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Sum of squares and cubes, using difference calculus.

1.1 Motivation.

I showed Karl Gauss’s trick for summing a 1, 2, · · · , n sequence. Add it up twice, reversing the sum and
adding by columns

1 2 · · · n − 1 n
n n − 1 · · · 2 1

(1.1)

We get n + 1, n times, so
n

∑
k=1

k =
n
2
(n + 1) . (1.2)

Karl pointed out to me that he’d looked up the formula for the sum of squares, and found

n

∑
k=1

k2 =
n
6
(2n + 1) (n + 1) . (1.3)

I couldn’t think of some equivalent of the Guassian trick to sum that, but had the vague memory that
we could figure it out using difference calculus. I have a little Dover book [1] on the subject that I read
some of when I was in school. Without resorting to that book, I tried to dredge up the memory of how
this result could be derived.

1.2 Difference operator.

The key is defining a difference operator, akin to a derivative

Definition 1.1: Difference operator (reverse.)

Given a sequence yn, let
∆yn = yn − yn−1.
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It’s also possible to define forward difference operators ∆yn = yn+1 − yn, or both, and it turns out that
the text uses forward differences. I’ll use reverse difference operator here, since that’s what I tried. The
ideas should hold either way.

We can apply the difference operator to some simple sequences, such as yn = constant, yn = n, yn =
n2, · · ·. For those, we find

∆1 = 0
∆n = n − (n − 1)

= 1

∆n2 = n2 − (n − 1)2

= 2n − 1

∆n3 = n3 − (n − 1)3

= 3n2 − 3n + 1.

(1.4)

Rearranging, we find
1 = ∆n

n =
1
2
(
∆n2 + 1

)
=

1
2
(
∆n2 + ∆n

)
=

1
2

∆
(
n2 + n

)
n2 =

1
3
(
∆n3 + 3n − 1

)
=

1
3

(
∆n3 +

3
2

∆
(
n2 + n

)
− ∆n

)
=

1
6

∆
(
2n3 + 3

(
n2 + n

)
− 2n

)
=

1
6

∆
(
2n3 + 3n2 + n

)
.

(1.5)

1.3 Sum of squares.

We can now proceed to find the difference of our sum of squares sequence. Let

yn =
n

∑
k=1

, (1.6)

for which we have

∆yn = n2 = ∆
2n3 + 3n2 + n

6
. (1.7)
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Akin to integrating, we’ve determined yn up to a constant

yn =
2n3 + 3n2 + n

6
+ C, (1.8)

but since y1 = 1, and

y1 =
2 × 13 + 3 × 12 + 1

6
+ C = 1 + C, (1.9)

so C = 0. We need only factor to find the desired result

n

∑
k=1

k2 =
n
6
(2n + 1) (n + 1) . (1.10)

1.4 Sum of cubes.

Let’s also apply this to compute a formula for the sum of cubes. We need one more difference computa-
tion

∆n4 = n4 − (n − 1)4

= 4n3 − 6n2 + 4n − 1,
(1.11)

or
n3 =

1
4

(
∆n4 + 6n2 − 4n + 1

)
=

1
4

(
∆n4 + ∆

(
2n3 + 3n2 + n

)
− 2∆

(
n2 + n

)
+ ∆n

)
=

1
4

∆
(

n4 + 2n3 + n2
)

,

(1.12)

so
n

∑
k=1

n3 =
1
4

(
n4 + 2n3 + n2

)
+ C, (1.13)

but we see that C = 0 is required to satisfy the n = 1 case. That is

n

∑
k=1

n3 =
1
4

n2 (n + 1)2 . (1.14)

Difference calculus is a pretty fun tool!
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