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A Green’s function solution to falling with resistance problem.

1.1 Motivation.

In a fun twitter/x post, we have a Green’s function solution to a constant acceleration problem with
drag. The post is meant to be a joke, as the stated problem is: “A boy drops a ball from a height h. What
is the speed of the ball when it reaches the floor (no drag)?”

The joke is that nobody would solve this problem using Green’s functions, and nobody would solve
this function using Green’s functions for the more general case, allowing for drag. Instead, you’d just
solve this using energy balance, which makes the problem trivial.

That said, there are actually lots of cool ideas in the Green’s function method on the joke side of the
solution.

So let’s play along with the joke and solve the general damped problem with Green’s functions. Along
the way, we can fill in the missing details, and also explore some supplemental ideas that are worth
understanding.

1.2 Setup.

The equation of motion is

m
d2x
dt2 = −γ

dx
dt

− mg, (1.1)

where g is a constant (positively oriented) force. The first detail that needs to be included, is that this
isn’t the differential equation for the stated problem, and will become problematic should we attempt to
apply Green’s function methods. We have to account for the “boy drops” part of the problem statement,
and solve with a different forcing function, namely

m
d2x
dt2 = −γ

dx
dt

− mgΘ(t). (1.2)

This revised model of the system begins the application of the constant (gravitational) force, at time t = 0.
This is now a system that will yield to Green’s function methods.
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1.3 Fourier transform solution.

The joke solution has strong hints that Fourier transform methods were part of the story. In particular, it
appears that the following definitions of the transform pair were used

F̂(ω) = F ( f (t)) =
∫ ∞

−∞
f (t)e−iωtdt

f (t) = F−1(F̂(ω)) =
1

2π

∫ ∞

−∞
F̂(ω)eiωtdω.

(1.3)

However, if we are using Fourier transforms, why bother with Green’s functions? Instead, we can just
solve for the system response using Fourier transforms. When looking for the system response, we
usually pose the problem with more generality. For example, instead of the specific theta-weighted
constant gravitational forcing function above, we seek to find the solution of

m
d2x
dt2 + γ

dx
dt

= F(t). (1.4)

We start by assuming that the Fourier transforms of x(t), F(t) are X̂(ω), F̂(ω) so

x(t) =
1

2π

∫ ∞

−∞
eiωtX̂(ω)dω. (1.5)

Derivatives of this presumed Fourier representation are trivial

x′(t) =
1

2π

∫ ∞

−∞
(iω) eiωtX̂(ω)dω

x′′(t) =
1

2π

∫ ∞

−∞
(iω)2 eiωtX̂(ω)dω,

(1.6)

so the frequency representation of our system is

1
2π

∫ ∞

−∞

(
m (iω)2 + γ (iω)

)
eiωtX̂(ω)dω =

1
2π

∫ ∞

−∞
eiωtF̂(ω)dω, (1.7)

or

X̂(ω) =
F̂(ω)

−mω2 + iωγ
. (1.8)

We now only have to inverse Fourier transform to find a solution, namely

x(t) =
1

2π

∫ ∞

−∞
eiωt F̂(ω)

−mω2 + iωγ
dω

=
1

2π

∫ ∞

−∞
eiωt 1

−mω2 + iωγ
dω

∫ ∞

−∞
F(t′)e−iωt′dt′

=
∫ ∞

−∞

(
− 1

2π

∫ ∞

−∞

eiω(t−t′)

mω2 − iωγ
dω

)
F(t′)dt′,

(1.9)
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or
x(t) =

∫ ∞

−∞
G(t − t′)F(t′)dt′, (1.10)

where

G(τ) = − 1
2π

∫ ∞

−∞

eiωτ

ω (mω − iγ)
dω. (1.11)

We’ve been fast and loose above, swapping order of integration without proper justification, and have
assumed that all Fourier transforms and inverse transforms exist. Given all those assumptions, we now
have a general solution for the system, requiring only the convolution of our driving force F(t) with the
system response function G(t). The only caveat is that we have to be able to perform the integral for the
system response function, and that integral does not exist.

There are lots of integrals that do not strictly exist when playing the fast and loose physicist game
with Fourier transforms. One such example can be found by looking at any transform pair. For example,
given f (t) = F−1(F̂(ω)), we have

f (t) =
1

2π

∫ ∞

−∞
F̂(ω)eiωtdω

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (t′)e−iωt′dt′

)
eiωtdω

=
∫ ∞

−∞
f (t′)

(
1

2π

∫ ∞

−∞
eiω(t−t′)dω

)
dt′.

(1.12)

This is exactly the sort of integration order swapping that we did to find the system response function
above, and we are left with a statement that f (t) is the convolution of f (t), with another, also non-
integrable, convolution kernel. Any physics student will recognize that kernel as a representation of the
Dirac delta function, and without blinking, would just write

δ(τ) =
1

2π

∫ ∞

−∞
eiωτdω, (1.13)

without worrying that it is not possible to evaluate this integral. Somebody who is trying to use the
right mathematical language, would say that this isn’t a function, but is, instead a distribution. Just like
this delta function distribution, our system response integral, something that we also cannot actually
evaluate in a strict sense, is a distribution. It’s a beastie that has delta function like characteristics, and if
we want to try to integrate it, we have to play sneaky games.

Let’s put off evaluating that integral for now, and return to the Green’s function description of the
story.

1.4 The Green’s function picture.

Using Fourier transforms, we found that it theoretically possible to find a convolution solution to the
system, and found the convolution kernel for the system. The rough idea behind Green’s functions is to
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assume that such a convolution exists, say

x(t) = x0(t) +
∫ ∞

−∞
G(t, t′)F(t′)dt′, (1.14)

where x0(t) is any solution of the homogeneous problem satisfying, in this case,

m
d2

dt2 x0(t) + γ
d
dt

x0(t) = 0, (1.15)

and G(t, t′) is a convolution kernel, representing the system response, to be determined. If we plug this
presumed solution into our differential equation, we find∫ ∞

−∞

(
m

∂2

∂t2 G(t, t′) + γ
∂

∂t
G(t, t′)

)
F(t′)dt′ = F(t), (1.16)

but
F(t) =

∫ ∞

−∞
F(t′)δ(t − t′)dt′, (1.17)

so, if we can find G satisfying

m
∂2

∂t2 G(t, t′) + γ
∂

∂t
G(t, t′) = δ(t − t′), (1.18)

then we have solved the system. We can simplify this slightly by presuming that the t, t′ dependence is
always a difference, and seek G(τ) such that

mG′′(τ) + γG′(τ) = δ(τ). (1.19)

We now pull the Fourier transform out of our toolbox again, assuming that

G(τ) =
1

2π

∫ ∞

−∞
Ĝ(ω)eiωτdω, (1.20)

for which
1

2π

∫ ∞

−∞

(
m (iω)2 + γ (iω)

)
Ĝ(ω)eiωτdω =

1
2π

∫ ∞

−∞
eiωτdω, (1.21)

or
Ĝ(ω) =

1

m (iω)2 + γ (iω)
. (1.22)

This is the Fourier transform of the Green’s function, and is exactly what we found earlier using pure
Fourier transforms. Our starting point was different this time, as we just blatantly assumed that the
solution had a convolution structure. We then found a differential equation for that convolution kernel,
the Green’s function. Only then did we pull the Fourier transform out of the toolbox to attempt to find
the structure of that Green’s function.
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1.5 Evaluating the Green’s function integral.

We can’t go any further without figuring out what to do with our nasty little divergent integral eq. (1.11).
We may coerce this into something that we can evaluate using standard contour integration, if we offset
the pole at the origin slightly. Given ϵ > 0, let’s evaluate

G(τ, ϵ) = − 1
2π

∮ eizτ

(z − iϵ) (mz − iγ)
dz. (1.23)

We can evaluate this integral using infinite semicircular contours, using an upper half plane contour for
τ > 0 and a lower half plane contour for τ < 0, as illustrated in fig. 1.1, and fig. 1.2.

Figure 1.1: Contour for τ > 0.

By Jordan’s lemma, that upper half plane infinite semicircular part of the contour integral is zero for
the τ > 0 case, and for the τ < 0 case, the lower half plane infinite semicircular part of the contour
integral is zero. We can proceed with the residue calculations. In the upper half plane, we have both of
the enclosed poles, so

G(τ > 0, ϵ) = − 1
2πm

∫ ∞

−∞

eiωτ

(ω − iϵ) (ω − iγ/m)
dω

= − 2πi
2πm

(
eizτ

z − iγ/m

∣∣∣∣
z=iϵ

+
eizτ

z − iϵ

∣∣∣∣
z=iγ/m

)

= − i
m

(
e−ϵτ

iϵ − iγ/m
+

e−γτ/m

iγ/m − iϵ

)

= −
(

e−ϵτ

mϵ − γ
+

e−γτ/m

γ − mϵ

)
,

(1.24)
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Figure 1.2: Contour for τ < 0.

and for the lower half plane, where there are no enclosed poles we have G(τ < 0, ϵ) = 0. In the ϵ → 0
limit, we are left with

G(τ) =
1
γ

(
1 − e−γτ/m

)
Θ(τ). (1.25)
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1.6 Back to the original problem.

We may now go and find the specific solution for the original problem where F(t) = −mge2Θ(t). That
solution is

x(t) = x(0) +
∫ ∞

−∞
G(t − t′)

(
−mge2Θ(t′)

)
dt′

= x(0) − mge2

∫ ∞

−∞

Θ(t − t′)
γ

(
1 − e−γ(t−t′)/m

)
Θ(t′)dt′

= x(0) − mge2

∫ ∞

0

Θ(t − t′)
γ

(
1 − e−γ(t−t′)/m

)
dt′

= x(0) − mg
γ

e2

∫ t

0

(
1 − e−γ(t−t′)/m

)
dt′

= x(0) − mg
γ

e2

∫ t

0

(
1 − e−γu/m

)
du

= x(0) − mg
γ

e2

(
t′ − e−γu/m

−γ/m

)∣∣∣∣∣
t

u=0

= x(0) − mg
γ

e2

(
t +

me−γt/m

γ
− m

γ

)

= x(0) − mgt
γ

e2 −
m2g
γ2

(
1 − e−γt/m

)
.

(1.26)

Ignoring the missing factor of g on the last term in the twitter slide, this is the final result before the
limiting argument on that slide.

Having found the Green’s function for this system, we could then, fairly trivially, use it to solve similar
systems with different forcing functions. For example, suppose we have a mass on a table, with friction,
and a forcing function (perhaps sinusoidal) moving that mass. We could then figure out the time re-
sponse for that particular forcing function, and would only have a convolution integral to evaluate. That
general applicability is one of the beauties of these transform or Green’s function methods.
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