Hyperbolic sine representation of mth Fibonacci number

I saw a funky looking formula for the mth Fibonacci number on twitter

$$
\begin{equation*}
F_{m}=\frac{2}{\sqrt{5} i^{m}} \sinh (m \ln (i \phi)) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi=\frac{1+\sqrt{5}}{2} \tag{1.2}
\end{equation*}
$$

is the golden ratio.
This certainly doesn't look like it's a representation of the sequence

$$
\begin{equation*}
1,1,2,3,5,8,13,21,34,55, \cdots \tag{1.3}
\end{equation*}
$$

We can verify that it works in Mathematica, as seen in fig. 1.1.

$$
\begin{aligned}
\operatorname{In}[16]:= & \text { phi }:=(1+\operatorname{Sqrt}[5]) / 2 ; \\
& f\left[m_{-}\right]:=\left(2 /\left(S q r t[5] I^{\wedge} m\right)\right) \text { Sinh[mLog[I phi]] } \\
& f[\#] \& / @ \text { Range[10] // FullSimplify } \\
\text { Out[18]= } & \{1,1,2,3,5,8,13,21,34,55\}
\end{aligned}
$$

Figure 1.1: Verification of hyperbolic sine representation of mth Fibonacci number.
Recall that we previously found this formula for the mth Fibonacci number

$$
\begin{equation*}
F_{m}=\frac{1}{\sqrt{5}}\left(\phi^{m}-\bar{\phi}^{m}\right), \tag{1.4}
\end{equation*}
$$

where $\bar{\phi}$ is the conjugate of the golden ratio

$$
\begin{equation*}
\bar{\phi}=\frac{1-\sqrt{5}}{2} . \tag{1.5}
\end{equation*}
$$

Let's see how these are equivalent. First observe that the golden conjugate is easily related to the inverse of the golden ratio

$$
\begin{align*}
\frac{1}{\phi} & =\frac{2}{1+\sqrt{5}} \\
& =\frac{2(1-\sqrt{5})}{1^{2}-(\sqrt{5})^{2}} \tag{1.6}\\
& =-\frac{1-\sqrt{5}}{2} \\
& =-\bar{\phi} .
\end{align*}
$$

Substitution gives

$$
\begin{equation*}
F_{m}=\frac{1}{\sqrt{5}}\left(\phi^{m}-\left(\frac{-1}{\phi}\right)^{m}\right) . \tag{1.7}
\end{equation*}
$$

Multiplying by i^{m}, we have

$$
\begin{align*}
i^{m} F_{m} & =\frac{1}{\sqrt{5}}\left(i^{m} \phi^{m}-\frac{1}{(-i)^{m}}\left(\frac{-1}{\phi}\right)^{m}\right) \tag{1.8}\\
& =\frac{1}{\sqrt{5}}\left((i \phi)^{m}-(i \phi)^{-m}\right)
\end{align*}
$$

We can write any exponent in terms of e

$$
\begin{equation*}
a^{m}=e^{\ln a^{m}}=e^{m \ln a}, \tag{1.9}
\end{equation*}
$$

so

$$
\begin{align*}
i^{m} F_{m} & =\frac{1}{\sqrt{5}}\left(e^{m \ln (i \phi)}-e^{-m \ln (i \phi)}\right) \tag{1.10}\\
& =\frac{1}{\sqrt{5}} 2 \sinh (m \ln (i \phi)),
\end{align*}
$$

as we wanted to show. It's a bit strange looking, but we see why it works.

