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Evaluating a sum using a contour integral.

One of my favorite Dover books, [1], is a powerhouse of a reference, and has a huge set of the mathematical tricks
and techniques that any engineer or physicist would ever want.

Reading it a bit today, I encountered the following interesting looking theorem for evaluating sums using contour
integrals.

— Theorem 1.1

Given a meromorphic function f(z) that shares no poles with cot(nz), where C encloses the zeros of sin(nz,
located atz = a,a+1,--- b, then

b

> fom = 5 9§ 7 cot(r2) f(2)dz - > Res(rcotma)f ().
— it Jc .

m=a poles of f(z) in C

The enclosing contour may look like fig. 1.1.

Proof. We basically want to evaluate

56 neot(nz) f(z)dz, (1.1)
C

using residues. To see why this works, observe that cot(nz) is periodic, as plotted in fig. 1.2.
In particular, if z = m + €, we have
cos(m(m + €))
sin(zr(m + €))
_ (=)™ cos(re) (1.2)
~ (=1)"sin(re)

= cot(rme).

cot(nz) =

The residue of & cot(nz), at z = 0, or at any other integer point, is

T
nz—(n2)3/6+---

=1. (1.3)



Figure 1.1: Sample contour
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Figure 1.2: Cotangent.
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This means that we have

b
dz = 2mi 2mi R .
9% ncot(nz) f(z)dz = 2nmi n;l F(m) + 2mi Z es (meot(nz) f(2))

poles of f(z) in C
We just have to rearrange and scale to complete the proof.

In the book the sample application was to use this to show that
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That’s then integrated to show that

sinhx 1 x>
= 1+——=|,
x 1_[ ( mzﬂz)

m=1

sin0:9| | 1- ,
m 1( mzﬂ-z)

or with x = i0,

and finally equating 6° terms in this infinite product, we find

.
2w e

m=1

which is {(2), a specific value of the Riemann zeta function.
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All this is done in a couple spectacularly dense pages of calculation, and illustrates the kind of gems in this book.

At about 700 pages, it’s got a lot of gems.
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