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Curvilinear coordinates and reciprocal frames.

1.1 Curvilinear coordinates.

Let’s start by considering a two parameter surface specified by x = x(a, b). This defines a surface, for
which the partials are both tangent to at each point of the surface. We write

xa =
∂x
∂a

xb =
∂x
∂b

.
(1.1)

We call span xa, xb the tangent space of the surface at the parameter values a, b. One important role of
the curvilinear vectors xa, xb is to describe the area element for the subspace

dxa ∧ dxb = (xa ∧ xb) dadb. (1.2)

Observe that for a two dimensional space, this has the form

dxa ∧ dxb =
∣∣xa xb

∣∣ i dadb, (1.3)

where i is the pseudoscalar for the space. The reader may be familiar with the determinant here, which
is the Jacobian encountered in a change of variable context. We may generalize this idea of tangent space
to more variables in an obvious fashion. For example, given

x = x(a1, a2, · · · , aM), (1.4)

we write
xai =

∂x
∂ai . (1.5)

Let’s look at some examples, starting with circular coordinates in a plane

x(r, θ) = re1eiθ , (1.6)
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where i = e1e2. Our tangent space vectors are

xr = e1eiθ , (1.7)

and
(1.8)xθ = re1ieiθ

= re2eiθ .

The area element in this case is

(1.9)
dxr ∧ dxθ = xr ∧ xθdrdθ

=
〈

e1eiθre2eiθ
〉

2
drdθ

= irdrdθ.

Integration over a circular region gives

(1.10)

∫ R

r =0

∫ 2π

θ =0
dxr ∧ dxθ = i

∫ R

r=0
rdr

∫ 2π

θ=0
dθ

= i
R2

2
2π

= iπR2.

This is the area of the circle, scaled by the unit bivector that represents the orientation of the plane in this
two dimensional subspace.

As another example, consider a spherical parameterization, as illustrated in fig. 1.1.

(1.11)x(r, θ, ϕ) = re1eiϕ sin θ + re3 cos θ.

Our curvilinear vectors in this case are

(1.12)xr = e1eiϕ sin θ + e3 cos θ,

(1.13)xθ = re1eiϕ cos θ − re3 sin θ,

(1.14)xϕ = re2eiϕ sin θ.

In this case our (pseudoscalar) volume element is

(1.15)

dxr ∧ dxθ ∧ dxϕ = r2 sin θ
〈(

e1eiϕ sin θ + e3 cos θ
) (

e1eiϕ cos θ − e3 sin θ
)

e2eiϕ
〉

3
drdθdϕ

= r2 sin θ
〈(

e1eiϕ sin θ + e3 cos θ
) (

e1 cos θ − e3e−iϕ sin θ
)

e2

〉
3

drdθdϕ

= r2 sin θ
〈(
−e1e3 sin2 θ + e3e1 cos2 θ

)
e2
〉

3 drdθdϕ

= e3e1e2r2 sin θ drdθdϕ

= Ir2 sin θ drdθdϕ.
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Figure 1.1: Spherical coordinates.

This is just the standard spherical volume element, but scaled with the pseudoscalar. If we integrate
the upper half of the volume (above the x-y plane), we would find

∫ R
r=0

∫ 2π
ϕ=0

∫ π/2
θ=0 dxr ∧ dxθ ∧ dxϕ =

(1/2)I(4/3)πR3, half the volume of the sphere, again weighted by the pseudoscalar for the space. The
sign would be negated for the lower half of plane, since our volume element is not strictly positive ev-
erywhere. This change of sign is not unique to this geometric algebra formulation, as we would have
to integrate

∫
|∂(x, y, z)/∂(r, θ, ϕ)| drdθdϕ if we were computing the spherical volume using a standard

scalar change of variables (taking the absolute value of our Jacobian.)
As a final example, let’s pick the coordinates associated withwith a relativistic boost and scale param-

eterization in spacetime, illustrated in fig. 1.2, with r = 1.

Figure 1.2: Boost worldline.
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(1.16)x = rγ0eγ0γ1α.

For this surface we have
xr = γ0eγ0γ1α

xα = rγ1eγ0γ1α.
(1.17)

In this case the volume element is

(1.18)
dxr ∧ dxα = rdrdα⟨γ0eγ01αγ1eγ01α⟩2

= rdrdα
〈
γ0γ1e−γ01αeγ01α

〉
2

= γ01rdrdα.

This is cosmetically similar to the circular area element above, also weighted by a pseudoscalar, but in
this case, α is not restricted to a bounded interval. We also see that the basic ideas here work for both
Euclidean and non-Euclidean vector spaces.

1.2 Reciprocal frame vectors.

Returning to a two dimensional surface, with tangent plane span xa, xb, any vector in that plane has the
form

y = yaxa + ybxb. (1.19)

This is illustrated in fig. 1.3.

Figure 1.3: Tangent plane for two parameter surface.
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1.2.1 Coordinates.

We call ya, yb the coordinates of the vector y with respect to the basis for the tangent space span xa, xb.
The computation of these coordinates is facilitated by finding the reciprocal frame xa, xb for the tangent
space that satisfies both xa, xb ∈ span xa, xb, and

xµ · xν = δµ
ν, (1.20)

for all µ ∈ {a, b}.
We may demonstrate that this works by example, dotting with each of our reciprocal frame vectors

y · xa =
(

yaxa + ybxb

)
· xa

= ya (xa · xa) + yb (xb · xa)

= ya,

(1.21)

and similarly
y · xb =

(
yaxa + ybxb

)
· xb

= ya
(

xa · xb
)

+ yb
(

xb · xb
)

= yb.

(1.22)

Provided we can find these reciprocal vectors, they provide the projections along each of the respective
directions, allowing us to formulate the coordinate decomposition with respect to either the curvilinear
or the reciprocal basis

y = (y · xa) xa +
(

y · xb
)

xb = (y · xa) xa + (y · xb) xb. (1.23)

For orthonornal Euclidean vectors, this reduces to the familiar sum of projections

x = ∑
i
(x · ei) ei. (1.24)

The reciprocal frame allows us to find the coordinates with respect to a oblique (non-orthonormal) basis,
also not imposing a requirement for the space to be Euclidean.

1.2.2 Orthogonal curvilinear coordinates.

When our tangent plane vectors are orthogonal, computation of the reciprocal frame just requires scaling.
That scaling, perhaps not surprisingly, given the name reciprocal, just requires a vector inverse. For our
two parameter case, that is just

xa =
1
xa

=
xa

xa · xa
, xb =

1
xb

=
xb

xb · xb
. (1.25)
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The reader can readily verify that xa · xa = xb · xb = 1, and xa · xb = xb · xa = 0.
As an example, using the circular frame considered above, where we had

xr = e1eiθ

xθ = re2eiθ ,
(1.26)

the reciprocals are just
xr = e1eiθ

xθ =
1
r

e2eiθ .
(1.27)

In this specific case, the reader can also readily verify that xr · xr = xθ · xθ = 1, and xr · xθ = xθ · xr = 0.
Similarly, for the spherical frame basis (eq. (1.12), ...), we have

x2
r =

∣∣∣eiϕ sin θ
∣∣∣2 + cos2 θ = 1, (1.28)

x2
θ = r2

(∣∣∣eiϕ cos θ
∣∣∣2 + sin2 θ

)
= r2, (1.29)

and
x2

ϕ = r2 sin2 θ, (1.30)

so the spherical reciprocals are just
xr = e1eiϕ sin θ + e3 cos θ, (1.31)

xθ =
1
r

(
e1eiϕ cos θ − e3 sin θ

)
, (1.32)

xϕ =
1

r sin θ
e2eiϕ. (1.33)

Using straight inversion to compute the reciprocal frame vectors even works for non-Euclidean spaces.
Consider the following example, using the relativistic (Dirac) basis

x(a, b) = a (γ1 + γ2) + bγ3, (1.34)

for which we have
xa = γ1 + γ2, (1.35)

and
xb = γ3. (1.36)

We have to be a bit more careful to compute the squares for this mixed metric space, but if we do that,
we find

x2
a = γ2

1 + γ2
2 = −2, (1.37)
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and
x2

b = −1, (1.38)

so
xa = −1

2
(γ1 + γ2) , (1.39)

and
xb = −γ3. (1.40)

However, other than the fact that our vectors may square to either positive or negative values, the recip-
rocals are still trivial to calculate.

This example also serves to point out the importance of the span constraint xa, xb ∈ span {xa, xb}. For
example, suppose we altered one of the reciprocal frames with a vector component that is orthogonal to
either of the original xa, xb vectors, such as

xb = −γ3 + 2γ0. (1.41)

We still have xa · xa = xb · xb = 1, and xa · xb = xb · xa = 0, but can no longer write y = (y · xa) xa + (y · xb) xb

for any vector y ∈ span {xa, xb}, since this would now introduce a contribution in space that no longer
lies in the tangent plane.

Another gotcha to consider for non-Euclidean spaces is that we will need some other way to compute
the reciprocals if we have lightlike vectors (with zero square) as in the following parameterization

x(a, b) = a (γ0 + γ1) + b (γ0 − γ1) . (1.42)

Here both of the tangent space vectors
xa = γ0 + γ1

xb = γ0 − γ1,
(1.43)

are lightlike. This basis spans the ct, x spacetime plane (span {γ0, γ1}), so we can reach any points on
that plane. Clearly it must be possible to find the coordinates of vectors on that plane with respect to this
basis, but we will have to figure out how to do so. We also do not know how to find the coordinates of
vectors that lie in the tangent planes with curvilinear basis vectors that are non-orthogonal.

1.2.3 Reciprocal frame for non-orthogonal coordinates.

Now let’s figure out how to compute the reciprocal vectors for the more general case where the tan-
gent space vectors are not orthogonal. Doing so for a two parameter surface will be sufficient, as the
generalization to higher degree surfaces will be clear.

Given xa, xb ∈ span {xa, xb}, we set
xa = α1xa + α2xb

xb = β1xa + β2xb,
(1.44)
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subject to the constraints xµ · xν = δµ
ν, ∀µ, ν ∈ a, b. That is

xa · xa = α1xa · xa + α2xb · xa = 1

xa · xb = α1xa · xb + α2xb · xb = 0

xb · xa = β1xa · xa + β2xb · xa = 0

xb · xb = β1xa · xb + β2xb · xb = 1.

(1.45)

With

D =
[

xa · xa xb · xa
xa · xb xb · xb

]
, (1.46)

that is

D
[

α1

α2

]
=
[

1
0

]
D
[

β1

β2

]
=
[

0
1

]. (1.47)

Since

D−1 =
1∣∣∣∣xa · xa xb · xa

xa · xb xb · xb

∣∣∣∣
[

xb · xb −xb · xa
−xa · xb xa · xa

]
, (1.48)

we have [
α1

α2

]
=

1

x2
ax2

b − (xa · xb)
2

[
xb · xb
−xa · xb

]
[

β1

β2

]
=

1

x2
ax2

b − (xa · xb)
2

[
−xb · xa
xa · xa

]
.

(1.49)

Back substitution gives

xa =
x2

bxa − (xa · xb) xb

x2
ax2

b − (xa · xb)
2

xb =
− (xb · xa) xa + x2

axb

x2
ax2

b − (xa · xb)
2 .

(1.50)

1.2.4 Geometric algebra form of the reciprocal frame vectors.

The mess of dot products above is not terribly desirable. This can be cleaned up significantly, by observ-
ing that a bivector term can be factored from both the numerator and denominator. In particular, using
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the distribution identity, a squared bivector has the form

(a ∧ b)2 = (a ∧ b) · (a ∧ b)
= ((a ∧ b) · a) · b

=
(
(b · a) a − a2b

)
· b

= (b · a)2 − a2b2.

(1.51)

Also
(a ∧ b) · c = (b · c) a − (a · c) b. (1.52)

Using these, we can write

xa =
xb · (xa ∧ xb)

(xa ∧ xb)
2

xb =
−xa · (xa ∧ xb)

(xa ∧ xb)
2

, (1.53)

or
xa = xb ·

1
(xa ∧ xb)

xb = −xa ·
1

(xa ∧ xb)
.

(1.54)

It’s immediately clear why this works. Take for example

xa · xa = xa ·
(

xb ·
1

(xa ∧ xb)

)
= (xa ∧ xb) ·

1
(xa ∧ xb)

= 1,

(1.55)

and

xb · xa = xb ·
(

xb ·
1

(xa ∧ xb)

)
= (xb ∧ xb) ·

1
(xa ∧ xb)

= 0.

(1.56)

It’s immediately obvious that if we generalize to a three parameter surface, then we must have

xa = (xb ∧ xc) ·
1

(xa ∧ xb ∧ xc)

xb = − (xa ∧ xc) ·
1

(xa ∧ xb ∧ xc)

xc = (xa ∧ xb) ·
1

(xa ∧ xb ∧ xc)
.

(1.57)
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How to generalize to still higher dimensions is clear. Specifically, given x = x(a1, a2, · · · , am), let’s write
xi = ∂x/∂ai, with reciprocals xi. Then the reciprocals are given by

xi = (−1)i−1 (x1 ∧ · · · xi−1 ∧ xi+1 · · · xm) ·
1

x1 ∧ x2 ∧ · · · xm
. (1.58)

In the leading blade, we have a wedge of all the basis elements, except for xi, and each time we move
down the line, the sign changes by a factor of one.

Let’s apply this blade dot product form of the reciprocal frame vectors to some non-orthogonal exam-
ples. For the first example, consider an elliptical parameterization illustrated in fig. 1.4.

Figure 1.4: Elliptical parameter differentials.

x = ae1 cos θ + aϵe2 sin θ. (1.59)

We find that curvilinear bases vectors

xa = e1 cos θ + ϵe2 sin θ

xθ = −ae1 sin θ + aϵe2 cos θ.
(1.60)

We can check that these are generally non-orthogonal as

(1.61)

xa · xθ = −a cos θ sin θ + aϵ2 cos θ sin θ

=
a
2
(
ϵ2 − 1

)
sin (2θ) ,
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which shows that these vectors are orthogonal only in the limiting circular case, where the eccentricity ϵ
goes to one, or at the specific points θ = nπ/2. The area element is

dxa ∧ dxθ = (e1 cos θ + ϵe2 sin θ) ∧ (−ae1 sin θ + aϵe2 cos θ) dadθ

= aϵe1e2
(
cos2 θ + sin2 θ

)
dadθ

= iaϵdadθ.

(1.62)

We can use this to find the (unit pseudoscalar scaled) area of an ellipse, which is

A =
∫ a

a=0

∫ 2π

θ=0
dxa ∧ dxθ

=
∫ a

a=0

∫ 2π

θ=0
iaϵdadθ

= i
a2

2
ϵ (2π)

= iπa (aϵ) .

(1.63)

As a check observe that we recover the circular area in the limit ϵ → 1, where a = aϵ is the radius of the
circle. Now let’s find our reciprocals

xa = xθ ·
1

iaϵ

=
1
aϵ

(−ae1 sin θ + aϵe2 cos θ) · (e2e1)

=
1
ϵ
(e2 sin θ + ϵe1 cos θ) ,

(1.64)

and
xθ = −xa ·

1
iaϵ

= − 1
aϵ

(e1 cos θ + ϵe2 sin θ) · (e2e1)

=
1
aϵ

(e2 cos θ − ϵe1 sin θ) .

(1.65)

Let’s return to the relativistic two parameter surface of eq. (1.42). Our area element is

dxa ∧ dxb = (γ0 + γ1) ∧ (γ0 − γ1) dadb
= 2γ1γ0 dadb.

(1.66)

so our reciprocals are

xa = xb ·
1

2γ10

=
1
2
(γ0 − γ1) · γ01

=
1
2
(γ1 − γ0) ,

(1.67)
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and
xb = −xa ·

1
2γ10

= −1
2
(γ0 + γ1) · γ01

= −1
2
(γ1 + γ0) .

(1.68)

Sure enough we are able to compute a set of reciprocal frame vectors, satisfying the definition. In this
case, both of those are also lightlike, even though they span the ct, x plane.

1.2.5 Matrix solution of the reciprocal frame vectors.

An alternative, one that is possibly more computationally efficient, is using matrix algebra to perform
the same computation. Consider an m-parameter surface x = x(a1, · · · , am), with xi = ∂x/∂ai, we can
form a Jacobian matrix of all the partials

JT =
[
x1 x2 · · · xm

]
. (1.69)

We can now cast each reciprocal vector into a matrix equation to be solved, say

xi = JTαi, (1.70)

where αi is an unknown column matrix to be determined for each reciprocal vector. The m-parameter
generalization of eq. (1.46) is

Dαi = ei, (1.71)

where
D = JGJT, (1.72)

and G is the metric matrix 1 for the space.
In block matrix form, we have

JGJT [
α1 · · · αm

]
= I, (1.73)

or [
α1 · · · αm

]
=
(

JGJT
)−1

. (1.74)

Let
X =

[
x1 · · · xm] , (1.75)

so
X = JT [

α1 · · · αm
]

= JT
(

JGJT
)−1

. (1.76)

1For most of physics, there are really only two metrics of interest. The first is the identity matrix G = I, which we use for
Euclidean spaces, and G = ±diag(1,−1,−1,−1), the metric for special relativity.
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In the special case where the number of parameters equals the dimension of the vector space, JT is
both square and (generally) invertible, so we can simplify things considerably

X = JT
(

JGJT
)−1

= JT
(

JT
)−1

G−1 J−1

= G−1 J−1

= (JG)−1 .

(1.77)

1.3 Gradient in curvilinear coordinates.

We define the gradient ∇, implicitly as a directional derivative of the following form

a ·∇ f =
d
dt

f (x + at)
∣∣∣∣
t=0

. (1.78)

Expanding by chain rule, this is

(1.79)

a ·∇ f =
∂ f

∂(xi + ait)
∂(xi + ait)

∂t

∣∣∣∣
t=0

= ai ∂ f
∂xi

=
(

a · ei
) ∂ f

∂xi

= a ·
(

ei ∂

∂xi

)
f ,

so, the gradient with respect to the standard basis {ei}, and it’s reciprocal frame
{

ei}, is

(1.80)∇ = ei ∂

∂xi .

The reciprocal basis pairing here is an allowance for non-Euclidean spaces, and for Euclidean spaces
reduces to the usual, since ei = ei. Next we consider a change of coordinates, where

(1.81)xi = xi(a1, a2, · · · , an).

Expressing the gradient in terms of these parameters, we have

(1.82)∇ = ei ∂aj

∂xi
∂

∂aj .
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With

xj = ei ∂aj

∂xi = ∇aj, (1.83)

we have
∇ = xj ∂

∂aj , (1.84)

a curvilinear representation of the gradient.
These parameter gradients have been written as xj’s as they are reciprocal to xj = ∂x/∂aj. To show this,

we just have to computing the dot products of such a pair, and apply the chain rule in reverse

xi · xj =
(

ek ∂ai

∂xk

)
· ∂x

∂aj

=
(

ek ∂ai

∂xk

)
·
(

∂xm

∂aj em

)
= δk

m
∂ai

∂xk
∂xm

∂aj

=
∂ai

∂xm
∂xm

∂aj

=
∂ai

∂aj

= δi
j.

(1.85)

This provides yet another way to compute our reciprocal frame. Manually computing the reciprocal
frame vectors this way can be pretty hard if we try to do this in the straightforward braindead way, but
we will see there is an easier way.

Illustrating by example, consider the circular parameterization again, with

x = e1eiθ , i = e1e2. (1.86)

In order to take the gradients of r, θ, we can first write out our parameterization in coordinates

x = r cos θ

y = r sin θ,
(1.87)

or
r2 = x2 + y2

tan θ =
y
x

.
(1.88)

The r gradient is easy to compute
(1.89)∇r2 = 2xe1 + 2ye2,
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or

(1.90)
∇r =

x
r

e1 +
y
r

e2

= cos θe1 + sin θe2

= e1eiθ .

For the θ gradient we have

(1.91)

sec2 θ∇θ = ∇y
x

= e1
∂

∂x
y
x

+ e2
∂

∂y
y
x

= −e1
y
x2 + e2

1
x

,

so

∇θ = cos2 θ

(
−e1

r sin θ

r2 cos2 θ
+ e2

1
r cos θ

)
=

1
r
(−e1 sin θ + e2 cos θ)

=
e2

r
(−e2e1 sin θ + cos θ)

=
1
r

e2eiθ .

(1.92)

As well as finding our reciprocals xr = ∇r, xθ = ∇θ, we now know the circular representation of the
gradient

∇ = e1eiθ ∂

∂r
+

1
r

e2eiθ ∂

∂θ
= r̂

∂

∂r
+

1
r

θ̂
∂

∂θ
. (1.93)

It was a lot trickier to compute the reciprocal frame vectors this way than our previous vector-bivector
dot products or matrix inverse methods. That computation also only seemed possible because we could
solve for r, θ in this specific case. What would we do when we have more complicated and inseparable
parameterizations? Well, we don’t actually have to be able to solve for the parameters as functions of the
coordinates, since we can use the same implicit differentiation methods used above in a more systematic
fashion. Given

xi = xi(a1, a2, · · · , an), (1.94)

the gradients of each of these coordinates is

∇xi = ej ∂xi

∂xj = ejδi
j = ei. (1.95)
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and

∇xi = ej ∂xi

∂xj

= ej ∂xi

∂ak
∂ak

∂xj

=
∂xi

∂ak ∇ak

(1.96)

or
∂xi

∂ak ∇ak = ei. (1.97)

In block matrix form, this is

[
∇a1 · · · ∇an]


∂x1

∂a1 · · · ∂xn

∂a1

...
∂x1

∂an · · · ∂xn

∂an

 =
[
e1 · · · en] . (1.98)

Note that [
e1 · · · en

]TG
[
e1 · · · en] = I, (1.99)

or [
e1 · · · en] = G−1, (1.100)

so [
∇a1 · · · ∇an] J = G−1. (1.101)

This gives us
X = G−1 (J)−1 = (JG)−1 , (1.102)

as we found in eq. (1.77).
Let’s write this out explicitly for the two parameter (Euclidean) case, and apply it to our circular

parameterization

[
∇a ∇b

]
=

[
∂x1

∂a
∂x2

∂a
∂x1

∂b
∂x2

∂b

]−1

=

[
∂x2

∂b − ∂x2

∂a
− ∂x1

∂b
∂x1

∂a

]
∂x1

∂a
∂x2

∂b − ∂x1

∂b
∂x2

∂a

, (1.103)

or

∇a =
1
|J|

(
∂x2

∂b
e1 −

∂x1

∂b
e2

)
∇b =

1
|J|

(
−∂x2

∂a
e1 +

∂x1

∂a
e2

)
.

(1.104)

Application to the our familiar circular parameterization gives

x = r cos θ

y = r sin θ,
(1.105)
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so

JT =
[

cos θ −r sin θ
sin θ r cos θ

]
, (1.106)

so
|J| = r

(
cos2 θ + sin2 θ

)
= r. (1.107)

Our gradients, using eq. (1.104) are

∇r =
1
r

(
e1

∂

∂θ
(r sin θ) − e2

∂

∂θ
(r cos θ)

)
= e1 cos θ + e2 sin θ

= e1eiθ ,

(1.108)

and

∇θ =
1
r

(
−e1

∂

∂r
(r sin θ) + e2

∂

∂r
(r cos θ)

)
=

1
r
(−e1 sin θ + e2 cos θ)

=
e2

r
(−e2e1 sin θ + cos θ)

=
1
r

e2eiθ ,

(1.109)

as expected.
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