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1B O N D I N G .

1.1 chemical bonding in solids .

Reading: §1.1, §1.2 [10], [1] ch. 19.

• Different types of chemical bonds explain many of the dif-
ferences between solids.

• Differences in solids: hard/soft. Example: Lithium, so soft
that a pure sample will flow if set on a desk ; metal vs insu-
lating, melting points

Figure 1.1: Periodic table annotated with orbital filling notes.

Elements in the periodic table are classified according to which
type of orbital is being filled. This is roughly sketched in fig. 1.1,
with much better figures are everywhere (such as figure 7.28 of
[3].)

Hydrogen, or other super ionized material (example: iron with
all but one electron observed in supernova spectra) fig. 1.2.

Recall that we have the following ranges for our states



2 bonding .

Figure 1.2: Hydrogenic atom (only one electron).

Figure 1.3: Two electron atom. eg: Ti22.



1.2 covalent bonding . 3

• l ∈ n − 1, n − 2, · · · 0 (n)

• m ∈ l, l − 1, · · · ,−l (2l + 1)

• S ∈ ± (2)

• upper right hand of periodic table: covalent bonding

• lower left hand of periodic table: metallic bonding

• mixed left hand with right hand of periodic table: ionic bond-
ing

1.2 covalent bonding .

Consider a pair of hydrogen nuclei sharing one electron. §1.2 [10]
has a mathematical description (not examinable)

Figure 1.4: Potential and radial distribution for 1s state.

In fig. 1.9, observe that only partially filled orbitals can partici-
pate in covalent bonding.

Reading: §10.6 [3]. Figures 10.23, 10.24 for example.
Covalent bonding involves electrons shared between materials,

forming between partially filled orbitals on small atoms. Example
H

2
.

Only half filled orbitals (eg. 2p1
z) form covalent bonds. Two

shared electrons in bonding orbitals. We need small, directional



4 bonding .

Figure 1.5: Far apart.

Figure 1.6: Close together.

Figure 1.7: Close together, bonding.



1.2 covalent bonding . 5

Figure 1.8: Chemistry diagram.

Figure 1.9: Adding more electrons.



6 bonding .

orbitals. We find this sort of bonding in the upper triangular seg-
ment of the periodic table as in fig. 1.10.

Figure 1.10: Covalent bonding region.

An example of such a covalent bond is that of two 2p1
z orbitals

of Fluoride F (1s22s22p2
x2p2

y2pz), as in fig. 1.11.

Figure 1.11: Fluorine gas molecule.

With Fluorine we cannot make a covalently bonded solid, since
there are no orbitals left over for bonding with anything else.

Fluorine solid? Can we get a Fluorine solid with promotion of
two 2p states to 3s2, then have three orbitals left for bonding?

Probably, but the energy cost of doing so may be exorbitant, and
could require high pressures. This is more likely with Bromine
since the difference between the 4s and 5p states is less.

First important cases, C, Si, Ge Looks like two bonds form. Nor-
mally carbon is 3 or 4 fold coordinated. Two such mechanisms for
carbon bonding are promotion and hybridization

See: [10] ch. 1

For carbon (1s22s22p1
x2p1

y2p0
z), promotion possibilities are illus-

trated in fig. 1.12.



1.2 covalent bonding . 7

Figure 1.12: 2s promotion in carbon allowing for 4 way bonding.

It turns out that

E
4 bonds + Epromotion < E

2 bonds. (1.1)

This allows for linear combinations of 2s + 2p orbitals that have
highly directional compact orbitals, perfect for covalent bonding.

1. sp1 hybrid. 2s + 2px

Figure 1.13: sp1 hybrid.

2. sp2 hybrid (like graphene.) Discussion left to problem set 1.

3. sp3 hybrid orbitals.

Covalent bonds are some of the strongest. In diamond, where
each C has 4 nn (nearest neighbors) we have a melting point

Tm ∼ 4000K. (1.2)

and has the highest hardness of any material.



8 bonding .

Figure 1.14: sp3 hybrid sign configurations.

Figure 1.15: sp3 hybrid

Figure 1.16: Lobes point to the 4 vertexes of a tetrahedron.



1.3 ionic bonding . 9

1.3 ionic bonding .

Reading: [1] ch. 20.
Here we are combining different atoms, especially the left and

right hand sides of the period table.

Figure 1.17: NaCl periodic table locations.

Examples: NaCl, KF, CsCl, Li
2

O, CaO

NaCl Na has 1 weakly bound 3s electron. Cl has one vacancy in
its 3p shell.

Energetics The energy transitions for ionization are illustrated in
fig. 1.18.

Figure 1.18: Energy ionization transitions for NaCl atoms (far apart).

The energy released moving the ions together is illustrated in
fig. 1.19.

Relative to fig. 1.18 we have a −3.1eV energy change in the
transition to this final state.



10 bonding .

Figure 1.19: Energy transitions for Coulomb interaction of ionized NaCl
atoms.

Figure 1.20: Potential well.

Figure 1.21: Final state for pair of ions.



1.3 ionic bonding . 11

Observe that the final state is not obviously predictable from
the initial states. The hybrid state can probably be derived from
first principles, but this determination may be easier with spec-
troscopy.

Solid NaCl (See: 02_lecture.pdf, and [10] fig 1.6)
Have 2 interpenetrating free lattices. Each Na+Cl – has 6 nn

(nearest neighbor) Cl – Na+. Binding energy 7.95 eV/pair.

CsCl The CsCl structure. Cl on corners. Cs in center of cube. 8

nn. Better than NaCl structure. But, Na+ is small, so in the CsCl
(where Cs is big compared to Na) structure, the next nn (nnn) Cl –

would touch. There’s a strong Coulomb repulsion.
We introduce the Madelung constant A for the potential energy

of the solid configuration

Φtot = ∑
i

ϕi =
1
2 ∑

i ̸=j
ϕij

=
1
2

N
(
− e2

4πϵ◦r ∑
i ̸=j

(±1)
pij

A

+
B
rn ∑

i ̸=j

1
pn

ij

)
,

(1.3)

where N is the number of ions in the solid, r is the nn separation
(center to center), and rij = pijr, as illustrated in fig. 1.22.

Figure 1.22: Madelung separation.

As an additional illustration, we have the NaCl configuration in
fig. 1.23.

Examination hint: Eminently examinable material (since it can be
calculated).

Examples

• NaCl structure A = 1.748
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Figure 1.23: NaCl lattice separation.

• CsCl structure A = 1.763

Ionic bonds are weaker than covalent, non-directional. One in-
dicator of this is the melting points

Tm = 1074K NaCl (1.4a)

Tm = 918K CsCl. (1.4b)

1.4 metallic bonding .

We now focus on the regions of the periodic table illustrated in
fig. 1.24.

Figure 1.24: Metallic bonding regions in the periodic table.

Curiously, the name is somewhat misleading. Just because some-
thing is a metal doesn’t mean it is metallic bonded.

• s-orbitals from 2s to 5s,



1.5 transition metals . 13

• p-orbitals from n = 4, 5, 6, 7.

These are big orbitals that extend beyond the nn, as illustrated in
fig. 1.25.

Figure 1.25: Extensive wave function.

Weakly bound electrons overlap many nearby potential wells.
This lowers the Coulomb energy. This is like a non-directional
covalent bond. This non-directionality results in malleability.

Pure metallic bonds are weak. Melting points are correspond-
ingly low, where for column 1 elements Tm ranges from room
temperature to 200◦ C.

1.5 transition metals .

Here we have both metallically bonded s-orbitals and covalent d-
orbitals fig. 1.26.

Figure 1.26: Overlapping s and p orbitals.

Tm ≳ 2000◦C. (1.5)
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On sign conventions. The +,−’s assume real representation of
wave functions. Here bonding is matching signs (constructive in-
terference), and antibonding is when the signs are in opposition
(destructive interference).

Reading: §1.5, 1.6 [10].

1.6 problems .

Exercise 1.1 Orbitals and bonding. (2013 ps1 p1)

(The reading assignments covered sections 1, 1.1, 1.5 and 1.6 of Ibach
and Luth.)

a. Explain 5s 4d orbital filling ordering. In a hydrogenic atom
(nuclear charge Ze, only one electron) the 4d levels have a
lower energy than the 5s levels. According to the periodic
table, however, the 5s levels become occupied before the 4d
levels do. Explain why.

b. Explain power of Van der Waals potential. Briefly explain
why the Van der Waals potential has a 1/r6 dependence.

Answer for Exercise 1.1

Part a. The 4d levels has a lower energy than the 5s level in a sin-
gle electron system. In a multiple electron system completely filled
(and perhaps partially filled) orbitals have the effect of shielding
additional electrons from a subset of the nuclear charge, reduc-
ing the effective total charge of the system with respect to that
additional electron. This shifts the d, p, f orbitals up in the stair-
case like fashion illustrated in class, and puts 5s below 4d in such
multiple electron systems.

Grading remark: Re: “Why should the screening have less of an
effect on the 5s orbital than the 4d orbital?” The posted solutions
explain that the underlying reason for this difference is not screen-
ing, but because the s orbitals have zero angular momentum (i.e. s
orbital corresponds to the angular momentum quantum number
l = 0). This is then used to argue that the electron distribution
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closer to the nucleus for such orbitals and lowers the energy re-
quired to fill these states. FIXME: followup on this argument with
some calculations to remove the handwaving from this argument.
This simple shielding description breaks down in a number of
cases, as there are multi-body interactions at play here too. This re-
sults in a number of exceptions in the ordering of the 5s, 4d filling.
For example Pd in its ground state has the 4d orbitals completely
filled (4d10) with no 5s state electrons. We see the resumption of
the 5s orbital filling in the subsequent Ag and Cd atoms retaining
the completely filled 4d10 orbitals that we see first in Pd. This can
be loosely described by stating it is more stable (lower energy) to
have a single set of completely filled 4d10 orbitals, than a have a
pair of partially filled orbitals in both states like 4d95s1.

Part b. Our text [10] §1.6 does a loose and fast description of
the 1/r6 Van der Waals dependence, indicating that it is due to
oscillation of a dipole field that has a 1/r3 dependence. When the
neighboring atom has a polarizability α its stated that there is a
secondary dipole induced in this neighbor that also has a 1/r3

dependence, but proportional to both the initiating field and the
new dipole.

To translate from this descriptive rationalization of the 1/r6 de-
pendence, I found it helpful to remind myself of the specific form
of this dipole dependence. In [11] §9.2 it is argued that a charge
oscillation (i.e. charge and current density changes of the form
ρ(x)e−iωt) lead to an electric field of the form

p =
∫

x′ρ(x′)d3x′ (1.6a)

E = k2 (n × p)× n
eikr

r
+ (3n(n · p) − p))

(
1
r3 − ik

r2

)
eikr. (1.6b)

In particular observe that the near field (r ∼ 0) is dominated by

E = (3n(n · p) − p))
1
r3 . (1.7)

Referring to [6] for a definition of polarizability, we find that po-
larizability is a dipole electric-field proportionality

p = αE. (1.8)
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So if the second atom has polarizability α, the dipole field due to
its internal dipole moment (say p′ = αE, with respect to normal
n′), then the electric field from this second atom (directed back
towards the original oscillating atomic dipole and others) is, in
the near field approximation

E′ =
(
3n′(n′ · E) − E

) α

r3

=
(
3n′(n′ · n)(n · p) − 3n′(n′ · p) − n(n · p) + p

) 3α

r6 .
(1.9)

Here we see explicitly the 1/r6 dependence of the field due to
both the oscillation of the dipole p of the atom itself, as well the
polarizability α of its neighbor.

Exercise 1.2 sp2 hybrid orbitals. (2013 ps1 p2)

The 2s and 2p orbitals of a hydrogenic atom (i.e. one electron,
nuclear charge Ze) are:

ϕ2s(ρ) = N e−ρ(1 − ρ)

ϕ2pz (ρ) = N e−ρρ cos θ

ϕ2px (ρ) = N e−ρρ sin θ cos ϕ

ϕ2py (ρ) = N e−ρρ sin θ sin ϕ

where ρ = Zr/2a◦, a◦ is the Bohr radius, r is the radial distance
from the nucleus, and θ and ϕ are the polar and azimuthal angles.
N = (Z/2a◦)3/2/

√
π is the normalization constant.

Four sp2 hybrid orbitals are constructed from these orbitals as
follows:

ψ1 =
1√
3

ϕ2s +

√
2
3

ϕ2px

ψ2 =
1√
3

ϕ2s −
1√
6

ϕ2px +
1√
2

ϕ2py

ψ3 =
1√
3

ϕ2s −
1√
6

ϕ2px −
1√
2

ϕ2py

ψ4 = ϕ2pz
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a. Orthonormality. Assuming that the ϕ2s and ϕ2p orbitals are
orthogonal and normalized (i.e. you don’t need to show
this), show that the sp2 hybrid orbitals are also orthonor-
mal.

b. Coordinates for maximum probability density. Find the
ϕ and θ values for which the probability density of the ψ1

hybrid orbital is maximized (i.e. find the direction in which
this orbital is pointing).

c. Contour plots. Using whatever plotting package you wish
(e.g. gnuplot, Matlab, or using the ‘contour’ or ‘contourf’
functions in SciPy; and please see me if you don’t know
how to approach this question), make two-dimensional con-
tour plots for the ψ1 and ψ2 hybrid orbital wave-functions,
and their moduli, in the x − y plane (that is for θ = π/2).
Hand in the code you used to generate the contour plots,
as well as a printout of the plots (plots can be submitted by
email if you want to submit a colour contour plot and you
don’t have a colour printer).
(I have put some hints for how do this using python with
the Problem Set 1 questions on the blackboard site.)

d. Sigma bonding.
Bonus (for fun, will not be marked): Modify your program
so that two adjacent atoms have sp2 hybrid orbitals directed
towards each other to form a σ bond, and plot contours of
the wave-function in the x − y plane. Once you know how
to do this you can do quite a lot. It is easy for example to
put atoms on a honeycomb lattice, with the in-plane sp2

hybrid orbitals forming covalent bonds, and the resulting
contour plot is a map of the wave function in the plane
of the carbon atoms in graphene. Or you can put two 2pz

orbitals on adjacent atoms on the x-axis and map out the
wave-function of a π orbital. (In addition to the in-plane
sp2 hybrid orbitals graphene has π bonds between the 2pz

orbitals on adjacent atoms.) Or, you can look at the electron
density in anti-bonding orbitals. etc. If you don’t feel like
doing this yourself, a bit of hacking around on the internet
will turn up many nice examples, but it’s also nice to see
how easy it is to do it yourself.
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Answer for Exercise 1.2

Part a. Verification of orthonormality of the 2s and 2p orbital
basis functions is easily computed in software.

For the superposition orthonormality, let’s rewrite the sp2 hy-
brid wave functions as

ψ1 =
1√
6

(√
2ϕ2s + 2ϕ2px

)
ψ2 =

1√
6

(√
2ϕ2s − ϕ2px +

√
3ϕ2py

)
ψ3 =

1√
6

(
ϕ2s − ϕ2px −

√
3ϕ2py

)
ψ4 = ϕ2pz .

Now, let’s verify the normalization of these wave functions

⟨ψ1|ψ1⟩ =
1
6

〈√
2ϕ2s + 2ϕ2px

∣∣∣√2ϕ2s + 2ϕ2px

〉
=

1
6

(√
2

2
+ 22

)
=

1
6
(2 + 4)

= 1

(1.10a)

⟨ψ2|ψ2⟩ =
1
6

〈√
2ϕ2s − ϕ2px +

√
3ϕ2py

∣∣∣√2ϕ2s − ϕ2px +
√

3ϕ2py

〉
=

1
6
(2 + 1 + 3)

= 1
(1.10b)

⟨ψ3|ψ3⟩ =
1
6

〈√
2ϕ2s − ϕ2px −

√
3ϕ2py

∣∣∣√2ϕ2s − ϕ2px −
√

3ϕ2py

〉
=

1
6
(2 + 1 + 3)

= 1
(1.10c)
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⟨ψ4|ψ4⟩ =
〈
ϕ2pz

∣∣ϕ2pz

〉
= 1.

(1.10d)

That verifies that these hybrid orbitals are all normalized. Check-
ing all the inner products pairwise zeros will complete the verifi-
cation of orthonormality. It’s clear that ψ4 is normal to all others
since only ψ4 has a ϕ2pz component. For the rest we have

⟨ψ1|ψ2⟩ =
1
6

〈√
2ϕ2s + 2ϕ2px

∣∣∣√2ϕ2s − ϕ2px +
√

3ϕ2py

〉
=

1
6
(2 − 2)

= 0

(1.11a)

⟨ψ1|ψ3⟩ =
1
6

〈√
2ϕ2s + 2ϕ2px

∣∣∣√2ϕ2s − ϕ2px −
√

3ϕ2py

〉
=

1
6
(2 − 2)

= 0

(1.11b)

⟨ψ2|ψ3⟩ =
1
6

〈√
2ϕ2s − ϕ2px +

√
3ϕ2py

∣∣∣√2ϕ2s − ϕ2px −
√

3ϕ2py

〉
=

1
6
(2 + 1 − 3)

= 0.
(1.11c)

Part b. The probability density for ψ1 has the form

|ψ1|2 =
1
3

(
ϕ2s +

√
2ϕ2px

)∗ (
ϕ2s +

√
2ϕ2px

)
=

1
3

(
|ϕ2s|2 + 2

∣∣ϕ2px

∣∣2 + 2
√

2ϕ2sϕ2px

)
=
N 2

3
e−2ρ

(
(1 − ρ)2 + 2ρ2 sin2 θ cos2 ϕ

+ 2
√

2ρ(1 − ρ) sin θ cos ϕ

)
.

(1.12)



20 bonding .

Integrating this to find the fraction of the probability density along
each radial ray, we find

N 2

3

∫ ∞

0
r2dre−2ρ

(
(1 − ρ)2 + 2ρ2 sin2 θ cos2 ϕ + 2

√
2ρ(1 − ρ) sin θ cos ϕ

)
=
N 2

3

(
2a◦
Z

)3

∫ ∞

0
ρ2dρe−2ρ

(
(1 − ρ)2 + 2ρ2 sin2 θ cos2 ϕ + 2

√
2ρ(1 − ρ) sin θ cos ϕ

)
=

1
3π

∫ ∞

0

1
8

x2dxe−x×((
1 − x

2

)2
+ 2
( x

2

)2
sin2 θ cos2 ϕ + 2

√
2

x
2

(
1 − x

2

)
sin θ cos ϕ

)
=

1
24π

(
const +

1
2

4! sin2 θ cos2 ϕ +
√

2 sin θ cos ϕ

(
3!−4!

2

))
.

(1.13)

Setting θ and ϕ partials equal to zero respectively we have

12 × 2 sin θ cos θ cos2 ϕ +
√

2 cos θ cos ϕ(−6) = 0 (1.14a)

−12 × 2 sin2 θ cos ϕ sin ϕ +
√

2 sin θ sin ϕ(−6) = 0, (1.14b)

or (
4 sin θ cos ϕ −

√
2
)

cos θ cos ϕ = 0 (1.15a)

(
4 sin θ cos ϕ −

√
2
)

sin θ sin ϕ = 0. (1.15b)

Neglecting the first common factor, some experimentation yields

the solution ϕ = π/2

Grading remark: Marked wrong. Review this.

, θ ∈ {0, π}. The probability density is max-
imized along the z, y plane pointing towards either of the poles.
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Part c.

Figure 1.27: |ψ1|2, contour plot in x − y plane.

Figure 1.28: ψ1, contour plot in x − y plane.

Figure 1.29: |ψ2|2, contour plot in x − y plane.
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Figure 1.30: ψ2, contour plot in x − y plane.

Figure 1.31: |ψ3|2, contour plot in x − y plane.

Figure 1.32: ψ3, contour plot in x − y plane.

Figure 1.33: |ψ4|2, contour plot in x − y plane.
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Figure 1.34: ψ4, contour plot in x − y plane.

Part d.

Figure 1.35: |ψ5|2, contour plot in x − y plane.

Figure 1.36: ψ5, contour plot in x − y plane.

Exercise 1.3 The Madelung constant. (2013 ps1 p3)

From: (Ibach and Luth, Q1, Chapter 1).

a. Calculate the Madelung constant A for a linear ionic chain.
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b. Approximate numerical calculations for the NaCl lattice.
Make approximate numerical calculations (on a computer)
for the NaCl lattice. First use a cubic geometry in which
2ma is the cube side-length, with a the separation of near-
est neighbors, and second a spherical geometry where ma
is the radius of the sphere. Carry out the calculation for
m values of 97, 98 and 99, and compare the results. Please
submit your code for this question, as well as a discussion
of why calculations in the two geometries behave so differ-
ently.

Answer for Exercise 1.3

Part a. Consider an ionic arrangement as illustrated in fig. 1.37.

Figure 1.37: Linear ionic solid configuration.

With rij = apij, with pij the difference in the enumeration indices,
our Madelung constant for the ion at position zero is

A0 = ∑
i ̸=0

zi

|r0i/a|

= ∑
i ̸=0,i odd

1
i
− ∑

i ̸=0,i odd

1
i

= 2
∞

∑
j=0

1
2j + 1

− 2
∞

∑
j=0

1
2j + 2

= 2
(

1
1
− 1

2
+

1
3
− 1

4
+ · · ·

)
= 2 ln(1 + 1)

≈ 1.39.

(1.16)
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Part b. Positioning the Cl – ion in the center, we want to sum

A = ∑
i,j,k∈[−m,m],{i,j,k}̸={0,0,0}

(−1)i+j+k+1√
i2 + j2 + k2

. (1.17)

For the spherical geometry this sum will be limited by an addi-
tional constraint on the sum of

i2 + j2 + k2 ≤ m2. (1.18)

For the calculations see qmSolidsPs1P3b.nb
The sum over the cubic configuration appears to converge on

a value in the range (1.741, 1.753). On the other hand for m =
97, 98, 99 we have A = 15.405,−4.513, 3.570 respectively. This spher-
ical summation is wildly divergent for small values of m, oscillat-
ing between positive and negative values with no apparent reg-
ularity. Given the symmetry of the cubic structure with respect
to additional shells of charge it is not surprising that this sum is
better behaved for low values of m. With a rough estimate of 1018

atoms in a grain of salt, we’d still have m of the order 108 ≫ 99
for a crystal structure of decent extent. A sum with m = 99 is still
very small. This is apparently small enough that we can’t expect
any sort of convergence for a spherical summation that has no
inherent symmetry as new spherical “shells” are added.

Grading remarks: Lost marks for the underlined text above, with
comment “Explain specifically and in physical terms what this
means.” The posted solutions included a nice table that shows
how the number of positive vs number of negative atoms in the
lattice as m increases, and how that difference in the total charge
difference oscillates wildly when we increase the spherical volume
but very little when increasing the volume of the cube.

Exercise 1.4 Bonding, structure, melting points. (2013 ps2 p1)

Explain how trends in melting points in the periodic table might
be explained in terms of the relationship between the type of bond-
ing and the character of the valence electrons.

For the melting points see the periodic table handed out in the
first lecture, which can also be found at:

http://www.sciencegeek.net/tables/lbltable.pdf

http://www.sciencegeek.net/tables/lbltable.pdf


26 bonding .

Specifically discuss melting points of (a) the alkali metals (the
first column of the periodic table not including hydrogen); (b) the
noble gases (the last column of the periodic table); (c) boron and
carbon; (d) oxygen and nitrogen; and (e) the transition metals.

You should write around 300 words (or more).
Answer for Exercise 1.4

Starting with the group 1A, the alkali metals , we see in fig. 1.38

a clear trend of decreasing melting points as the atomic number
increases, starting with Li melting at 453 K, down to Cs melting at
the hot summer temperature of 302 K. Elemental solids for these
elements are held together by metallic bonding . It’s likely that
the single “available” ns1 orbital electrons are most involved in
this metallic bonding. Because these orbitals increase in size with
the atomic radius, we have a delocalization of the electrons in-
volved in this metallic bonding, and it makes sense that there is
an associated decrease in melting point with Z since the electrons
involved in the bonding of the corresponding solids are propor-
tionally spread spatially.

Li

Na

K

Rb
Cs

0 10 20 30 40 50
Z

300

350

400

450

m.p. (K)

Figure 1.38: alkali metal melting points.

Moving to group 8, the noble gases , we see in fig. 1.39 that
the melting points are all extremely low. Unlike the alkali metals,
the melting points increase with Z. With these elements all having
completely filled orbitals (ns2np6) we expect the melting points to
be low, since the bonding in the solid state is going to be domi-
nated by Van der Waals bonding. We have an increase of atomic
radii with Z as we go down the column. It seems plausible that
energy supplied to these elements in solid form would tend to dis-
rupt stable dipole configurations, especially as the radii increases
for larger Z elements. That is consistent with an inhibition of Van
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der Waals bonding, accounting for the increase in melting points
with Z that we see in the periodic table data.

Ne

Ar

Kr

Xe
Rn

20 40 60 80
Z

50

100

150

200

m.p. (K)

Figure 1.39: noble gas melting points.

The melting points of B (1s22s2 p1) and C (1s22s2 p2), as plotted
in fig. 1.40 are very large compared to the alkali metals and noble
gases. Bonding in these elements is covalent, and high energies
will be required to break these bonds. Solid boron is found as
B

12
[16]. With each boron atom in such a crystal we have enough

1p orbital electrons to populate the equivalent of two covalent
1p6 bonds. The melting points of both the tetrahedral diamond
solid structure and the planar graphite structure are similar, with
graphite melting 2-47 K higher than diamond. We can have strong

B

C

5.0 5.2 5.4 5.6 5.8 6.0
Z

2500

3000

3500

m.p. (K)

Figure 1.40: boron and carbon melting points.

Moving along the 1p period to N we have a remarkable drop in
melting point, down to 63 K from 4100 for C. Observe that N with
state 1s22s21p3 has half filled orbitals and thus has an inherent sta-
bility even in isolation. We see similar drops in melting points at
other points where we have half or completely filled orbitals, such
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as Mn ([Ar]3d54s2 fig. 1.42), Tc ([Kr]4d55s2 fig. 1.43), Eu and Yb
([Xe]4 f 76s2, [Xe]4 f 146s2 fig. 1.44), and also in the noble gases with
np6 states. We will still have covalent bonding for N and O but
this can occur in the smaller geometric configurations N

2
and O

2

which is consistent with lower melting points. The lower melting
point of O compared to N is somewhat of an oddity and not ac-
counted for by the drop and rise of melting point that we see in the
periodic table when transitioning into and from half filled orbital
states. However, we’ve noted that we can have sp hybridization in
O. It seems reasonable that a difference in stability for this hybrid
bonding compared to the purely 1p covalent bonding of solid N
accounts for the lower melting point of solid O compared to solid
N.

N

O

7.0 7.2 7.4 7.6 7.8 8.0
Z

56

58

60

62

m.p. (K)

Figure 1.41: oxygen and nitrogen melting points.

The transition metals are those elements characterized by in-
complete filled d and f orbitals in their ground state (although
some of these may also have incomplete s orbitals as the filling
sequence is not necessarily uniform). These elements, plotted in
fig. 1.42, fig. 1.43, and fig. 1.44 form metallic bonds due to these
delocalized d, and f-orbital electrons. The melting point dips at
Mn, Tc, as noted above, are the elements for which we have ex-
actly half filled orbitals. The maximum melting points are found
in the neighborhood of these half filled orbital states, and decrease
towards the completely filled orbital states on either side (or the
column 1 elements which are fairly close to completely filled) as
one progresses up or down the period. We’ve seen with the noble
gases with their completely filled p orbitals have the lowest melt-
ing points, but we have local minimums just past the transition
metals at Zn, Cd, Hg ( [Ar]3d104s2, [Kr]4d105s2, [Xe]4 f 145d106s2
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) just before the p block. This last element mercury is very famil-
iar as the oddball metal that is liquid at room temperature. We
see this is a consequence of the stability of its completely filled or-
bitals. With the higher melting points in the central regions of the
transition metal periods is appears that more delocalized (but in-
completely filled) orbitals allows for stronger bonding, requiring
more energy to break the metallic bonds and melt the metal.
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Figure 1.42: period 4 transition metal melting points.
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Figure 1.43: period 5 transition metal melting points.
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Figure 1.44: period 6 transition metal melting points.
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2.1 periodicity.

Reading: §2.0 [10]. Also very helpful is [14].
Most solids prefer a periodic arrangement of their atoms. This

is due to directional bonding, and is easy to see in some cases, as
in our diamond tetrahedral pattern of fig. 2.1.

Figure 2.1: Diamond tetrahedron.

Unproven theorem of no name: lowest energy configuration of
atoms in a solid is periodic.

Minimum Coulomb energy for integer ratios of atoms Na
1

Cl
1

,
Fe

2
O

3
, Fe

3
O

4
, PrOs

4
Sb

12
, YbCO

2
Zn

20
.

There’s a lot of info on “amorphous/glassy” materials are not
periodic. We won’t consider these.

Mathematical description of periodicity Starting with a 2D lattice as
in fig. 2.2. Two vectors can generate a lattice (or 2 lengths and 1

angle)
We’ll assign each atomic center a vector

rn = n1a + n2b. (2.1)

Only five cases (in 2D) that are symmetrically distinct that leave
no spaces

FIXME: No figure – too fast with the eraser. a ̸= b, γ = π/2?
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Figure 2.2: 2D lattice.

Figure 2.3: square lattice. a = b, γ = π/2.

Figure 2.4: Rectangular. a ̸= b, γ = π/2.
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Figure 2.5: Hexagonal close packed.

Figure 2.6: Rhombic, or centered rectangular. a = b, γ ̸= π/2, π/3.

2.2 crystal structures .

Reading: pp. 23-24 [10]. Handout: Bravais lattices in three dimen-
sions [17].

We have seven possibilities that fill space (see handout). We
need 3 vectors or three lengths angle pairs to describe the geome-
tries, as in fig. 2.7.

Figure 2.7: Lattice geometry.

Lots of study of hexagonal structures since there appears to be
a preference for that in many superconducting materials.
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2.3 point group symmetry.

Reading: §2.2 [10].
One way to distinguish crystal structures is according to the

symmetries that they have. Each crystal structure has symmetry
operations that map the crystal onto itself.

To illustrate fig. 2.8 (also on the slide)

Figure 2.8: Symmetries of a graphene lattice.

• A is a 6 fold rotation axis.

• B is a 2 fold rotation axis.

• C is a 3 fold rotation axis.

• D is a 2 fold rotation axis.

A and B are inversion centers, so that (r → −r) maps any lattice
point onto an existing lattice point.

The plane perpendicular to the page, containing D, is a mirror
plane.

C is a 6-fold rotation-inversion axis, so that under rotation then
inversion, each point maps onto an existing lattice point.

Have other symmetries. For example, the glide plane E has a
symmetry operation under inversion followed by translation.

Symmetry operations tell you about degeneracies of energy eigen-
states, and the number of independent elastic constants, ...

Group theory ideas of symmetries described too briefly in §2.3,
2.4 [10], read if desired.
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2.4 simple crystal structures .

Reading: [1] ch. 4

Assume one atom per lattice point. This is called a 1 atom basis.
Simple cubic Very rare: only Po, which is very toxic. This is in

fact the toxic substance that was used as in the assassination by
injection in the UK of Alexander Litvinenko, the former KGB and
FSB agent turned undesirable reporter for Chechenia [18].

Figure 2.9: Simple cubic.

Face centered cubic (FCC) (Cu, Ni, Au, Pd)
This one is very common

Figure 2.10: Element of a face centered cubic.

Fig 2.8 in the text.
This is a conventional unit cell.
Total 4 atoms per conventional unit cell

8 corners × 1
8 = 1 atoms (2.2a)

6 × 1
2 faces = 3 atoms. (2.2b)
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The primitive lattice vectors are

a =
(

1√
2

,
1√
2

, 0
)

a (2.3a)

b =
(

1√
2

, 0,
1√
2

)
a (2.3b)

c =
(

0,
1√
2

,
1√
2

)
a. (2.3c)

Describing this Bravais lattice as

rn = n1a + n2b + n3c. (2.4)

The primitive unit cell contains 1 lattice point. In [1] ch. 4 a dis-
tinction is made between a Bravais lattice structure, and a Bravais
lattice basis eq. (2.4). The Bravais lattice is the smallest cell that
can be repeated to recover the periodic structure. This does not
necessarily contain just a single atom. Two Bravais lattice structure
choices are illustrated for a 2D cubic centered lattice in fig. 2.11.
These are both two point lattice structures, with one containing
two whole atoms, and the other containing one whole atom and
four quarter atoms.

Figure 2.11: Two Bravais lattice choices for 2D cubic centered.

A, B, C are 4-fold axes.
Cube diagonal is a 3-fold axis.
Face centered cubic (FCC) is actually a stack of 2-d hexago-

nal close packed (HCP fig. 2.12) planes (fig: see slides 04_hand-
out.pdf).
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Figure 2.12: Hex close packing.

A common form of dislocation in crystal structures is a mix of
face centered and hexagonal close packed. Not over layer 1 =>
FCC. Both lattices have filling factor 0.7406.

Transition metals often like FCC because of covalent d bonding,
as roughly illustrated in fig. 2.13.

Figure 2.13: D orbital bonding in a plane.

But, for example Co has an HCP phase due to s, p, d hybrid
orbitals.

In the p-block:

• sp2 hybrids → hexagonal.

• sp3 hybrids → diamond.

Body centered cubic (BCC)
Total 3 atoms per conventional unit cell

8 corners × 1
8 = 1 atoms (2.5a)
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Figure 2.14: Element of a body centered cubic.

1 center = 1 atom. (2.5b)

BCC has 8 nn, FCC has 12.
FCC is more common, but column 1 of the periodic table are all

body centered cubic.
Because n s orbitals are huge

Figure 2.15: Large extent of ns orbitals.

Diamond lattice
See: 04_lecture
This is an FCC + 4 tetrahedral holes that are filled due to sp3

hybridization.

Reading: pp. 35, 36 [10]. Skip phase diagrams.

2.5 general theory of diffraction.

Our diffraction geometry is illustrated in fig. 2.16.
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Figure 2.16: Diffraction in crystal by x-rays, neutrons, ...

In the crystal we can imagine light and atom interaction as illus-
trated in fig. 2.17.

Figure 2.17: Diffraction interaction in the crystal.

The incident beam makes electrons vibrate at frequency ω◦, and
re-radiate at ω◦.

The diffraction pattern is the constructive interference of the re-
radiated x-rays (or neutrons)

At P, primary beam has amplitude

Ap(r, t) = A◦ exp (i (k◦ · (R + r)− ω◦t)) . (2.6)

Here A◦ is constant everywhere and k◦ = 2π/λ◦.
Scattered wave at P has amplitude

ρ(r)Ap(r, t). (2.7)

where

ρ(r) = “scattering density”. (2.8)
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For neutrons we’ve got interactions with the nuclei, and things get
messier, but for x-rays

ρ(r) ∼ electron density. (2.9)

This density is largest near the nucleus, at least for large Z (heavy)
atoms like La, and Ac. Large Z atoms are easier to see.

Amplitude at B, due to r

AB(r) = Ap(r)ρ(r)
eik·(R′−r)

|R′ − r|

≈ Ap(r, t)ρ(r)
eik·(R′−r)

|R′| .

(2.10)

time independent part of ρ(r) => secondary beam has frequency
ω◦, or

|k| = |k◦| =
ω◦
c

. (2.11)

This is the elastic scattering. We ignore inelastic scattering.
The vector R′ determines the direction of k.
If R′ ≫ r, k is close to the same for all r. Then eq. (2.10) is

approximately

AB(r) ≈ A◦
R′ ei(k◦·R+k·R′)

independent of r

ρ(r)ei(k◦−k)·re−iω◦t

dependent of r

. (2.12)

Total amplitude at B

AB ∝ e−iω◦t
∫

ρ(r)e
i (k◦ − k)

≡ −K

·r
dr. (2.13)

So that the intensity is

IB ∝ |AB|2 ∝
∣∣∣∣∫ ρ(r)e−iK·rdr

∣∣∣∣2. (2.14)

This is the Fourier transform of the scattering density.
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2.6 reciprocal lattice .

Reading: [1] ch. 5.
- 1D crystal. Illustrated in fig. 2.18.

Figure 2.18: 1D crystal diffraction electron density.

ρ(x) = ∑
n

pnein2πx/a. (2.15)

Show that

ρ(x + ma) = ρ(x). (2.16)

- 3D lattice

ρ(r) = ∑
G

ρGeiG·r. (2.17)

With

rn = n1a1 + n2a2 + n3a3, (2.18)

find the G’s, such that

ρ(r + rn) = ρ(r). (2.19)

eiG·rn = 1, (2.20)

or

G · rn = 2πm, (2.21)
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where m is an integer.
Try

G = hg1 + kg2 + lg3, (2.22)

where h, k, l are integers.
The G’s are wave vectors of waves with the periodicity of the

lattice.

Example 2.1: 2D periodic lattice.

An example of reciprocal projection is illustrated in fig. 2.19.

Figure 2.19: reciprocal projection.

Here ei · ej = δi
j, not using the 2π scaling factor that we are

using in this diffraction context.
FIXME: Our prof used the following to illustrate (which I

did a brute force cut and paste of from the prof’s notes: 05

lecture.pdf). Re-draw once I figure out what he was illustrat-
ing.
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Figure 2.20: 2d periodic lattice.

Wave 1 :

g1 · a1 = g1a1 cos θ1 = 2π (2.23a)

g1 · a2 = 0. (2.23b)

Wave 2 : g2 · a1 = 0,

g2 · a1 = 0 (2.24a)

g2 · a2 = g2a2 cos θ2 = 2π. (2.24b)

We can read off relations between the wavelengths from these

λ1 = a1 cos θ1

λ2 = a2 cos θ2.
(2.25)

We introduce reciprocal vectors defined by

gi · aj = 2πδij. (2.26)

The general formula in 3D is

g1 = 2π
a2 × a3

a1 · (a2 × a3)
(2.27a)

g2 = 2π
a3 × a2

a2 · (a3 × a1)
(2.27b)
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g3 = 2π
a1 × a3

a3 · (a1 × a2)
. (2.27c)

The numerator cross product ensures that g1 is perpendicular to
a2 and a3. The one in the denominator “cancels” the a2 × a3 in the
numerator.

2.7 constructive interference .

Constructive interference is diffraction peaks (spots). In general
the intensity is

I(K) =
|A◦|2
R′2

∣∣∣∣∫ ρ(r)e−iK·rdr
∣∣∣∣2, (2.28)

so that after a periodic decomposition we have

I(K) =
|A◦|2
R′2

∣∣∣∣∣∑G ρG

∫
ei(G−K)·rdr

∣∣∣∣∣
2

. (2.29)

When

K = k − k◦ = G. (2.30)

the integrand is unity (so the integral is the area of the diffraction
aperture), whereas if

K ̸= G. (2.31)

integrand oscillates, and the integral ∼ 0.

Figure 2.21: Cancellation.
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Figure 2.22: Diffraction.

This is effectively a δK,G condition, defining the Laue condition
for constructive interference.

K = G. (2.32)

In particular

I(K = G) =
|A◦|2
R′2 |ρG|2V2, (2.33)

where V is the scattering volume. This is discussed further in [10]
§3.3.

2.8 ewald sphere .

Reading: [1] ch. 6.
As mentioned elastic scattering is characterized by |k| = |k◦|.

This allows for a geometric (in reciprocal space) interpretation of
the Laue condition. The procedure is

1. Draw reciprocal lattice (r.l.)

2. draw k◦ with the head at a r.l. point

3. draw sphere of radius k◦ around the tail

4. if there sphere intersects other r.l. points we have diffraction.
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Figure 2.23: Ewald sphere.

2.9 scattering in terms of lattice points .

A lattice has an infinite number of sets of parallel planes that con-
tain all lattice points.

A given set of planes is labeled by Miller indices.

1. start at the origin

2. With m, n, o all integers,

• go ma1 to next plane.

• go na2 to next plane.

• go oa3 to next plane.

3. Find
( p

m , p
n , p

o

)
. These triplets are called the Miller indices.

Example 2.2: Simple cubic.

Figure 2.24: Cubic Miller planes.
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(1 × a1, ∞ × a2, ∞ × a3). (2.34)

( p
1

,
p
∞

,
p
∞

)
. (2.35)

with p = 1 this gives Miller indices of

(1, 0, 0) . (2.36)

As another example, consider an fcc configuration, as in fig. 2.25.
Here two possible Miller planes are indicated. We use

Figure 2.25: fcc Miller planes.

Ghkl = jg1 + kg2 + lg3, (2.37)

with this perpendicular to a plane that we can identify as the
(h, k, l) plane.

Example 2.3: Miller index demonstration.

FIXME: figure stolen from Prof’s notes. Was hard to draw in
class.

Here we illustrate two pairs of arbitrary planes each pass-
ing through two lattice points.
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Figure 2.26: Miller index demonstration.(
1 × a1,

1
2
× a2,−a3

)
=⇒

(
p
1

,
p
1
2

,− p
1

)
=⇒ (1, 2,−1) .

(2.38)

To find the perpendicular, define 2 non-parallel vectors in a
plane: a1 − a2/2, −a3 − a2/2.

Perpendicular vector is

∝ (a1 − a2/2) × (−a3 − a2/2)

=
1
2

a2 × a3 + a3 × a1 −
1
2

a1 × a2

∝ g1 + 2g2 − g3 = G1,2,−1.

(2.39)

A more general treatment can be found in [10] §3.4. That section of
the text introduces a variety of indices that are worth enumerating

• (m, n, o). These provide the scaling rn = ma1 + na2 + oa3 for
each of the lattice points in position space.

• (h′, k′, l′) = (1/m, 1/n, 1/o). These are non integral reciprocal
indices, that are to be scaled by a integral constant p.

• (h, k, l) = p(h′, k′, l′). After scaling with an appropriate con-
stant p (for example, p = mno), these are integer valued
constants that are reciprocal to the (m, n, o) position space
indices.

The text uses (m, n, o) = (1, 2, 2) as an example. It is redrawn
here with just two planes in fig. 2.27.
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Figure 2.27: Lattice planes example.

Identification of Ghkl with the lattice plane for mno We can factor
Ghkl as the cross products of two vectors in the plane

2πp
mnoa1 · (a2 × a3)

(ma1 − na2)× (na2 − oa3)

=
2πp

mnoa1 · (a2 × a3)
(mna1 × a2 + noa2 × a3 + oma3 × a1)

=
2πp

a1 · (a2 × a3)

(
1
o

a1 × a2 +
1
m

a2 × a3 +
1
n

a3 × a1

)
=

2πp
a1 · (a2 × a3)

(
h′a2 × a3 + k′a3 × a1l′a1 × a2

)
=

2π

a1 · (a2 × a3)
(ha2 × a3 + ka3 × a1 + la1 × a2)

= hg1 + kg2 + lg3

= Ghkl .

(2.40)

Observe that this geometrical identification shows that the hkl in-
dices of Ghkl are the reciprocal lattice indices in momentum (dual)
space, not the original mno indices of the position space lattice.

Distance between lattice planes Looking back to fig. 2.27 we see
that the distance between integer multiples of the same lattice
points can be calculated by projecting any one of the ma1, na2, oa3

vectors onto the direction of the corresponding Ĝhkl
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The text calls the distance from the origin to the first lattice
plane

d′hkl = ma1 · Ĝhkl

= ma1 ·
Ghkl

Ghkl

= m
2πh
Ghkl

=
2πp
Ghkl

.

(2.41)

and then scales this as

dhkl =
d′hkl

p
=

2π

Ghkl
, (2.42)

calling this the distance to the “nearest” lattice plane. It initially
seemed to me that d′hkl ought to be described as the distance to the
nearest lattice plane, since the distance from the origin appeared
like it was the separation of the two closest planes. A classmate
James explained what I had failed to understand. The entire lattice
that the sample primitive lattice cell would generate is not just
replicated for integer multiples of 2a1, but all the multiples of a1

(there are many possible lattice planes and we have to allow for
all integer multiples rn = ma1 + na2 + oa3). This is illustrated in
fig. 2.28.

Figure 2.28: Primitive cell replication and all the Miller 122 planes.
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Observe how there ends up being a plane between the origin
and plane for which 2a1 was a lattice point. This is why we need
to divide this value by two (in this p = 2 case), and more generally
introduce the scaling dhkl = d′hkl/p.

2.10 bragg condition.

Reading: [1] ch. 6.
In fig. 2.29, is a geometric depiction of G in reciprocal space,

with the hkl plane perpendicular to the page.

Figure 2.29: Diffraction geometry.

Observe that

Ghkl · k̂◦ = k◦ sin θ =
Ghkl

2
. (2.43)

With Ghkl from eq. (2.42), we have

2π

dhkl
= 2k◦ sin θ = 2

2π

λ◦
sin θ, (2.44)

or

λ◦ = 2dhkl sin θ. (2.45)

This is the Bragg condition, which we showed is equivalent to
the Laue condition, and illustrated in fig. 2.30. Path difference is
2d sin θ = nλ for constructive interference.

2.11 structure factor .

Reading: [1] ch. 6, ch. 9 (§in monatomic lattices).
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Figure 2.30: Bragg condition.

It is useful to quantify the interference between waves scattered
from a unit cell. To do so the structure factor is introduced, and
the ideas are outlined here. See [10] §3.6, and [1] ch. 6, for more
complete treatments.

Recall that the aperture function for a period lattice was defined
by

ρ(r) = ∑
hkl

ρhkleiGhkl ·r. (2.46)

The Fourier coefficient ρhkl can be recovered by integrating over a
unit cell as depicted in fig. 2.31

ρhkl =
1

Vcell

∫
cell

ρ(r)e−iGhkl ·rdr. (2.47)

Note that ρ(r) is large close to each nucleus. Using the change
of variables to atom centered bases, we find

ρhkl ∼
1

Vcell
∑
α

eiGhkl ·rα

∫
ρα(r′)e−iGhkl ·rdr′, (2.48)

where the index α is used to sum over all atoms in a primitive unit
cell. The integral portion is the atomic scattering factor (which can
be tabulated), and is designated

fα =
∫

ρα(r′)e−iGhkl ·rdr′. (2.49)
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Figure 2.31: Cell relative vector positions.

In terms of the scattering factor, eq. (2.48) is

ρhkl ∼
1

Vcell
∑
α

fαe−iGhkl ·rα

Shkl , the structure factor

. (2.50)

Recall from eq. (2.33) that the intensity at K = G is proportional
to |ρG|2. Because of this and eq. (2.50), we can utilize the structure
factor as a measure of intensity at a reciprocal lattice point

I(K = Ghkl) ∝ |Shkl |2. (2.51)
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Example 2.4: BCC lattice as simple cubic and 2 atom basis.
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Figure 2.32: Bcc.

r1 =

0

0

0

 (2.52a)

r2 =
a
2

1

1

1

 (2.52b)

Ghkl · rn = 2πm. (2.53)

Shkl = f ( 1

corner

+ e
−i π(h + k + l)

body center

). (2.54)

A bcc lattice has same diffraction pattern as simple cubic, ex-
cept all h + k + l = odd spots are missing.

Reading: [10] §3.7

2.12 brillouin zones .

We can define a special primitive unit cell, by bisecting the (recip-
rocal) lattice vectors with a plane. In 2D consider fig. 2.33

All points inside the first Brillouin zone are closer to (0, 0) than
to any other lattice point.

Example: 07 lecture.pdf
Fcc lattice has a bcc reciprocal lattice.
Some 3D figures from [15] were shown in slides.
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Figure 2.33: First Brillouin zone.

Examination hint: A frequent exam question will be to draw a
primitive unit cell for a lattice: follow this procedure.

2.13 problems .

Exercise 2.1 Packing of spheres on lattices. (2013 ps2 p2)

(based on question 2.7 of Ibach and Luth) Supposing the atoms to
be rigid spheres in contact, calculate the fraction of space that is
filled by atoms in

a. the fcc lattice.

b. the primitive cubic lattice.

c. the hcp lattice.

Answer for Exercise 2.1

Part a. For fcc we refer to fig. 2.10 to see that if the cube width
is a the radius of any of the spherical pieces is

√
2a/4, and the

volume occupied is

4
3

π
(√

2
a
4

)3
(

1
2
× 6 +

1
8
× 8
)

= �4
3

πa3 2
√

2
4�4�4

(���3 + 1)

= πa3

√
2

6
,

(2.55)
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so that the occupied fraction for fcc is

ρ f cc =

√
2π

6
≈ 0.740. (2.56)

Part b. For bcc we refer to fig. 2.14.
For the bcc element twice our diameter is the diagonal cross

length of
√

3a2, so our filling fraction is

4
3

π

(√
3

4

)3 (
1 +

1
8
× 8
)

. (2.57)

This simplifies to

ρbcc

√
3π

8
≈ 0.680. (2.58)

Grading remark: “simple cubic?”. Oops. I calculated bcc instead
of simple cubic. For simple cubic fig. 2.9 the occupied volume is

8 × 1
8

4
3

πa3, (2.59)

so that the occupied fraction is this divided by (2a)3, or

ρsimple cubic =
π

6
≈ 0.5236. (2.60)

Part c. From http://youtu.be/GAd18wfbXfY I frame grabbed
an hcp hexagonal unit cell diagram fig. 2.34 to calculate from.

Figure 2.34: Hex Close Packed unit cell.

http://youtu.be/GAd18wfbXfY
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Some authors appear to call this structure the unit cell for hcp,
since it is clearly possible to construct a periodic structure using
it. However, others divide it into three parts and call each of those
parts the primitive unit cell for hcp as in fig. 2.35.

Figure 2.35: hcp primitive unit cell.

It is apparently possible to use repetition of this structure (likely
after various transformations) to do the 3D hcp tiling, but that’s
not obvious when viewing a 2D diagram of such a unit cell. We
can do the packing density calculation using the hexagonal struc-
ture instead.

An attempt to actually construct this structure shows that the
representation of fig. 2.34 is actually deceptive, since it make it
appear that the three interior spheres are tidily constrained by the
walls of the hexagonal prism. We find instead that there is portions
of those three interior spheres are sheared off by the unit cell walls,
but those sheared portions can be fit back in. This is illustrated in
fig. 2.36 (note that I glued in the relocated piece slightly incorrectly,
and it should be shifted up as illustrated).

Finally, the key to the density calculation is the observation that
we have three tetrahedrons formed between the bottom and mid-
dle layers of the unit cell. Two of these three tetrahedrons are
marked in fig. 2.37.

Moving on the calculation, first consider the base of the tetrahe-
dron, which has the form illustrated in fig. 2.38.
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Figure 2.36: Second layer overlap packing in hcp.

Figure 2.37: Tetrahedral packing of two hcp layers.

Figure 2.38: Tetrahedral base.
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We want the interior distance a on the base, which we find from

r2 = a2 −
( a

2

)2

= a2
(

1 − 1
4

)
,

(2.61)

or

a =
2
√

3r
3

. (2.62)

Next we calculate the height of the tetrahedron, referring to fig. 2.39.

Figure 2.39: Tetrahedral height.

The height of the tetrahedron is

h2 = (2r)2 − a2

=
(

4 − 4
3

)
r2

=
8
3

r2,

(2.63)

so we have, for the height of half the hexagonal cell

h =

√
8
3

r. (2.64)

The base of the hexagonal structure is depicted in fig. 2.40

We calculate that area to be

A = 12 ×
√

3r2, (2.65)
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Figure 2.40: Hex cell base area calculation.

so that the total volume is

V = 12��
√

3

√
8
�3

r3

= 24
√

2r3.
(2.66)

We can now compute the density

4
3 πr3 (6 × 1

6 + 6 × 1
6 + 3 + 2 × 1

2

)
24
√

2r3
=

4
3 π6

24
√

2
, (2.67)

or

ρhcp =

√
2π

6
≈ 0.740. (2.68)

This is the same packing density as we had in the fcc configuration,
both more dense than the simple cubic lattice.

Exercise 2.2 Lattice vectors and unit cell. (2013 ps2 p3)

A crystal has a basis of one atom per lattice point and a set of
primitive translation vectors is

a = 3x̂ b = 3ŷ c = 1.5(x̂ + ŷ + ẑ),

where x̂, ŷ and ẑ are the unit vectors in the x,y and z directions.
Assume that the dimensions are Angstroms, Å.
What is the lattice type of this crystal, what is the volume of

the primitive unit cell, and what is the volume of the conventional
unit cell?
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Answer for Exercise 2.2

First observe that the integer multiple span of vectors a and b
cover all the grid points separated by 3 units (Å). Also observe
that the combination

2c − a − b = 3ẑ, (2.69)

means that we have coverage of all cubic grid points separated by
3 units, and will have the same grid coverage from any plane that
we can reach. Finally, note that moving c from the origin takes us
to the center of the width three cubic lattice in the first quadrant.
This means that we have cubic coverage with all centers filled.

This is a bcc lattice, and is plotted in fig. 2.41.

Figure 2.41: Bcc lattice.

The primitive unit cell volume is that of the parallelepiped formed
by the vectors a, b, c, which is

Vprimitive = 3 × 3 × 3
2

∣∣∣∣∣∣∣∣
1 0 0

0 1 0

1 1 1

∣∣∣∣∣∣∣∣Å
3

=
27
2

Å
3
.

(2.70)

The conventional unit cell is depicted in fig. 2.14, and has volume

Vconventional = 27Å
3
, (2.71)

which is twice the primitive cell volume in this case.
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~a1

~a2

0

1

2
3

4

5

Figure 2.42: A sample lattice.

Exercise 2.3 Geometry of reciprocal lattice. (2013 ps3 p1)

Figure 2.42. shows a two-dimensional lattice together with two
vectors.

a. Demonstrate that a1 and a2 are basis vectors by showing
that you can reach the sites numbered 1 through 5 by a
combination of a1 and a2. (e.g. to reach site 1 use 0 ∗ a1 + 1 ∗
a2, etc.. )

b. On the page and using a ruler and/or protractor and/or
any other drafting tools you may require, draw the two ba-
sis vectors g1 and g2 of the corresponding reciprocal lattice.
Draw g1 and g2 to scale (so they have the correct length
relative to each other).

c. Consider three waves, with wave-vectors ka = g1, kb = g2

and kc = g1 + 2g2, draw lines on the diagram to indicate the
positions of the wave-crests, assuming that one of the crests
passes through the point “0". If these lines correspond to
“planes" in the two-dimensional crystal, give the Miller in-
dices of the planes.

Answer for Exercise 2.3

Part a. Our linear combinations are

1. a2
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2. a2 − a1

3. 2a2

4. a1

5. a1 − a2

Part b. With the x-axis measured along a1 in cm, I measure

a1 = (2, 0) ± 0.05

a2 = ((1.75, 2.6) ± 0.05)
(2.72)

Computing the reciprocal frame by inversion, we have

[
g1 g2

]
= 2π

[
aT

1

aT
2

]

=

[
3.14159 0.

−2.11453 4.83322

] (2.73)

These are drawn out on the fig. 2.43.

Part c. Referring again to fig. 2.43.

• The wave crests for ka = g1 are shown in blue. For this wave
we have ka · a1 = g1a1 cos θ = 2π, or a wave length of 2π/|g1|.
The Miller indices for this wave are 1, 0, 0.

• The wave crests for kb = g2 are shown in red. For this wave
we have kb · a2 = g2a2 cos θ = 2π, or a wave length of 2π/|g2|.
The Miller indices for this wave are 0, 1, 0.

• The wave crests for kc = g1 + 2g2 are shown in pink and
green.

For the pink wave we have kc · a1 = kca1 cos θ = g1a1 = 2π,
or a wave length of 2π/|kc|. The angle between kc and a1 is
cos θ = 1/

√
5, or θ ∼ 63◦.

For the green wave we have kc · a2 = kca2 cos θ = 2g2a2 = 4π,
or a wave length of 4π/|kc|. The angle between kc and a2 is
cos θ = 2/

√
5, or θ ∼ 26◦.

The Miller indices for this wave are 1, 2, 0.
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Figure 2.43: reciprocal vectors and sample wave trains.
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Exercise 2.4 FCC reciprocal lattice. (2013 ps3 p2)

Now for a face-centered cubic lattice with conventional unit cell
of side length a:

a. Draw the conventional unit cell and number all of the cor-
ner and face-centered atoms, and demonstrate that the vec-
tors a1 = a

2 (1, 1, 0), a2 = a
2 (1, 0, 1) and a3 = a

2 (0, 1, 1), are
primitive lattice vectors in the sense that you can get to ev-
ery lattice point in the unit cell using these vectors.

b. Using the formula from the lectures show that the volume
of the primitive unit cell is 1/4 of the volume of the conven-
tional unit cell.

c. Using the formula from the lectures, find the basis vectors
of the corresponding reciprocal lattice, and show that these
basis vectors generate a body-centered-cubic lattice in re-
ciprocal space.

Answer for Exercise 2.4

Part a. The lattice and the primitive lattice vectors are sketched
in fig. 2.44.

Figure 2.44: Fcc lattice and primitive lattice vectors.
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To demonstrate that we can get to each lattice point, we first
invert a matrix of the lattice vectors1 1 0

1 0 1

0 1 0


−1

=
1
2

 1 1 −1

1 −1 1

−1 1 1

 . (2.74)

This allows us to read off the corners of the cube in terms of the
primitive lattice vectors (which perhaps could have been done by
inspection)

a1 + a2 − a3 =

a

0

0

 (2.75a)

a1 + a3 − a2 =

0

a

0

 (2.75b)

a2 + a3 − a1 =

0

0

a

 . (2.75c)

Our lattice points, in terms of the primitive vectors are

1. a1 + a2 − a3

2. 2a2

3. a1 + a2 + a3

4. 2a1

5. a1 + a2

6. 0

7. a1 + a3 + a1

8. 2a3
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9. a1 + a3 − a2

10. a3

11. a2

12. a1 + a3

13. a2 + a3

14. a1

Part c. Computing the three sets of cross products we have

a2 × a3 =
( a

2

)2

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

1 0 1

0 1 1

∣∣∣∣∣∣∣∣ =
( a

2

)2

−1

−1

1

 (2.76a)

a3 × a1 =
( a

2

)2

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

0 1 1

1 1 0

∣∣∣∣∣∣∣∣ =
( a

2

)2

−1

1

−1

 (2.76b)

a1 × a2 =
( a

2

)2

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

1 1 0

1 0 1

∣∣∣∣∣∣∣∣ =
( a

2

)2

 1

−1

−1

 . (2.76c)

Our triplet product is

a1 · (a2 × a3) =
( a

2

)3
(−2) . (2.77)

Putting these together we have

g1 = 2π
a2 × a3

a1 · (a2 × a3)
=

2π

a

 1

1

−1

 (2.78a)

g2 = 2π
a3 × a1

a1 · (a2 × a3)
=

2π

a

 1

−1

1

 (2.78b)
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g3 = 2π
a3 × a1

a1 · (a2 × a3)
=

2π

a

−1

1

1

 . (2.78c)

Note that we can also compute all the reciprocal basis vectors
more directly by inversion

[
g1 g2 g3

]
= 2π

aT
1

aT
2

aT
3



= 2π
2
a

1 1 0

1 0 1

0 1 1


−1

=
2π

a

 1 1 −1

1 −1 1

−1 1 1

 ,

(2.79)

consistent with the cross product calculation of eq. (2.78).

Part b. We’ve already computed the (signed) volume element in
eq. (2.77). The absolute value of this is the volume of the primitive
unit cell

Vprimitive = |a1 · (a2 × a3)|

=
1
4

a3,
(2.80)

which is 1/4 of the conventional cell volume.
FIXME: Grading remark: “BCC?” Ooops. Revisit: looks like I

missed doing a portion of this question.

Exercise 2.5 Ewald construction for 2D lattice. (2013 ps3 p3)

Show that the reciprocal lattice of a two-dimensional lattice can
be represented by rods. Discuss the Ewald construction for diffrac-
tion from a two-dimensional lattice and determine the diffracted
beam for a particular orientation and magnitude of k◦. (It helps
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to draw a three-dimensional diagram showing the plane of the
reciprocal lattice, the rods, and the Ewald sphere.)

Explain why you always see a diffraction pattern from a two-
dimensional crystal, provided that the magnitude of k◦ exceeds a
critical value, regardless of its orientation.
Answer for Exercise 2.5

Let’s consider first the reciprocal frame for a 2D surface by di-
rect computation. In matrix form we want to solve[

aT
1

aT
2

] [
g1 g2

]
= 2π

[
1 0

0 1

]
. (2.81)

Inverting yields the reciprocal frame vectors in columnar matrix
form [

g1 g2

]
= 2π

[
a11 a12

a21 a22

]−1

=
2π

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
,

(2.82)

or

g1 =
2π

a11a22 − a12a21

[
a22

−a21

]
(2.83a)

g2 =
2π

a11a22 − a12a21

[
−a12

a11

]
. (2.83b)

This is considerably messier than the cross product formulation
that we used in 3D. Given familiarity with the geometric algebra
formalism of [4] it is clear that can be tidied up nicely. Introduc-
ing a planar pseudoscalar I = e1 ∧ e2, and using the distribution
identity a · (b ∧ c) = (a · b)c − (a · c)b, the end result is somewhat
reminiscent of the cross product result from the text and class

g1 =
2π

(a1 ∧ a2)I
a2 · I (2.84a)

g2 = − 2π

(a1 ∧ a2)I
a1 · I. (2.84b)
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We have no reason to introduce a third dimension in either po-
sition or momentum space, but as with angular momentum and
other quantities that are naturally planar (and thus logically ex-
pressed as bivector wedge products), we can also introduce an
additional dimension so that we can work with the old familiar
3D toolbox (i.e. cross products).

Let’s try such a 3D extension of the lattice space and see if the
results are consistent, and what the reciprocal frame vectors are.
To do so we extend the lattice to a triplet {a1, a2, a3}, where a3 = e3,
a unit vector in a normal direction to the plane, now extended to
3D. Our reciprocal frame vectors are

g1 =
2π

e3 · (a1 × a2)
a2 × e3 (2.85a)

g2 =
2π

e3 · (a1 × a2)
e3 × a1 (2.85b)

g3 =
2π

e3 · (a1 × a2)
a1 × a2. (2.85c)

Observe that the triple produce is the same determinant that we
found by matrix inversion for the duality calculation

e3 · (a1 × a2) = e3 · ((a11e1 + a12e2) × (a21e1 + a22e2))

= e3 · (a11a22e3 − a12a21e3)

= a11a22 − a12a21.

(2.86)

Expanding out all the 3D extended reciprocal vectors we have

g1 =
2π

a11a22 − a12a21

 a22

−a21

0

 (2.87a)

g2 =
2π

a11a22 − a12a21

−a12

a11

0

 (2.87b)
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g3 = 2π

0

0

0

 . (2.87c)

Observe that the first two reciprocal vectors are consistent with
the planar computation of eq. (2.83).

We see that extension of our lattice frame by introducing an ar-
bitrary set of normal lattice points, introduces an additional recip-
rocal vector, also normal to those of the purely planar treatment.
Since the scaling of these normal reciprocal vectors are completely
arbitrary, we can think of that vector as the span of possible nor-
mal lattice points. This can be characterized as a rod.

Having arrived at an algebraic meaning for “rod” in this context,
let’s move on to the diagram that was suggested. This is drafted
in fig. 2.45.

Figure 2.45: Ewald sphere for 2D lattice.

Two spheres, depicted as circles, are indicated in the figure. Both
have a k◦ vector directed downwards towards the plane from the
center of the sphere.

The larger of these spheres (1) passes through the normal “rods”
in four potential places (really eight, but the additional dimen-
sions are not indicated in the figure). Each of those positions al-
lows for the construction of a G vector in the reciprocal space, so
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as indicated in the problem, there will necessarily be diffraction
provided the incident wave k◦ is a large enough magnitude.

The smaller sphere, marked (2), depicts an incident wave with
magnitude insufficient (not past the critical threshold) to cross any
of the “rods”. We cannot construct a G that has a component nor-
mal to the reciprocal lattice frame for such an incident wave, since
it is smaller than the critical value required.

Exercise 2.6 Laue vs. powder diffraction. (2013 ps4 p1)

This is based on assigned reading, §3.7, pp. 69-70.
You are given a single crystal of an unknown material and asked

to determine the lattice constants. Should you use Laue or powder
x-ray diffraction to do this? Explain why. (Note that in order to
do powder diffraction you would have to crush the single crystal.
Assume that you are allowed to do this.)

Answer for Exercise 2.6

We should use powder diffraction to determine the lattice con-
stants of this unknown material.

For a material of known structure we can use Laue diffraction
to determine the orientation of the lattice, for example, to prepare
a hexagonal prism sample of a crystal so that the planes of the
sample are oriented in a fashion that matches the internal struc-
ture. Laue diffraction employs a continuous spectrum of x-rays,
allowing for observation of all the reflections with lattice points
for which the Ewald sphere intersections lie within the range of
k◦ values of this radiation. That is sufficient to observe the sym-
metries associated with the orientation of the crystal.

Grading remark : “Why not lattice constants?” Reviewing the
grading remarks, it appears that an explicit reference to the Bragg
condition was desired here. The G = K condition required for
Laue diffraction corresponds nλ = 2dhkl sin θ. Since Laue diffrac-
tion is using all wavelengths, when we get a spot we do not know
the specific wavelength and thus cannot extract d, since that re-
quires knowing both θ and λ. Conversely when we use powder
diffraction where λ is fixed (and we measure θ) we can determine
d (or integer multiples of it?) from the Bragg condition. When us-
ing a fixed wavelength source (and thus a source with fixed k◦),
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we obtain diffraction only when that source is suitably oriented
so that the k◦ passes through lattice points on the Ewald sphere.
When that specific orientation is available it should allow for ac-
curate determination of the lattice constants associated with that
orientation, allowing a subset of the lattice structure to be deter-
mined accurately. The powder diffraction method allows for that
internal structure to be measured by using a sample of the crystal
that has been broken into pieces small enough that all possible
orientations of the crystal are present. Given that distribution of
orientations, a fixed wavelength source (and thus fixed k◦) can
be used to obtain reflections for all the Ewald sphere orientations
passing through the reciprocal lattice points.
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3.1 phonons .

Reading: [1] ch. 21, 22.
Consider a 1D chain of N atoms, coupled by harmonic springs

with periodic boundary conditions. We suppose that we have N ∼
1023. This is illustrated in fig. 3.1. Vibrations of the complete struc-
ture are called phonon modes .

Figure 3.1: Coupled periodic oscillators.

With equilibrium positions xj, and displacement distances from
equilibrium of uj, as in fig. 3.2.

Figure 3.2: Equilibrium and displacement positions.



76 phonons .

Our force balance is

müj = K
(
uj+1 − uj

)
+ K

(
uj−1 − uj

)
. (3.1)

We have 1023 coupled equations.
The periodicity requirement imposes a constraint on

eiq(xj+Na), (3.2)

so that

q Na

L

= 2πn, (3.3)

or

q =
2πn

L
. (3.4)

In class we used trial solutions of the form

uj =
1√
m ∑

q
uqei(qxj−ωqt). (3.5)

Constraint on frequency In class we plugged eq. (3.5) into eq. (3.1)
and after some rushed arithmetic we arrived at a constraint on the
frequency.

Because that was rushed I had a bit of trouble following, but
thought I had the general idea. I found a simpler treatment in [? ]
which used single frequency trial solution

un = ϵeiqna−ωt. (3.6)

Our derivatives are

u̇n = −iωϵeiqna−ωt (3.7a)

ün = −ω2ϵeiqna−ωt, (3.7b)
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and insertion back into eq. (3.1) gives

0 = ϵe−iωt
(m

K
ω2eiqna + eiq(n+1)a − 2eiqna + eiq(n−1)a

)
= ϵe−iωteiqna

(m
K

ω2 + eiqa − 2 + e−iqa
)

= ϵe−iωteiqna
(m

K
ω2 + −2 + 2 cos qa

)
= ϵe−iωteiqna

(m
K

ω2 + −4 sin2
(qa

2

))
.

(3.8)

Requiring equality means that we must have√
m
K

ω = 2 sin
(qa

2

)
. (3.9)

With superposition of frequency components Putting an index on ϵ

and ω, and expressing q explicitly we have a slightly more general
trial solution

un = ∑
s

ϵsei( 2πsn
N −ωst), (3.10)

where s is an integer. Plugging this into our EOM we have

0 = ∑
s

ϵse−iωst
(m

K
ω2

s ei 2πsn
N + ei 2πs(n+1)

N − 2ei 2πsn
N + ei 2πs(n−1)

N

)
= ∑

s
ϵse−iωstei 2πsn

N

(m
K

ω2
s + ei 2πs

N − 2 + e−i 2πs
N

)
= ∑

s
ϵse−iωstei 2πsn

N

(
m
K

ω2
s + 2 cos

(
2πs
N

)
− 2
)

= ∑
s

ϵse−iωstei 2πsn
N

(m
K

ω2
s − 4 sin2

(πs
N

))
.

(3.11)

From this, we see that if

m
K

ω2
s = 4 sin2

(πs
N

)
, (3.12)

then our equation is solved. This is just the frequency constraint
of eq. (3.9).
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Q: In class, the equality above that resulted from us applying
the trial solution was operated on by ∑q′ e−iq′na to decouple the
equations. If the frequency constraint was what was desired, why
did we even apply that operator? I believe that the response for
this was that without doing so, it as if one assumes a-priori that
the solutions are decoupled. In retrospect, I am still not sure that
this resolves my confusion, since it seems to me that this summa-
tion operator is really just a statement that the exponentials form
a basis (i.e. forming a resolution of identity).

normal modes Last time, considering a 1D linear harmonic chain

wq =

√
4k
m

∣∣∣sin
qa
2

∣∣∣ (3.13a)

q =
2πn

L
. (3.13b)

These were described as wave like solutions, but these are in fact
the normal modes of oscillations.

These are sketched in fig. 3.3.

Figure 3.3: Harmonic oscillator chain normal mode frequencies.

(a) At q = 0, fig. 3.4, we really have uniform translation of the
entire chain.
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Figure 3.4: Uniform motion.

Figure 3.5: Displaced uniform motion.

(b) At q = a, fig. 3.5, we have displaced, but also uniform trans-
lation of the entire chain.

(c) At q = a/2, fig. 3.6, we have maximum oscillation.

Figure 3.6: Maximum oscillation.

3.2 3d potentials for real solids .

Reading: [10] §4.1
Our problems in 3D are mostly notational, where we have the

problem of indexing all the particles and their directions of motion.
Our index convention is illustrated in fig. 3.7.

unαi. (3.14)

for the displacement of the αth atom in the nth unit cell, in the ith
(i ∈ {x, y, z} direction.
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Figure 3.7: Displacement relative to primitive cell origin.

The total potential energy can be written

Φ(rnαi + unαi) = Φ(rnαi) +
1
2 ∑

nαi,mβj

∂2Φ
∂rnαi∂mβj

Φmβj
nαi

unαiumβj, (3.15)

where rnαi is the equilibrium position and unαi is the displacement.
This can be written as

Φ(rnαi + unαi) = Φ(rnαi) +
1
2 ∑

nαi,mβj
Φmβj

nαi unαiumβj. (3.16)

Example 3.1: 1D chain.

To illustrate our index convention consider fig. 3.8 for the
harmonic oscillator chain we previously treated.

Figure 3.8: direction relative indexing example.
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Φ =
1
2

ku2
ix +

1
2

ku2
ix = . (3.17)

Inx
nx = 2k. (3.18)

Equation of motion From this generalized quadratic potential, we
form the Lagrangian

L = T − U =
1
2 ∑

nαi
Mnu̇2

nαi −
1
2 ∑

nαi,mβj
Φmβj

nαi unαiumβj, (3.19)

The equations of motion follow from the Euler-Lagrange equa-
tions

d
dt

∂L
∂u̇nαi

=
∂L

∂unαi
, (3.20)

the generalized equivalent to F = −∇Φ. This provides the force
on atom α in unit cell n, in direction i, due to displacement of
atom β in cell m in direction j. That is

Mαünαi + ∑
mβj

Φmβj
nαi umβj = 0. (3.21)

For example,

müj = k(uj+1 − uj) + k(uj−1 − uj). (3.22)

Using trial solution

unαi =
1√
mα

∑
q

uαi(q)e−i(q·rn−ωqt). (3.23)

This yields, after operation with ∑q′ eiq′·rn as before, and cancelling
terms

−ω2
quαi(q) + ∑

βj
∑
m

1√mαmβ
Φmβj

nαi e−iq·(rm−rn)

Dβj
αi , the Dynamical matrix, independent of n

uβj(q) = 0, (3.24)

or

−ω2
quαi(q) + ∑

βj
Dβj

αi uβj(q) = 0. (3.25)
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We want to solve

det
(

Dβj
αi − ω2

q1
)

= 0. (3.26)

Example 3.2: Diatomic linear chain.

As a second example consider fig. 3.9 for a diatomic linear
chain. This example can also be found outlined in [10] §4.3.

Figure 3.9: Diatomic linear chain.

Our potentials are

Φn,1 =
f
2
(un,1 − un−1,2)

2 +
f
2
(un,2 − un,1)

2 (3.27a)

Φn,2 =
f
2
(un+1,1 − un,2)

2 +
f
2
(un,2 − un,1)

2 , (3.27b)

with partials

∂Φn,1

∂un,1
= f (2un,1 − un−1,2 − un,2) (3.28a)

∂Φn,2

∂un,2
= f (−un+1,1 + 2un,2 − un,1) . (3.28b)

In the general notation the force equations are

M1ün,1 + Φn−1,2
n,1 un−1,2 + Φn,1

n,1un,1 + Φn,2
n,1un,2 = 0 (3.29a)
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M2ün,2 + Φn,1
n,2un−1,2 + Φn,2

n,2un,2 + Φn+1,1
n,2 un+1,1 = 0, (3.29b)

and from the partials and the Euler-Lagrange equations this
is

M1ün,1 + f (2un,1 − un−1,2 − un,2) = 0 (3.30a)

M2ün,2 + f (2un,2 − un,1 − un+1,1) = 0. (3.30b)

We can read off the potential derivatives

Φn,1
n,1 = Φn,2

n,2 = 2 f (3.31a)

Φn,2
n,1 = − f . (3.31b)

The trial substitution to use (the text calls this an ansatz) is:

un,α =
1

Mα
uα(q)ei( an

xn

−ωqt). (3.32)

Substitution into eq. (3.30) gives(
2 f
M1

− ω2
q

)
u1(q) − f√

M1M2

(
1 + e−iqa

)
u2(q) = 0 (3.33a)

− f√
M1M2

(
1 + eiqa

)
u1(q) +

(
2 f
M2

− ω2
q

)
u2(q) = 0. (3.33b)

We thus want to solve∣∣∣∣∣∣
(

2 f
M1

− ω2
q

)
− f√

M1 M2

(
1 + e−iqa)

− f√
M1 M2

(
1 + eiqa) (

2 f
M2

− ω2
q

)
∣∣∣∣∣∣ = 0, (3.34)
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We find in IbachAndLuth4_15_verify.nb that this has solu-
tion

ω2
q = f

(
1

M1
+

1
M2

)
± f

√(
1

M1
+

1
M2

)2

− 4
M1M2

sin2 qa
2

.

(3.35)

Plotting in fig. 3.10.

Figure 3.10: Optic and acoustic modes.

There are two solutions for q = 0
ω2 = 0, or ω2 = 2 f (1/M1 + 1/M2).
(a)

Figure 3.11: Uniform translation.

(b)
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Figure 3.12: Pairwise oscillation.

(c)

Figure 3.13: Heavier atoms oscillating.

(d)

Figure 3.14: Lighter atoms oscillating.

Reading §4.3

3.3 problems .

Exercise 3.1 1D chain, two spring constants. (2013 ps4 p2)

Consider the one-dimensional chain of fig. 3.15 in which all masses
have the same value, m, but the spring constant alternates between
k and k′, as shown below. The equilibrium length of the springs is
the same, and equal to a/2, where a is the lattice spacing.

a. Find the coupled equations of motion for un,1 and un,2, and
then make the ansatz

un,α = uα(q)ei(qxn−ωt),

to obtain coupled equations for u1(q) and u2(q).
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xn,1

k

xn,2

k′

xn+1,1

k

xn+1,2

k′

xn−1,1

k

xn−1,2

k′k′

Figure 3.15: Two springs chain.

b. Solve these coupled equations, putting k = k◦ + δ and k′ =
k◦ − δ, to show that the dispersion relation is:

ω2 =
2k◦
m

(
1 ±

√
cos2 qa

2
+

δ2

k2◦
sin2 qa

2

)
.

c. At q = 0, plug the two solutions for ω back into the coupled
equations for u1(q) and u2(q) to find the relative motion of
masses 1 and 2 in each primitive unit cell. Explain how
these relative motions of the two masses give rise to the
two frequencies at q = 0.

d. Plot ω(q) vs. q in the range q = 0 to q = 2π/a, for δ/k◦ =
0.9, 0.1 and 0. Indicate the boundary of the first Brillouin
zone. (I did this by programming my equation for ω(q) into
a plotting package; you can also do it by hand.)

e. For δ/k◦ = 0.9 explain why the two branches of the phonon
spectrum are so far apart. What happens in the limit where
δ = k◦? Explain the dispersion relation (or rather, lack thereof)
of the acoustic and optical branches in this limit.

f. For δ = 0, explain the form of your plot (hint: when δ = 0
the two springs are identical, so think about the primitive
unit cell and first Brillouin zone size in this case; also, you
may recall the calculation of the structure factor in which
we treated a bcc lattice as simple cubic with a two-atom
basis).

Answer for Exercise 3.1
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Part a. In order to avoid the mental trauma of trying to figure
out all the signs for the spring constant potential coefficients, we
can describe the system by the Lagrangian

L = ∑
n,α

m
2

u̇2
n,α −

k′

2
(un,1 − un−1,2)

2

− k
2
(un,2 − un,1)

2 − k′

2
(un+1,1 − un,2)

2 − · · ·
(3.36)

The force equations then follow directly from the Euler-Lagrange
equations

0 =
d
dt

∂L
∂u̇n,α

− ∂L
∂un,α

. (3.37)

That is

0 = mün,1 + (k + k′)un,1 − kun,2 − k′un−1,2

0 = mün,2 + (k + k′)un,2 − kun,1 − k′un+1,1
(3.38)

Our trial solution functions from above are

un−1,2 = u2ei(qa(n−1)−ωt)

un,1 = u1ei(qan−ωt)

un,2 = u2ei(qan−ωt)

un+1,1 = u1ei(qa(n+1)−ωt),

(3.39)

which gives us

0 = −mω2u1�����
ei(qan−ωt)

+ (k + k′)u1�����
ei(qan−ωt) − ku2�����

ei(qan−ωt) − k′u2ei(qa(�n−1)−��ωt)

0 = −ω2mu2�����
ei(qan−ωt)

+ (k + k′)u2�����
ei(qan−ωt) − ku1�����

ei(qan−ωt) − k′u1ei(qa(�n+1)−��ωt),

(3.40)

or

0 = −mω2u1 + 2k◦u1 − (k◦ + δ)u2 − (k◦ − δ)u2e−iqa

0 = −mω2u2 + 2k◦u2 − (k◦ + δ)u1 − (k◦ − δ)u1eiqa.
(3.41)
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Part b. We seek ω2 solutions to the determinant

0 =

∣∣∣∣∣ −mω2 + 2k◦ −(k◦ + δ) − (k◦ − δ)e−iqa

−(k◦ + δ) − (k◦ − δ)eiqa −mω2 + 2k◦

∣∣∣∣∣
= (−mω2 + 2k◦)2 −

(
(k◦ + δ) + (k◦ − δ)e−iqa

) (
(k◦ + δ) + (k◦ − δ)eiqa

)
= (−mω2 + 2k◦)2

−
(

(k◦ + δ)eiqa/2 + (k◦ − δ)e−iqa/2
)

e−iqa/2×

eiqa/2
(

(k◦ + δ)e−iqa/2 + (k◦ − δ)eiqa/2
)

= (−mω2 + 2k◦)2

− (2k◦ cos(qa/2) + 2iδ sin(qa/2)) (2k◦ cos(qa/2) − 2iδ sin(qa/2))

= (−mω2 + 2k◦)2 − 4
(
k2
◦ cos2(qa/2) + δ2 sin2(qa/2)

)
(3.42)

or

ω2 =
2k◦
m

1 ±
√

cos2 (qa/2) +
δ2

k◦
sin2 (qa/2)

 , (3.43)

as desired.

Part c. At q = 0 we have

ω2 =
2k◦
m

(1 ± 1) , (3.44)

or

ω ∈ {±2ω◦, 0}, (3.45)

where the natural frequency for the average spring constant is

ω2
◦ =

k◦
m

. (3.46)

Zero frequency case. For the ω = 0, q = 0 case, our equations of
motion eq. (3.41), now take the form

2k◦u1 =
(

(k◦ + δ) + (k◦ − δ)e−iqa
)

u2

= ((k◦ + δ) + (k◦ − δ)) u2

= 2k◦u2.

(3.47)
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Both the “motions” in the primitive unit cell is described by

un,1 = u2

un,2 = u2,
(3.48)

where u2 = u2(q) an arbitrary undetermined function. This solu-
tion represents uniform translation.

Non-zero frequency case. For the non-constant time dependent so-
lutions, where ω ̸= 0, q = 0, we have

ω = ±2ω◦, (3.49)

so that our equations of motion eq. (3.41), now take the form

−mω2
◦u1 = (k◦ + δ)u2 + (k◦ − δ)u2

= 2k◦u2,
(3.50)

or

u1 = −u2. (3.51)

The equations for un,1 and un,2 are

un,1 = −u2e±2iω◦t

un,2 = u2e±2iω◦t (3.52)

where, again, u2 = u2(0) is the initial time displacement of the
xn,2 atom. We see that when q = 0, the variation δ of the spring
constants from their average value k◦ makes no difference to the
motion of the atoms. This motion is a pairwise oscillation of the
form fig. 3.16.

Part d. The frequencies ω(q) are plotted in fig. 3.17. The Brillouin
zone bisects this figure vertically along the line qa = π line.

Part e. To examine both the limiting scenario and the case δ/k◦ =
0.9, let

ϵ = 1 −
(

δ

k◦

)2

, (3.53)
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Figure 3.16: Pairwise oscillation.

Figure 3.17: Frequencies for δ/k◦ ∈ {0.9, 0.1, 0}.
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so that

ω2 = 2ω2
◦

(
1 ±

√
cos2 qa

2
+ (1 − ϵ) sin2 qa

2

)
= 2ω2

◦

(
1 ±

√
1 − ϵ sin2 qa

2

)
≈ 2ω2

◦
(

1 ±
(

1 − ϵ

2
sin2 qa

2

))
=
{

2ω2
◦
(

2 − ϵ

2
sin2 qa

2

)
, ω2

◦ϵ sin2 qa
2

}
,

(3.54)

where ω2
◦ = k◦/m, as above. Taking roots and further approxima-

tions we have

ω ≈
{

2ω◦

√
1 − ϵ

4
sin2 qa

2
, ω◦

√
ϵ sin

qa
2

}
≈
{

2ω◦
(

1 − ϵ

8
sin2 qa

2

)
, ω◦

√
ϵ sin

qa
2

}
,

(3.55)

In optical range, we have ω ≈ 2ω◦, with only small deviations
from that. As δ/k◦ gets small, this will become increasingly flat.
In fact, we see this close to linear even for the 0.9 case where we
have

ω ≈ 2ω◦
(

1 − 0.024 sin2 qa
2

)
. (3.56)

In the acoustic range we have a uniformly damped sinusoid. For
this 0.9 case that is

ω ≈ 0.43ω◦ sin
qa
2

. (3.57)

Grading remark: “Explain physically what is going on.” Examin-
ing the posted solution, what was being looked for was a charac-
terization of the motion itself (i.e. what sort of specific motions of
the springs is occurring, are they in phase or out of phase, ...)

Part f. The δ = 0 values are somewhat tricky to distinguish in
fig. 3.17 above. The optical case is re-plotted separately in fig. 3.18,
and the acoustic in fig. 3.19.

Grading remark: “Only one mode” was marked under fig. 3.19,
with an X beside the figure. Reviewing the posted solution, it ap-
pears that the correct response to this part of the problem is to
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Figure 3.18: Optical dispersion at δ = 0.
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Figure 3.19: Acoustic dispersion at δ = 0.
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observe that treating this primitive cell as one with two masses is
no longer appropriate. A correct analysis of this limit requires is
that of a one atom basis, not two. To examine the nature of these
curves in more detail, observe that for δ = 0 we have

ω2 = 2ω2
◦
(

1 ± cos
qa
2

)
, (3.58)

or

ω =
√

2ω◦

√
1 ± cos

qa
2

. (3.59)

Noting that

1 − cos x = 2 sin2 x/2

1 + cos x = 2 cos2 x/2,
(3.60)

provided qa < π we can write the optical and acoustic ranges for
ω at δ = 0 respectively as

ω ∈
{

2ω◦ cos
qa
4

, 2ω◦ sin
qa
4

}
. (3.61)

These meet at qa = π before switching directions (the border of
the Brillouin zone).

Exercise 3.2 Anharmonic 1D oscillator. ([7] pr 5.5)

How that the equation of motion for an anharmonic oscillator

Mü + f u − 1
2

gu2 = 0, (3.62)

is solved by an approximate solution involving multiples of the
harmonic frequency ω2

◦ = f /M:

u =
∞

∑
n=1

aneinω◦t. (3.63)

Discuss the result in relation to phonon decay. What is the anal-
ogy to electrical circuits and to signal transmission in nonlinear
media?
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Answer for Exercise 3.2
Let’s write our differential equation as

ü + ω2
◦u − hu2 = 0, (3.64)

where g/2M = h. Now consider a product of the form u2(
a1eix + a2e2ix + a3e3ix + · · ·

) (
a1eix + a2e2ix + a3e3ix + · · ·

)

=
a1a1e2ix +a1a2e3ix +a1a3e4ix +a1a4e5ix + · · ·

+a2a1e3ix +a2a2e4ix +a2a3e5ix + · · ·
+a3a2e4ix +a3a3e5ix + · · ·

= a2
1e2ix + a2

2e4ix + a2
3e6ix + · · · + 2a1a2e3ix + 2a1a3e4ix + · · ·

=
∞

∑
n=1

a2
ne2nix + 2 ∑

1≤n<m<∞
aname(n+m)ix.

(3.65)

Now we are set to take derivatives

0 = ü + ω2
◦ − hu2

=
∞

∑
n=1

ω2
◦(1 − n2)aneinω◦t − h

∞

∑
n=1

a2
ne2niω◦t − 2h ∑

1≤n<m<∞
aname(n+m)iω◦t

=
(
−3ω2

◦a2 − ha2
1
)

e2iω◦t

+
(
−8ω2

◦a3 − 2ha1a2
)

e3iω◦t

+
(
−15ω2

◦a4 − ha2
2
)

e4iω◦t

+
(
−24ω2

◦a5 − 2h(a1a4 + a2a3)
)

e5iω◦t

+ · · ·
(3.66)

Setting a1 = 1 we can proceed to calculate all the constants an.

a2 = − h
3ω2◦

(3.67a)

a3 =
h2

12ω4◦
(3.67b)

a4 = − h
15ω2◦

(
− h

3ω2◦

)2

= − h3

135ω6◦
.

(3.67c)



3.3 problems . 95

Observe that each of these has powers of

h
ω2◦

=
g

2Mω2◦
=

g
2 f

. (3.68)

The magnitude of the anharmonic perturbation “spring constant”
g/2 compared to the actual spring constant f is assumed to be
small. This means that the magnitude of each progressive term in
the series is smaller than the previous.

This is enough to verify that the solution can be expressed in
a series formed from powers of the harmonic frequency phasor.
Looking at a specific example, with m = f = 1, and g = 0.5, we
have

u(t) = eit − 0.0833e2it + 0.00521e3it − 0.000116e4it. (3.69)

The Real part of this is plotted in fig. 3.20 along with separate
plots of the first two terms.

π

2 π
3π

2 2π
5π

2 3π
7π

2 4π

-1.0

-0.5

0.5

1.0

Figure 3.20: Anharmonic sum and two components.

Observe that the difference from u(t) and the harmonic solu-
tion is very small. However, that difference is essentially that of
superposition of the ω◦ mode with that of the 2ω◦ mode. The
non-linearity can be thought of as essentially splitting the single
harmonic mode into a pair of harmonic modes, one at the fun-
damental frequency and another (of smaller magnitude) at twice
that. We require a steady state solution of this form, so if we start
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with something that is just a single frequency, there will be a per-
turbation process that will result in a decay into the spectrum
determined above. A calculation of that impulse response (very
much like initial conditions in a circuit before flipping a switch)
would be interesting, but likely difficult.

Exercise 3.3 Two body harmonic oscillator in 3D.

Solve a two mass harmonically coupled system without consid-
ering any equilibrium separation.

Answer for Exercise 3.3

For the system illustrated in fig. 3.21 the Lagrangian is

Figure 3.21: Two masses with harmonic coupling.

L =
1
2

m1 (ṙ1)
2 +

1
2

m2 (ṙ2)
2 − K

2
(r2 − r1)

2 . (3.70)

We wish to solve the equations of motion

d
dt
∇ṙiL = ∇riL. (3.71)

Noting that ∇xa · x = a, the coupled system to solve is

m1r̈1 = −K (r1 − r2)

m2r̈2 = −K (r2 − r1) .
(3.72)

These can be decoupled using differences and sums

m1 (m2r̈2)− m2 (m1r̈1) = −(m1 + m2)K (r2 − r1)

m1r̈1 + m2r̈2 = 0
(3.73)
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The second is the equation for the acceleration of the center of
mass RCM(t). That center of mass relation is directly integrable.
With M = m1 + m2, that is

MRCM(t) = m1r1 + m2r2

= (t − t◦)MVCM + MRCM(t◦).
(3.74)

The first is the harmonic oscillation about the center of mass posi-
tion. Introducing the reduced mass

µ =
m1m2

m1 + m2
, (3.75)

that oscillation equation is

d2

dt2 (r2 − r1) = −K
µ
(r2 − r1) . (3.76)

With angular frequency ω2 = K
µ , vector difference ∆r(t) = r2(t) −

r1(t), and initial time values ∆r◦ = ∆r(t◦), and ∆v◦ = ∆r′(t◦) the
solution for ∆r(t), by inspection, is

∆r(t) = ∆r◦ cos (ω(t − t◦)) +
∆v◦
ω

sin (ω(t − t◦)) . (3.77)

The reference time can be picked to allow for solutions of arbitrary
phase. For example, for cosine solutions, pick t◦ as the time for
which the amplitude difference is maximized.

To find for the individual ri vectors we have only to invert the
matrix relation[

−1 1

m1 m2

] [
r1

r2

]
=

[
∆r(t)

MRCM(t)

]
, (3.78)

or [
r1

r2

]
=

1
m2 + m1

[
−m2 1

m1 1

] [
∆r(t)

MRCM(t)

]
(3.79)

The final solution is

r1(t) = − µ

m1
∆r(t) + RCM(t)

r2(t) =
µ

m2
∆r(t) + RCM(t)

(3.80)
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Looking at this, it appears non-sensical. At the very least, it is un-
physical, and allows the masses to pass through each other. This is
illustrated in the animation of harmonicOscillatorTwoMasses.cdf

Our Lagrangian needs to model the equilibrium length of the
spring.

Exercise 3.4 1D, non-zero equilibrium length.

In the absence of any initial angular momentum, the problem
previously considered is essentially one dimensional.

Let’s consider a physically realistic harmonic oscillator system,
with coupling that is relative to an equilibrium length (the length
of an uncompressed or unstretched spring for example). That sys-
tem is illustrated in fig. 3.22.

Figure 3.22: Linear harmonic coupling with equilibrium length.

Answer for Exercise 3.4
Adjusting for a rest length a = a2 − a1 for the spring, the new

system is described by

L =
1
2

m1 (ẋ1)
2 +

1
2

m2 (ẋ2)
2 − K

2
(x2 − x1 − a)2 . (3.81)

Now our equations of motion are

m1 ẍ1 = −K (x1 − x2 + a)

m2 ẍ2 = −K (x2 − x1 − a) .
(3.82)

With u = x2 − x1 − a, this is

ü = −K
µ

u. (3.83)

Solving and back substituting for ∆x(t) = x2(t) − x1(t), we have

∆x(t) = a + (∆x(0) − a) cos ωt +
∆v(0)

ω
sin ωt. (3.84)

Note that this does not model collision effects, should the initial
position or velocity be sufficient to bring the masses into contact.
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Exercise 3.5 3D non-zero equilibrium length.

Derive the equations of motion for a 3D harmonically coupled
system with a non-zero equilibrium length using a Lagrange mul-
tiplier to enforce a linear constraint.

Answer for Exercise 3.5

The geometric of a 3D harmonically coupled system with a non-
zero equilibrium length is sketched in fig. 3.23.

Figure 3.23: Two mass harmonic coupled system.

We can model the coupling spring as a line segment colinear
with the difference vector, or

L =
1
2

m1 (ṙ1)
2 +

1
2

m2 (ṙ2)
2 − K

2
(∆r − a)2

+ λ (∆r − (â · ∆r) â)2 .
(3.85)

A Lagrange multiplier λ is used to enforce a requirement that
the difference vector ∆r is colinear with a (i.e. zero component
perpendicular to the projection along â.)

The rejection square expands as

(∆r − (â · ∆r) â)2 = (∆r)2 − 2 (â · ∆r)2 + (â · ∆r)2

= (∆r)2 − (â · ∆r)2 .
(3.86)

The Euler-Lagrange equations expand as

m1r̈1 = K (∆r − a)− 2 (∆r − (â · ∆r) â) (3.87a)

m2r̈2 = −K (∆r − a) + 2 (∆r − (â · ∆r) â) (3.87b)



100 phonons .

0 = (∆r − (â · ∆r) â)2 . (3.87c)

Equation (3.87c) indicates that the norm of the rejection is zero, so
that rejection is also zero ∆r − (â · ∆r) â = 0. This kills off the λ

terms, leaving just

m1r̈1 = K (∆r − a)

m2r̈2 = −K (∆r − a) .
(3.88)

Taking differences this is

∆r̈ = −K
µ
(∆r − a) . (3.89)

By inspection the solution for the difference is

∆r(t) = a + (∆r◦ − a) cos (ω(t − t◦))

+
∆v◦
ω

sin (ω(t − t◦)) .
(3.90)

with the individual mass position vectors still given by eq. (3.80).
We get a strong hint here why we wish to work with displace-

ment coordinates.

Exercise 3.6 Equilibrium position constraint.

Without the use of the somewhat forced seeming direction con-
straint used above, rederive the equations of motion.
Answer for Exercise 3.6

Here’s a more natural way of specifying that we have an equi-
librium length constraint

L =
1
2

m1 (ṙ1)
2 +

1
2

m2 (ṙ2)
2 − K

2
(|r2 − r1| − a)2

=
1
2

m1 (ṙ1)
2 +

1
2

m2 (ṙ2)
2 − K

2

(
(r2 − r1)

2 − 2a|r2 − r1| + a2
)

.

(3.91)

The evaluation of the absolute value gradient in the Euler-Lagrange
equations can be done implicitly, computing the absolute square
gradient in two different ways

∂|x|2
∂x

=
∂x2

∂x
= 2x (3.92a)
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∂|x|2
∂x

= 2|x|∂|x|
∂x

, (3.92b)

so that

∂|x|
∂x

=
x
|x| . (3.93)

This gives us

m1r̈1 = −K
(

r1 − r2 − a
r1 − r2

|r2 − r1|

)
m2r̈2 = −K

(
r2 − r1 − a

r2 − r1

|r2 − r1|

) (3.94)

With ∆r = r2 − r1 and ∆̂21 = (r2 − r1) /|r2 − r1|, this gives

µ∆r̈ = −K
(
∆r − a∆̂21

)
. (3.95)

In general, ∆̂21 could rotate in space (non-zero angular momen-
tum for the system), meaning that we’d also have a directional
dependence on the LHS. A specific solution is possible if we as-
sume that the direction is fixed, and introduce scalar displacement
coordinates, relative to the center of the equilibrium position as il-
lustrated in fig. 3.24.

Figure 3.24: Coupling directed along difference vector.

r1 =
(
− a

2
+ u1

)
∆̂21

r2 =
( a

2
+ u2

)
∆̂21.

(3.96)
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With ∆u = u2 − u1, eq. (3.95) takes the form

µ∆ü = −K∆u. (3.97)

We see exactly how natural displacement coordinates are for the
two mass problem. We have also avoided the awkward require-
ment for a Lagrange multiplier constraint in the Lagrangian model
of the system.

Exercise 3.7 Potential about equilibrium point.

Compute the linear expansion of a two mass potential, with
masses located at r1, r2 and equilibrium positions a1, a2.
Answer for Exercise 3.7

ϕ(r1, r2) =
K
2
(|r2 − r1| − |a2 − a1|)2

=
K
2

(
(r2 − r1)

2 − 2|a2 − a1||r2 − r1| + (a2 − a1)
2
)

.
(3.98)

With ∆a = a2 − a1, and rk = ∑i eirki, this has first derivatives

∂ϕ

∂r1i
= K

(
(r1 − r2) · ei − |a2 − a1|

r1i − r2i

|r2 − r1|

)
. (3.99)

Regrouping and noting the r2, r1 swapping symmetry, these first
derivatives are

∂ϕ

∂r1i
= K (r1i − r2i)

(
1 − |a2 − a1|

|r2 − r1|

)
∂ϕ

∂r2i
= K (r2i − r1i)

(
1 − |a2 − a1|

|r2 − r1|

)
.

(3.100)

At the equilibrium positions a1, a2, the first order derivatives are
all zero for this potential, a property used in the equilibrium po-
tential expansion discussions of [10] and [1]. Proceeding to calcu-
late the second derivatives

∂

∂r1j

∂ϕ

∂r1i

= Kδij

(
1 − |a2 − a1|

|r2 − r1|

)
− K (r1i − r2i) |a2 − a1|

∂

∂r1j

(
(r1 − r2)

2
)−1/2

= Kδij

(
1 − |a2 − a1|

|r2 − r1|

)
+ K (r1i − r2i) |a2 − a1|

2
(
r1j − r2j

)
2|r1 − r2|3

.
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(3.101)

At the equilibrium positions, this is

∂

∂r1j

∂ϕ

∂r1i

∣∣∣∣
a1 ,a2

= +K
∆ai

|∆a|
∆aj

|∆a| . (3.102)

These ratios are the direction cosines, as illustrated in fig. 3.25,
where ∆a = |∆a| (cos θ1, cos θ2, cos θ3). Again employing symme-
tries, the second derivatives for the non-mixed coordinates are

Figure 3.25: Direction cosines relative to equilibrium position difference
vector.

∂

∂r1j

∂ϕ

∂r1i

∣∣∣∣
a1 ,a2

= K cos θi cos θj

∂

∂r2j

∂ϕ

∂r2i

∣∣∣∣
a1 ,a2

= K cos θi cos θj.
(3.103)

For the mixed derivatives

∂

∂r2j

∂ϕ

∂r1i

= −Kδij

(
1 − |a2 − a1|

|r2 − r1|

)
− K (r1i − r2i) |a2 − a1|

∂

∂r2j

(
(r2 − r1)

2
)−1/2

= −Kδij

(
1 − |a2 − a1|

|r2 − r1|

)
+ K (r1i − r2i) |a2 − a1|

2
(
r2j − r1j

)
2|r1 − r2|3

.
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(3.104)

At the equilibrium positions, this is

∂

∂r2j

∂ϕ

∂r1i

∣∣∣∣
a1 ,a2

=
∂

∂r1j

∂ϕ

∂r2i

∣∣∣∣
a1 ,a2

= −K cos θi cos θj, (3.105)

so to second order, with displacement coordinates ui = ri − ai, the
potential is

ϕ(u1, u2) ≈ ϕ(a1, a2)

+
K
2 ∑

ij
cos θi cos θj

(
u1ju1i − u2ju1i − u1ju2i + u2ju2i

)
, (3.106)

but since ϕ(a1, a2) = 0, we have

ϕ(u1, u2) ≈ K
2 ∑

ij
cos θi cos θj (u2i − u1i)

(
u2j − u1j

)
. (3.107)

As a check observe that if ∆a is directed along e1, we have to
second order ϕ(u1, u2) = K

2 (u21 − u11)
2, as we found previously.

The complete Lagrangian is, to second order about the equilib-
rium positions,

L = ∑
j

mi

2
u̇2

ij

− K
2 ∑

ij
cos θi cos θj (u2i − u1i)

(
u2j − u1j

)
.

(3.108)

Evaluating the Euler-Lagrange equations for m2 we have

d
dt

∂L
∂u̇2k

= m2ü2k. (3.109)

With ∆̂21 = ∆a/|∆a|, the position derivatives are

∂L
∂u2k

= −K
2 ∑

ij
cos θi cos θj

(
δik
(
u2j − u1j

)
+ (u2i − u1i) δjk

)
= −K ∑

j
cos θk cos θj

(
u2j − u1j

)
= −K cos θk∆̂21 · ∆u.

(3.110)
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The vector form of the Euler-Lagrange equations d/dt(∂L/∂u̇i) =
∂L/∂ui, is by inspection

m1ü1 = K∆̂21
(
∆̂21 · ∆u

)
m2ü2 = −K∆̂21

(
∆̂21 · ∆u

)
,

(3.111)

or

µ∆ü = −K∆̂21
(
∆̂21 · ∆u

)
m1ü1 + m2ü2 = 0.

(3.112)

Observe that on the RHS above we have a projection operator,
so we could also write

µ∆ü = −K Proj∆̂21
∆u. (3.113)

Only the portion of the displacement difference ∆u that is directed
along the equilibrium line contributes to the acceleration of the
displacement difference.

Exercise 3.8 Harmonically coupled masses.

Now let’s consider masses at lattice points indexed by a lattice
vector n, as illustrated in fig. 3.26.

Figure 3.26: Masses harmonically coupled in a lattice.

Answer for Exercise 3.8
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With a coupling constant of Knm between lattice points indexed
n and m (located at an and am respectively), and direction cosines
for the equilibrium direction vector between those points given by

an − am = ∆anm

= |∆anm|(cos θnm1, cos θnm2, cos θnm3),
(3.114)

the Lagrangian is

L = ∑
n,i

mn

2
u̇2

ni

− 1
2 ∑

n ̸=m,i,j

Knm

2
cos θnmi cos θnmj (uni − umi)

(
unj − umj

)
.

(3.115)

Evaluating the Euler-Lagrange equations for the mass at index n
we have

d
dt

∂L
∂u̇nk

= mnünk, (3.116)

and

∂L
∂unk

= − ∑
m,i,j

Knm

2
cos θnmi cos θnmj

(
δik
(
unj − umj

)
+ (uni − umi) δjk

)
= −∑

m,i
Knm cos θnmk cos θnmi (uni − umi)

= −∑
m

Knm cos θnmk∆̂nm · ∆unm,

(3.117)

where ∆unm = un − um. Equating both, we have in vector form

mnün = −∑
m

Knm∆̂nm
(
∆̂nm · ∆unm

)
, (3.118)

or

mnün = −∑
m

Knm Proj∆̂nm
∆unm, (3.119)

This is an intuitively pleasing result. We have displacement and
the direction of the lattice separations in the mix, but not the mag-
nitude of the lattice separation itself. Compare that to eq. (3.95)



3.3 problems . 107

(the two mass result that did not use the Taylor expansion of the
potential), where we had the lattice spacing explicitly along with
the absolute coordinates (or rather the difference between them).

Exercise 3.9 Two atom basis, 2D diamond lattice.

As a concrete application of the previously calculated equilib-
rium harmonic oscillator result, find the equations of motion for
a two atom basis diamond lattice where the horizontal length is a
and vertical height is b.

Answer for Exercise 3.9

Indexing for the primitive unit cells is illustrated in fig. 3.27.

Figure 3.27: Primitive unit cells for diamond lattice.

Let’s write

r = a(cos θ, sin θ) = ar̂

s = a(− cos θ, sin θ) = aŝ

n = (n1, n2)

rn = n1r + n2s,

(3.120)

For mass mα, α ∈ {1, 2} assume a trial solution of the form

un,α =
ϵα(q)√

mα
eirn·q−ωt. (3.121)
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The equations of motion for the two particles are

m1ün,1 = −K1 Projx̂
(
un,1 − un−(0,1),2

)
− K1 Projx̂

(
un,1 − un−(1,0),2

)
− K2 Projŷ (un,1 − un,2)

− K2 Projŷ
(
un,1 − un−(1,1),2

)
− K3 ∑

±
Projr̂

(
un,1 − un±(1,0),1

)
− K4 ∑

±
Projŝ

(
un,1 − un±(0,1),1

)
(3.122a)

m2ün,2 = −K1 Projx̂
(
un,2 − un+(1,0),1

)
− K1 Projx̂

(
un,2 − un+(0,1),1

)
− K2 Projŷ (un,2 − un,1)

− K2 Projŷ
(
un,2 − un+(1,1),1

)
− K3 ∑

±
Projr̂

(
un,2 − un±(1,0),2

)
− K4 ∑

±
Projŝ

(
un,2 − un±(0,1),2

)
.

(3.122b)

Insertion of the trial solution gives

ω2√m1ϵ1 = K1 Projx̂

(
ϵ1√
m1

− ϵ2√
m2

e−is·q
)

+ K1 Projx̂

(
ϵ1√
m1

− ϵ2√
m2

e−ir·q
)

+ K2 Projŷ

(
ϵ1√
m1

− ϵ2√
m2

)
+ K2 Projŷ

(
ϵ1√
m1

− ϵ2√
m2

e−i(r+s)·q
)

+ K3

(
Projr̂

ϵ1√
m1

)
∑
±

(
1 − e±ir·q

)
+ K4

(
Projŝ

ϵ1√
m1

)
∑
±

(
1 − e±is·q

)

(3.123a)
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ω2√m2ϵ2 = K1 Projx̂

(
ϵ2√
m2

− ϵ1√
m1

e+ir·q
)

+ K1 Projx̂

(
ϵ2√
m2

− ϵ1√
m1

e+is·q
)

+ K2 Projŷ

(
ϵ2√
m2

− ϵ1√
m1

)
+ K2 Projŷ

(
ϵ2√
m2

− ϵ1√
m1

e+i(r+s)·q
)

+ K3

(
Projr̂

ϵ2√
m2

)
∑
±

(
1 − e±ir·q

)
+ K4

(
Projŝ

ϵ2√
m2

)
∑
±

(
1 − e±is·q

)

(3.123b)

Regrouping, and using the matrix form Projû = ûûT for the pro-
jection operators, this is(

ω2−

2
m1

(
K1x̂x̂T + K2ŷŷT + 2K3r̂r̂T sin2(r · q/2) + 2K4ŝŝT sin2(s · q/2)

))
ϵ1

= −
(

K1r̂r̂T
(

e−is·q + e−ir·q
)

+ K2ŝŝT
(

1 + e−i(r+s)·q
)) ϵ2√

m1m2

(3.124a)

(
ω2

− 2
m2

(
K1x̂x̂T + K2ŷŷT + 2K3r̂r̂T sin2(r · q/2) + 2K4ŝŝT sin2(s · q/2)

))
ϵ2

= −
(

K1r̂r̂T
(

eis·q + eir·q
)

+ K2ŝŝT
(

1 + ei(r+s)·q
)) ϵ1√

m1m2
.

(3.124b)

As a single matrix equation, this is

A = K1x̂x̂T + K2ŷŷT + 2K3r̂r̂T sin2(r · q/2) + 2K4ŝŝT sin2(s · q/2)
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(3.125a)

B = ei(r+s)·q/2
(

K1r̂r̂T cos ((r − s) · q/2) + K2ŝŝT cos ((r + s) · q/2)
)

(3.125b)

0 =

ω2 − 2A
m1

B∗√
m1m2

B√
m1m2

ω2 − 2A
m2

 [ϵ1

ϵ2

]
(3.125c)

Observe that this is an eigenvalue problem Ee = ω2e for matrix

E =

 2A
m1

− B∗√
m1m2

− B√
m1m2

2A
m2

 , (3.126)

and eigenvalues ω2.
To be explicit lets put the A and B functions in explicit matrix

form. The orthogonal projectors have a simple form

Projx̂ = x̂x̂T =

[
1

0

] [
1 0

]
=

[
1 0

0 0

]
(3.127a)

Projŷ = ŷŷT =

[
0

1

] [
0 1

]
=

[
0 0

0 1

]
(3.127b)

For the r̂ and ŝ projection operators, we can use half angle formu-
lations

Projr̂ = r̂r̂T

=

[
cos θ

sin θ

] [
cos θ sin θ

]
=

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]

=
1
2

[
1 + cos (2θ) sin (2θ)

sin (2θ) 1 − cos (2θ)

]
(3.128a)
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Projŝ = ŝŝT

=

[
− cos θ

sin θ

] [
− cos θ sin θ

]
=

[
cos2 θ − cos θ sin θ

− cos θ sin θ sin2 θ

]

=
1
2

[
1 + cos (2θ) − sin (2θ)

− sin (2θ) 1 − cos (2θ)

]
(3.128b)

After some manipulation, and the following helper functions

α± = K3 sin2(r · q/2) ± K4 sin2(s · q/2)

β± = K1 cos ((r − s) · q/2)± K2 cos ((r + s) · q/2) ,
(3.129)

the block matrices of eq. (3.125) take the form

A =

[
K1 + α+(1 + cos (2θ)) α− sin (2θ)

α− sin (2θ) K2 + α+(1 − cos (2θ))

]
(3.130a)

B = ei(r+s)·q/2

[
β+(1 + cos (2θ)) β− sin (2θ)

β− sin (2θ) β+(1 − cos (2θ))

]
(3.130b)

A final bit of simplification for B possible, noting that r + s =
2a(0, sin θ), and r − s = 2a(cos θ, 0), so

β± = K1 cos (a cos θqx)± K2 cos
(
a sin θqy

)
, (3.131)

and

B = eia sin θqy

[
β+(1 + cos (2θ)) β− sin (2θ)

β− sin (2θ) β+(1 − cos (2θ))

]
. (3.132)

It isn’t particularly illuminating to expand out the determinant for
such a system, even though it can be done symbolically without
too much programming. However, what is easy after formulat-
ing the matrix for this system, is actually solving it. This is done,
and animated, in twoAtomBasisRectangularLatticeDispersionRe-
lation.cdf
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Exercise 3.10 One atom basis phonons in 2D. (2013 final exam)

Tackle the 2D problem of the final exam, generalizing from a
square lattice to a general one atom basis in 2D. The lattice geom-
etry to consider is illustrated in fig. 3.28.

Figure 3.28: Oblique one atom basis.

Here, a and b are the vector differences between the equilibrium
positions separating the masses along the K1 and K2 interaction
directions respectively.
Answer for Exercise 3.10

The equilibrium spacing for the cross coupling harmonic forces
are

r = (b + a)/2

s = (b − a)/2.
(3.133)

Based on previous calculations, we can write the equations of mo-
tion by inspection

mün = − K1 Projâ ∑
±

(
un − un±(1,0)

)2

− K2 Projb̂ ∑
±

(
un − un±(0,1)

)2

− K3 Projr̂ ∑
±

(
un − un±(1,1)

)2

− K4 Projŝ ∑
±

(
un − un±(1,−1)

)2 .

(3.134)
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Inserting the trial solution

un =
1√
m

ϵ(q)ei(rn·q−ωt), (3.135)

and using the matrix form for the projection operators, we have

ω2ϵ =
K1

m
ââTϵ ∑

±

(
1 − e±ia·q

)
+

K2

m
b̂b̂Tϵ ∑

±

(
1 − e±ib·q

)
+

K3

m
b̂b̂Tϵ ∑

±

(
1 − e±i(b+a)·q

)
+

K3

m
b̂b̂Tϵ ∑

±

(
1 − e±i(b−a)·q

)
=

4K1

m
ââTϵ sin2 (a · q/2) +

4K2

m
b̂b̂Tϵ sin2 (b · q/2)

+
4K3

m
r̂r̂Tϵ sin2 ((b + a) · q/2) +

4K4

m
ŝŝTϵ sin2 ((b − a) · q/2) .

(3.136)

This fully specifies our eigenvalue problem. Writing

S1 = sin2 (a · q/2)

S2 = sin2 (b · q/2)

S3 = sin2 ((b + a) · q/2)

S4 = sin2 ((b − a) · q/2)

(3.137a)

A =
4
m

(
K1S1ââT + K2S2b̂b̂T + K3S3r̂r̂T + K4S4ŝŝT

)
, (3.137b)

. we wish to solve

Aϵ = ω2ϵ = λϵ. (3.138)

Neglecting the specifics of the matrix at hand, consider a generic
two by two matrix

A =

[
a b

c d

]
, (3.139)
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for which the characteristic equation is

0 =

∣∣∣∣∣λ − a −b

−c λ − d

∣∣∣∣∣
= (λ − a)(λ − d) − bc

= λ2 − (a + d)λ + ad − bc

= λ2 − (TrA)λ + |A|

=
(

λ − TrA
2

)2

−
(

TrA
2

)2

+ |A|.

(3.140)

So our angular frequencies are given by

ω2 =
1
2

(
TrA ±

√
(TrA)2 − 4|A|

)
. (3.141)

The square root can be simplified slightly

(TrA)2 − 4|A| = (a + d)2 − 4(ad − bc)

= a2 + d2 + 2ad − 4ad + 4bc

= (a − d)2 + 4bc,

(3.142)

so that, finally, the dispersion relation is

ω2 =
1
2

(
d + a ±

√
(d − a)2 + 4bc

)
, (3.143)

Our eigenvectors will be given by

0 = (λ − a)ϵ1 − bϵ2, (3.144)

or

ϵ1 ∝
b

λ − a
ϵ2. (3.145)

So, our eigenvectors, the vectoral components of our atomic dis-
placements, are

ϵ ∝

[
b

ω2 − a

]
, (3.146)

or

ϵ ∝

[
2b

d − a ±
√

(d − a)2 + 4bc

]
. (3.147)
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Square lattice There is not too much to gain by expanding out the
projection operators explicitly in general. However, let’s do this for
the specific case of a square lattice (as on the exam problem). In
that case, our projection operators are

ââT =

[
1

0

] [
1 0

]
=

[
1 0

0 0

]
(3.148a)

b̂b̂T =

[
0

1

] [
0 1

]
=

[
0 0

0 1

]
(3.148b)

r̂r̂T =
1
2

[
1

1

] [
1 1

]
=

1
2

[
1 1

1 1

]
(3.148c)

ŝŝT =
1
2

[
−1

1

] [
−1 1

]
=

1
2

[
1 −1

−1 1

]
(3.148d)

S1 = sin2 (a · q)

S2 = sin2 (b · q)

S3 = sin2 ((b + a) · q)

S4 = sin2 ((b − a) · q) ,

(3.149)

Our matrix is

A =
2
m

[
2K1S1 + K3S3 + K4S4 K3S3 − K4S4

K3S3 − K4S4 2K2S2 + K3S3 + K4S4

]
, (3.150)

where, specifically, the squared sines for this geometry are

S1 = sin2 (a · q/2) = sin2 (aqx/2) (3.151a)

S2 = sin2 (b · q/2) = sin2 (aqy/2
)

. (3.151b)

S3 = sin2 ((b + a) · q/2) = sin2 (a(qx + qy)/2
)

(3.151c)
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S4 = sin2 ((b − a) · q/2) = sin2 (a(qy − qx)/2
)

. (3.151d)

Using eq. (3.146), the dispersion relation and eigenvectors are

ω2 =
2
m

(
∑

i
KiSi ±

√
(K2S2 − K1S1)2 + (K3S3 − K4S4)2

)
(3.152a)

ϵ ∝

[
K3S3 − K4S4

K2S2 − K1S1 ±
√

(K2S2 − K1S1)2 + (K3S3 − K4S4)2

]
. (3.152b)

This calculation is confirmed in oneAtomBasisPhononSquareLat-
ticeEigensystem.nb . Mathematica calculates an alternate form
(equivalent to using a zero dot product for the second row), of

ϵ ∝

[
K1S1 − K2S2 ±

√
(K2S2 − K1S1)2 + (K3S3 − K4S4)2

K3S3 − K4S4

]
. (3.153)

Either way, we see that K3S3 − K4S4 = 0 leads to only horizontal
or vertical motion.

With the exam criteria In the specific case that we had on the
exam where K1 = K2 and K3 = K4, these are

ω2 =
2
m

(
K1(S1 + S2) + K3(S3 + S4) ±

√
K2

1(S2 − S1)2 + K2
3(S3 − S4)2

)
(3.154a)

ϵ ∝

 K3 (S3 − S4)

K1

(
(S1 − S2) ±

√
(S2 − S1)2 +

(
K3
K1

)2
(S3 − S4)2

) . (3.154b)

For horizontal and vertical motion we need S3 = S4, or for a 2π ×
integer difference in the absolute values of the sine arguments

±(a(qx + qy)/2) = a(qy − qy)/2 + 2πn. (3.155)
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That is, one of

qx =
2π

a
n

qy =
2π

a
n

(3.156)

In the first BZ, that is one of qx = 0 or qy = 0.

System in rotated coordinates On the exam, where we were asked
to solve for motion along the cross directions explicitly, there was
a strong hint to consider a rotated (by π/4) coordinate system.
The rotated the lattice basis vectors are a = ae1, b = ae2, and the
projection matrices. Writing r̂ = f1 and ŝ = f2, where f1 = (e1 +
e2)/

√
2, f2 = (e2 − e1)/

√
2, or e1 = (f1 − f2)/

√
2, e2 = (f1 + f2)/

√
2.

In the {f1, f2} basis the projection matrices are

ââT =
1
2

[
1

−1

] [
1 −1

]
=

1
2

[
1 −1

−1 1

]
(3.157a)

b̂b̂T =
1
2

[
1

1

] [
1 1

]
=

1
2

[
1 1

1 1

]
(3.157b)

r̂r̂T =

[
1 0

0 0

]
(3.157c)

ŝŝT =

[
0 0

0 1

]
(3.157d)

The dot products that show up in the squared sines are

a · q = a
1√
2

(f1 − f2) · (f1ku + f2kv) =
a√
2

(ku − kv) (3.158a)

b · q = a
1√
2

(f1 + f2) · (f1ku + f2kv) =
a√
2

(ku + kv) (3.158b)
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(a + b) · q =
√

2aku (3.158c)

(b − a) · q =
√

2akv. (3.158d)

So that in this basis

S1 = sin2
(

a√
2

(ku − kv)
)

S2 = sin2
(

a√
2

(ku + kv)
)

S3 = sin2
(√

2aku

)
S4 = sin2

(√
2akv

)
(3.159)

With the rotated projection operators eq. (3.137b) takes the form

A =
2
m

[
K1S1 + K2S2 + 2K3S3 K2S2 − K1S1

K2S2 − K1S1 K1S1 + K2S2 + 2K4S4

]
. (3.160)

This clearly differs from eq. (3.150), and results in a different ex-
pression for the eigenvectors, but the same as eq. (3.152a) for the
angular frequencies.

ϵ ∝

[
K2S2 − K1S1

K4S4 − K3S3 ∓
√

(K2S2 − K1S1)2 + (K3S3 − K4S4)2

]
, (3.161)

or, equivalently

ϵ ∝

[
K4S4 − K3S3 ∓

√
(K2S2 − K1S1)2 + (K3S3 − K4S4)2

K1S1 − K2S2

]
, (3.162)

For the K1 = K2 and K3 = K4 case of the exam, this is

ϵ ∝

 K1(S2 − S1)

K3

(
S4 − S3 ∓

√(
K1
K3

)2
(S2 − S1)2 + (S3 − S4)2

) . (3.163)
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Similar to the horizontal coordinate system, we see that we have
motion along the diagonals when

± a√
2

(ku − kv) =
a√
2

(ku + kv) + 2πn, (3.164)

or one of

ku =
√

2
π

a
n

kv =
√

2
π

a
n

(3.165)

Stability? The exam asked why the cross coupling is required for
stability. Clearly we have more complex interaction. The constant
ω surfaces will also be more complex. However, I still don’t have
a good intuition what exactly was sought after for that part of the
question.

Numerical computations A Manipulate allowing for choice of the
spring constants and lattice orientation, as shown in fig. 3.29, is
available in oneAtomBasisPhonon.nb . This interface also pro-
vides a numerical calculation of the distribution relation as shown
in fig. 3.30, and provides an animation of the normal modes for
any given selection of q and ω(q) (not shown).

Figure 3.29: 2D Single atom basis Manipulate interface.
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Figure 3.30: Sample distribution relation for 2D single atom basis.



4T H E R M A L P R O P E RT I E S .

4.1 thermal properties .

4.2 lattice energy.

We’ll want to calculate the total energy stored in the lattice. There
are a number of steps to this problem

1. Quantization. As an example, the classic SHO problem

mü = −ku, (4.1)

results in a single frequency

ω =

√
k
m

. (4.2)

With quantization we find only discrete frequencies, as in
fig. 4.1.

Figure 4.1: Quantized SHO energy levels.

ϵn =
(

n +
1
2

)
h̄ω. (4.3)

For lattices we’ve been seeking solutions of the force equa-
tions

Mαünαi = − ∑
mβj

Φmβj
nαi umβj. (4.4)

This provided us lattice frequencies ωq, which quantize as

ϵq,n =
(

nq +
1
2

)
h̄ωq. (4.5)
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Prof hoping that we are willing to this without proof since
the proof is hard, and would take a couple days (see: [1]
appendix L.)

We’ve apparently seen such a derivation indirectly in black-
body calculations.

2. If we accept eq. (4.5), then the thermal energy is

U(T) = ∑
q

sum over modes

(
nq

average thermal occupancy

+
1
2

)
h̄ωq. (4.6)

3. figuring out how to evaluate such a sum.

4.3 density of states .

Reading: [10] §5.1
The density of states is the number of Phonon modes per unit

energy.

• nq depends only on energy (see below), so that we can group
states by energy.

• q is quasi-continuous

Figure 4.2: Period boundary conditions.

due to periodic boundary

eiq·(rn+Lx) = eiq·rn , (4.7)
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or

qxLx = 2πl, (4.8)

for integer l.
Similarly for qy, qz we have

q = l
2π

Lx
x̂ + m

2π

Ly
ŷ + o

2π

Lz
ẑ. (4.9)

The volume per q point is

2π

Lx

2π

Ly

2π

Lz
=
(2π)3

V
. (4.10)

Figure 4.3: constant energy surface.

∑
n

= ∑
nx

∑
ny

∑
nz

∼
∫

dnxdnydnz

=
∫ Lx

2π
dqx

Ly

2π
dqy

Lz

2π
dqz

=
V

(2π)3

∫
d3q.

(4.11)

We group states of same h̄ωq. In d3q group same energy states
d fω are constant energy area elements, so that the volume ele-

ment is

d fωdq⊥. (4.12)

We can write

dq⊥ =
dω∣∣∇qω(q)

∣∣ , (4.13)
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Figure 4.4: area element.

or

V
(2π)3

∫
d3q → V

(2π)3

∫
d fωdq⊥

→ V
(2π)3

∫ d fω∣∣∇qω(q)
∣∣dω

=
∫

Z(ω)dω.

(4.14)

where Z(ω) is the density of states, the number of modes per unit
energy.

Examination hint: He’ll expect us to look at a phonon diagram
and see where the density of states is high or low.

Example 4.1: 1D diatomic chain.

Figure 4.5: frequency distribution and density of states for diatomic
chain.
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Figure 4.6: density of states.

Example 4.2: 3D solid.

Figure 4.7: 3D solid frequency distribution and density of states.

Figure 4.8: 3D solid density of states.

4.4 isotropic model (debye).

With a 1 atom basis (for now), we have only acoustic modes

ω(q) → ω(q). (4.15)

same in all directions, so that the constant energy surfaces are
spheres, as in fig. 4.9.

∇qω(q) =
dω

dq
q̂, (4.16)
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Figure 4.9: Debye surface.

at small q, the frequency for this 1 atom basis is

ω =

{
CLq longitudinal acoustic

CTq transverse acoustic (two of these)
(4.17)

This gives∫
Z(ω)dω = ∑

LA,TA

V
(2π)3

∫ d fω∣∣∇qω(q)
∣∣dω

=
V

(2π)3

∫
∑

LA,TA

d fω

q space surface area element

dω
dq

dω

=
∫ V

(2π)3

(
1

CL
+

2
CT

)
4πq2

=
∫

d fω

dω

=
∫ V

2π2

(
q2

CL
+

2q2

CT

)
dω

=
∫ V

2π2

(
1

C3
L

+
2

C3
T

)
ω2dω,

(4.18)

Here we sum over the two transverse and the single longitudinal
state, and refer back to eq. (4.17) introduce the CL and CT factors.

Because of 4πq2 phase space factor, we have

Z(ω) ∝ ω2. (4.19)

Debye approximation Define the Debye frequency ωD by∫ ωD

0
Z(ω)dω = 3rN. (4.20)
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Figure 4.10: Debye approximation.

Figure 4.11: Linear Debye approximation.

and pretend we can cut off in a way that applies to all q. We get

3rN =
V

2π2

(
1

C3
L

+
2

C3
T

) ∫ ωD

0
ω2dω

=
V

2π2

(
1

C3
L

+
2

C3
T

)
1
3

ω3
D,

(4.21)

or

V
2π2

(
1

C3
L

+
2

C3
T

)
ω3

D = 9rN. (4.22)

4.5 thermal energy of a harmonic oscillator .

Reading: [1] ch. 23.
We talk about branches of the (LA, TA, ...) of the dispersion ω(q)

at discrete q′s.
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The thermal occupancy is given by the Boltzman distribution

Pn =
e−En/kBT

∑∞
n=0 e−En/kBT

, (4.23)

where the denominator

Z =
∞

∑
n=0

e−En/kBT , (4.24)

is a normalization sum so that
∞

∑
n=0

Pn = 1. (4.25)

For the harmonic oscillator, we have

En =
(

n +
1
2

)
h̄ω, (4.26)

so that

Z =
∞

∑
n=0

e−(n+ 1
2 ) h̄ω/kBT

= e− h̄ω/2kBT
∞

∑
n=0

(
e− h̄ω/kBT

)n

=
e−

1
2 h̄ω/kBT

1 − e− h̄ω/kBT
.

(4.27)

The average thermal energy

E (ωqT) = ⟨En⟩
= ∑

n
EnPn

= ∑n Ene−En/kBT

∑n e−En/kBT

=
1
Z

(
− d

d(1/kBT)
Z
)

= − d
d(1/kBT)

ln Z

= − d
d(1/kBT)

(
ln
(

e−
1
2 h̄ω/kBT

)
− ln

(
1 − e− h̄ω/kBT

))
=

d
d(1/kBT)

(
1
2

h̄ω/kBT + ln
(

1 − e− h̄ω/kBT
))

=
1
2

h̄ω +
1

1 − e− h̄ω/kBT

(
−e− h̄ω/kBT

)
(− h̄ω) ,

(4.28)
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or

E (ωqT) = h̄ω

(
1
2

+
1

e h̄ω/kBT − 1

)
. (4.29)

Here

1
e h̄ω/kBT − 1

= ⟨n⟩T , (4.30)

the Bose distribution. In the kBT ≫ h̄ω we have

E (ωqT) ≈ h̄ω

2
+

h̄ω

�1 + h̄ω/kBT − �1

≈
�
��

h̄ω

2

small

+ kBT. (4.31)

Our h̄ is “gone”. This is the classical limit. This is called the
equipartition where we have 1

2 kBT of kinetic energy and 1
2 kBT of

potential energy.
On the other hand in the kBT ≪ h̄ω we have

E (ωqT) ≈ h̄ω

2
+ h̄ωe− h̄ω/kBT . (4.32)

These limits are plotted in fig. 4.12, and fig. 4.13.

4.6 lattice specific heat capacity.

Reading: [1] ch. 22,23. Define CV(T) or CP(T) as the change in the
energy U(T) per unit change in T.

• CV(T), is a measure at constant volume (easy to calculate).

• CP(T), is a measure at constant pressure (easy to measure).

CV(T) =
(

∂U
∂T

)
V

. (4.33)

U(T) = ∑
q
E (ωq, T) =

1
V

∫ ∞

0
Z(ω)E (ωq, T)dω. (4.34)
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Figure 4.12: Average energy vs temperature.

Figure 4.13: Average energy vs frequency.



4.6 lattice specific heat capacity. 131

In the Debye model we found in eq. (4.18) and eq. (4.22) that

Z(ω)dω =
V

2π2

(
1

C3
L

+
2

C3
T

)
ω2dω, (4.35a)

V
2π2

(
1

C3
L

+
2

C3
T

)
ω3

D = 9rN. (4.35b)

so the specific heat for the Debye model is

CV(T) =
d

dT

∫ ωD

0
E (ω, T)Z(ω)dω

=
1

2π2

(
1

C3
L

+
2

C3
T

) ∫ ωD

0
ω2 d

dT
E (ω, T)dω

=
9rN

V
1

ω3
D

d
dT

∫ ωD

0
h̄ω3

(
1
2

+
1

e h̄ω/kBT − 1

)
dω.

(4.36)

where r is the number of atoms in the unit cell. In the limit kBT ≫
h̄ωD, we have

CV(T) =
9rN

V
1

ω3
D

d
dT

∫ ωD

0
��̄hω3 kBT

��̄hω
dω

=
9rN

V
1

ω3
D

d
dT

1
3

kBTω3
D

=
3rN

V

number of dynamical degrees of freedom per unit volume

kB

= kB per degree of freedom,

(4.37)

so that

U ∼ kBT per degree of freedom. (4.38)

This is called the Dulong-Petit law.

More generally.

CV(T) =
(

9rN
V

1
ω3

D

)
d

dT

∫ ωD

0
h̄ω3

(
1
2

+
1

e h̄ω/kBT − 1

)
dω

=
(

9rN
V

1
ω3

D

) ∫ ωD

0
− h̄ω3 1(

e h̄ω/kBT − 1
)2 e h̄ω/kBT

(
− h̄ω

kBT2

)
dω.
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(4.39)

Make substitutions

y =
h̄ω

kBT
(4.40a)

dω =
kBT

h̄
dy (4.40b)

kBΘ

Debye temp

= h̄ωD. (4.40c)

The integral limit is

y(ωD) =
h̄ωD

kBT
=

kBΘ
kBT

=
Θ
T

, (4.41)

so the specific heat is

CV(T) =
(

9rN
V

1
ω3

D

) ∫ Θ/T

0

(kBTy)3

h̄2
1

(ey − 1)2 ey y
T

kBT
h̄

dy

=
(

9rN
V

1
ω3

D

)
k4

BT3

h̄3

∫ Θ/T

0

y4ey

(ey − 1)2 dy.

(4.42)

This is an exact result for the Debye model.
In the T → 0 limit where Θ/T is large, and when y is large

y4ey

(ey − 1)2 ∼ y4e−y → 0. (4.43)

Modes are frozen out.
In the T ≪ h̄ωD/kB limit, we have

CV(T) =
9rN

V
k4

BT3

k3
BΘ3

∫ ∞

0

y4ey

(ey − 1)2 dy

=
9rN

V
k4

BT3

k3
BΘ3

4π2

15

=
3rN

V
4π2kB

5
T3

Θ3 .

(4.44)

The T3 dependence here is very important. This comes from
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• Boltzman distribution,

• Quantum mechanics

• linear dispersion relation. This provides the number of ther-
mally occupied modes ∝ T3

With ω ∝ q, the volume of thermally occupied q space ∝ T3 and
the energy of a thermally occupied mode = T, we have averaged
energy of these modes propto

U(T) ∼ T4

C(T) = T3.
(4.45)

4.7 problems .

Exercise 4.1 Density of states of a 1D chain. (2013 ps5 p1)

Calculate and sketch a plot of the density of states, Z(ω), for the
vibrational modes of a 1-d monatomic chain of length L, with
nearest-neighbor spring constant K, atoms of mass M, and lattice
constant a. Specifically, start from ∑q and by transforming this into
an integral over ω, obtain Z(ω). Then draw a sketch of Z(ω) vs. ω,
labeling intercepts and asymptotes.
Answer for Exercise 4.1

For the 2D and 3D (d = 2, 3) density of states we’d consider
solutions for Z(ω) of∫

Z(ω)dω =
(

L
2π

)d ∫ dfω∣∣∇qω(q)
∣∣dω. (4.46)

Should we wish to extend this down to d = 1 we’d have to figure
out how to interpret dfω. In 2D and 3D that was a surface area
element, a factor of the differential form ddq = dfωdω⊥. In 3D
we had

∫
dfω = 4πq2 = d/dq(4πq3/3), and for 2D

∫
dfω = 2πq =

d/dq(πq2).
Those 3D and 2D “volumes” (differentiated to obtain the “area”

when q of the surface for q held constant) can be obtained by these
respective integrals∫

x2+y2+z2≤q2
dxdydz =

4
3

πq3 (4.47a)
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∫
x2+y2≤q2

dxdy = πq2. (4.47b)

We can generalize this down to a single dimension by considering

∫
x2≤q2

dx = 2q. (4.48)

for which we could conceivably consider the area of this 1D sur-
face to be the constant 2. However, does this even make sense,
since writing dq = d fωdq⊥ would split our 1-form into the prod-
uct of two 1-forms, which isn’t a sensible operation? Let’s step
back and consider the density of states definition from scratch.

Starting from scratch We wish to sum over all the integer values
n, subject to a period constraint 2πn = qL, and employ an integral
approximation to this sum.

∑
n

∼
∫

dn =
L

2π

∫
dq

=
L

2π

∫ dq
dω

dω

≡
∫

Z(ω)dω.

(4.49)

From this we find for one dimension

Z(ω) =
L

2π

dq
dω

. (4.50)

Now we are ready to start. For the 1D chain we had√
M
K

ω(q) = 2 sin
(qa

2

)
, (4.51)

so √
M
K

= a cos
(qa

2

) dq
dω

, (4.52)
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or

Z(ω) =
L

2π

√
M
K

a cos
( qa

2

)
=

√
M
K

L
2πa

1
cos

( qa
2

)
=

√
M
K

L
2πa

1

cos sin−1
(

1
2

√
M
K ω

)
=

1
2

√
M
K

L
πa

1√
1 − 1

4
M
K ω2

.

(4.53)

With L = Na, this is

Z(ω) =
1
2

√
M
K

N
π

1√
1 − 1

4
M
K ω2

. (4.54)

This has a minimum at ω = 0, and in that neighborhood is approx-
imately parabolic function

Z(ω ≈ 0) =
1
2

√
M
K

N
π

(
1 −

(
−1

2

)
1
4

M
K

ω2
)

=
1
2

√
M
K

N
π

(
1 +

1
8

M
K

ω2
)

.

(4.55)

As ω → ±
√

4K/M, the density of states approaches vertical asymp-
totes Z(ω) → ∞. Observe that these extremes are the edges of the
Brillouin zone where qa/2 = ±π/2. For Z(ω) to be useful for prob-
ability calculations, we expect that the integral over this first Bril-
louin zone will be finite, despite these infinite asymptotes. Let’s
verify this

∫ √
4K/M

−
√

4K/M
Z(ω)dω =

1
2

√
M
K

N
π

∫ 1

−1

√
4K
M

dx
1√

1 − x2

=
N
π

π

= N.

(4.56)
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Figure 4.14: 1D density of states for Harmonic chain.

Good, the area under the curve is finite as expected. This curve is
sketched in fig. 4.14.

Exercise 4.2 Trends in Debye temperature. (2013 ps5 p2)

Table 5.1 on page 120 of Ibach and Luth shows the Debye tem-
perature for various solids. Discuss and explain any trends that
you see in the Debye temperature, e.g. as a function of location in
the periodic table, bonding type, or atomic mass.

Answer for Exercise 4.2

A plot of Debye temperatures by atomic number can be found
in fig. 4.15. This is based on data from [12], and [10]

Some observed trends

• There is a general trend of decreasing Debye temperature
with atomic number.

• Lowest Debye temperatures are often at points where we
have completely filled or half filled orbitals: H (1s1), Ne
(1s22s21p6), Eu([Xe]4 f 7), Yb ([Xe]4 f 14), Hg ([Xe]4 f 145d106s2).

• We see peak temperatures around elements that are near
the middles of their respective orbital filling ranges: C, Si
(p block elements), Cr, Ru, Os (d-block elements). Carbon in



4.7 problems . 137

Figure 4.15: Debye temperature vs atomic number.

its diamond form is plotted above (its graphite form comes
in much lower at 420K).

Comments The capability of the element for making strong bonds
appears to contribute significantly to high Debye temperatures. In
particular observe that the diamond form of C, with its strong
highly directional covalent bonds, has the highest Debye temper-
ature. Si also in the p block with 4 available p orbital slots has
a very high Debye temperature, at least compared to its period
table neighbors. The converse is also evident, since we see lack
of bonding capability associated with low Debye temperatures for
those elements that have completely and half filled orbitals, which
have some stability in isolation. This is similar to the previously
observed low melting points (a measure of ease of lattice breakup)
for elements that have half and completely filled orbitals.

Recall that the Debye frequency (proportional to the Debye tem-
perature) had the form

ωD ∝
(

N
V

)1/3

. (4.57)

Based on this, we expect to see small Debye temperatures when
the number density is low, which should occur when the atomic
radii is large. That can be observed in fig. 4.16, looking for example
at K, Rb, and Cs, that are positioned at local maximums for atomic
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radii, in contrast to the local minimums observed for the Debye
temperature.

Figure 4.16: Atomic radii.

This plot has some confusing aspects as-is since I didn’t label
all the elements, just the ones that I wanted to compare to the
Debye temperatures (if you look carefully the labels for Cl, Br, I are
shifted to the left slightly). It also appears that I didn’t explicitly
plot those elements for which I didn’t have Debye temperature
data, which makes it even more misleading if looking at just the
radius periodicity.

In fig. 4.17 is a combined plot of both the atomic radius and
the Debye temperature. In this second plot we see that, yes, the
largest radii are those with the smallest Debye temperatures. As
the radius drops from the peak, the Debye temperature increases.
However, part way towards the middle of the period, this inverse
relationship starts to fail. In fact, they both start trending down-
wards at these points. Is this where the velocities of the acoustic
modes, also variables in the Debye temperatures, start to factor
into the mix?

As a final plot, let’s look at the inverse of the atomic radius and
the Debye temperature together. This is plotted in fig. 4.18.

Exercise 4.3 Debye calculation in 2D. (2013 ps5 p3)

Repeat the Debye theory calculation that we did in class, but
for a two-dimensional lattice. Assume (quite artificially) that the



4.7 problems . 139

Figure 4.17: Debye and atomic radius.

Figure 4.18: Inverse Atomic Radius and Debye temperature.
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atoms are free to move only within the plane, so that there are
2rN degrees of freedom, and there is only one transverse acoustic
phonon mode, instead of two as in the three-dimensional calcula-
tion.

Show that the low temperature limit of the specific heat at con-
stant area, per unit area, is:

CA(T) = 7.213
4rN

A
kB

T2

Θ2 ,

where A is the area of the crystal, rN is the number of atoms in
the crystal, Θ is defined by kBΘ = h̄ωD, and∫ ∞

0

y3ey

(ey − 1)2 dy ≃ 7.213.

Answer for Exercise 4.3

We first setup the 2D density of states construction as we did
for 3D, also employing the periodic relations

2πnx = Lxqx

2πny = Lyqy,
(4.58)

so that a sum over the quantum numbers n can be approximated
as

∑
n

≈
∫

dnxdny

=
A

(2π)2

∫
d2q

=
A

(2π)2

∫
d fωdq⊥

=
A

(2π)2

∫ d fω∣∣∇qω(q)
∣∣dω

=
∫

Z(ω)dω.

(4.59)

This Debye model we have

ω =

{
CLq longitudinal acoustic

CTq transverse acoustic
(4.60)
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This gives∫
Z(ω)dω = ∑

LA,TA

A
(2π)2

∫ d fω∣∣∇qω(q)
∣∣dω

=
A

(2π)2

∫
∑

LA,TA

d fω

q space surface “area” element

dω
dq

dω

=
∫ A

(2π)2

(
1

CL
+

1
CT

)
2πq

=
∫

d fω

dω

=
∫ A

2π

(
q

CL
+

q
CT

)
dω

=
∫ A

2π

(
1

C2
L

+
1

C2
T

)
ωdω,

(4.61)

or

Z(ω) =
A

2π

(
1

C2
L

+
1

C2
T

)
ω. (4.62)

Define the Debye frequency ωD by∫ ωD

0
Z(ω)dω = 2rN. (4.63)

2rN =
A

2π

(
1

C2
L

+
1

C2
T

) ∫ ωD

0
ωdω

=
A

2π

(
1

C2
L

+
1

C2
T

)
1
2

ω2
D,

(4.64)

or

A
2π

(
1

C2
L

+
1

C2
T

)
ω2

D = 4rN. (4.65)

Inserting this Debye frequency into the density of states gives

Z(ω) =
4rNω

ω2
D

. (4.66)
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We can now start the specific heat calculation

CA(T) =
dU
dT

=
d

dT
1
A

∫ ωD

0
E (ω, T)Z(ω)dω

=
4rN
Aω2

D

∫ ωD

0

d
dT

E (ω, T)ωdω

=
4rN
Aω2

D

d
dT

∫ ωD

0
h̄ω

(
1
2

+
1

e h̄ω/kBT − 1

)
ωdω

=
4rN
Aω2

D

∫ ωD

0
− h̄ω2 1(

e h̄ω/kBT − 1
)2 e h̄ω/kBT

(
− h̄ω

kBT2

)
dω

=
4rN
Aω2

D

∫ ωD

0
k2

BT
h̄2ω3

k3
BT3

1(
e h̄ω/kBT − 1

)2 e h̄ω/kBTdω.

(4.67)

As in class we make substitutions

y =
h̄ω

kBT
(4.68a)

dω =
kBT

h̄
dy (4.68b)

y(ωD) =
h̄ωD

kBT
=

kBΘ
kBT

=
Θ
T

. (4.68c)

Inserting these we have

CA(T) =
4rN
Aω2

D

k3
BT2

h̄2

∫ Θ/T

0

y3eydy

(ey − 1)2

=
4rNkBT2

AΘ2

∫ Θ/T

0

y3eydy

(ey − 1)2 .
(4.69)

In the kBT ≪ h̄ωD = kBΘ limit where the integrand is small,
the integral limit can be approximated by extension to ∞. This
produces the desired result

CA(T) = 7.213
4rN

A
kB

T2

Θ2 . (4.70)
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Exercise 4.4 Quadratic Debye phonons. (2013 midterm pr B2)

Assume a quadratic dispersion relation for the longitudinal and
transverse modes

ω =

{
bLq2

bTq2
. (4.71)

a. Find the density of states.

b. Find the Debye frequency.

c. In terms of kBΘ = h̄ωD, and

I =
∫ ∞

0

y5/2eydy

(ey − 1)2 , (4.72)

find the specific heat for kBT ≪ h̄ωD.

d. Find the specific heat for kBT ≫ h̄ωD.

Answer for Exercise 4.4

Part a. Working straight from the definition

Z(ω) =
V

(2π)3 ∑
L,T

∫ d fω∣∣∇qω
∣∣

=
V

(2π)3

(
4πq2

2bLq

∣∣∣∣
L

+
2 × 4πq2

2bTq

∣∣∣∣
T

)
=

V
4π2

(
qL

bL
+

2qT

bT

)
.

(4.73)

With qL =
√

ω/bL and qT =
√

ω/bT, this is

Z(ω) =
V

4π2

(
1

b3/2
L

+
2

b3/2
T

)
√

ω. (4.74)

Part b. The Debye frequency was given implicitly by∫ ωD

0
Z(ω)dω = 3rN, (4.75)
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which gives

3rN =
2
3

V
4π2

(
1

b3/2
L

+
2

b3/2
T

)
ω

3/2
D

=
V

6π2

(
1

b3/2
L

+
2

b3/2
T

)
ω

3/2
D .

(4.76)

Part c. Assuming a Bose distribution and ignoring the zero point
energy, which has no temperature dependence, the specific heat,
the temperature derivative of the energy density, is

CV =
d

dT
1
V

∫
Z(ω)

h̄ω

e h̄ω/kBT − 1
dω

=
1
V

d
dT

∫
Z(ω)

h̄ω

h̄ω/kBT + 1
2 ( h̄ω/kBT)2 + · · ·dω

≈ 1
V

d
dT

∫
Z(ω)kBTdω

=
1
V

kB3rN.

(4.77)

Part d. First note that the density of states can be written

Z(ω) =
9rN

2ω
3/2
D

ω1/2, (4.78)
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for a specific heat of

CV =
d

dT
1
V

∫ ∞

0

9rN

2ω
3/2
D

ω1/2 h̄ω

e h̄ω/kBT − 1
dω

=
9rN

2Vω
3/2
D

∫ ∞

0
dωω1/2 d

dT
h̄ω

e h̄ω/kBT − 1

=
9rN

2Vω
3/2
D

∫ ∞

0
dωω1/2 − h̄ω(

e h̄ω/kBT − 1
)2 e h̄ω/kBT h̄ω/kB

(
− 1

T2

)

=
9rNkB

2Vω
3/2
D

(
kBT

h̄

)3/2

∫ ∞

0
d

h̄ω

kBT

(
h̄ω

kBT

)1/2 1(
e h̄ω/kBT − 1

)2 e h̄ω/kBT
(

h̄ω

kBT

)2

=
9rNkB

2Vω
3/2
D

(
kBT

h̄

)3/2 ∫ ∞

0
dy

y5/2ey

(ey − 1)2

=
9rNkB

2V

(
T
Θ

)3/2

I .

(4.79)
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5.1 free electron model of metals .

Reading: [10] ch. 6.
We will treat electrons as a gas of free Fermions, a statistical

mechanical approach.
Some characteristics of metals that we intuitively understand

(i.e. should you ask a 3rd grader)

• Shiny.

• Cold to the touch in cold, or hot if warmed.

• Can bend and hammer it (malleability).

• Can use as a wire (conduct electricity)

Metallic bonding, the sharing of valence electrons with many
neighbors, is the fundamental property that we rely on to make
our free electron gas model. We can justify this by reflecting on
the overlap of the d orbital electrons in a metal. These often have
a radial wave function magnitude as illustrated in fig. 5.1.

Figure 5.1: Rough sketch of d orbital radial magnitude.

We can justify our treatment of electrons as a gas by noting that
we have significant overlap of these orbitals over many sites in the
metallic lattice as in fig. 5.2.

• electrons must be treated quantum mechanically
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Figure 5.2: Overlapping d orbital wavefunctions.

• periodic lattice complicates things. We’ll attempt to ignore
that.

We try the simple jellium model, where we “smear” out the pos-
itive ions to a uniform background as in the typical 2nd year par-
ticle in an infinite potential box problem, as illustrated in fig. 5.3.

Figure 5.3: One dimensional particle in a box.

where we had solutions like those of fig. 5.4.

Figure 5.4: First few solutions for particle in a 1D box.

The difference is that we will consider the 3D generalization of
this problem, where the potentials are infinite outside of a cubic
space as in fig. 5.5.

The free electron in an infinite 3D
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Figure 5.5: 3D particle in a box.

solve for 1 electron

− h̄2

2m
∇2Ψ(r) + V(r)Ψ(r) = EΨ(r), (5.1)

where

V(r) =

{
V◦ inside cube

∞ outside
(5.2)

This implies a boundary condition Ψ(r) = 0 outside of the box.
Using separation of variables

− h̄2

2m

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
Ψx(x)Ψy(y)Ψz(z) = E

E = −E′ − V◦

Ψx(x)Ψy(y)Ψz(z),

(5.3)

i.e. Ψ(r) is separable.
This is a set of equations of the form

− h̄2

2m
∂2Ψx(x)

∂x2 = ExΨx(x), (5.4)

where

Ψx(0) = Ψx(L) = 0. (5.5)

Our solution is

Ψ(x) = N sin(kxx), (5.6)

where

kx =
nxπ

L
. (5.7)
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In 3D this is

Ψ(r) =
(

2
L

)3/2

sin(kxx) sin(kyy) sin(kzz), (5.8)

where

E(k) =
h̄

2m

(
k2

x + k2
y + k2

z

)
=

h̄k2

2m
.

(5.9)

This is a parabolic dispersion, sketched in fig. 5.6.

Figure 5.6: Parabolic energy dispersion.

This is

kx =
nxπ

L

ky =
nyπ

L
kz =

nzπ

L
.

(5.10)

We’ll one to consider the volume per k point, as roughly sketched
in fig. 5.7.

Figure 5.7: Volume per k point.
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(π

L

)3
=

π3

V
. (5.11)

here we switch notations and use V for volume, and not V as
potential.

Density of states As with the phonon, properties are calculated
via k space sums using the density of states.

∑
kx ,ky ,kz ,spin

→ ∑
spin

∫ d3k

(π/L)3

= 2

spin, 2 states per k point

V
π3

∫ 1
8

1 octant

4πk2dk

=
V
π2

∫
k2dk,

(5.12)

where → represents a quasi continuous approximation. Now turn
this into

∫
dE as with phonons, using

E =
h̄2k2

2m
, (5.13)

so that

dE =
h̄2k
m

dk. (5.14)

This gives

k2dk =

√
2mE

h̄2
m
h̄2 dE

=
1
2

(
2m
h̄2

)3/2 √
EdE,

(5.15)

so that

∑
kx ,ky ,kz ,spin

→ V
2π2

(
2m
h̄2

)3/2 ∫ √
EdE.

≡ V
∫

D(E)dE.

(5.16)
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The density of states per volume

D(E) =
1

2π2

(
2m
h̄2

)3/2 √
E. (5.17)

This is sketched in fig. 5.8.

Figure 5.8: 3D density of states.

Reading: §6.2, Fermi gas at T = 0K.
This assumes that electrons do not interact. This is the opera-

tional definition of an ideal gas.
This may seem more drastic than it actually is. Electrons in

plane wave states have constant density. This shifts potential, but
is still uniform.

Note that this does break down for some interesting problems.
One notable such problem is that of superconductivity, where we
must consider the electron electron interactions.

Fermi energy states can only be occupied by one particle with
each spin, as illustrated in fig. 5.9.

Figure 5.9: Spin packing of energy levels for 1D particle in a box.

Because we can only pack states two per point in k space, we’ll
consider a Fermi surface in k space as in fig. 5.10, and determine
the energy level EF and momentum kF associated with that sur-
face, for which no more states can be occupied. This is roughly
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Figure 5.10: Fermi surface in momentum space.

Figure 5.11: Fermi energy and momentum.

illustrated in fig. 5.11. In quasi-continuum, approximately 1/8 of
the occupied state.

kF is the boundary between occupied and unoccupied states
(Fermi wave vector).

The maximum number of these occupied states is then

N = 2
4
3 πk3

F

8
(

π
L

)3 =
V

3π2 k3
F. (5.18)

so that

kF =
(
3π2n

)1/3
, (5.19)

where

n ≡ N
V

. (5.20)

This is typically of the order 1010m−1 = Å
−1

.
For reference, we get for EF

EF =
h̄2k2

F
2m

=
h̄2

2m
(
3π2n

)2/3
.

(5.21)



154 free electron model .

Last time We want to calculate the thermal properties of the free
electron gas , characterized by energies of the form fig. 5.12. At
T = 0, the free electron gas fills up states up to EF

Figure 5.12: Free electron energy distribution.

5.2 fermi dirac distribution for T > 0.

Note that we are following Einstein here, not the text.
Consider a closed system and reservoir r, as in fig. 5.13, exchang-

ing energy and particles, with a smaller system that has energy ϵ

and n particles. The total energy and number of particles are re-
spectively U and N.

Figure 5.13: Two systems in contact.

The probability of eigenstate ϵ with n particles

P(ϵ, n) ∝ gr(U − ϵ, N − n), (5.22)
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where gr is the number of “microstates of the reservoir when it
has energy U − ϵ, and N − n particles. We have

gr(U − ϵ, N − n) = eln gr(U−ϵ,N−n)

≈ exp
(

ln gr(U, N) − ϵ

(
∂ln gr

∂U

)
N
− n

(
∂ln gr

∂N

)
U

)
.

(5.23)

Introducing the Boltzmann entropy

Sr = kB ln gr, (5.24)

we have (approximately)

P(ϵ, n) ∝ exp
(

ln gr(U, N) − ϵ

kB

(
∂Sr

∂U

)
N
− n

kB

(
∂Sr

∂N

)
U

)
. (5.25)

Recall the thermodynamic relationship, which we simplify imme-
diately, by restricting ourselves volume (and constant pressure)
constraint

dUr = TdSr −���pdVr + µdNr,

= T
(

∂Sr

∂Ur
dUr +

∂Sr

∂Nr
dNr

)
+ µdNr.

(5.26)

Taking wedge products , and noting that dx ∧ dx = 0, we can
construct a pair of 2-forms from this

�����
dUr ∧ dUr = T

(
∂Sr

∂Ur
�����
dUr ∧ dUr +

∂Sr

∂Nr
dNr ∧ dUr

)
+ µdNr ∧ dUr

(5.27a)

dUr ∧ dNr = T
(

∂Sr

∂Ur
dUr ∧ dNr +

∂Sr

∂Nr
((((((dNr ∧ dNr

)
+ µ((((((dNr ∧ dNr.

(5.27b)

Since dy∧ dx = −dx∧ dy, we can read off the factors of the 2-forms

(
∂Sr

∂Ur

)
P,V

=
1
T

(5.28a)
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(
∂Sr

∂N

)
P,V

= −µ

T
. (5.28b)

Insertion into our probability density gives us

P(ϵ, n) ∝ e−(ϵ−µn)/kBT . (5.29)

This is the Boltzmann-Gibbs distribution. Normalizing we have

P(ϵ, n) =
e−(ϵ−µn)/kBT

∑n ∑ϵ(n) e−(ϵ−µn)/kBT
. (5.30)

This method is deemed old fashioned because it relies on being
able to calculate the eigenstates of the system. Imagine the impos-
sibility of this for, say, a room full of air.

It seems that we are labeling the system as having an energy
eigenstate since we imagine that it can be characterized as having
a single energy level.

Application to free electrons Select one energy level (∗), fig. 5.14,
as the ‘system’, and treat all other levels as the ‘reservoir’.

Figure 5.14: Selected energy level for system.

Note that ni ∈ {0, 1} due to the Pauli exclusion principle, and
ϵ ∈ {0, ϵi}.

P(ϵ = 0, n = 0) =
1

1 + e−(ϵi−µ) (5.31a)

P(ϵi, n = 1) =
e−(ϵi−µ)/kBT

1 + e−(ϵi−µ) . (5.31b)
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Average occupancy

⟨ni⟩ =
0 × 1 + 1 × e−(ϵi−µ)/kBT

1 + e−(ϵi−µ)/kBT
, (5.32)

or

⟨ni⟩ =
1

e(ϵi−µ)/kBT + 1
. (5.33)

This is the Fermi-Dirac distribution, as sketched roughly in fig. 5.15.

Figure 5.15: Fermi Dirac distribution.

This solved a big mystery, since the equipartition theorem says

U =
3
2

kBT × n

electron density

, (5.34)

so that

CV =
∂U
∂T

∼ 1028 electrons
m3 × 3

2
kB, (5.35)

however the value of CV that was measured is 1/100 times too
small. Because of the Pauli exclusion principle, most electrons are
trapped far below EF, and can’t accept thermal energy.
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5.3 heat capacity of free electrons .

Estimate

U(T) − U(0) ∼ kBT × D(EF)

from F.D. distribution, number of thermally excited electrons

× kBT

thermal energy per thermally excited electron

. (5.36)

Plugging in the density of states from eq. (5.17)

C(T) =
dU
dT

∼ 2k2
BD(EF)T

∼ 2k2
B

1
2π2

(
2m
h̄2

)3/2√
EFT.

(5.37)

From eq. (5.21) we have

√
EF =

E3/2
F
EF

=
1

EF

(
h̄2

2m

)3/2 ((
3π2n

)2/3
)3/2

=
1

EF
3π2n

(
h̄2

2m

)3/2

,

(5.38)

so that

C(T) ∼ �2k2
B

1
��2π2

�
�
�
�
�(

2m
h̄2

)3/2 1
EF

3��π
2n
�
�

�
�
�(

h̄2

2m

)3/2

T

∼ 3kBn
kBT
EF

reduction from classical values

.
(5.39)
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Figure 5.16: Specific heat.

Heat capacity of free electrons (cont.) Last time we found the den-
sity of states for Fermions in a period potential

D(E) =
1

2π2

(
2m
h̄2

)3/2 √
E. (5.40)

Using the Fermi-Dirac distribution fig. 5.17

kBT = 0.015

kBT = 0.125

kBT = 0.3

0.2

0��

0��

0��

1.0

f( , T)

0 F 2 F

Figure 5.17: Fermi-Dirac distribution.

f (E, T) =
1

e(E−µ)/kBT + 1
, (5.41)

we calculated an approximate value for the specific heat

C(T) ∼ 2kBD(EF)T. (5.42)
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We will now move on and calculate a more exact expression for
the specific heat, defined by

U(T) =
∫

dED(E)E f (E, T) (5.43a)

C(T) =
∂U
∂T

, (5.43b)

or, in terms of the density of states

C(T) =
∫

dED(E)E
∂ f (E, T)

∂T
. (5.44)

In fig. 5.18, are plots of the Fermi-Dirac distribution functions at
T2 > T1 and their difference. Observe that this difference is zero
most everywhere

f( , T1)

f( , T2)

f( , T2)- f( , T1)

-0��

-0��

0��

0��

0��

0��

��0

f( , T), T2> T1

0 F 2 F

Figure 5.18: Fermi-Dirac curves and their difference.

Calculating that derivative explicitly, we have

∂ f (E, T)
∂T

= − e(E−µ)/kBT

(e(E−µ)/kBT + 1)2

E − µ

kB

−1
T2

=
e(E−µ)/kBT

(e(E−µ)/kBT + 1)2

E − µ

kBT2 .

(5.45)

This is plotted in fig. 5.19.
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ϵ

-5

5

T3> T2> T1

0 ϵF 2 ϵ

f(ϵ, T1)

f(ϵ, T2)

f(ϵ, T3)

�f(�, T)/�T T=T1

�f(�, T)/�T T=T2

�f(�, T)/�T T=T3

Figure 5.19: Fermi-Dirac distribution and derivatives.

The expected value of the number density is

n =
∫

dED(E) f (E, T). (5.46)

It’s derivative with respect to temperature is

∂n
∂T

=
∫

dED(E)
∂ f
∂T

. (5.47)

With a constant constraint on the number of states, this derivative
is zero, allowing us to write

C(T) = C(T) − EF
∂n
∂T

= EF

∫
dED(E)(E − EF)

∂ f
∂T

=
∫ ∞

0
dED(E)(E − EF)

E − EF

kBT2
e(E−µ)/kBT

(e(E−µ)/kBT + 1)2

zero except within a few kBT of EF

≈ D(EF)
∫ ∞

0
dE(E − EF)

E − EF

kBT2
e(E−EF)/kBT

(e(E−EF)/kBT + 1)2
.

(5.48)

Because we have a zero in the integrand, except close to EF, we
have made the approximation D(E) → D(EF), with the density
function with its value at EF, perhaps similar to the point sampling
sketched in fig. 5.20.

This mostly zero in the integrand also allows us to extend the
integration range∫ ∞

0
→
∫ ∞

−∞
, (5.49)
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Figure 5.20: Density of states point approximation.

To proceed with the integration, let

x =
E − EF

kBT
. (5.50)

C(T) ≈ D(EF)
∫ ∞

−∞
(dxkBT)

dE

x2
��k

2
B��T

2

��kB��T2

ex

ex + 1)2

= D(EF)k2
BT

∫ ∞

−∞
dx

x2ex

(ex + 1)2

π2/3

.

(5.51)

We have finally

C(T) ≈ π2

3
k2

BD(EF)T. (5.52)

The linear T specific heat is a signature of the Fermi surface
(sharp boundary in k-space between occupied and unoccupied
states). This doesn’t depend on the details form of D(E), but only
on D(EF). This therefore works for all metals.

If you see a C ∼ T3 (cubic) relationship you can realize that we
are dealing with a Bosonic system with a linear frequency rela-
tionship.
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Figure 5.21: Thermally excited region.

Figure 5.22: Momentum space for linear frequency temperature region.

Electrons Each thermally excited electron has thermal energy
kBT, so

U(T) ∼ T2 =⇒ C(T) ∝ T (5.53)

If you see a C ∼ T (linear) relationship you can realize that we are
dealing with a Fermionic system.

At T > 0, thin shell of width kBT thermally excited. Volume is

4πk2
Fδk ∝ 4πk2

FδT. (5.54)

5.4 thomas-fermi screening .

Reading: [1] ch. 17, [10] §6.5.
Recall that E = 0 inside a metal in equilibrium as illustrated in

fig. 5.25.
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Figure 5.23: Free particle energy levels.

Figure 5.24: Phase space region for Fermi momentum.

Figure 5.25: Field in conducting metal.
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Figure 5.26: Point charge in a box.

Put a fixed point charge Q at r = 0, and an electric potential ϕ(r).
Our Maxwell equation is

∇2ϕ(r) = −ρ(r)
ϵ◦

. (5.55)

Split the charge density as

ρ(r) = ρel + ρion + δρel, (5.56)

where ρel is the average electron density, ρion is the positive back-
ground, and δρel is the perturbation to Q. The first two terms
cancel giving

ρel = −e
∫

dED(E)
1

e(E−µ−eϕ(r))/kBT + 1

≈ −e
∫

dED(E)

(
1

e(E−µ)/kBT + 1
− eϕ(r)

∂ f
∂E

∣∣∣∣
E=E−µ

+ · · ·
)

.
(5.57)

Here µ + eϕ(r) is the chemical potential shifted at r by eϕ(r). Note
that as T → 0, we have∫ EF+∆

EF−∆
dE

∂ f
∂E

= −1, (5.58)

where the width of ∂ f /∂E → 0. This is very much like a delta
function fig. 5.27 , so we can write

ρel ≈ ρel − e2ϕ(r)
∫

dED(E)δ(E − EF)

≈ ρel − e2δϕ(r)D(EF).
(5.59)
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ϵ

-8

-6

-4

-2

T3> T2> T1

0 ϵF 2 ϵ

f(ϵ, T1)

f(ϵ, T2)

f(ϵ, T3)

�f(�, T)/�� T=T1

�f(�, T)/�� T=T2

�f(�, T)/�� T=T3

Figure 5.27: Delta function like region.

Recall that the spherical form of the Laplacian of a function with
only radial dependence is

∇2 f =
∂2 f
∂r2 +

2
r

∂ f
∂r

=
1
r2

∂

∂r

(
r2 ∂ f

∂r

)
. (5.60)

For the potential we have

ϕ(r) = ϕavg + δϕ(r). (5.61)

so that the electrostatic equation is

1
r2

∂

∂r

(
r2 ∂δϕ(r)

∂r

)
=

e2D(EF)
ϵ◦

δϕ(r). (5.62)

This has solution (see: exercise 5.4)

δϕ(r) =
αe−r/rTF

r
, (5.63)

where rTF is the Thomas-Fermi screening length

rTF =
√

ϵ◦
e2D(EF)

. (5.64)

The functional form of the screened and unscreened potentials are
plotted in fig. 5.28.

Example 5.1: Copper.

rTF ∼ 0.5Å. (5.65)
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Figure 5.28: Screened vs unscreened Coulomb potential.

Reading: §6.5, especially Mott transition.

5.5 problems .

Exercise 5.1 Fermi attributes, free electron model. (2013 ps6 p1)

a. Treating potassium as a free electron metal with one con-
duction electron per potassium, calculate the theoretical
value of the Fermi wave-vector kF, the Fermi energy EF and
the Fermi temperature TF.

b. Using fig. 5.29 below, determine the experimental value
of the Fermi temperature TF of potassium, and compare
it with the theoretical free-electron Fermi temperature. (Ig-
nore the break in the y-axis, that is, only use the numbers
at the bottom of the y-axis.)

Potentially useful facts: The density of potassium is 0.862

g/cm3; the atomic mass of potassium is 39.10; the atomic
mass unit is u = 1.66 × 10−27 kg.)

Answer for Exercise 5.1
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4.0713
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1.3076
1.4365
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1.7523
1.9314
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2.7886
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3.3361

1009.
23.83
30.99
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3.6579
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3.9231

757.7
969.1
55.89
73.97
99.58

134.4
179.3
238.5
313.0
412.5
543.7
711.6
914.7

III. EXPERIMENTAL RESULTS

The heat capacity points obtained in the six experi-
ments are presented in Tables I to VI.

If the experimental heat capacity points were all
of equal accuracy the best method of analysis of the
data would be to plot C/T versus T' and to find y and
A of Eq. (4) from the intercept and limiting slope at
T'=0. In this work the measurements above 1'K are
expected to be appreciably more accurate than those
below 1'K, and it is therefore appropriate to give
some weight to the points above 1'K even in the
determination of y. This can be done through the re-
quirement that Eq. (5) represents the data at tem-
peratures at which deviations from Eq. (4) first became
important. This requirement can have an appreciable
aAect on the assignment of values of y and A.

There is a further complication in, the analysis of
these experiments. The experimental points for po-

TABLE III. The heat capacity of rubidium: measurements in
the adiabatic demagnetization cryostat. The units of heat ca-
pacity are mJ mole ' deg '. Temperatures are based on the 1958
He4 scale a

a See Ref. 10.

0.5 1.0 l.5

20

tassium and cesium taken in the adiabatic demagneti-
zation cryostat and those taken in the liquid-helium
cryostat do not join smoothly in the region of overlap.
In each case the points obtained in the adiabatic de-
magnetization cryostat are high. The discrepancy in
heat capacity at 1.2'K, after the heat capacity of the
empty calorimeter is subtracted, is 1.3/0 for potassium
and 3% for cesium, as will be seen in Figs. 1 and 3.
This discrepancy has not been observed in other ex-
periments in this apparatus, and is apparently associ-
ated with the fact that in these experiments heat is
introduced to the surface of the calorimeter instead
of directly to the sample. This produces a superheating
of the calorimeter during the heating periods, with the
consequence that the heat loss from the calorimeter to
the surroundings during the heating period is greater
than that estimated from the drift rates before and
after the heating period. This effect is not important in
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a See Ref. 10.
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~: adiabatic demagnetization cryostat.

Figure 5.29: Potassium specific heat temperature dependence.

Part a. Using the following values

1 amu = 1.66 × 10−24 g

ρK = 0.86 g/cm3

Atomic mass of K = 39.0983

me = 9.109 × 10−28 g

h̄ = 1.055 × 10−27 ergs s

kB = 1.381 × 10−16 ergs/K,

(5.66)

we find

mK = the mass of 1 Potassium atom = atomic mass of K × 1 amu

= 6.49032 × 10−23 g.
(5.67)

nK = ρK/mK = ne(with presumption of one free electron per atom)

= 1.32505 × 1022/cm3.
(5.68)

This gives

kF =
(
3π2ne

)1/3 = 7.32068 × 107/cm

EF = h̄2k2
F/(2me) = 3.27421 × 10−12 ergs

TF = EF/kB = 23709 K

(5.69)
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Grading remark: The grader didn’t like my use of ergs as a unit,
and said I should use either eV or J. Asking Prof Julian, if SI now
dominates, he confirms that this was a pretty old school thing to
do “Yes, it’s a long time since I have seen an erg.” We both recall
the horror of taking introductory electromagnetism with the CGS
Berkeley physics series while our Professors used SI.

Part b. Looking at the graph, we see that the units are different
from what we have been using. The dimensions of specific heat
[CV] = [U]

Θ are those of energy density per unit temperature, or
energy per unit volume per unit temperature. The graph provides
the specific heat per mole, not per unit volume, so we have to
convert by multiplying by the volume per mole NA/n where NA

is Avogadro’s number and n is the number density.

C = CV
NA

n

=
π2

2
kBnT

TF

NA

n

=
π2

2
kBNA

TF
T.

(5.70)

Our graphed relation is

C
T

= γ + βT2

≈
(

2.08 +
0.85
0.3

T2
)

mJ/mole deg2.
(5.71)

With NA = 6.022 × 1023, plugging in the numbers yields

TFexperimental =
π2kBNA

2 × 2.08 mJ/K2

=
π21.381 × 10−23 J/K × 6.022 × 1023 × 103

2 × 2.08 J/K2

= 19730.6 K.

(5.72)

The ratio of theoretical to experimental is

TF

TFexperimental
= 1.20163. (5.73)

The numerical calculations for this problem can also be found in
problemSet6Problem1.nb



170 free electron model .

Grading remark: “What do you think is the reason for the dis-
crepancy?”. Lost half a mark for that.

Exercise 5.2 Specific heat, 1-2D free electron metals. ([10] pr 6.1)

a. Calculate the density of states for a two-dimensional gas of
free electrons in a so-called quantum well. The boundary
conditions for the electronic wavefunction are:

ψ(x, y, z) = 0, for |x| > a, (5.74)

where a is of atomic dimensions.

b. Calculate the density of states for a one-dimensional gas of
free electrons in a so-called quantum wire, the boundary
conditions:

ψ(x, y, z) = 0, for |x| > a, and |y| > b, (5.75)

where a and b are of atomic dimensions.

c. Can such electron gases be realized physically?

Clarification The question says something rather obscure
about ψ(x, y, z) = 0 for |x| > a, where a is of atomic dimen-
sions. What they mean is that a two-dimensional electron
gas can be thought of as contained in a three-dimensional
box, with two of the dimensions being macroscopic, but
the third dimension (perpendicular to the plane of the elec-
tron gas) being microscopic. As a result, the energy lev-
els are quasi-continuous in two dimensions, but discrete in
the third dimension, and we assume that only the ground
state of the discrete spectrum is occupied, so there is no
summation over that third dimension. Similarly, in the one-
dimensional electron gas, only one direction in q space is
quasi-continuous.)

Answer for Exercise 5.2

Part a. Consider a pizza box configuration where L ≫ a as in
fig. 5.30.

Schrödinger’s equation for the particle inside the box is

− h̄2

2m
∇2Ψ + V◦Ψ = EΨ. (5.76)
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Figure 5.30: Particle in a pizza box.

Solving by separation of variables with Ψ = XYZ, we have

X′′

X
+

Y′′

Y
+

Z′′

Z
= −2m

h̄2 (E − V◦). (5.77)

Assuming independent solutions

X′′ = −k2
xX

Y′′ = −k2
yY

Z′′ = −k2
zZ,

(5.78)

we have

k2
x + k2

y + k2
z =

2m
h̄2 (E − V◦). (5.79)

We could write E′ = E − V◦, but this is equivalent to setting the
ground to zero (i.e. V◦ = 0), so let’s just do that, dispensing with
any primes on the energy.

Our solution is

Ψ = A sin (kx(x − a)) sin
(
kyy
)

sin (kzz) , (5.80)

where

E(k) =
h̄2k2

2m
, (5.81)
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The boundary constraints are

Ψ(x = a) = Ψ(x = −a) = 0

Ψ(y = 2L) = Ψ(y = 0) = 0

Ψ(z = 2L) = Ψ(z = 0) = 0,

(5.82)

so for integers q, r, s, we have

kx2a = qπ

ky2L = rπ

kz2L = sπ,

(5.83)

Normalizing the wave function gives us

Ψ =
1√
aL

sin
(

qπ(x − a)
2a

)
sin
( rπy

2L

)
sin
( sπz

2L

)
. (5.84)

The k-points in momentum space are illustrated in fig. 5.31. How-
ever, since we are considering the particle to be in the ground state
for the x direction, only the k-space points in the plane, separated
by π/2L in each direction, will contribute to the density of states.

Figure 5.31: K space points for pizza box wavefunction.
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We evaluate the density of states in the same fashion as we did
in class

∑
ky ,kz ,spin

→ ∑
spin

∫ d2k

(π/2L)2

= 2

spin, 2 states per k point

A
π2

∫ 1
4

1 quadrant

2πkdk

=
A
π

∫
kdk.

(5.85)

To convert to an energy integral, we use

dE =
h̄2k
m

dk, (5.86)

or
m
h̄2 dE = kdk. (5.87)

The density of states definition is

A
π

∫ m
h̄2 dE ≡ A

∫
D(E)dE, (5.88)

so the density of states is constant in 2D

D(E) =
mπ

h̄2 . (5.89)

Part b. We now want to consider a particle in the cigar box con-
figuration of fig. 5.32. The wave function is

Ψ =
1√
abL

sin
(

qπ(x − a)
2a

)
sin
(

rπ(y − b)
2b

)
sin
( sπz

2L

)
, (5.90)

and the k space points of interest are separated by π/2L as before.
The density of states calculation goes

∑
kz ,spin

→ ∑
spin

∫ dkz

π/2L

= 2
2L
π

∫
dkz

=
4L
π

∫
dkz.

(5.91)
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Figure 5.32: Particle in a cigar box.

Converting the differential to energy space, we have

dkz =
m
h̄2

dE
kz

=
m
h̄2

dE√
2mE/ h̄

=
1
h̄

√
m
2E

dE.

(5.92)

Inserting this gives us

L
∫

D(E)dE =
4L
π

∫ 1
h̄

√
m
2E

dE, (5.93)

or

D(E) =
2
π

√
2m
h̄2 E−1/2. (5.94)

Part c. In microelectronics the scale of charge carrying conduc-
tive pathways are reduced so much that “wires” can exhibit quan-
tum mechanical effects. When the scale of such wires are reduced
enough, modeling that conduit as a 1D particle in a box as above
is likely possible. A carbon nanotube is likely another possible
physical implementation of a 1D particle in a box.

Conducting and semiconducting plane layers of the same sort
of microelectronics can likely be reduced to scales that would al-
low for a 2D particle in a pizza box configuration for which we
calculated the density of states above. With planar configuration
and electron conduction, graphene is also likely a physical imple-
mentation of this potential configuration.
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Exercise 5.3 Bulk modulus. ([10] pr 6.3)

The bulk modulus κ is given by the second derivative of the
total energy Etot with respect to the volume

κ = V
∂2Etot

∂V2 . (5.95)

Estimate the bulk moduli of alkali metals by assuming that the
total energy is equivalent to the kinetic energy of the Fermi gas.
What has been neglected in this estimate?
Answer for Exercise 5.3

We need to start by computing the total energy. At T = 0, utiliz-
ing the step nature of the Fermi-Dirac distribution, this is approx-
imately

Etot = 2
V

(2π)3

∫
|k|<kF

d3k
h̄2k2

2m

=
V

4π3
h̄2

2m

∫ kF

0
4πk4dk

=
V
π2

h̄2

2m
k5

F
5

=
V h̄2

10mπ2

(
3π2 N

V

)5/3

=
h̄2

10mπ2

(
3π2N

)5/3
V−2/3.

(5.96)

This form is what we want to take derivatives with respect to V.
We can however, simplify this total energy expression by express-
ing it in terms of the Fermi energy

Etot =
V

5π2 3π2 N
V

h̄2

2m
(
3π2n

)2/3

=
3
5

NEF.
(5.97)

Taking derivatives, we have

κ = V
∂2Etot

∂V2

= V
h̄2

10mπ2

(
3π2N

)5/3 d2

dV2 V−5/3+1

=
h̄2

10mπ2

(
3π2N

)5/3
(−2

3

)(−5
3

)
V−2/3−2+1.

(5.98)
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Factoring out the total energy of the free valence electrons Etot, or
equivalently, the Fermi energy, this is

κ =
10
9

Etot

V
=

2
3

nEF. (5.99)

What did we assume and neglect? We have implicitly treated the
Alkali metals as a free electron gas, assuming that there was no in-
teraction between the electrons and the nuclei, and no interactions
between the electrons themselves (except for Pauli exclusion inter-
action). We have assumed that only the single outermost (valence)
electron of each atom contributes to this energy sum. We have
also assumed that the system is big enough that surface effects
are irrelevant, and that we can make a continuum approximation
for the summation over all the wave-vector states. We have also
assumed that there are no differences to the density of the metal
(and thus valence electron density n) at absolute zero compared
to other temperatures.

Exercise 5.4 Thomas-Fermi screening length.

Find the solution to eq. (5.62), thus finding the Thomas-Fermi
screening length expression of eq. (5.64).

Answer for Exercise 5.4

We wish to solve an equation of the form

1
r2

d
dr

(
r2 d f

dr

)
= a f . (5.100)

We can make this more tractable with a substitution

g = r f , (5.101)

for which we have

r
dg
dr

= r
(

f + r
d f
dr

)
, (5.102)

or

r2 d f
dr

= r
dg
dr

− r f = r
dg
dr

− g. (5.103)
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This reduces our equation to

d
dr

(
r

dg
dr

− g
)

= arg

�
�
�dg

dr
+ r

d2g
dr2 −

�
�
�dg

dr
=

(5.104)

or just

d2g
dr2 = ag. (5.105)

This has the solution

g = ∑
±

A±e±
√

ar, (5.106)

Picking the non-hyperbolic solution, that is

f ∝
e−

√
ar

r
. (5.107)

With a = e2D(EF)/ϵ◦ = 1/r2
TF, we find eq. (5.64) as desired.

Exercise 5.5 Thomas-Fermi screening. (2013 ps7 p1)

a. For f (E) = 1/(e(E−µ)/kBT + 1) (i.e. the Fermi-Dirac distribu-
tion function), show that in the limit as T → 0 K, −∂ f /∂E
has the following properties expected of the Dirac delta-
function:

• It is zero everywhere, except at E = µ where it is infi-
nite;

• −
∫ ∞
−∞ dE∂ f /∂E = 1

Note : you may know that the Dirac delta function is the
derivative of the so-called Heaviside function, so the corre-
spondence between ∂ f /∂E and δ(E − µ) is not a surprise.

b. Consider an externally applied periodic charge density wave
of the form δρ◦(x) = δρ◦ cos(qx), inside a metal. In practice
this could be a modulation of the ionic charge density due
to a static or dynamic charge density wave.
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Show, using a result we derived in class

δρel(r) = −e2D(EF)U(r), (5.108)

that the induced electron density due to this applied peri-
odic charge density wave is

δρel(x) = − e2D(EF)
ϵ◦

δρ◦
q2 + κ2 cos(qx), (5.109)

where κ2 = e2D(EF)/ϵ◦.

Answer for Exercise 5.5

Part a. With τ = kBT, the derivative is

∂ f
∂E

= − 1
τ

e(E−µ)/τ(
e(E−µ)/τ + 1

)2

= − 1
τ

1(
e(E−µ)/τ + 1

) (
e−(E−µ)/τ + 1

) .

(5.110)

Consider this first for E > µ, where in the limit τ → 0 we have

∂ f
∂E

≈ − 1
τ

1(
e(E−µ)/τ + 1

)
= − 1

2τ + (E − µ) + 1
2 (E − µ)2/τ + 1

6 (E − µ)3/τ2 + · · · .
(5.111)

As τ → 0, the denominator is dominated by the ever increasing
powers of 1/τ, and thus goes to zero.

Similarly for E < µ and τ → 0 we have

∂ f
∂E

≈ − 1
τ

1(
e(µ−E)/τ + 1

)
= − 1

2τ + (µ − E) + 1
2 (µ − E)2/τ + 1

6 (µ − E)3/τ2 + · · · .
(5.112)

This has the same form as eq. (5.111), so clearly also approaches
zero as τ → 0.

For the E = µ condition we have

∂ f
∂E

= − 1
4τ

τ→0−−→ −∞. (5.113)
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Now consider the integral of the derivative, taking some care in
the neighborhood |E − µ| < ϵ. We have

−
∫ ∞

−∞
dE

∂ f
∂E

=
∫ ∞

−∞

dE
τ

e(E−µ)/τ(
e(E−µ)/τ + 1

)2

=
∫ µ−ϵ

−∞

dE
τ

e(E−µ)/τ(
e(E−µ)/τ + 1

)2 +
∫ µ+ϵ

µ−ϵ

dE
τ

e(E−µ)/τ(
e(E−µ)/τ + 1

)2

+
∫ ∞

µ+ϵ

dE
τ

e(E−µ)/τ(
e(E−µ)/τ + 1

)2 .

(5.114)

With x = (E − µ)/τ and dx = dE/τ, we have

−
∫ ∞

−∞
dE

∂ f
∂E

=
∫ −ϵ/τ

−∞
dx

ex

(ex + 1)2 +
∫ ∞

ϵ/τ
dx

ex

(ex + 1)2 +
∫ ϵ/τ

−ϵ/τ
dx

ex

(ex + 1)2

= − 1
ex + 1

∣∣∣∣−ϵ/τ

−∞
+ − 1

ex + 1

∣∣∣∣ϵ/τ

−ϵ/τ

+ − 1
ex + 1

∣∣∣∣∞
ϵ/τ

=
(

1
e−∞ + 1

− 1
e−ϵ/τ + 1

)
+
(

1
e−ϵ/τ + 1

− 1
eϵ/τ + 1

)
+
(

1
eϵ/τ + 1

− 1
e∞ + 1

)
= (1 − 1) + (1 − 0) + (0 − 0) .

(5.115)

Here we (rather loosely) consider ϵ fixed, and allow τ → 0 for that
choice of ϵ. This leaves only the integral in the neighborhood of µ,
which we find is unity as expected.

Part b. We used the result in class in the Coulomb calculation

∇2U = − ρ

ϵ◦
. (5.116)

Summing the internal and the external charge densities, we wish
to find

ρ = δρ◦(x) + δρel = δρ◦ cos(qx) − e2D(EF)U, (5.117)
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or

∇2U = −δρ◦
ϵ◦

cos(qx) +
e2D(EF)

ϵ◦
U. (5.118)

Fourier transforming, assuming the potential has only an x depen-
dence U = U(x), we have∫

dxeikx d2U(x)
dx2 = −δρ◦

ϵ◦

∫
dxeikx cos(qx) + κ2

∫
dxeikxU(x)

= −δρ◦
ϵ◦

1
2

∫
dx
(

ei(k+q)x + ei(k−q)x
)

+ κ2Ũ(k)

= −πδρ◦
ϵ◦

(δ(k + q) + δ(k − q)) + κ2Ũ(k).

(5.119)

Integrating the LHS twice by parts, and rearranging, this is

Ũ(k) = − πδρ◦
ϵ◦ (k2 + κ2)

(δ(k + q) + δ(k − q)) . (5.120)

A final inverse transform yields the real space potential

U(x) =
1

2π

∫
dke−ikxŨ(k)

= −δρ◦
2ϵ◦

(
e−ikq

(q2 + κ2)
+

e−ikq

((−q)2 + κ2)

)
= − δρ◦ cos(qx)

ϵ◦ (q2 + κ2)
.

(5.121)

Referring back to eq. (5.108), the induced electron density is

δρel = −ϵ◦κ2U = −κ2δρ◦ cos(qx)
q2 + κ2 , (5.122)

as desired.
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6.1 electrons in a periodic lattice .

Reading: [1] ch. 8.
We want to look at the general properties of 1 electron in a

periodic potential. We want to solve the Schrödinger equation(
− h̄2

2m
∇2 + V(r)

)
Ψ(r) = EΨ(r). (6.1)

Here V(r) is periodic V(r + rn) = V(r), with

rn = n1a1 + n2a2 + n3a3, (6.2)

so that

V(r) = ∑
G

VGeiG·r, (6.3)

where

G = hg1 + kg2 + lg3 (6.4a)

gi · aj = δij. (6.4b)

Example potential (roughly) sketched in fig. 6.1.
Use a plane wave basis

Ψ(r) = ∑
k

Ckeik·r, (6.5)

∑
k′

h̄2k′2

2m
C′

keik′·r + ∑
k′′ ,G

VGCk′′ei(k′′+G)·r = E ∑
k′

eik′·r, (6.6)



182 electronic bandstructure .

Figure 6.1: Fourier decomposition of 1D periodic potential.

with k′ = k′′ + G, or k′′ = k′ − G, this is

0 = ∑
k′

((
h̄2k′2

2m
− E

)
C′

k + ∑
G

VGCk′−G

)
eik′·r. (6.7)

Using∫
dre−i(k′−k)·r ∝ δ(k′ − k), (6.8)

and operating with∫
dre−ik·r × · · · , (6.9)

we decouple the system

0 =

(
h̄2k2

2m
− E

)
Ck + ∑

G
VGCk−G. (6.10)

Each eigenstate only involves Ck’s that differ by reciprocal lat-
tice vectors.

Ψ ∼ Ckeikx + Ck+2π/aei(k+2π/a)x + Ck−2π/aei(k−2π/a)x + · · · . (6.11)

Label each eigenstate with k

Ψk(r) (6.12a)

E = Ek = E(k), (6.12b)
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Figure 6.2: Energy vs momentum.

Ψk(r) = ∑
G

Ck−Gei(k−G)·r

=

(
∑
G

Ck−Ge−iG·r
)Periodic in r with lattice periodicity

eik·r

plane wave

.
(6.13)

Ψk(r) = Uk(r)eik·r, (6.14)

where Uk(r) is a periodic function. This is Bloch’s theorem.
With Ψk(r) periodic in k we have

Ψk+G(r) = ∑
G′

Ck+G−G′ei(k+G−G′)·r. (6.15)

With

G′′ = G′ − G, (6.16)

this is

Ψk+G(r) = ∑
G′′

Ck−G′′ei(k−G′′)·r

= Ψk(r).
(6.17)

Ψk+G(r) = Ψk(r)

E(k + G) = E(k).
(6.18)

We want to examine what this means.
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6.2 nearly free electron model .

Consider V(r) in the limit V(r) → 0 in 1D, but still keep periodicity.
This leads to

Ψk(x) =
1√
L

eikx

E(k) =
h̄2k2

2m

(6.19)

Figure 6.3: Periodic energy solutions.

Solutions outside the first Brillouin zone are redundant. This
is called the reduced zone scheme. The periodicity folds the ex-
tended solution into the first Brillouin zone as sketched in fig. 6.4.

Bloch’s theorem spelled out In ?? 6.1 this is written out explicitly
for a couple values.
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Figure 6.4: First Brillouin zone.

Table 6.1: Bloch’s theorem spelled out

Ψk(x) Uk(x) E(k) C′
ks

1
1√
L

eikx 1√
L

h̄2k2

2m Ck =
1; Ck−G =
0, G = 0

2
1√
L

ei(k−2π/a)kx e−2πx/a√
L

h̄2(k−2π/a)2

2m Ck−2π/a =
1

3
1√
L

ei(k+2π/a)kx e2πx/a√
L

h̄2(k+2π/a)2

2m Ck+2π/a =
1
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Nearly free electron model, periodic potential (cont.)

Reading: [1] ch. 9.
For periodic potential

V(r) = ∑
G

VGeiG·r, (6.20)

and a trial solution

Ψ(r) = ∑
k

Ckeik·r, (6.21)

we found that the Schrödinger equation takes the form(
h̄2k2

2m
− E(k)

)
Ck + ∑

G
VGCk−G = 0, (6.22)

allowing for a factorization of Ψk

Ψk(r) =

(
∑
G

Ck−GeiG·r
)

eik·r = Uk(r)eik·r. (6.23)

What is Ck−G on branch Ψk?(
h̄2 (k − G)2

2m
− E(k − G)

)
Ck−G + ∑

G′
VG′Ck−G−G′ = 0. (6.24)

Let G′′ = G + G′, and recall that E(k − G) = E(k), giving

Ck−G = ∑G′′ VG′′−GCk−G′′

E(k) − h̄2(k−G)2

2m

. (6.25)

Ck−G on a given branch is small unless

E(k) ≈ h̄2 (k − G)2

2m
. (6.26)

except at crossing points at k = (0,±π/a). Only one Ck−G is large.
i.e. at (1) in fig. 6.4

E(k) ≈ h̄2k2

2m
. (6.27)
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so that Ck is large, and all other Ck’s are small.
At (2) we have

E(k) ≈ h̄2 (k − 2π/a)2

2m
. (6.28)

so that Ck−2π/a is large, and all other Ck’s are small.
However, at k = (0,±π/a) two or more bands cross (i.e. at (4)).

Here

h̄2 (k)2

2m
=

h̄2 (k − 2π/a)2

2m
, (6.29)

so that Ck and Ck−2π/a are both large.
Generally when

Ck = ∑G′′ VG′′−GCk−G′′

E(k) − h̄2(k)2

2m

(6.30a)

Ck−G = ∑G′′ VG′′−GCk−G′′

E(k) − h̄2(k−G)2

2m

, (6.30b)

and h̄2 (k)2 /2m = h̄2 (k − G)2 /2m.

Example 6.1: 1D.

Keep 2 Ck’s in eq. (6.22), or(
E(k) − h̄2k2

2m

)
Ck − V2π/aCk−2π/a = 0(

E(k) − h̄2(k − 2π/a)2

2m

)
Ck−2π/a − V−2π/aCk = 0,

(6.31)

With solution

0 =

∣∣∣∣∣∣
(

h̄2k2

2m − E(k)
)

V2π/a

V−2π/a

(
h̄2(k−2π/a)2

2m − E(k)
)
∣∣∣∣∣∣ . (6.32)
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With E◦
k = h̄2k2/2m, and E◦

k−2π/a = h̄2(k− 2π/a)2/2m, we com-
plete the square to find

0 = (E◦
k − E)

(
E◦

k−2π/a − E
)
− V2π/aV−2π/a

= E2 − E
(

E◦
k + E◦

k−2π/a

)
+ E◦

k E◦
k−2π/a − V2π/aV−2π/a

=

(
E −

E◦
k + E◦

k−2π/a

2

)2

−
(

E◦
k + E◦

k−2π/a

2

)2

+ E◦
k E◦

k−2π/a − V2π/aV−2π/a

=

(
E −

E◦
k + E◦

k−2π/a

2

)2

− 1
4

(
E◦

k
2 + E◦

k−2π/a
2 + 2E◦

k E◦
k−2π/a − 4E◦

k E◦
k−2π/a

)
− V2π/aV−2π/a

=

(
E −

E◦
k + E◦

k−2π/a

2

)2

−
(

E◦
k − E◦

k−2π/a

2

)2

− V2π/aV−2π/a,

(6.33)

or

E±(k) =
1
2

(
E◦

k + E◦
k−2π/a

)
±
√

1
4

(
E◦

k − E◦
k−2π/a

)2
+
∣∣∣V2π/a

∣∣∣2.

(6.34)

This is illustrated in fig. 6.5.
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Figure 6.5: Energy solutions for 1D.

A snapshot of a exact Manipulate of this curve is plotted in
fig. 6.6.

q

2m ϵ

ℏ

K/2

Figure 6.6: Weak binding plot with behavior near Bragg plane.

At the crossing point k = π/a, and k − 2π/a = −π/a, so that

E± =
h̄2

2m

(π

a

)2
±
∣∣∣V2π/a

∣∣∣, (6.35)

or more generally

E± =
h̄2

2m

(
G
2

)2

± |VG|. (6.36)

This energy gap is sketched in fig. 6.7, with the periodic ex-
tension sketched in fig. 6.8.
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Figure 6.7: Energy gap.

Figure 6.8: Energy gaps and periodic structure.

What does Ψk look like at the crossing points (4). Here

Ψk=π/a = Ck=π/aei π
a x + C(k=π/a)−2π/aei( π

a − 2π
a )x. (6.37)

Two solutions to E±
k correspond to Ck=π/a = ±C(k=π/a)−2π/a.

Ψk=π/a =
1√
2L

(
eiπx/a ± e−iπx/a

)
, (6.38)

Here L is the length of the 1d system. Note that eq. (6.38) is
one of

cos
π

a
x

sin
π

a
x

(6.39)

These solutions are sketched along with the potential in fig. 6.9.

Figure 6.9: Real space 1D solutions and potential.
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The cosine is the lower energy branch because electron den-
sity is high where V(x) is low. The sine is the higher energy
branch because electron density is high when V(x) is high.

6.3 tight binding model .

Reading: [10] §7.3, [1] ch. 10.
Assume a periodic lattice with large lattice parameter a, so that

atomic potential Va(r− rn) and wave functions ϕ(r− rn) don’t over-
lap much between neighbors, as sketched in fig. 6.10. The potential
ϕi(r − rn) satisfies

Figure 6.10: Tight binding lattice.

ĤAϕi(r − rn) = Eiϕ(r − rn). (6.40)

where

ĤA = − h̄
2m

∇ + VA(r − rn). (6.41)

The one electron Hamiltonian

Ĥ = − h̄
2m

∇2 + ∑
n′

VA(r − r′n)

= − h̄
2m

∇2 + VA(r − rn) + ∑
n′ ̸=n

VA(r − r′n)

= ĤA(r − rn) + v(r − rn).

(6.42)
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To get an idea what v(r − rn) might look like, consider v(x) =
−1/|x|, with rn = 10nx̂. The potential looks like fig. 6.11, with the
periodic extension in fig. 6.12, and finally, v(r − r0) in fig. 6.13. In
the last figure we see the omission of the infinite negative peak
at the origin, allowing the trailing contributions from neighboring
sites to add up to a value greater than the peak values at the other
sites.

-20 -10 10 20

-2.0

-1.5

-1.0

-0.5

Figure 6.11: Inverse radial potential.

-40 -20 20 40

-2.0

-1.5

-1.0

-0.5

Figure 6.12: Inverse radial periodically extended.
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-40 -20 20 40

-2.0

-1.5

-1.0

-0.5

Figure 6.13: Inverse radial, period extension, with one omission.

Look for a solution that is a Linear Combination of Atomic Or-
bitals (LCAO).

Ψk(r) ∼ Φk(r) = ∑
n

anϕi(r − rn)

= ∑
n

eik·rn ϕi(r − rn),
(6.43)

so by Bloch’s theorem

Φk(r) = Ukeik·r, (6.44)

implies

Φk(r + rm) = Φk(r)eik·rm , (6.45)

Φk(r + rm) = ∑
n

eik·rn ϕi(r + rm − rn)

= eik·rm ∑
n

eik·(rn−rm)ϕi(r + (rn − rm)).
(6.46)

Φk+G = ∑
n

eik·rn eiG·rn

1

ϕi(r − rn) = Φk(r). (6.47)
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Normalization Calculate

E(k) =
⟨Φk| Ĥ |Φk⟩
⟨Φk|Φk⟩

. (6.48)

With

⟨Φk|Φk⟩ = ∑
n,m

eik·(rn−rm) ×
∫

drϕ∗
i (r − rm)ϕi(r − rn)

=

{
1 if m = n

0 otherwise

≈ N.

(6.49)

E(k)

≈ 1
N ∑

n,m
eik·(rn−rm)

∫
drϕ∗

i (r − rm)( ĤA(r − rn) + v(r − rn)

exact

)ϕi(r − rn)

≈ ∑
n,m

eik·(rn−rm)
∫

drϕ∗
i (r − rm) (Ei + v(r − rn)) ϕi(r − rn).

(6.50)

In the integral we have from ĤA, a value of Ei if m = nf, and zero
otherwise. For the v contribution to the integral, we have

• m = n. Large ϕ∗
i (r − rm)ϕi(r − rn). We’ve got v(r − rn) small

near rn.

• m = n ± 1. Near rm, ϕi and v are both large, and ϕi(r − rn) is
small.

In short we have to keep both terms. Let

−A =
∫

drϕ∗
i (r − rn)v(r − rn)ϕi(r − rn)

−B =
∫

drϕ∗
i (r − rm)v(r − rn)ϕi(r − rn)

(6.51)

So

E(k) ≈ 1
N

(
∑
n

Ei − ∑
n

A − ∑
n,m

eik·(rn−rm)B

)
, (6.52)
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or

E(k) ≈ Ei − A − B ∑
m=nn of n

eik·(rn−rm). (6.53)

In one dimension

Example 6.2: 1D lattice.

For 1D we have

rn − rm = ±a, (6.54)

which implies the nearest neighbor sum is

∑
nn

(
eika + e−ika

)
= 2 cos ka. (6.55)

So

E(k) ≈ Ei − A − 2B cos ka

The hopping term

. (6.56)

Figure 6.14: Tight binding 1D example.
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Figure 6.15: Dependence on a.

Figure 6.16: NFE comparison points.

Figure 6.17: (1) bonding s orbitals.

Figure 6.18: (2) antibonding s orbitals.

Correspondence with the Nearly free electron model

6.4 3d band structures , fermi surfaces of real met-
als .

Reading: [10] §7.4 Consider a nearly free electron metal, and a
hypothetical simple cubic system as in fig. 6.21.

We can ask some questions

• What is the occupancy?

• Where is EF (the Fermi energy)?

Consider alkali metals, such as Li 1s22s1

Is tight-binding-like fully occupied.
2 × 1s electrons per atom.



6.4 3d band structures , fermi surfaces of real metals . 197

Figure 6.19: (3) bonding p orbitals.

Figure 6.20: (4) antibonding p orbitals.

Figure 6.21: Simple cubic Brillouin zone.

Figure 6.22: Two frequency distributions.
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Figure 6.23: Center edge contour distribution.

In 1 band (2π)3/a3 is the volume of k-space, and we have

�
��(2π)3

a3 × 2

spin

V

�
��(2π)3

density of k points

, (6.57)

for

2
V
a3 = 2N, (6.58)

where N is the number of unit cells.
The 2s orbitals stick out a long way, so this is free electron like.

We have half filled orbitals. Where EF crosses E(k) is a Fermi sur-
face. It never gets close to the Brillouin zone boundary.

This is nearly spherical. See slides for the true Brillouin zone
diagram for Li.

Question: In class when discussing Li, K, Na tight binding, and
it’s relation to the Fermi surface, we were told that the Li and other
alkali-metal Fermi surfaces never get close to the BZ boundary,
and that they were approximately spherical.

I don’t understand how we arrived at the conclusion that for
these s-orbital elements “the Fermi surface never gets close to the
BZ boundary”, nor why those surfaces would necessarily be ap-
proximately spherical?
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Answer: Unlike the calculation in problem set 8, the band struc-
ture of the alkali metals and alkali earths is free-electron-like. This
means that the dispersion relation is parabolic, except near the
Brillouin zone boundary. So if the Fermi surface never gets close
to a Brillouin zone boundary, E(kF) ≃ h̄2k2

F/2m, independent of
direction in k-space, so the Fermi surface is spherical.

You can tell that the Fermi surface doesn’t go close to the BZ
boundary by calculating the volume of the Fermi sphere, com-
pared with the volume of the Brillouin zone. This doesn’t work
for the tight-binding band structure, because the dispersion is
anisotropic even far from the Brillouin zone.

A very helpful demonstration of exactly that calculation can be
found in [13], under section ’Alkali metals’. To understand the
details of that calculation (see: bccBasisVectors.nb ), it is helpful
to note that a BCC basis is

ai ∈


a
2

1

1

1

 ,
a
2

 1

1

−1

 , a

1

0

0


 , (6.59)

for which the reciprocal basis is

gi ∈


2π

a

0

1

1

 ,
2π

a

 0

1

−1

 ,
2π

a

 1

−1

0


 . (6.60)

This point is also discussed with typical clarity in [1] ch. 15, “The
Alkaki Metals”.

Valence 2 For alkali earth’s Mg, Ca, · · ·, we have 2 × 2s valence
electrons. This doesn’t fill the band, because of dispersion.

Define a free electron sphere. It extends beyond the first Bril-
louin zone. This is incorrectly sketched in fig. 6.24 as a simple
cubic (actual is perhaps FCC).

Examination hint: For a picture like this, understand what hap-
pens at the boundary, and how it reconstructs.

Valence 3 Considering a material such as Al, which is in valance
3. See slide.
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Figure 6.24: Fermi surfaces for Cu like simple cubic.

Figure 6.25: Copper Fermi surface side view?.
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Examination hint: Valence three won’t be examinable

d electron systems We have two kinds of valence electrons.

• s electrons. Free electron like.

• d electrons. compact orbitals that are tight binding like.

Looking with an experienced eye, we see two types of bands.
The first are the s-bands that are free electron like and rapidly
disburse. This is roughly sketched in fig. 6.26. The others are the
d orbital band that disperse a bit, but not very much. What ac-
tually happens in here where they cross is also illustrated in the
magnified section.

Figure 6.26: d electron distribution.

The occupancy for Cu is 3d104s1. The d orbitals are filled.
EF intersects 4s bands, we have a nearly free electron Fermi sur-

face.
The reason that copper is copper coloured is because there’s

a high density of states, with absorption in blue, resulting in a
brown look.

We have something similar for Ag and Au.
From Sc to Ni, or Y to Pd, or La to Pt, the d orbitals are partially

occupied, and EF is among the d bands. This ends up being a
complicated Fermi surface, and there is a high density of states at
EF (see table in slides).
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These atoms with 3d valence electrons are very prone to mag-
netism. The atoms with 4d valence electrons are very prone to
superconductivity.

A high density of states in physics makes for interesting effects.

6.5 problems .

Exercise 6.1 Nearly free electron model. (2013 ps7 p2)

Figure 6.27 shows the free electron dispersion relation for a one-
dimensional metal, in the reduced zone scheme.

Figure 6.27: dispersion relation for a one-dimensional metal.

a. For each of the branches (1), (2), (3) and (4), state which of
the coefficients Ck−G are non-zero, and give the correspond-
ing uk(x) in the electron wave-function

ψk(x) = ∑
G

Ck−Ge−iGxeikx = uk(x)eikx. (6.61)

b. For the circled regions there are two nearly-degenerate en-
ergy solutions. If a nearly free electron potential

V(x) = V1cos(2πx/a) + V2cos(4πx/a). (6.62)

is introduced, what is the magnitude of the energy gap that
opens up at the band crossings in the circled regions ‘a’, ‘b’
and ‘c’?
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c. What are the gaps at ‘a’, ‘b’ and ‘c’ if instead the lattice
potential is described by a periodic array of delta functions:

V(x) =
∞

∑
−∞

V◦δ(x − na). (6.63)

d. Write the form of the wave-function for the two solutions
at the level crossing at ‘b’ on the diagram (i.e. where k =
0). Sketch in real space the charge density associated with
these solutions relative to the atom positions on the one-
dimensional lattice. Also, write these wave functions in the
Bloch form, ψk(x) = eikxuk(x), and thus identify uk(x) for the
two solutions at ‘b’.

e. Near point ‘a’, investigate how the wave-function of the
lower-energy branch (branch G = 0) evolves as you move
away from the Brillouin zone boundary. To do this, calcu-
late |ψk(x)|2, and from this sketch the charge density in real
space, explaining how it changes as k moves away from
π/a. If it helps, you may start far enough away from the
Brillouin zone boundary that E◦

k−2π/a − E◦
k ≫

∣∣∣V2π/a

∣∣∣.
Answer for Exercise 6.1

Part a. Considering each branch in turn:

1. On this branch, the wave function is

ψk(x) =
1√
a

eikx, (6.64)

so

uk(x) =
1√
a

Ck =
1√
a

Ck−2πm/a = 0, m ∈ {±1,±2, · · ·}.

(6.65)
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2. On this branch, the wave function is

ψk(x) =
1√
a

ei(k−2π/a)x

=
(

1√
a

e−i 2π
a x
)

eikx,
(6.66)

so

uk(x) =
1√
a

e−i 2π
a x

Ck−2π/a =
1√
a

Ck−2πm/a = 0, m ∈ {0,−1,±2,±3, · · ·}.

(6.67)

3. On this branch, the wave function is

ψk(x) =
1√
a

ei(k+2π/a)x

=
(

1√
a

e−i −2π
a x
)

eikx,
(6.68)

so

uk(x) =
1√
a

ei 2π
a x

Ck+2π/a =
1√
a

Ck−2πm/a = 0, m ∈ {0, 1,±2,±3, · · ·}.

(6.69)

4. On this branch, the wave function is

ψk(x) =
1√
a

ei(k−4π/a)x

=
(

1√
a

e−i 4π
a x
)

eikx,
(6.70)

so

uk(x) =
1√
a

e−i 4π
a x

Ck−4π/a =
1√
a

Ck−2πm/a = 0, m ∈ {0,±1,−2,±3,±4, · · ·}.

(6.71)
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Part b. With G = 2π/a, we can write the potential of eq. (6.62) as

V(x) =
V1

2

(
eiGx + e−iGx

)
+

V2

2

(
e2iGx + e−2iGx

)
. (6.72)

That is

V1G = V−1G =
V1

2

V2G = V−2G =
V2

2
.

(6.73)

The coefficients Ck would follow from a solution of

0 =

(
h̄2

2m
(k − nG)2 − E

)
Ck−nG

+ VG
(
Ck−(1+n)G + Ck+(1−n)G

)
+ V2G

(
Ck−(2+n)G + Ck+(2−n)G

)
.

(6.74)

Written out in full this includes

0 =

(
h̄2

2m
(k + 2G)2 − E

)
Ck+2G + VG (Ck+G + Ck+3G) + V2G (Ck + Ck+4G)

0 =

(
h̄2

2m
(k + G)2 − E

)
Ck+G + VG (Ck + Ck+2G) + V2G (Ck−G + Ck+3G)

0 =

(
h̄2

2m
k2 − E

)
Ck + VG (Ck−G + Ck+G) + V2G (Ck−2G + Ck+2G)

0 =

(
h̄2

2m
(k − G)2 − E

)
Ck−G + VG (Ck−2G + Ck) + V2G (Ck−3G + Ck+G)

0 =

(
h̄2

2m
(k − 2G)2 − E

)
Ck−2G + VG (Ck−3G + Ck−G) + V2G (Ck−4G + Ck) .

(6.75)

Dropping Ck−4G, Ck−3G, Ck+3G, Ck+4G, this is

0 =



E◦
k−2G − E VG V2G 0 0

VG E◦
k−G − E VG V2G 0

V2G VG E◦
k − E VG V2G

0 V2G VG E◦
k+G − E VG

0 0 V2G VG E◦
k+2G − E





Ck−2G

Ck−G

Ck

Ck+G

Ck+2G


,
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(6.76)

or

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

E◦
k−2G − E VG V2G 0 0

VG E◦
k−G − E VG V2G 0

V2G VG E◦
k − E VG V2G

0 V2G VG E◦
k+G − E VG

0 0 V2G VG E◦
k+2G − E

∣∣∣∣∣∣∣∣∣∣∣∣∣
(6.77)

At point (a) we can get a rough idea of the separation by further
dropping Ck−G, Ck+G, Ck+2G terms, so that the system to solve is

0 =

[
E◦

k−G − E VG

VG E◦
k − E

] [
Ck−G

Ck

]
. (6.78)

At the boundary where E◦
k = E◦

k−G, this is

0 =

∣∣∣∣∣E◦
k − E VG

VG E◦
k − E

∣∣∣∣∣ , (6.79)

or

E± = E◦
k ± VG = E ± V1

2
. (6.80)

The (approximate) separation between the energy curves at that
point is

∆E = E+ − E− = V1. (6.81)

At point (b) dropping all but the Ck−G, Ck+G terms gives us

0 =

[
E◦

k−G − E V2G

V2G E◦
k+G − E

] [
Ck−G

Ck+G

]
. (6.82)

Taking the determinant and noting that at the intersection E◦
k−G =

E◦
k+G, this has solution

E± = E◦
k−G ± V2G = E ± V2

2
. (6.83)

This time the approximate separation between the energy curves
at that point is

∆E = E+ − E− = V2. (6.84)
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Finally, at point (c) we have E◦
k−2G = E◦

k+G. Our system eq. (6.76)
can be approximated by

0 =

[
E◦

k−2G − E 0

0 E◦
k+G − E

] [
Ck−2G

Ck+G

]
, (6.85)

with approximate solution

E± = E◦
k+G. (6.86)

We find that the approximate separation at this point is zero. Should
we require a better estimate, we must retain of more of the coeffi-
cients Ck−hG.

Part c. Let’s start by assuming the periodic delta function poten-
tial has a Fourier representation, and computing the associated
Fourier components

V(x) = V◦ ∑
n

δ(x − na) = ∑
h

CGh e−iGhx, (6.87)

where

Gh = Gh =
2π

a
h, (6.88)

and h is an integer. The Fourier coefficient follows directly from
the Fourier integral∫ 1/2

−1/2
duV(ua)eih′Gau = ∑

h
CGh

∫ 1/2

−1/2
dueih′Gaue−iGhau

= ∑
h

CGh

∫ 1/2

−1/2
due2πi(h′−h)u

= ∑
h

CGh δh,h′

= CGh′ .

(6.89)

Integrating the LHS gives us

CGh =
∫ 1/2

−1/2
duV(ua)eihGau

= V◦
∫ 1/2

−1/2
du ∑

n
δ((u − n)a)e2πihu.

(6.90)
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Only one of the delta functions in the ∑n falls in [−1/2, 1/2], so
this integral is just V◦/a, leaving

V(x) =
V◦
a ∑

h
eiGhx. (6.91)

Schrödinger’s equation for this potential is

0 = ∑
k′

(
h̄2(k′)2

2m
− E

)
Ck′eik′x +

V◦
a ∑

G
eiGxCk′eik′x, (6.92)

Operating with
∫

dxe−ikx gives

0 =

(
h̄2k2

2m
− E

)
Ck +

V◦
a ∑

G
Ck−G. (6.93)

Noting that

0 =

(
V◦
a

+
h̄2k2

2m
− E

)
Ck +

V◦
a ∑

G ̸=k
Ck−G, (6.94)

we could put this in matrix form, but that’s not too helpful since
the matrix is infinite dimensional. It’s possible to find an implicit
relation for E(k) by summing Ck, since

Ck =
V◦
a ∑

G
Ck−G

1

E − h̄2k2

2m

, (6.95)

and

�
�
�∑

k
Ck =

V◦
a ��

���∑
G

Ck−G ∑
k

1

E − h̄2k2

2m

, (6.96)

or

a
V◦

= ∑
k

1

E − h̄2k2

2m

. (6.97)

While I’d guess that this can be summed using the Euler-MacLaren
theorem, Mathematica says this is

√
E =

V◦
a

2πm
h̄2 cot

(
2πm

√
E

h̄2

)
. (6.98)
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x

cot x
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Figure 6.28: Implicit function curves for delta-function-potential energy.

This implicit function has two discrete solutions, as illustrated by
representative plots in fig. 6.28. This could clearly be solved nu-
merically. None of this helps with an estimate of the gap at the
crossing points. Considering point (a) as representative, let’s make
a crude approximation of eq. (6.94) as

0 ≈
[

V◦
a + h̄2(k−G)2

2m − E V◦
a

V◦
a

V◦
a + h̄2k2

2m − E

] [
Ck−G

Ck

]
. (6.99)

At the crossing (a) where E◦
k = E◦

k−G we have

0 ≈
∣∣∣∣∣V◦

a + E◦
k − E V◦

a
V◦
a

V◦
a + E◦

k − E

∣∣∣∣∣ , (6.100)

or

E± ≈ E◦
k −

V◦
a

±
∣∣∣∣V◦

a

∣∣∣∣. (6.101)

The gap distance at this point (or the others) is thus approximately

∆E ≈ 2
V◦
a

. (6.102)

Part d. From eq. (6.82) we see that the coefficients are related by

Ck−G = −Ck+G
V2G

E◦
k−G − E

, (6.103)
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so our wave functions ψ = ∑k Ckeikx are

ψ± ∝
(
E◦

k−G − E±
)

ei(k+G)x − V2Gei(k−G)x. (6.104)

However, V2G = V2/2, and E◦
k−G − E± = ±V2/2, so we have

ψ± ∝ ei(k+G)x ∓ ei(k−G)x. (6.105)

Normalizing and putting in Bloch form, these are

ψ+ =

√
2
a

eikx sin(Gx)

ψ+ =

√
2
a

eikx cos(Gx).

(6.106)

or

uk+(x) =

√
2
a

sin(Gx)

uk−(x) =

√
2
a

cos(Gx).

(6.107)

These have respective charge densities

ρ+ =
2e
a

sin2(Gx)

ρ− =
2e
a

cos2(Gx).
(6.108)

These are sketched in fig. 6.29.

Part e. We start with eq. (6.78), for which we find

E± =
1
2

(
E◦

k−G + E◦
k ±

√(
E◦

k − E◦
k−G

)2 + V2
1

)
, (6.109)

so that the wave function coefficients are given by

Ck−G
1
2

(
E◦

k−G − E◦
k ∓

√(
E◦

k − E◦
k−G

)2 + V2
1

)
= −Ck

V1

2
. (6.110)

This gives

ψk,±(x) ∝ −V1ei(k−G)x +
(

E◦
k−G − E◦

k ∓
√(

E◦
k − E◦

k−G

)2 + V2
1

)
eikx.



6.5 problems . 211

Figure 6.29: Density plots.

(6.111)

The kinetic energy difference is

E◦
k−G − E◦

k =
h̄2(k − G)2

2m
− h̄2k2

2m

=
h̄2 (G2 − 2kG

)
2m

,

(6.112)

so we have

ψk,±(x) ∝ −V1ei(k−G)x +
( h̄2 (G2 − 2kG

)
2m

∓

√√√√( h̄2 (G2 − 2kG)

2m

)2

+ V2
1

)
eikx

(6.113)

To make this less cumbersome, let’s write

ϵ±(k) =

 h̄2G (G − 2k)
2m

∓

√√√√( h̄2G (G − 2k)
2m

)2

+ V2
1

 . (6.114)

Writing out G = 2π/a explicitly, the (still unnormalized) wave
functions are

ψk,±(x) =
(
−V1e−iπx/a + ϵ±(k)eiπx/a

)
e−iπx/aeikx, (6.115)
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and the densities are proportional to

ρk,±(x) =
∣∣∣−V1e−iπx/a + ϵ±(k)eiπx/a

∣∣∣2. (6.116)

We are interested in the lower energy branch ρk,− where

ϵ−(k) =

 h̄2G (G − 2k)
2m

+

√√√√( h̄2G (G − 2k)
2m

)2

+ V2
1



=

h2
(

1 − ka
π

)
2ma2 +

√√√√√h2
(

1 − ka
π

)
2ma2

2

+ V2
1

 .

(6.117)

Observe that the kinetic energy difference terms are zero at the
Brillouin boundary (k = π/a). At a distance approaching that
boundary, say

k =
π

a
(1 − α), (6.118)

we have

ϵ−(k) =
h2α

2ma2 +

√(
h2α

2ma2

)2

+ V2
1 ≈ h2α

2ma2 + V1 +
1
2

(
h2α

2ma2

)2

= V1 + O(α).
(6.119)

Thus near the boundary we have a (without normalization) nearly
sine density

ρk,−(x) =
∣∣∣2iV1 sin(πx/a) + O(α)eiπx/a

∣∣∣2
≈ V2

1 sin2(πx/a).
(6.120)

This approaches zero in real space near the atomic lattice posi-
tions.

On the other extreme, far enough from the boundary that

h2
(

1 − ka
π

)
2ma2 ≫ V2

1 , (6.121)



6.5 problems . 213

we have

ϵ−(k) ≈
h2
(

1 − ka
2

)
ma2 , (6.122)

and our (unnormalized) density is nearly constant

ρk,±(x) ≈

∣∣∣∣∣∣−V1e−iπx/a +
h2
(

1 − ka
2

)
ma2 eiπx/a

∣∣∣∣∣∣
2

≈
h2
(

1 − ka
2

)
ma2 .

(6.123)

Some of these curves are plotted in fig. 6.30 for various relative
values of E◦

k−2π/2 − E◦
k , V1, where the most peaked is near the k =

π/a boundary, and the flattest, near the origin.

x

-
π

10
-
π

10

Figure 6.30: Real space variation with k in the Brillouin zone.

Exercise 6.2 Tight binding, square lattice. (2013 ps8 p1)

Consider a two-dimensional square lattice with lattice parame-
ter a, and thus basis vectors (a, 0) and (0, a). We will construct a
tight binding band from an s-orbital ϕs that is a solution of the
Schrodinger equation for the isolated atom, with eigenvalue Es:
ĤA(r − rn)ϕs(r − rn) = Esϕs(r − rn), where rn is a lattice vector.

a. If the tight binding integrals (defined in class) are

A ≡ −
∫

dr ϕ∗
s (r − rn)v(r − rn)ϕs(r − rn) and

B ≡ −
∫

dr ϕ∗
s (r − rn ± (a, 0))v(r − rn)ϕs(r − rn) = Bx

= −
∫

dr ϕ∗
s (r − rn ± (0, a))v(r − rn)ϕs(r − rn) = By,
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show that

E(k) ≃ Es − A − 2B(cos(kxa) + cos(kya)).

b. Plot E(k) along the following lines in k-space: (i) from k =
(0, 0) to (2π/a, 0); (ii) from k = (0, 0) to (0, 2π/a); (iii) from
k = (0, 0) to (2π/a, 2π/a).

c. What is the bandwidth of this tight-binding band, as a mul-
tiple of B?

d. Plot contours of constant energy in the first Brillouin zone
(i.e. the (kx, ky) plane, using only the first Brillouin zone),
for the following energies: (i) E = Es − A − 2B; (ii) E = Es −
A − B; (iii) E = Es − A; (iv) E = Es − A + 2B. You may use a
plotting package, or plot by hand by calculating kx and ky

along a few directions in k-space and then interpolating.
Use these plots to identify which constant energy contour
represents the “half-filled state" (the state where, if all of
the levels up to E = EF are filled then there is one electron
per site, or N electrons in total, where N is the number of
atoms in the lattice).

e. By considering how the A and B integrals would be af-
fected, discuss in qualitative terms how the E(k) relation
changes if, instead of atomic s-orbitals, the basis functions
for this band are px-orbitals. Sketch contours of constant
energy as the ‘filling’ of the band changes from EF near
the bottom of the band, to EF near the top of the band. [9
marks]

Notes and Hints: Note that the px orbitals break the 90

degree rotational symmetry, so now By ̸= Bx. If the lat-
tice parameter is large, so that there is weak overlap as is
assumed in tight-binding calculations, then you will have∣∣By
∣∣≪ |Bx|. Explain why. Note too that the px-orbitals have

odd-parity, compared with the even-parity of the s-orbitals.
You may find it helpful, in discussing the B orbitals, to
sketch the px orbitals on neighboring atoms, to visualize
how they overlap.

Answer for Exercise 6.2



6.5 problems . 215

Part a. In class (or [10] (eq. 7.37)) we found for the tight binding
energy at the lattice point at rn

E(k) ≈ Ei − A − B ∑
m=nn of n

eik·(rn−rm). (6.124)

The nearest neighbor differences are illustrated in fig. 6.31, which
we see are

Figure 6.31: Cubic nearest neighbor differences.

rm − r ∈ {(0, a), (0,−a), (a, 0), (−a, 0)}. (6.125)

The sum of exponentials is just

∑
m

eik·(rn−rm) = ei(kx ,ky)·(0,−a) + ei(kx ,ky)·(0,a) + ei(kx ,ky)·(a,0) + ei(kx ,ky)·(−a,0)

= e−iaky + eiaky + e−iakx + eiakx

= 2 cos akx + 2 cos aky.
(6.126)

Equation (6.124) takes the form

E(k) ≈ Ei − A − 2B
(
cos akx + cos aky

)
, (6.127)

as desired.

Part b.

(i) Parameterize this trajectory with

k(u) =
2π

a
u(1, 0), (6.128)
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so the energy on this trajectory is

E(k(u)) = Es − A − 2B (cos 2πu + 1)

= Es − A − 2B − 2B cos 2πu.
(6.129)

This is plotted in fig. 6.32.

Figure 6.32: E(k) on k ∈ [(0, 0), 2π(1, 0)/a].

(ii) Parameterize this trajectory with

k(v) =
2π

a
v(0, 1), (6.130)

so the energy on this trajectory is

E(k(v)) = Es − A − 2B (1 + cos 2πv)

= Es − A − 2B − 2B cos 2πv.
(6.131)

This, identical to (i) in form, is plotted in fig. 6.33.

(iii) Parameterize this trajectory with

k(w) =
2π

a
w(1, 1), (6.132)

so the energy on this trajectory is

E(k(w)) = Es − A − 2B (2 cos 2πw)

= Es − A − 4B cos 2πw.
(6.133)

This, identical to (i) and (ii) in form, but with different extremums,
is plotted in fig. 6.34.
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Figure 6.33: E(k) on k ∈ [(0, 0), 2π(0, 1)/a].

Figure 6.34: E(k) on k ∈ [(0, 0), 2π(1, 1)/a].
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Part c. E(k) ranges from Es − A − 2B(1 + 1) to Es − A − 2B(−1−
1). That maximum difference is

4B − (−4B) = 8B. (6.134)

Part d.

(i) E = Es − A − 2B The first contour is that defined by

E = Es − A − 2B
(
cos kxa + cos kya

)
= Es − A − 2B, (6.135)

or

cos kxa + cos kya = 1. (6.136)

(ii) E = Es − A − B Next we have the contour defined by

cos kxa + cos kya =
1
2

. (6.137)

(iii) E = Es − A This contour is defined by

cos kxa + cos kya = 0. (6.138)

(iv) E = Es − A + 2B And the last contour defined by

cos kxa + cos kya = −1. (6.139)

These are plotted as functions of u = kxa and v = kya in fig. 6.35.
These are level curves of the surface plotted in fig. 6.36.

In class when discussing the tight binding characteristics of s-
orbital alkali metals (Li, K, Na, ...), it was noted that their Fermi
surfaces never get close to the Brillouin boundary, and that they
were approximately spherical. All of the surfaces constrained to
the bucket (E < Es − A) are far from the Brillouin boundary, but
at E = Es − A− 2B we are just starting to loose the “spherical” (aka.
circular for this lattice) character of these surfaces. We expect that
the Fermi energy EF has an upper bound of EF = Es − A − 2B, a
position in the bucket where the contours are still nearly circular.
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Grading remark: “? half filled?”. Two marks lost. My attempt to
BS this above clearly failed. Prof Julian provided some helpful
comments on this:

“Unlike the calculation in problem set 8, the band structure of
the alkali metals and alkali earths is free-electron-like. This means
that the dispersion relation is parabolic, except near the Brillouin
zone boundary. So if the Fermi surface never gets close to a Bril-
louin zone boundary, E(kF) ≃ h̄2k2

F/2m, independent of direction
in k-space, so the Fermi surface is spherical.

You can tell that the Fermi surface doesn’t go close to the BZ
boundary by calculating the volume of the Fermi sphere, com-
pared with the volume of the Brillouin zone. This doesn’t work
for the tight-binding band structure, because the dispersion is
anisotropic even far from the Brillouin zone.”

As a followup it would be good to:

1. Try this calculation of EF for the alkali metals, then compare
to the BZ volume to verify.

2. Figure out how to calculate the density of states (and thus
EF...).

Figure 6.35: 2D Contour plots of selected tight binding energy levels.
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Figure 6.36: Energy level curves.

Part e. The 2px orbital function in Cartesian coordinates are

ϕ2px =
1√
π

(
Z

2a◦

)5/2

e−Zr/a◦x, (6.140)

where r =
√

x2 + y2 + z2. The overlap of these orbitals in the lattice
could look something like fig. 6.37.

Figure 6.37: 2px overlap.

Grading remarks: x ± a is circled “be careful with this. Need to
presume parity of orbital”, and “Bx is negative”. Putting the origin
at rn, writing α = Z/a◦, and c2 = (Z/2a◦)5/π, the A and B integrals
for this basis are

A = −c2
∫

dxdydze−2α
√

x2+y2+z2
v(x, y, z)x2

Bx = −c2
∫

dxdydze−α
√

(x±a)2+y2+z2
(x ± a) v(x, y, z)e−α

√
x2+y2+z2

x

By = −c2
∫

dxdydze−α
√

x2+(y±a)2+z2
x2v(x, y, z)e−α

√
x2+y2+z2

(6.141)
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We can rewrite these as

A = −c2
∫

d3rv(r)e−2αrx2

Bx = −c2
∫

d3rv(r)e−α(r+
√

r2±2xa+a2) (x2 ± ax
)

By = −c2
∫

d3rv(r)e−α
(

r+
√

r2±2ya+a2
)

x2

(6.142)

The energy then becomes

E(k) = Es − A − Bx+ ei(−a,0)·(kx ,ky) − Bx−ei(a,0)·(kx ,ky)

− By+ ei(0,−a)·(kx ,ky) − By−ei(0,a)·(kx ,ky)

= Es − A − Bx+ e−iakx − Bx−eiakx

− By+ e−iaky − By−eiaky

= Es + c2
∫

d3rv(r)e−2αrx2

+ c2
∫

d3rv(r)e−α(r+
√

r2−2xa+a2) (x2 − ax
)

eiakx

+ c2
∫

d3rv(r)e−α(r+
√

r2+2xa+a2) (x2 + ax
)

e−iakx

+ c2
∫

d3rv(r)e−α
(

r+
√

r2−2ya+a2
)

x2eiaky

+ c2
∫

d3rv(r)e−α
(

r+
√

r2+2ya+a2
)

x2e−iaky

(6.143)

Zeroth order approximation In the limiting case where v(r) ≈ 0
unless |r| ≪ a, this gives us

E(k) ≈ Es − β(2) − 2β(1)e−Za/a◦
(
cos kxa + cos kya

)
, (6.144)

where

β(n) = −c2
∫

d3rv(r)e−nZr/a◦x2. (6.145)

In this limit we have the same “bucket” constant energy contours
as found above, however for a constant surface

E = Es − Es − β(2) − 2β(1)µ. (6.146)

the contours are defined by

cos kxa + cos kya = µeZa/a◦ . (6.147)

This flattens the surface as Z increases.
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First order approximation Allowing for an additional order of r/a
in the square root expansions above, so that, for instance

e−α(r+
√

r2−2xa+a2) ≈ exp
(
−α

(
r + a

(
1 +

1
2

r2 − 2xa
a2

)))
= e−α(r−x)e−aαe−αr2/2a2

.
(6.148)

Now we see the parity effects of the px orbital start to manifest.
The energy to this order of approximation is

E(k) = Es + c2
∫

d3rv(r)e−2αrx2

+ c2e−aα
∫

d3rv(r)e−α(r−x)−αr2/a2 (
x2 − ax

)
eiakx

+ c2e−aα
∫

d3rv(r)e−α(r+x)−αr2/a2 (
x2 + ax

)
e−iakx

+ c2e−aα
∫

d3rv(r)e−α(r−y)−αr2/a2
x2eiaky

+ c2e−aα
∫

d3rv(r)e−α(r+y)−αr2/a2
x2e−iaky

(6.149)

In the Bx integrals we have integrands including factors of the
form (x2 − ax)eαx or (x2 + ax)e−ax both of which have x2ea|x| con-
tributions for portions of the integral. In the By integrals we have
x2ea|y| factors in the integrands, which will have less total contri-
bution to the integral. That justifies the |Bx| ≫

∣∣By
∣∣ condition for

weak overlap.
Given this difference in magnitude, we can roughly expect that

the energy can be written as approximately

E(k) = Es − A + |Bx| cos kxa −
∣∣By
∣∣ cos kya. (6.150)

Grading remark: Originally had −|Bx|, which resulted in a squished
plot instead of the one below that has a saddle. The comment was
“negative Bx makes (0, 0) a saddle point”. Consider constant en-
ergy contours

E(k) = Es − A − 2µ
√

B2
x + B2

y, (6.151)

so that the constant surfaces are given by

− cos kxa +
∣∣∣∣By

Bx

∣∣∣∣ cos kya = 2µ

√
1 +

B2
y

B2
x

. (6.152)
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This is plotted for µ ∈ [−1, 1], and
∣∣By/Bx

∣∣ = 0.41 in fig. 6.38 and
fig. 6.39.

Figure 6.38: Sample energy contours for px orbital basis.

Exercise 6.3 2-3D band structure, Fermi surface. (2013 ps9 p1)

Consider a two-dimensional square lattice with one atom per
unit cell, where each atom contributes two electrons to the con-
duction band. Assume that the band structure is free-electron-like.

a. Show that the free-electron Fermi surface extends beyond
the boundary of the first Brillouin zone, and state by how
much the free-electron Fermi wave-vector, kF, extends be-
yond the boundary.

b. Sketch how the circular free-electron Fermi surface recon-
structs due to the lattice potential, assuming that the lattice
potential introduces only small energy gaps at the Brillouin
zone boundary. State whether the reconstructed Fermi sur-
faces enclose filled states (so-called “electron pockets”) or
empty states (so-called “hole pockets”).

Answer for Exercise 6.3
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Figure 6.39: 3D plot for px orbital basis.

Part a. Our geometry is sketched in fig. 6.40.

Figure 6.40: 2D cubic lattice.

With just a single atom in the primitive unit cell, the number
density of the electrons is just

n =
N
V

=
2
a2 . (6.153)

The 2D Fermi wave-vector is given implicitly by this area number
density, considering the unit circle of radius kF that can contain
that number of electrons

N = 2 × πk2
F ×

A
(2π)2 =

Ak2
F

2π
, (6.154)
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or

kF =
√

2πn. (6.155)

For this bivalent lattice we have

kF =

√
2π

2
a2 =

2
√

π

a
≈ 3.54

a
. (6.156)

The first Brillouin zone is sketched in fig. 6.41.

Figure 6.41: First BZ for cubic 2D lattice.

From the center of the BZ to the nearest point on the boundary
we have a distance of

π

a
≈ 3.14

a
< kF. (6.157)

So kF extends beyond the BZ boundary by

kF −
π

a
=

2
√

π − π

a
≈ 0.40

a
. (6.158)

Part b. The BZ and the Fermi circle has been plotted to scale,
with the reconstruction surfaces sketched over top of the plot in
fig. 6.42.

Sketching the repeated zone scheme rather roughly (no longer
to scale) in fig. 6.43, it’s easier to visualize the disconnected pock-
ets of (blue) enclosing unfilled states (hole pockets).

Grading remark: my comment “hole pockets” was marked wrong.
This was, in truth, a guess, and I didn’t understand this business
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Figure 6.42: Fermi surface for 2D cubic lattice.

of hole pocket vs. electron pocket and didn’t find the text partic-
ularly helpful to explain it. A corrected sketch was drawn (some-
what like fig. 6.43). Prof Julian responded about this: “If you go
back to the free electron sphere, then the ellipsoids that are along
the edges of the Brillouin zone have occupied states between the
Fermi surface and the Brillouin zone boundary. So when you close
the pocket on the other size of the Brillouin zone, occupied states
are enclosed.

On the other hand, the corner pockets come from sections of
the free electron sphere that have unoccupied states between the
Fermi surface and the Brillouin zone corner. Thus when you en-
close the BZ corner by closing the Fermi surface in the repeated
zone scheme, you are enclosing empty states.”

Figure 6.43: Repeated zone scheme for cubic lattice.
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Exercise 6.4 Density of states and effective mass. (2013 ps9 p2)

The dispersion relation of a two-dimensional square lattice with
lattice parameter a, with nearest-neighbor tight-binding integrals
A and B, is

E(k) ≃ Es − A − 2B(cos(kxa) + cos(kya)).

a. Expanding E(k) around the bottom and the top of the band
to second order in k (i.e. approximating the bands as parabolic)
show that the density of states per unit area jumps from
zero when E is outside the band, to a finite value as E
passes the bottom or top of the band. What is the finite
value?

b. Consider now the analogous three-dimensional simple cu-
bic system, such that

E(k) ≃ Es − A − 2B(cos(kxa) + cos(kya) + cos(kza)).

Show that the density of states now grows continuously
from zero, and is proportional to

√
(E − Eb), and

√
(Et − E),

as the bottom (Eb) and top (Et) of the band are crossed. Find
the constants of proportionality.

c. For the three-dimensional cubic system of part b, find the
group velocity vg along the kx direction, as a function of kx,
and sketch its behavior from kx = 0 to π/a.

d. Using our definition of group velocity from class, and defin-
ing the velocity effective mass m∗ by vg = h̄k/m∗, plot m∗

vs kx from 0 to π/a.

Answer for Exercise 6.4

Part a. It’s helpful to recall the geometry of the energy distribu-
tion in k-space. This was plotted in fig. 6.36. At the bottom of the
distribution, to second order, we have

E(k) ≈ Es − A − 2B
(

1 − 1
2
(kxa)2 + 1 − 1

2
(
kya
)2
)

= Es − A − 4B + Ba2
(

k2
x + k2

y

)
.

(6.159)
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For the gradient we have

∇kE(k) = Ba2∇
(

k2
x + k2

y

)
= Ba2 (2kx, 2ky

)
= 2Ba2k.

(6.160)

With cylindrical coordinates, we have

dk = kdϕkdk

= kdϕk
dE

|∇kE| ,
(6.161)

So that the density of states is given by

D(E)dE = 2 × 1
A

A
(2π)2×∫ 2π

ϕk=0
��kdϕk

dE
2Ba2��k

,
(6.162)

or

D(E) =
1

2πBa2 . (6.163)

For the top of the energy levels, we can also expand to second
order in kx, ky, at the points kx, ky = ±π/a. With k for one of kx, or
ky we have at the corner k = ±π/a

cos ka =
1
0!

cos ka|k=±π/a +
1
1!

cos′ ka
∣∣
k=±π/a (k ∓ π/a)

+
1
2!

cos′ ka
∣∣
k=±π/a (k ∓ π/a)2 + · · ·

≈ cos (±π)− a sin (±π) (k ∓ π/a)− a2 cos (±π) (k ∓ π/a)2

= −1 +
1
2
(ka ∓ π)2 .

(6.164)

So, at the corner k = ±(1, 1)π/a the energy is approximately

E(k) = Es − A + 4B − B
(
(kxa ∓ π)2 +

(
kya ∓ π

)2
)

, (6.165)
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with gradient

∇kE(k) = −2Ba
(
kxa ∓ π, +kya ∓ π

)
= −2Ba2 (kx ∓ π/a, +ky ∓ π/a

)
.

(6.166)

At the corners k = ±(1,−1)π/a we have approximately

E(k) = Es − A + 4B − B
(
(kxa ∓ π)2 +

(
kya ± π

)2
)

, (6.167)

which have gradients

∇kE(k) = −2Ba2 (kx ∓ π/a, +ky ± π/a
)

. (6.168)

Consider the k = −(1, 1)π/a corner, and make the change of vari-
ables

kx + π/a = k cos ϕk

ky + π/a = k sin ϕk.
(6.169)

We see that we have to only consider this portion of the k-space
area, quadrupling the integral, so that the density of states is

D(E)dE = 2 × 4
1

(2π)2

∫ π/2

ϕk=0
kdϕk

dE
|−2Ba2k| . (6.170)

This is identical to eq. (6.163), the constant value for the density of
states found for the bottom of the band, provided we expand the
energy only to second order in kx, ky.

Part b. At the bottom of the band, again approximating the en-
ergy to second order in kx, ky, kz, we have

E(k) ≈ Es − A − 2B
(

3 − 1
2

k2
xa2 − 1

2
k2

ya2 − 1
2

k2
za2
)

= Es − A − 6B + Ba2
(

k2
x + k2

y + k2
z

)
.

(6.171)

The energy gradient is

∇kE = Ba2∇kk2 = 2Ba2k. (6.172)
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Our density of states at the bottom of the band is thus

D(E) = 2 × 1
8π3

4πk2

2Ba2k

∣∣∣∣
k=k(E)

=
1

2π2Ba2

(
E − Es + A + 6B

Ba2

)1/2

=
1

2π2B3/2a3

√
E − Es + A + 6B.

(6.173)

D(E) =
1

2π2B3/2a3

√
E − Eb, (6.174)

where Eb = Es − A − 6B.
For the calculation at the top of the band, we can expand the

cosines around the corner coordinates. Considering just the k =
−(1, 1, 1)π/a octet, and multiplying by 8 for the total density of
states we have

E(k)

≈ Es − A − 2B
(
−3 +

1
2
(kxa + π)2 +

1
2
(
kya + π

)2 +
1
2
(kza + π)2

)
= Es − A + 6B − B

(
(kxa + π)2 +

(
kya + π

)2 + (kza + π)2
)

.

(6.175)

The gradient at this point is

∇kE(k) = −Ba2∇k

(
(kx + π/a)2 +

(
ky + π/a

)2 + (kz + π/a)2
)

= −2Ba2 (kx + π/a, ky + π/a, kz + π/a
)

.
(6.176)

Now introduce spherical coordinates with the origin at this point

kx + π/a = k sin θk cos ϕk

ky + π/a = k sin θk sin ϕk

kz + π/a = k cos θk,

(6.177)
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So that the density of states is

D(E) = 2 × 8 × 1
(2π)3

∫ π/2

0
sin θkdθk×∫ π/2

0
dϕk

k2

2Ba2k

∣∣∣∣
k=k(E)

=
1

π3Ba2
π

2

(
E − Es + A − 6B

−Ba2

)1/2

.

(6.178)

This is

D(E) =
1

2π2B3/2a3

√
Et − E, (6.179)

where Et = Es − A + 6B. The constant of proportionality is the
same we found for the bottom of the band in eq. (6.174).

Part c. The expectation value of the velocity operator is given by

vg =
1
h̄
∇kE

=
−2B

h̄
∇k

(
cos kxa + cos kya + cos kza

)
=

2Ba
h̄
(
sin kxa, sin kya, sin kza

)
.

(6.180)

Along the kx direction we have

vg · (1, 0, 0) =
2Ba

h̄
sin kxa. (6.181)

This is plotted for the kx = [0, π/a] region in fig. 6.44.

Part d. From eq. (6.180) and our definition, we have

vg =
2Ba

h̄
(
sin2 kxa + sin2 kya + sin2 kza

)1/2
=

h̄k
m∗ , (6.182)

or

m∗ =
h̄2

2Ba

√
k2

x + k2
y + k2

z

sin2 kxa + sin2 kya + sin2 kza
. (6.183)
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π

2
π

kxa
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0��

0��

1�0

ℏ vg. i
 / (2 B a)

Figure 6.44: kx component of vg.

Along the kx axis we have

m∗(kx, 0, 0) =
h̄2

2Ba2

∣∣∣∣ kxa
sin kxa

∣∣∣∣. (6.184)

This is plotted in fig. 6.45.

π

2
π

kxa

2

4

6

8

10

m
*( kx, 0, 0) (2 B a^2)/ℏ^2

Figure 6.45: Effective mass for 3D cubic system.
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7.1 semiconductors .

We continue with examination of the band structures of real ma-
terials. In particular, start looking at semiconductors

• diamond

• Si

• Ge

• GaAs

• InP

• InAs

Example 7.1: Diamond bandstructure.

Figure 7.1: Diamond bandstructure.
The two branches are because we have two atoms per unit

cell. Those are due to antibonding and bonding conditions as
in fig. 7.2.
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Figure 7.2: Bonding and antibonding functions in unit cells.

Example 7.2: Band structure of Ge and Si.

Also see slides and [10] §7.13.

Figure 7.3: Ge, Si band structure.

EF falls in a full gap, where there is no Fermi surface. The gap
is small. Carriers can be thermally excited at room tempera-
ture.

The lower energy curves correspond to bonding orbitals.
In general in materials the bonding orbitals will always be
occupied, because they are energy favourable.

Example 7.3: Insulators: large gap semiconductors.

[10] fig 7.10.
For KCl as in fig. 7.4
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Figure 7.4: KCl band structure.

all bands near EF are tight binding like. There’s a large gap
at EF.

7.2 density of states .

Reading: [1] ch. 8. Recall

∑
k,σ=±1/2

→ 2

spin

1

(2π/L)3

∫
dk

→ V
∫

D(E)dE.

(7.1)

For the free electron model we found

D(E) = density of states per unit volume

=
1

2π2

(
2m
h̄

)3/2 √
E,

(7.2)

and in general

D(E)dE =
2

(2π)3

∫ d fE

|∇kE(k)|dE. (7.3)

Referring to fig. 7.5.

dk = d fEdk⊥

= d fE
dE

|∇kE(k)| .
(7.4)

Some observations:
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Figure 7.5: Fermi surface for constant energy.

• Flat bands due to 1/|∇kE(k)| will have a high density of
states.

• At local extremums of E(k) you get a peak in D(E). This is
called a van Hove singularity. See slides and [1] fig. 8.3.

d-metals High density of states in the d-orbitals, and small else-
where. Recall

C(T) = γT

electrons

+ βT3

phonons

. (7.5)

γCu ∼ 0.69 mJ/mole K2

γFe ∼ 4.98 mJ/mole K2
(7.6)

Germanium Here we have Van Hove singularities. Max/min at
Γ does not produce a Van Hove singularity, because d fE is vanish-
ingly small.

7.3 electrical transport.

Reading: [10] §9.1,[1] ch. 12.
We want to talk about how to make an electrical current flow.

Imagine that we are considering a block of material with leads on
it, as in fig. 7.6.
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Figure 7.6: Conducting block of metal.

How do we use our Bloch description for such a volume? A
pure Bloch wave

Ψk = Uk(r)eik·r, (7.7)

is uniformly spread out over the sample∣∣∣∣ 1√
V

eik·r
∣∣∣∣2 =

1
V

. (7.8)

Such a plane wave cannot transport charge. Introduce a wave
packet

Ψk(r, t) ∼
∫
|k′|<∆

ak′

example: a Gaussian, centered on k

Uk(r)ei(k·r−ωt)dk′. (7.9)

This will spread as plotted in fig. 7.7.

t t + Δt

Figure 7.7: Packet spreading with time.

Moves with group velocity

vk =
dω(k)

dk
=

1
h̄
∇kE(k). (7.10)
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Electrical transport (cont.) Last time we noted that we can’t use
plain Bloch waves to model this, but must introduce a wave packet
centered on some k, such as the Gaussian of fig. 7.8, moving with
group velocity

Figure 7.8: Gaussian wave packet.

v =
1
h̄
∇kE(k). (7.11)

For nearly free electrons where E(k) = h̄2k2/2m this gives the
intuitively appealing

v =
h̄k
m

=
p
m

, (7.12)

where we have velocity as momentum over mass.
For tight binding

E(k) = Ei − A − 2B cos ka. (7.13)

so that

v =
2Ba

h̄
sin ka. (7.14)

An important quantity is the Fermi velocity

vF = v(k = kF). (7.15)

Linearizing E(k) around kF

E(k) = E(kF) + δk⊥

(
dE
dk⊥

)
.

≡ E(kF) + δk⊥
h̄kF

m∗

pF

.

(7.16)
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Here m∗ is the effective mass. Keep in mind that the Fermi surface
is often not spherical as in fig. 7.9, and fig. 7.10.

Figure 7.9: Non-spherical Fermi surface.

Figure 7.10: Second non-spherical Fermi surface.

vF(k) =
1
h̄
∇kE(k)

∣∣∣∣
kF

=
h̄kF

m∗ . (7.17)

response to applied electric field E Our F = ma equivalent for a
wave packet is

ṗ = h̄k̇ = −eE . (7.18)

Wave vector of wave package advances steadily, as in fig. 7.11,
provided we ignore scattering (for now).

Figure 7.11: Wave packet along distribution curve.
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The time rate of change of the velocity is

v̇i =
1
h̄

d
dt

(∇kE(k))i

=
1
h̄ ∑

j

∂2E
∂ki∂k j

k̇ j

= ∑
j

(
1

m∗

)
ij

(
−eEj

)
.

(7.19)

This time we call(
1

m∗

)
ij

=
1
h̄2

∂2E
∂ki∂k j

. (7.20)

the effective mass tensor, which represents “resistance” to applied
force. For example in fig. 7.12.

Figure 7.12: Effective mass tensor.

Some interesting conditions for the effective mass tensor are

• For m∗ > 0, then v̇ is parallel to the force.

• For |m∗| = ∞, then v̇ = 0.

• For m∗ < 0, the wave packet slows down under a force par-
allel to v.

7.4 electric current.

Reading: [10] §9.2, [1] ch. 12.
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Figure 7.13: Illustration for points above.

We’ve been considering a single electron. What about a metal?

j = − e
V ∑

k
v(k)

= −e
2

(2π)3

∫
dkv(k)

= −e
2

8π3

∫
dk f (E(k), E)∇kE(k).

(7.21)

Here f (E(k, E) is the electron distribution in presence of field E .

In equilibrium E = 0 In 1D for every occupied +v(k) state there
exists a v(−k) state is occupied so that v(−k) = −v(k), so

∑ v(k) = 0. (7.22)

Electric current (cont.) E ̸= 0 shifts the Fermi distribution so that
so that +v1 − v no longer cancel.

Figure 7.14: Fermi filling for a metal.

Current flows, unless the band is completely full, or empty as
sketched in fig. 7.15.
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Figure 7.15: Fermi filling of an insulator.

Full band has f (E, E) = F(E, 0), so that there is no current
An “insulator” has all bands either completely full or completely

empty.
A “metal” is a solid with a Fermi surface (partly filled band(s)).
The E field displaces the Fermi surface, but scattering restores

equilibrium, limiting j.
Note that a periodic lattice does not cause scattering, it causes

band structure.
Scattering is due to departures from periodicity, and is due to

impurities and/or vacancies and lattice vibrations (phonons), as
sketched in fig. 7.16.

Figure 7.16: Vacancy.

A metric for this is called the resistivity, a temperature depen-
dent effect as sketched in fig. 7.17.

Figure 7.17: Resistivity.
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Non-equilibrium f (E, E) With imposition of a field the Fermi fill-
ing is shifted as sketched in fig. 7.18.

Figure 7.18: Fermi filling shift due to imposed field.

Electrons in the range (1) cannot scatter due to the Pauli exclu-
sion principle, whereas those in the energy range (2) can scatter
from +k to −k. The net scattering is from +v to −v.

For 3D see [10] fig. 9.5, roughly as in fig. 7.19.

Figure 7.19: A displaced Fermi sphere.

Steady state rate of scattering from +v to −v is the rate at which
new +v carriers appear, where

h̄k̇ = −eE . (7.23)

Introduce τ as the mean scattering time, and let

∆k = k̇τ = − eE
h̄

τ, (7.24)

the amount by which the Fermi surface is displaced.
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Figure 7.20: Integration region, difference between displaced Fermi
sphere.

In the shaded region, the electrons are inert, because the −v
and v contributions cancel. It’s only the non-shaded portions of
the overlapping spheres that we have to consider.

jx = − e
V ∑

k,σ
vx(k, σ)

= − e
��V

2��V
(2π)3

∫
k2

F sin θdθdϕ

area element at θ, ϕ(
− eE

h̄
τ cos θ

)
∆k at θ, ϕ

× vF cos θ

vx

≈ e2

4π3 τk2
F

vF

h̄

∫ π

0
sin θ cos2 θdθ

−
∫ π

0 cos2 θd(cos θ) = −
∫ −1

1 u2du = 2/3

2π∫
dϕ

Ex.

(7.25)

With

vF =
h̄kF

m∗ , (7.26)

this is

jx ≈ e2τ

m∗
k3

F
3π2 Ex. (7.27)

jx =
ne2τ

m∗ Ex. (7.28)
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or

σ =
ne2τ

m∗ . (7.29)

This is the Drude formula for conductivity.

On Drude’s derivation Note that Drude’s derivation, see [1] ch. 1,
predated quantum mechanics. He treated the electrons classically
introducing a drift velocity fig. 7.21.

Figure 7.21: Drude drift velocity in an electric field.

where

vdrift = (acceleration) τ = − eE
m

τ, (7.30)

so that

j = −envdriftE =
ne2τ

m
E . (7.31)

7.5 problems .

Exercise 7.1 Drude conductivity formula. (2013 ps10 p1)

The density of point-like impurities in a metal can be character-
ized by a ‘mean free path,’ l◦, of the conduction electrons, this
being the distance between scattering centers that randomize the
velocity.

a. Assuming that electrons travel at the Fermi velocity be-
tween scattering centers in a free electron metal, show that
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the Drude formula for the conductivity can be rewritten as:

σ =
k2

Fe2l◦
3 h̄π2 . (7.32)

b. A sample of copper has a residual resistivity below 1 K of
10−8Ω m. (Note: resistivity ρ = 1/σ.) Treating copper as a
free electron metal with a spherical Fermi surface accom-
modating one charge carrier per copper atom, estimate l◦
below 1 K for this sample of copper. (Free-electron parame-
ters of copper are given in [10] Table 6.1)

c. Calculate the mean scattering time τ for this sample of cop-
per below 1 K.

Answer for Exercise 7.1

Part a. The Fermi velocity is

vF =
pF

m
=

h̄kF

m∗ , (7.33)

so that the ‘mean free path’ is

l◦ = vFτ =
h̄kFτ

m∗ . (7.34)

Putting these all together, the conductivity as given by eq. (7.32)
is

σ =
k2

Fe2

3��̄hπ2
��̄hkFτ

m∗

=
k3

F
3π2

e2τ

m∗

= n
e2τ

m∗ ,

(7.35)

which recovers the form we derived in class.

Part b. Using the tabulated info

l◦ =
3π2 h̄
k2

Fe2ρ
=

3π2 (1.05 × 10−34 Js
)(

1.36 × 108

10−2 m

)2
(1.6 × 10−19 C)

2
(10−8 Js/C2 m)

.
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(7.36)

This is

l◦ = 6.57 × 10−6 cm. (7.37)

With copper having an FCC lattice constant of ∼ 3.6Å, the num-
ber of atoms that an electron moves past before a collision is on
the order of 102.

Part c. The mean scattering time is

τ =
l◦
vF

=
6.57 × 10−6 cm
1.57 × 108 cm/s

.
(7.38)

This is

τ = 4.18 × 10−14 s, (7.39)

a surprisingly fast seeming time until the magnitude of vF ≈
0.005c is considered.





8E L E C T R O N S C AT T E R I N G .

8.1 electron-phonon scattering .

Reading: [10] ch. 9 (pp 258-259).

Last time

j = σE (8.1a)

σ =
ne2τ

m∗ . (8.1b)

Here τ is the “mean scattering time”, which is the time to random-
ize v.

We now continue to discuss scattering, a phenomena due to
departure from periodicity. For phonons, this is proportional to〈

nq
〉

th, where Eq = (nq + 1/2) h̄ωq.

Figure 8.1: k-space scattering.

Small q (long λ) phonons are not very effective at randomizing
v. The effectiveness of the scattering is ∝ q2.

We’d found

1
τph(q)

∝ q2 〈nq
〉

(8.2a)
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Figure 8.2: Scattering confinement to small range of k-space.

〈
nq
〉

=
1

e h̄ωq/kBT − 1
. (8.2b)

Combining these, we have

1
τph

∝ (· · ·)
∫

4πq2dqq2 1
e h̄ωq/kBT − 1

. (8.3)

In the high temperature limit, all modes have
〈
nq
〉

∝ T, for

1
τph

∝ T (8.4a)

σ ∝
1
T

(8.4b)

ρ =
1
σ

αT. (8.4c)

In the low temperature limit. As in the Debye theory, let

x =
h̄ω

kBT
=

h̄cq
kBT

, (8.5)

for

1
τph

∝ (· · ·) (kBT)5
∫ Θ/T

0

x5dx
ex − 1

some number

. (8.6)
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This gives

ρ = ρ0 + AT5. (8.7)

At high T, the T1 behavior is very general. At low T, T5 is less
universal.

The full range of resistivity is sketched in fig. 8.3.

Figure 8.3: Resistivity temperature dependence.

8.2 electron-electron scattering .

Reading: May not be in the text?
Electrons can scatter from other electrons, but they must con-

serve energy and (crystal) momentum.

Figure 8.4: Filled Fermi sphere.

T = 0 Consider 1 electron outside a Fermi sphere. The transition
|i⟩ → | f ⟩ can only go to an empty state, within δE of EF.

Must scatter off an electron that starts inside EF, ends outside
EF, and it’s ∆E ≃ δE. eg. (a) to (b).
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Figure 8.5: With temperature dependence state transitions still effec-
tively confined to range of energies.

So both scattering events are restricted by δE, or

1
τ

∝ (δE)2. (8.8)

A state at EF has infinite lifetime.
At T > 0, the argument is similar.
F6

|i⟩ has a choice of states from within kBT of EF to scatter to.
States within kBT of EF to scatter from.

1
τ

∝ T2, max(T2, (δE)2), (8.9)

or

ρ(T) = ρ◦ + AT2. (8.10)

This is universal. This is a famous result, from “Fermi liquid the-
ory”, developed by Landau and Fermi.



9S E M I C O N D U C T O R P H Y S I C S .

9.1 conduction and valence bands .

Reading: [10] §12.1 Si, Ge, C, GaAs
All of these have a small gap at the Fermi energy EF. The inter-

esting physics all happens at the top of the valence band and at
the bottom of the conduction band as sketched in fig. 9.1.

Figure 9.1: Conduction and valence bands.

Elements and compounds that have four valence electrons have
a chance at being semi-conductors because they can form sp3 hy-
brid orbitals. Note that there are also pressure dependencies here
since putting enough pressure on a semiconductor will force it to
metalize. That pressure changes the interatomic spacing and the
associated energy distribution.

What we really want to figure out is how to calculate the density
of the electrons in the conduction band, and the density of the
holes that are left behind.

In ps9 we calculated the density of states at a band edge, which
is what we have here. We found for E > EC

DC(E) =
(2m∗

n)
3/2

2π2 h̄3

√
E − EC, (9.1)
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and for E < EV

DV(E) =

(
2m∗

p

)3/2

2π2 h̄3

√
EV − E. (9.2)

This gives us

n =
∫

EC

DC(E) f (E, T)dE

p =
∫ EV

DV(E)(1 − f (E, T))dE,
(9.3)

for which the density of states and contributing regions are sketched
in fig. 9.2.

Figure 9.2: Conduction and valence density of states.

The “intrinsic” number of electrons in the conduction band
equals the number of holes in the valence band, so that n = p : EF

adjusts accordingly.
So, for E > EC we have approximately the Boltzmann factor for

the distribution

1
e(E−EF)/kBT + 1

≈ e−(E−EF)/kBT , (9.4)

and the electron density is

n =
(2m∗

n)
3/2

2π2 h̄3 eEF/kBT
∫ ∞

EC

√
E − ECe−E/kBTdE. (9.5)

Since ∫ ∞

a

√
E − ae−E/τdE =

1
2
√

πτ3/2e−a/τ , (9.6)
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we have

n = 2
(

2πm∗
nkBT

h2

)3/2

e−(EC−EF)/kBT . (9.7)

This is written as

n = NC
effe

−(EC−EF)/kBT , (9.8)

where we note that NC
eff is temperature dependent.

Similarly

p = 2
(2πm∗

pkBT
h2

)3/2

e−(EF−EV)/kBT , (9.9)

or

p = Np
effe

−(EF−EV)/kBT . (9.10)

ni = pi =
√

NC
effN

V
effe

−(EV−EC)/kBT =
√

NC
effN

V
effe

−ES/kBT . (9.11)

9.2 doped semiconductors .

Reading: §12.3 pp 428-430.
We introduce a “donor”, such as P in Si, as sketched in fig. 9.3.

Four electrons make sp3 hybrid orbitals with one electron left over.

Figure 9.3: P donor, T = 0 (cf. hydrogen atom).

Ebinding =
m∗e4

2 (4πϵ◦ϵr h̄)2
1
n2 ≈ 6 meV. (9.12)
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Figure 9.4: Donors are ionized at low T.

Here m∗ is the conduction electron effective mass ≈ 0.2me, and
ϵr ≈ 10 in Si.

For “acceptors”, e.g. B – in Si, we need one electron to form
four sp3 hybrid orbitals. One is taken from the valence band. The
density distribution is sketched in fig. 9.5.

Figure 9.5: N-type (donor) temperature dependence.

For “intrinsic”, kBT ≫ Eg, ni ≫ ND. For “saturation”, ni ≪ ND,
n ≈ ND. Donors are ionized, intrinsic carriers are frozen out. For
“freeze out” kBT < Ed

Details to follow... Two ways to write n

n = ND

(
1 − 1

1 + e(ED−EF)/kBT

)
= ND

(
1 − 1

1 + eEd/kBT

)
,

(9.13)

Also
...
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Figure 9.6: Acceptor energy distribution with temperature.

9.3 problems .

Exercise 9.1 Doped carrier density. (2013 ps10 p2)

Germanium has an energy gap of EC − EV = 0.67 eV, and an in-
trinsic carrier density ni = 2.5 × 1019 m−3 at room temperature. A
sample of germanium is doped with arsenic, which has a donor
level located at Ed = 0.0127 eV below EC. The concentration of
arsenic atoms is ND = 1.0 × 1022 m−3.

Show the temperature dependence of the carrier density in this
sample by drawing a plot of ln(n) vs. 1/T, between 1 K and 293 K
(room temperature), and a second plot covering the temperature
range from 100 K to 1000 K. Explain the main features of the plots.

Answer for Exercise 9.1

In class we didn’t carry the doping discussion far enough for
this problem, but our text treats the n-type semiconductor, arriv-
ing eventually at

n ≈ 2ND

(
1 +

√
1 + 4

ND

NC
eff

eEd/kBT

)−1

, (9.14)

For this problem, noting that kB ∼ 0.086 eV/K, we have

Ed

kB
∼ 147 K, (9.15)
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so the exponential is large for small temperatures. How about the
ratio ND/NC

eff? For Ge, §12.3 says we have m∗
n ∼ 0.13me, so

NC
eff ∼ 2

(
2π × 0.13me × kBT

h2

)3/2

∼ 4 × 103T3/2 m−3.

(9.16)

FIXME: Grading remark: Review the ps10plots.nb numerical
calculation (stated above). Correct answer is supposed to be ∼
4 × 1020. The failure of UnitSimplify is likely related to that large
difference.

This is plotted in fig. 9.7.

Figure 9.7: NC
eff for Ge.

Combining the exponential and power dependent terms, using
non-dimensionalized temperature t = t/(1 K), we have

4
ND

NC
eff

eEd/kBT ∼ 9 × 1018

t3/2
e147/t m−3. (9.17)

In the T ∈ [1, 293] interval, this ranges from 1083 down to 1015 as
plotted in fig. 9.8.
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Figure 9.8: Illustrating scale of term in square root.

Grading remark: “Don’t forget the intrinsic carriers!” This justi-
fies a 4 ND

NC
eff

eEd/kBT ≫ 1 approximation of eq. (9.14)

n ≈ 2ND

(
1 +

√
4

ND

NC
eff

eEd/kBT

)−1

≈ 2ND

2
√

NDNC
effe

Ed/2kBT

=

√
ND

NC
eff

e−Ed/2kBT .

(9.18)

Taking logarithms we have

ln n ∼ 1
2

ln ND +
1
2

ln NC
eff −

Ed

2kBT
.

∼ 11 ln 10 +
1
2

ln 4 +
3
2

ln 10 − 3
4

ln
1
T
− 73

1
T

≈ 29 − 3
4

ln
1
T
− 73

1
T

.

(9.19)

This is plotted for T−1 ∈ [1/293, 1] in fig. 9.9, along the nearly
linear asymptote (with slope −Ed/2kB). The lowest temperature
range in this plot is the “freeze out” range where a large number
of the donors still retain their electrons.

Zooming in on the high temperature domain by plotting T−1 ∈
[1/1000, 1/100] in fig. 9.10. In this range we have 4 ND

NC
eff

eEd/kBT tak-

ing values in the range [1014, 1016], with n ∈ [1014, 1015] m−3. That
is probably close enough to flat that we can still describe this as ap-
proaching the saturation range of [10] (eq. 12.28), at which point
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Figure 9.9: Concentration log vs inverse temperature.

“the concentration of donor electrons in the condition band has
reached the maximum possible value”.

Figure 9.10: Concentration log vs inverse temperature for higher temper-
atures.

FIXME: Grading remark: Spike for the intrinsic carriers added to
my plot with comment “intrinsic carriers appear ∼ 0.002”.
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10.1 superconductivity overview.

Reading: [10] §10.1
The effect is actually not as rare as one would imagine (see

[10] fig. 10.2 for a chart shown of many superconductive elements).
Even O and S are superconductive, with fairly high transition tem-
peratures, if pressurized enough to metalize it.

Some of the non-superconductive elements are those with very
spherical Fermi surfaces.

The basic phenomena, that of resistivity drop at a critical tem-
perature, is sketched in fig. 10.1. We also have a corresponding
difference in the specific heat for these materials, as sketched in
fig. 10.2.

Figure 10.1: Electrical resistivity.

The exponential indicates that there’s a gap to the first excited
state (cf exponentials from the semiconductor theory?)

The essential feature of superconductivity is not that they are
“perfect conductors”, but that they are perfect dimagnets as illus-
trated in [10] fig. 10.4, and more roughly in fig. 10.3.

We have a circulating current that screens the field. This costs
energy. There are two types of superconductors
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Figure 10.2: Specific heat of superconductor.

Figure 10.3: Diamagnetic phenomena.

• Type I, superconductivity collapses above Hc, sketched in
fig. 10.4.

• Type II, particle flux expulsion above Hc, sketched in fig. 10.5.

10.2 london equations , and perfect conductors .

Reading: [10] §10.2
With resistivity ρ = 0, we have

mv̇ = −eE , (10.1)

and current density

j = −nsev, (10.2)

for

∂j
∂t

=
nse2

m
E , (10.3)



10.2 london equations , and perfect conductors . 263

Figure 10.4: Type I.

Figure 10.5: Type II.

With Maxwell’s third

∇× E = −∂B
∂t

, (10.4)

we have

∂

∂t

(
m

nse2∇× j + B
)

= 0, (10.5)

so that the equation for a perfect diamagnet satisfies

m
nse2∇× j = −B (10.6)

∇× j = −nse2

m
B = − 1

λL
B. (10.7)
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Example 10.1: Solution for constant magnetic field.

Consider a unidirectional magnetic field

B = (Bx, 0, 0), (10.8)

as sketched in fig. 10.6.

Figure 10.6: Magnetic Field.

With no time dependence of the electric field (no displace-
ment term µ◦ϵ◦∂E/∂t) Ampere’s Maxwell’s equations is

∇× B = µ◦j. (10.9)

Taking cross products of both sides of eq. (10.7), we have

∇× (∇× j) = ∇×
(
− B

λL

)
= −µ◦

λL
j. (10.10)

By taking dot products of eq. (10.9), and noting that ∇ · (∇×
X) = 0, for sufficiently continuous fields X, we must have
∇ · j = 0, and thus

∇× (∇× j) = −∇2j + ∇(∇ · j)

= −∇2j.
(10.11)

Equation (10.10) is now decoupled

−∇2j = −µ◦
λL

j. (10.12)
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This has solution

j = j◦e−
√

µ◦/λLz, (10.13)

and

B = x̂B◦
xe−

√
µ◦/λLz. (10.14)

10.3 cooper pairing .

Reading: [10] §10.2
There’s an effective attraction between the electrons in a metal

that is mediated by phonons, as sketched in fig. 10.7.

Figure 10.7: Lattice distorts after the electron passes.

The second electron can lower it’s energy by travelling in the
“wake” of the first. Note that this is actually an incorrect picture,
since what really goes on is that the second electron passes in the
opposite direction from the first to take advantage of the wake.

It is important that the lattice reaction is retarded in time.

electron-phonon interaction The Cooper calculation considered a
filled Fermi surface (such as a sphere) at T = 0. He considered
what happens if you add two electrons above EF as sketched in
fig. 10.8.

The electron phonon interaction looks like

ρel(x, t)ρph(x, t). (10.15)
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Figure 10.8: Filled Fermi sphere at T = 0.

|k, ↑⟩ → |k, ↑, 0 phonons ⟩ + ∑
q

αq|k − qi |q⟩ . (10.16)

Here the state has a Bloch form

|k, ↑⟩ =
1√
L3

eik·r |σ⟩ . (10.17)

electron density

⟨ψ|ψ⟩ =
1
L3

(
e−ik·r 〈0q

∣∣ + αqe−i(k−q)·r 〈1q
∣∣) (eik·r ∣∣0q

〉
+ ei(k−q)·r ∣∣1q

〉)
=

1
L3 1 + α2

q + αq

(
eiq·r + e−iq·r

)
=

1
L3 1 + α2

q + αq cos (q · r)

(10.18)

Here the cosine is the modulated charge density. This transition is
sketched in fig. 10.9.

Cooper pairing (cont.)

Reading: [10] §10.2
Electron-phonon interaction

|k, ↑⟩ →
∣∣k, ↑, 0q

〉
+ αq

∣∣k, ↑, 1q
〉

. (10.19)

∣∣k′, ↓
〉
→
∣∣k′ − q, ↓, 0q

〉
+ α−q

∣∣k − q, ↓, 1q
〉

. (10.20)
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Figure 10.9: Pair state transitions outside of Fermi sphere.

Figure 10.10: Electron-phonon interaction.

Using perturbation theory, you set an effective interaction

Veff =

∣∣Ve,ph
∣∣2(

Ek+q − Ek
)2 − h̄2ω2

q

. (10.21)

|Ψ⟩ = ∑
k

g(k)eik·(r1−r2). (10.22)

(
− h̄2

2m

(
∇2

1 + ∇2
2

)
+ V(r1, r2)

)
∑

k
g(k)eik·(r1−r2)

= (2EF + E )

E |Ψ⟩

∑
k

g(k)eik·(r1−r2).

(10.23)
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Figure 10.11: Limited options for paired states available.

Figure 10.12: Cooper filled Fermi sphere plus two electrons.

Operating with
∫

dr1dr2e−ik′·(r1−r2), we have∫
dr1dr2e−ik′·(r1−r2) (Ek + E−k + V)∑

k
g(k)eik·(r1−r2)

=
∫

dr1dr2e−ik′·(r1−r2)(2EF + E ) ∑
k

g(k)eik·(r1−r2).
(10.24)

This is

2Ek′g(k′) + ∑
k

Vk′kg(k) = (2EF + E) g(k′), (10.25)

where

Vk,k′ =
∫

dr1dr2e−ik′·(r1−r2)V(r1, r2)eik·(r1−r2). (10.26)

Make the approximation

Vk,k′ =

{
V◦ if Ek, Ek′ between EF and EF + h̄ΩD

0 otherwise
(10.27)
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This has solution

g(k′) =
1

2EF + E − 2Ek′
∑
k

Vk′ ,kg(k). (10.28)

Sum this over k′

�
�
�
�∑

k′
g(k′) = ∑

k′

V◦
2EF + E − 2Ek′

�
�
��∑

k
g(k). (10.29)

1 = V◦
∫ EF+ h̄ωD

EF

D(E)dE
2EF + E − 2E

≈ V◦D(EF)
1
2

ln (2EF + E − 2E)|EF+ h̄ωD
EF

≈ V◦D(EF)
2

ln
2EF + E − 2EF

2EF + E − 2(EF + h̄ωD)
.

(10.30)

Giving

e2/V◦D(EF) =
E − 2 h̄ωD

E . (10.31)

or

E =
−2 h̄ωD

e2/V◦D(EF) − 1
. (10.32)

E ≈ −2 h̄ωDe−2/V◦D(EF) (10.33)

Bound state Fermi surface (2EF + E ) < 2EF.
A filled Fermi sphere at T = 0 is unstable against Fermiation of

Cooper pairs.

10.4 bcs theory.

Reading: [10] §10.4
Difficult to make a multiple Cooper pair state.
BCS guess was:

|0BCS⟩ = Πk
(
uk
∣∣0k↑, 0−k↓

〉
+ vk

∣∣1k↑, 1−k↓
〉)

. (10.34)

At every: states are either empty (prob u2
k) or filled (prob v2

k) in
pairs.
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The energy

W = ∑
k

2Ekv2
k + ∑

k,k′
Vk,k′uk′vk′ukvk

Need a superposition of occupied and unoccupied

. (10.35)



AH U Y G E N S D I F F R A C T I O N .

We were presented with a diffraction result, that the intensity can
be expressed as the Fourier transform of the aperture. Let’s review
a derivation of that based on the Huygens principle. Consider the
aperture of fig. A.1.

Figure A.1: Diffraction aperture.

The Huygens principle expresses the amplitude of a wave U(r)
in terms of it’s amplitude U◦ at r = 0 as

U(r) ∝
U◦eik|r|

|r| . (A.1)

For multiple point diffraction, the diffracted wave is a superpo-
sition of such contributions from all points in the aperture. For
example, two exponentials are summed when considering a two
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slit diffraction apparatus. For a more general aperture as above,
we’d form

U(R′) ∝ U◦
∫

A
d2r

eik|r−R|

|r − R|
eik|R′−r|

|R′ − r| . (A.2)

Note that this the Huygens result is an approximation in many
ways. Fresnel later fixed up the proportionality factor and con-
sidered the angular dependence of the between the source and
diffracted rays (the obliquity factor). That corrected result is known
as the Huygens-Fresnel principle. Kirchhoff later considered solu-
tions to the scalar wave equations for the electromagnetic field
components E and B, ignoring the Maxwell coupling of these
fields. See §8.3.1 [2], §A.2 §10.4 of [9], or §5.2 of [5] for details.
See §9.8 [11] for a vector diffraction treatment.

Let’s proceed with using eq. (A.2) to obtain our result from class.
For simplicity, first position the origin in the aperture itself as in
fig. A.2.

Figure A.2: Diffraction aperture with origin in aperture.
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Now we are set to perform a first order expansion of the vector
lengths |r − R| and |r − R′|. It’s sufficient to consider just one of
these, expanding to first order

|r − R| =
√

(r − R)2

=
√

R2 + r2 − 2r · R

= R

√
1 +

r2

R2 − 2r · R
R2

≈ R
(

1 +
1
2

r2

R2 − r · R
R2

)
= R +

1
2

r2

R
− r · R

R
.

(A.3)

Assume that both R and R′ to be far enough from the aperture
that we can approximate the |R − r| and |R′ − r| terms downstairs
as R = |R| and R′ = |R′| respectively. Additionally, ignore the
second order term above, significant for Fresnel diffraction where
the diffraction pattern close to the aperture is examined, but not
in the far field. This gives

U(R′) ∼ U◦
RR′

∫
A

d2reik(R−r·R̂)eik(R′−r·R̂′)

=
U◦
RR′ e

ik(R+R′)
∫

A
d2re−ikr·R̂e−ikr·R̂′

.
(A.4)

Finally write

ks = −kR̂

k = kR̂′,
(A.5)

for

U(R′) ∼ U◦
RR′ e

ik(R+R′)
∫

A
d2re−ir·(k−ks). (A.6)

Finally, write

K = k − ks, (A.7)

and introduce an aperture function ρ(r) (we called this the scat-
tering density). This aperture function is unity for any regions of
the aperture that light is allowed through, and zero when light
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is blocked, and some value in [0, 1] for translucent regions of the
aperture. We can now expand the integral over the surface con-
taining the aperture

U(R′) ∼ U◦
RR′ e

ik(R+R′)
∫

ρ(r)e−ir·K. (A.8)



BD I S C R E T E F O U R I E R T R A N S F O R M .

For decoupling trial solutions of lattice vibrations we have what
appears to be a need for the use of a discrete Fourier transform.
This is described briefly in [8], but there’s no proof of the inversion
formula. Let’s work through that detail.

Let’s start given a periodic signal of the following form

an =
N−1

∑
k=0

Ake−2πikn/N , (B.1)

and assume that there’s an inversion formula of the form

A′
k ∝

N−1

∑
n=0

ane2πik′n/N . (B.2)

Direct substitution should show if such a transform pair is valid,
and determine the proportionality constant. Let’s try this

N−1

∑
n=0

ane2πik′n/N =
N−1

∑
n=0

e2πik′n/N
N−1

∑
k=0

Ake−2πikn/N

=
N−1

∑
k=0

Ak

N−1

∑
n=0

e2πi(k′−k)n/N .

(B.3)

Observe that the interior sum is just N when k′ = k. Let’s sum this
for the values k ̸= k′, writing

SN(k′ − k) =
N−1

∑
n=0

e2πi(k′−k)n/N . (B.4)
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With a = exp(2πi(k′ − k)/N) we have

SN(k′ − k) =
N−1

∑
n=0

an

=
aN − 1
a − 1

=
aN/2

a1/2

aN/2 − a−N/2

a1/2 − a−1/2

= eπi(k′−k)(1−1/N) sin π(k′ − k)
sin π(k′ − k)/N

.

(B.5)

Observe that k′− k ∈ [−N + 1, N − 1], and necessarily takes on just
integer values. We have terms of the form sin πm, for integer m in
the numerator, always zero. In the denominator, the sine argument
is in the range

[π
(
−1 +

1
N

)
, π

(
1 − 1

N

)
], (B.6)

We can visualize that range as all the points on a sine curve with
the integer multiples of π omitted, as in fig. B.1.

-π π

-1

1

Figure B.1: Sine with integer multiples of π omitted.

Clearly the denominator is always non-zero when k ̸= k′. This
provides us with the desired inverse transformation relationship

N−1

∑
n=0

ane2πik′n/N = N
N−1

∑
k′=0

A′
kδk,k′

= NA′
k.

(B.7)
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Summary. Now that we know the relationship between the dis-
crete set of values an and this discrete transformation of those
values, let’s write the transform pair in a form that explicitly ex-
presses this relationship.

an =
N−1

∑
k=0

ãke−2πikn/N

ãk =
1
N

N−1

∑
n=0

ane2πikn/N .

(B.8)

We have also shown that our discrete sum of exponentials has an
delta function operator nature, a fact that will likely be handy in
various manipulations.

N−1

∑
n=0

e2πi(k′−k)n/N = Nδk,k′ . (B.9)





CS E C O N D O R D E R S Y S T E M S .

c.1 motivation.

We’re discussing specific forms to systems of coupled linear differ-
ential equations, such as a loop of “spring” connected masses (i.e.
atoms interacting with harmonic oscillator potentials) as sketched
in fig. C.1.

Figure C.1: Three springs loop.

Instead of assuming a solution, let’s see how far we can get
attacking this problem systematically.

c.2 matrix methods .

Suppose that we have a set of N masses constrained to a circle
interacting with harmonic potentials. The Lagrangian for such a
system (using modulo N indexing) is

L =
1
2

2

∑
k=0

mku̇2
k −

1
2

2

∑
k=0

κk (uk+1 − uk)
2 . (C.1)
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The force equations follow directly from the Euler-Lagrange equa-
tions

0 =
d
dt

∂L
∂u̇n,α

− ∂L
∂un,α

. (C.2)

For the simple three particle system depicted above, this is

L =
1
2

m0u̇2
0 +

1
2

m1u̇2
1 +

1
2

m2u̇2
2

− 1
2

κ0 (u1 − u0)
2 − 1

2
κ1 (u2 − u1)

2 − 1
2

κ2 (u0 − u2)
2 ,

(C.3)

with equations of motion

0 = m0ü0 + κ0 (u0 − u1) + κ2 (u0 − u2)

0 = m1ü1 + κ1 (u1 − u2) + κ0 (u1 − u0)

0 = m2ü2 + κ2 (u2 − u0) + κ1 (u2 − u1) ,

(C.4)

Let’s partially non-dimensionalize this. First introduce average
mass m and spring constants κ, and rearrange slightly

m
k

ü0 = −κ0m
km0

(u0 − u1)−
κ2m
km0

(u0 − u2)

m
k

ü1 = −κ1m
km1

(u1 − u2)−
κ0m
km1

(u1 − u0)

m
k

ü2 = −κ2m
km2

(u2 − u0)−
κ1m
km2

(u2 − u1) .

(C.5)

With

τ =

√
k
m

t = Ωt (C.6a)

u =

u0

u1

u2

 (C.6b)

B =


− κ0m

km0
− κ2m

km0

κ0m
km0

κ2m
km0

κ0m
km1

− κ1m
km1

− κ0m
km1

κ1m
km1

κ2m
km2

κ1m
km2

− κ2m
km2

− κ1m
km2

 . (C.6c)
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Our system takes the form

d2u
dτ2 = Bu. (C.7)

We can at least theoretically solve this in a simple fashion if we
first convert it to a first order system. We can do that by augment-
ing our vector of displacements with their first derivatives

w =

[
u
du
dτ

]
, (C.8)

So that

dw
dτ

=

[
0 I

B 0

]
w = Aw. (C.9)

Now the solution is conceptually trivial

w = eAτw◦. (C.10)

We are however, faced with the task of exponentiating the matrix
A. All the powers of this matrix A will be required, but they turn
out to be easy to calculate[

0 I

B 0

]2

=

[
0 I

B 0

] [
0 I

B 0

]
=

[
B 0

0 B

]
(C.11a)

[
0 I

B 0

]3

=

[
B 0

0 B

] [
0 I

B 0

]
=

[
0 B

B2 0

]
(C.11b)

[
0 I

B 0

]4

=

[
0 B

B2 0

] [
0 I

B 0

]
=

[
B2 0

0 B2

]
, (C.11c)

allowing us to write out the matrix exponential

eAτ =
∞

∑
k=0

τ2k

(2k)!

[
Bk 0

0 Bk

]
+

∞

∑
k=0

τ2k+1

(2k + 1)!

[
0 Bk

Bk+1 0

]
. (C.12)
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Case I: No zero eigenvalues Provided that B has no zero eigenval-
ues, we could factor this as[

0 Bk

Bk+1 0

]
=

[
0 B−1/2

B1/2 0

] [
Bk+1/2 0

0 Bk+1/2

]
, (C.13)

This initially leads us to believe the following, but we’ll find out
that the three springs interaction matrix B does have a zero eigen-
value, and we’ll have to be more careful. If there were any such
interaction matrices that did not have such a zero we could simply
write

eAτ =
∞

∑
k=0

τ2k

(2k)!

[√
B

2k
0

0
√

B
2k

]

+

[
0 B−1/2

B1/2 0

]
∞

∑
k=0

τ2k+1

(2k + 1)!

[√
B

2k+1
0

0
√

B
2k+1

]

= cosh

[√
Bτ 0

0
√

Bτ

]
+

[
0 1/

√
Bτ√

Bτ 0

]
sinh

[√
Bτ 0

0
√

Bτ

]
.

(C.14)

This is

eAτ =

[
cosh

√
Bτ (1/

√
B) sinh

√
Bτ√

B sinh
√

Bτ cosh
√

Bτ

]
. (C.15)

The solution, written out is[
u

u′

]
=

[
cosh

√
Bτ (1/

√
B) sinh

√
Bτ√

B sinh
√

Bτ cosh
√

Bτ

] [
u◦
u′
◦

]
, (C.16)

so that

u = cosh
√

Bτu◦ +
1√
B

sinh
√

Bτu′
◦. (C.17)

As a check differentiation twice shows that this is in fact the
general solution, since we have

u′ =
√

B sinh
√

Bτu◦ + cosh
√

Bτu′
◦, (C.18)
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and

u′′ = B cosh
√

Bτu◦ +
√

B sinh
√

Bτu′
◦

= B
(

cosh
√

Bτu◦ +
1√
B

sinh
√

Bτu′
◦

)
= Bu.

(C.19)

Observe that this solution is a general solution to second order
constant coefficient linear systems of the form we have in eq. (C.5).
However, to make it meaningful we do have the additional com-
putational task of performing an eigensystem decomposition of
the matrix B. We expect negative eigenvalues that will give us os-
cillatory solutions (ie: the matrix square roots will have imaginary
eigenvalues).

Example C.1: An example diagonalization to try things out.

Let’s do that diagonalization for the simplest of the three
springs system as an example, with κj = k and mj = m, so
that we have

B =

−2 1 1

1 −2 1

1 1 −2

 . (C.20)

A orthonormal eigensystem for B is

{e−3,1, e−3,2, e0,1} =


1√
6

−1

−1

2

 ,
1√
2

−1

1

0

 ,
1√
3

1

1

1


 .

(C.21)
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With

U =
1√
6

−
√

3 −1
√

2

0 2
√

2√
3 −1

√
2



D =

−3 0 0

0 −3 0

0 0 0


(C.22)

We have

B = UDUT, (C.23)

We also find that B and its root are intimately related in a
surprising way

√
B =

√
3iU

1 0 0

0 1 0

0 0 0

UT

=
1√
3i

B.

(C.24)

We also see, unfortunately that B has a zero eigenvalue, so
we can’t compute 1/

√
B. We’ll have to back and up and start

again differently.

Case II: allowing for zero eigenvalues Now that we realize we have
to deal with zero eigenvalues, a different approach suggests it-
self. Instead of reducing our system using a Hamiltonian trans-
formation to a first order system, let’s utilize that diagonalization
directly. Our system is

u′′ = Bu = UDU−1u, (C.25)

where D = [λiδij] and(
U−1u

)′′
= D

(
U−1u

)
. (C.26)

Let

z = U−1u, (C.27)
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so that our system is just

z′′ = Dz, (C.28)

or

z′′i = λizi. (C.29)

This is N equations, each decoupled and solvable by inspection.
Suppose we group the eigenvalues into sets {λn < 0, λp > 0, λz =
0}. Our solution is then

z = ∑
λn<0,λp>0,λz=0

(
an cos

√
−λnτ + bn sin

√
−λnτ

)
en

+ ∑
λn<0,λp>0,λz=0

(
ap cosh

√
λpτ + bp sinh

√
λpτ

)
ep + (az + bzτ) ez.

(C.30)

Transforming back to lattice coordinates using u = Uz, we have

u = ∑
λn<0,λp>0,λz=0

(
an cos

√
−λnτ + bn sin

√
−λnτ

)
Uen

+ ∑
λn<0,λp>0,λz=0

(
ap cosh

√
λpτ + bp sinh

√
λpτ

)
Uep + (az + bzτ)Uez.

(C.31)

We see that the zero eigenvalues integration terms have no con-
tribution to the lattice coordinates, since Uez = λzez = 0, for all
λz = 0.

If U = [ei] are a set of not necessarily orthonormal eigenvectors
for B, then the vectors fi, where ei · fj = δij are the reciprocal frame
vectors. These can be extracted from U−1 = [fi]T (i.e., the rows of
U−1). Taking dot products between fi with u(0) = u◦ and u′(0) =
u′
◦, provides us with the unknown coefficients an, bn

u(τ) = ∑
λn<0,λp>0

(
(u◦ · fn) cos

√
−λnτ +

u′
◦ · fn√−λn

sin
√
−λnτ

)
en

+ ∑
λn<0,λp>0

(
(u◦ · fp) cosh

√
λpτ +

u′
◦ · fp√−λp

sinh
√

λpτ

)
ep.
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(C.32)

Supposing that we constrain ourself to looking at just the oscilla-
tory solutions (i.e. the lattice does not shake itself to pieces), then
we have

u(τ) = ∑
λn<0

(
∑

j
en,jfT

n,j

)(
u◦ cos

√
−λnτ +

u′
◦√−λn

sin
√
−λnτ

)
.

(C.33)

Eigenvectors for eigenvalues that were degenerate have been ex-
plicitly enumerated here, something previously implied. Observe
that the dot products of the form (a · fi)ei have been put into pro-
jector operator form to group terms more nicely. The solution can
be thought of as a weighted projector operator working as a time
evolution operator from the initial state.

Example C.2: Our example interaction revisited.

Recall that we had an orthonormal basis for the λ = −3 eigen-
subspace for the interaction example of eq. (C.20) again, so
e−3,i = f−3,i. We can sum e−3,1eT

−3,1 + e−3,2eT
−3,2 to find

u(τ) =
1
3

 2 −1 −1

−1 2 −1

−1 −1 2

(u◦ cos
√

3τ +
u′
◦√
3

sin
√

3τ

)
.

(C.34)

The leading matrix is an orthonormal projector of the initial
conditions onto the eigen subspace for λn = −3. Observe that
this is proportional to B itself, scaled by the square of the
non-zero eigenvalue of

√
B. From this we can confirm by in-

spection that this is a solution to u′′ = Bu, as desired.
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c.3 fourier transform methods .

Let’s now try another item from our usual toolbox on these sorts
of second order systems, the Fourier transform. For a one variable
function of time let’s write the transform pair as

x(t) =
∫ ∞

−∞
x̃(ω)e−iωtdω (C.35a)

x̃(ω) =
1

2π

∫ ∞

−∞
x(t)eiωtdt. (C.35b)

One mass harmonic oscillator The simplest second order system is
that of the harmonic oscillator

0 = ẍ(t) + ω2
◦x. (C.36)

Application of the transform gives

0 =
(

d2

dt2 + ω2
◦

) ∫ ∞

−∞
x̃(ω)e−iωtdω

=
∫ ∞

−∞

(
−ω2 + ω2

◦
)

x̃(ω)e−iωtdω.
(C.37)

We clearly have a constraint that is a function of frequency, but
one that has to hold for all time. Let’s transform this constraint to
the frequency domain to consider that constraint independent of
time.

0 =
1

2π

∫ ∞

−∞
dteiωt

∫ ∞

−∞

(
−ω′2 + ω2

◦
)

x̃(ω′)e−iω′tdω′

=
∫ ∞

−∞
dω′

(
−ω′2 + ω2

◦
)

x̃(ω′)
1

2π

∫ ∞

−∞
dtei(ω−ω′)t

=
∫ ∞

−∞
dω′

(
−ω′2 + ω2

◦
)

x̃(ω′)δ(ω − ω′)

=
(
−ω2 + ω2

◦
)

x̃(ω).

(C.38)

How do we make sense of this? Since ω is an integration variable,
we can’t just mandate that it equals the constant driving frequency
±ω◦. It’s clear that we require a constraint on the transform x̃(ω)
as well. As a trial solution, imagine that

x̃(ω) =

{
x̃◦ if |ω −±ω◦| < ωcutoff

0 otherwise
(C.39)
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This gives us

0 = x̃◦
∫ ±ω◦+ωcutoff

±ω◦−ωcutoff

(
ω2 − ω2

◦
)

e−iωtdω. (C.40)

Now it is clear that we can satisfy our constraint only if the inter-
val [±ω◦ −ωcutoff,±ω◦ + ωcutoff] is made infinitesimal. Specifically,
we require both a ω2 = ω2

◦ constraint and that the transform x̃(ω)
have a delta function nature. That is

x̃(ω) = Aδ(ω − ω◦) + Bδ(ω + ω◦). (C.41)

Substitution back into our transform gives

x(t) = Ae−iω◦t + Beiω◦t. (C.42)

We can verify quickly that this satisfies our harmonic equation
ẍ = −ω◦x.

Two mass harmonic oscillator Having applied the transform tech-
nique to the very simplest second order system, we can now con-
sider the next more complex system, that of two harmonically in-
teracting masses (i.e. two masses on a frictionless spring).

Our system is described by

L =
1
2

m1u̇2
1 +

1
2

m2u̇2
2 −

1
2

κ (u2 − u1)
2 , (C.43)

and the pair of Euler-Lagrange equations

0 =
d
dt

∂L
∂u̇i

− ∂L
∂ui

. (C.44)

The equations of motion are

0 = m1ü1 + κ (u1 − u2)

0 = m2ü2 + κ (u2 − u1) .
(C.45)

Let

u1(t) =
∫ ∞

−∞
ũ1(ω)e−iωtdω

u2(t) =
∫ ∞

−∞
ũ2(ω)e−iωtdω.

(C.46)
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Insertion of these transform pairs into our equations of motion
produces a pair of simultaneous integral equations to solve

0 =
∫ ∞

−∞

((
−m1ω2 + κ

)
ũ1(ω) − κũ2(ω)

)
e−iωtdω

0 =
∫ ∞

−∞

((
−m2ω2 + κ

)
ũ2(ω) − κũ1(ω)

)
e−iωtdω.

(C.47)

As with the single spring case, we can decouple these equations
with an inverse transformation operation

∫
eiω′t/2π, which gives

us (after dropping primes)

0 =

[(
−m1ω2 + κ

)
−κ

−κ
(
−m2ω2 + κ

)] [ũ1(ω)

ũ2(ω)

]
. (C.48)

Taking determinants gives us the constraint on the frequency

0 =
(
−m1ω2 + κ

) (
−m2ω2 + κ

)
− κ2

= m1m2ω4 − (m1 + m2)ω2

= ω2 (m1m2ω2 − κ(m1 + m2)
)

.

(C.49)

Introducing a reduced mass

1
µ

=
1

m1
+

1
m2

, (C.50)

the pair of solutions are

ω2 = 0

ω2 =
κ

µ
≡ ω2

◦.
(C.51)

As with the single mass oscillator, we require the functions ũω

to also be expressed as delta functions. The frequency constraint
and that delta function requirement together can be expressed, for
j ∈ {0, 1} as

ũj(ω) = Aj+δ(ω − ω◦) + Aj0δ(ω) + Aj−δ(ω + ω◦). (C.52)

With a transformation back to time domain, we have functions of
the form

u1(t) = Aj+e−iω◦t + Aj0 + Aj−eiω◦t

u2(t) = Bj+e−iω◦t + Bj0 + Bj−eiω◦t.
(C.53)
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Back insertion of these into the equations of motion, we have

0 = −m1ω2
◦
(

Aj+e−iω◦t + Aj−eiω◦t
)

+ κ
((

Aj+ − Bj+
)

e−iω◦t +
(

Aj− − Bj−
)

eiω◦t + Aj0 − Bj0

)
0 = −m2ω2

◦
(

Bj+e−iω◦t + Bj−eiω◦t
)

+ κ
((

Bj+ − Aj+
)

e−iω◦t +
(

Bj− − Aj−
)

eiω◦t + Bj0 − Aj0

)
(C.54)

Equality requires identity for all powers of eiω◦t, or

0 = Bj0 − Aj0

0 = −m1ω2
◦Aj+ + κ

(
Aj+ − Bj+

)
0 = −m1ω2

◦Aj− + κ
(

Aj− − Bj−
)

0 = −m2ω2
◦Bj+ + κ

(
Bj+ − Aj+

)
0 = −m2ω2

◦Bj− + κ
(

Bj− − Aj−
)

,

(C.55)

or Bj0 = Aj0 and

0 =


κ − m1ω2

◦ 0 −κ 0

0 κ − m1ω2
◦ 0 −κ

−κ 0 κ − m2ω2
◦ 0

0 −κ 0 κ − m2ω2
◦




Aj+

Aj−
Bj+

Bj−

 . (C.56)

Observe that

κ − m1ω2
◦ = κ − m1κ

(
1

m1
+

1
m2

)
= κ

(
1 − 1 − m1

m2

)
= −κ

m1

m2
,

(C.57)

(with a similar alternate result). We can rewrite eq. (C.56) as

0 = −κ


m1/m2 0 1 0

0 m1/m2 0 1

1 0 m2/m1 0

0 1 0 m2/m1




Aj+

Aj−
Bj+

Bj−

 . (C.58)
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It’s clear that there’s two pairs of linear dependencies here, so the
determinant is zero as expected. We can read off the remaining
relations. Our undetermined coefficients are given by

Bj0 = Aj0

m1 Aj+ = −m2Bj+

m1 Aj− = −m2Bj−

(C.59)

u1(t) = a + m2be−iω◦t + m2ceiω◦t

u2(t) = a − m1be−iω◦t − m1ceiω◦t.
(C.60)

Observe that the constant term is not really of interest, since it
represents a constant displacement of both atoms (just a change
of coordinates).

Check:

u1(t) − u2(t) = +(m1 + m2)be−iω◦t + (m1 + m2)ceiω◦t, (C.61)

m1ü1(t) + κ(u1(t) − u2(t))

= −m1m2ω2
◦
(

be−iω◦t + ceiω◦t
)

+ (m1 + m2)κ
(

be−iω◦t + ceiω◦t
)

=
(
−m1m2ω2

◦ + (m1 + m2)κ
) (

be−iω◦t + ceiω◦t
)

=
(
−m1m2κ

m1 + m2

m1m2
+ (m1 + m2)κ

)(
be−iω◦t + ceiω◦t

)
= 0.

(C.62)

c.4 reflection.

We’ve seen that we can solve any of these constant coefficient sys-
tems exactly using matrix methods, however, these will not be
practical for large systems unless we have methods to solve for
all the non-zero eigenvalues and their corresponding eigenvectors.
With the Fourier transform methods we find that our solutions in
the frequency domain is of the form

ũj(ω) = ∑ akjδ(ω − ωkj), (C.63)
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or in the time domain

u(t) = ∑ akje−iωkjt. (C.64)

We assumed exactly this form of solution in class. The trial solu-
tion that we used in class factored out a phase shift from akj of the
form of eiqxn , but that doesn’t change the underling form of that
assumed solution. We have however found a good justification for
the trial solution we utilized.
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We’ve been using the fact that a periodic function

V(r) = V(r + rn), (D.1)

where

rn = a1a1 + a2a2 + a3a3, (D.2)

has a Fourier representation

V(r) = ∑
G

VGeiG·r. (D.3)

Here G is a vector in reciprocal space, say

Grst = rg1 + sg2 + tg3, (D.4)

where

gi · aj = 2πδij. (D.5)

Now let’s express the explicit form for the Fourier coefficient VG

so that we can compute the Fourier representation for some peri-
odic potentials for some numerical experimentation. In particular,
let’s think about what it meant to integrate over a unit cell. Sup-
pose we have a parameterization of the points in the unit cell

r = ua1 + va2 + wa3, (D.6)

as sketched in fig. D.1. Here u, v, w ∈ [0, 1]. We can compute the
values of u, v, w for any vector r in the cell by reciprocal projection

r =
1

2π
((r · g1) a1 + (r · g2) a2 + (r · g3) a3) , (D.7)
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Figure D.1: Unit cell.

or

u(r) =
1

2π
r · g1

v(r) =
1

2π
r · g2

w(r) =
1

2π
r · g3.

(D.8)

Let’s suppose that V(r) is period in the unit cell spanned by r =
ua1 + va2 + wa3 with u, v, w ∈ [0, 1], and integrate over the unit
cube for that parameterization to compute VG∫ 1

0
du
∫ 1

0
dv
∫ 1

0
dwV(ua1 + va2 + wa3)e−iG′·r

= ∑
rst

VGrst

∫ 1

0
du
∫ 1

0
dv
∫ 1

0
dwe−iG′·reiG·r.

(D.9)

Let’s write

G = rg1 + sg2 + tg3

G = r′g1 + s′g2 + t′g3,
(D.10)

so that

e−iG′·reiG·r = e2πi(r−r′)ue2πi(s−s′)ue2πi(t−t′)u. (D.11)
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Picking the u integral of this integrand as representative, we have
when r = r′∫ 1

0
due2πi(r−r′)u =

∫ 1

0
du

= 1,
(D.12)

and when r ̸= r′

∫ 1

0
due2πi(r−r′)u =

e2πi(r−r′)u

2πi(r − r′)

∣∣∣∣∣
1

u=0

=
1

2πi(r − r′)

(
e2πi(r−r′) − 1

)
.

(D.13)

This is just zero since r − r′ is an integer, so we have∫ 1

0
due2πi(r−r′)u = δr,r′ . (D.14)

This gives us∫ 1

0
du
∫ 1

0
dv
∫ 1

0
dwV(ua1 + va2 + wa3)e−2πir′ue−2πis′ve−2πit′w

= ∑
rst

VGrst δrst,r′s′t′

= VGr′s′ t′ .

(D.15)

This is our Fourier coefficient. The Fourier series written out in
gory but explicit detail is

V(ua1 + va2 + wa3)

= ∑
rst

(∫ 1

0
du′

∫ 1

0
dv′

∫ 1

0
dw′V(u′a1 + v′a2 + w′a3)e−2πi(ru′+sv′+tw′)

)
×

e2πi(ru+sv+tw).
(D.16)

Also observe the unfortunate detail that we require integrability of
the potential in the unit cell for the Fourier integrals to converge.
This prohibits the use of the most obvious potential for numerical
experimentation, the inverse radial V(r) = −1/|r|.
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It was temporarily useful to expand this in terms of r = ua1 +
va2 + wa3, but with the Fourier coefficients computed, let’s put
things back into vector form noting that

2π (ru + sv + tw) = 2π

(
1

2π
(r · g1)r +

1
2π

(r · g1)s +
1

2π
(r · g1)t

)
= Grst · r.

(D.17)

So, to summarize

Vrst =
∫ 1

0
du′

∫ 1

0
dv′

∫ 1

0
dw′V(u′a1 + v′a2 + w′a3)e−2πi(ru′+sv′+tw′)

V(r) = ∑
rst

VrsteGrst·r.

(D.18)
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These Mathematica notebooks, some just trivial ones used to gen-
erate figures, others more elaborate, and perhaps some even pol-
ished, can be found in

https://github.com/peeterjoot/mathematica/tree/master/phy487/.
The free Wolfram CDF player, is capable of read-only viewing

these notebooks to some extent.
Files saved explicitly as CDF have interactive content that can

be explored with the CDF player.

• Sep 11, 2013 legengreCompare.nb

This was an attempt to decode the notation used in Desai
for the Legendre functions used for Hydrogenic atoms. He
defines the orbital functions in terms of Legendre functions,
but does not precisely define his Legendre functions.

• Sept 19, 2013 qmSolidsPs1P2.nb

Hybrid orbital plots

• Sept 19, 2013 qmSolidsPs1P3b.nb

Madelung constant calculations for NaCl

• Sept 24, 2013 problemSet2Problem3Visualization.nb

Visualize the Bravais lattice given

• Sept 25, 2013 meltingPointVsZplots.nb

Plots of melting points in Kelvin vs Z

• Sept 29, 2013 qmSolidsPs3P1.nb

Reciprocal vector calculation from measurements

• Oct 7, 2013 periodicComplexExponentialPV.nb

Plot of infinite sum of exponentials showing periodic sinc
form. Also diagonalization of the interaction matrix for three
harmonically coupled particles in a loop

https://github.com/peeterjoot/mathematica/tree/master/phy487/
http://www.wolfram.com/cdf-player/
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/legengreCompare.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/qmSolidsPs1P2.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/qmSolidsPs1P3b.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/problemSet2Problem3Visualization.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/meltingPointVsZplots.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/qmSolidsPs3P1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/periodicComplexExponentialPV.nb
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• Oct 9, 2013 qmSolidsPs4P2dGenerated.nb

Labeled plots of 1D two spring constant lattice frequency
distributions. This is a generated notebook.

• Oct 10, 2013 IbachAndLuth4_15_verify.nb

Verify equation 4.15 of the text, for the frequencies of the
diatomic linear chain

• Oct 10, 2013 qmSolidsPs4P2d.nb

Plots of 1D two spring constant lattice frequency distribu-
tions

• Oct 10, 2013 qmSolidsPs4P2cAnimation.nb

Dynamic animation of two atom harmonic oscillation

• Oct 11, 2013 discreteFourierRangeFig1.nb

Plot of sine with omitted points at integer multiples of pi.

• Oct 15, 2013 ps5p1Plot.nb

Plot calculated density of states function

• Oct 17, 2013 deybeTemperatureTable.nb

Debye temperature plot for a number of elements, and atomic
radius plot. Using hash like function mappings, and Ele-
mentData. Also used colors in these plots to visually dis-
tinguish each of the s, p, d, f orbital regions. For a less selec-
tive atomic radii plotting function, I used Cases and pattern
matching to filter out the ElementData values that were miss-
ing or unavailable. In a final version of the plotting function,
overlapped atomic radii and Debye plots were made. A static
image of that plot is saved into the notes for discussion, but
the live notebook version has cool ToolTip’s on all the points
showing the atomic symbols and the values in question.

• Oct 20, 2013 anharmonicOscillator.nb

Plot of anharmonic oscillator solution for problem 5.5 of the
text

https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/qmSolidsPs4P2dGenerated.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/IbachAndLuth4_15_verify.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/qmSolidsPs4P2d.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/qmSolidsPs4P2cAnimation.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/discreteFourierRangeFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/ps5p1Plot.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/deybeTemperatureTable.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/anharmonicOscillator.nb
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• Oct 29, 2013 fermiDiracPlot.nb

Plots of the Fermi-Dirac distribution and its derivatives. In-
cludes one Manipulate for exploring the effect of tempera-
ture dynamically

• Nov 3, 2013 problemSet6Problem1.nb

Numeric calculation of Fermi temperature and related val-
ues. Various wolfram queries were done here to look up the
values and units. Also used Column and Row to make tables
of the physical constants and the associated calculations.

• Nov 4, 2013 problemSet6Problem2CheckNormalization.nb

Minor normalization check for particle in a box calculations.

• Nov 4, 2013 tightBindingPotentials.nb

Plots of periodic extension of inverse radial potential, with
and without omission of one such potential

• Nov 7, 2013 latticePotential.nb

Attempt at a 2D lattice fitting.

• Nov 7, 2013 piecewiseInverseRadialCapCircular.nb

A radial cap for an inverse radial function. This may have
been for a stackexchange post, since I was seeing a discon-
tinuity in the plot that should not have existed. Looks like I
found a post that explained things.

• Nov 8, 2013 cubicFittingForInverseRadial.nb

1D inverse radial lattice Fourier fitting, with cubic rounding
part way down the infinite hole.

• Nov 10, 2013 cubicFittingForInverseRadial2D.nb

Attempt at 2D Fourier fitting of capped radial.

The reason for some of these inverse radial Fourier fitting
attempts was because I wanted to compute the Fourier coef-
ficients for some sample periodic potentials for some numer-
ical experimentation. Naturally, the first one that I tried was
an inverse radial potential, however, it turns out that this

https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/fermiDiracPlot.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/problemSet6Problem1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/problemSet6Problem2CheckNormalization.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/tightBindingPotentials.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/latticePotential.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/piecewiseInverseRadialCapCircular.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/cubicFittingForInverseRadial.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/cubicFittingForInverseRadial2D.nb
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isn’t re presentable by Fourier series since it is not square
integrable.

It is possible to artificially alter the Coulomb potential so
that some neighborhood of the origin is omitted, setting the
potential to some constant value after that, but that doesn’t
seem like a physically reasonable model. Asking Prof Julian
about this he said:

"There are two effects, one is that the potential doesn’t go to
-infty at the origin, due to Pauli exclusion. As you suggest,
putting a flat bottom on the potential probably works okay.
But also, due to screening (in a metal at least) the potential
isn’t 1/r, but rather it cuts off more quickly.

A commonly used compromise is the "muffin tin potential,
which has a flat bottom in a sphere around the atomic posi-
tion, then a step up to another flat region between the atoms.
In solving this one puts a linear combination of spherical
harmonics inside the muffin tin, and plane waves in the in-
terstitial region, and match them at the boundary.

But putting a flat bottom on a screened Coulomb potential
is probably a reasonable first thing to try."

I appear to have hit convergence issues attempting the Fourier
fittings for such a cap in a more interesting 2D lattice.

• Nov 12, 2013 nearlyFreeFig1.nb

Parabolic Brillouin zone plots

• Nov 12, 2013 nearlyFreeFig1GeneratedLabelled.nb

Generated notebook with saved label definitions

• Nov 13, 2013 problemSet7problem2c.nb

Summation that lead to the cotangent result and intersection
plot

• Nov 13, 2013 problemset7problem2dNormalization.nb

Cos squared normalization

• Nov 13, 2013 ps7p2dPlots.nb

Sine and Cos plots. Ended up sketching instead

https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/nearlyFreeFig1.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/nearlyFreeFig1GeneratedLabelled.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/problemSet7problem2c.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/problemset7problem2dNormalization.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/ps7p2dPlots.nb
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• Nov 13, 2013 ps7p2ePlot.nb

A manipulate to explore the variation with k at point a in the
problem. Also some representative plots for the submission

• Nov 16, 2013 hcpLatticeDataBugReport.nb

Report a bug for Mathematica HCP LatticeData function

• Nov 17, 2013 2dFourierColorizationBugReport.nb

FourierSeries Mathematica colorizing front end UI bug re-
port

• Nov 17, 2013 inverseRadial2Dtry2.nb

Second attempt to get the computation of 2D FourierSeries
computed for cubic capped inverse radial function. Mathe-
matica gives up the computation after a long delay

• Nov 18, 2013 guassianPlotsL18L19.nb

Minor plots of Gaussians for L18 and L19

• Nov 18, 2013 qmSolidsPs8bPlots.nb

Plot generator for ps8 b

• Nov 18, 2013 qmSolidsPs8biFig1Generated.nb

Ps8 i Plot with labels, generated

• Nov 18, 2013 qmSolidsPs8biiFig2Generated.nb

Ps8 ii Plot with labels, generated

• Nov 18, 2013 qmSolidsPs8biiiFig3Generated.nb

Ps8 iii Plot with labels, generated

• Nov 19, 2013 qmSolidsPs8dContourPlot.nb

Contour plot of tight binding energy level curves. Used the
really handy getTheGraphics function from stackexchange
for combining the plot with the legend in one graphics object

• Nov 19, 2013 qmSolidsPs8dFig1Generated.nb

Manually labeled the level curves instead, with the energies.
This generated notebook has the labeling data.

https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/ps7p2ePlot.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/hcpLatticeDataBugReport.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/2dFourierColorizationBugReport.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/inverseRadial2Dtry2.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/guassianPlotsL18L19.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/qmSolidsPs8bPlots.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/qmSolidsPs8biFig1Generated.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/qmSolidsPs8biiFig2Generated.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/qmSolidsPs8biiiFig3Generated.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/qmSolidsPs8dContourPlot.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/qmSolidsPs8dFig1Generated.nb
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• Nov 20, 2013 ps8e.nb

Scratch notes and plots for ps8.e

• Nov 25, 2013 ps9p2deFigures.nb

Ps9 figures for q2

• Nov 26, 2013 bccBasisVectors.nb

Look for BCC basis vectors. First try was wrong, but found
suitable vectors with small correction. This verifies that the
new ones work, and also finds the reciprocal basis. Also used
this notebook to experiment with the Report stylesheet, mix-
ing text, inline math, and math cells in one doc. End result
looks much nicer than a plain styled notebook.

• Nov 26, 2013 ps9p1bFigures.nb

Simple plot of the cubic lattice BZ overlaid with Fermi wave-
vector radial surface.

• Nov 30, 2013 bccTwoBases.nb

Aborted attempt to write up a nicely formatted Report for
the verification of an Ashcroft and Mermin suggested exer-
cise.

• Dec 1, 2013 fermiInfoForElementOrig.nb

This notebook generalizes the notebook for problem set 6,
problem 1, which had a Fermi energy/temperature calcula-
tion. This splits out the generic physical constants, and splits
out the ElementData and ChemicalData lookup. The subse-
quent calculation and formatting of the data was split some-
what. It would be worthwhile to experiment with reworking
this to use Rule lists, like perl hashes, to tag the various fields
with names, which would make the parameter passing more
flexible.

• Dec 1, 2013 lecture22SemiconductorIntegrals.nb

Sqrt exponential integral ... probably a gamma function.

• Dec 2, 2013 fermiInfoForElement.nb

https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/ps8e.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/ps9p2deFigures.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/bccBasisVectors.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/ps9p1bFigures.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/bccTwoBases.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/fermiInfoForElementOrig.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/lecture22SemiconductorIntegrals.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/fermiInfoForElement.nb
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Rework fermiInfoForElementOrig.nb passing parameters by
hashes, ie. Rule Lists. As expected, this was a much cleaner
result, as the huge lists of Module local variables are not
required passing along the previous phases of the compu-
tations. In the end, the descriptive Rule List can be used
directly as a ReplaceAll on the values List, with all the grunt
work of the display done by a single Rule to List, and Table-
Format operation.

• Dec 4, 2013 ps10plots.nb

Log concentration vs. inverse temperature and some physi-
cal constant lookup and order of magnitude calculations.

• Dec 9, 2013 weakBindingPotentialNearBraggPlane.nb

A Dynamic visualization of the Bragg plane behavior of a
weak periodic potential. Sliders provided for K, and U as a
fraction of K, are provided

• Dec 13, 2013 rasterizeAntialiasInset.nb

Experimentation with rasterizing only the 3D plot part of a
3D plot, and not the axes. This was to attempt to produce
a small Mathematica plot of stuff that ends up huge when
plotted as eps

• Dec 13, 2013 rasterizeAntialiasInsetExperiment.nb

Like rasterizeAntialiasInset.nb, but with a plotopts function.
Should have noted the stackexchange post I was attempting
to use.

• Dec 18, 2013 coupledHarmonicUsingDisplacements.nb

Verified a hand calculated solution for a non-homogeneous
form of the single variable harmonic oscillator. Realized after
this that a more sensible approach would have been to just
make a change of variables.

• Dec 20, 2013 harmonicOscillatorTwoMasses.cdf

An animation of a two particle harmonic oscillator, consid-
ered as the most simple lattice problem. This highlighted
a problem, where the masses passed through each other,

https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/ps10plots.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/weakBindingPotentialNearBraggPlane.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/rasterizeAntialiasInset.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/rasterizeAntialiasInsetExperiment.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/coupledHarmonicUsingDisplacements.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/harmonicOscillatorTwoMasses.cdf
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since I did not include a rest length of the spring in the
Lagrangian.

• Dec 31, 2013 determinantOfLambdaIminusAfor3Dmatrix.nb

A check if the determinant and trace expansion for the char-
acteristic equation of A - lambda I holds in 3D. It does not.
This shows the structure, but not the underlying mechanism
for a general expansion.

• Jan 12, 2014 oneAtomBasisPhononSquareLatticeEigensystem.nb

Here’s a bit of a laborious symbolic calculation that I messed
up by hand with, phy487/oneAtomBasisPhonon.tex

• Feb 17, 2014 PhononModesFor2DLatticeVibrationsV4.nb

N atom basis diamond lattice calculations. Allows up to 5

mass locators in the grid and a vector parameterized paral-
lelepiped lattice cell. This uses TabView and Nasser’s tricks
to avoid evaluation where undesirable. This also includes
the distribution relation. This is my most sophisticated sam-
ple of Mathematica programming so far.

https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/determinantOfLambdaIminusAfor3Dmatrix.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/oneAtomBasisPhononSquareLatticeEigensystem.nb
https://raw.githubusercontent.com/peeterjoot/mathematica/master/phy487/PhononModesFor2DLatticeVibrationsV4.nb
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