Peeter Joot peeterjoot@pm.me

Equation of a hyperplane, and shortest distance between two hyperplanes.

1.1 Scalar equation for a hyperplane.

In our last post, we found, in a round about way, that

Theorem 1.1

The equation of a \mathbb{R}^N hyperplane, with distance *d* from the origin, and normal $\hat{\mathbf{n}}$ is

$$
\mathbf{x} \cdot \hat{\mathbf{n}} = d.
$$

Proof. Let $\beta = \left\{\hat{\mathbf{f}}_1, \cdots \hat{\mathbf{f}}_{N-1}\right\}$ be an orthonormal basis for the hyperplane normal to $\hat{\mathbf{n}}$, and $\mathbf{d} = d\hat{\mathbf{n}}$ be the vector in that hyperplane, closest to the origin, as illustrated in fig. [1.1.](#page-1-0)

The hyperplane *d* distant from the origin with normal $\hat{\bf{n}}$ has the parametric representation

$$
\mathbf{x}(a_1, \cdots, a_{N-1}) = d\hat{\mathbf{n}} + \sum_{i=1}^{N-1} a_i \hat{\mathbf{f}}_i.
$$
 (1.1)

Equivalently, suppressing the parameterization, with $\mathbf{x} = \mathbf{x}(a_1, \dots, a_{N-1})$, representing any vector in that hyperplane, by dotting with $\hat{\mathbf{n}}$, we have

$$
\mathbf{x} \cdot \hat{\mathbf{n}} = d\hat{\mathbf{n}} \cdot \hat{\mathbf{n}},\tag{1.2}
$$

where all the $\hat{\mathbf{f}}_i \cdot \hat{\mathbf{n}}$ dot products are zero by construction. Since $\hat{\mathbf{n}} \cdot \hat{\mathbf{n}} = 0$, the proof is complete. \Box

Incidentally, observe we can also write the hyperplane equation in dual form, as

$$
\mathbf{x} \wedge (\mathbf{\hat{n}}I) = dI,\tag{1.3}
$$

where *I* is an \mathbb{R}^N pseudoscalar (such as $I = \hat{\mathbf{n}}\hat{\mathbf{f}}_1\cdots\hat{\mathbf{f}}_{N-1}$).

Figure 1.1: \mathbb{R}^3 plane with normal $\hat{\mathbf{n}}$.

1.2 Our previous parallel plane separation problem.

The standard \mathbb{R}^3 scalar form for an equation of a plane is

$$
ax + by + cz = d,\tag{1.4}
$$

where *d* looses it's geometrical meaning. If we form $\mathbf{n} = (a, b, c)$, then we can rewrite this as

$$
\mathbf{x} \cdot \mathbf{n} = d,\tag{1.5}
$$

for this representation of an equation of a plane, we see that *d*/∥**n**∥ is the shortest distance from the origin to the plane. This means that if we have a pair of parallel plane equations

$$
\mathbf{x} \cdot \mathbf{n} = d_1
$$

\n
$$
\mathbf{x} \cdot \mathbf{n} = d_2,
$$
\n(1.6)

then the distance between those planes, by inspection, is

$$
\left|\frac{d_2}{\|\mathbf{n}\|} - \frac{d_1}{\|\mathbf{n}\|}\right|,\tag{1.7}
$$

which reduces to just $|d_2 - d_1|$ if **n** is a unit normal for the plane. In our previous post, the problem to solve was to find the shortest distance between the parallel planes given by

$$
x - y + 2z = -3
$$

3x - 3y + 6z = 1. (1.8)

The more natural geometrical form for these plane equations is

$$
\mathbf{x} \cdot \hat{\mathbf{n}} = -\frac{3}{\sqrt{6}}
$$

$$
\mathbf{x} \cdot \hat{\mathbf{n}} = \frac{1}{3\sqrt{6}},
$$
 (1.9)

where $\hat{\bf{n}} = (1, -1, 2)$ / √ 6, as illustrated in fig. [1.2.](#page-2-0)

Figure 1.2: The two planes.

Given that representation, we can find the distance between the planes just by taking the absolute difference of the respective distances to the origin

$$
\left| -\frac{3}{\sqrt{6}} - \frac{1}{3\sqrt{6}} \right| = \frac{\sqrt{6}}{6} \left(3 + \frac{1}{3} \right)
$$

= $\frac{10}{18} \sqrt{6}$
= $\frac{5}{9} \sqrt{6}$. (1.10)