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Computing the adjoint matrix

I started reviewing a book draft that mentions the adjoint in passing, but I’ve forgotten what I knew
about the adjoint (not counting self-adjoint operators, which is different.) I do recall that adjoint matrices
were covered in high school linear algebra (now 30+ years ago!), but never really used after that.

It appears that the basic property of the adjoint adj M of a matrix M, when it exists, is

M(adj M) = |M|I, (1.1)

so it’s proportional to the inverse, where the numerical factor is the determinant of that matrix. Let’s try
to compute this beastie for 1D, 2D, and 3D cases.

1.1 Round I.

1.1.1 Simplest case: 1 × 1 matrix.

For a one by one matrix, say
M =

[
m11

]
, (1.2)

the determinant is just |M| = m11, so our adjoint is the identity matrix

adj M =
[
1
]

. (1.3)

Not too interesting. Let’s try the 2D case.

1.1.2 Less trivial case: 2 × 2 matrix.

For the 2D case, let’s define our matrix as a pair of column vectors

M =
[
m1 m2

]
, (1.4)

and let’s write the adjoint out in full in coordinates as

adj M =
[

a11 a12
a21 a22

]
. (1.5)
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We seek solutions to a pair of vector equations

m1a11 + m2a21 = |M|e1

m1a12 + m2a22 = |M|e2.
(1.6)

We can immediately solve either of these, by taking wedge products, yielding

(m1 ∧ m2) a11 +(((((m2 ∧ m2a21 = |M| (e1 ∧ m2)

(((((m1 ∧ m1a11 + (m1 ∧ m2) a21 = |M| (m1 ∧ e1)

(m1 ∧ m2) a12 +(((((m2 ∧ m2a22 = |M| (e2 ∧ m2)

(((((m1 ∧ m1a12 + (m1 ∧ m2) a22 = |M| (m1 ∧ e2) .

(1.7)

Provided the determinant is non-zero, we can divide both sides by m1 ∧ m2 = |M|e12 to find a single
determinant for each element in the adjoint

a11 =
∣∣e1 m2

∣∣
a21 =

∣∣m1 e1
∣∣

a12 =
∣∣e2 m2

∣∣
a22 =

∣∣m1 e2
∣∣

(1.8)

or

adj M =


∣∣e1 m2

∣∣ ∣∣e2 m2
∣∣

∣∣m1 e1
∣∣ ∣∣m1 e2

∣∣
 , (1.9)

or with A = adj M
Aij = ϵir

∣∣ej mr
∣∣ , (1.10)

where ϵir is the completely antisymmetric tensor, and the Einstein summation convention is in effect
(summation implied over any repeated indexes.)

Check: We should verify that expanding these determinants explicitly reproduces the usual represen-
tation of the 2D adjoint: ∣∣e1 m2

∣∣ =
∣∣∣∣1 m12
0 m22

∣∣∣∣ = m22∣∣m1 e1
∣∣ =

∣∣∣∣m11 1
m21 0

∣∣∣∣ = −m21∣∣e2 m2
∣∣ =

∣∣∣∣0 m12
1 m22

∣∣∣∣ = −m12∣∣m1 e2
∣∣ =

∣∣∣∣m11 0
m21 1

∣∣∣∣ = m11,

(1.11)
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or

adj M =
[

m22 −m12
−m21 m11

]
. (1.12)

Multiplying everything out should give us determinant weighted identity

M(adj M) =
[

m11 m12
m21 m22

] [
m22 −m12
−m21 m11

]
= (m11m22 − m12m21)

[
1 0
0 1

]
= |M|I,

(1.13)

as expected.

1.1.3 3D case: 3 × 3 matrix.

For the 3D case, let’s also define our matrix as column vectors

M =
[
m1 m2 m3

]
, (1.14)

and let’s write the adjoint out in full in coordinates as

adj M =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 . (1.15)

This time, we seek solutions to three vector equations

m1a11 + m2a21 + m3a31 = |M|e1

m1a12 + m2a22 + m3a32 = |M|e2

m1a13 + m2a23 + m3a33 = |M|e3,
(1.16)

and can immediately solve, once again, by taking wedge products, yielding

(m1 ∧ m2 ∧ m3) a11 +(((((((m2 ∧ m2 ∧ m3a21 +(((((((m3 ∧ m2 ∧ m3a31 = |M|e1 ∧ m2 ∧ m3

(((((((m1 ∧ m1 ∧ m3a11 + (m1 ∧ m2 ∧ m3) a21 +(((((((m1 ∧ m3 ∧ m3a31 = |M|m1 ∧ e1 ∧ m3

(((((((m1 ∧ m2 ∧ m1a11 +(((((((m1 ∧ m2 ∧ m2a21 + (m1 ∧ m2 ∧ m3) a31 = |M|m1 ∧ m2 ∧ e1

(m1 ∧ m2 ∧ m3) a12 +(((((((m2 ∧ m2 ∧ m3a22 +(((((((m3 ∧ m2 ∧ m3a32 = |M|e2 ∧ m2 ∧ m3

(((((((m1 ∧ m1 ∧ m3a12 + (m1 ∧ m2 ∧ m3) a22 +(((((((m1 ∧ m3 ∧ m3a32 = |M|m1 ∧ e2 ∧ m3

(((((((m1 ∧ m2 ∧ m1a12 +(((((((m1 ∧ m2 ∧ m2a22 + (m1 ∧ m2 ∧ m3) a32 = |M|m1 ∧ m2 ∧ e2

(m1 ∧ m2 ∧ m3) a13 +(((((((m2 ∧ m2 ∧ m3a23 +(((((((m3 ∧ m2 ∧ m3a33 = |M|e3 ∧ m2 ∧ m3

(((((((m1 ∧ m1 ∧ m3a13 + (m1 ∧ m2 ∧ m3) a23 +(((((((m1 ∧ m3 ∧ m3a33 = |M|m1 ∧ e3 ∧ m3

(((((((m1 ∧ m2 ∧ m1a13 +(((((((m1 ∧ m2 ∧ m2a23 + (m1 ∧ m2 ∧ m3) a33 = |M|m1 ∧ m2 ∧ e3,

(1.17)
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Like before, provided the determinant is non-zero, we can divide both sides by m1 ∧ m2 ∧ m3 = |M|e123
to find a single determinant for each element in the adjoint

adj M =


∣∣e1 m2 m3

∣∣ ∣∣e2 m2 m3
∣∣ ∣∣e3 m2 m3

∣∣
∣∣m1 e1 m3

∣∣ ∣∣m1 e2 m3
∣∣ ∣∣m1 e3 m3

∣∣
∣∣m1 m2 e1

∣∣ ∣∣m1 m2 e2
∣∣ ∣∣m1 m2 e3

∣∣



=


∣∣e1 m2 m3

∣∣ ∣∣e2 m2 m3
∣∣ ∣∣e3 m2 m3

∣∣
∣∣e1 m3 m1

∣∣ ∣∣e2 m3 m1
∣∣ ∣∣e3 m3 m1

∣∣
∣∣e1 m1 m2

∣∣ ∣∣e2 m1 m2
∣∣ ∣∣e3 m1 m2

∣∣

 ,

(1.18)

or
Aij =

ϵirs

2!

∣∣ej mr ms
∣∣ . (1.19)

Observe that the inclusion of the ej column vector in this determinant, means that we really need only
compute a 2 × 2 determinant for each adjoint matrix element. That is

Aij =
(−1)jϵirsϵjab

(2! )2

∣∣∣∣mar mas
mbr mbs

∣∣∣∣ . (1.20)

This looks a lot like the usual minor/cofactor recipe, but written out explicitly for each element, using
the antisymmetric tensor to encode the index alternation. It’s worth noting that there may be an error or
subtle difference from the usual in my formulation, since wikipedia defines the adjoint as the transpose
of the cofactor matrix, see: [1].

1.1.4 General case: n × n matrix.

It appears that if we wanted an induction hypotheses for the general n > 1 case, the ij element of the
adjoint matrix is likely

Aij =
ϵis1s2···sn−1

(n − 1)!

∣∣ej ms1 ms2 · · · msn−1

∣∣
=

(−1)jϵir1r2···rn−1 ϵjs1s2···sn−1

((n − 1)! )2

∣∣∣∣∣∣∣
mr1s1 · · · mr1sn−1

...
...

mrn−1s1 · · · mrn−1sn−1

∣∣∣∣∣∣∣ .
(1.21)

I’m not going to try to prove this, inductively or otherwise.
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1.2 Round II.

We found determinant expressions for the matrix elements of the adjoint for 2D and 3D matrices M.
However, we can extract additional structure from each of those results.

1.2.1 2D case.

Given a matrix expressed in block matrix form in terms of it’s columns

M =
[
m1 m2

]
, (1.22)

we found that the adjoint adj M satisfying M(adj M) = |M|I had the structure

adj M =


∣∣e1 m2

∣∣ ∣∣e2 m2
∣∣

∣∣m1 e1
∣∣ ∣∣m1 e2

∣∣
 . (1.23)

We initially had wedge product expressions for each of these matrix elements, and can discover our
structure by putting back those wedge products. Modulo sign, each of these matrix elemens has the
form ∣∣ei mj

∣∣ =
(
ei ∧ mj

)
i−1

=
〈(

ei ∧ mj
)

i−1
〉

=
〈(

eimj − ei · mj
)

i−1
〉

=
〈

eimji−1
〉

= ei ·
(

mji−1
)

,

(1.24)

where i = e12. The adjoint matrix is

adj M =
[
− (m2i) · e1 − (m2i) · e2
(m1i) · e1 (m1i) · e2

]
. (1.25)

If we use a column vector representation of the vectors mji−1, we can write the adjoint in a compact
hybrid geometric-algebra matrix form

adj M =

[
− (m2i)T

(m1i)T

]
. (1.26)
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Check: Let’s see if this works, by multiplying with M

adj MM =

[
− (m2i)T

(m1i)T

] [
m1 m2

]
=

[
− (m2i)T m1 − (m2i)T m2

(m1i)T m1 (m1i)T m2

]
.

(1.27)

Those dot products have the form (
mji

)T mi =
(
mji

)
· mi

=
〈(

mji
)

mi
〉

=
〈
−imjmi

〉
= −i

(
mj ∧ mi

)
,

(1.28)

so

adj MM =
[

i (m2 ∧ m1) 0
0 −i (m1 ∧ m2)

]
= |M|I.

(1.29)

We find the determinant weighted identity that we expected. Our methods are a bit schizophrenic,
switching fluidly between matrix and geometric algebra representations, but provided we are careful
enough, this isn’t problematic.

1.2.2 3D case.

Now, let’s look at the 3D case, where we assume a column vector representation of the matrix of interest

M =
[
m1 m2 m3

]
, (1.30)

and try to simplify the expression we found for the adjoint

adj M =


∣∣e1 m2 m3

∣∣ ∣∣e2 m2 m3
∣∣ ∣∣e3 m2 m3

∣∣
∣∣e1 m3 m1

∣∣ ∣∣e2 m3 m1
∣∣ ∣∣e3 m3 m1

∣∣
∣∣e1 m1 m2

∣∣ ∣∣e2 m1 m2
∣∣ ∣∣e3 m1 m2

∣∣

 . (1.31)
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As with the 2D case, let’s re-express these determinants in wedge product form. We’ll write I = e123, and
find ∣∣ei mj mk

∣∣ =
(
ei ∧ mj ∧ mk

)
I−1

=
〈(

ei ∧ mj ∧ mk
)

I−1
〉

=
〈(

ei
(
mj ∧ mk

)
ei ·

(
mj ∧ mk

))
I−1

〉
=
〈

ei
(
mj ∧ mk

)
I−1

〉
=
〈

ei
(
mj × mk

)
I I−1

〉
= ei ·

(
mj × mk

)
.

(1.32)

We see that we can put the adjoint in block matrix form

adj M =

(m2 × m3)
T

(m3 × m1)
T

(m1 × m2)
T

 . (1.33)

Check:

adj MM =

(m2 × m3)
T

(m3 × m1)
T

(m1 × m2)
T

 [
m1 m2 m3

]

=

(m2 × m3)
T m1 (m2 × m3)

T m2 (m2 × m3)
T m3

(m3 × m1)
T m1 (m3 × m1)

T m2 (m3 × m1)
T m3

(m1 × m2)
T m1 (m1 × m2)

T m2 (m1 × m2)
T m3


= |M|I.

(1.34)

Essentially, we found that the rows of the adjoint matrix are each parallel to the reciprocal frame
vectors of the columns of M. This makes sense, as the reciprocal frame encodes a generalized inverse of
sorts.

1.3 Bivector transformation .

The draft of the book I was reading pointed out if a vector transforms as

v → Mv, (1.35)

then cross products must transform as

a × b → (adj M)T (a × b) . (1.36)
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Bivectors clearly must transform in the same fashion. We also noticed that the adjoint is related to the
reciprocal frame vectors of the columns of M, but didn’t examine the reciprocal frame formulation of the
adjoint in any detail.

Before we do that, let’s consider a slightly simpler case, the transformation of a pseudoscalar. That is

M(a) ∧ M(b) ∧ M(c) → ∑
ijk

(miai) ∧
(
mjaj

)
∧ (mkak)

= ∑
ijk

(
mi ∧ mj ∧ mk

)
aibjck

= ∑
ijk

(m1 ∧ m2 ∧ m3) ϵijkaibjck

= |M|∑
ijk

ϵijkaibjck

= |M| (a ∧ b ∧ c) .

(1.37)

This is a well known geometric algebra result (called an outermorphism transformation.)
It’s somewhat amusing that an outermorphism transformation with two wedged vectors is a bit more

complicated to express than the same for three. Let’s see if we can find a coordinate free form for such a
transformation.

M(a) ∧ M(b) = ∑
ij
(miai) ∧

(
mjbj

)
= ∑

ij

(
mi ∧ mj

)
aibj

= ∑
i<j

(
mi ∧ mj

) ∣∣∣∣ai aj
bi bj

∣∣∣∣
= ∑

i<j

(
mi ∧ mj

) (
(a ∧ b) ·

(
ej ∧ ei

))
.

(1.38)

Recall that the reciprocal frame with respect to the basis {m1, m2, m3}, assuming this is a non-degenerate
basis, has elements of the form

m1 = (m2 ∧ m3)
1

m1 ∧ m2 ∧ m3

m2 = (m3 ∧ m1)
1

m1 ∧ m2 ∧ m3

m3 = (m1 ∧ m2)
1

m1 ∧ m2 ∧ m3
.

(1.39)

This can be flipped around as
m2 ∧ m3 = m1|M|I
m3 ∧ m1 = m2|M|I
m1 ∧ m2 = m3|M|I

(1.40)
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M(a) ∧ M(b)
= (m1 ∧ m2) ((a ∧ b) · (e2 ∧ e1)) + (m2 ∧ m3) ((a ∧ b) · (e3 ∧ e2)) + (m3 ∧ m1) ((a ∧ b) · (e1 ∧ e3))

= I|M|
(

m3 ((a ∧ b) · (e2 ∧ e1)) + m1 ((a ∧ b) · (e3 ∧ e2)) + m2 ((a ∧ b) · (e1 ∧ e3))
)

(1.41)
Let’s see if we can simplify one of these double index quantities

I ((a ∧ b) · (e2 ∧ e1)) = ⟨I ((a ∧ b) · (e2 ∧ e1))⟩3

= ⟨I (a ∧ b) (e2 ∧ e1)⟩3

= ⟨(a ∧ b) e12321⟩3

= ⟨(a ∧ b) e3⟩3

= a ∧ b ∧ e3.

(1.42)

We have
M(a) ∧ M(b) = |M|

(
(a ∧ b ∧ e1)m1 + (a ∧ b ∧ e2)m2 + (a ∧ b ∧ e3)m3

)
(1.43)

Using summation convention, we can now express the transformation of a bivector B as just

B → |M| (B ∧ ei)mi. (1.44)

If we are interested in the transformation of a pseudovector v defined implicitly as the dual of a bivector
B = Iv, where

B ∧ ei = ⟨Ivei⟩3 = I (v · ei) . (1.45)

This leaves us with a transformation rule for cross products equivalent to the adjoint relation eq. (1.36)

(a × b) → (a × b) · ei|M|mi. (1.46)

As intuited, the determinant weighted reciprocal frame vectors for the columns of the transformation
M, are the components of the adjoint. That is

(adj M)T = |M|
[
m1 m2 m3] . (1.47)
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