 (3.4)

This is called the Helmholtz equation.
It turns out that the solution to this equation is generally written

out as the surface integral
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Ψ(r) =
∫∫

da′
(
Ψ(r′)∇′G − G∇′Ψ(r′)

)
· n̂. (3.5)

Here n̂ is the unit normal perpendicular to the surface, and the
Green function of the Helmholtz equation is

G(r, r′) = − eikR

4πR
= − eik|r−r′|

4π|r − r′| , (3.6)

It is somewhat messy, but relatively straightforward to demon-
strate [10] that this Green’s function works to solve the forced
Helmoltz equation(

∇2 + k2
)

Ψk(r) = s(r), (3.7)

with solution

Ψk(r) =
∫

G(
∣∣r − r′

∣∣)s(r′)d3r′. (3.8)

However, it is far from obvious how to apply this to the homo-
geneous Helmoltz equation. The tricks involved (application of
Green’s theorem to a spherical volume with the center deleted)
can be found in §A.2, §10.4 of [8], and also in §5.2 of [5]. The end
result of that trickery is called the Kirchhoff Integral Theorem.

Is this Green’s function reasonable seeming? As illustrated in
fig. 3.3) this isn’t an entirely unsurprising seeming Green’s func-
tion for this problem. We have the eikR type of phase factor that
we expected (and guessed in the geometric optics treatment, and
also have the 1/R factor that we need to retain power at a distance
R. Also note that the primed gradient is taken with respect to the
coordinates of r′

∇′ = em
∂

∂x′m
. (3.9)

If we take the gradient of the Green’s function we find

∇
(

eikr

r

)
= r̂
(

ik − 1
r

)
eikr

r
. (3.10)

Applying this to our problem we find

Ψ(r) = − 1
4π

∫∫ eikR

R
n̂ ·
(
∇′Ψ(r′) +

(
ik − 1

R

)
R
R

Ψ(r′)
)

da′.
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Figure 3.3: Wave function at the aperture.

(3.11)

Here R = r − r′ and da′ = dx′dy′ or ρ′dρ′dθ′. We are going to
neglect the surface at ∞ as illustrated in fig. 3.4. This neglect is

Figure 3.4: Neglecting the surface at infinity.

justified for example in Jackson, cited above.

3.3 a calculated example : pinhole .

With placement of our origin at the pinhole, so that r′ = 0, R = r,
Rs = rs, we want to consider the geometry of fig. 3.5. Our spherical
wave function at the aperture is

Ψ(r′) = A
eikRs

Rs
. (3.12)
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Figure 3.5: Source, aperture and observation point.

so that

∇′Ψ = −A
rs − r′

|rs − r′|

(
ik − 1

Rs

)
eikRs

Rs

= −A
rs

|rs|

(
ik − 1

Rs

)
eikRs

Rs

= An̂
(

ik − 1
Rs

)
eikRs

Rs
.

(3.13)

Our resulting wave function is then

Ψ(r) = − A
4π

∫∫
da′

eik(R+rs)

Rrs

(
n̂ · n̂

(
ik − 1

rs

)
+ n̂ · r̂

(
ik − 1

r

))
.

(3.14)

Now, in all these ik − 1/rs we have k of order 1/λ and 1/rs is of
order 1/r or 1/rs.

Recall from geometric optics that we used

∇
(

E0eiϕ(r)
)
≈ i(E0 ·∇ϕ)eiϕ(r), (3.15)

With an assumption

λ ≪ r, rs, (3.16)

and

λ ≪ d ≪ r, rs, (3.17)

where d is the “typical object size”, so that we have

Ψ(r) = − A
4π

∫∫
da′

eik(R+rs)

Rrs

(
n̂ · n̂

(
ik −

�
�
�1

rs

)
+ n̂ · r̂

(
ik −

�
��
1
r

))
.
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(3.18)

or with θ as illustrated,

Ψ(r) =
A
λi

∫∫
da′

eik(r+rs)

rrs
k(θ), (3.19)

where

k(θ) =
1
2
(1 + cos θ) , (3.20)

is the “obliquity factor”.
This is called the Huygens-Fresnel principle.

3.4 fresnel and fraunhofer diffraction.

Last time we got as far as finding

Ψ(r) = − 1
4π

∫
da′

eikR

R

(
∇′Ψ′ +

(
ik − 1

R

)
R̂Ψ
)
· n̂. (3.21)

We want to consider non-pinhole apertures.

Length scales

• Wavelength λ = 2π/k

• Object size d, where the object is larger than λ

• Distance of observation r ≫ d ≫ λ

• Sources rs ≫ d ≫ λ

Observe that r ≫ λ we have(
ik − 1

r

)
=

2πi
λ

(
1 − λ

r

)
≈ ik, (3.22)

Another consequence is that in an integral like∫ · · ·
|rs − r′|da′ ≈ 1

Rs

∫
· · · da′, (3.23)

because r ≫ d.
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We still have to be careful with something like∫
· · · eikr′2/r. (3.24)

since this exponential could matter very much. Recalling that R =
r − r′ and expanding in Taylor series to second order

R =
√

R2

=
√

(r − r′)2

=
√

r2 + r′2 − 2r · r′

= r

√
1 +

r′2

r2 − 2
r̂
r
· r′

≈ r

1 +
1
2

(
r′2

r2 − 2
r̂
r
· r′
)
− 1

8

(
r′2

r2 − 2
r̂
r
· r′
)2

+ · · ·


= r

(
1 +

1
2

r′2

r2 − r̂
r
· r′ − 1

8
r′4

r4 − 1
2

(
r̂
r
· r′
)2

+
1
2

r′2

r2
r̂
r
· r′ + · · ·

)

= r
(

1 +
1

2r2 r′2 − r̂
r
· r′ − 1

8r4 r′4 − 1
2r2

(
r̂ · r′

)2 +
1

2r3 r′2r̂ · r′ + · · ·
)

.

(3.25)

Grouping by order of significance we have

kR = kr

O(rλ)

− kr̂ · r′

O(d/λ)

+
k
2r

(
r′2 −

(
r̂ · r′

)2
)O(d2/λr)

+ · · ·

O(d3/λr2)

. (3.26)

We need any exponential to be small with respect to 1 to neglect.

• In the above if r ≫ d2/λ we can neglect this third term,
which is the Fraunhofer case.

• Fresnel diffraction retains the r′2 term! (with r2 ≫ d3/λ,
we’ll stop at this r′2 term).

We’ll treat the Fraunhofer case now killing the 1/R term here:

Ψ(r) = − 1
4π

∫
da′

eikR

R

(
∇′Ψ′ +

(
ik −

�
��
1
R

)
R̂Ψ
)
· n̂. (3.27)
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We’ll use a point source

Ψ(r′) =
eikRs

Rs
. (3.28)

where

∇′Ψ′ = −R̂s

(
ik −

�
�
�1

Rs

)
eikRs

Rs
≈ n̂ik

eikRs

Rs
. (3.29)

Our diffraction integral becomes

Ψ(r) = − ik
4π

∫
da′

eikR

R
eikRs

Rs
(1 + n̂ · R) . (3.30)

With a small enough object d ≪ r, rs, and writing k/2π = 1/λ,
we’ll be able to pull the obliquity factor out of the integral

Ψ(r) =
A
λi

∫∫
da′

eik(R+Rs)

RsR
k(θ)

≈ Ak(θ)
λi

∫∫
da′

eik(R+Rs)

RsR

≈ A
λi

∫∫
da′

eik(R+Rs)

RsR
.

(3.31)

We’ve also made the paraxial approximation, recalling that

k(θ) =
1 + cos θ

2
, (3.32)

so that for θ ≈ 0, in the region illustrated in fig. 3.6 and fig. 3.7.

Figure 3.6: Obliquity factor.

we have k(θ) ≈ 1.
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Figure 3.7: Obliquity factor.

Our problem is now reduced to

Ψ(r) =
A
λi

eik(rs+r)

rsr

∫∫
aperture

da′eik f (r′). (3.33)

where

f (r′) = − (r̂ + r̂s) · r′

+
1
2r

(
r′2 − (r̂ · r′)2

)
+

1
2rs

(
(r′)2 − (r̂s · r′)2) .

(3.34)

the first term is the Fraunhofer term and the last two are the Fres-
nel contributions.

Referring to fig. 3.8 we find

Figure 3.8: Defining k vectors.

k f = −k(r̂ + r̂s) · r′ = −(k − ks) · r′ = (ks − k) · r′. (3.35)

putting things back into the diffraction integral, we have some-
thing of the form

Ψ(r) = constant
∫∫

aperture
d2r′ei(k−ks)·r′g(r′). (3.36)
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where g(r′) is an “aperture” function defined in the open portion
as illustrated in fig. 3.9. If we define g(r′) to be zero outside of the

Figure 3.9: Circular aperture.

aperture

g(r′) =

{
1 open

0 blocked
(3.37)

then we can just write

Ψ(r) = constant
∫∫

d2r′ei(k−ks)·r′g(r′). (3.38)

so that

Ψ = (constant)G(ks − k). (3.39)

where

G(k) =
∫∫

e−ik·r′g(r′)d2r′, (3.40)

which is just a Fourier transform! Our amplitude is

I(r) = |Ψ(r)|2 = (constant)2|G(ks − k)|2. (3.41)

Note that if the amplitude∣∣Ψ(r′)
∣∣ = Ψ0. (3.42)

then this constant is

1
2

(
kΨ0

2πr

)2

. (3.43)
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Calculating this for a circular pattern is done in the class notes
handout, where the result involved J1 Bessel functions.

We can deal with double slit by doing a convolution of a rectan-
gle aperture with a pair of delta functions and then just multiply
the Fourier transforms.

We will be applying this diffraction result to investigate coher-
ence. We’ll find that if the source is not coherent, the chance of
observing the fringe oscillations far from the source becomes very
small.

3.5 fresnel diffraction from an edge .

Consider the experiments illustrated in fig. 3.10, and fig. 3.11.

Figure 3.10: Intensity observed with no blockages.

Figure 3.11: Intensity observed with blockage just above line of sight.

Why, with such a carefully placed barrier, do we end up with
I0/4? If we consider that the light takes all paths, and we have
blocked half the paths, so that the amplitude of the wave function
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|Ψ0/2| results in the factor of 1/4. Let’s do the math to see why
this is the case more precisely.

We found

Ψ(r) =
A
iλ

eik(rs+r)

rsr

∫
aperture

eik f (r′)da′. (3.44)

In the Fraunhofer limit (the far field) we found eq. (3.35) that

k f → (ks − k) · r′, (3.45)

where r ≫ d2/λ, and d is a typical aperture size. Recalling that
the exact expression for f was

f (r′) = − (r̂ + r̂s) · r′ +
1
2r

(
r′2 − (r̂ · r′)2

)
+

1
2rs

(
(r′)2 − (r̂s · r′)2) .

(3.46)

We’ll now consider the Fresnel limit where ks = k, and

k f =
k
2

(
1
r

+
1
rs

)
r′2. (3.47)

These Fresnel terms are generally important when r ∼ d2/λ even
if r ≫ d (because λ ≪ d). We’d like to massage this k f expression

k f =
k
2

(
r−1

s + r−1
) (

x′2 + y′2
)

=
π

2
(
u2 + v2) , (3.48)

where we have made a change of variables[
x′

y′

]
=

√
π/k

r−1
s + r−1

[
u

v

]
=

√
λ/2

r−1
s + r−1

[
u

v

]
(3.49)

Our area element is then

dx′dy′ =
λ/2

r−1
s + r−1

dudv. (3.50)

Our integral is now

Ψ(r) =
A
iλ

eik(rs+r)

rsr

∫
aperture

eik f (r′)da′

=
A
iλ

eik(rs+r)

rsr
λ/2

r−1
s + r−1

∫
aperture

ei π
2 (u2+v2)dudv

=
A
iλ

eik(rs+r) λ/2
rs + r

∫
aperture

ei π
2 (u2+v2)dudv.

(3.51)
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Referring to fig. 3.12, let’s do this integral. Putting in our limits we
have

Figure 3.12: Region of integration.

Ψ(r) =
A
2i

eik(rs+r)

rs + r

∫ ∞

−∞
du
∫ w

−∞
dvei π

2 (u2+v2)dudv. (3.52)

where

w =

√
2
λ

(
1
rs

+
1
r

)
. (3.53)

Evaluating
∫
−z2dz over a pizza contour it can be demonstrated

[12] that

∫ ∞

−∞
dvei π

2 v2
= 1 + i =

√
2eiπ/4. (3.54)

∫ w

−∞
dvei π

2 v2
=
∫ 0

−∞

∫ w

0
dvei π

2 v2
=

1 + i
2

+ C(w) + S(w), (3.55)

where

S(w) =
∫ w

0
sin
(π

2
u2
)

du. (3.56a)

C(w) =
∫ w

0
cos

(π

2
u2
)

du. (3.56b)

Parametrically plotting these we get the Cornu Spiral as plotted
in fig. 3.13. There are some interesting features of this curve.
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Figure 3.13: Cornu Spiral.

1. The length along the curve is

dl2 = dS2 + dC2

=
(

dS
dw

)2

+
(

dC
dw

)2

=
(

sin2
(π

2
w2
)

+ cos2
(π

2
w2
))

dw2

= dw2.

(3.57)

so that

dl = dw (3.58)

2. How about the angle along the curve. Stating the result,
where the angle is given by

tan θ =
dy
dx

(3.59)

one can find that

θ =
π

2
w2. (3.60)

Going back to our diffraction integral we find

Ψ(r) =
A
2i

eik(rs+r)

rs + r
(1 + i)

(
1 + i

2
+ C(w) + S(w)

)
. (3.61)
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Check: No obstruction? We’ve got w → ∞, so that C(w) = 1/2 and
S(w) = 1/2. This gives us

Ψ(r) = A
eik(rs+r)

rs + r
≡ Ψ∞(r). (3.62)

Now let’s consider our obstruction right along the line of sight
(w = 0). Now we have, since C(0) = S(0) = 0

Ψ(r) = Ψ∞(r)
1
2i

(1 + i)
(

1 + i
2

+ 0
)

=
1
2

Ψ∞(r). (3.63)

We do see that we end up with half the amplitude, so that as
claimed our intensity (which squares the amplitude) results in a
factor of 1/4

In general, for a barrier offset by d, and a value of w that corre-
sponds to that, our Intensity is

I = |Ψ|2 = |Ψ∞|2
1
2

((
1
2

+ C(w)
)2

+
(

1
2

+ S(w)
)2
)

. (3.64)

Check, again with w = 0 , we have

I∞
1
2

(
1
4

+
1
4

)
=

I∞

4
. (3.65)

Other examples.
Diffraction from an edge w = d: fig. 3.14. Poisson spot. Poisson

Figure 3.14: Diffraction spectrum with partial blockage above line of
sight (brutally rough illustration).

crafted a counter argument for the wave theory of light stating that
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if it was true, then you should be able to see a spot behind a circu-
lar blockage, as if some of the light was going around the blockage.
This is illustrated in fig. 3.15, and can in fact be observed with the
right setup. Once we understand that light does in fact take all

Figure 3.15: Poisson spot.

the paths, we can utilize this to build a Fresnel lens by blocking
selectively as illustrated very roughly in fig. 3.16. A diffraction

Figure 3.16: Diffraction grating (imagined to have been constructed to
focus x-rays).

setup like allows us block all the portions of the phase that nega-
tively interfere. This can be used for example to focus x-rays. That
application will be explored in more detail in the problem set.

3.6 problems .

Exercise 3.1 Diffraction patterns. (2012 Ps2, P1)

Give the intensity pattern at the back plane of a lens of focal length
f for the following aperture distributions. Assume a point source
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that is infinitely far away, on-axis, and quasimonochromatic with
wavelength λ.

This geometry is illustrated in fig. 3.17.

Figure 3.17: Geometry for the masked diffraction problems.

a. A rectangular aperture of size L by W
b. Three slits, each a wide, spaced by b. {Do this part in 1D,

ignoring the other axis.}

c. A mask whose transmission function is exp (−x2/σ2
x − y2/σ2

y ).

Answer for Exercise 3.1

Let’s first consider the geometrical optics of the lens and trans-
mission to the focal plane. With an ABCD matrix of M1 for the lens
and M2 for the transmission we have for the composite operation

M = M2M1 =

[
1 f

0 1

] [
1 0

−1/ f 0

]
=

[
0 f

−1/ f 1

]
. (3.66)

So an initial position and angle pair is transformed as[
y

α

]
→
[

0 f

−1/ f 1

] [
y

α

]
=

[
f α

−y/ f + α

]
(3.67)

The new position y′ = f α is strictly a function of the output angle
at the mask, or the input to the lens.

Now consider the geometry of the aperture and the position of
the ray on the focal plane as illustrated in fig. 3.18. The position r′
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Figure 3.18: Diffraction geometry with lens.

of the area element in the diffraction integral is

r′ =

x′

y′

0

 , (3.68)

and the position P of the ray on the focal plane is

r = f

α

β

1

 . (3.69)

Our diffraction integral is of the form

Ψ(r) =
A
iλ

eikRs

Rs

∫∫
A

eikR

R
da′. (3.70)

Writing for the incident wavefunction

Ψs = A
eikRs

Rs
, (3.71)
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which we will consider to be approximately plane wave anyhow,
we calculate our approximation for the distance from the area ele-
ment to the point on the focal plane

kR = k
√

(r − r′)2

= kr

√
1 +

r′2

r2 − 2
r2 r · r′

≈ kr

(
1 +

1
2

r′2

r2 − 1
r2 r · r′

)

= kr +
k
2

r′2

r
− r̂ · r′.

(3.72)

With an assumption that r ≈ f ≫ r′2/λ, and noting that R ≈ f
in the denominator of the integrand where any variation will not
matter as much we have

Ψ(r) =
Ψs

iλ
eik f

f

∫∫
A

e−ikr′·r̂da′. (3.73)

Noting from eq. (3.69) that r2 ≈ f 2 if α and β are small, then we
have

r̂ ∼

α

β

1

 , (3.74)

so that our diffraction integral becomes

Ψ(r) =
Ψs

iλ
eik f

f

∫∫
A

e−ik(αx′+βy′)da′. (3.75)

We are now ready to consider the specific geometries of this prob-
lem.

Part a. Single rectangular slit. Let’s setup our coordinates as in
fig. 3.19. Let’s write µ = −ikα and ν = −ikβ so that we want to
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Figure 3.19: Single rectangular slit.

compute∫∫
e−ik(x′α+y′β)dx′dy′ =

∫ W/2

−W/2
dx′eiµx′

∫ L/2

−L/2
dy′eiνy′

=
eiµx′

iµ

∣∣∣∣∣
W/2

−W/2

eiνy′

iν

∣∣∣∣∣
L/2

−L/2

=
4

µν
sin (µW/2) sin (νL/2)

= LW sinc (µW/2) sinc (νL/2) .

(3.76)

So our wave function is

Ψ(r) =
LWΨs

iλ
eik f

f
sinc (µW/2) sinc (νL/2) . (3.77)

With the time averaged intensity at the aperture of

Is = ⟨Ψs⟩ =
A2

2R2
s

, (3.78)

We have for the time averaged intensity at the focal plane position
r = f (α, β, 1)

I(r) = Ψ(r) = Is

(
LW
λ f

)2

sinc2
(

παW
λ

)
sinc2

(
πβL

λ

)
. (3.79)

Part b. Three slits We now consider the geometry of a three slit
setup fig. 3.20. We form the integral
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Figure 3.20: Three slit diffraction aperture.

∫∫
A

e−ik(αx′+βy′)dx′dy′

=
∫ L/2

−L/2
dy′e−ikβy′

((∫ −b+a/2

−b−a/2
+
∫ a/2

−a/2
+
∫ b+a/2

b−a/2

)
dx′e−ikαx′

)

= L sinc
(

βkL
2

) n=1

∑
n=−1

e−ikαx′

−ikα

∣∣∣∣∣
nb+a/2

nb−a/2

= L sinc
(

βkL
2

)
2

kα

n=1

∑
n=−1

(
e−ikα(nb−a/2) − e−ikα(nb+a/2)

2i

)

= L sinc
(

βkL
2

)
2

kα
sin(kαa/2)

n=1

∑
n=−1

e−ikαnb

= La sinc
(

βkL
2

)
sinc

(
αka
2

) n=1

∑
n=−1

e−ikαnb.

(3.80)

With a = eikαb, and noting that

1
a

+ 1 + a =
a3 − 1
a − 1

, (3.81)

we have
n=1

∑
n=−1

e−ikαnb =
e3ikαb − 1
eikαb − 1

=
e3ikαb/2

eikαb/2

sin(3kαb/2)
sin(kαb/2)

= eikαb sin(3kαb/2)
sin(kαb/2)

.

(3.82)

We can now write our wavefunction

Ψ(r) =
LaΨs

iλ
eik f

f
sinc

(
βkL

2

)
sinc

(
αka
2

)
eikαb

sin
(

3kαb
2

)
sin
(

kαb
2

) . (3.83)
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We see our single slit terms become an envelope for the resulting
waveform, with faster frequency terms due to the ratio of sinu-
soidal terms.

Our time averaged intensity, again in terms of the time averaged
intensity of the plane waves at the aperture Is, is

I = Is

(
La
λ f

)2

sinc2
(

βkL
2

)
sinc2

(
αka
2

) sin2
(

3kαb
2

)
sin2

(
kαb
2

) . (3.84)

We were asked to consider this as a 1D problem, but it was no
harder as a 2D problem. For a 1D only result, looking say at the
horizon where β = 0, we have

I = Is

(
La
λ f

)2

sinc2
(

αka
2

) sin2
(

3kαb
2

)
sin2

(
kαb
2

) . (3.85)

Part c. Transmission function We’ve been implicitly evaluating
diffraction integrals of the form∫∫

A
e−ik(x′α+y′β)dx′dy′ =

∫∫ ∞

−∞
g(x′, y′)e−ik(x′α+y′β)dx′dy′. (3.86)

where

g(x′, y′) =

{
1 if x′ and y′ lie within the aperture

0 otherwise
(3.87)

We are now asked to consider a more general aperture function

g(x′, y′) = e−x′2/σ2
x−y′2/σ2

y . (3.88)

which fully allows transmission at the origin where g(0, 0) = 1,
and then gradually lets less and less light through the aperture as
illustrated in fig. 3.21. Our task is to evaluate the integral

∫∫ ∞

−∞
g(x′, y′)e−ik(x′α+y′β)dx′dy′ =

∫
dx′e−x′2/σ2

x−ikx′α
∫

dy′e−y′2/σ2
y−iky′β.

(3.89)
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Figure 3.21: Gaussian transmission function aperture.

Since these have the same form, it is sufficient to just look at one
of them.∫

dx′e−x′2/σ2
x−ikx′α = σx

∫
dx′e−x′2/σ2

x−ikασxx′/σx = σx

∫
dx′e−u2−ikασxu.

(3.90)

With 2b = kασx we have∫
dx′e−x′2/σ2

x−ikx′α = σx

∫
dx′e−u2−2ibu

= σx

∫
due−(u+ib)2+(ib)2

= σxe−b2
∫

dve−v2

= σxe−b2√
π.

(3.91)

Our aperture integral is∫∫ ∞

−∞
g(x′, y′)e−ik(x′α+y′β)dx′dy′ = πσxσye−(kασx/2)2−(kβσy/2)2

, (3.92)

and our wave function evaluated at point r = f (α, β, 1), given plane
wave function Ψs at the aperture is

Ψ(r) =
πσxσyΨs

iλ
eik f

f
e−(kασx/2)2−(kβσy/2)2

, (3.93)

with time averaged intensity

I(r) = Is

(
πσxσy

λ f

)2

e−(kασx)2/2−(kβσy)2/2. (3.94)
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Exercise 3.2 Fresnel Lens. (2012 Ps2, P2)

In this problem you will design a Fresnel lens that focuses a
plane wave onto a line (ie, a cylindrical lens). Design it for wave-
length λ and a focal length f . The on-axis Fresnel diffraction in-
tegral we found in class was Ψ = Ψ∞

2i

∫ ∫
du dv exp [i π

2 (u2 + v2)],

where u = x′
√

2(r−1
S + r−1)/λ, and a similar expression applied for

v as a function of y′. The goal of the design is to maximize the
intensity at the focus of the lens, located at r = ⟨0, 0, f ⟩. We’ll call
this amplitude Ψ f and this intensity I f .

The variables to be used for the Fresnel mask transitions is illus-
trated in fig. 3.22.

Figure 3.22: Notation for Fresnel lens mask.

a. Integrate out the y′ direction, so that we are only dealing
with an integral of u. Give an expression for the contribu-
tion to Ψ f from an open segment from u = a to u = b, in
terms of the Fresnel Integrals S(u) and C(u).

b. As a first step in the design, consider a Fresnel lens with
only one opening, from −u0 to u0. Plot the resultant inten-
sity I f /I∞ versus u0. You will need numerical evaluation of the
Fresnel integrals for parts b and e of this problem.

c. The next step is to find subsequent open regions (I’ll call
these zones) of the mask that most increase I f . These zones
need to chosen to have a phase that matches the amplitude
passing through the central zone. Illustrate this principle
with a drawing of the Cornu spiral, showing what seg-
ments should be blocked.

d. From (c), show that this criterion results in zone edges at
±um, where um =

√
3/2 + 2m, and m = {0, 1, 2, . . .}. Hint:

recall that the angle of the spiral is β = π
2 u2.

e. Calculate the increase in intensity with three open zones
and with five open zones.
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f. Give a pathlength interpretation of the expression for um.

g. If this is an x-ray Fresnel lens, where λ = 10 nm and f =
10 cm, how big is the central opening? Take the plane wave
limit rs → ∞. If we can only fabricate zones as small as
1µm, how many zones could we make?

Answer for Exercise 3.2

Part a. Performing the y (v) integration we find for our wave-
function

Ψ =
Ψ∞

2i

∫
dueiπu2/2du

∫ ∞

−∞
dueiπu2/2du

=
Ψ∞

2i

∫
dueiπu2/2du

(
2
∫ ∞

0
dueiπu2/2du

)
=

Ψ∞

2i

∫
dueiπu2/2du2

(
1
2

+
i
2

)
=

Ψ∞

2
(1 − i)

∫
dueiπu2/2du,

(3.95)

so for an interval [a, b] we have for the wavefunction observed at
r = (0, 0, f )

Ψ f =
Ψ∞

2
(1 − i) (C(s) + iS(s))|ba. (3.96)

Part b. Setting the interval to [−u0, u0] we have, noting that
S(−s) = −S(s) and C(−s) = −C(s)

Ψ f = Ψ∞(1 − i) (C(u0) + iS(u0)) . (3.97)

The ratio of intensities is

I f

I∞
= 2
(
C2(u0) + S2(u0)

)
, (3.98)

which is plotted in fig. 3.23. Numerically, we find that the peak of
the first lobe falls at u0 ∼ 1.21. A plot of the Cornu spiral up to
this point of maximum intensity is found in fig. 3.24. Visually it ap-
pears that the angle at the termination of this region is 3π/4 which
is consistent with u0 =

√
3/2, since the angle at u0 is π(3/2)/2.
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0.5 1.0 1.5 2.0 2.5 3.0
u0

0.5

1.0

1.5

If

I∞

Figure 3.23: Intensity ratio vs u0.

-0.5 0.5
C(s)

-0.6

-0.4

-0.2

0.2

0.4

0.6

ⅈS(s)

Figure 3.24: Cornu spiral segment up to the point of the max intensity
ratio.
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Parts c, d. For an aperture open in the interval [−u2,−u1] and
[u1, u2] we have

Ψ f =
Ψ∞

2
(1 − i)

(
C(u2) + iS(u2) − C(u1) − iS(u1)

+ C(−u1) + iS(−u1) − C(−u2) − iS(−u2)

)
= Ψ∞(1 − i) (C(u2) + iS(u2) − C(u1) − iS(u1)) .

(3.99)

Should we with to add this non-destructively to our wavefunc-
tion for the [−u0, u0] range, we need to match the phases of these
functions, or

S[u0]
C[u0]

=
S[u2] − S[u1]
C[u2] − C[u1]

. (3.100)

For Part d we are asked to show that the zone edges are found at
um =

√
3/2 + 2m, given that the tangential angles at those points

are πu2
m/2. That is

θ(um) =
π

2
u2

m =
π

2

(
3
2

+ 2m
)

=
3π

4
+ mπ. (3.101)

This gives us

θ(u0) =
3π

4

θ(u1) =
3π

4
+ π

θ(u2) =
3π

4
+ 2π . . .

(3.102)

so that the difference between the tangential angle at um and um−1

is π. In the upper right quadrant of the spiral we see that block-
ing the intervals [u2k, u2k+1] will provide, approximately, the de-
sired phase matching of eq. (3.100). This masking is illustrated in
fig. 3.25.
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Figure 3.25: Cornu Spiral with regions blocked for equal phase differ-
ences.

Part e. The respective wave functions for each of the non-blocked
intervals chosen are

• [−u0, u0]:

Ψ f 0 = Ψ∞(1 − i)
(

C
(√

3/2
)

+ iS
(√

3/2
))

. (3.103)

• [−u2,−u1] ∪ [u1, u2]:

Ψ f 2 = Ψ∞(1 − i)

(
C
(√

11/2
)
− C

(√
7/2
)

+ iS
(√

11/2
)
− iS

(√
7/2
))

.

(3.104)

• [−u4,−u3] ∪ [u3, u4]:

Ψ f 4 = Ψ∞(1 − i)

(
C
(√

19/2
)
− C

(√
15/2

)

+ iS
(√

19/2
)
− iS

(√
15/2

))
.

(3.105)

Numerically, we find the values

0.742832, 0.713766, 0.747819, (3.106)

which. As expected, these arg(∆C + i∆S) values are not perfect
matches, as we expected by looking at the graph of the Cornu spi-
ral. They are however good approximations, and the destructive
interference with summation should be minimal.
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We want to compare the intensities of the sums of these (one,
three, and five open zones respectively)

Ψ0 = Ψ f 0 = Ψ∞1.34171e−0.0425663i

Ψ f 0 + Ψ f 2 = Ψ∞1.76859e−0.0495833i

Ψ f 0 + Ψ f 2 + Ψ f 4 = Ψ∞2.0779e−0.0477963i

(3.107)

The phase change with each addition is because the ∆C + i∆S val-
ues evaluated over the [u2k−1, u2k] intervals with um =

√
3/2 + 2m

were based on tangential angles, and picking those tangential an-
gles with this π separation, will rotate slightly with each itera-
tion into the spiral. A more exact numerical choice for the um end
points is required to avoid this, but we see that this was good
enough to increase the magnitude (and thus the intensity) with
each additional pair of opened apertures.

Squaring the absolute values in the wave functions above we
find with 1, 3, and5 openings, the following intensity ratios

I1

I∞
= 1.80018

I3

I∞
= 3.12791

I5

I∞
= 4.31767

(3.108)

So, the first pair of additional openings results in a 1.7 times in-
crease in intensity compared to the single opening, and the second
pair of additional openings results in a 2.4 times intensity increase
compared to the single opening.

Part f. To relate this back to pathlength we note that we have for
rs → ∞

um = xm

√
2
λ

(
1
rs

+
1

rm

)
∼ xm

√
2

λrm
∼ xm

√
2

λ f
, (3.109)

or

xm ∼ um

√
λ f
2

. (3.110)

Looking to fig. 3.26 we see that we have
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Figure 3.26: Geometry for path length interpretation.

rm =
√

f 2 + x2
m

= f

√
1 +

x2
m

f 2

∼ f
(

1 +
1
2

x2
m

f 2

)
= f +

1
2

x2
m
f

.

(3.111)

Illustrating first with the representative [x1, x2] interval, observe
that the ray distance from the midpoint is

1
2

(r2 + r1) ∼ 1
2

(
f +

1
2

x2
2
f

+ f +
1
2

x2
1
f

)
= f +

1
2 f
(
x2

1 + x2)
= f +

λ f
8 f

(u2
1 + u2

2)

= f +
λ

8
(u2

1 + u2
2).

(3.112)
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A bit more generally we see that the average additional pathlength
at the midpoint of the aperture is

r2m + r2m−1

2
− f =

λ

8
(
u2

2m + u2
2m−1

)
=

λ

8

(
3
2

+ 4m +
3
2

+ 2(2m − 1)
)

=
λ

8
(3 + 8m − 1)

= λ

(
m +

1
8

)
.

(3.113)

We are adding about an additional λ of pathlength from each aper-
ture, resulting in constructive instead of destructive interference.

Part g. The central opening for these values is

2x0 ∼ 2u0

√
λ f /2

= 2

√
3
2

λ f
2

=
√

3λ f

=
√

3(10 × 10−9)(10−1)m

∼ 55µm.

(3.114)

To determine how many zones we can make, we note that the size
of one of the openings in each pair of additional zones is

x2k − x2k−1 ∼ (u2k − u2k−1)

√
λ f
2

=

√
λ f
2

(√
3
2

+ 4k −
√

3
2

+ 4k − 2

)
> 10−6,

(3.115)

which after substitution of our numbers is the numerical problem
of finding the biggest integer k for which

√
8k + 3 −

√
8k − 1 >

1
5
√

10
. (3.116)

We find the largest value is k = 124 (can make 124 additional pairs
of openings after the central opening), or 249 zones in total.
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Exercise 3.3 Convolution theorem.

Find the form of the Fourier transform

f̃ (ω) =
∫

f (y)e−iωydy. (3.117)

of a convolution integral

f (y) =
∫

dy′g(y′)h(y − y′) = g(y)∗h(y). (3.118)

Answer for Exercise 3.3

This is basically just an application of change of variables

F f (y) =
∫

dye−iωydy′g(y′)h(y − y′)

=
∫

dy′g(y′)
∫

dye−iωy h(y − y′)

y − y′ = u

=
∫

dy′g(y′)
∫

due−iω(u+y′)h(u)

= h̃(ω)
∫

dy′g(y′)e−iωy′

= h̃(ω)g̃(ω).

(3.119)

Exercise 3.4 Fraunhofer diff., 4 circles. (2010 final, q3)

Calculate the diffraction pattern for the geometry of fig. 3.27.

Figure 3.27: Four circular apertures.
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Figure 3.28: Four apertures with observation point and distances.

Answer for Exercise 3.4

We are working with distances illustrated in fig. 3.28. As usual
we write

R = r′ − rs. (3.120a)

R = r′
(

1 +
r2

s

r′2
− 2

rs · r′

r′2

)1/2

≈ r′ +
r2

s
2r′

− rs · r̂′. (3.120b)

so that

Ψ(r′) =
Ψ0

eikr′ iλr′
∫

A
e−ikrs·r̂′ . (3.121)

Let’s write

r̂ · x̂ = α. (3.122a)

r̂ · ŷ = β, (3.122b)

and introduce an aperture function

g(x, y) =

{
1 if x2 + y2 ≤ R2

0 otherwise
(3.123)
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This allows us to write our diffraction integral as

Ψ(r′) =
Ψ0

eikr′ iλr′
∫

dudv

(
e−ik((u+b/2)α+(v+b/2)β) + e−ik((u−b/2)α+(v−b/2)β)

+ e−ik((u+b/2)α+(v−b/2)β) + e−ik((u−b/2)α+(v+b/2)β)

)

=
Ψ0

eikr′ iλr′
(

e−ik(αb/2+βb/2) + e−ik(−αb/2−βb/2)

+ e−ik(αb/2−βb/2) + e−ik(−αb/2+βb/2)

)
×∫

dudve−ik(uα+vβ)

= 2
Ψ0

eikr′ iλr′
(

e−ikαb/2 cos(kβb/2) + eikαb/2 cos(kβb/2)
)
×∫

dudve−ik(uα+vβ)

= 4
Ψ0

eikr′ iλr′ cos(kαb/2) cos(kβb/2)×∫ R

ρ=0

∫ 2π

θ=0
ρdρdθe−ikρ(cos θα+sin θβ).

(3.124)

This last integral isn’t something that we can evaluate in just
Bessel functions unless one of α or β is zero. For example, if β = 0,
so that the observation axis lies in the one of the perpendicular
planes, then we have

Ψ ∼ eikr′

r′
cos(kαb/2)

∫ R

ρ=0

∫ 2π

θ=0
ρdρdθe−ikρ cos θα

=
eikr′

r′
cos(kαb/2)2πR

J1(−kαR)
−kα

=
eikr′

r′
cos(kαb/2)2πR

J1(kαR)
kα

.

(3.125)

This looks fairly sinc like fig. 3.29. We can also solve for the case
when α = β, because we can write

cos θ ± sin θ =
√

2 cos(θ ∓ π/4). (3.126)
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Figure 3.29: Plot of J1(x)/x.

The phase shift doesn’t make a difference when we are integrating
over [0, 2π], so we are left with

Ψ ∼ eikr′

r′
cos(kαb/2)

∫ R

ρ=0

∫ 2π

θ=0

=
eikr′

r′
cos(kαb/2)2πR

J1(
√

2kαR)√
2kα

.

(3.127)

For arbitrary α and β there’s no such obvious change of variables.
Mathematica calls the result a regularized hypergeometric func-
tion

Ψ ∼ eikr′

r′
cos(kαb/2)πR2

0F̃1

(
; 2;−1

4
k2R2 (α2 + β2)) , (3.128)

The hypergeometric function itself looks fairly sinc like, but not
with the R2 multiplicative factor (plotted as a function of R). This
is plotted in fig. 3.30, but curiously, this appears to be a divergent
function? On the exam, I expect that the expectation was just to
look on axis, but it would probably also be useful to plug in some
actually representative numbers.



98 diffraction.

-10 -5 5 10
x

-6

-4

-2

2

4

x
2
0F
˜
1; 2;-0.25 x2

Figure 3.30: Plot of hypergeometric function.



4C O H E R E N C E .

4.1 interference .

Given a number of sources as illustrated in fig. 4.1, we can have in-
terference (fringes, ... due to motion or polarization. In general we
can consider these multiple sources as a sum over all the electric
fields

Figure 4.1: Multiple sources potentially interfering.

E = E1 + E2 + E3 + · · · . (4.1)

While there are some experiments that are sensitive to the actual
fields, we will typically not care about those specifically, but in-
stead will care about Intensity which has the form

I = (const)
〈
|E|2

〉
. (4.2)

here the constant is unit dependent, such as cϵ0, but since we
will typically be looking at ratios, we can ignore those. We will
move to an intensity based description, but first start with a field
description.

Consider two sources

E1 = ϵ1E1(r)eiϕ1(r,t) (4.3)

E2 = ϵ2E2(r)eiϕ2(r,t) (4.4)
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Here ϵi is a polarization constant, which we allow to be complex.
The values Ei are the amplitudes which we constrain to have real
values here, and ϕi is the (real) phase angle.

We observe

I =
〈
|E|2

〉
. (4.5)

where

⟨ f (t)⟩ = lim
T→∞

1
T

∫ T

0
dt′ f (t′). (4.6)

This time averaging method makes sense for optics where we may
have response times T ≳ 10−9s, so that wT ≫ 1 (slow!)

Forming the magnitude of the field square we have〈
|E|2

〉
= ⟨(E1 + E2) · (E1 + E2)∗⟩

=
〈
|E1|2

〉
+
〈
|E2|2

〉
+ ⟨E1 · E∗

2 + E2 · E∗
1⟩

= I1 + I2 + 2 Re (⟨E1 · E∗
2⟩) .

(4.7)

Consider the cross term. We have

E1 · E∗
2 = ϵ1 · ϵ∗

2E1E2eiϕ1−iϕ2 . (4.8)

We see immediately that if the polarization vectors ϵ1 and ϵ2 are
orthogonal, we have no interference. Let’s consider some exam-
ples of some polarization vectors

• Linear polarization

ϵ1 = x̂ (4.9)

ϵ2 = ŷ (4.10)

or

ϵ1 =
1√
2

(x̂ + ŷ) (4.11)

ϵ2 =
1√
2

(x̂ − ŷ) (4.12)
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• circular polarization

ϵ1 =
1√
2

[
1

i

]
= σ+ (4.13)

ϵ2 =
1√
2

[
1

−i

]
= σ− (4.14)

(here we require the conjugation to make ϵ1 · ϵ∗
2 = 0)

READING: Polarization: §5 [8] and §2 [5]. This will be considered
background material and not covered here.

Two sources in a scalar theory are

Ψ1 =
√

I1(r)eiϕ1(r,t) (4.15)

Ψ2 =
√

I2(r)eiϕ2(r,t). (4.16)

Here
√

I2(r) are the amplitudes (real).

Interference (scalar or identical polarizations)

I = |Ψ1 + Ψ2|2

= |Ψ1|2 + |Ψ2|2 + 2 Re ⟨Ψ1Ψ∗
2⟩

= I1 + I2 + 2
√

I1 I2 Re
〈

eiϕ1−iϕ2
〉

= I1 + I2 + 2
√

I1 I2 ⟨cos(ϕ1 − ϕ2)⟩ .

(4.17)

Here we’ve made use of the fact that Re(.) and ⟨.⟩ are both linear
operators so we can reverse their order of operation.

Question: Isn’t the average of cosine just zero? Answer: we are con-
sidering phases that can vary with time. We don’t necessarily have
a constant phase difference here that would be wiped out in an av-
erage over one period.

Example: Diffraction

Ψ = ∑
paths

Ψi →
∫ √

Iieiϕi = (prefactor)
∫∫

aperture
eik f da′. (4.18)
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Figure 4.2: A diffraction geometry to consider.

Did we have interference in the diffraction example as illustrated
in fig. 4.2. We had

ϕ1 = k1 · r − ωt + θ1 (4.19)

ϕ2 = k2 · r − ωt + θ2 (4.20)

This was monochromatic light (ω was the same). In this diffrac-
tion case we had

ϕ1 − ϕ2 = (k1 − k2) · r + ∆θ. (4.21)

We can figure out from the geometry, and using the far-field limit
(x ≫ b) that we have a time independent phase difference

(k1 − k2) · r = −2π
by
rλ

. (4.22)

What is our intensity?

I = I1 + I2 + 2
√

I1 I2 cos
(
−2π

b
rλ

y + ∆θ

)
. (4.23)

Here y is the position of observation, as illustrated in fig. 4.3.

Definition 4.1: Visibility

V ≡ Imax − Imin

Imax + Imin
. (4.24)
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Figure 4.3: Some intensity variation with visibility.

This is a quantity that is easy to measure in the lab.
In this (diffraction) case we have

V = 2
√

I1 I2

I1 + I2
. (4.25)

We illustrate this in fig. 4.4, where after zoom we see the same
image. This is called Heterodyne amplification.

Figure 4.4: Heterodyne detection.

Definition 4.2: Heterodyne Detection

Measure a phase of a weak beam: Interfere with a strong
beam “local oscillator” (IL0)! Interference : 2

√
I1 I2. Even if I1

is small this interference term can be big.

2
√

Ip ILO ≫ Ip. (4.26)

4Ip ILO ≫ I2
p. (4.27)
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ILO ≫ Ip/4. (4.28)

4.2 zoology of interferometers .

Definition 4.3: Coherence

(Operational definition) Something measured by an interfer-
ometer

Types of dual path interferometers Some types of single path inter-
ferometers

• Young’s fig. 4.5.

• Michaelson’s fig. 4.6.

• Fresnel Biprism fig. 4.7.

• Lloyd’s mirror fig. 4.8.

• Mach-Zender fig. 4.9.

Figure 4.5: Wavefront splitting. Young’s interferometer.

Types of multi-path interferometers Some types of multiple path
interferometers

• Wavefront splitting fig. 4.10.
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Figure 4.6: Amplitude splitting. Michaelson’s interferometer.

Figure 4.7: Fresnel Biprism (wavefront splitter).

Figure 4.8: Lloyd’s mirror. Interference from different path lengths.
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Figure 4.9: Mach-Zender interferometer. Temporal fringe if moving mir-
ror.

• Infinite reflection in multiple mirrors (accidental) fig. 4.11.

• Infinite reflection in multiple mirrors (Fabry-Perot Cavity)
fig. 4.12.

Figure 4.10: Wavefront splitting.

4.3 lloyd’s interferometer .

Using a virtual ray we can think of the Lloyd’s interferometer
setup as equivalent to a Young’s double slit setup as illustrated
in fig. 4.13 and fig. 4.14. Consider two sources as in fig. 4.15.
Looking at this mathematically we have

I =
〈
|Ψ|2

〉
=
〈
|Ψ(r1, t) + Ψ(r2, t)|2

〉
= I(r1) + I(r2) + 2 Re ⟨Ψ(r1, t)Ψ∗(r2, t)⟩ .

(4.29)
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Figure 4.11: Bathroom cabinet setup, with reflection within reflection
within ....

Figure 4.12: Fabry-Perot Cavity (repeated reflection on purpose).

Figure 4.13: Virtual beam with mirror.
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Figure 4.14: Virtual beam as diffraction source.

Figure 4.15: Extended source.

All the action is in the cross term. The portion of this that is hard
to calculate, we call the Mutual coherence

Γ12 ≡ ⟨Ψ(r1, t)Ψ∗(r2, t)⟩ . (4.30)

4.4 types of coherence .

4.4.1 Longitudinal coherence.

Consider the measurement of the relative interference at two points
as in fig. 4.16. where we have a device that measures the relative
interference at these points as in fig. 4.17 and fig. 4.18. where
we suppose that there’s something that has introduced a small
amount of delay or path length. The extra pathlength like a time
delay

τ =
s2 − s1

c
. (4.31)
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Figure 4.16: Multiple paths along one ray direction.

Figure 4.17: Imagine exaggerated refraction and reflection from cavity at
end of ray.

Figure 4.18: But with cavity aligned.
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With a coherence time defined as

τcoh =
1

∆w
. (4.32)

where ∆w is the spectral width of the source.
We will show that if

s2 − s1 ≪ cτcoh. (4.33)

we have good visibility.
We want to think about what happens when the source gets

broad as in fig. 4.19.

Figure 4.19: Power distribution with interference due to extended
source.

4.4.2 Transverse coherence.

As illustrated in fig. 4.20. with

Figure 4.20: Interference from extended source.
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length =
λ

∆θs
. (4.34)

we will show that we get a good fringe if

x ≪ λ

∆θs
. (4.35)

A point source is one for which ∆θs → 0, so that λ/∆θs → ∞.
We want to think about what happens when the source gets big.

Doesn’t the intensity loss in the P1, P2 linear interference setup matter?
Consider fig. 4.21. If R is small, then the resulting intensities are

Figure 4.21: Intensity differences after cavity reflection.

similar.
Observing intensity in a two-path interferometer

I = I1 + I2 + 2 Re Γ12. (4.36)

where

I1 = ⟨Ψ1Ψ∗
1⟩ . (4.37a)

I2 = ⟨Ψ2Ψ∗
2⟩ . (4.37b)

Γ12 = ⟨Ψ1Ψ∗
2⟩ . (4.37c)

Here Γ12 is the mutual coherence and ⟨...⟩ indicates the time aver-
age.
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Figure 4.22: Michaelson.

Figure 4.23: Equivalent to Michaelson.

We’ll consider a Michaelson interferometer setup as illustrated
in fig. 4.22. The net effect of this is as if a phase delay in a linear
system had been introduced, as illustrated in fig. 4.23. With

Ψ(rk, t) =
√

I(rk) exp (iϕ(rk, t)) . (4.38a)

Ψ1,2 = Ψ(r1,2, t). (4.38b)

We work with |r| ≫ λ, so that we neglect any small intensity
change, and make the approximation

I(r1) ∼ I(r2). (4.39)

and define

τ =
s2 − s1

c
(4.40)

We write

γ12 =
Γ12√
I1
√

I2
. (4.41)



4.4 types of coherence . 113

So that our total intensity is just

I = 2I1(1 + Re γ12). (4.42)

Our task is to calculate

γ12 =
〈

eiϕ1−iϕ2
〉

. (4.43)

With

ϕ(t) = ωt + ∆(t), (4.44)

we suppose that we have some sort of system, perhaps due to
atomic interactions, we have random discrete phase jumps at reg-
ular intervals, as in fig. 4.24 and fig. 4.25. This isn’t necessarily a

Figure 4.24: Random step phase changes.

Figure 4.25: Effect of random phase changes.

realistic system, but it one that we can calculate.

γ12 =
〈

eiϕ(t)e−iϕ(t+τ)
〉

= eiωτ lim
T→∞

∫ T

0
ei∆(t)−i∆(t+τ)dt. (4.45)
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Figure 4.26: Differences of random phases after time delay.

The phase transitions above are illustrated in fig. 4.26. Integrating
across one time interval and then summing we have

1
Nτ0

N

∑
n=1

∫ (n+1)τ0

nτ0

ei(∆(t)−∆(t+τ)dt = ∑ n = 1N

Nτ0
(τ0 − τ) +

��
����∑N

n=1
Nτ0

τe−i∆i .

(4.46)

To account for the cancellation, note that we are summing over a
number of complex numbers, like

ei∆1 + ei∆2 + ei∆3 . (4.47)

where the ∆’s are random. This is illustrated in fig. 4.27. (we do

Figure 4.27: Random walk evolution.

get somewhere in a random walk, but it is approximately
√

N
on average, so we have

√
N/N in the sum which goes to zero).

Putting results together we have

γ12 =


(

1 − |τ|
τ0

)
e−iωτ if τ ≤ τ0

0 if τ ≥ τ0

(4.48)
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Also see §3.5 in [5] for this derivation.
The intensity output of the interferometer is

I = 2I0 + 2I0 Re γ12

= 2I0 + 2I0|γ12| cos(ωτ)

= 2I0 + 2I0 cos(ωτ)
(

1 − τ

τ0

)
e−iωτ

{
1 − |τ|τ0 τ ≤ τ0

0 τ ≥ τ0

(4.49)

as in fig. 4.28. One fringe is at

Figure 4.28: Resulting interference intensity.

ωτ = 2π, (4.50)

or

ω
s2 − s1

c
= 2π. (4.51)

With

2π
c
ω

=
ωλ

ω
= λ. (4.52)

we have

s2 − s1 = λ. (4.53)

typically require 500 nm for visible light. We need micron scale
control.
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4.5 more general mutual coherence .

What do we know about ⟨Ψ1Ψ∗
2⟩ ?

⟨Ψ1(t)Ψ∗
2(t + τ)⟩ = lim

T→∞

∫ T

0
dtΨ1(t)Ψ2(t + τ). (4.54)

This (integral) is just a convolution, so we can compute this by
performing Fourier transforms and inverse Fourier transforms. If

f (x) = g ∗ h =
∫ ∞

−∞
dx′g(x′)h(x − x′). (4.55)

Then

F(k) = G(k)H(k), (4.56)

so that

f (x) = F−1G(k)H(k). (4.57)

We see that γ12(τ) is a Fourier transform of power spectrum of the
source. Explicitly, that is

|Γ12| = eiα12(τ) = 4
∫ ∞

0
G12(ω)e−i(ω−ω)τdω. (4.58)

where

Γ12 = |Γ12|eiα12(τ)−iωτ . (4.59)

and

G12(ω) = lim
T→∞

1
2T

VT(r1, ω)V∗
T (r2, ω) ∼ V1(ω)V∗

2 (ω). (4.60a)

V(ω) = F (Ψ). (4.60b)

VT =
∫ ∞

−∞
Ψ(r)

T (r, t)eiωt. (4.60c)

Ψ(r)
T =

{
Re Ψ |t| ≤ T

0 |t| ≥ T
(4.60d)

Reading: These results weren’t derived here. For that see §10.3.2
[2].
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Figure 4.29: Gaussian power spectrum and correlation.

Example. Gaussian (Fourier transform of a Gaussian is a Gaus-
sian)

Figure 4.30: Lorentzian power spectrum and correlation.

Example. Lorenzian

4.6 temporal coherence (cont.)

For two source interference

I = I1 + I2 + 2
√

I1 I2 Re γ12. (4.61)

We call I1 + I2 the incoherent sum, and now know that γ12 is the
Fourier transform of the spectral intensity

γ12 = F{I(ω)}. (4.62)

when

γ12 = γ(τ). (4.63)
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and

τ =
s2 − s1

c
. (4.64)

Example in fig. 4.31. Beyond the coherent time τCOH we have only

Figure 4.31: Intensity example.

the incoherent intensity, what we’d expect from two flashlights for
example. We can write this down in a nice format

I = I1 + I2 + 2
√

I1 I2|γ12| cos (α12(τ) − δ) , (4.65)

where δ ≡ ωτ. Plotting the absolute value |γ12| we have some-
thing like fig. 4.32. Here α12 is the difference in the phase from

Figure 4.32: Absolute γ12.

the average. As an illustration we may be considering a phase
shift at one of the points fig. 4.33. Resulting in a non-zero α12 as in
fig. 4.34. As opposed to fig. 4.35. where the figure had been drawn
with α12 = 0.
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Figure 4.33: α12 illustrated.

Figure 4.34: Non zero α12.

Figure 4.35: Zero α12.
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Now suppose we rewrite things as:

I = |γ12|
(

I1 + I2 + 2
√

I1 I2 cos (α12(τ) − δ)
)Icoh

+ (1 − |γ12|) (I1 + I2)

Iincoh

.

(4.66)


|γ12| = 1 complete coherence

γ = 0 incoherent

0 < |γ| < 1 partially coherent light

(4.67)

The first case |γ12| = 1 is the easiest case to deal with fig. 4.36. We

Figure 4.36: Quasi-monochromatic.

can speak of Quasi-monochromatic as the case when

τ ≪ τcoh, (4.68)

so that we are ignoring finite coherence time, ω → ω

We can get this in the lab, by taking an spectrally distributed
source like fig. 4.37 and filtering it as in fig. 4.38. If our original
intensity looked like fig. 4.39, perhaps we now have fig. 4.40. We
loose some of the maximum possible intensity, but can introduce
a lot more fringes. I’m assuming here that the point here is to use
one source to explicitly interfere with another for measurement,
so that we want interference, and can make this more severe by
reducing the spectral width of the source.
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Figure 4.37: Spectrally distributed source.

Figure 4.38: Filtered source without spectral distribution.

Figure 4.39: Intensity for distributed source.

Figure 4.40: Intensity for filtered source.
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4.7 spatial coherence .

We’ll talk a bit by how a spatially broad source will mess up the
fringes we could measure.

Consider two sources with no mutual coherence as in fig. 4.41.
Here what is Γ12? Recall that

Figure 4.41: Spatially distributed source.

Γ12 = ⟨Ψ∗(r1)Ψ(r2)⟩ . (4.69)

NOTE: switch of convention here! In eq. (4.30) we used opposite
conjugation.

It could be that we’ve scrambled up any possible fringes. We’ll
eventually be considering a spatially extended source (i.e. a fila-
ment in a light bulb fig. 4.42), and will deal with that by summing
over a source distribution, and first need to know how to deal
with a pair of sources. If are kilometres away from the light bulb,

Figure 4.42: Spatially distributed source, only when close up.

the spatial distribution of this source will not matter.
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We will find that

Γ12 → 0, (4.70)

over distance

1
∆k

= ltc, (4.71)

or

λ

∆θ
= ltc. (4.72)

i.e. there’s only spatial properties here being considered. Writing
things out

Γ12 = ⟨Ψ∗(r1)Ψ(r2)⟩
=
〈
(Ψ1a + Ψ1b)

∗ (Ψ2a + Ψ2b)
〉

= ⟨Ψ∗
1aΨ2a⟩

Γa
12

+ ⟨Ψ∗
1aΨ2b⟩

= 0

+ ⟨Ψ∗
1bΨ2a⟩

= 0

+ ⟨Ψ∗
1bΨ2b⟩

Γb
12

.

(4.73)

Here we kill the middle terms because a and b have no phase
correlation. Now let’s think about what these things look like. We
had an example where we had

Γa
12 =

√
I1 I2|γa

12|e−iωτa . (4.74a)

Γb
12 =

√
I1 I2

∣∣∣γb
12

∣∣∣e−iωτb . (4.74b)

where

τa ≡
r1a − r2a

c
. (4.75a)

τb ≡
r1b − r2b

c
. (4.75b)

For Quasi-monochromatic sources we assume that we have ap-
proximately

|γa
12| =

∣∣∣γb
12

∣∣∣ = 1, (4.76)
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so that

Γa
12 =

√
I1 I2e−iωτa . (4.77a)

Γb
12 =

√
I1 I2e−iωτb . (4.77b)

Suppose also that we have equal intensities (we are in the Far field)

Ia
1 = Ia

2 = Ib
1 = Ib

2 , (4.78)

This will be valid when

|r| ≫ |ra
1 − ra

2| etc.. (4.79)

We are left with

γ12 =
1
2

γa
12 +

1
2

γb
12 =

1
2

e−iωτa +
1
2

e−iωτb . (4.80)

Recall that γ12 was defined in eq. (4.41). We have

γ12 = cos
(

ω(τa − τb)
2

)
. (4.81)

In absolute value, this is plotted in fig. 4.43.

Figure 4.43: |γ12|.
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Figure 4.44: Spatial inferometry with Lloyd’s mirror.

4.8 spatial coherence (cont.)

We want to look more at spatial distribution of sources, and the ef-
fects of that spread on the coherence. In general we’d have to deal
with both spectral width as well as spatial distribution, but here
we choose to only dealing with the spatial distribution. Consider
a pair of point sources as in fig. 4.44.

Γ12 = ⟨Ψ∗(t, r1)Ψ(t, r2)⟩ . (4.82)

At the photodetector, we have

I = I1 + I2 + 2 Re Γ12. (4.83)

This last bit 2 Re Γ12 predicts the fringe.
Last time, as plotted in fig. 4.43, we found

|γ12| =
∣∣∣∣cos

(
ω(τa − τb)

2

)∣∣∣∣. (4.84)

This absolute value of γ12 is telling us what the visibility of the
fringes is. Suppose we move around source a so that we are chang-
ing cτa. This will give us something like fig. 4.45 where the enve-
lope is

cos
(

ω(τa − τb)
2

)
. (4.85)

and the fast phase frequencies oscillate with the higher frequency

cos
(

ω(τa + τb)
2

)
. (4.86)
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Figure 4.45: Intensity.

To see this we need to calculate this difference in τ’s.

τa − τb =
r1a − r2a − r1b + r2b

c
= see Prof’s notes =

ls
cz

=
lθs

c
. (4.87)

In the last step we’ve used a small angle approximation

θs ≈
s
z

. (4.88)

This is one way to calculate this difference, and we see that in the
limit of a single point source, this difference

τa − τb → 0, (4.89)

and

|γ12| → 1, (4.90)

as we expect, so the visibility of the fringe disappears (illustrated
with figure?) When

∆τ =
λ

2c
. (4.91)

when

lθs =
λ

2
. (4.92)

We can do this in a more general way, using some math we already
know if we think about these two sources separated by some vec-
tor rs, going to two points, again with vector separation ∆r, as in
fig. 4.46. We also introduce a vector average rav from point a to the



4.9 what’s special about the pathlength difference? 127

Figure 4.46: Vector spatial coherence diagram.

midpoint of 1 and 2. Note that we are preparing for a setup with
an extended source where we’ll be integrating over points a so we
don’t want this midpoint to start from the average of a and b as
may be expected.

We find in exercise 4.1

k (R1 − R2) ≈ −k (rav − rs) ·
∆r
rav

, (4.93)

where R1, and R2 are the vectors from b to 1 and 2 respectively.
This includes an overall phase shift

kav · ∆r, (4.94)

and a shift

k
rs · ∆r

rav
. (4.95)

4.9 what’s special about the pathlength difference?

∆τ = τa − τb =
λ

2c
. (4.96)

Let’s consider the fringes that we make, using an interferometer
such as Lloyd’s mirror, from source a made from these two points
fig. 4.47. Could set things up so that the phase of the pairs of
contributions are exactly opposite in phase as in fig. 4.48. Our
intensities could then add to produce no fringes as in fig. 4.49.
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Figure 4.47: Path length differences.

Figure 4.48: Opposing phase contributions eliminating fringes.

Figure 4.49: Fringe elimination.
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4.10 continuum spatial distribution.

Our small angle source contributions fig. 4.50 fig. 4.51 provide
us with one sinusoidal term whereas our larger angular spreads

Figure 4.50: small θs.

Figure 4.51: One frequency contribution.

fig. 4.52 will give us more terms, none that will reduce the main
peak. In the sum fig. 4.53 we may end up with something like
fig. 4.54. Our total intensity is

Itotal = ∑
k

∣∣∣Ψk(r1, t) + eik·lΨk(r1, t)
∣∣∣2

= ∑
(

2Ik + 2 Re
(

Ψ∗
k eik·lΨk

))
= incoherent sum + 2 Re

(
∑
k

Ikeik·l
)

.

(4.97)

Here

∑
k

Ikeik·l = Γ12 = F (Ik). (4.98)
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Figure 4.52: larger θs.

Figure 4.53: Many contributions.

Figure 4.54: Resulting superposition.
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This is called the Van Cittert-Zernike Theorem. Like the time do-
main result, we have something that essentially says that the co-
herence is a Fourier transform of the distribution.

Our next task will be to extend this result to continuous spatial
distributions as in fig. 4.55.

Figure 4.55: Spatial distribution.

4.11 full derivation of the van cittert-zernike the-
orem .

We never did the complete derivation of the Van Cittert-Zernike
theorem for spatial mutual coherence in class (or if we did I didn’t
understand it). There were also aspects of the class notes deriva-
tion that I had trouble with. Lets try this from scratch, going
through all the details in sequence.

The geometry that we wish to consider is illustrated in fig. 4.56.
Our diffraction integral is

Figure 4.56: Geometry for spatial coherence.
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Ψ(r) =
∫

Ψs(rs)
eikR

iλR
d2rs, (4.99)

with a correlation function of

Γ12 = ⟨Ψ(r2, t)Ψ∗(r1, t)⟩

=

〈∫
d2rsd2r′s

eikR2(r′s)

iλR2(r′s)
e−ikR1(rs)

−iλR1(rs)
Ψs(r′s, t)Ψ∗

s (rs, t)

〉
.

(4.100)

where as in the figure we have

R2(r′s) + r′s = r2. (4.101a)

R1(r′s) + rs = r1. (4.101b)

We can express an assumption that the wave sources at two differ-
ent points are uncorrelated by writing〈

Ψs(r′s, t)Ψ∗
s (rs, t)

〉
= I(rs)δ(rs − r′s). (4.102)

This makes some intuitive sense, but still seems sort of like it’s
been pulled from a magic hat. I guess the idea is that if the source
points are the same then the average of the autocorrelation is an
integral of the intensity over all time (thus diverging), while for
different points expressing no correlation over time.

Substitution of this delta function and integration over the d2r′s
source coordinates, leaves us

Γ12 =
1

λ2

∫
d2rs

eikR2(rs)

R2(rs)
e−ikR1(rs)

R1(rs)
I(rs). (4.103)

We loose the dependence of R1 and R2 on the pair of source points
and reformulate the R2 − R1 difference in terms of the average
distance between r2 and r1, plus the incremental distance between
these. That is

r2 = rav +
1
2

∆r. (4.104a)

r1 = rav −
1
2

∆r. (4.104b)
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so that

R2 = rav +
1
2

∆r − rs. (4.105a)

R1 = rav −
1
2

∆r − rs. (4.105b)

These have magnitudes

R2,1 = rav

∣∣∣∣r̂av ±
1

2rav
∆r − 1

rav
rs

∣∣∣∣1/2

= rav

√
1 +
(
± 1

2rav
∆r − 1

rav
rs

)2

+ 2r̂av ·
(
± 1

2rav
∆r − 1

rav
rs

)

= rav

√
1 +

(∆r)2

4r2
av

+
r2

s
r2

av
∓ 1

rav
∆r · 1

rav
rs ± r̂av ·

1
rav

∆r − 2
rav

r̂av · rs.

(4.106)

To first order, with the important parts highlighted, this is

R2,1 = rav +
(∆r)2

8rav
+

r2
s

2rav
∓1

2
∆r · 1

rav
rs ± 2r̂av · ∆r

Only these terms contribute to a difference

− r̂av · rs. (4.107)

The difference is

R2 − R1 = −∆r · 1
rav

rs + r̂av · ∆r = ∆r ·
(

r̂av −
1

rav
rs

)
. (4.108)

Our autocorrelation is now

Γ12 =
1

λ2 eik∆r·r̂av

∫
d2rs

I(rs)
R1(rs)R2(rs)

e−ik∆r·rs/rav . (4.109)

It’s been implied that the integration limits described the aperture.
Let’s make that explicit with an aperture function g(rs) so that we
can allow the integration range to go to infinity in both directions
without bound. Let’s also assume that the distances R1 and R2

don’t vary much from their averages

R2,1 =

∫
d2rsg(rs)R2,1(rs)∫

d2rsg(rs)
. (4.110)
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so that the autocorrelation now takes the form

Γ12 ∼ 1
λ2R1R2

eik∆r·r̂av

∫
d2rsg(rs)I(rs)e−ik∆r·rs/rav . (4.111)

If both of the vectors rs and the vector ∆r lie in the same plane,
then the autocorrelation is found to be the Fourier transform of
g(rs)I(rs) evaluated at k∆r/rav.

4.12 problems .

Exercise 4.1 Spatial distribution vector difference.

Referring to fig. 4.46 calculate R1 − R2.

Answer for Exercise 4.1

From the figure we see that we have

rs + R1 +
1
2

∆r = rav. (4.112a)

rs + R2 −
1
2

∆r = rav, (4.112b)

or

R1 = rav − rs −
1
2

∆r. (4.113a)

R2 = rav − rs +
1
2

∆r. (4.113b)

Squaring for the magnitudes, we have

R2
1 = (rav − rs)

2 +
(

1
2

∆r
)2

− ∆r · (rav − rs) . (4.114a)

R2
2 = (rav − rs)

2 +
(

1
2

∆r
)2

+ ∆r · (rav − rs) . (4.114b)
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Assuming that |rav| ≫ |rs|, so that |rav − rs| ∼ |rav|, we have

R2
1,2 ∼ r2

av

(
1 +
(

1
2rav

∆r
)2

∓ 1
r2

av
∆r · (rav − rs) .

)
, (4.115)

which, to first order, is

R1,2 ∼ rav +
1

2rav

(
1
2

∆r
)2

∓ 1
2rav

∆r · (rav − rs) , (4.116)

with a difference of

R1 − R2 ∼ −∆r
rav

· (rav − rs) . (4.117)

Exercise 4.2 Solar interference. (2012 Ps2, P3)

Let’s consider the prospects for interference fringes using direct
sunlight.

a. Consider the sun to be a disc subtending a 0.5 degree diam-
eter. Using the van Cittert-Zernike theorem, find the mu-
tual coherence function on earth from sunlight. How close
would two pinholes need to be to see a 50% visibility in-
terference pattern behind them? For this part, make the
(wrong) assumption that the sun is a quasimonochromatic
source centered at λ =500 nm.

b. Another difficulty with the sun (when using it as a source
for interferometry) is that it is spectrally broadband. As
with any blackbody, a typical spectral width is ∆ω = kBT/ h̄,
where T ≈ 5000 K for the sun. Estimate the effect of finite
coherence time on fringe visibility, and make a qualitative
sketch of the fringe pattern you would expect to observe.

c. In what situations is the spectral width a more severe prob-
lem for visibility than the spatial coherence?

Answer for Exercise 4.2

Part a. From the class notes (page 7, 11, 12) we have for the
mutual coherence

Γ12 = eikav·∆r 1
λ2R1R2

∫∫
d2rse−iks·∆r I(ks). (4.118)
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where

ks = k
rs

rav
. (4.119a)

kav = kr̂av. (4.119b)

∆r = r1 − r2. (4.119c)

Let’s write for the disk radius R, distance from the disk D, sep-
aration of the observation points d. We’ll place the observation
points in the plane of the disk, symmetrically separated around
the normal to the disk from the center setup our coordinates as in
fig. 4.57

rav = Dẑ. (4.120a)

r1 = rav +
d
2

x̂. (4.120b)

r2 = rav −
d
2

x̂. (4.120c)

∆r = (d)x̂. (4.120d)

We have

r̂av · ∆r = ẑ · (d)x̂ = 0, (4.121)

so our mutual coherence is reduced to

Γ12 = ����eikav·∆r 1
λ2D2

∫∫
d2rse−ik rs

rav ·x̂d I(ks). (4.122)

Using an approximation of constant intensity I(ks) = I0 over the
disk, and employing radial coordinates

rs = ρ(cos θ, sin θ). (4.123)
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Figure 4.57: Geometry for solar disk interference problem.

we have

Γ12 =
I0

λ2D2

∫ 2π

0
dθ
∫ R

0
ρdρe−ik d

D ρ cos θ . (4.124)

With a substitution a = −kd/D, and some supplication to Math-
ematica ( modernOpticsProblemSet2work.cdf ), we find for the
integral∫ 2π

0
dθ
∫ R

0
ρdρeiaρ cos θ =

2πRJ1(aR)
a

, (4.125)

so that the mutual coherence is

Γ12 =
I0

λ2D2
2πRJ1(kdR/D)

kd/D
=

I02πR2

λ2D2
J1(kdR/D)

kdR/D
. (4.126)

We note that from the point(s) of observation, the observed angle
of the disk is

θs ∼
2R
D

, (4.127)

and we also note that

k =
2π

λ
, (4.128)

so our Bessel argument can be rewritten as

kdR
D

=
2π

λ
d

θs

2
=

πdθs

λ
. (4.129)

so that our mutual coherence in terms of desired variables is

Γ12 = I0
πθ2

s
2λ2

J1(πθsd/λ)
πθsd/λ

(4.130)
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with

I1 = I2 = Γ12|d=0 = I0
πθ2

s
2λ2

1
2

. (4.131)

we have

γ12 =
Γ12√

I2
1

=
Γ12

I1
= 2

J1(πθsd/λ)
πθsd/λ

. (4.132)

To calculate the total intensity we have

I = 2I1 + 2 Re Γ12 = 2I1(1 + Re γ12). (4.133)

so that

Imax = 2I1(1 + |γ12|). (4.134a)

Imin = 2I1(1 − |γ12|). (4.134b)

So that for the visibility

V =
Imax − Imax

Imax + Imax
=

2I12|γ12|
4I1

= |γ12| = 2
∣∣∣∣ J1(πθsd/λ)

πθsd/λ

∣∣∣∣. (4.135)

The Bessel function ratio that we have in the absolute values here
is plotted in fig. 4.58. We find numerically that J1(x)/x = 0.25

2 4 6 8 10
x

0.1

0.2

0.3

0.4

0.5

J1(x)

x

Figure 4.58: Sinc like first order Bessel function.

occurs for x = 2.22, so 50 % visibility for the 500 nm average
wavelength at 0.5 degrees occurs when

d =
2.22λ

πθs
=

2.22 × 500 × 10−9m
π π

180
1
2

= 0.04mm. (4.136)
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Part b. Suppose that we have two sources of identical amplitude,
each separated from the average frequency by half the spectral
width

Ψ1 =
√

I0ei(ω−∆ω)t. (4.137a)

Ψ2 =
√

I0ei(ω+∆ω)t. (4.137b)

To compute the correlation of these we compute

Ψ1(t)Ψ∗
2(t + τ) = I0ei(ω−∆ω)t−i(ω+∆ω)(t+τ) = I0e−2i∆ωt−iωτ , (4.138)

so that

γ =
〈

e−2i∆ωt−iωτ
〉

= e−iωτ
〈

e−2i∆ωt
〉

= e−iωτ 1
2τa

∫ τa

−τa

e−2i∆ωtdt

= e−iωτ 1
2τa

sin(2∆ωτa)
∆ω

= e−iωτ sinc(2∆ωτa).

(4.139)

Our intensity is

I = 2I0 + 2I0 Re γ = 2I0 (1 + cos(ωτ)) sinc(2∆ωτa). (4.140)

As the spectral width increases for a fixed period of observation
τa our intensity dies off from its maximum to the average 2I0. This
is sketched roughly in fig. 4.59

Part c. With a coherence time inversely proportional to the fre-
quency

tc ∼
1

∆ω
=

h̄
kBT

, (4.141)

a larger spectral width (larger T) will result in a smaller coher-
ence time, and a requirement for faster detection circuitry. This
is clearly more of an issue than the spatial coherence when the
distance to the object is very far. One such example is the stellar
interferometer discussed in [8] §12.4.2 where this coherence time
was used to indirectly determine the diameter of a stellar source.
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Figure 4.59: Possible fringes from two sources at the boundaries of the
spectral width.

Exercise 4.3 Doublets and Combs. (2012 Ps3, P1)

For each of the following optical power spectra, find the inten-
sity output of a balanced Michelson interferometer I(τ), where
c τ is the difference in path length of the two arms of the inter-
ferometer. For both problems, you will find it useful to use the
convolution theorem. You can assume that both I(τ) and I(ω) are
even functions, which simplifies the Fourier math.

a. A frequency “doublet”

I(ω) =
I0

2
σ2

σ2 + (|ω| − ω1)2 +
I0

2
σ2

σ2 + (|ω| − ω2)2 ,

(4.142)

where σ is the line width, and ω1,2 are peak frequencies. In
interpreting the result, you can assume that these are nar-
row lines with close frequencies, split by some ∆, so that
ω1,2 = ω ± ∆/2, and ω ≫ ∆ ≫ σ. In this limit, you should
find that the interference has a fast component with fre-
quency ω under an envelope with frequency ∆/2. Sketch
I(τ), and label the various time scales.

b. A “frequency comb”

I(ω) =
I0

N

N−1

∑
n=0

σ2

σ2 + (|ω| − ωn)2 , (4.143)
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where ωn = ω0 + nδ. Here you should find that the correla-
tion is pulsed (!), and that the normalized mutual coherence
can be written

ℜ{γ(τ)} = e−σ|τ|
(

sin
(

Nπτ/τrep
)

N sin
(
πτ/τrep

)) cos ωτ, (4.144)

where τrep is a time between pulses, and ω is an average
frequency of the spectrum. Find expressions for both ω and
the rep rate τrep. Plot the Michelson output for σ = δ/20,
ω = 50δ, N = 10, for τ in the range 0 → 4π/δ. (note we’re
in the limit of small comb spacing and even narrower peaks:
σ ≪ δ ≪ ω.)

Answer for Exercise 4.3

Setup, for my own benefit, assembling all required concepts in one place.
First consider the average intensity due to the contributions of
both path components, with respective pathlengths ra, and ra + cτ

I(τ) =
〈
|Ψ(ra + cτ) + Ψ(ra, t)|2

〉
=
〈
|Ψ(ra + cτ)|2

〉
+
〈
|Ψ(ra)|2

〉
+ 2 Re ⟨Ψ(ra + cτ)Ψ∗(ra, t)⟩ .

(4.145)

We can write this as

I(τ) = 2I0

(
1 + Re

Γ(τ)
Γ(0)

)
, (4.146)

where the pathlength difference of cτ introduces an autocorrela-
tion for the two paths of

Γ(τ) = ⟨Ψ(ra + cτ, t)Ψ∗(ra, t)⟩ . (4.147)

To evaluate this for the Michelson setup, lets assume initially a
spherical wave packet at the outputs of interferometer paths, where
r is the total distance that the incident wavepacket travels after all
transmission and reflection

Ψ(r, t) =
1√
2π

∫
Ψ̃(ω)

e−iω(t−r/c)

r
dω. (4.148)
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Somewhat loosely, we can evaluate this average

Γ(τ)

= lim
T→∞

1
2T

∫ T

−T
dt

1
2π

∫
Ψ̃(ω)

e−iω(t−ra/c−τ)

ra + cτ
dω

∫
Ψ̃∗(ω′)

eiω′(t−ra/c)

ra
dω′

∼ lim
T→∞

1
4πTr2

a

∫ T

−T
dt
∫

Ψ̃(ω)e−iω(t−ra/c−τ)dω
∫

Ψ̃∗(ω′)eiω′(t−ra/c)dω′.

(4.149)

Here we’ve assumed that cτ ≪ ra, so that we can pull out the
spatial variation of the amplitude. Now lets also assume that the
time domain wave forms are bounded for some T = Tc, so that

lim
T→∞

1
2T

∫ T

−T
=

1
2Tc

∫ ∞

−∞
, (4.150)

allowing us to increase the bounds of the dt integral, and make a
delta function identification

Γ(τ) ∼ 1
2Tcr2

a

∫
dωΨ̃(ω)

∫
dω′Ψ̃∗(ω′)eiωτ 1

2π

∫
dtei(ω′−ω)(t−ra/c)

=
1

2Tcr2
a

∫
dωΨ̃(ω)

∫
dω′Ψ̃∗(ω′)δ(ω′ − ω)eiωτ

=
1

2Tcr2
a

∫
dωΨ̃(ω)Ψ̃∗(ω)eiωτ

∼ F−1
(
|Ψ(ω)|2

)
,

(4.151)

or

Γ(τ) ∼ F−1 (I(ω)) . (4.152)

With

γ(τ) =
Γ(τ)
Γ(0)

, (4.153)

our intensity eq. (4.145) as a function of the additional pathlength
cτ, takes the form

I(τ) = 2I0(1 + Re γ(τ)). (4.154)

Because there is this constant offset in the time domain intensity,
we have to be slightly careful to find this given the frequency do-
main intensity, and eq. (4.154) shows us exactly how to do this.
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Part a. Frequency doublet We are now set to tackle this specific
problem. Our first task is the Fourier inversion of the frequency
domain intensity. Note that the form of the doublet as given in this
problem is not directly invertible without the use of special func-
tions. In general the absolute value of the frequency introduces a
discontinuity in the derivative at the origin that makes life “fun”.
What we can do, however, is assume that ω1,2 ≫ σ so that we can
make the approximation

σ2

σ2 + (|ω| − ω0)2 ∼ σ2

σ2 + (ω − ω0)2 +
σ2

σ2 + (ω + ω0)2 . (4.155)

A comparison of these for small ω0 is shown in fig. 4.60. For large
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Figure 4.60: Comparison to doubled frequency form.

enough ω0 there is no visible difference in the two functions as
seen in fig. 4.61. To Fourier invert one of these peaked intensity

-60 -40 -20 20 40 60
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Figure 4.61: More widely separated peak frequencies.

functions

f (ω) =
σ2

σ2 + (ω − ω0)2 . (4.156)
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We first note that∫
eiωτ f (ω − ω0)dω =

∫
ei(ω′+ω0)τ f (ω′)dω′. (4.157)

so

F−1( f (ω − ω0)) = eiω0τF−1( f (ω)). (4.158)

We have only to consider the Fourier inversion of a function of the
form

g(ω) =
σ2

σ2 + ω2 , (4.159)

but we recognize this from class, where we looked at the Fourier
transform of a unit area symmetric damped exponential (σ > 0)

F σ

2
e−σ|τ| =

σ

2

∫ ∞

−∞
e−iωτ−σ|τ|dt

=
σ

2

∫ ∞

0
e−iωτ−στdt +

σ

2

∫ 0

−∞
e−iωτ+στdt

=
σ

2
eiωτ−στ

iω − σ

∣∣∣∣∞
0

+
σ

2
eiωτ+στ

iω + σ

∣∣∣∣0
−∞

=
σ

2

(
1

σ − iω
+

1
σ + iω

)
=

σ

2
2σ

σ2 + ω2 ,

(4.160)

so that (up to a potential constant multiplicative factor according
to the Fourier transform convention in use)

F−1
(

σ2

σ2 + (ω − ω0)2

)
=

σ

2
e−σ|τ|eiω0τ . (4.161)

We can now immediately write the Fourier transform pair, finding
the mutual coherence from the frequency domain intensity

Γ(ω) ∼ I0

2 ∑
ωk=±ω1,±ω2

σ2

σ2 + (ω − ωk)2

↔ I0

2
σe−σ|τ| (cos(ω1τ) + cos(ω2τ)) .

(4.162)
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With ω1,2 = ω ∓ ∆/2, we rewrite

cos(ω1τ) + cos(ω2τ) = cos ((ω − ∆/2) τ) + cos ((ω − ∆/2) τ)

= 2 cos(ωτ) cos(∆τ/2).
(4.163)

so that

Γ(τ) ∼ I0σe−σ|τ| cos(ωτ) cos(∆τ/2). (4.164)

To find the intensity as a function of the additional path delay τ,
we normalize the mutual correlation

γ(τ) =
Γ(τ)
Γ(0)

= e−σ|τ| cos(ωτ) cos(∆τ/2), (4.165)

From eq. (4.146), we have for the time domain intensity

I(τ) = I0

(
1 + e−σ|τ| cos(ωτ) cos(∆τ/2)

)
. (4.166)

This is sketched in fig. 4.62.

Grading note (−1) ω > ∆ (typically) unless if one of the frequen-
cies is a lot larger than the other one!

Figure 4.62: Intensity as a function of additional path length.
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Part b. Frequency comb For a multiple frequency comb, we will
again make a double peak approximation before inverse Fourier
transforming

I(ω) =
I0

N

N−1

∑
n=0

σ2

σ2 + (ω − ωn)2

∼ I0

N

N−1

∑
n=0

(
σ2

σ2 + (ω − ωn)2 +
σ2

σ2 + (ω + ωn)2

)
↔ I0

N

N−1

∑
n=0

σe−σ|τ| cos(ωnτ)

∼ Γ(τ).

(4.167)

Since

N−1

∑
n=0

(1) = N. (4.168)

we can switch immediately to the normalized form

γ(τ) =
Γ(τ)
Γ(0)

=
1
N

e−σ|τ|
N−1

∑
n=0

cos(ωnτ)

=
1
N

e−σ|τ| Re

(
N−1

∑
n=0

eiωnτ

)

=
1
N

e−σ|τ| Re

(
N−1

∑
n=0

ei(ω0+nδ)τ

)

=
1
N

e−σ|τ| Re

(
eiω0τ

N−1

∑
n=0

einδτ

)

=
1
N

e−σ|τ| Re
(

eiω0τ eiNδτ − 1
eiδτ − 1

)
=

1
N

e−σ|τ| Re

(
eiω0τ eiNδτ/2

eiδτ/2

)
sin(Nδτ/2)
sin(δτ/2)

,

(4.169)

or

γ(τ) =
1
N

e−σ|τ| cos((ω0 + (N − 1)δ/2)τ)
sin(Nδτ/2)
sin(δτ/2)

. (4.170)
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We observe that the average of the ωn frequencies is

ω =
1
N

N−1

∑
n=0

(ω0 + nδ)

= ω0 +
δ

N

N−1

∑
n=0

n

= ω0 +
δ

N
(N)(N − 1)/2

= ω0 +
(N − 1)δ

2
,

(4.171)

we have

γ(τ) = e−σ|τ| cos(ωτ)
sin(Nδτ/2)
N sin(δτ/2)

(4.172)

With interesting stuff happening every δτrep/2 = π, we have

τrep =
2π

δ
, (4.173)

and recover the desired result eq. (4.144). We are asked to plot
with

σ =
δ

20
=

π

10τrep
. (4.174a)

ω = 50δ =
100π

τrep
. (4.174b)

τ ∈ [0, 4π/δ] = [0, 2τrep]. (4.174c)

Non-dimensionalising with u = τ/τrep and N = 10, we plot this in
fig. 4.63 over u ∈ [0, 2]

γ(u) = e−
π
10 |u| cos(100πu)

sin(10πu)
10 sin(πu)

. (4.175)
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1

10

ⅇ
π u

10 sin 10π u) cos(100π u) csc(π u)

0.5 1.0 1.5 2.0
u

-1.0

-0.5

0.5

1.0

Figure 4.63: 10 frequency input to Michelson interferometer.

Figure 4.64: Lloyd’s mirror.

Exercise 4.4 Lloyd’s mirror.

This is a problem that examines the periodicity of interference
for monochromatic point source. Consider the interference for the
Lloyd’s mirror configuration of fig. 4.64.
Answer for Exercise 4.4

We want to consider the pathlength differences along the direct
path d, to that of b = 2a + b2. The lengths of these paths are

d =
√

L2 + x2. (4.176a)

b =
√

L2 + (2h + x)2. (4.176b)

The pathlength difference, for x, h ≪ L is then

b − d = L

√1 +
(

2h + x
L

)2

−
√

1 +
x2

L2

 ∼ L
1

2L2 (4h2 + 4hx),
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(4.177)

or

b − d =
2h
L

(h + x). (4.178)

So, supposing that we have a spherical wave emitted from the
point source, allowing for a different (random) in each direction,
the waves that arrive at the observation point, having traveled
along paths d and b respectively are

Ψd =
Ψ0

d
eikd−iωt+ϕd(t). (4.179a)

Ψb =
Ψ0

b
eikb−iωt+ϕb(t). (4.179b)

Our average intensity, should there be a time delay of τ in the b
path, is

I(τ) = ⟨(Ψd(t) + Ψb(t + τ)) (Ψ∗
d(t) + Ψ∗

b(t + τ))⟩
=
〈
|Ψd(t)|2

〉
+
〈
|Ψb(t + τ)|2

〉
+ 2 Re

〈
Ψ0

d
eikd−iωt+ϕd(t) Ψ∗

0
b

e−ikb+iω(t+τ)−ϕb(t+τ)
〉

= Id + Ib + 2 Re
(

Ψ0

d
Ψ∗

0
b

eiωτeik(d−b)
〈

eiϕd(t)−iϕb(t+τ)
〉)

∼ Id + Ib + 2 Re
(

Ψ0

d
Ψ∗

0
b

eiωτeik(d−b)
(

1 − τ

τ0

))
Θ(τ0 − τ).

(4.180)

The interference term, scaling by requiring a unit value at τ =
0, and writing y = x + h (effectively re positioning our origin) is
therefore

γ(y, τ) ∼ cos
(

2kh
L

y − ωτ

)(
1 − τ

τ0

)
Θ(τ0 − τ). (4.181)

This has a maximum at (y, τ) = (0, 0). We’ve also got a set of level
curves, marking the amplitudes of equal magnitude

τ =
2khy
Lω

=
2hyd

L
= constant. (4.182)
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This wasn’t exactly what I recalled calculating on the midterm, but
I’d forgotten the exact midterm question. Now that the midterm
is posted, I see that I didn’t recall the problem that well. We were
asked to calculate the periodicity given a monochromatic point
source. From eq. (4.181) we see that we can consider either spatial
or temporal periodicity. The spatial periodicity is what probably
makes the most sense to consider since we aren’t explicitly intro-
ducing any delays in this mirror scenario. Maximums repeat every
∆x where

2kh∆x
L

= 2π. (4.183)

That is

∆x =
πL
kh

. (4.184)

Or with 1/k = λ/2π that is

∆x =
Lλ

2h
(4.185)

Should we wish to reintroduce the angle α from the figure, we
have for the small angle approximation α ∼ 2h/L, which gives
peaks every ∆x = λ/α.

Exercise 4.5 Lloyd’s mirror. Non monochromatic source.

Suppose we are told to assume that the source had a Gaussian
frequency distribution. How do things change?
Answer for Exercise 4.5

Let’s play around with evolving things and suppose that we
slightly generalize the spherical waves we’d interfered by allowing
a superposition of the form

Ψi =
1√

2πri

∫
dωΨ̃0(ω)eiω(ri/c−t)+ϕi(t). (4.186)

Now, if we delay one such wave function in time at the source by
time τ, our resultant field is

Ψ =
1√

2πr1

∫
dωΨ̃0(ω)eiω(r1/c−t)+iϕ1(t)

+
1√

2πr2

∫
dωΨ̃0(ω)eiω(r2/c−t−τ)+iϕ2(t+τ),

(4.187)
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with average intensity proportional to

I = I1 + I2

+
|Ψ0|2
πr1r2

Re⟨
∫

dωΨ̃0(ω)eiω(r1/c−t)+iϕ1(t)×∫
dω′Ψ̃∗

0(ω′)e−iω′(r2/c−t−τ)−iϕ2(t+τ)⟩.

(4.188)

Let

Ψ0(t) =
1√
2π

∫
dωΨ̃0(ω)e−iωt, (4.189)

so that the interference term is

Γ(τ) =
2

r1r2T

∫ T/2

−T/2
dtΨ0(t − r1/c)Ψ∗

0(t + τ − r2/c)eiϕ1(t)−iϕ2(t+τ).

(4.190)

Clearly this will be more tractable if we fold the random phase
functions ϕi(t) into the Fourier integrals 1, as in

Ψi =
1√

2πri

∫
dωΨ̃0(ω)eiω(ri/c−t). (4.191)

so that our interference term is reduced to

Γ(τ) =
2

r1r2T

∫ T/2

−T/2
dtΨ0(t − r1/c)Ψ∗

0(t + τ − r2/c)

=
2

r1r2T

∫ T/2−r1/c

−T/2−r1/c
duΨ0(u)Ψ∗

0(u + τ + (r1 − r2)/c).
(4.192)

Now let’s impose an additional constraint requiring for some fi-
nite T that we have for |u| > T

Ψ0(u) = 0. (4.193)

Ignoring the details about the range restriction we require for τ

for now, our interference term will then be proportional to the

1 This is a reasonable construction, and we can easily verify that application of
the wave equation ∇2 − (1/c2)∂tt = (1/r2)∂rr2∂r − (1/c2)∂tt to an integral of the
form

∫
dkA(k)eik(r−ct)/r gives zero away from the origin as desired.
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plain old convolution integral, and we can re express this beastie
in terms of assumed transform pairs

Ψ̃0(ω) =
1√
2π

∫
dtΨ0(t)eiωt. (4.194a)

Ψ0(t) =
1√
2π

∫
dωΨ̃0(ω)e−iωt. (4.194b)

Γ(τ) ∼
∫ ∞

−∞
Ψ0(u)Ψ∗

0(u + τ + (r1 − r2)/c)

=
1

2π

∫
dudωΨ̃0(ω)eiωudω′Ψ̃∗

0(ω′)e−iω′(u+τ+(r1−r2)/c)

=
∫

δ(ω − ω′)dωΨ̃0(ω)dω′Ψ̃∗
0(ω′)e−iω′(τ+(r1−r2)/c)

=
∫

dωΨ̃0(ω)Ψ̃∗
0(ω)e−iω(τ+(r1−r2)/c)

=
∫

dω
∣∣Ψ̃0(ω)

∣∣2e−iω(τ+(r1−r2)/c).

(4.195)

Again, dropping multiplicative constants, our interference term
has the following proportionality

Γ(τ) ∼ F
(∣∣Ψ̃0(ω)

∣∣2)∣∣∣
t=τ+(r1−r2)/c

. (4.196)

For this problem, we are told that our wave packet has a Gaussian
frequency distribution

Ψ(ω) =
1√

2π∆ω
exp

(
− (ω − ω0)2

2(∆ω)2

)
. (4.197)

We expect this to also be Gaussian in the time domain. Let’s per-
form that Fourier inversion to see what that looks like. Because
k = ω/c isn’t constant, we can’t just toss in the spatial dependency
after the fact, so we hack it in here as a retarded time, adding in
the 1/r factor required for a spherical wave

Ψ(r, t) =
1

(
√

2π)2r∆ω

∫
dω exp

(
− (ω − ω0)2

2(∆ω)2 + iω(r/c − t)
)

=
1√
2πr

exp
(
−1

2
(t − r/c)2(∆ω)2 − iω0(t − r/c)

)
.



4.12 problems . 153

(4.198)

Plotted implicitly against the retarded time t − r/c for some non-
zero r, we’ve got a Gaussian envelope, and oscillations within that
as in fig. 4.65. We now want our auto-correlation eq. (4.196) for

-3 -2 -1 1 2 3
t

-0.5

0.5

1.0

Reⅇ-
1

2
t Δω2

t+2 ⅈ ω0

Figure 4.65: Gaussian wave packet.

this Lloyd’s configuration. Fourier transforming the square of our
frequency spectrum we have

1
2π∆ω

∫
dω exp

(
− (ω − ω0)2

(∆ω)2 − iωt
)

=
exp

(
− 1

4 t2(∆ω)2 − iω0t
)

4π3/2(∆ω)2
.

(4.199)

Again we have a Gaussian envelope, with oscillations at the av-
erage frequency. We recall that for the Lloyd’s configuration our
path length difference eq. (4.178) was

r1 − r2

c
=

2h
Lc

(h + x), (4.200)

so our mutual correlation is

Γ(τ)

∼ exp

(
−1

4

(
τ − 2h

Lc
(h + x)

)2

(∆ω)2 − iω0

(
τ − 2h

Lc
(h + x)

))

∼ exp

(
−
(

τ

2
− h

Lc
(h + x)

)2

(∆ω)2 +
(

h
Lc

(h + x)
)2

(∆ω)2

)
×

exp
(
−iω0

(
τ − 2h

Lc
(h + x)

))
= exp

(
(∆ω)2

(
τh
Lc

(h + x) − τ2

4

))
× exp

(
−iω0

(
τ − 2h

Lc
(h + x)

))
.
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(4.201)

We’ve got a Gaussian envelope with oscillations at the average
frequency as in fig. 4.66. The falloff of the Gaussian will be dom-

2 4 6 8 10

-400

-200

200

400

Figure 4.66: Mutual coherence of Gaussian source.

inated by e−(∆ω)2τ2/4, so our coherence time, the time for a 1/e
reduction, is

τc =
2

(∆ω)
. (4.202)

While the mutual correlation has a dependence on the path length
difference of the Lloyd’s configuration, the coherence time is inde-
pendent of that, and only depends on the width of source spec-
trum. Is this correct?

Exercise 4.6 Wave functions for Lloyd’s mirror configuration.

For a linearly spread source distribution illuminating a Lloyd’s
mirror configuration, find the wave functions at the observation
point.
Answer for Exercise 4.6

Let’s re-do the geometrical part of the task we did above, allow-
ing for an additional offset from the point average position of a
linear source as in fig. 4.67. We see that the distance for the direct
line of sight, and for the bounced rays are respectively

d =
√

L2 + (x − x′)2. (4.203a)

b =
√

L2 + (2h + 2x′ + x − x′)2. (4.203b)
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Figure 4.67: Lloyd’s mirror configuration for a distributed source.

or with y = x + h

d = L
√

1 + (y − h − x′)2/L2. (4.204a)

b = L
√

1 + (y + h + x′)2/L2, (4.204b)

The wave function at the observation point for a monochromatic
source is therefore

Ψ =
Ψs

iλ

∫ ∆x/2

−∆x/2
dx′
(

eikd

d
+

eikb

b

)
≈ Ψs

iλL

∫ ∆x/2

−∆x/2
dx′
(

eikL
√

1+(y−h−x′)2/L2
+ eikL

√
1+(y+h+x′)2/L2

)
≈ ΨseikL

iλL

∫ ∆x/2

−∆x/2
dx′
(

eik(y−h−x′)2/(2L) + eik(y+h+x′)2/(2L)
)

.

(4.205)

These now have the structure of Fresnel integrals. We make the
following change of variables for the respective exponentials

π

2
w2 =

k(y − h − x′)2

2L
=

π(x′ + h − y)2

Lλ
. (4.206a)

π

2
w2 =

k(y + h + x′)2

2L
=

π(x′ + h + y)2

Lλ
. (4.206b)
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We find that our interference wave function is

Ψ(y) =
ΨseikL

i
√

2λL

(
(C(w) + iS(w))|

√
2

Lλ (h−y+∆x/2)√
2

Lλ (h−y−∆x/2)

+ (C(w) + iS(w))|
√

2
Lλ (h+y+∆x/2)√
2

Lλ (h+y−∆x/2)

)
.

(4.207)

As a sanity check observe that things look appropriate in the
∆x → 0 limit, where we have

Ψ(y) ∼ eikL
(

ei π
2

2
Lλ (h−y)2

+ ei π
2

2
Lλ (h+y)2

)
= eikL

(
ei k

2L (h−y)2
+ ei k

2L (h+y)2
)

= eikL
(

1+ 1
2L2 (h−y)2

)
+ eikL

(
1+ 1

2L2 (h+y)2
)

∼ eikL
√

1+ 1
L2 (h−y)2

+ eikL
√

1+ 1
L2 (h+y)2

= eik
√

L2+(h−y)2
+ eik

√
L2+(h+y)2

.

(4.208)

In both the small ∆x limit and in terms of the Fresnel sines and
cosines we clearly have total constructive interference at the y = 0
point where both path length contributions are equal. Can we do
a first order expansion of the Fresnel sines and cosines to look at
how a finite ∆x changes things?

Let’s not try that for now. Instead, a more reasonable approach
is probably to attempt using the Fraunhofer approximation in-
stead.

Exercise 4.7 Wave functions for Lloyd’s mirror configuration.

If the source is spatially spread, how far apart does it have to be
for a one half reduction in the fringe visibility?

Answer for Exercise 4.7

This is the precise statement of the problem on the midterm.
Let’s attempt it using the Fraunhofer diffraction approximation,
with coordinates as in

FIXME: F5

We write

R + r′ = r. (4.209)
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or

R = r − r′. (4.210)

with scalar magnitude

R = r

(
1 +

r′2

r2 − 2
r2 r · r′

)1/2

∼ r +
r′2

2r
− 1

r
r · r′

∼ r − 1
f

(0, f θ, f ) · (0, y′, 0)

= r − θy′.

(4.211)

We can now write the diffraction integral

Ψ(0, θ f , f ) ∼ Ψs
eik f

f

∫
A

e−ikθy′dy′

= Ψs
eik f

f

∫
A

e−ikyy′dy′.
(4.212)

Here we write k = k(cos θ, sin θ, 1) = (kx, ky, kz), after making the
small angle approximation sin θ ∼ θ. We integrate over the ranges
A+ = [h − ∆y/2, h + ∆y/2], and A− = [−h − ∆y/2,−h + ∆y/2].

For A+ we have

∫
e−ikyy′dy′ =

e−ikyy′

−iky

∣∣∣∣∣
h+∆y/2

h−∆y/2

=
1

iky

(
−e−iky(h+∆y/2) + e−iky(h−∆y/2)

)
=

2
ky

e−kkyh sin(ky∆y/2),

(4.213)

For A− we just flip the sign on h. Adding the two we have

Ψ = 2Ψs
eik f

f
cos(kyh)

sin(ky∆y/2)
ky/2

. (4.214)

Compare this to our point source treatment, which is

Ψ = Ψs
eik f

f

(
e−ikθh + eikθh

)
= 2Ψs

eik f

f
cos(kyh). (4.215)
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In particular we note that the intensities of the point and dis-
tributed sources in this Lloyd’s mirror configuration are respec-
tively

Ipoint source ∼ cos2(kyh). (4.216a)

Isource distributed over width ∆y ∼ cos2(kyh)
sin2(ky∆y/2)

(ky/2)2 . (4.216b)

We see that increasing ∆y will continually decrease the amplitude
of the intensity until ky∆y/2 = π/2. For a 50 % decrease in inten-
sity we want

sin2 (ky∆y/2
)

=
1
2

. (4.217)

or

ky
∆y
2

=
π

4
. (4.218)

or

∆y =
πλ

2(2π) sin θ
=

λ

4 sin θ
. (4.219)

For θ = π/2, we see that a source spread as small as λ/4 will
decrease the intensity by 50%.

Exercise 4.8 Attempt this again using the mutual coherence.

Published midterm solution uses the results from the notes for
mutual coherence γ12 due to a distributed source. This looks like
how we should have attempted this. Try that way (esp. now that
the theorem in question is now understood.)

Answer for Exercise 4.8

It’s not immediately clear to me how to apply the Van Cittert-
Zernike theorem to the Lloyd’s mirror configuration. What two
points are of interest? We have intensity at any single point? Do
we look at a point on the maximum of a fringe and look at sepa-
ration from that? Some review finds the answer back in lecture 11,
where it was pointed out that we can consider the Lloyd’s mirror
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Figure 4.68: Spatial interferometry with Lloyd’s mirror.

as the superposition of a real and a virtual observation point as
in fig. 4.68. I’d been thinking above of only virtual sources, not
virtual observation points. With a virtual observation point in a
Lloyd’s mirror configuration, we can treat this as if we are looking
at the sum of intensities resulting from addition of the wave func-
tions at the points ±(y + h). This is because the path length at the
virtual observation point will be the same of the bounced ray that
ends up at the detector (ignoring any phase change that occurs
with reflection). Let’s setup coordinates as in fig. 4.69. We have

Figure 4.69: Coordinates for Lloyd’s mirror spatially distributed interfer-
ometry problem.

r2
1 = L2 + y2. (4.220a)

r2
2 = L2 + (2h + y)2. (4.220b)

R2
1 = L2 + (y − x)2. (4.220c)



160 coherence .

R2
2 = L2 + (2h + 2y − x)2. (4.220d)

rav = Lû − hv̂. (4.220e)

∆r = −v̂(2h + 2y). (4.220f)

rs = xv̂. (4.220g)

This gives us

∆r · r̂av =
2h(h + y)√

h2 + L2
. (4.221a)

∆r · rs

rav
= − 2x(h + y)√

h2 + L2
. (4.221b)

For L ≫ h as in fig. 4.70, we can write

h + y√
h2 + L2

≈ h + y
L

= tan θ ∼ θ. (4.222)

So that our plug into eq. (4.111) takes the form

Figure 4.70: Angle from mirror to observation point.
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Γ12 =
e2ihkθ

λ2R1R2

∫ ∆w/2

−∆w/2
dxI(x)e−2ikθx

∼ e2ihkθ

λ2L2 I0
e−2ikθx

2ikθ

∣∣∣∣−∆w/2

∆w/2

=
e2ihkθ

λ2L2 I0
sin(kθ∆w)

kθ

=
I0∆we2ihkθ

λ2L2 sinc(kθ∆w).

(4.223)

Observing that sinc → 1, as ∆w → 0 we can normalize this as

γ12 = sinc(kθ∆w). (4.224)

We are interested in the visibility

V = |γ12|, (4.225)

as plotted in fig. 4.71 for x = kθ∆w. At what point on that first

2 4 6 8 10 12
x

0.2

0.4

0.6

0.8

1.0

sinc x)

Figure 4.71: Visibility curve for Lloyd’s mirror and spatially distributed
source.

lobe does the visibility drop to 1/2? With small enough x, where
x ≪ π/2 we have

|sinc(x)| ≈ x − x3

3!
x

= 1 − x2

6
, (4.226)

so we are looking for the value of ∆w that satisfies

1 − 1
6
(kθ∆w) =

1
2

, (4.227)

or

∆w =

√
3

kθ
. (4.228)
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5.1 multiple interference .

What if

Ψ = Ψ1 + Ψ2 + Ψ3 + Ψ4 + · · · . (5.1)

then

I =
〈
|Ψ|2

〉
=

〈(
∑

i
Ψ∗

i

)(
∑

j
Ψj

)〉
= ∑

i,j

〈
Ψ∗

i Ψj
〉

= ∑
i
⟨Ψ∗

i Ψi⟩ + ∑
i>j

〈
Ψ∗

i Ψj + Ψ∗
j Ψi

〉
= incoherent sum + interference term.

(5.2)

incoherent sum = ∑
i

Ii. (5.3a)

interference sum = 2 Re

(
∑
i>j

〈
Ψ∗

i Ψj
〉)

= 2 Re

(
∑
i>j

Γij

)
.

(5.3b)

We recognize our mutual coherence in the interference term.
Now consider a partially silvered mirror configuration with two

mirrors as in fig. 5.1. We are going to ignore the thickness and
assume the reflection and transmission coefficients are the same
for both surfaces and assume that we have no absorption and
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Figure 5.1: Two partially silvered mirror configuration with thickness.

Figure 5.2: Ignoring thickness.

only treat the n = 1 everywhere case for now. We’ll look at the
interference of all the internal reflections on eventual exit from
the pair of mirrors as shown in fig. 5.2. We’ll want to remember
the phase. What is the phase delay between each interfering wave?

We’ll find that we get an extra path length of

2kL cos θ. (5.4)

The geometry to consider is fig. 5.3. We see that we have

s1 cos θ = L. (5.5a)

∆y
2

= s1 sin θ. (5.5b)

k = k(cos θ, sin θ, 0), (5.5c)
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Figure 5.3: Just the geometry of the problem.

So that our phase change to the point A where we have the second
internal reflection

k · x − ωt = k(cos θ, sin θ, 0) · (0, ∆y, 0) − ω
2s1

c

= k sin θ∆y − �ck
2s1

�c
= k(sin θ∆y − 2s1)

= k(2s1 sin2 θ − 2s1)

= 2ks1(sin2 θ − 1)

= −2ks1 cos2 θ

= −2kL cos θ.

(5.6)

Observe that k · ∆x − ω∆t must be negative for any non-straight
line path (in which case it will be zero) between endpoints, pro-
vided the media through which the rays travel is of constant index
of refraction. In class (and the class notes) there was no such nega-
tive sign, and we just considered the absolute difference in phase.
This can also be calculated by considering just the contributing
portions of the path that lead to interference. Fowles’ fig 4.2 marks
those as AB, BC, or s1 cos(2θ) + s1 in the figure above. The idea
is that we consider the second reflection as a generator of plane
waves, and those will only start interfering with plane waves at
the first transmission (in steady state), after those first transmis-
sion waves have traversed that little leg of the path s1 − s1 cos(2θ).
This was illustrated in office hours as in fig. 5.4. Of this Prof Thy-
wissen also says: We normally discuss paths as a “time delay”.
Longer paths have longer delays. Since in the convention that you
and I are using, time enters as e−iωt, this means that multiplying
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Figure 5.4: Internal interference regions of the path.

by eiphase gives you an effective time delay of t = −phase/ω. So,
this brings us back to the conclusion that positive path-length giv-
ing a negative phase in the exponent is self-consistent.

Anyways, moving on, we get to the point where the wavefunc-
tion for transmission is

Ψtransmission = Ψ0t2 + Ψ0t2
(

r2eiδ
)

+ Ψ0t2
(

r2eiδ
)2

. (5.7)

We lookup (in a spec sheet) the transmission and reflection coeffi-
cients and the (associated phase shifts after reflection)

r = eiδr
√

R. (5.8a)

t = eiδt
√

T. (5.8b)

and get

Ψtransmission = Ψ0Te2iδt + Ψ0Te2iδt Re2iδr+iδ + Ψ0Te2iδt
(

Re2iδr+iδ
)2

+ · · ·

= Ψ0t2
∞

∑
n=0

(
Re2iδr+iδ

)n

= Ψ0t2 1
1 − Rei∆ .

(5.9)

where we’ve used (for |a| < 1)

∞

∑
n=0

an =
1

1 − a
. (5.10)
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and written

∆ = 2δr + δ. (5.11)

Our measured intensity is

Itrans =
〈
|ψtrans|2

〉
= I0

T2

|1 − Rei∆|2

= I0
T2

(1 − Rei∆)(1 − Re−i∆)

= I0
T2

1 + R2 − 2R cos ∆

= I0
T2

1 + R2 − 2R(1 − 2 sin2(∆/2))

= I0
T2

(1 − R)2 + 4R sin2(∆/2)

= I0
T2/(1 − R)2

1 + (4R/(1 − R)2) sin2(∆/2)
.

(5.12)

or

Itrans =
Imax

1 + F sin2(∆/2)
. (5.13a)

Imax =
I0T2

(1 − R)2 . (5.13b)

F =
4R

(1 − R)2 . (5.13c)

This is called Etalon transmission. Plots of I/Imax vs. phase shifts
for R ∈ {0.1, 0.3, 0.6, 0.97} can be found in fig. 5.5.

5.2 fabry-perot interferometry.

We’ve got Etalons in real world situations such as light off a CD
fig. 5.6. We’d previously considered wavefront splitting fig. 5.7,
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Figure 5.5: Etalon transmission.

Figure 5.6: Laser on CD.

Figure 5.7: Wavefront splitting.
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Figure 5.8: Amplitude splitting.

but now wish to consider amplitude splitting fig. 5.8. Last time
we found

It =
Imax

1 + F sin2 ∆/2
. (5.14a)

F =
4R

(1 − R)2 . (5.14b)

∆ = 2δr + δ. (5.14c)

δ = 2Lk cos θ. (5.14d)

We’ve got sharp peaks at ∆ = 2πm
How good is an Etalon at resolving frequency?
Suppose we’ve shined in two beams of the same frequency, and

then slowly start changing the frequency of the other beam, un-
til we get to the point where we’ve got both peaks centered at
2πm/ωk as in fig. 5.9. re-label with

2k1L =
2ω1L

c
. (5.15)

Relabelling fig. 5.10. We’ll consider this “resolved” when the sec-
ond peak is centered at the point when our first peak has lost half
of its intensity as in fig. 5.11. In mathese, this resolution is

I
Imax

=
1
2

. (5.16)
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Figure 5.9: Intensity from multiple Etalons.

Figure 5.10: Intensity from multiple Etalons, relabeled.

Figure 5.11: Two peaks resolved.
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at the peak for ω2. That is

1 + F sin2 ∆1

2
= 2. (5.17)

sin
∆1

2
=

1√
F

. (5.18)

x =
2√
F

. (5.19)

∆1 = 2πm + x. (5.20)

Define, the Finesse, as

F = π

√
R

1 − R
=

π

2

√
F ∼ π

T
. (5.21)

ω1 − ω2 =
2c

L
√

F
=

πc
LF . (5.22)

ω1 − ω2

ω
=

1
Fm

. (5.23)

Roughly speaking F is an instruction to “buy good mirrors”, whereas
m means “use a long cavity”

How many reflections?

N ∼ 1
T

∼ F . (5.24)

N-wave interference Cavity length is important. Suppose we had
fig. 5.12 which gives

∆ = offset + 2
ω

c
L = 2π(m + j). (5.25)

Neglecting the offset so that

2
ω

c
L = 2π(m + j). (5.26)
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Figure 5.12: Many Etalons.

Figure 5.13: Illustrating Free Spectral Resolution.

or

ω =
πc
L

(m + j) = ω0 + jF S R. (5.27)

where F S R is the Free Spectral Range. Re-plotting in fig. 5.13.
This is called a Fabry-Perot Spectrometer. These guys, who were
first able to achieve a good spectrometer of this sort, achieved
F ∼ 30 − 100, using λ/100 flatness, where a typical mirror has
λ/10 flatness!

Reading : §4 of [5].

Additional discussion from last class.

∆ =
2L
c

ω + 2δr = 2πm. (5.28)

Here ∆ is the round trip phase. Our resonances are

ω =
c

2L
2πm − c

2L
2δr = FSRm + offset. (5.29)
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If FSR = πc/L.

5.3 fabry-perot etalon review.

We’ve been discussing a Fabry-Perot Etalon as in fig. 5.14. with in-

Figure 5.14: Fabry-Perot Etalon.

put that is of a discrete frequency (a spectral line). We’ll get some-
thing like fig. 5.15. something that is an idealization of fig. 5.16.

Figure 5.15: Etalon response by frequency.

Since we have widening due to smaller than ideal reflectivity. It’s
not clear to me what the measurement mechanism here is. We are
plotting something against frequency, but only sending in discrete
frequencies.

What would make sense to me is to consider the angular de-
pendence of ∆ for two sets of frequencies. Plotting that for a nar-
row range of angles for 500 nm and 650 nm light, L = 1 m, and
R = 0.97 we have fig. 5.17, where the first and third peaks are
for 500 nm, and the second and fourth peaks for 650 nm. So, if
we have a source at a distance, we can expect a different intensity
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Figure 5.16: Ideal Etalon response.

result at the output for different frequencies, depending on the
angle between the source and the device. This I can picture as an
experimental setup.

0.0006 0.0007 0.0008 0.0009 0.0010 0.0011 0.0012
θ

0.2

0.4

0.6

0.8

1.0

I/I_max

Figure 5.17: Etalon angular dependencies.

Returning to the notes. We found two frequencies ω ± ∆ω/2 are
resolved when

∆ω

ω
=

1
mF . (5.30)

Here m = order of interference so

∆ = m2π. (5.31)

F = π

√
R

1 − R
= Finess of Etalon. (5.32)

Example numbers
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Figure 5.18: Wavelength packing in a cavity.

L = 10cm → RST = 1010s−1or1.5GHz. (5.33a)

R = 97% → F = 100 (5.33b)

λ ∼ 0.6µm → visible light. (5.33c)

ω = 3 × 1015s−1. (5.33d)

ν = 500THz. (5.33e)

∆ω

ω
= 3 × 10−8. (5.33f)

m =
ω

FSR
=

3 × 1015s−1

1010s−1 = 3 × 105. (5.33g)

∆ω is the smallest separation of two frequencies that we can mea-
sure.
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Figure 5.19: Cavity as an oscillator.

5.4 cavity (or etalon) (fabry-perot) as an oscillator .

Why are we talking so much about a specific interferometer, when
this is a class on Advanced Classical Optics. It turns out that the
interaction with light in a cavity, as in a large setup fig. 5.19. is
basically the same idea as in an implementation of a laser fig. 5.20.
If we are saying that something is an oscillator, then we can ask a

Figure 5.20: Semiconductor cavity.

couple questions:

• What is the resonant frequency?

• What is the alignment?

The resonant frequency occurs every time that we can get an
integer number of half wavelengths in the cavity.

We could actually ask what are the resonant frequencies, since
we could have a “comb” of resonances fig. 5.21. (transmission of
the Etalon: see slides)
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Figure 5.21: Frequency comb.

Answering our question of what are the resonant frequencies,
our answer is

ωm = (offset) + FSRm. (5.34)

where m is an integer. For the question of line width, consider a
Lorenztian

Γ =
FSR
2F . (5.35)

as in fig. 5.22. We’ve got

Figure 5.22: Lorentzian.

I
I0

=
1

1 + 4F 2

π2 sin2 (∆/2)
. (5.36)

Consider the plot of sin2(∆/2) as in fig. 5.23. Our phase offset from
the resonance is

∆ = 2πm + η. (5.37)
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2π 4π 6π
Δ

1

sin
2
Δ

2

Figure 5.23: Squared sine plot.

η ≪ 1. (5.38)

In terms of δ = ω − ωm

η =
2L
c

δ. (5.39)

(because ∆ = 2L
c ω + offset), we are left with

I
I0

=
1

1 + 4F 2

π2

( η
2

)2 =
1

1 +
( 2LFδ

πc

)2 . (5.40)

or

I
I0

=
1

1 + δ2

Γ2

, (5.41)

if

Γ =
πc

2LF =
FSR
2F . (5.42)

What’s the meaning of all of this? It means that the Fabry-Perot
oscillator is a device that traps light, and the resonance looks like
a Lorentzian.

We need a very high Finess (high reflectivity) to get a good
Lorentzian.

Recall that the Lorentzian is a Fourier transform of a damped
exponential time domain signal fig. 5.24. Light is trapped in the
cavity for a time τ ∼ 1/Γ.
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Figure 5.24: Exponential decay.

5.5 diffraction grating interferometry.

We are going to look at the (Fraunhofer) far field of a diffraction
grating with N illuminated slits fig. 5.25. Our geometry is

Figure 5.25: Diffraction grating interferometry.

R + r′ = r. (5.43)

Rs + r′ = rs. (5.44)

for which our path length from r′ to the observation point is

|R| = r

(
1 +

r′2

r2 − 2
r · r′

r2

)1/2

∼ r +
r′2

2r2 − r̂ · r′, (5.45)

and to first order

k|R| ∼ kr − kr̂ · r′ = kr + k · r′ = kr + ky′ sin θ. (5.46)
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Similarly

k|Rs| ∼ krs − kr̂ · r′

= krs − k · r′

= krs − k sin θsy′.

(5.47)

With

ky ≡ 2π

λ
sin θ, (5.48)

and

ky,s ≡
2π

λ
sin θs, (5.49)

our diffraction integral, in one dimension takes the form

Ψ(r) ∼
∫

ei(ky,s−ky)y′dy′. (5.50)

or

Ψ(r) ∼
∫

ei 2π
λ (sin θs−sin θ)y′dy′. (5.51)

We’ll work with θs = 0, normally incident plane waves, for which
the diffraction integral reduces to just

Ψ(r) ∼
∫

e−ikyy′dy′. (5.52)

This is the Fourier transform of the aperture, say g(y) evaluated at
ky = (2π/λ) sin θ. Note that ky ̸= k · r̂′, it is not the projection in
the ŷ direction, which is k sin θs. The angle θ here is the angle to
the observation point.

We will use the convolution theorem 3.3, constructing the com-
plete aperture as a convolution, with transmission fig. 5.26.

f (y) =
∫

dy′g(y′)h(y − y′) = g(y)∗h(y). (5.53)

Consider the convolution with the delta function comb

h(y) =
N−1

∑
n=0

δ(y − na). (5.54)
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Figure 5.26: Convolution of box with comb.

So that the convolution is

f (y) =
∫

dy′g(y′)
N−1

∑
n=0

δ(y − y′ − na)

=
N−1

∑
n=0

∫
dy′g(y′)δ(y − y′ − na)

=
N−1

∑
n=0

g(y − na).

(5.55)

Convolution theorem

F(ky) = H(ky)G(ky). (5.56)

As mentioned, here we write

ky =
2π

λ
sin θ. (5.57)

(to distinguish from our normal writing of k = 2π/λ)
For a single slit, in the Fraunhofer limit, we compute

G(ky) =
∫ b/2

−b/2
e−ikyydy

=
e−ikyy

−iky

∣∣∣∣b/2

−b/2

=
eikyb/2 − e−ikyb/2

2(iky)/2

=
sin(bky/2)

bky/2
.

(5.58)
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Figure 5.27: Zero of diffraction wavefunction.

as illustrated in fig. 5.27. For the Fourier transform of the delta
comb, we have

H(ky) =
∫ ∞

−∞
eikyy

N−1

∑
n=0

δ(y − na)

=
N−1

∑
n=0

∫ ∞

−∞
eikyyδ(y − na)

=
N−1

∑
n=0

eikyna

=
N−1

∑
n=0

(
eikya

)n
.

(5.59)

Recall that we can sum a finite geometric series, by taking the
difference of

aSN = a + a2 + · · · aN . (5.60a)

SN = 1 + a + · · · aN−1. (5.60b)

so that

(a − 1)SN = aN − 1. (5.61)

or

SN =
aN − 1
a − 1

, (5.62)
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and we have for our Fourier transform we have

H(ky) =
1 − eikyaN

1 − eikya

=
eikyaN/2

eikya/2

e−ikyaN/2 − eikyaN/2

e−ikya/2 − eikya/2

= eiγ(N−1) sin(Nγ)
sin γ

.

(5.63)

where

γ =
1
2

kya =
1
2

ka sin θ. (5.64)

We want

I =
∣∣F(ky)

∣∣2
=
∣∣H(ky)

∣∣2∣∣G(ky)
∣∣2

= I0

(
sin β

β

)2 ( sin Nγ

N sin γ

)2

.

(5.65)

where

β =
1
2

bky =
1
2

bk sin θ. (5.66a)

γ =
1
2

kya =
1
2

ka sin θ. (5.66b)

Check: N = 2(
sin 2γ

2 sin γ

)2

=
(

2 sin γ cos γ

2 sin γ

)2

= cos2 γ. (5.67)

(Good).
To get a bit of a feeling for what this looks like we can check

out a plot, as in fig. 5.28, plotting n = 5, a = 0.869, b = 0.172, λ =
1 (generated from lecture15figures.nb .) Our far field view was
fig. 5.29.
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Figure 5.28: A sample intensity pattern for a multiple aperture diffrac-
tion grating.

Figure 5.29: Far field view.
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Frequency resolution How well can we resolve frequency?
We will write out γ in terms of angular frequency

γ =
1
2

a
ω

c
sin θ = π

ω

ω0
sin θ. (5.68)

where

ω0 =
2πc

a
, (5.69)

where a is the period of the diffraction grating. The peak is at
γ = mπ, or

γpeak = mπ = π
ω

ω0
sin θ, (5.70)

or

m =
ω

ω0
sin θ, (5.71)

Zeros are at Nγ = lπ (provided l ̸= Nm). Closest zero is

l = Nm + 1. (5.72)

∆γ = γzero − γpeak

=
l
N

π − mπ

=
Nm + 1

N
π − mπ.

(5.73)

or

∆γ =
π

N
=

π sin θ

ω0
∆ω. (5.74)

Rework after question: Peaks for ω1,2 are

γpeak,1 = π
ω1

ω0
sin θ = mπ. (5.75)

γpeak,2 = π
ω2

ω0
sin θ = mπ. (5.76)
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so that

∆γ = ∆ω
π

ω0
sin θ. (5.77)

The peak is resolved when

∆γ =
mπ

ω1
∆ω =

π

N
, (5.78)

as shown in fig. 5.30. Writing ω1 ∼ ω2 ∼ ω, this is

Figure 5.30: Resolution.

∆ω

ω
=

1
Nm

(5.79)

Observe that this looks like

∆ω

ω
=

1
mF , (5.80)

because F ∼ number of bounces in the Etalon.
But m ≈ 1, 2, 3, not m ≫ 1.

5.6 problems .

Exercise 5.1 Inside the Fabry Perot. (2012 Ps3, P2)

What does the energy density u(x) ≡ ⟨|Ψ(x, t)|2⟩ look like inside
the Fabry Perot Etalon? Assume a monochromatic traveling wave
Ψ(x, t) =

√
u0 exp (ikx − iωt) is normally incident on a cavity. The

mirrors are two surfaces with transmission t =
√

T exp (iδt), reflec-
tivity r =

√
R exp (iδr), and T = 1 − R. The length of the cavity is L.

As in class, the round-trip phase shift will be called ∆.
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a. Show that u(x) in the cavity can be expressed in the form

u = u0A
(

1 + R + 2
√

R cos[ϕ(x)]
)

, (5.81)

and give A and ϕ(x) in terms of R, ∆, and k. This should
explain why we say the mth order resonance is when there
are m standing-wave anti-nodes in the cavity.

b. Peak energy density Find an expression the peak energy
density umax in the cavity, and plot umax/u0 versus ∆, for
R = 0.8. What is the resonance condition? By how much
can umax exceed u0? Where is this extra energy density com-
ing from if energy is conserved?

c. Standing waves? Is there always a standing wave in the
cavity, even off resonance?
Write an expression for the visibility, (max-min)/(max+min),
of the energy density u(x). One way to measure this visibil-
ity would be to look at the optical forces on an atom in the
cavity.

d. Compare to class Finally, make sure your expression also
makes sense when compared to the IT we found in class.
Since it’s only the forward-going component that is trans-
mitted through the last mirror, the intensity outside the
cavity is u0AT. (You don’t need to prove this.) Does this
reproduce IT?

Answer for Exercise 5.1

Part a. Average intensity inside the cavity Referring to fig. 5.31

(where the internal reflections are exaggerated), we want to look
at the field after the wave gets to points 1, reflects to 2, reflects
again to 3 and so forth. Our electric field at point x is then the
sum

Ψ(x) = (Ψ0t)eikx +(Ψ0t)reik(2L−x)

+(Ψ0t)r2eik(2L+x) +(Ψ0t)r3eik(4L−x)

+(Ψ0t)r4eik(4L+x) +(Ψ0t)r5eik(6L−x)

· · ·

(5.82)
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Figure 5.31: Internal Fabry-Perot field geometry.

Factoring out the geometric series we have

Ψ(x) = (Ψ0t)
(

1 + r2e2ikL + r4e4ikL + · · ·
) (

eikx + reik(2L−x)
)

= (Ψ0t)
1

1 − r2e2ikL

(
eikx + reik(2L−x)

)
=

Ψ0
√

Teiδt

1 − Re2ikL+2iδr

(
eikx +

√
Reik(2L−x)+δr

)
.

(5.83)

Introducing a round trip phase

∆ ≡ 2kL + 2δr, (5.84)

we have

Ψ(x) =
Ψ0

√
Teiδt

1 − Rei∆

(
eikx +

√
Re−ikx+i∆−iδr

)
. (5.85)

This has squared magnitude

|Ψ(x)|2 =
u0T

1 + R2 − 2 cos(∆)

(
1 + R + 2

√
R cos

(
2kx − ∆ + δr

Wrong?))
.

(5.86)

1

1 The δr above might be wrong, as it was circled by the grader with a question
mark. Recalculate.
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This has the desired structure of eq. (5.81) with

A =
T

1 + R2 − 2 cos(∆)
. (5.87a)

ϕ(x) = 2kx − ∆ + δr. (5.87b)

Part b. Peak energy density From eq. (5.86) we see that maximums
and minimums occur respectively whenever

2kx − ∆ + ∆r = π(2m). (5.88a)

2kx − ∆ + ∆r = π(2m + 1). (5.88b)

At these points 1 + R + 2
√

R cos (2kx − ∆ + δr) takes the values

1 + R + 2
√

R = (1 +
√

R)2. (5.89a)

1 + R − 2
√

R = (1 −
√

R)2. (5.89b)

The maximum and minimum energy densities are therefore

umax =
u0(1 − R)

1 + R2 − 2 cos(∆)

(
1 +

√
R
)2

. (5.90a)

umin =
u0(1 − R)

1 + R2 − 2 cos(∆)

(
1 −

√
R
)2

. (5.90b)

This maximum is plotted in fig. 5.32.

Grading note: −1 Marked “??”. Check against posted solution.
We see the resonance peaks when 1 + R2 − 2 cos ∆ = 0. Those

points are

∆res = ± cos−1
(

1 + R2

2

)
. = 4π

L
λres

+ 2δr. (5.91)
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Figure 5.32: peak energy density.

For a given interface phase shift δr, and reflectivity R, and cavity
width L we see that we have a critical wavelength

λres =
4πL

± cos−1
(

1+R2

2

)
− 2δr

. (5.92)

If large amounts of energy are supplied to the field due to this
resonance, I think it would have to come from interactions with
the interfaces, thermally cooling the atoms in the mirrors. These
thermal effects likely change r as a side effect, producing a feed-
back effect that would prevent the potential infinite spikes that we
see in plot and associated expression of umax.

Grading note: (−2 Check against posted solution.

Part c. Standing waves and visibility From eq. (5.86) we see that
our energy density has the form

u(x) = α + β cos
(

4π

λ
(x − L) + δr

)
. (5.93)

We’ll have standing waves (possibly phase shifted) only for those
input wavelengths that satisfy

4πL
λ

= mπ, (5.94)

for integer m > 0.

Grading note: −2 Underline portion with question “why?”.
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From eq. (5.90) we see that our visibility is

V =
1 + R + 2

√
R − (1 + R − 2

√
R)

1 + R + 2
√

R + 1 + R − 2
√

R
=

2
√

R
1 + R

. (5.95)

Part d. Compare to previously calculated transmitted intensity If we
split our wave function into forward Ψ+(x) and reverse Ψ−(x) com-
ponents we have from eq. (5.85)

Ψ+(x) =
Ψ0

√
Teiδt

1 − Rei∆ eikx. (5.96a)

Ψ−(x) =
Ψ0

√
Teiδt

1 − Rei∆

√
Re−ikx+i∆−iδr . (5.96b)

The externally transmitted portion of this wave is

ΨT = tΨ+(L)

=
Ψ0Te2iδt

1 − Rei∆ eikL,
(5.97)

which has squared magnitude

IT = |ΨT|2

=
u0T2

|1 − Rei∆|2
.

(5.98)

Except for the notation change u0 ↔ I0, this, as expected, repro-
duces the result from class.

Exercise 5.2 Spatial coherence, grating. (2012 Ps3, P3)

A look inside a grating spectrometer reveals that incident light
is passed through a series of slits to increase the transverse spatial
coherence. In this problem, we’ll try to understand why. For all of
the parts below, consider a grating of N slits, periodicity a, and
width b.

For parts c and d, neglect the envelope due to a finite slit width
b, and consider only the sharp diffraction peaks.
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a. Wavelength resolution
For a collimated (ks,y = 0), monochromatic source illuminat-
ing N slits, diffraction peaks would have an angular width
of ∆θ = λ/(Na cos θ), for the first order of diffraction. re-
derive this result for yourself. Show that this gives a wave-
length resolution is ∆λ = λ/Nm

b. Intensity
Next, consider how the output intensity of the grating shifts
if the input comes in at an angle θs. Write an expression
for I(θs, θ). You can also use the variables ks,y = k sin θs and
ky = k sin θ, as we did in class.

c. Resolution of spectrometer If the incident beam has an
angular spread ∆θs around normal incidence, what is the
resolution ∆λ of the spectrometer? Calculate this in the
limit of large N, or N ≫ λ/a∆θs, where the angular width
of the diffracted light is completely determined by the an-
gular width of the incident light.

d. Decreased coherence length at the grating
An alternate view of part c is that by broadening the an-
gular distribution of the source, we also decrease the trans-
verse coherence length at the grating. The number of slits
leading to coherent diffraction is reduced to some Neff, which
is the number of slits within one coherence length ℓtc =
λ/∆θs. Sketch a diagram explaining this. The frequency
resolution of the spectrometer is then reduced from λ/N to
λ/Neff. (for order m = 1) Compare this to the result you
found in part c.

Answer for Exercise 5.2

Part b. Output intensity given input angle θs Let’s derive the N
slit diffraction wave function and intensity given an off normal
input. We’ll be able to use this in part a once we do. We’ll use a
Fraunhofer geometry as in fig. 5.33.

R + r′ = r. (5.99a)

Rs + r′ = rs. (5.99b)
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Figure 5.33: Fraunhofer geometry.

for which our path length from r′ to the observation point is

|R| = r

(
1 +

r′2

r2 − 2
r · r′

r2

)1/2

∼ r +
r′2

2r2 − r̂ · r′,

(5.100)

and to first order

k|R| ∼ kr − kr̂ · r′

= kr − ky′ sin θ.
(5.101)

Similarly

k|Rs| ∼ krs − kr̂ · r′

= krs + k · r′

= krs + k sin θsy′.

(5.102)

With

ky ≡ 2π

λ
sin θ, (5.103a)

ky,s ≡
2π

λ
sin θs. (5.103b)

Our diffraction integral

Ψ ∼
∫ eik(R+Rs)

RRs
, (5.104)
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after pulling out and dropping the r and rs dependent terms, takes
the one dimensional form

Ψ(r) ∼
∫

ei(ky,s−ky)y′dy′ =
∫

ei 2π
λ (sin θs−sin θ)y′dy′. (5.105)

Let’s write

∆k = ky − ky,s, (5.106)

and evaluate this over intervals [h + ma, h + ma + b], for m ∈ [0, N −
1] as in fig. 5.34. Integrating over the mth slit, we have

Figure 5.34: N slit geometry.

∫
Sm

e−i∆ky′dy′ =
∫ h+ma+b

h+ma
e−i∆ky′dy′

=
e−i∆ky′

−i∆k

∣∣∣∣∣
h+ma+b

h+ma

=
e−i∆k(h+ma)

−i∆k

(
e−i∆kb − 1

)
=

e−i∆k(h+ma)

∆k
ei∆kb/22 sin(∆kb/2)

= be−i∆k(h+ma)ei∆kb/2 sin(∆kb/2)
∆kb/2

.

(5.107)

Adding all the slit contributions we have

Ψ = bei∆k(b/2−h) sin(∆kb/2)
∆kb/2

N−1

∑
m=0

e−i∆kma

= bei∆k(b/2−h) sin(∆kb/2)
∆kb/2

1 − e−i∆kaN

1 − e−i∆kaN

= bei∆k(b/2−h) sin(∆kb/2)
∆kb/2

e−i∆kaN/2

e−i∆ka/2

ei∆kaN/2 − e−i∆kaN/2

ei∆ka/2 − e−i∆ka/2
.

(5.108)
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Ψ ∼ sin(∆kb/2)
∆kb/2

sin(∆kaN/2)
N sin(∆ka/2)

, (5.109)

with intensity

I(θs, θ) ∼ sin2(∆kb/2)
(∆kb/2)2

sin2(∆kaN/2)
N2 sin2(∆ka/2)

, (5.110a)

∆k =
2π

λ
(sin θ − sin θs). (5.110b)

Part a. Peak width and wavelength resolution for normal incidence Here
we work with a normal incident θs = 0 plane wave source, and
write

γ =
∆ka

2

=
ka
2

sin θ

=
πa
λ

sin θ.

(5.111)

and seek to understand the characteristics of the Intensity enve-
lope

sin2(Nγ/2)
N2 sin2(γ/2)

. (5.112)

To get a feel for what this may look like this is plotted for two
wave lengths λ = 3πa, λ′ = 4πa, a = 1 in fig. 5.35. Observe that
this ratio of sines has a unit value for any γ/2 = mπ, for integer m
since by H’ôpital’s rule we have

lim
γ/2→mπ

sin(Nγ/2)
N sin(γ/2)

=
cos(Nγ/2)
cos(γ/2)

∣∣∣∣
γ=mπ

= (−1)(N−1)m. (5.113)

So for any Nγ/2 = lπ, provided γ/2 ̸= mπ we have a zero. We
find those at

N
πa
λ

sin θ = lπ, (5.114)
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π
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Figure 5.35: Intensity envelope sample plot.

or

sin θl =
lλ
Na

, (5.115)

For the distance between zeros past the center θ = 0 lobe for a
fixed wavelength, we have

sin θl+1 − sin θl =
(l + 1)λ

Na
− lλ

Na

=
λ

Na
.

(5.116)

If ∆θl , or just ∆θ (assuming that the peak or zero separation is
about the same, although this is artificial in general as we see
from the plot), we can compute this by examining the difference

sin θl+1 − sin θl ∼ sin(θl + ∆θ/2) − sin(θl + ∆θ/2)

= 2 cos θl sin(∆θ/2)

∼ ∆θ cos θl .

(5.117)

This gives us the desired relationship (for the lth zero)

∆θl ∼
λ

Na cos θl
. (5.118)

Suppose we rather loosely identify this as the peak width, and
look at the image around the mth peak, as in fig. 5.36. This is about
as close as the wavelengths can be in order that a superposition
of the two would be distinguishable as separate (humped near
center). That separation of wavelength λ′ = λ + ∆λ is
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Figure 5.36: Resolvable peak to peak separation.

∆θ = sin−1(m(λ + ∆λ)/a) − sin−1(mλ/a)

∼ d
d(mλ/a)

(
sin−1(mλ/a)

) m∆λ

a

=
1

cos sin−1(mλ/a)
m∆λ

a
,

(5.119)

but we also have

∆θ =
λ

Na cos θ

=
λ

Na cos sin−1(mλ/a)
.

(5.120)

Comparing the two

1

((((((((
cos sin−1(mλ/a)

m∆λ

�a
=

λ

N�a((((((((
cos sin−1(mλ/a)

, (5.121)

or

∆λ =
λ

Nm
, (5.122)

which is the wavelength resolution desired.

Part c. Angular spread Neglecting the width of the slits, we’ve
found in eq. (5.110) that our intensity due to a plane wave source
and incident light at angle θs, we have

I ∼ sin2(πaN(sin θ − sin θs)/λ)
N2 sin2(πak(sin θ − sin θs)/λ)

. (5.123)
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Figure 5.37: Spread source.

However, with an angular source spread, presumably from a point
source at some distance L, we have a configuration like fig. 5.37.
Our angle of incidence varies with each slit, so this plane wave re-
sult doesn’t seem applicable. There’s no obvious way to get what
we want out of this result, so let’s start from scratch. Let’s assume
an even number of slits with a symmetric setup, so that our Fraun-
hofer geometry is

hm = ±
(

m − 1
2

)
a. (5.124a)

km = k
Lẑ ± hmŷ√

L2 + h2
m
∼ khm

L
ŷ. (5.124b)

r′m = ŷhm. (5.124c)

r̂ · r′m = ±hm sin θ. (5.124d)

km · r′m ∼ k(±hm)2/L. (5.124e)

Summing over both positive and negative m our Fraunhofer sum
becomes

Ψ = 2 ∑
m=1

eikh2
m/L cos(khm sin θ)

= 2 ∑
m=1

ei ka2
L (m− 1

2 )
2

cos
(

ka
(

m − 1
2

)
sin θ

)
.

(5.125)
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We have two cases to consider. The first is that our the spread
completely covers all the slits, in which case the upper bound of
the sum above is m = N/2. Otherwise, if the slits extend beyond
the range of the source spread, we have to sum over an interval
where mmax is the largest integer such that

hmax

L
= a
(

mmax −
1
2

)
≤ tan

(
∆θs

2

)
. (5.126)

or

mmax ≤ 1
2

+
L
a

tan
(

∆θs

2

)
∼ L∆θs

2a
. (5.127)

Let’s write M for this sum where M = N/2 for a source spread
that encompasses than the grating, and M = mmax from eq. (5.127)
otherwise.

With γ = ka sin θ/2, our intensity is

I = ΨΨ∗

= Re ΨΨ∗

∼ Re
M

∑
m,n=1

ei ka2
L

(
(m− 1

2 )
2−(n− 1

2 )
2)

cos
(

2γ

(
m − 1

2

))
cos

(
2γ

(
n − 1

2

))

∼
M

∑
m,n=1

cos

(
ka2

L

((
m − 1

2

)2

−
(

n − 1
2

)2
))

×

(cos(2γ(m − n)) + cos(2γ(m + n − 1)))

=
M

∑
m,n=1

cos
(

ka2

L
(m − n)(m + n − 1)

)
×

(cos(2γ(m − n)) + cos(2γ(m + n − 1))).
(5.128)

Do we have any hope whatsoever to evaluate this sum in some
sort of closed form? If we are to try it seems clear that we need
two sets of change of variables. Should we try s = m − n as in
fig. 5.38, we find

N

∑
m,n=1

f (m − n, m + n − 1)

=
N−1

∑
s=−N+1

N−|s|
∑
t=1

f (s, |s| + 2t − 1).

(5.129)
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Figure 5.38: Points of constant m − n.

With the opposite diagonal orientation, as in fig. 5.39, we find

Figure 5.39: Points of constant m + n.

N

∑
m,n=1

f (m − n, m + n − 1)

=
2N−1

∑
u=1

N−|u−N|
∑
t=1

f (2t − (N − |u − N|) − 1, u)

=
N−1

∑
u=1

u

∑
t=1

f (2t − u − 1, u) +
2N−1

∑
u=N

2N−u

∑
t=1

f (2t − (2N − u) − 1, u).

(5.130)
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The intensity can now be written

I ∼
M

∑
m,n=1

cos
(

ka2

L
(m − n)(m + n − 1)

)
cos(2γ(m − n))

+
M

∑
m,n=1

cos
(

ka2

L
(m − n)(m + n − 1)

)
cos(2γ(m + n − 1))

=
M−1

∑
s=−M+1

M−|s|
∑
t=1

cos
(

ka2

L
s(2t + |s| − 1)

)
cos(2γs)

+
2M−1

∑
s=1

M−|s−M|
∑
t=1

cos
(

ka2

L
s(2t − (M − |s − M|) − 1)

)
cos(2γs)

(5.131)

Let’s now impose the condition

ka2M/L ∼ πa∆θs

λ
≪ 1, (5.132)

leaving just

I ∼
(

M−1

∑
s=−M+1

+
2M−1

∑
s=1

)
cos(2γs). (5.133)

Using

b

∑
a

eiαm = eiα(b+a)/2 sin(α(b − a + 1)/2)
sin(α/2)

, (5.134)

the intensity sums to

I ∼ (1 + cos(2γM))
sin(γ(2M − 1))

sin(γ)

∼ (1 + cos(2γM))
sin(2γM)

sin(γ)
.

(5.135)

Employing half angle formulas and normalizing once more, we
get

I ∼
(

cos(γM)
γM

)2 sin(γM)
M sin(γ)

, (5.136)
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Since this can be negative, I must have made an error above. My
first attempt on paper had this sine ratio squared and 2γM instead
of γM. I did find an error in that first attempt, and corrected that
here, but in order to make progress, let’s “average the errors”, and
assume that the intensity should be

I ∼
(

cos(2γM)
2γM

)2 ( sin(2γM)
2M sin(γ)

)2

. (5.137)

Specifying that we have more slits than the beam spread so that
we use eq. (5.127), and writing ∆H = L∆θs for the total illuminated
height of the diffraction device we have

2γM ∼ 2
2π

λ

a sin θ

2
L∆θs

2a

=
πL sin θ∆θs

λ

=
π sin θ∆H

λ
,

(5.138)

Let’s introduce ∆θa for the angular spread of the diffraction re-
gions separating the slits. Then noting that for the plane wave
case where we obtained the wavelength resolution eq. (5.122) from
eq. (5.118), we can make the substitution ∆H ↔ Na, to obtain the
wavelength resolution for this spread incident beam case (for the
m = 1 order peaks)

∆λ =
∆θaλ

∆θs
. (5.139)

Grading notes (−2)

1. The sentence that states “Let’s introduce
Deltaθa” was underlined and marked with the question “What
is ∆θa?”

2. m = 1 was underlined with question: What about general
m? I think it was just a scaling by m for the general case,
but when I typed up my solution that didn’t strike me as
important.

3. eq. (5.139) marked with a question mark and note ∆λ ∝ ∆θs.
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The ratio of the angular spread to the separation spread, takes
the place of N in the plane wave case

∆θs

∆θa
↔ N. (5.140)

Part d. Using coherence length If the transverse coherence length
is defined as ltc = ∆θs/λ, then this has a clear geometric interpre-
tation shown in fig. 5.40. To match Neff to this we write

Figure 5.40: Transverse coherence length geometrically.

aNeff = ltc∆θs. (5.141)

The angular spread of a single slit is

∆θa =
a
ltc

, (5.142)

Grading note: (−1) eq. (5.142) was circled with comment “why?”.
so we have

∆λ =
λ

Neff

=
aλ

ltc∆θs

=
∆θaλ

∆θs
.

(5.143)

Rather remarkably, considering the fudging that was done in part
c, this matches the wavelength resolution result from eq. (5.139).
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6.1 lasers .

• 1958 Theory, done by Schawlow (Toronto grad, PhD ’49) and
Townes.

• 1960 Experiment

• 1960-1980 Reinvention of optics!

Until the laser was invented, the field was mainly engineering
(lenses, telescopes, ...), but not much physics.

The basic idea is that we have a cavity as in fig. 6.1. and to

Figure 6.1: Laser cavity.

prevent losses, we have a gain medium (to be defined), and some
mechanism to pump in energy (almost always not a thermal source).

Townes and Schawlow were mazer researchers (still important,
used in GPS satellites for example as clocks), who realized that
the ideas could be carried over into the optical regime.

The history of this actually goes back to Einstein, who in 1917

did a thought experiment with atoms in a box, stimulating radi-
ation, which is bouncing around, exciting the atoms, so that they
in turn emit again. We’ll consider N atoms in thermal equilibrium
with the light in the box as in fig. 6.2. For background on this ma-
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terial see a book on thermal or statistical mechanics, such as [11]
§7. We expect more in the ground state fig. 6.3.

Figure 6.2: Atoms in a box.

Figure 6.3: Ground and excited state separation.

Ne

Ng
=

Pe

Pg
= e−(Ee−Eg)/kT . (6.1)

Thermal distribution of radiation: §7 [5]. In summary, that energy
density as a function of frequency is

uω = h̄ω ⟨nω⟩ D(ω). (6.2a)

⟨nω⟩ =
1

e h̄ω/kT − 1
. (6.2b)

D(ω) =
ω2

π2c3 . (6.2c)
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How do the number of excited states change, given absorption
probability Babsu(ω) and stimulated emission probability Bseu(ω),
and spontaneous emission probability A (see figure in the slides)

d
dt

Ne = −ANe + BabsuNg − BseuNe = 0. (6.3a)

d
dt

Ng = − d
dt

Ne. (6.3b)

Solving for u, with Ṅe = Ṅg = 0

uω =
ANe

BabsNg − BseNe

=
A

BabsNg/Ne − Bse

=
A

Bse

1
Babs/Bsee h̄ω/kT − 1

=
h̄ω3

π2c3
1

e h̄ω/kT − 1
.

(6.4)

We conclude that we must have

A
Bse

=
h̄ω3

π2c3 . (6.5a)

Babs/Bse = 1. (6.5b)

With Babs = Bse we don’t see stimulated radiation around you
because

Ne

Ng
= e− h̄ω/kT . (6.6)

Our typical chemical energies are
1 eV = kB ( 12000 K )
so that

e− h̄ω/kT ∼ e−40. (6.7)
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Figure 6.4: Population inversion.

This is very small, and in order to get there we need a population
inversion with more atoms in the excited state than in the ground
state as in fig. 6.4. With

A
B

=
h̄ω3

π2c3

= h̄ωD(ω)

=
uω

⟨nω⟩
.

(6.8)

so

Bu
A

= ⟨nω⟩ = mode occupation. (6.9)

(stimulated/spontaneous radiation)
If the mode occupation ≫ 1, then Bu > A, we have more stim-

ulated than spontaneous radiation.

6.2 laser pump rates .

Referring to the figure “Three-level model of a laser” from the
class slides, we want

A ≫ R, Γsp, Γstn. (6.10)

N1 ≪ N2 ≪ N0 ≈ N. (6.11)

Its the N1, N2 difference that leads to the population inversion on
the 1 − 2 excitation.
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Figure 6.5: Cavity.

We’ve got something like fig. 6.5.

Γcav = T
c

2L
. (6.12)

where T is the transmission coefficient.
We typically have

Γsp = 107s−1. (6.13)

The spontaneous em rate out of cavity, and

Γst = 1s−1. (6.14)

(the spontaneous emission into cavity mode of interest).
Recall

stimulated
spontaneous

=
Buw

a
=

Γ ⟨nw⟩
Γ

. (6.15)

Ignoring the ΓstnN1 transitions, the atomic population is

dN2

dt
= NR − N2Γsp − N2Γst ⟨n⟩ . (6.16)

and the photon population is

d⟨n⟩
dt

= ΓstN2( 1

spontaneous emission into cavity

+ ⟨n⟩

stimulated emission

) − Γcav ⟨n⟩

out coupling

. (6.17)
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Figure 6.6: Probability distribution.

For an exact treatment we really have a distribution like fig. 6.6.

⟨n⟩ = ∑
n

nPn. (6.18a)

d⟨n⟩
dt

= ∑
n

n
dPn

dt
. (6.18b)

We aren’t equipped to do this (covered in PHY2204), however, for
the steady state solution, setting dN2/dt = 0 we have for the atomic
population

N2 =
NR

Γsp + Γst ⟨n⟩
. (6.19)

NR
Γsp + Γst ⟨n⟩

Γst(1 + ⟨n⟩) − Γcav ⟨n⟩ = 0. (6.20)

Plugging into the steady state (d ⟨n⟩ /dt = 0) photon population
equation of eq. (6.17) we have

0 = Γst
NR

Γsp + Γst ⟨n⟩
(1 + ⟨n⟩) − Γcav ⟨n⟩ , (6.21)

or

0 = ΓstNR(1 + ⟨n⟩) − Γcav ⟨n⟩ (Γsp + Γst) ⟨n⟩
= − ⟨n⟩2 ΓstΓcav + ⟨n⟩

(
−ΓcavΓsp + NRΓst

)
+ NRΓst,

(6.22)
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which after normalization is

⟨n⟩2 −
(

NRΓst

ΓspΓcav
− 1
)

Γsp

Γst
⟨n⟩ − NR

Γcav
= 0. (6.23)

This can be written in a nicer way

⟨n⟩2 − (C − 1)ns ⟨n⟩ − Cns = 0. (6.24a)

C ≡ NRΓst

ΓspΓcav
. (6.24b)

ns ≡
Γsp

Γst
∼ 107. (6.24c)

Here ns is called the saturation photon number, and C is called
the cooperation parameter, a non-dimensional pump rate. R was
the controllable quantity, the voltage of some such knob that we
can vary. The rest are fixed.

Our quadratic equation (taking the positive root to avoid non-
physical negative photon numbers)

⟨n⟩ =
1
2

(C − 1)ns +
1
2

√
(C − 1)2n2

s + 4Cns

≈ 1
2

(C − 1)ns +
1
2
|C − 1|ns

(
1 +

2C
(C − 1)2ns

+ · · ·
)

=

{
(C − 1)ns if C > 1

C
1−C if C < 1

(6.25)

Our steady state solution is then

N2 =
NR

Γsp + Γst ⟨n⟩
=

C
1 + ⟨n⟩ /ns

. (6.26)

That’s how a laser works, at least from a population point of view.

6.3 gaussian modes .

READING: §6.4 - §6.10 [16]. Also Van Driel notes from previous
years lectures.
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We’ll start thinking about transverse modes in a cavity. Our
starting point is Maxwell’s equations

∇× H = ϵ
∂E
∂t

. (6.27a)

∇× E = −µ
∂H
∂t

. (6.27b)

∇ · (ϵE) = 0. (6.27c)

∇ · B = 0. (6.27d)

We won’t actually need the B divergence equation, and will be
looking for a wave equation where ϵ(r) varies “slowly”.

Reminder

n2 =
ϵ

ϵ0
. (6.28a)

v =
c
n

=
1√
ϵµ

. (6.28b)

k = ω
√

ϵµ =
ωn
c

. (6.28c)

This last comes from equating

kx − ωt = k(x − vt) = k
(

x − v
c

ct
)

= k
(

x − c
n

t
)

. (6.29)

so that we have ω = kc/n.
Recall the identity for curl of curl eq. (G.2)

∇× (∇× A) = ∇(∇ · A) −∇2A. (6.30)

and take curls of both sides of the E curl eq. (6.27b)

∇(∇ · E) −∇2E = −∇×
(

µ
∂H
∂t

)
= −(∇µ) × ∂H

∂t
− µ∇× ∂H

∂t

= −(∇µ) × ∂H
∂t

− µ
∂

∂t

(
ϵ

∂E
∂t

)
,

(6.31)
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or

∇2E − µϵ
∂2E
∂t2 = (∇µ) × ∂H

∂t
+ ∇( ∇ · E

∇ · (ϵE) = ϵ∇ · E + (∇ϵ) · E

)

= (∇µ) × ∂H
∂t

+ ∇
(
−1

ϵ
(∇ϵ) · E

)
.

(6.32)

So if we assume that µ ∼ 1 (or doesn’t vary much from that), we
have

∇2E − µϵ(r)
∂2E
∂t2 = −∇

(
1
ϵ

E ·∇ϵ

)Neglect this if ϵ varies slowly compared to λ

. (6.33)

We suppose that the time dependence of the electric field is monochro-
matic, so that

E(r, t) = E(r)e−iωt. (6.34)

our second time partial is

∂2

∂t2 E(r, t) = −E(r)ω2e−iωt

= −E(r)
k2

ϵµ
e−iωt

= −E(r)k2e−iωt.

(6.35)

Provided we have∣∣∣∣∇(
1
ϵ

E ·∇ϵ

)∣∣∣∣≪ k2E, (6.36)

Our wave equation reduces to

∇2E(r) + k2(r)E(r) = 0. (6.37)

Choose ϵ(r) such that with k0 = ω/c, we have

k2(r) = k2
0 − k0k2r2. (6.38)

Perhaps this medium looks like fig. 6.7. Let’s look for solutions
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Figure 6.7: Possible ϵ dependence in medium.

of the form

E = E0 u(r, θ, z)

Slowly varying (complex) envelope

eik0z, (6.39)

where E0 is a vector with a chosen polarity.
We can now work with a scalar amplitude

Ψ(r, θ, z) = ueik0z. (6.40)

Recall that our Laplacian in cylindrical coordinates is

∇2 =
∂2

∂r2 +
1
r

∂

∂r

∇2
T

+
1
r2

∂2

∂θ2 +
∂2

∂z2 . (6.41)

We’ll look for cylindrical symmetric solutions so that we can ig-
nore the θ dependence in the Laplacian.

∂2

∂z2 ueik0z =
∂

∂z

(
∂u
∂z

eik0z + ik0ueik0z
)

=
∂2u
∂z2 eik0z + ik0

∂u
∂z

eik0z + ik0
∂u
∂z

eik0z − k2
0ueik0z

=
(

∂2u
∂z2 + 2ik0

∂u
∂z

− k2
0u
)

eik0z.

(6.42)

Noting that

∇2
Tueik0z =

(
∇2

Tu
)

eik0z, (6.43)
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we can assemble (dropping exponentials)

0 =
∂2u
∂z2 + 2ik0

∂u
∂z

+ ∇2
Tu −�

�k2
0u + (��k

2
0 − k0k2r2)u. (6.44)

This is the paraxial wave equation

∂2u
∂z2 + 2ik0

∂u
∂z

+ ∇2
Tu − k0k2r2u = 0 (6.45)

If ∣∣∣∣∂2u
∂z2

∣∣∣∣≪ k0

∣∣∣∣∂u
∂z

∣∣∣∣, (6.46)

so that u is slowing varying on the wavelength scale, then we can
neglect the first term

2ik0
∂u
∂z

+ ∇2
Tu − k0k2r2u = 0 (6.47)

Also note that we didn’t need to use cylindrical coordinates
here, and could have grouped the transverse Laplacian as just

∇2
T =

∂2

∂x2 +
∂2

∂y2 . (6.48)

Let’s rewrite this in a slightly different order

∇2
Tu − k0k2r2u = −2ik0

∂u
∂z

(6.49)

Observe that this has the same form as the 2D Schrödinger equa-
tion

Ĥ =
1

2m
p̂2 +

1
2

mω2(x̂2 + ŷ2), (6.50)

or in a position basis

Ĥ → − h̄2

2m

(
∂2

∂x2 +
∂2

∂y2

)∇2
T

+
1
2

mω2 (x2 + y2)

r2

= i h̄
∂

∂t
,

(6.51)
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or

− h̄2

2m
∇2

TΨ +
1
2

mω2r2Ψ = i h̄
∂Ψ
∂t

. (6.52)

∇2
TΨ − m2ω2

h̄2 r2Ψ = −2mi
h̄

∂Ψ
∂t

. (6.53)

We can think of the equivalence in the following form

m2ω2

h̄2 ↔ k0k2. (6.54a)

m
h̄

∂

∂t
↔ k0

∂

∂z
. (6.54b)

as illustrated in fig. 6.8. Recall that the first few 1D Quantum SHO

Figure 6.8: Radiation and matter wave equivalence.

are

ψ0(x) =
(mω

π h̄

)1/4
e−

mωx2
2 h̄ . (6.55a)

ψ1(x) =
1
2

(mω

π h̄

)1/4
e−

mωx2
2 h̄ 2

√
mω

h̄
x. (6.55b)

ψ2(x) =
1
8

(mω

π h̄

)1/4
e−

mωx2
2 h̄

(
4
(√

mω

h̄
x
)2

− 2

)
. (6.55c)

Which look like fig. 6.9, fig. 6.10, and fig. 6.11 respectively.
In 2D our solutions look like fig. 6.12.
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Figure 6.9: First order 1D SHO matter wave.
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Figure 6.10: Second order 1D SHO matter wave.
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Figure 6.11: Third order 1D SHO matter wave.
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Figure 6.12: 2D SHO solutions.

Formal mapping We have an equivalence

z → h̄k0

meff
t. (6.56)

We’ve seen quantities like h̄k/m in QM, as velocities. A specific
example is the Gaussian with momentum space representation
peaked around k0 with variation ∆k, or

f (k) ∼ exp
(
− (k − k0)2

4(∆k)2

)
. (6.57)

In §4.4 [3] it is shown that the time evolution of the particle prob-
ability with this momentum space distribution has the form

|Ψ(x, t)|2 ∼ exp

− x2

2
(

(∆x)2 + h̄2(∆k)2 t2

m2

)
 . (6.58)

The particle spreads with speed h̄∆k/m.

meff =
h̄ω

c2 . (6.59)

meffc2 = h̄ω. (6.60)
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This is a dispersion relation fig. 6.13.

E = h̄ω

= h̄c
√

k2
x + k2

y + k2
z

≈ constant +
1
2

h̄ck2
x

k

=
h̄2k2

x
2meff

,

(6.61)

Figure 6.13: Dispersive electric field.

kz ≫ kx, ky. (6.62)

6.4 qm vs . spatial light equations .

That last subsection of class notes wasn’t entirely clear to me. Let’s
see if we can make more sense of things by comparing the Har-
monic oscillator equation with this spatial light wave equation.

Classical SHO The classical SHO equation, in Hamiltonian form
was

H =
1

2m
p2 +

1
2

mω2x2, (6.63)

where the Hamiltonian equations are found from the canonical
transformation H = pẋ −L, or

∂H
∂p

= ẋ =
p
m

. (6.64a)
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∂H
∂x

= − ṗ = mω2x. (6.64b)

That is

(mẋ)′ = −mω2x, (6.65)

or

ẍ = −ω2x, (6.66)

with solutions

x ∝ e±iωt. (6.67)

Here ω =
√

k/m, where k is the spring constant, and m is the
mass characterizes the vibrations of the system. This makes me
wonder, what is this characteristic angular velocity, for the SHO
Schrödinger like form of the paraxial wave equation? Will we have
something equivalent to the mass or spring constant in terms of
our constants k0, k2?

QM SHO The QM form of the SHO was mentioned above in
class. Let’s put this in a non-dimensional form for comparison to
the paraxial wave equation. After observing that[mω

h̄

]
=

1
L2 , (6.68)

we can non-dimensionalize the QM SHO eq. (6.52) as

h̄
mω

∇2
TΨ − mω

h̄
r2Ψ = −2i

ω

∂Ψ
∂t

. (6.69)

In non-dimensionalized form, with Ψ = U(r)T(t) our separation of
variables takes the form

1
U

(
h̄

mω
∇2

TU − mω

h̄
r2U

)
= −2i

ω

T′

T
= −2

E
h̄ω

. (6.70)

If we write our respective non-dimensionalized time and energy
and radial distances as

τ =
ω

c
(ct). (6.71a)
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ϵ =
E

h̄ω
. (6.71b)

ξ = r
√

mω

h̄
. (6.71c)

Our SHO now has just the spatial dependence

0 =
(

∂2

∂ξ2 +
1
ξ

∂

∂ξ
+
(
2ϵ − ξ2))Ψ(ξ)e−iϵτ . (6.72)

Note that the separation of variables constant was specifically cho-
sen so that we have the conventional time evolution

e−iϵτ = e−i E
h̄ t. (6.73)

Spatial SHO for light in media Now let’s non-dimensionalize the
paraxial equation. Observing that[√

k0k2

]
=

1
L2 . (6.74a)

[k0] =
1
L

, (6.74b)

we can put the paraxial equation eq. (6.49) in non-dimensionalized
form

1√
k0k2

∇2
Tu −

√
k0k2r2u = −2i

√
k0

k2

∂u
∂z

= −2ϵ, (6.75)

and introduce

τ =

√
k2

k0
z. (6.76a)

ξ = r (k0k2)
1/4 . (6.76b)
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The paraxial light SHO now has just the transverse spatial depen-
dence

0 =
(

∂2

∂ξ2 +
1
ξ

∂

∂ξ
+
(
2ϵ − ξ2)) u(ξ)e−iϵτ , (6.77)

exactly like our non-dimensionalized QM SHO eq. (6.72). Instead
of time evolution of the form e−i(ϵ/ω)(ω/c)(ct) we now have non-
transverse z evolution in the form e−i(ϵ/

√
k2/k0)

√
k2/k0z.

From this we see that we can make the identifications

ωeff

c
≡
√

k2

k0
. (6.78a)

meff ≡
h̄k0

c
, (6.78b)

teff ≡
z
c

. (6.78c)

We see that our effective “spring constant” is c h̄k2, and our parax-
ial equation is put into exact correspondence with the QM SHO

− h̄2

2meff
∇2

Tu +
1
2

meff (ωeff)
2 r2u = i h̄

∂u
∂teff

. (6.79)

We can also write express our media’s spatial dependence in terms
of this effective angular velocity

k2(r) = k2
0

(
1 − (ωeff)

2 r2
)

. (6.80)

6.5 solving the homogeneous paraxial wave equation.

We are going to start with the paraxial wave equation for a quadratic
index profile

∇2
Tu + 2ik

∂u
∂z

− k0k2r2u = 0, (6.81)
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as derived from the Helmholtz equation, assuming a wave func-
tion of the form

Ψ = Ψ0u(x, y, z)eik0z. (6.82)

We now want to try to find approximate solutions for u. We’ll
ignore the fact that we know the solutions from QM, but use that
knowledge try to pick a Gaussian as a trial function

u = exp
(

ip(z) + i
k0r2

2q(z)

)
. (6.83)

This is a strange choice for a trial function, seemingly motivated
by trying it at least once and then picking more tractable functions
for the exponential argument. Perhaps try later without knowing
the answer and see what motivates this strange selection.

With only z dependence in the functions q = q(z), p = p(z), we
apply the operator equation to find

0 = ∇2
Tu − k0k2r2u + 2ik0

∂u
∂z

=
(

∂

∂r
+

1
r

)
ik0r

q
u − k0k2r2u + 2ik0

(
ip′ − ik0r2

2q2 q′
)

u

= u
(

ik0

q
− k2

0r2

q2 +
ik0

q
− k0k2r2 + 2ik0

(
ip′ − ik0r2

2q2 q′
))

= ur2k2
0

(
− 1

q2 − k2

k0
+

1
q2 q′

)
+ 2k0u

(
i
q
− p′

)
.

(6.84)

Requiring equality for r = 0 gives us

dp
dz

=
i
q

. (6.85)

Now killing off the k2 term (to be revisited in a subsequent lec-
ture), we have

0 =
1
q2 − 1

q2 q′ +
�
�
�k2

k0

=
1
q2 (1 − q′).

(6.86)

so that

q = z + constant ≡ z + q0 ≡ z − iz0. (6.87)
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Integrating for p(z) we have

p = i
∫ dz

z + q0

= i ln
(

z + q0

q0

)
+ p(0),

(6.88)

so that

eip(z) = eip(0) q0

z + q0

= eip(0) z0

iq
.

(6.89)

Since p(0) contributes only a constant phase term (that can be
incorporated into our multiplicative constant phasor E0), we can
set p(0) = 1. This gives us

u(r, z) =
z0

iq
exp

(
i

k0r2

2q(z)

)
. (6.90)

At z = 0 we have

u(r, 0) = exp
(
− k0r2

2z0

)
= exp

(
−πr2

λz0

)
≡ exp

(
− r2

ω2
0

)
.

(6.91)

We call w0 the “waist” or the beam waist, equivalently defining q0

and z0 in terms of the beam waist

q0 = −i
w2

0k0

2
= −iπ

w2
0

λ
= −iz0. (6.92)

Inverting this last for z0 gives

z0 =
πw2

0
λ

, (6.93)

which is called the Raleigh range.
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Real value normalization We’ve got a bit of a mess of mixed up
real and imaginary parts here. We can write this out instead as

u =
w0

w(z)
exp

(
− r2

w2(z)
+ i

k0r2

2R(z)
− iϕ(z)

)
(6.94)

where

ϕ(z) = atan
(

z
z0

)
. (6.95)

w2(z) = w2
0

(
1 +

z2

z2
0

)
. (6.96)

The quantity w(z) is called the beam radius.

1
R(z)

=
z

z2 + z2
0

. (6.97)

The quantity 1/R(z) is the phase curvature. Let’s verify that this is
correct. Starting with the multiplicative term we have

z0

iq(z)
=

z0

i(z − iz0)

=
z0

iz + z0

=
1

1 + iz/z0

=
1√

1 + (z/z0)2
e−i atan(z/z0)

=
w0

w(z)
e−iϕ(z).

(6.98)

Now for the rest

e
ik0r2

2(z−iz0) = eir2 k0
z0

1
2(z/z0−i)

= e
ir2 k0

z0

z/z0+i
2((z/z0)2+1)

= e
−r2 k0

z0
1

2((z/z0)2+1) e
ir2 k0

z0

z/z0
2((z/z0)2+1)

= e
−r2 1

ω2
1

(z/z0)2+1 e
ir2 k0

2
z

z2+z2
0

= e−
k0r2

ω2(z) ei r2
2R(z) .

(6.99)

This demonstrates the claimed identity eq. (6.94).
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Plotting the envelope The real portion of the exponential deter-
mines the envelope. It’s pointed out in the handouts that the con-
stant surfaces

−k0
r2

w2
0

(
1 + z2

z2
0

) = −k0C2 = constant, (6.100)

or

x2

w2
0C2

+
y2

w2
0C2

− z2

z2
0

= 1. (6.101)

With u = x/w0C, v = y/w0C, w = z/z0, this is plotted in fig. 6.14.
Playing around with this a bit gaussianBeamHandoutNotes.nb
shows that increasing w0 reduces the pinch off in the center, and
increasing z0 narrows the beam.

Figure 6.14: Gaussian beam envelope.

Some observations For z ≫ z0, R → z, w(z) → w0z
z0

. We see that

ueik0z → z0

z
exp

(
ik0z − r2

w2 + i
k0

2z
r2
)

. (6.102)

Compare to wave emitted by a point source as in fig. 6.15.

Ψ ∼ 1
R

eikR. (6.103)

but

R2 = z2 + r2. (6.104)
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Figure 6.15: Point source.

Taylor expanding to first order

R ≈ z +
1
2z

r2. (6.105)

we’ve got

Ψ ∼ 1
z

exp
(

ikz + ik
r2

2z

)
. (6.106)

So if we are looking at a point source slightly off axis, we have
what looks like a Gaussian beam.

It looks like the Gaussian beam has an additional damping fac-
tor (with radius) that the point source does not.

Waist angular dependence Waist angular dependence is roughly
illustrated in fig. 6.16. With

Figure 6.16: Waist angular dependence.
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w(z) = w0

√
1 +

z2

z2
0

≈ w0

z0
z

= Θdivz.

(6.107)

Using eq. (6.93) we can write this as

Θdiv =
w0

πw2
0

λ

=
1

πw0
λ.

(6.108)

6.6 guoy phase shifts , higher order modes .

Review We’d found for the first order Gaussian beam

u00 =
w0

w(z)
exp

(
− r2

w2(z)
+

ik0r2

R(z)
− iϕ(z)

)
. (6.109)

w2(z) = w2
0

(
1 +

z2

z2
0

)
. (6.110)

z0 =
πw2

0
λ

. (6.111)

1
R(z)

=
z

z2 + z2
0

. (6.112)

ϕ(z) = atan
(

z
z0

)
. (6.113)

Our complete wave was

Ψ(x, y, z) = Ψ0u(x, y, z)eik0z−iωt. (6.114)

In particular, along the z-axis, where ϕ(0) = 0 and r2 = 0, we have

Ψ(0, 0, z) = Ψ0
w0

w(z)
eik0z−iωt. (6.115)
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Guoy phase shift Guoy’s work was circa 1890. Was that experi-
mental or theoretical work? Some references can be found in [15].

Let’s consider the phase velocity at z ≪ z0.
We want to consider the constant curves

−iϕ(z) + ik0z − iωt = iconstant. (6.116)

See [13] for a quick and nicely written reminder of why we are
looking at constant phase fronts.

Taking time derivatives of ϕ, using chain rule and eq. (6.186),
we have

dϕ

dt
=

dz
dt

dϕ

dz
=

dz
dt

z0

z2 + z2
0

. (6.117)

The time derivative of eq. (6.116) is then

−i
dz
dt

z0

z2 + z2
0

+ ik0
dz
dt

− iω = 0. (6.118)

Solve for the phase velocity Vph = dz/dt, we find

dz
dt

= Vph =
ω

keff

keff = k0 −
z0

z2 + z2
0

(6.119)

We can write this as

keff

k0
= 1 − 2

k2
0ω2

0

1
1 + (z/z0)2 , (6.120)

We have keff > 0 provided (z/z0)2 > 2/(k0ω0)2 − 1. We have keff
take its maximum of k0 as z → ∞, and takes its minimum value
at z = 0 of

keff = k0 −
2

k0ω2
0

. (6.121)

We plot keff/k0 as a function of z/z0 with 2/(k0ω2
0) = 1/10 in

fig. 6.17. Since keff < k0 for all z we have Vph > ω/k0, or

Vph > c. (6.122)

Our phase velocity always exceeds the speed of light.
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Figure 6.17: Effective Phase velocity.

Cavity

• Mode to be a solution of cavity. Mirror “undoes” propaga-
tion.

• Round trip phase shift is 2π(integer) for resonance.

fig. 6.18.

Figure 6.18: Gaussian mode confined in cavity by a set of mirrors.

Higher order modes

ulm(x, y, z)

∼ w0

w(z)
exp

(
− r2

w2(z)
+

ik0r2

R(z)
− i(m + l + 1)ϕ(z)

)
×

Hl

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
.

(6.123)
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H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 1

(6.124)

Now get

keff = k0 − (m + l + 1)
z0

z2 + z2
0

. (6.125)

Beam parameter We want to look at how the Gaussian beam in-
teracts with mirrors, as in fig. 6.19, to get an idea of how the beam
will behave in a cavity (without starting over at the Helmholtz
equation). Bringing back in our q notation It turns out that we can

Figure 6.19: Gaussian modes confined to mirror cavity.

consider an equivalent system of mirrors in series as in fig. 6.20.

Figure 6.20: Equivalent to mirror cavity.

1
q(z)

=
1

R(z)
+ i

λ

πw2(z)
. (6.126)

where Re 1
q(z) gives curvature, and Im 1

q(z) gives beam radius.
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Now

ulm =
clm

w(z)
Hl Hme

ik0r2

2q e−i(l+m+1)ϕ. (6.127)

u00 =
w0

w(z)
e

ik0r2

2q e−iϕ. (6.128)

Found in uniform medium

q(z) = z − iz0. (6.129)

Know that if q1 at some position z1 then at z2

q2 = q1 + (z2 − z1). (6.130)

Möbius Transform

q′ =
Aq + B
Cq + D

. (6.131)

where coefficients same as we used in geometric optics
i.e. A, B, C, D transformation, such as that of a lens:

M =

[
1 0

− 1
f 1

]
(6.132)

(A = 1, B = 0, C = −1/ f , D = 1).
This happens to be (not to be proven) that this is exactly how a

Gaussian lens behaves when it encounters a lens/mirror/...
For a lens interaction we have

q′ =
(1)q + (0)

(−1/ f )q + (1)
=

1
− 1

f + 1
q

. (6.133)

Example 6.1: Check for free propagation

M =

[
1 L

0 1

]
(6.134)

q′ =
(1)q + (L)
(0)q + (1)

= q + L. (6.135)
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which is what we know from eq. (6.130).

Example 6.2: With lens transfer matrix

For the lens transformation of eq. (6.133) we have

1
q′

=
1
q
− 1

f
. (6.136)

so that

u = e
ik0r2

2q → ue−
ik0r2

2 f . (6.137)

Structure of Möbius transformation for rays The Van Driel notes
make a nice observation about the relation between the Möbius
transformation and the matrix transformation. For[

y′

α′

]
=

[
A B

C D

] [
y

α

]
(6.138)

We can relate y′/α′ and y/α as follows

y′ = Ay + Bα. (6.139a)

α′ = Cy + Dα. (6.139b)

So that

y′

α′ =
Ay + Bα

Cy + Dα
. (6.140)

This takes some of the mystery about the equivalence out of the
picture since we see the structure of the Möbius transformation in
this ratio, even for plain old rays. It would still be nice to see a
proof of exactly how that applies to the Gaussian beams.
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Cavity stability See: slides.
The criteria is

0 < g1g2 < 1. (6.141)

where we introduce dimensionless quantities

g1,2 = 1 − L
R1,2

. (6.142)

6.7 spectral line width (coherence time) of laser .

READING: [7] Appendix C. The spectral linewidth (or coherence
time) of a laser is called the Schawlow-Townes limit.

Laser depicted in fig. 6.21.

Figure 6.21: Laser cavity.

rate of emission into laser mode = Γst( 1

spontaneous

+ ⟨n⟩

stimulated

)N2. (6.143)

Reminder:

τc = coherence time. (6.144)

Γst =
1
τc

= line width. (6.145)
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cτc = lc = longitudinal coherence length. (6.146)

Phase of a laser, if monochromatic as in fig. 6.22. goes like

Figure 6.22: Field associated with ground state.

Ψ ∼ e−iω0t. (6.147)

If not monochromatic fig. 6.23, define

Figure 6.23: Random walk in phase.

EL = ELeiϕ(t). (6.148)

(underscore L stands for laser).

Ψ = ELe−iωt × spatial mode. (6.149)

Random relative phase θ. Two components of E sp

1. Parallel to EL changes amplitude, taken out by steady state
operation of laser.
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2. perpendicular: changes ϕ by δϕ.

Considering the average process we have random phase changes,
with no effective change in magnitude, or

E ′
L ∼ ELeiδϕ. (6.150)

This is a random walk fig. 6.24 in phase! Average step:

Figure 6.24: Angle is a random variable.

⟨δϕ⟩ =
Esp

EL
⟨cos ϕ⟩

= 0

. (6.151)

However, the RMS deviation

σϕ =
√
⟨(δϕ)2⟩ − ⟨δϕ⟩2

=

√√√√√√√E2
sp

E2
L

〈
cosθ

〉1/2

− 0

=
Esp√
2EL

.

(6.152)

After N events

σϕ =
Esp√
2EL

√
N. (6.153)

The number of spontaneous events is given by the emission rate
of the laser mode, and is

number of spontaneous events = TΓstN2. (6.154)
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Also

⟨n⟩ =
E2

L
E2

sp
. (6.155)

After time T = τc, σϕ = 1, or

Esp√
2EL

√
τcΓstN2 = 1. (6.156)

Referring to fig. 6.25 we have

Figure 6.25: Change in field due to spontaneous emission.

Esp

EL
=

1√
⟨n⟩

. (6.157)

or

1√
2
√
⟨n⟩

√
τcΓstN2 = 1, (6.158)

so

τc =
(

N2Γst

2 ⟨n⟩

)−1

. (6.159)

Γst =
1
τc

=
N2Γst

2 ⟨n⟩ . (6.160)

Energy balance

N2 =
Γcav

Γst
. (6.161)
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so

τc =
(

Γcav

2 ⟨n⟩

)−1

. (6.162a)

Γst =
1
τc

=
Γcav

2 ⟨n⟩ . (6.162b)

With power output

P = h̄ω ⟨n⟩ Γcav. (6.163)

Γst =
Γcav h̄ω

P
. (6.164)

Γcav = (Trans)
c

2L
. (6.165)

where L is the cavity length.

Example 6.3: Some numbers

P ∼ 1mW

L ∼ 1m

T ∼ 2%

λ ∼ 500nm

⟨n⟩ = 8 × 108

Γst = 4 × 10−3s−1

(6.166)

or about 1mHz.

Example 6.4: Some numbers for Diode laser

L ∼ 300µm

T ∼ 10%
(6.167)
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6.8 number of photons per free space mode .

Laser is fundamentally characterized by a large number of pho-
tons per free space mode. Possible because photons are bosons!
Laser light has temporal and spatial coherence.

Review: in a cavity

• Laser light: ⟨n⟩ ∼ 107 − 108 above threshold fig. 6.26.

• Thermal light: ⟨n⟩ = 1
e h̄ω/kBT−1

.

Example 6.5: Some numbers

⟨n⟩ ∼ 1. (6.168)

h̄ω ∼ kBT ln 2. (6.169)

300K : λ > 70µm. (6.170)

5000K : λ > 4µm. (6.171)

3D Free space mode. Consider “elementary pencil” of light as in
fig. 6.27, chosen to be diffraction limited. Here

(∆x∆kx)min ∼ 1 (6.172)

(∆y∆ky)min ∼ 1 (6.173)
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Figure 6.26: Threshold.

Figure 6.27: Pencil of light.

Figure 6.28: Pulse train.
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where 1 here means a constant of order 1.
Along 2: consider pulse train as in fig. 6.28. where ∆z = cτ0

Ψ(t) =

{
e−iω0t t ∈ [−τ0/2, τ0/2]

0 otherwise
(6.174)

What is ∆kz? Making a paraxial approximation

∆kz ≈ ∆k =
∆ω

c
. (6.175)

We can compute the Fourier transform as depicted in fig. 6.29.

Figure 6.29: Fourier transform of pulse train.

g(ω) =
∫

eiωtΨ(t)dt = z
sin ((ω − ω0)τ0/2)

ω − ω0
. (6.176)

So

∆z∆kz = (cτ0)

(
2π

cτ0

)
= 2π. (6.177)

Now consider source that has width Γ. Imagine emission of pulses
of length τ0 = 2π/Γ fig. 6.30.

Laser light :

number of photons
free space mode

=
P/ h̄ω

Γlaser
∼ Γcav ⟨n⟩

Γcav/⟨n⟩
∼ ⟨n⟩2 . (6.178)

Justifying this last operation fig. 6.31.
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Figure 6.30: Overlapping pulses.

Figure 6.31: Why this division?

6.9 problems .

Exercise 6.1 arctan derivative.

Calculate

d
dx

atan(x). (6.179)

Answer for Exercise 6.1

with

f (x) = atan(x), (6.180)

We have

tan f = x. (6.181)

Taking derivatives

f ′

cos2( f )
= 1, (6.182)
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or

f ′ = cos2( f ). (6.183)

We’ve also got

x2 = tan2 f =
1 − cos2 f

cos2 f
. (6.184)

or

f ′ = cos2 f =
1

1 + x2 . (6.185)

Our ϕ(z) derivative then follows

d
dz

atan(z/z0) =
d

du
atan(u)

∣∣∣∣
u=z/z0

d(z/z0)
dz

=
1

1 + (z/z0)2
1
z0

=
z0

z2
0 + z2

.

(6.186)

Exercise 6.2 Derive expression for 1/q.

We have an expression for 1/q in terms of the radius of curva-
ture and waist functions in the handouts. Derive this.
Answer for Exercise 6.2

1
q

=
1

z − iz0

=
z + iz0

z2 + z2
0

=
1
R

+
i

z0(1 + z2/z2
0)

=
1
R

+
iw2

0
z0w2(z)

=
1
R

+
iλz0

z0πw2(z)
.

(6.187)

or

1
q

=
1
R

+
iλ

πw2(z)
. (6.188)
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Exercise 6.3 Paraxial wave equation, Fresnel form.

In some supplementary class notes, it is stated that

h(x, y, z) =
1
z

eikzeik(x2+y2)/2z. (6.189)

is an exact solution to the paraxial wave equation

∇2
Tu + 2ik

∂u
∂z

= 0. (6.190)

From our lectures, this doesn’t seem possible, since we found that
this Fresnel like function was an approximation to the u00 function
for large z. Calculate this directly and verify this suspicion.

Answer for Exercise 6.3

Let’s first apply the ∂xx portion of the transverse Laplacian. We
find

∂2h
∂x2 =

∂

∂x
∂

∂x

(
1
z

eikzeik(x2+y2)/2z
)

=
1
z

eikzeiky2/2z ∂

∂x
∂

∂x

(
eikx2/2z

)
=

1
z

eikzeiky2/2z ∂

∂x

(
ikx
z

eikx2/2z
)

=
1
z

eikzeiky2/2z
(

ik
z
− k2x2

z2

)
eikx2/2z

=
(

ik
z
− k2x2

z2

)
h.

(6.191)

This gives us, for r2 = x2 + y2

∇2
Th =

(
2ik
z

− k2r2

z2

)
h. (6.192)

For the first partial with respect to z we find

∂h
∂z

= − 1
z2 eikzeikr2/2z +

1
z

(
ik − ikr2

2z2

)
eikzeikr2/2z

=
(
−1

z
+ ik − ikr2

2z2

)
h.

(6.193)
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Putting things together we have(
∇2

T + 2ik
∂

∂z

)
h =

(
�
�
�2ik

z
−

�
�
�k2r2

z2 + 2ik

(
�
��−1
z

+ ik −
�
�
�ikr2

2z2

))
h

= −2k2h ̸= 0.

(6.194)

However, since h → 0 as z → ∞, this does at least give zero in the
far z limit.

Exercise 6.4 Gaussian beam and lens. (2012 Ps4, P1)

f ℓ

2w01

Figure 6.32: Gaussian beam.

Consider a Gaussian beam whose waist is w01 and placed at a
lens of focal length f . This lens makes a focus some distance ℓ

away.

a. Find the distance Find the distance ℓ, in terms of w01, f ,
and λ. In what limit does the lens create a focus at ℓ = f ,
as geometric optics would have predicted? Interpret this
physically.

b. new beam waist Find the new beam waist w03. In the same
limit where ℓ ≈ f , show that the waist is w03 ≈ λ f /πw01.

Answer for Exercise 6.4

Part a. The effective focal distance Following the argument in [16].
The geometry of the waist is determined from the imaginary

portion of the exponential argument. We need to find break down
q′′ into real (the transformed radius of curvature) and imaginary
parts, as in

1
q′′

=
1

R′′ +
iλ

π (w′′(z))2 =
1

q′ + l
. (6.195)
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We saw in part b (done in opposite order) that we had

q′ =
q f

f − q
. (6.196)

Picking a fixed value of z (say z = 0), that is

q′ =
−iz0 f

f − (−iz0)
=

−iz0 f
f + iz0

, (6.197)

so that our (inverse) post propagation transformation of q is

1
q′′

=
1

−iz0 f
f +iz0

+ l

f + iz0

−iz0 f + l( f + iz0)

=
f + iz0

iz0(l − f ) + l f

=
( f + iz0)(−iz0(l − f ) + l f )

z2
0(l − f )2 + l2 f 2

=
l f 2 + z2

0(l − f )
z2

0(l − f )2 + l2 f 2
+ iz0

l f − l + f
z2

0(l − f )2 + l2 f 2
.

(6.198)

If we consider this far enough away that the beam is planar, with
an infinite radius of curvature, then we require the numerator of
the 1/R′′ expression above to be zero. That is

l( f 2 + z2
0) = z2

0 f , (6.199)

or

l =
f

1 + f 2

z2
0

. (6.200)

with z0 = πw2
0/λ this is

l =
f

1 + f 2λ2

(πw2
01)

2

. (6.201)

We have l ≈ f when

λ ≪ πw2
01

f
. (6.202)
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Observe that when this condition is met, our radius of curvature
is no longer infinite, and we can’t consider the beam to be plane
wave like. That radius of curvature is instead, exactly the focal
length

1
R′′ =

l f 2

l2 f 2 =
1
f

. (6.203)

Grading remarks: -2 . Two remarks here, what was “so?” after
“the focal length” above, and the other was “the ray optics result
is valid for plane waves and therefore for large R!!”

Part b. The waist Observe that the we can write the waist function
as a function of q

w2(z) = w2
0

(
1 +

z2

z2
0

)
=

w2
0

z2
0

(z2
0 + z2)

=
w2

0

z2
0
|q(z)|2.

(6.204)

Also observe that w(0) = w(0), so if we are looking for the beam
waist after a geometric (Möbius) transformation on q, we can find
the new beam waist, looking at the z = 0 value.

After just the lens After transmission through the lens, with ABCD
matrix

M =

[
1 0

−1/ f 1

]
(6.205)

q′ =
q + 0

−q/ f + 1
, (6.206)

or

1
q′

=
−q/ f + 1

q

=
1
q
− 1

f
.

(6.207)
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At z = 0 we have∣∣∣∣ 1
q′

∣∣∣∣2 =
∣∣∣∣ 1
−iz0

− 1
f

∣∣∣∣
=

1
z2

0
+

1
f 2 .

(6.208)

So that

w2(0) → w2
01

z2
0

(
1
z2

0
+

1
f 2

)−1

=
w2

01

z2
0

f 2z2
0

f 2 + z2
0

=
w2

01

1 + z2
0/ f 2

.

(6.209)

We see that the beam waist after transmission through the lens is
reduced by a factor of

w02

w01
=

1√
1 + z2

0/ f 2
. (6.210)

After the lens and the free propagation. With transmission through
the air and the lens, our free propagation matrix is

M2 =

[
1 l

0 1

]
(6.211)

q → q′ + l
0q′ + 1

= q′ + l

=
q

−q/ f + 1
+ l,

(6.212)

so that the waist function is transformed as

w2(z) → w2
01

z2
0

∣∣∣∣ q
−q/ f + 1

+ l
∣∣∣∣2, (6.213)
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and our waist goes as

w2
01 → w2

01

z2
0

∣∣∣∣−iz0 f
iz0 + f

+ l
∣∣∣∣2

=
w2

01

z2
0

∣∣∣∣−iz0 f (−iz0 + f )
z2

0 + f 2
+ l
∣∣∣∣2

=
w2

01

z2
0

∣∣∣∣− z2
0 f

z2
0 + f 2

+ l − iz0 f 2

z2
0 + f 2

∣∣∣∣2.

(6.214)

This gives us

w2
03

w2
01

=

(
z2

0 (l − f ) + f 2l
)2 +

(
f 2z0

)2

z2
0

(
z2

0 + f 2
)2 . (6.215)

Grading note: -2 “I’m confused how can transmission through
air change the waist?” See in the posted solution that the waist
is calculated as the point where Re(1/q) = 0. That choice isn’t
obvious to me. I think some more thought about the geometry of
these solutions is required to really get this.

When l = f the square root simplifies nicely, leaving

w2
03

w2
01

=
f 6 + f 4z2

0

z2
0

(
z2

0 + f 2
)2 =

f 4

z2
0

(
z2

0 + f 2
) , (6.216)

or

w03 =
w01 f 2

z0

√
z2

0 + f 2

=
w01 f

z0

√
z2

0/ f 2 + 1

=
w01 f λ

πw2
01

√
z2

0/ f 2 + 1

=
f λ

πw01

1√
z2

0/ f 2 + 1
.

(6.217)

When f ≫ z0 we have the desired result

w03 ≈ f λ

πw01
(6.218)
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Grading note: The f ≫ z0 was underlined with the question
“where did you get this from?” The solution points out that this is
the Fraunhofer condition and gives some interpretation.

Exercise 6.5 Stability in a cavity. (2012 Ps4, P2)

Using ABCD matrices, derive the condition for stability of a
Gaussian beam in a cavity.

a. Assuming symmetric beams. Follow Fowles §10.5 to find
Eq. (10.32).

b. Stability criterion. Fowles derives the stability criterion
from the eigenvalues. Find the rays that are eigenvectors of
a single-pass ray matrix for the planar case (L/R = 0). Com-
ment on why they are the only reasonable choice.

c. Unequal mirror radii. Allowing for unequal mirror radii,
derive Fowles Eq. (10.33).

Answer for Exercise 6.5

Part a. Assuming symmetric beams Given the Möbius transform
relationship the Gaussian beams, we can first consider the stability
conditions for powers of the transfer matrix itself to not diverge.
This follows [5], filling in some additional details.

The matrix for a single pass of free propagation through dis-
tance d, and then reflection off of a curved mirror with focus f is
the composition

M =

[
1 0

−1/ f 1

] [
1 d

0 1

]
=

[
1 d

−1/ f −d/ f + 1

]
. (6.219)

Each pass of propagation and reflection adds another power of M
to the matrix for which we will base the final Möbius transforma-
tion on. We’ll want to perform a diagonalization to simplify that
matrix exponentiation (computation of Mn, so that if

ME = ED, (6.220)

or

M = EDE−1. (6.221)
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Here D is a diagonal matrix (with the eigenvalues on the diago-
nal), and E is the change of basis matrix to make that similarity
transformation.

We can express the final matrix transformation after n reflec-
tions directly

Mn = EDnE−1. (6.222)

We’ll need the eigenvalues first. Our characteristic equation is

0 = |M − λI|

=

∣∣∣∣∣1 − λ d

−1/ f 1 − d/ f − λ

∣∣∣∣∣
= 1 −�

�d/ f − λ − λ(1 − d/ f − λ) +�
�d/ f

= λ2 − 2λ

(
1 − d

2 f

)
+ 1.

(6.223)

Following Fowles, we write

α = 1 − d
2 f

, (6.224)

So that the characteristic equation is

0 = λ2 − 2λα + 1

= (λ − α)2 + 1 − α2.
(6.225)

Note that this corrects a sign error in the text. Solving for λ we
have

λ± = α ±
√

α2 − 1. (6.226)

Observe that these satisfy our expectation that λ+λ− = 1, so we
can write these as

λ+ = λ (6.227)

λ− = 1/λ, (6.228)

for some value λ. Our ABCD matrix for n sets of propagate-and-
reflect is

Mn = E

[
λn 0

0 1
λn

]
E−1. (6.229)
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If E = [eij] and E−1 = [ fij], then the product takes the value

EDnE−1 = [eikλn
k δkm fmj]

= [eimλn
m fmj]

= [ei1λn f1j + ei2
1

λn f2j],

(6.230)

or

Mn = λn[ei1 f1j] +
1

λn [ei2 f2j]. (6.231)

So, if λ is real and greater than 1, the ABCD matrix will start to
grow without bound.

To consider the bounding behavior of λn, lets follow Fowles,
and separate the eigenvalues into real and complex as follows

λ = α ±
{ √

α2 − 1 if |α| > 1

i
√

1 − α2 if |α| < 1
(6.232)

When |α| = 1, we have a double eigenvalue with value α and may
not be able to find a spanning set of eigenvectors. For the |α| < 1
case, we can introduce ϕ such that cos ϕ = α, allowing us to write

λ± = e±iϕ. (6.233)

What can we say about the real valued eigenvalue case? We know
that from det M = 1 both real valued eigenvalues must have match-
ing signs. We can also see from

λ± = |α|
(

sgn(α) ±
√

1 − 1
α2

)
, (6.234)

that if these are positive, then one of the eigenvalues is greater
than 1, and if negative, at least one is less than −1. If we pick λ as
the eigenvalue for which |λ| > 1, then λn will clearly diverge as n
grows, and we the ABCD matrix of eq. (6.231) becomes unstable.

This can also be expressed in terms of rays. Given a ray with an
eigenvector decomposition

x = ae1 + be2, (6.235)
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where

E = [e1e2], (6.236)

then it follows from eq. (6.231) that

Mnx = aλne1 + b
1

λn e2. (6.237)

Both the position and the angle increase without bound, leading
the ray out of the cavity if |α| > 1.

I’d avoided the “suppose that the ray is an eigenvector” argu-
ment from Fowles initially above because the eigenvectors in the
complex case are also complex, and that didn’t seem physically re-
alistic. It also wasn’t clear to me what λnx was if x was a ray and λ

was complex (i.e. Eq. (10.32) in the text). However, what resolves
this conundrum is the realization that the projection constants a
and b above are also complex in this case. So while, for complex
eigenvectors we won’t ever have a ray that is given exactly by an
eigenvector, we can still form a superposition of the two. The re-
sult, and the transformation of eq. (6.237), is still necessarily real
valued.

The stability criteria Our last task is to express the stability condi-
tion |α| < 1 in terms of d, f and r (the last for the optical resonator
with equal curvature mirrors).

This stability criterion is

|α| =
∣∣∣∣1 − d

2 f

∣∣∣∣ < 1. (6.238)

Let’s consider this in two separate cases.

1. The condition α > 0 can be written

1 − d
2 f

> 0, (6.239)

or

1 >
d

2 f
, (6.240)

or

d < 2 f . (6.241)
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For these positive values of α we have

1 − d
2 f

< 1. (6.242)

or
d

2 f
> 0, (6.243)

which just means that d is positive. This shows that d ∈
(0, 2 f ) results in a stable system.

2. The condition α < 0 can be written

1 − d
2 f

< 0. (6.244)

or

1 <
d

2 f
. (6.245)

or

2 f < d. (6.246)

The stability criteria for such values of d and f is

|α| = −1 +
d

2 f
< 1, (6.247)

or

d < 4 f . (6.248)

This shows that d ∈ (2 f , 4 f ) also results in a stable system.

With both sets of ranges for d mutually exclusive, and the point
d = 2 f also stable (doubled eigenvalue with value 1), we can form
the union of the two, and have a stable system provided

d ∈ (0, 4 f ). (6.249)

This was for a set of lenses set distance d apart. Noting from the
text that “a curved mirror of radius r is optically equivalent to a
lens of focal length f = r/2”, we have for the optical resonator

d ∈ (0, 2r), (6.250)

the desired result.
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Part b. Stability criterion A system with plane mirrors is charac-
terized by f = ∞ or 1/ f = 0. Our ABCD matrix is then just

M =

[
1 0

0 1

] [
1 d

0 1

]
=

[
1 d

0 1

]
. (6.251)

This is a system that has only a single eigenvalue of 1 and is al-
ready in Jordan canonical form, so it cannot be diagonalized any
further. Our eigenvector can be found by inspection

e =

[
1

0

]
, (6.252)

since this clearly satisfies Me = e. Any vector that is a multiple of
this is also an eigenvector for this system

x =

[
y

0

]
. (6.253)

These are the only stable rays, which makes intuitive sense. Only
rays that are parallel to the pair of mirrors will not diverge.

Grading remark: -1 parallel was circled, with “How’s that possi-
ble?”. Look at the posted solutions for how to interpret this.

Part c. Unequal mirror radii We now wish to look at the character-
istic equation for a round trip through the two sets of geometric
elements. That is

M = M2M1

=

[
1 d

−1/ f2 −d/ f2 + 1

] [
1 d

−1/ f1 −d/ f1 + 1

]

=

[
1 d

2(1 − α2) 2α2 − 1

] [
1 d

2(1 − α1) 2α1 − 1

]

=

 1 − d
f1

d
(

2 − d
f1

)
− d

f2
− d

f1
+ d2

f1 f2
− d

f2
+
(

1 − d
f2

) (
1 − d

f1

) ,

(6.254)

or[
2α1 − 1 dα1

2
d (α1 + α2 − 2 + 2(α1 − 1)(α2 − 1)) 2(α2 − 1) + (2α1 − 1) (2α2 − 1)

]
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Direct naive computation of 0 = det(M − λI) is not pleasant, and
gives a big ass messy expression that’s hard to make heads or
tails of. If we consider the 2 dimensional eigenvalue problem more
generally, some simplifications for this problem can be made first.
With

M =

[
A B

C D

]
, (6.255)

our characteristic equation, again the det M = 1 constraint for this
problem where all the propagation is free

0 = (A − λ)(D − λ) − BC

= λ2 − λ(A + D) + AD − BC

= λ2 − λ tr M + 1

=
(

λ − tr M
2

)2

+ 1 −
(

tr M
2

)2

.

(6.256)

This gives us

λ =
tr M

2
±
√(

tr M
2

)2

− 1. (6.257)

Our stability criteria is∣∣∣∣ tr M
2

∣∣∣∣ < 1, (6.258)

or

−1 <
tr M

2
< 1. (6.259)

This inequality can be first shifted by 1 to put it in the [0, 2] range,
then divided through by 2 to put it in the [0, 1] range desired, so
that we have stable beam trajectories when

0 <
tr M + 2

4
< 1. (6.260)

Now lets apply this to our ABCD matrix

tr M + 2
4

=
1
4
(2α1 − 1 + 2(α2 − 1) + (2α1 − 1) (2α2 − 1) + 2)

=
1
4
(2α1 − 1 + 2α2 − 2 + 4α1α2 + 1 − 2α1 − 2α2 + 2)

= α1α2.

(6.261)
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This gives us the desired stability constraint

0 < α1α2 < 1 (6.262)

Relating the ray stability and Gaussian beam stability This question
was posed in terms of Gaussian beams, which transform accord-
ing to the Möbius transformation, whereas we’ve considered only
ray transformations. We can relate the two considering the trans-
formation of the waist at the z = 0 point in the center of the cavity.
Recall that we have

Im
(

1
q

)
= Im

(
1

z − iz0

)
=

z0

z2 + z2
0

.
(6.263)

In particular at z = 0, this is

1
z0

=
λ

πw2(0)
. (6.264)

Now let’s look at the Möbius transformation at the pinch of the
waist (z = 0)

1
q′(0)

=
Cq(0) + D
Aq(0) + B

=
−iCz0 + D
−iAz0 + B

=
(−iCz0 + D)(iAz0 + B)

A2z2
0 + B2

=
(−iCz0 + D)(iAz0 + B)

A2z2
0 + B2

.

(6.265)

From this we have

Im
(

1
q′(0)

)
=

z0(AD − BC)
A2z2

0 + B2

=
z0

A2z2
0 + B2

.
(6.266)

Comparing this to eq. (6.264) we see that our waist at z = 0 trans-
forms as

π(w′(0))2

λ
=

A2z2
0 + B2

z0
. (6.267)
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Both A and B will be linear functions of the eigenvalues, so we see
that in the real eigenvalue case, where the repeated powers of one
of these eigenvalues will necessarily diverge, so will the Gaussian
beam waist.

Exercise 6.6 Symmetric cavity. (2012 Ps4, P3)

Consider the lowest-order mode (u00) of a symmetric cavity
with length L and mirror radius R = R1 = R2. Let’s choose the
mirror radius to match the wavefront curvature of the Gaussian
beam.

a. Beam parameter Find the beam parameter z0 in terms of
L and R. You should find that for the particular case of a
confocal cavity, z0 = L/2 = R/2.

b. Beam waist Find the beam waist for a general cavity, in
terms of L, R, and λ. Do you notice anything strange for
the concentric cavity, R = L/2 ? For the confocal case, you
should find that w2

0 = L/k0.

c. Harmonic frequency in cavity Following the analogy to the
2D harmonic oscillator constructed in class, see if you can
show that a confocal cavity provides an effective harmonic
frequency of ωosc = 2c/L. (Two hints: 1, Look up the form of
the ground state of the harmonic oscillator and compare to our
Gaussian mode at its waist; and 2, You’ll need to use the effective
mass we derived in class, meff = h̄k0/c.)

Answer for Exercise 6.6

Part a. Beam parameter For the right, positive curvature mirror,
we have

1
R(z)

=
z

z2 + z2
0

. (6.268)

With |R1| = |R2| = R, we have a symmetrical setup, so that the z2

of Van Driel’s Eq. (10.3.2) is just L/2. That gives us at the boundary

1
R

=
L/2

(L/2)2 + z2
0

, (6.269)
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which, after rearrangement, is

z2
0 =

RL
2

−
(

L
2

)2

=
L
2

(
R − L

2

)
, (6.270)

or

z0 =

√
L
2

(
R − L

2

)
(6.271)

Definitions and nice illustrations of the different cavity types
can be found in [14]. For the confocal cavity defined by L = R, we
have

z0 =

√
L
2

(
L − L

2

)
=

L
2

, (6.272)

as we are to show.

Part b. Beam waist We defined the Raleigh range in terms of the
waist as

z0 =
πw2

0
λ

, (6.273)

which we can invert as

w2
0 =

λz0

π
=

λ

π

√
L
2

(
R − L

2

)
. (6.274)

For the concentric cavity where R = L/2 we have

z0 =

√
L
2

(
L
2
− L

2

)
= 0, (6.275)

so the waist is also zero there. When we derived the u00 solution
to the Paraxial wave equation we’d required z0 ̸= 0 since we offset
q = z − iz0 to remove the singularity. This suggests that a differ-
ent approach is required for the concentric boundary value con-
straints. Intuitively it’s perhaps not unreasonable to expect that
we’ll have severe pinch off in the center for this configuration (as
we would have for rays).

For the confocal configuration of part a we have

w2
0 =

λL
2π

=
L
k0

, (6.276)

as we were to show.
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Part c. Harmonic frequency in cavity From [1] we find for the
ground state of the 2D harmonic oscillator

E = h̄ω

(
0 + 0 +

2
2

)
= h̄ω. (6.277)

and after normalization and adding in the time dependence we
find for the ground state wave function

Ψ00(r, t) =
√

mω

π h̄
e−

mωr2
2 h̄ −iωt. (6.278)

For the lowest order Gaussian mode at its waist we have for the
envelope of u00

|u00| = e−r2/w2
0 . (6.279)

For the confocal cavity, recalling eq. (6.276), we make the identifi-
cation

1
w2

0
=

k0

L
↔ meffωosc

2 h̄
=

h̄k0ωosc

2 h̄c
. (6.280)

or

ωosc =
2c
L

(6.281)

Exercise 6.7 Möbius vs. matrix transformations. (2012 Ps4, P4)

Using the Möbius transform q′ = (Aq + B)/(Cq + D), show that
transformation using {A1, B1, C1, D1} followed by {A2, B2, C2, D2}
is equivalent to transformation using the elements of the single
matrix M = M2M1, where

M1 =

(
A1 B1

C1 D1

)
and M2 =

(
A2 B2

C2 D2

)
.

Answer for Exercise 6.7
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Proceeding directly with the double application of the Möbius
transform, we have

q′′ =
A2q′ + B2

C2q′ + D2

=
A2

(
A1q+B1
C1q+D1

)
+ B2

C2

(
A1q+B1
C1q+D1

)
+ D2

=
A2(A1q + B1) + B2(C1q + D1)
C2(A1q + B1) + D2(C1q + D1)

=
(A2 A1 + B2C1)q + A2B1 + B2D1

(C2 A1 + D2C1)q + C2B1 + D2D1
.

(6.282)

Now compare to the double matrix product transformation

M = M2M1

=

[
A2 B2

C2 D2

] [
A1 B1

C1 D1

]

=

[
A2A1 + B2C1 A2B1 + B2D1

C2 A1 + D2C1 C2B1 + D2D1

]
.

(6.283)

Writing out the transformation this way we find

q → (A2 A1 + B2C1)q + A2B1 + B2D1

(C2 A1 + D2C1)q + C2B1 + D2D1
, (6.284)

exactly as we found with double application of the Möbius trans-
formation.

Exercise 6.8 Gaussian beam. (2010 final exam question 5)

a. Spot size
A Gaussian beam with wavelength 0.8µm has its minimum
waist of 0.5mm located in the middle of a parallel glass
plate of thickness 5cm and refractive index 1.5. The axis
of the beam is perpendicular to the surfaces of the glass
plate. The beam emerges from the glass plate and strikes
a mirror at normal incidence 10cm away. When the beam
passes back through its original location what is its spot
size?
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b. Angular divergence
When the beam emerges from the plate again after re-passing
its beam waist, what is its angular divergence?

Answer for Exercise 6.8

Part a. Spot size Our optical system and beam has the following
configuration fig. 6.33. Going from the glass to the air we have

Figure 6.33: Gaussian beam through glass then air.

n sin θi = sin θt, or in the paraxial approximation[
yt

θt

]
=

[
1 0

0 n

] [
yi

θi

]
(6.285)

The geometric optics for the round trip is

M =

[
1 L/2

0 1

] [
1 0

0 1/n

] [
1 2D

0 1

] [
1 0

0 n

] [
1 L/2

0 1

]

=

[
1 L/2n

0 1/n

] [
1 2Dn

0 n

] [
1 L/2

0 1

]

=

[
1 L/2n

0 1/n

] [
1 L/2 + 2Dn

0 n

]

=

[
1 L + 2Dn

0 1

]
.

(6.286)

Our Möbius transformation, in meters is

q′ = q + 2Dn

= q + 2(0.1)1.5

= q + 0.3.

(6.287)
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In the inverse, this has the form

1
q + a

=
1

z − iz0 + a

=
z + iz0 + a

(z + a)2 + z2
0

=
z + a

(z + a)2 + z2
0

+ i
z0

(z + a)2 + z2
0

.

(6.288)

Our waist z = 0 was originally

λ0

πnw2
0

=
z0

z2
0

=
1
z0

, (6.289)

or

z0 =
πnw2

0
λ0

. (6.290)

Assuming that we are given the wavelength within the glass λ =
λ0/n = 0.8µm (and not the free propagation wavelength outside
of the glass), then we have in meters

z0 =
π(0.0005)2

0.8 × 10−6 ≈ 0.98. (6.291)

Our new waist is

w′
0

2 =
π

λ

(0 − 0.3)2 + z2
0

z0
≈ 0.52mm. (6.292)

Our waist widens slightly from the original after the round trip.

Part b. Angular divergence To examine the beam characteristics
after it continues through and out of the glass again, we have to
apply another geometric transformation

M′ =

[
1 0

0 n

] [
1 L/2

0 1

]

=

[
1 L/2

0 n

]
.

(6.293)
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Our Möbius transform is

q′′ =
q′ + L/2

n

=
q + 2Dn + L/2

n
,

(6.294)

We are looking at how our initial waist, found at z = 0 trans-
formed, so we have

1
q′′(0)

=
n

−iz0 + 2Dn + L/2

=
n(iz0 + 2Dn + L/2)
z2

0 + (2Dn + L/2)2
.

(6.295)

Our new waist is found outside the glass where n = 1

Im
(

1
q′′(0)

)
=

λ0

nairπw′2(0)

=
λ0

πw′2(0)

=
nglassλ

πw′2(0)
.

(6.296)

w′2(0) =
nglassλ

π

z2
0 + (2Dnglass + L/2)2

nglassz0
. (6.297)
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With the divergence angle having the value

Θ ∼
√

2w′
0

z′0

=
√

2

√
λ

π

z2
0 + (2Dnglass + L/2)2

z0

nglassz0

z2
0 + (2Dnglass + L/2)2

=

√√√√2λz0

π

n2
glass

z2
0 + (2Dnglass + L/2)2

=

√√√√√2λ
πnglassw2

0
λ

π

n2
glass(

πnglassw2
0

λ

)2
+ (2Dnglass + L/2)2

=

√√√√√ 2n3
glassw2

0(
πnglassw2

0
λ

)2
+ (2Dnglass + L/2)2

=

√√√√√√ 2nglassw2
0

π2w4
0

λ2 +
(

2D + L
2n2

glass

)2 .

(6.298)

Plugging in the numbers, this is 8.6× 10−4 radians or 0.05 seconds.
That’s a small seeming number, but still results in a 1 cm spread
after only 5.8 meters.
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a.1 motivation.

In [8] we have a derivation of the Fresnel equations for the TE and
TM polarization modes. Can we do this for an arbitrary polariza-
tion angles?

a.2 setup.

The task at hand is to find evaluate the boundary value constraints.
Following the interface plane conventions of [6], and his notation
that is

ϵ1(Ei + Er)z = ϵ2(Et)z. (A.1a)

(Bi + Br)z = (Bt)z. (A.1b)

(Ei + Er)x,y = (Et)x,y. (A.1c)

1
µ1

(Bi + Br)x,y =
1
µ2

(Bt)x,y. (A.1d)

I’ll work here with a phasor representation directly and not bother
with taking real parts, or using tilde notation to mark the vectors
as complex.

Our complex magnetic field phasors are related to the electric
fields with

B =
1
v

k̂ × E. (A.2)

Referring to fig. A.1 shows the geometrical task to tackle, since
we’ve got to express all the various unit vectors algebraically. I’ll
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Interface (x, y)

Plane of incidence (x, z)

k̂r
m̂r

e2

k̂t

m̂t
e2

m̂i
k̂ie2

θrθi

θt
e1

e2

e3

Figure A.1: Reflection and transmission of light at an interface

use Geometric Algebra here to do that for its compact expression
of rotations. With

j = e3e1, (A.3)

we can express each of the k vector directions by inspection. Those
are

k̂i = e3ejθi = e3 cos θi + e1 sin θi. (A.4a)

k̂r = −e3e−jθr = −e3 cos θr + e1 sin θr. (A.4b)

k̂t = e3ejθt = e3 cos θt + e1 sin θt. (A.4c)

Similarly, the perpendiculars m̂p = e2 × k̂p are

m̂i = e1ejθi = e1 cos θi − e3 sin θi = e3 jejθi . (A.5a)

m̂r = −e1e−jθr = −e1 cos θr − e3 sin θr = −e3 je−jθr . (A.5b)
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m̂t = e1ejθt = e1 cos θt − e3 sin θt = e3 jejθt . (A.5c)

In [6] problem 9.14 we had to show that the polarization angles for
normal incident (E ∥ e1) must be the same due to the boundary
constraints. Can we also tackle that problem for both this more
general angle of incidence and a general polarization? Let’s try so,
allowing temporarily for different polarizations of the reflected
and transmitted components of the light, calling those polariza-
tion angles ϕi, ϕr, and ϕt respectively. Let’s set the ϕi = 0 polar-
ization aligned such that Ei, Bi are aligned with the e2 and −m̂i
directions respectively, so that the generally polarized phasors are

[
Ep

Bp

]
=

[
e2

−m̂p

]
em̂pe2ϕp . (A.6)

We are now set to at least express our boundary value constraints

ϵ1
(
e2Eiem̂ie2ϕi + e2Erem̂re2ϕr

)
· e3 = ϵ2

(
e2Etem̂te2ϕt

)
· e3. (A.7a)

1
v1

(
−m̂iEiem̂ie2ϕi − m̂rErem̂re2ϕr

)
· e3 =

1
v2

(
−m̂tEtem̂te2ϕt

)
· e3.

(A.7b)

(
e2Eiem̂ie2ϕi + e2Erem̂re2ϕr

)
∧ e3 =

(
e2Etem̂te2ϕt

)
∧ e3. (A.7c)

1
µ1v1

(
−m̂iEiem̂ie2ϕi − m̂rErem̂re2ϕr

)
∧ e3 =

1
µ2v2

(
−m̂tEtem̂te2ϕt

)
∧ e3.

(A.7d)

a.3 solving for the fresnel equations .

Let’s try this in a couple of steps. First with polarization angles
set so that one of the fields lies in the plane of the interface (with
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both variations), and then attempt the general case, first posing
the problem in the traditional way to see what equations fall out,
and then using superposition.

Before doing so, let’s introduce a bit of notation to be used
throughout. When we wish to refer to all the fields or angles, for
example, Ei, Er, Et then we’ll write Ep where p ∈ {i, r, t}. Similarly,
to refer to just the incident and transmitted components (or an-
gles) we’ll use Eq where q ∈ {i, t}. Following [6] we’ll also write

β =
µ1v1

µ2v2
(A.8a)

α =
cos θt

cos θi
, (A.8b)

.

Exercise A.1 Sanity check. Verify for E parallel to the interface.

Answer for Exercise A.1

For the Ep ∥ e2 polarization (ϕi = ϕr = ϕt) our phasors are

Ep = e2Ep. (A.9a)

Bp = − 1
vp

m̂pEp. (A.9b)

Our boundary value constraints then become

ϵ1 (e2Ei + e2Er) · e3 = ϵ2 (e2Et) · e3. (A.10a)

1
v1

(m̂iEi + m̂rEr) · e3 =
1
v2

(m̂tEt) · e3. (A.10b)

(e2Ei + e2Er) ∧ e3 = (e2Et) ∧ e3. (A.10c)

1
µ1v1

(m̂iEi + m̂rEr) ∧ e3 =
1

µ2v2
(m̂tEt) ∧ e3. (A.10d)
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With m̂p substitution this is

ϵ1⟨e3 (e2Ei + e2Er)⟩ = ϵ2⟨e3 (e2Et)⟩. (A.11a)

1
v1

〈
e3

(
e1ejθi Ei − e1e−jθr Er

)〉
=

1
v2

〈
e3

(
e1ejθt Et

)〉
. (A.11b)

⟨e3 (e2Ei + e2Er)⟩2 = ⟨e3 (e2Et)⟩2. (A.11c)

1
µ1v1

〈
e3

(
e1ejθi Ei − e1e−jθr Er

)〉
2

=
1

µ2v2

〈
e3

(
e1ejθt Et

)〉
2
. (A.11d)

Evaluating the grade selections we have a separation into an ana-
logue of real and imaginary parts for

0 = 0. (A.12a)

1
v1

(− sin θiEi − sin θrEr) =
1
v2

(− sin θtEt) . (A.12b)

Ei + Er = Et. (A.12c)

1
µ1v1

(cos θiEi − cos θrEr) =
1

µ2v2
(cos θtEt) . (A.12d)

With θi = θr and sin θt/sin θi = n1/n2 eq. (A.12b) becomes

Ei + Er =
n1v1

n2v2
Et =

v2v1

v1v2
Et = Et, (A.13)

so that we find eq. (A.12b) and eq. (A.12c) are dependent. We are
left with a pair of equations

Ei + Er = Et. (A.14a)
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Ei − Er =
µ1v1

µ2v2

cos θt

cos θi
Et, (A.14b)

Adding and subtracting we have

2Ei =
(

1 +
µ1v1

µ2v2

cos θt

cos θi

)
Et. (A.15a)

2Er =
(

1 − µ1v1

µ2v2

cos θt

cos θi

)
Et, (A.15b)

with a final rearrangement to yield

Et

Ei
=

2µ2v2 cos θi

µ2v2 cos θi + µ1v1 cos θt
. (A.16a)

Er

Ei
=

µ2v2 cos θi − µ1v1 cos θt

µ2v2 cos θi + µ1v1 cos θt
. (A.16b)

The ratio of field strengths for E parallel to the interface, using
notation eq. (A.8), is

Et

Ei
=

2
1 + αβ

(A.17a)

Er

Ei
=

1 − αβ

1 + αβ
(A.17b)

.

Exercise A.2 Sanity check. Verify for B parallel to the interface.

Answer for Exercise A.2

As a second sanity check let’s rotate our field polarizations by
applying a rotation ee2m̂pπ/2 = e2m̂p (ϕi = ϕr = ϕt = −π/2) so that

−m̂p → −m̂pe2m̂p = e2. (A.18a)

e2 → e2e2m̂p = m̂p. (A.18b)
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This time we have Ep ∥ m̂p and Bp ∥ e2. Our boundary value
equations become

ϵ1⟨e3 (m̂iEi + m̂rEr)⟩ = ϵ2⟨e3 (m̂tEt)⟩. (A.19a)

1
v1

⟨e3 (e2Ei + e2Er)⟩ =
1
v2

⟨e3 (e2Et)⟩. (A.19b)

⟨e3 (m̂iEi + m̂rEr)⟩2 = ⟨e3 (m̂tEt)⟩2. (A.19c)

1
µ1v1

⟨e3 (e2Ei + e2Er)⟩2 =
1

µ2v2
⟨e3 (e2Et)⟩2. (A.19d)

This second eq. (A.19b) is a 0 = 0 identity, and the remaining after
m̂p substitution are

ϵ1

〈
e3

(
e3 jejθi Ei + (−e3)je−jθr Er

)〉
= ϵ2

〈
e3

(
e3 jejθt Et

)〉
. (A.20a)

〈
e3

(
e3 jejθi Ei + (−e3)je−jθr Er

)〉
2

=
〈

e3

(
e3 jejθt Et

)〉
2
. (A.20b)

1
µ1v1

⟨e3 (e2Ei + e2Er)⟩2 =
1

µ2v2
⟨e3 (e2Et)⟩2. (A.20c)

Simplifying we have

ϵ1 (− sin θiEi − sin θrEr) = −ϵ2 sin θtEt. (A.21a)

cos θiEi − cos θrEr = cos θtEt. (A.21b)

Ei + Er =
µ1v1

µ2v2
Et. (A.21c)
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Noting that ϵpvp = 1/(vpµp) we find

ϵ2 sin θt

ϵ1 sin θi
=

ϵ2n1

ϵ1n2
=

ϵ2v2

ϵ1v1
=

µ1v1

µ2v2
. (A.22)

showing that eq. (A.21a) and eq. (A.21c) are dependent. We are
left with the system

Ei − Er = αEt. (A.23a)

Ei + Er = βEt. (A.23b)

This time we find that the ratio of field strengths for B parallel to
the interface, again using notation eq. (A.8), is

with solution

Et

Ei
=

2
β + α

(A.24a)

Er

Ei
=

β − α

β + α
(A.24b)

.

Exercise A.3 General case. Arbitrary polarization angle.

Determine the set of simultaneous equations that would have
to be solved for if the incident polarization angle was allowed to
be neither TE nor TM mode.
Answer for Exercise A.3

Substituting our m̂p vector expressions into the boundary value
constraints we have

ϵ1
〈
e3e2

(
Eiem̂ie2ϕi + Erem̂re2ϕr

)〉
= ϵ2

〈
e3e2Etem̂te2ϕt

〉
. (A.25a)

1
v1

〈
jejθi Eiem̂ie2ϕi − je−jθr Erem̂re2ϕr

〉
=

1
v2

〈
jejθt Etem̂te2ϕt

〉
. (A.25b)

〈
e3e2

(
Eiem̂ie2ϕi + Erem̂re2ϕr

)〉
2 =

〈
e3e2Etem̂te2ϕt

〉
2. (A.25c)
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1
µ1v1

〈
jejθi Eiem̂ie2ϕi − je−jθr Erem̂re2ϕr

〉
2

=
1

µ2v2

〈
jejθt Etem̂te2ϕt

〉
2
.

(A.25d)

We want to expand some intermediate multivector products

e32em̂qe2ϕq = e32 cos ϕq + e32m̂qe2 sin ϕq

= e32 cos ϕq + e32e3 jejθq e2 sin ϕq

= e32 cos ϕq − jejθq sin ϕq

= e32 cos ϕq − e31 cos θq sin ϕq + sin θq sin ϕq.

(A.26)

e32em̂re2ϕr = e32 cos ϕr + e32m̂re2 sin ϕr

= e32 cos ϕr + e32(−e3)je−jθr e2 sin ϕr

= e32 cos ϕr + je−jθr sin ϕr

= e32 cos ϕr + e31 cos θr sin ϕr + sin θr sin ϕr.

(A.27)

jejθq em̂qe2ϕq = jejθq
(
cos ϕq + m̂qe2 sin ϕq

)
= jejθq

(
cos ϕq + e3 jejθq e2 sin ϕq

)
= jejθq

(
cos ϕq − je−jθq e32 sin ϕq

)
= jejθq cos ϕq + e32 sin ϕq

= e31 cos jθq cos ϕq + e32 sin ϕq − sin θq cos ϕq.

(A.28)

−je−jθr em̂re2ϕr = −je−jθr (cos ϕr + m̂re2 sin ϕr)

= −je−jθr
(

cos ϕr − e3 je−jθr e2 sin ϕr

)
= −je−jθr

(
cos ϕr + jejθr e32 sin ϕr

)
= −je−jθr cos ϕr + e32 sin ϕr

= −e31 cos θr cos ϕr + e32 sin ϕr − sin θr cos ϕr.

(A.29)

Our boundary value conditions are then

ϵ1 (Ei sin θi sin ϕi + Er sin θr sin ϕr) = ϵ2Et sin θt sin ϕt. (A.30a)
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1
v1

(Ei sin θi cos ϕi + Er sin θr cos ϕr) =
1
v2

Et sin θt cos ϕt. (A.30b)

Ei cos ϕi + Er cos ϕr = Et cos ϕt. (A.30c)

−Ei cos θi sin ϕi + Er cos θr sin ϕr = −Et cos θt sin ϕt. (A.30d)

1
µ1v1

(Ei cos θi cos ϕi − Er cos θr cos ϕr) =
1

µ2v2
Et cos θt cos ϕt.

(A.30e)

1
µ1v1

(Ei sin ϕi + Er sin ϕr) =
1

µ2v2
Et sin ϕt. (A.30f)

Note that the wedge product equations above have been separated
into e3e1 and e3e2 components, yielding two equations each. Be-
cause of eq. (A.22), we see that eq. (A.30a) and eq. (A.30f) are de-
pendent. Also, as demonstrated in eq. (A.13) we see that eq. (A.30b)
and eq. (A.30c) are also dependent. We can therefore consider only
the last four equations (and still have additional linear dependen-
cies to be discovered.)

Let’s write these as

Ei cos ϕi + Er cos ϕr = Et cos ϕt. (A.31a)

−Ei sin ϕi + Er sin ϕr = −Etα sin ϕt. (A.31b)

Ei cos ϕi − Er cos ϕr = αβEt cos ϕt. (A.31c)

Ei sin ϕi + Er sin ϕr = βEt sin ϕt. (A.31d)
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Observe that if ϕi = ϕr = ϕt = 0 (killing all the sine terms) we
recover eq. (A.14), and with ϕi = ϕr = ϕt = π/2 (killing all the
cosines) we recover eq. (A.23).

Now, if ϕi = nπ/2 we’ve got a different story. Specifically it ap-
pears that should we wish to solve for the reflected and transmit-
ted magnitudes, we also have to simultaneously solve for the po-
larization angles in the reflected and transmitted directions. This
is now a problem of solving four simultaneous equations in two
linear and two non-linear variables.

Does it make sense that we would have polarization rotation
should our initial polarization angle be rotated? I think so. In dis-
cussing this problem with Prof Thywissen, he strongly suggested
treating the problem as a superposition of two light waves. If we
consider that, even without attempting to solve the problem, we
see that we must have different reflected and transmitted magni-
tudes associated with the pair of incident waves since we have
to calculate each of these with different Fresnel equations. This
would have an effect of scaling and rotating the superimposed
reflected and transmitted waves.

Exercise A.4 General case using superposition.

Using superposition determine the Fresnel equations for an ar-
bitrary incident polarization angle. This should involve solving
for both the magnitude and the polarization angle of the reflected
and transmitted rays.

Answer for Exercise A.4

For a polarization of ϕ = 0 and ϕ = π/2 respectively, we found
in eq. (A.17), and eq. (A.24)

Er∥
Ei∥

=
1 − αβ

1 + αβ
. (A.32a)

Et∥
Ei∥

=
2

1 + αβ
. (A.32b)

Er⊥
Ei⊥

=
β − α

β + α
. (A.32c)
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Et⊥
Ei⊥

=
2

β + α
. (A.32d)

We can use these results to consider a polarization of ϕ < π/2
as illustrated in fig. A.2.

ϕ

ϕ

m̂i

e2

Ei

Ei cos ϕ

Ei sin ϕ

Bi

Ei
vi

sin ϕ

Ei
vi

cos ϕ

Ei∥ = Ei cos ϕ

Bi∥ = Ei
vi

cos ϕ

Ei⊥ = Ei sin ϕ

Bi⊥ = Ei
vi

sin ϕ

Figure A.2: Polarization of incident field to be considered

Our incident, reflected, and transmitted fields are

Ei = Eie2ee2m̂iϕ. (A.33a)

Er = Ei∥
1 − αβ

1 + αβ
e2 + Ei⊥

β − α

β + α
m̂r. (A.33b)

Et = Ei∥
2

1 + αβ
e2 + Ei⊥

2
β + α

m̂i. (A.33c)

However, Ei∥ = Ei cos ϕ and Ei⊥ = Ei sin ϕ leaving us with

Ei = Ei

(
e2 cos ϕ + e1ejθi sin ϕ

)
. (A.34a)
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Er = Ei

(
cos ϕ

1 − αβ

1 + αβ
e2 − sin ϕ

β − α

β + α
e1e−jθr

)
. (A.34b)

Et = Ei

(
cos ϕ

2
1 + αβ

e2 + sin ϕ
2

β + α
e1ejθt

)
. (A.34c)

We find that the reflected and transmitted polarization angles
are respectively

tan ϕr = tan ϕ
β − α

β + α

1 + αβ

1 − αβ
. (A.35a)

tan ϕt = tan ϕ
1 + αβ

β + α
. (A.35b)

where the associated magnitudes are

Er

Ei
=

√(
cos ϕ

1 − αβ

1 + αβ

)2

+
(

sin ϕ
β − α

β + α

)2

. (A.36a)

Et

Ei
=

√(
cos ϕ

2
1 + αβ

)2

+
(

sin ϕ
2

β + α

)2

. (A.36b)

FIXME: in [4] he claims in §2 that “if polarized at an angle ϕ to
the axis, a fraction sin2 ϕ will go through”. Either I have my result
above wrong, or this appears to be an approximate statement?

Exercise A.5 Normal polarization angles. ([6] pr 9.14)

For normal incidence, without assuming that the reflected and
transmitted waves have the same polarization as the incident wave,
prove that this must be so.

Answer for Exercise A.5

Working with coordinates as illustrated in fig. A.3, the incident
wave can be assumed to have the form

ẼI = EIei(kz−ωt)x̂. (A.37a)
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Figure A.3: Normal incidence coordinates.

B̃I =
1
v

ẑ × ẼI =
1
v

EIei(kz−ωt)ŷ. (A.37b)

Assuming a polarization n̂ = cos θx̂ + sin θŷ for the reflected wave,
we have

ẼR = ERei(−kz−ωt)(x̂ cos θ + ŷ sin θ). (A.38a)

B̃R =
1
v

(−ẑ) × ẼR =
1
v

ERei(−kz−ωt)(x̂ sin θ − ŷ cos θ). (A.38b)

And finally assuming a polarization n̂ = cos ϕx̂ + sin ϕŷ for the
transmitted wave, we have

ẼT = ETei(k′z−ωt)(x̂ cos ϕ + ŷ sin ϕ). (A.39a)

B̃T =
1
v

ẑ × ẼT =
1
v′

ETei(k′z−ωt)(−x̂ sin ϕ + ŷ cos ϕ). (A.39b)

With no components of any of the Ẽ or B̃ waves in the ẑ directions
the boundary value conditions at z = 0 require the equality of the
x̂ and ŷ components of(

ẼI + ẼR
)

x,y =
(
ẼT
)

x,y . (A.40a)

(
1
µ

(
B̃I + B̃R

))
x,y

=
(

1
µ′ B̃T

)
x,y

. (A.40b)
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With β = µv/µ′v′, those components are

EI + ER cos θ = ET cos ϕ. (A.41a)

ER sin θ = ET sin ϕ. (A.41b)

ER sin θ = −βET sin ϕ. (A.41c)

EI − ER cos θ = βET cos ϕ. (A.41d)

Equality of eq. (A.41b), and eq. (A.41c) require

−βET sin ϕ = ET sin ϕ, (A.42)

or (θ, ϕ) ∈ {(0, 0), (0, π), (π, 0), (π, π)}. It turns out that all of these
solutions correspond to the same physical waves. Let’s look at
each in turn

1. (θ, ϕ) = (0, 0). The system eq. (A.41) is reduced to

EI + ER = ET

EI − ER = βET,
(A.43)

with solution

ET

EI
=

2
1 + β

ER

EI
=

1 − β

1 + β
.

(A.44)

2. (θ, ϕ) = (π, π). The system eq. (A.41) is reduced to

EI − ER = −ET

EI + ER = −βET,
(A.45)

with solution

ET

EI
= − 2

1 + β

ER

EI
= −1 − β

1 + β
.

(A.46)
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Effectively the sign for the magnitude of the transmitted and
reflected phasors is toggled, but the polarization vectors are
also negated, with n̂ = −x̂, and n̂′ = −x̂. The resulting ẼR

and ẼT are unchanged relative to those of the (0, 0) solution
above.

3. (θ, ϕ) = (0, π). The system eq. (A.41) is reduced to

EI + ER = −ET

EI − ER = −βET,
(A.47)

with solution

ET

EI
= − 2

1 + β

ER

EI
=

1 − β

1 + β
.

(A.48)

Effectively the sign for the magnitude of the transmitted pha-
sor is toggled. The polarization vectors in this case are n̂ = x̂,
and n̂′ = −x̂, so the transmitted phasor magnitude change of
sign does not change ẼT relative to that of the (0, 0) solution
above.

4. (θ, ϕ) = (π, 0). The system eq. (A.41) is reduced to

EI − ER = ET

EI + ER = βET,
(A.49)

with solution

ET

EI
=

2
1 + β

ER

EI
= −1 − β

1 + β
.

(A.50)

This time, the sign for the magnitude of the reflected phasor
is toggled. The polarization vectors in this case are n̂ = −x̂,
and n̂′ = x̂. In this final variation the reflected phasor mag-
nitude change of sign does not change ẼR relative to that of
the (0, 0) solution.
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We see that there is only one solution for the polarization an-
gle of the transmitted and reflected waves relative to the incident
wave. Although we fixed the incident polarization with E along x̂,
the polarization of the incident wave is maintained regardless of
TE or TM labeling in this example, since our system is symmetric
with respect to rotation.
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Exercise B.1 Poynting flux, complex 2D fields. ([5] pr. 2.4)

Given a complex field phasor representation of the form

Ẽ = E0ei(k·x−ωt). (B.1)

H̃ = H0ei(k·x−ωt). (B.2)

Here we allow the components of E0 and H0 to be complex. As
usual our fields are defined as the real parts of the phasors

E = Re(Ẽ). (B.3)

H = Re(H̃). (B.4)

Show that the average Poynting vector has the value

⟨S⟩ = ⟨E × H⟩ =
1
2

Re(E0 × H∗
0). (B.5)

Answer for Exercise B.1

This is a problem from [5], something that I’d tried back when
reading [9] but in a way that involved Geometric Algebra and the
covariant representation of the energy momentum tensor. Let’s try
this with plain old complex vector algebra instead.

While the text works with two dimensional quantities in the
x, y plane, I found this problem easier when tackled in three di-
mensions. Suppose we write the complex phasor components as

E0 = ∑
k

(Ekr + iEki)ek = ∑
k
|Ek|eiϕk ek. (B.6)
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H0 = ∑
k

(Hkr + iHki)ek = ∑
k
|Hk|eiψk ek, (B.7)

and also write ϕ′
k = ϕk + k · x, and ψ′

k = ψk + k · x, then our (real)
fields are

E = ∑
k
|Ek| cos(ϕ′

k − ωt)ek. (B.8)

H = ∑
k
|Hk| cos(ψ′

k − ωt)ek, (B.9)

and our Poynting vector before averaging (in these units) is

E × H = ∑
klm

|Ek||Hl | cos(ϕ′
k − ωt) cos(ψ′

l − ωt)ϵklmem. (B.10)

We are tasked with computing the average of cosines

⟨cos(a − ωt) cos(b − ωt)⟩ =
1
T

∫ T

0
cos(a − ωt) cos(b − ωt)dt

=
1

ωT

∫ T

0
cos(a − ωt) cos(b − ωt)ωdt

=
1

2π

∫ 2π

0
cos(a − u) cos(b − u)du

=
1

4π

∫ 2π

0
cos(a + b − 2u) + cos(a − b)du

=
1
2

cos(a − b).

(B.11)

So, our average Poynting vector is

⟨E × H⟩ =
1
2 ∑

klm
|Ek||Hl | cos(ϕk − ψl)ϵklmem. (B.12)

We have only to compare this to the desired expression

1
2

Re(E0 × H∗
0) =

1
2 ∑

klm
Re
(
|Ek|eiϕk |Hl |e−iψl

)
ϵklmem

=
1
2 ∑

klm
|Ek||Hl | cos(ϕk − ψl)ϵklmem.

(B.13)

This proves the desired result.
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Exercise B.2 Complex form of electric wave. ([5] pr. 2.5)

Show that the real electric wave

E = E0
(
î cos(kz − ωt) + ĵb cos(kz − ωt + ϕ)

)
. (B.14)

is equivalent to the complex expression

E = E0

(
î + ĵbeiϕ

)
ei(kz−ωt). (B.15)

Answer for Exercise B.2

This clearly follows by inspection (only stated this problem to
reference in the next.)

Exercise B.3 Some polarization plots. ([5] pr. 2.6)

For a field specified by eq. (B.15), sketch diagrams to show the
type of polarization for the following parameters

1. ϕ = 0, b = 1

2. ϕ = 0, b = 2

3. ϕ = π/2, b = −1

4. ϕ = π/4, b = 1

Answer for Exercise B.3

The electric fields, with ψ = kz − ωt, are

1.

Re
(

E0(î + ĵ)eiψ
)

= E0(î + ĵ) cos ψ. (B.16)

2.

Re
(

E0(î + 2ĵ)eiψ
)

= E0(î + 2ĵ) cos ψ. (B.17)

3.

Re
(

E0(î − iĵ)eiψ
)

= E0
(
î cos ψ + ĵ sin ψ

)
. (B.18)
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Figure B.1: Linear polarization at right angle.
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Figure B.2: Linear polarization at angle.
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Figure B.3: Circular polarization.
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Figure B.4: Elliptical polarization.

4.

Re
(

E0

(
î − 1√

2
ĵ(1 + i)

)
eiψ
)

= E0

(
î cos ψ +

ĵ√
2
(cos ψ − sin ψ)

)
.

(B.19)

We have linear fig. B.1, linear fig. B.2, circular fig. B.3 and elliptical
fig. B.4 polarization respectively.

Exercise B.4 Geometry of general Jones vector. ([5] pr. 2.8)

The general case is represented by the Jones vector[
A

Bei∆

]
. (B.20)

Show that this represents elliptically polarized light in which the
major axis of the ellipse makes an angle

1
2

tan−1
(

2AB cos ∆
A2 − B2

)
, (B.21)

with the x axis.
Answer for Exercise B.4

Prior to attempting the problem as stated, let’s explore the al-
gebra of a parametric representation of an ellipse, rotated at an
angle θ as in fig. B.5. The equation of the ellipse in the rotated
coordinates is[

x′

y′

]
=

[
a cos u

b sin u

]
, (B.22)



290 vectoral nature of light.

Figure B.5: Rotated ellipse.

which is easily seen to have the required form(
x′

a

)2

+
(

y′

b

)2

= 1. (B.23)

We’d like to express x′ and y′ in the “fixed” frame. Consider
fig. B.6 where our coordinate conventions are illustrated. With

Figure B.6: 2d rotation of frame.

[
x̂′

ŷ′

]
=

[
x̂ex̂ŷθ

ŷex̂ŷθ

]
=

[
x̂ cos θ + ŷ sin θ

ŷ cos θ − x̂ sin θ

]
, (B.24)

and xx̂ + yŷ = x′x̂ + y′ŷ we find[
x′

y′

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x

y

]
, (B.25)

so that the equation of the ellipse can be stated as[
cos θ sin θ

− sin θ cos θ

] [
x

y

]
=

[
a cos u

b sin u

]
, (B.26)
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or[
x

y

]
=

[
cos θ − sin θ

sin θ cos θ

] [
a cos u

b sin u

]
=

[
a cos θ cos u − b sin θ sin u

a sin θ cos u + b cos θ sin u

]
.

(B.27)

Observing that

cos u + α sin u = Re
(

(1 + iα)e−iu
)

. (B.28)

we have, with atan2 = atan2(x, y) a Jones vector representation of
our rotated ellipse[

x

y

]
= Re

[
(a cos θ − ib sin θ)e−iu

(a sin θ + ib cos θ)e−iu

]

= Re

[√
a2 cos2 θ + b2 sin2 θei atan2(a cos θ,−b sin θ)−iu

√
a2 sin2 θ + b2 cos2 θei atan2(a sin θ,b cos θ)−iu

]
.

(B.29)

Since we can absorb a constant phase factor into our −iu argu-
ment, we can write this as[

x

y

]
=

Re

([ √
a2 cos2 θ + b2 sin2 θ√

a2 sin2 θ + b2 cos2 θei atan2(a sin θ,b cos θ)−i atan2(a cos θ,−b sin θ)

]
e−iu′

)
.

(B.30)

This has the required form once we make the identifications

A =
√

a2 cos2 θ + b2 sin2 θ. (B.31)

B =
√

a2 sin2 θ + b2 cos2 θ. (B.32)

∆ = atan2(a sin θ, b cos θ) − atan2(a cos θ,−b sin θ). (B.33)
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What isn’t obvious is that we can do this for any A, B, and ∆.
Portions of this problem I tried in ellipticalPolarizationRotation-
ToStdForm.cdf starting from the elliptic equation derived in §8.1.3
of [8]. I’d used Mathematica since on paper I found the rotation
angle that eliminated the cross terms to always be 45 degrees, but
this turns out to have been because I’d first used a change of vari-
ables that scaled the equation. Here’s the whole procedure with-
out any such scaling to arrive at the desired result for this problem.
Our starting point is the Jones specified field, again as above I’ve
using −iu = i(kz − ωt)

E = Re

([
A

Bei∆

]
e−iu

)
=

[
A cos u

B cos(∆ − u)

]
e−iu. (B.34)

We need our cosine angle addition formula

cos(a + b) = Re ((cos a + i sin a)(cos b + i sin b))

= cos a cos b − sin a sin b.
(B.35)

Using this and writing E = (x, y) we have

x = A cos u. (B.36)

y = B(cos ∆ cos u + sin ∆ sin u). (B.37)

Subtracting x cos ∆/A from y/B we have

y
B
− x

A
cos ∆ = sin ∆ sin u. (B.38)

Squaring this and using sin2 u = 1− cos2 u, and eq. (B.36) we have

( y
B
− x

A
cos ∆

)2
= sin2 ∆

(
1 − x2

A2

)
, (B.39)

which expands and simplifies to( x
A

)2
+
( y

B

)2
− 2

( x
A

) ( y
B

)
cos ∆ = sin2 ∆, (B.40)

which is an equation of a rotated ellipse as desired. Let’s figure
out the angle of rotation required to kill the cross terms. Writing
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a = 1/A, b = 1/B and rotating our primed coordinate frame by θ

degrees[
x

y

]
=

[
cos θ − sin θ

sin θ cos θ

] [
x′

y′

]
, (B.41)

we have

sin2 ∆ = a2(x′ cos θ − y′ sin θ)2 + b2(x′ sin θ + y′ cos θ)2

− 2ab(x′ cos θ − y′ sin θ)(x′ sin θ + y′ cos θ) cos ∆

= (x′)2(a2 cos2 θ + b2 sin2 θ − 2ab cos θ sin θ cos ∆)

+ (y′)2(a2 sin2 θ + b2 cos2 θ + 2ab cos θ sin θ cos ∆)

+ 2x′y′((b2 − a2) cos θ sin θ + ab(sin2 θ − cos2 θ) cos ∆).
(B.42)

To kill off the cross term we require

0 = (b2 − a2) cos θ sin θ + ab(sin2 θ − cos2 θ) cos ∆

=
1
2

(b2 − a2) sin(2θ) − ab cos(2θ) cos ∆,
(B.43)

or

tan(2θ) =
2ab cos ∆
b2 − a2 =

2AB cos ∆
A2 − B2 . (B.44)

This yields eq. (B.21) as desired. We also end up with expressions
for our major and minor axis lengths, which are respectively for
sin ∆ ̸= 0

sin ∆/
√

b2 + (a2 − b2) cos2 θ − ab sin(2θ) cos ∆. (B.45)

sin ∆/
√

b2 + (a2 − b2) sin2 θ + ab sin(2θ) cos ∆, (B.46)

which completes the task of determining the geometry of the ellip-
tic parameterization we see results from the general Jones vector
description.





CM AT H E M AT I C A N O T E B O O K S .

These Mathematica notebooks, some just trivial ones used to gen-
erate figures, others more elaborate, and perhaps some even pol-
ished, can be found in

https://github.com/peeterjoot/mathematica/tree/master/phy485/.
The free Wolfram CDF player, is capable of read-only viewing

these notebooks to some extent.
Files saved explicitly as CDF have interactive content that can

be explored with the CDF player.

• Aug 5, 2012 modernOpticsProblemCh2Pr6Plots.cdf

Plots for problem 2.6 in Fowles Modern Optics.

• Aug 9, 2012 ellipticalPolarizationRotationToStdForm.cdf

Problem 2.9 in Fowles Modern Optics. General Jones vector

• Oct 4, 2012 modernOpticsProblemSet1.cdf

Problem set 1 numerical and plot stuff.

• Oct 17, 2012 diffractionBesselFunctionTransformPair.cdf

Attempt to verify the circular aperture Fourier transform re-
sult from the diffraction notes. Mathematica gives me a dif-
ferent result than what our Prof detailed.

• Oct 22, 2012 modernOpticsProblemSet2work.cdf

Problem set 2 work. Verify some results. Do the plots and
numerical work. This includes the integral that yields the
first order Bessel function.

• Oct 24, 2012 randomVariate.cdf

Thinking about problem set 2 problem 3b. Logical want to
consider the solar originated rays as random variates in the
lingo of mathematica ... functions that generate frequencies
or frequency ranges as opposed to the probability that a fre-
quency is found in a certain range.

https://github.com/peeterjoot/mathematica/tree/master/phy485/
http://www.wolfram.com/cdf-player/
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/modernOpticsProblemCh2Pr6Plots.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/ellipticalPolarizationRotationToStdForm.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/modernOpticsProblemSet1.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/diffractionBesselFunctionTransformPair.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/modernOpticsProblemSet2work.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/randomVariate.cdf
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• Oct 30, 2012 gaussianScalingVerification.cdf

Determine the scaling and variance for a Gaussian

• Oct 30, 2012 etalon.cdf

Plot the Etalon function. Used Evaluate and the PlotLegends
package to label the level curves automatically

• Nov 01, 2012 lecture14figures.cdf

Plots for lecture 14. One is a simple sine squared (using Ticks
to mark only on 2 Pi multiples), and the other I was experi-
menting with Mathematica Text label placement.

• Nov 06, 2012 etalonFancyLabellingApp.cdf

Try out Belisaris’s label placement "App" for the Etalon fig-
ure.

• Nov 06, 2012 etalonFancyLabellingResult.cdf

Results from Belisaris’s label placement "App" for the Etalon
figure.

• Nov 6, 2012 etalonAngularFancyLabellingApp.nb

likely using Belisaris’s labeling app

• Nov 08, 2012 lecture15figures.nb

Plot the single slit diffraction wavefunction and N slit inten-
sity, the latter using a Manipulate so that various parameters
can be played with

• Nov 08, 2012 problemSet3.nb

Plots and rough calculations for problem set 3

• Nov 20, 2012 lecture18figures1DQuantumSHO.nb

Plots for lecture 18. First couple 1D Quantum SHO solutions

• Nov 21, 2012 negativeExponentialPlot.nb

Plot of decreasing exponential

• Dec 1, 2012 lecture20figures.nb

Plots for lecture 20.

https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/gaussianScalingVerification.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/etalon.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/lecture14figures.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/etalonFancyLabellingApp.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/etalonFancyLabellingResult.cdf
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/etalonAngularFancyLabellingApp.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/lecture15figures.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/problemSet3.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/lecture18figures1DQuantumSHO.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/negativeExponentialPlot.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/lecture20figures.nb
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• Dec 1, 2012 gaussianBeamHandoutNotes.nb

Plot of the lowest order Gaussian beam envelope. Verify nor-
malization from page 2 of the notes. Use ContourPlot3D to
plot the hyperboliod of revolution for the lowest order Gaus-
sian beam mode.

• Dec 4, 2012 fowles1028signError.nb

Verify sign error in the characteristic poly in Fowles just be-
fore 10.28. Functions used: Collect, Solve. Also sets up a 2 by
2 matrix.

• Dec 7, 2012 midtermReflectionAbsSincPlot.nb

Plot of Abs[Sinc[]] for Lloyd’s mirror problem post midterm
reflection

• Dec 10, 2012 2010finalQuestion3BesselIntegral.nb

Bessel integral for 2010 question 3 exam practice

• Dec 11, 2012 2010finalQuestion5numericalEvaluation.nb

Numerical evaluation for 2010 question 5a and 5b exam prac-
tice. Used the new Mathematica 9 Quantity function for easy
handling of units. Provides a nice check that the right numer-
ical combinations end up dimensionless.

• Dec 15, 2012 vanDrielz0z1z2stabilityAlgebra.nb

Here’s the algebra for the Van Driel notes that give expres-
sions for z1 z2 z0 in terms of g1 g2, and for w(z) at these
points. Too hard to do it by hand. Mathematica functions
used include Notation package for subscript variables, Flat-
ten, Solve, Eliminate, FullSimplify, and Factor.

https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/gaussianBeamHandoutNotes.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/fowles1028signError.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/midtermReflectionAbsSincPlot.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/2010finalQuestion3BesselIntegral.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/2010finalQuestion5numericalEvaluation.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy485/vanDrielz0z1z2stabilityAlgebra.nb




DC O S I N E T R A N S F O R M S .

d.1 motivation.

Cosine transforms were mentioned in the class notes. Let’s work
through a few basic operations ourselves to get a feel for things.

Exercise D.1 Fourier transform of an even function.

Given an even function, constructed from any arbitrary function
f (τ)

f (τ) =
1
2
(g(τ) + g(−τ)) , (D.1)

determine if the Fourier transform is even or odd.
Answer for Exercise D.1

∫ −∞

−∞
e−iωτ f (τ)dτ =

1
2

∫ ∞

−∞
e−iωτ (g(τ) + g(−τ)) dτ

=
1
2

G̃(ω) − 1
2

∫ −∞

∞
eiωτg(τ)dτ

=
1
2
(
G̃(ω) + G̃(−ω)

)
.

(D.2)

Yes, the Fourier transform of an even function in time is even in
frequency.

Exercise D.2 Even function Fourier transform.

Express the Fourier transform of an even function in terms of
cosines.
Answer for Exercise D.2
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∫ ∞

−∞
e−iωτ f (τ)dτ =

∫ 0

−∞
e−iωτ f (τ)dτ +

∫ ∞

0
e−iωτ f (τ)dτ

=
∫ 0

−∞
e−iωτ f (−τ)dτ +

∫ ∞

0
e−iωτ f (τ)dτ

= −
∫ 0

∞
eiωτ f (τ)dτ +

∫ ∞

0
e−iωτ f (τ)dτ

=
∫ ∞

0
eiωτ f (τ)dτ +

∫ ∞

0
e−iωτ f (τ)dτ

=
∫ ∞

0

(
eiωτ + e−iωτ

)
f (τ)dτ

= 2
∫ ∞

0
cos(ωτ) f (τ)dτ.

(D.3)

Let’s write

f̃c(ω) =
∫ ∞

0
cos(ωτ) f (τ)dτ, (D.4)

with

f̃ (ω) =
∫ ∞

−∞
e−iωτ f (τ)dτ. (D.5)

for the normal Fourier transform, so that

f̃ (ω) = 2 f̃c(ω) (D.6)

Exercise D.3 Inverse transform, even function.

Answer for Exercise D.3

f (τ) =
1

2π

∫ ∞

−∞
dωeiωτ f̃ (ω)

=
1

2π

∫ ∞

0
dωeiωτ f̃ (ω) +

1
2π

∫ 0

−∞
dωeiωτ f̃ (ω)

=
1

2π

∫ ∞

0
dωeiωτ f̃ (ω) +

1
2π

∫ 0

−∞
dωeiωτ f̃ (−ω)

=
1

2π

∫ ∞

0
dωeiωτ f̃ (ω) − 1

2π

∫ 0

∞
dωe−iωτ f̃ (ω)

=
1

2π

∫ ∞

0
dωeiωτ f̃ (ω) +

1
2π

∫ ∞

0
dωe−iωτ f̃ (ω)

=
1
π

∫ ∞

0
dω cos(ωτ) f̃ (ω).

(D.7)
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This gives us the inverse transform relationship

f (τ) =
2
π

∫ ∞

0
dω cos(ωτ) f̃c(ω) (D.8)

Exercise D.4 Is the convolution of even functions even?

Answer for Exercise D.4

with

( f ∗g)(τ) =
∫ ∞

−∞
f (τ′)g(τ′ − τ), (D.9)

is this an even function? Let’s compute at a negative time

( f ∗g)(−τ) =
∫ ∞

−∞
dτ′ f (τ′)g(τ′ + τ)

= −
∫ −∞

∞
dτ′ f (−τ′)g(−τ′ + τ)

=
∫ ∞

−∞
dτ′ f (τ′)g(−τ′ + τ)

=
∫ ∞

−∞
dτ′ f (τ′)g(τ′ − τ).

(D.10)

Okay, yes, the convolution of an even function is even.

Exercise D.5 Cosine transform, even functions.

What is the cosine transformation of a convolution of even func-
tions.
Answer for Exercise D.5

It’s not obvious that we can even do this. If we start naively

∫ ∞

0
dτ cos(ωτ)

∫ ∞

−∞
f (τ′)g(τ′ − τ)dτ′

=
∫ ∞

−∞
dτ′ f (τ′)

∫ ∞

0
dτ cos(ωτ)g(τ′ − τ)

=
∫ ∞

−∞
dτ′ f (τ′)

∫ ∞

−τ′
dτ cos(ω(u + τ′))g(u)

=
∫ ∞

−∞
dτ′ f (τ′)

∫ ∞

−τ′
dτ
(
cos(ωu) cos(ωτ′) − sin(ωu) sin(ωτ′)

)
g(u).

(D.11)
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We see this [0, ∞] interval causes us some trouble. If we had a
symmetric interval, the sine term would be killed off, but we don’t
have that. Some thought, and explicit demonstration (above) that
the convolution of even functions is also even, we can still evaluate
this, but have to step back and double the interval.∫ ∞

0
dτ cos(ωτ)

∫ ∞

−∞
f (τ′)g(τ′ − τ)dτ′

=
1
2

∫ ∞

−∞
dτ cos(ωτ)

∫ ∞

−∞
f (τ′)g(τ′ − τ)dτ′

=
1
2

∫ ∞

−∞
dτe−iωτ

∫ ∞

−∞
f (τ′)g(−τ′ + τ)dτ′

=
1
2

∫ ∞

−∞
f (τ′)dτ′

∫ ∞

−∞
dτe−iωτg(−τ′ + τ)

=
1
2

∫ ∞

−∞
f (τ′)dτ′

∫ ∞

−∞
due−iω(u+τ′)g(u)

=
1
2

g̃(ω)
∫ ∞

−∞
f (τ′)dτ′e−iωτ′

=
1
2

g̃(ω) f̃ (ω).

(D.12)

We find then for the Cosine transform of a convolution∫ ∞

0
dτ cos(ωτ) ( f (τ)∗g(τ)) = 2g̃c(ω) f̃c(ω). (D.13)
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e.1 rules .

Rules: Handwritten. No text or figures allowed.

e.2 geometric optics .

n sin α = n′ sin α′. (E.1)

1
f

=
1
s

+
1
s′

. (E.2)

[
y f

α f

]′
=

[
1 L

0 1

] [
yi

αi

]
(E.3)

[
y f

α f

]′
=

[
1 0

0 n
n′

] [
yi

αi

]
(E.4)

[
y f

α f

]′
=

[
1 0

1
R

( n
n′ − 1

) n
n′

] [
yi

αi

]
(E.5)

M =

[
1 0

2/R 1

]
(E.6)

M =

[
1 0

−1/ f 1

]
(E.7)
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1
f

=
n′ − n

n

(
1

R1
− 1

R2

)
, R1 > 0, R2 < 0. (E.8)

xx′ = f 2, x + f = s, x′ + f = s′. (E.9)

m = − s′

s
=

x′

f
. (E.10)

e.3 misc trig .

sin(π − θ) = sin θ. (E.11)

sin(α + β) = sin α cos β + cos α sin β. (E.12)

cos(α + β) = cos(α)cos(β) − sin(α)sin(β). (E.13)

sin 2θ = 2 sin θ cos θ. (E.14)

cos 2θ = 2 cos2 θ − 1. (E.15)

cos atan x =
1√

1 + x2
. (E.16)

sin atan x =
x√

1 + x2
. (E.17)
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e.4 eikonal .

[
E

B

]
=

[
E0(r)

B0(r)

]
eiϕ(r)−iωt. (E.18)

n =
c
v

=
√

ϵµ. (E.19)

[
E

B

]
=

[
E0(r)

B0(r)

]
eiϕ(r)−iωt. (E.20)

∇ · E = e−iωt
(
�������
eiϕ(r)∇ · E0(r) + E0(r) ·

(
∇eiϕ(r)

))
. (E.21)

and

∇× E = e−iωt
(
((((((((
eiϕ(r)∇× E0(r) − E0(r) ×

(
∇eiϕ(r)

))
. (E.22)

E0 ·∇ϕ = 0. (E.23a)

B0 ·∇ϕ = 0. (E.23b)

∇ϕ × E0 = k0B0. (E.23c)

∇ϕ × B0 = −ϵk0E0. (E.23d)

|∇ϕ|2 = k2
0ϵ(r). (E.24)

|∇ϕ| = k0n(r). (E.25)
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⟨S⟩ =
c

8πk0
|E0|2∇ϕ. (E.26)

t =
dr(s)

ds
=

∇ϕ

|∇ϕ| =
∇ϕ

n(r)k0
. (E.27)

n(r)
dr
ds

=
1
k0
∇ϕ. (E.28)

d
ds

(
n(r)

dr
ds

)
= ∇n(r). (E.29)

e.5 wave relations .

k =
2π

λ
. (E.30a)

ω = 2πν. (E.30b)

k =
ω

c
. (E.30c)

k = nk0. (E.30d)

λ = λ0/n. (E.30e)

e.6 electrodynamics .

∇ · D = 0 (E.31)

∇ · B = 0 (E.32)

∇× E = −1
c

∂B
∂t

(E.33)

∇× B =
1
c

∂D
∂t

(E.34)
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D = ϵE. (E.35)

S =
c

4π
Re E × Re B. (E.36)

LEM =
1
c

ρϕ +
1
c

j · A +
1

8π
E2 − 1

8π
B2. (E.37)

E = Re
(

E0eik·x−ωt
)

(E.38)

B = Re
(

B0eik·x−ωt
)

(E.39)

⟨E × B⟩ =
1
2

Re(E0 × B∗
0). (E.40)

I = cϵ0

〈
|E|2

〉
=

c
4π

√
ϵ

µ

〈
|E|2

〉
. (E.41)

e.7 misc calculus results .

(∇ϕ ·∇)∇ϕ =
1
2
∇ (∇ϕ)2 . (E.42)

∇eiϕ = i(∇ϕ)eiϕ. (E.43)

∇ = r̂
∂

∂r
+

θ̂

r
∂

∂θ
+ ẑ

∂

∂z
. (E.44)



308 cheat sheet.

e.8 diffraction.

R = r − r′ (E.45)

Rs = rs − r′ (E.46)

R = |R| (E.47)

Rs = |Rs| (E.48)

(
∇2 + k2

)
Ψ(r) = 0. (E.49)

Ψ(r) =
∫∫

da′
(
Ψ(r′)∇′G − G∇′Ψ(r′)

)
· n̂. (E.50)

G(r, r′) = − eikR

4πR
= − eik|r−r′|

4π|r − r′| . (E.51)

∇
(

eikr

r

)
= r̂
(

ik − 1
r

)
eikr

r
. (E.52)

Ψ(r) = − 1
4π

∫∫ eikR

R
n̂ ·
(
∇′Ψ(r′) +

(
ik − 1

R

)
R
R

Ψ(r′)
)

da′. (E.53)

Ψ(r) =
A
λi

∫∫
da′

eik(r+rs)

rrs
k(θ). (E.54)

k(θ) =
1
2
(1 + cos θ) . (E.55)

kR = kr − kr̂ · r′ +
k
2r

(
r′2 −

(
r̂ · r′

)2
)

+ · · · (E.56)

Ψ(r) =
A
λi

eik(rs+r)

rsr

∫∫
A

da′eik f (r′). (E.57)
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f (r′) = − (r̂ + r̂s) · r′

+
1
2r

(
r′2 − (r̂ · r′)2

)
+

1
2rs

(
(r′)2 − (r̂s · r′)2) .

(E.58)

r̂ ∼ (α, β, 1). (E.59)

Ψ(r) =
Ψs

iλ
eik f

f

∫∫
A

e−ik(αx′+βy′)da′. (E.60)

k f =
k
2

(
r−1

s + r−1
) (

x′2 + y′2
)

=
π

2
(
u2 + v2) . (E.61)

Ψ(r) =
A
2i

eik(rs+r) 1
rs + r

∫
A

ei π
2 (u2+v2)dudv. (E.62)

∫ ∞

−∞
dvei π

2 v2
= 1 + i =

√
2eiπ/4. (E.63)

S(w) =
∫ w

0
sin
(π

2
u2
)

du. (E.64a)

C(w) =
∫ w

0
cos

(π

2
u2
)

du. (E.64b)

1 =
(

dS
dw

)2

+
(

dC
dw

)2

. (E.65)

tan
(π

2
w2
)

=
dy
dx

. (E.66)
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e.9 coherence .

Ψ1 =
√

I1(r)eiϕ1(r,t) (E.67)

Ψ2 =
√

I2(r)eiϕ2(r,t) (E.68)

I = |Ψ1 + Ψ2|2 = |Ψ1|2 + |Ψ2|2 + 2 Re Γ12. (E.69)

Γ12 = ⟨Ψ1Ψ∗
2⟩ . (E.70)

V ≡ Imax − Imin

Imax + Imin
=

2
√

I1 I2

I1 + I2
|γ12| = |γ12|. (E.71)

γ12 =
Γ12√
I1
√

I2
. (E.72)

e.9.1 Temporal coherence.

⟨ f (t)⟩ = lim
T→∞

1
T

∫ T

0
dt′ f (t′). (E.73)

I =
〈
|Ψ|2

〉
= I(r1) + I(r2) + 2 Re ⟨Ψ(r1, t)Ψ∗(r2, t + τ)⟩ . (E.74)

Γ12 ≡ ⟨Ψ(r1, t)Ψ∗(r2, t + τ)⟩ . (E.75)

τcoh =
1

∆ω
. (E.76)

I = I1 + I2 + 2
√

I1 I2 Re γ12. (E.77)
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γ(τ) = γ12 = F{I(ω)}. (E.78)

Re(Γ(τ)) =
∫ ∞

0
I(ω) cos(ωτ)dω. (E.79a)

I(ω) =
∫ ∞

0
Re (Γ(τ)) cos(ωτ)dτ. (E.79b)

τ =
s2 − s1

c
. (E.80)

I = |γ12|
(

I1 + I2 + 2
√

I1 I2 cos (α12(τ) − δ)
)

+ (1 − |γ12|) (I1 + I2)

= |γ12|Icoh + (1 − |γ12|)Iincoh.

(E.81)

τa − τb =
r1a − r2a − r1b + r2b

c
=

lθs

c
. (E.82)

e.9.2 Spatial coherence.

∑
k

Ikeik·l = Γ12 = F (Ik). (E.83)

I = ∑
k

∣∣∣Ψk(r1, t) + eik·lΨk(r1, t)
∣∣∣2

= ∑
(

2Ik + 2 Re
(

Ψ∗
k eik·lΨk

))
= 2 ∑ Ik + 2 Re

(
∑
k

Ikeik·l
)

.

(E.84)

Γ12 =
1

λ2R1R2
eik∆r·r̂av

∫
d2rsg(rs)I(rs)e−ik∆r·rs/rav . (E.85a)
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∆r = r1 − r2. (E.85b)

rav = r2 − ∆r/2. (E.85c)

k (R1 − R2) ≈ k (rav − rs) ·
∆r
rav

. (E.85d)

γ(r1, r2) =
Γ12

Γ12|∆r=0
. (E.85e)

V = |γ12| = 2
∣∣∣∣ J1(πθsd/λ)

πθsd/λ

∣∣∣∣. (E.86)

lc =
λ

∆θs
. (E.87)

e.10 multiple interference .

e.10.1 Fabry-Perot.

δ = 2kL cos θ. (E.88a)

r = eiδr
√

R. (E.88b)

t = eiδt
√

T. (E.88c)

∆ = 2δr + δ = 2πm. (E.88d)
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Ψtransmission = Ψ0t2 1
1 − Rei∆ . (E.88e)

Itrans =
Imax

1 + F sin2(∆/2)
. (E.88f)

Imax =
I0T2

(1 − R)2 . (E.88g)

F =
4R

(1 − R)2 . (E.88h)

F = π

√
R

1 − R
=

π

2

√
F ∼ π

T
. (E.88i)

ω1 − ω2

ω
=

1
Fm

. (E.88j)

ω =
πc
L

(m + j) = ω0 + jF S R. (E.88k)

δ = ω − ωm. (E.89a)

I
I0

=
1

1 + δ2

Γ2

. (E.89b)

Γ =
πc

2LF =
FSR
2F . (E.89c)

γ =
1
2

a
ω

c
sin θ = π

ω

ω0
sin θ. (E.90)

ω0 =
2πc

a
. (E.91)
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e.10.2 Diffraction grating interferometry.

I = I0

(
sin β

β

)2 ( sin Nγ

N sin γ

)2

. (E.92a)

β =
1
2

bky =
1
2

bk sin θ. (E.92b)

γ =
1
2

kya =
1
2

ka sin θ. (E.92c)

ω0 =
2πc

a
. (E.92d)

γ = π
ω

ω0
sin θ. (E.92e)

γ = mπ = π
ω

ω0
sin θ. (E.92f)

l = Nm + 1. (E.92g)

∆γ =
mπ

ω1
∆ω =

π

N
. (E.92h)

∆ω

ω
=

1
Nm

. (E.92i)

e.11 lasers .

Ne

Ng
=

Pe

Pg
= e−(Ee−Eg)/kT . (E.93a)

uω = h̄ω ⟨nω⟩ D(ω). (E.93b)
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⟨nω⟩ =
1

e h̄ω/kT − 1
. (E.93c)

D(ω) =
ω2

π2c3 . (E.93d)

d
dt

Ne = −ANe + BabsuNg − BseuNe = 0. (E.93e)

d
dt

Ng = − d
dt

Ne. (E.93f)

uω =
h̄ω3

π2c3
1

e h̄ω/kT − 1
. (E.93g)

A
Bse

=
h̄ω3

π2c3 . (E.93h)

Babs/Bse = 1. (E.93i)

Bu
A

= ⟨nω⟩ . (E.93j)

⟨n⟩2 − (C − 1)ns ⟨n⟩ − Cns = 0. (E.93k)

C ≡ NRΓst

ΓspΓcav
. (E.93l)

ns ≡
Γsp

Γst
. (E.93m)

⟨n⟩ ≈
{

(C − 1)ns C > 1
C

1−C C < 1
(E.93n)

N2 =
NR

Γsp + Γst ⟨n⟩
=

C
1 + ⟨n⟩ /ns

. (E.93o)
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e.12 gaussian beams .

∇2E(r) + k2(r)E(r) = 0. (E.94a)

k2(r) = k2
0 − k0k2r2. (E.94b)

E = E0u(r, θ, z)eik0z. (E.94c)

∇2 = ∇2
T +

1
r2

∂2

∂θ2 +
∂2

∂z2 . (E.94d)

∇2
T =

∂2

∂r2 +
1
r

∂

∂r
=

∂2

∂x2 +
∂2

∂y2 . (E.94e)

�
�
�∂2u

∂z2 + 2ik0
∂u
∂z

+ ∇2
Tu − k0k2r2u = 0. (E.94f)

ωeff

c
≡
√

k2

k0
. (E.94g)

meff ≡
h̄k0

c
. (E.94h)

teff ≡
z
c

. (E.94i)

− h̄2

2meff
∇2

Tu +
1
2

meff (ωeff)
2 r2u = i h̄

∂u
∂teff

. (E.94j)

u(r, z) =
z0

iq
exp

(
i

k0r2

2q(z)

)
. (E.94k)
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q = z − iz0. (E.94l)

z0 =
πw2

0
λ

=
πnw2

0
λ0

. (E.94m)

u =
w0

w(z)
exp

(
− r2

w2(z)
+ i

k0r2

2R(z)
− iϕ(z)

)
. (E.94n)

ϕ(z) = atan
(

z
z0

)
. (E.94o)

w2(z) = w2
0

(
1 +

z2

z2
0

)
. (E.94p)

1
R(z)

=
z

z2 + z2
0

. (E.94q)

1
q(z)

=
1

R(z)
+ i

λ0

nπw2(z)
. (E.94r)

Θdiv =
w0

z0
=

1
πw0

λ. (E.94s)

−iϕ(z) + ik0z − iωt = iC. (E.95a)

dz
dt

= Vph =
ω

keff
. (E.95b)

keff = k0 −
z0

z2 + z2
0

. (E.95c)
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ulm(x, y, z) ∼ w0

w(z)
exp

(
− r2

w2(z)
+

ik0r2

R(z)
− i(m + l + 1)ϕ(z)

)
×

Hl

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
(E.96a)

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 1

(E.96b)

keff = k0 − (m + l + 1)
z0

z2 + z2
0

. (E.96c)

q′ =
Aq + B
Cq + D

. (E.96d)

0 < g1g2 < 1. (E.96e)

g1,2 = 1 − L
R1,2

. (E.96f)

e.13 fourier transforms .

f (x) = g ∗ h =
∫ ∞

−∞
dx′g(x′)h(x − x′). (E.97)

F(k) = G(k)H(k). (E.98)
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f.1 motivation.

Here’s a silly exercise. I’m so used to seeing imaginaries in e···ω···

expressions, when I looked at the famous blackbody summation
for an exponentially decreasing probability distribution

⟨nω⟩ =
∞

∑
n=0

nP(n) = ∑∞
n=0 ne− h̄ωn/kT

∑∞
n=0 e− h̄ωn/kT

, (F.1)

I imagined (sic) an imaginary in the exponential and thought
“how can that converge?”. I thought things must somehow mag-
ically work out if the limits are taken carefully, so I derived the
finite summation expressions using the old tricks.

f.2 guts .

If we want to sum a discrete power series, say

SN(x) = 1 + x + x2 + · · · xN−1 =
N−1

∑
n=0

xn, (F.2)

we have only to take the difference

xSN − SN = xN − 1, (F.3)

so we have, regardless of the magnitude of x

SN(x) =
1 − xN

1 − x
. (F.4)

Observe that the derivative of SN is

dSN

dx
=

N−1

∑
n=1

nxn−1 =
1
x

N−1

∑
n=1

nxn, (F.5)



320 planck blackbody summation.

but we also have

dSN

dx
= SN(x)

=
−NxN−1

1 − x
+

1 − xN

(1 − x)2

=
1

(1 − x)2

(
−NxN−1(1 − x) + 1 − xN

)
=

1
(1 − x)2

(
−NxN−1 + NxN + 1 − xN

)
=

1
(1 − x)2

(
1 − NxN−1 + (N − 1)xN

)
.

(F.6)

We expect this and eq. (F.5) to differ only by a constant. For eq. (F.5),
or dSN/dx = 1 + 2x + 3x2 + · · ·, we have 1 at the origin, the same as
eq. (F.6). Our conclusion is

N−1

∑
n=1

nxn =
x

(1 − x)2

(
1 − NxN−1 + (N − 1)xN

)
, (F.7)

a result that applies, no matter the magnitude of x. Now we can
form the Planck summation up to some discrete summation point
(say N − 1)

∑N−1
n=0 ne− h̄ωn/kT

∑N−1
n=0 e− h̄ωn/kT

=
x

1 − x

(
1 − NxN−1 + (N − 1)xN

) 1
1 − xN . (F.8)

I got this far and noticed there’s still an issue with N → ∞. Taking
a second look, I see that we have a plain old real exponential,
something perhaps like fig. F.1. It doesn’t really matter what the
value of h̄/kT is (if considering the function one of ω), it will be
greater than zero, so that we have for our sum

∑∞
n=0 ne− h̄ωn/kT

∑∞
n=0 e− h̄ωn/kT

=
e− h̄ω/kT

1 − e− h̄ω/kT
=

1
e h̄ω/kT − 1

, (F.9)

which is the Planck result.



F.2 guts . 321

-4 -2 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

Figure F.1: Plot of e−x/5.





GV E C T O R I D E N T I T I E S .

g.1 curl of curl .

Expanding the c component of ∇× (∇× A) we have

(∇× (∇× A))c = ∂a(∇× A)bϵabc

= ∂a (∂m Anϵmnb) ϵabc

= ∂a∂m Anδ[mn]
ca

= ∂a (∂c Aa − ∂a Ac)

= ∂c(∇ · A) −∇2Ac.

(G.1)

or

∇× (∇× A) = ∇(∇ · A) −∇2A. (G.2)





HF O W L E S O P T I C S T Y P O S .

See http://www.6911norfolk.com/d0lbln/h7cf99/fowles.pdf, for
a nice collection of errata notes for [5].

Two others:

• page 137: equation (5.52) A factor of k/L was dropped from
the exponential.

• It also seems to me that Fowles (3.45) has an additional fac-
tor of 1/

√
2π and that the 1/

√
2π in (3.46) should have no

square root (both on page 81).

http://www.6911norfolk.com/d0lbln/h7cf99/fowles.pdf
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ABCD matrix, 5

action minimization, 41

beam parameter, 231

beam radius, 225

beam waist, 224

blackbody, 319

cavity, 230

cavity length, 171

cavity oscillator, 173

cavity stability, 234

circular aperture, 94

coherence, 108, 111, 310

defined, 104

longitudinal, 108

mutual, 111

spatial, 311

temporal, 310

transverse, 110

coherence time, 110, 234

confocal cavity, 259

cooperation parameter, 211

Cornu Spiral, 75

cosine transform, 299

curl, 323

curvature
sign convention, 5

diffraction, 63, 101, 308

Fraunhofer, 68

Fresnel, 68

diffraction grating, 314

Eikonal equation, 27, 305

Etalon transmission, 167

Fabry-Perot, 312

Fabry-Perot Etalon, 173

Fabry-Perot Spectrometer, 172

Far field, 124

Fermat’s theorem, 35

Finesse, 171

flat lens, 2

Fourier transform, 318

Fraunhofer, 69

Fraunhofer diffraction, 94

free propagation, 2

Free Spectral Range, 172

frequency resolution, 185

Fresnel, 69, 74

Fresnel diffraction
edge, 73

Fresnel equations, 269

Fresnel lens, 78

gain medium, 205

Gaussian
correlation, 117

power spectrum, 117

Gaussian beam, 316

Gaussian beam stability, 257

Gaussian modes, 211, 228

geometric optics, 1, 58, 303

graded refractive index, 32

phase delay, 40

gradium lens, 35

GRIN, see graded refractive in-
dex



Guoy
phase shift, 229

Guoy phase shift, 228

heterodyne detection, 103

Huygens-Fresnel, 68

Intensity, 77

interference, 99

identical polarizations, 101

multiple wave, 171

interferometer, 104

dual path, 104

Fresnel Biprism, 104

Lloyd’s, 106

Lloyd’s mirror, 104

Mach-Zender, 104

Michaelson’s, 104

multi-path, 104

Young’s, 104

interferometry, 314

Laser, 205, 314

laser, 234

pump rate, 208

Laser light, 241

Lens makers formula, 8

light in media, 221

Lloyd’s mirror, 147

Lorenzian, 117

Lorenztian, 177

Möbius transform, 232

Mathematica, 295

matrix methods, 1

Maxwell’s equations, 27

multiple interference, 163, 312

Mutual coherence, 108

normal reflection, 279

normal transmission, 279

oscillator, 176

paraxial wave equation, 215,
222, 243, 244

pathlength difference, 127

phase curvature, 225

phase velocity, 229

photon density, 239

pinhole, 66

polarization angle, 279

Poynting vector, 30

Quasi-monochromatic, 120

Raleigh range, 224

ray, 27

trap, 33

Ray equation, 32

ray equation, 30, 41

ray stability, 257

refraction, 2

concave, 4

convex, 3

curved surface, 3

saturation photon number, 211

Schawlow-Townes limit, 234

simple harmonic oscillator
classical, 219

Hamiltonian, 219

quantum, 220

spatial coherence, 117, 122

spatial distribution, 129

spectral line width, 234

stability criteria, 253

transfer matrix, 8

Van Cittert-Zernike Theorem,
131



Van Cittert-Zernike theorem,
131

vector identities, 323

visibility, 102

waist
angular dependence, 227





B I B L I O G R A P H Y

[1] D. Bohm. Quantum Theory. Courier Dover Publications, 1989.
(Cited on page 260.)

[2] M. Born and E. Wolf. Principles of optics: electromagnetic theory
of propagation, interference and diffraction of light. Cambridge
university press, 1980. (Cited on pages xi, 11, 27, 41, 64,
and 116.)

[3] BR Desai. Quantum mechanics with basic field theory. Cam-
bridge University Press, 2009. (Cited on page 218.)

[4] PAM Dirac. The principles of quantum mechanics. Oxford:[sn],
1974. (Cited on page 279.)

[5] G.R. Fowles. Introduction to modern optics. Dover Pubns, 1989.
(Cited on pages xi, 65, 101, 115, 172, 206, 250, 285, 287, 289,
and 325.)

[6] David Jeffrey Griffiths and Reed College. Introduction to elec-
trodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition,
1999. (Cited on pages 267, 269, 270, and 279.)

[7] G. Grynberg, A. Aspect, and C. Fabre. Introduction to quantum
optics: from the semi-classical approach to quantized light. Cam-
bridge university press, 2010. (Cited on page 234.)

[8] E. Hecht. Optics. 1998. (Cited on pages xi, 1, 35, 37, 65, 101,
139, 267, and 292.)

[9] JD Jackson. Classical Electrodynamics. John Wiley and Sons,
2nd edition, 1975. (Cited on pages 64 and 285.)

[10] Peeter Joot. Quantum Mechanics II., chapter Verifying
the Helmholtz Green’s function. peeterjoot.com, 2011.
URL https://peeterjoot.com/archives/math2011/phy456.

pdf. [Online; accessed 22-August-2023]. (Cited on page 65.)

https://peeterjoot.com/archives/math2011/phy456.pdf
https://peeterjoot.com/archives/math2011/phy456.pdf


332 bibliography

[11] C. Kittel and H. Kroemer. Thermal physics. WH Freeman, 1980.
(Cited on page 206.)

[12] J. Pahikkala. Fresnel formulas — PlanetMath, 2012. URL https:

//planetmath.org/fresnelformulas. [Online; accessed 22-
May-2014]. (Cited on page 75.)

[13] user1874. How do you find the velocity function
of a mechanical wave? Physics Stack Exchange.
URL https://physics.stackexchange.com/q/5026.
URL:https://physics.stackexchange.com/q/5026 (version:
2013-03-12). (Cited on page 229.)

[14] Wikipedia. Optical cavity — Wikipedia, The Free Encyclope-
dia, 2012. URL https://en.wikipedia.org/w/index.php?

title=Optical_cavity&oldid=505038610. [Online; accessed
6-December-2012]. (Cited on page 259.)

[15] H.G. Winful et al. Physical origin of the gouy phase shift. Op-
tics letters, 26(8):485–487, 2001. URL http://users.unimi.it/

aqm/wp-content/uploads/Feng-2001.pdf. [Online; accessed
22-May-2014]. (Cited on page 229.)

[16] A. Yariv. Quantum Electronics. Wiley and Sons, New York,
1989. (Cited on pages 211 and 245.)

https://planetmath.org/fresnelformulas
https://planetmath.org/fresnelformulas
https://physics.stackexchange.com/q/5026
https://en.wikipedia.org/w/index.php?title=Optical_cavity&oldid=505038610
https://en.wikipedia.org/w/index.php?title=Optical_cavity&oldid=505038610
http://users.unimi.it/aqm/wp-content/uploads/Feng-2001.pdf
http://users.unimi.it/aqm/wp-content/uploads/Feng-2001.pdf

	Copyright
	Document Version
	Dedication
	Preface
	Contents
	List of Figures
	1 Matrix methods in Geometric Optics.
	1.1 Missing content.
	1.2 Matrix methods.
	1.2.1 Free propagation.
	1.2.2 Refraction off of a flat lens.
	1.2.3 Refraction of a curved surface.
	1.2.4 ABCD matrix for a lens.
	1.2.5 Properties of the transfer matrix.

	1.3 Problems.

	2 Geometric optics: Rays and optics with graded index.
	2.1 Reading.
	2.2 Eikonal equation.
	2.3 Poynting vector.
	2.4 Ray equation.
	2.5 GRIN (Graded Refractive INdex) optics.
	2.6 Trap a ray.
	2.7 Gradium Lens.
	2.7.1 Phase delay in GRIN lens?

	2.8 Ray equation and action minimization.
	2.9 Problems.

	3 Diffraction.
	3.1 Context.
	3.2 Diffraction.
	3.3 A calculated example: pinhole.
	3.4 Fresnel and Fraunhofer diffraction.
	3.5 Fresnel diffraction from an edge.
	3.6 Problems.

	4 Coherence.
	4.1 Interference.
	4.2 Zoology of interferometers.
	4.3 Lloyd's interferometer.
	4.4 Types of coherence.
	4.4.1 Longitudinal coherence.
	4.4.2 Transverse coherence.

	4.5 More general mutual coherence.
	4.6 Temporal Coherence (cont.)
	4.7 Spatial coherence.
	4.8 Spatial Coherence (cont.)
	4.9 What's special about the pathlength difference?
	4.10 Continuum spatial distribution.
	4.11 Full derivation of the Van Cittert-Zernike theorem.
	4.12 Problems.

	5 Multiple interference.
	5.1 Multiple interference.
	5.2 Fabry-Perot interferometry.
	5.3 Fabry-Perot Etalon review.
	5.4 Cavity (or Etalon) (Fabry-Perot) as an oscillator.
	5.5 Diffraction grating interferometry.
	5.6 Problems.

	6 Lasers and Gaussian beams.
	6.1 Lasers.
	6.2 Laser pump rates.
	6.3 Gaussian modes.
	6.4 QM vs. spatial light equations.
	6.5 Solving the homogeneous paraxial wave equation.
	6.6 Guoy phase shifts, higher order modes.
	6.7 Spectral line width (coherence time) of laser.
	6.8 Number of photons per free space mode.
	6.9 Problems.

	A Fresnel equations, mixed polarization.
	A.1 Motivation.
	A.2 Setup.
	A.3 Solving for the Fresnel equations.

	B Vectoral nature of light.
	C Mathematica notebooks.
	D Cosine Transforms.
	D.1 Motivation.

	E Cheat sheet.
	E.1 Rules.
	E.2 Geometric optics.
	E.3 Misc trig.
	E.4 Eikonal.
	E.5 Wave relations.
	E.6 Electrodynamics.
	E.7 Misc calculus results.
	E.8 Diffraction.
	E.9 Coherence.
	E.9.1 Temporal coherence.
	E.9.2 Spatial coherence.

	E.10 Multiple interference.
	E.10.1 Fabry-Perot.
	E.10.2 Diffraction grating interferometry.

	E.11 Lasers.
	E.12 Gaussian beams.
	E.13 Fourier transforms.

	F Planck blackbody summation.
	F.1 Motivation.
	F.2 Guts.

	G Vector identities.
	G.1 Curl of curl.

	H Fowles optics typos.
	Index
	Bibliography

