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1 Motivation.

Now have the so often sited [Goldstein(1951)] book to study (an ancient ver-
sion from the 50’s). Here’s an attempt at a few of the problems. Some prob-
lems were tackled but omitted here since they overlapped with those written
up in [Joot(b)] before getting this book.

2 Problem 1.7

Barbell shape, equal masses. center of rod between masses constrained to cir-
cular motion.

Assuming motion in a plane, the equation for the center of the rod is:

c = aeiθ

and the two mass points positions are:

q1 = c + (l/2)eiα

q2 = c− (l/2)eiα

taking derivatives:

q̇1 = aiθ̇eiθ + (l/2)iα̇eiα

q̇2 = aiθ̇eiθ − (l/2)iα̇eiα

and squared magnitudes:

q̇± =
∣∣∣aθ̇ ± (l/2)α̇ei(α−θ)

∣∣∣2

=
(

aθ̇ ± 1
2

lα̇ cos(α− θ)
)2

+
(

1
2

lα̇ sin(α− θ)
)2
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Summing the kinetic terms yeilds

K = m
(
aθ̇

)2 + m
(

1
2

lα̇
)2

Summing the potential energies, presuming that the motion is verticle, we
have:

V = mg(l/2) cos θ −mg(l/2) cos θ

So, the Lagrangian is just the Kinetic energy.
Taking derivatives to get the OEMs we have:

(ma2θ̇)′ = 0(
1
4

ml2α̇

)′
= 0

This is suprising seeming. Is this correct?

3 Problem 1.8

3.1 Problem statement.

Hopefully, not a copyright violation, but here is the problem verbatim:
A system is composed of three particles of equal mass m. Between any two

of them there are forces derivable from a potential

V = −ge−µr

where r is the disance between the two particles. In addition, two of the par-
ticles each exert a force on the third which can be obtained from a generalized
potential of the form

U = − f v · r

v being the relative velocity of the interacting particles and f a constant. Set
up the Lagragian for the system, using as coordinates the radius vector R of
the center of mass and the two vectors

ρ1 = r1 − r3

ρ2 = r2 − r3

Is the total angular momentum of the system conserved?
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3.2 Solution attempt.

The center of mass vector is:

R =
1
3
(r1 + r2 + r3)

This can be used to express each of the position vectors in terms of the ρi
vectors:

3mR = m(ρ1 + r3) + m(ρ2 + r3) + mr3

= 2m(ρ1 + ρ2) + 3mr3

r3 = R− 1
3
(ρ1 + ρ2)

r2 = ρ2 + r3 = ρ2 + r3 =
2
3

ρ2 −
1
2

ρ1 + R

r1 = ρ1 + r3 =
2
3

ρ1 −
1
2

ρ2 + R

Now, that is enough to specify the part of the Lagrangian from the poten-
tials that act between all the particles

LV = ∑−Vij = g
(

e−µ|ρ1| + e−µ|ρ2| + e−µ|ρ1−ρ2|
)

Now, we need to calculate the two U potential terms. If we consider with
positions r1, and r2 to be the ones that can exert a force on the third, the veloci-
ties of those masses relative to r3 are:

(r3 − rk)′ = ρ̇k

So, the potential parts of the Lagrangian are

LU+V = g
(

e−µ|ρ1| + e−µ|ρ2| + e−µ|ρ1−ρ2|
)

+ f
(

R− 1
3
(ρ1 + ρ2)

)
· (ρ̇1 + ρ̇2)

The Kinetic part (omitting the m/2 factor), in terms of the CM and relative
vectors is

(v1)2 + (v2)2 + (v3)2 =
(

2
3

ρ̇1 −
1
2

ρ̇2 + Ṙ
)2

+
(

2
3

ρ̇2 −
1
2

ρ̇1 + Ṙ
)2

+
(

Ṙ− 1
3
(ρ̇1 + ρ̇2)

)2

= 3Ṙ2 + (5/9 + 1/4)((ρ̇1)
2 + (ρ̇2)

2)

+ 2(−2/3 + 1/9)ρ̇1 · ρ̇1 + 2(1/3− 1/2)(ρ̇1 + ρ̇2) · Ṙ
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So the Kinetic part of the Lagrangian is

LK =
3m
2

Ṙ2 +
29m
72

((ρ̇1)
2 + (ρ̇2)

2)− 5m
9

ρ̇1 · ρ̇2 −
m
6

(ρ̇1 + ρ̇2) · Ṙ

and finally, the total Lagrangian is

L =
3m
2

Ṙ2 +
29m
72

((ρ̇1)
2 + (ρ̇2)

2)− 5m
9

ρ̇1 · ρ̇2 −
m
6

(ρ̇1 + ρ̇2) · Ṙ

+g
(

e−µ|ρ1| + e−µ|ρ2| + e−µ|ρ1−ρ2|
)

+ f
(

R− 1
3
(ρ1 + ρ2)

)
· (ρ̇1 + ρ̇2)

3.3 Angular momentum conservation?

How about the angular momentum conservation question? How to answer
that? One way would be to compute the forces from the Lagrangian, and take
cross products but is that really the best way? Perhaps the answer is as simple
as observing that there are no external torque’s on the system, thus dL/dt = 0,
or angular momentum for the system is constant (conserved). Is that actually
the case with these velocity dependent potentials?

It was suggested to me on PF that I should look at how this Lagrangian
transforms under rotation, and use Noether’s theorem. The goldstein book
doesn’t explicitly mention this theorem that I can see, and I don’t think it was
covered yet if it did.

Suppose we did know about Noether’s theorem for this problem (as I know
do now that I’m revisiting it), we’d have to see if the Lagrangian is invariant
under rotation. Suppose that a rigid rotation is introduced, which we can write
in GA formalism using dual sided quaternion products

x → x′ = e−in̂α/2xein̂α/2

(could probably also use a matrix formulation, but the parameterization is
messier).

For all the relative vectors ρk we have

∣∣ρ′k∣∣ = |ρk|

So all the V potential interactions are invariant.
Since the rotation quaternion here is a fixed non-time dependent quantity

we have

ρ̇′k = e−in̂α/2ρ̇kein̂α/2
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,so for the dot product in the the remaining potential term we have

(
R′ − 1

3
(
ρ′1 + ρ′2

))
·
(
ρ̇′1 + ρ̇′2

)
=

(
e−in̂α/2

(
R− 1

3
(ρ1 + ρ2)

)
ein̂α/2

)
·
(

e−in̂α/2ρ̇1 + ρ̇2ein̂α/2
)

=
〈

e−in̂α/2
(

R− 1
3

(ρ1 + ρ2)
)

ein̂α/2e−in̂α/2ρ̇1 + ρ̇2ein̂α/2
〉

=
〈

e−in̂α/2
(

R− 1
3

(ρ1 + ρ2)
)

(ρ̇1 + ρ̇2) ein̂α/2
〉

=
〈

ein̂α/2e−in̂α/2
(

R− 1
3

(ρ1 + ρ2)
)

(ρ̇1 + ρ̇2)
〉

=
〈(

R− 1
3

(ρ1 + ρ2)
)

(ρ̇1 + ρ̇2)
〉

=
(

R− 1
3

(ρ1 + ρ2)
)
· (ρ̇1 + ρ̇2)

So, presuming I interpretted the r in v · r correctly, all the vector quantites
in the Lagrangian are rotation invariant, and by Noether’s we should have
system angular momentum conservation.

3.4 Application of Noether’s

Invoking Noether’s here seems like cheating, at least without computing the
conserved current, so let’s do this.

To make this easier, suppose we generalize the Lagrangian slightly to get
rid of all the peculiar and specific numerical constants. Let ρ3 = R, then our
Lagrangian has the functional form

L = αijρ̇i · ρ̇j + gie−µ|ρi | + gije−µ
∣∣∣ρi−ρj

∣∣∣ + f iρi · (ρ̇1 + ρ̇2)

We can then pick specific αij, f i, and gij (not all non-zero), to match the La-
grangian of this problem. This could be expanded in terms of coordinates, pro-
ducing nine generalized coordinates and nine corresponding velocity terms,
but since our Lagrangian transformation is so naturally expressed in vector
form this doens’t seem like a reasonable thing to do.

Let’s step up the abstraction one more level instead and treat the Noether
symmetry in the more general case, supposing that we have a Lagrangian that
is invariant under the same rotational transformation applied above, but has
the following general form with explicit vector parameterization, where as
above, all our vectors come in functions of the dot products (either explicit
or implied by absolute values) of our vectors or their time derivatives

L = f (xk · xj, xk · ẋj, ẋk · ẋj)
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Having all the parameterization being functions of dot products gives the
desired rotational symmetry for the Lagrangian. This must be however, not
a dot product with an arbitrary vector, but one of the generalized vector pa-
rameters of the Lagrangian. Something like the A · v term in the Lorentz force
Lagrangian doesn’t have this invariance since A doens’t transform along with
v. Also Note that the absolute values of the ρk vectors are functions of dot
products.

Now we are in shape to compute the conserved “current” for a rotational
symmetry. Our vectors and their derivatives are explicitly rotated

x′k = e−in̂α/2xkein̂α/2

ẋ′k = e−in̂α/2ẋkein̂α/2

and our Lagrangian is assumed, as above with all vectors coming in dot
product pairs, to have rotational invariance when all the vectors in the system
are rotated

L → L′(x′k, ẋ′j) = L(xk, ẋj)

The essence of Noether’s theorem was applied chain rule, looking at how
the transformed Lagrangian changes with respect to the transformation. In this
case we want to calculate

dL′
dα

∣∣∣∣
α=0

First seeing the Noether’s derivation, I didn’t understand why the eval-
uation at α = 0 was required, even after doing this derivation for myself
in [Joot(a)] (after an initial botched attempt), but the reason for it actually be-
came clear with this application, as writing it up will show.

Anyways, back to the derivative. One way to evaluate this would be in
terms of coordinates, writing x′k = emx′km,

dL′
dα

(x′k, ẋ′j) = ∑
k,m

∂L′
∂x′km

∂x′km
∂α

+
∂L′

∂ẋ′km

∂ẋ′km
∂α

This is a bit of a mess however, and begs for some shorthand. Let’s write
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∇x′k
L′ = em ∂L′

∂x′km

∇ẋ′k
L′ = em ∂L′

∂ẋ′km

Then the chain rule application above becomes

dL′
dα

(x′k, ẋ′j) = ∑
k

(
∇x′k

L′
)
·

∂x′k
∂α

+
(
∇ẋ′k

L′
)
·

∂ẋ′k
∂α

Now, while this notational sugar unfortunately has an obscuring effect, it
is also practical since we can now work with the transformed position and
velocity vectors directly

∂x′k
∂α

= (−in̂/2)e−in̂α/2xkein̂α/2 + e−in̂α/2xkein̂α/2(in̂/2)

= (−in̂/2)x′k + x′k(in̂/2)

= i(n̂ ∧ x′k)

So we have

dL′
dα

(x′k, ẋ′j) = ∑
k

(
∇x′k

L′
)
·
(
i(n̂ ∧ x′k)

)
+ ∑

k

(
∇ẋ′k

L′
)
·
(
i(n̂ ∧ ẋ′k)

)

Next step is to reintroduce the notational sugar noting that we can vectorize
the Euler-Lagrange equations by writing

∇xkL =
d
dt

∇ẋkL

We have now a three fold reduction in the number of Euler-Lagrange equa-
tions. For each of the generalized vector parameters, we have the Lagrangian
gradient with respect to that vector parameter (a generalized force) equals the
time rate of change of the velocity gradient.

Inserting this we have

dL′
dα

(x′k, ẋ′j) = ∑
k

(
d
dt

∇ẋ′k
L′

)
·
(
i(n̂ ∧ x′k)

)
+ ∑

k

(
∇ẋ′k

L′
)
·
(
i(n̂ ∧ ẋ′k)

)
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Now we can drop the primes in gradient terms because of the Lagrangian
invariance for this symmetry, and are left almost with a perfect differential

dL′
dα

(x′k, ẋ′j) = ∑
k

(
d
dt

∇ẋkL
)
·
(
i(n̂ ∧ x′k)

)
+ ∑

k

(
∇ẋkL

)
·
(
i(n̂ ∧ ẋ′k)

)

Here’s where the evaluation at α = 0 comes in, since x′k(α = 0) = xk, and
we can now antidifferentiate

dL′
dα

(x′k, ẋ′j)
∣∣∣∣
α=0

= ∑
k

(
d
dt

∇ẋkL
)
· (i(n̂ ∧ xk)) + ∑

k

(
∇ẋkL

)
· (i(n̂ ∧ ẋk))

= ∑
k

d
dt

((
∇ẋkL

)
· (i(n̂ ∧ xk))

)
= ∑

k

d
dt

〈(
∇ẋkL

)
i(n̂ ∧ xk)

〉
= ∑

k

d
dt

1
2
〈(

∇ẋkL
)

i(n̂xk − xkn̂)
〉

= ∑
k

d
dt

1
2
〈
n̂i

(
xk

(
∇ẋkL

)
−

(
∇ẋkL

)
xk

)〉
= ∑

k

d
dt

1
2
〈
n̂i

(
xk

(
∇ẋkL

)
−

(
∇ẋkL

)
xk

)〉
= ∑

k

d
dt

〈
n̂i

(
xk ∧

(
∇ẋkL

))〉
= ∑

k

d
dt

〈
n̂i2

(
xk ×

(
∇ẋkL

))〉
= ∑

k

d
dt
− n̂ ·

(
xk ×

(
∇ẋkL

))

Because of the symmetry this entire derivative is zero, so we have

n̂ ·∑
k

(
xk ×

(
∇ẋkL

))
= constant

The Lagrangian velocity gradient can be identified as the momentum (ie:
the canonical momentum conjugate to xk)

pk ≡ ∇ẋkL
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Also noting that this is constant for any n̂, we finally have the conserved
“current” for a rotational symmetry of a system of particles

∑
k

xk × pk = constant

This digression to Noether’s appears to be well worth it for answering the
angular momentum question of the problem. Glibly saying “yes angular mo-
mentum is conserved”, just because the Lagrangian has a rotational symmetry
is not enough. We’ve seen in this particular problem that the Lagrangian, hav-
ing only dot products has the rotational symmetry, but because of the velocity
dependent potential terms f iρ̇k · ρ̇j, the normal Kinetic energy momentum vec-
tors are not equal to the canonican congugate momentum vectors. Only when
the angular momentum is generalized, and written in terms of the canoni-
cal conguate momentum is the total system angular momentum conserved.
Namely, the generalized angular momentum for this problem is conserved

∑
k

xk ×
(
∇ẋkL

)
= constant

but the “traditional” angular momentum ∑k xk ×mẋk, is not.

4 Problem 2.1

Prove that the shortest length curve between two points in space is a straight
line.

A first attempt of this I used:

ds =
√

1 + (dy/dx)2 + (dz/dx)2dx

Application of the Euler-Lagrange equations does show that one ends up
with a linear relation between the y and z coordinates, but no mention of x.
Rather than write that up, consider instead a parameterization of the coordi-
nates:

x = x1(λ)
y = x2(λ)
z = x3(λ)

in terms of this arbitrary parameterization we have a segment length of:

ds =

√
∑

(
dxi
dλ

)2
dλ = f (xi) dλ
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Application of the Euler-Lagrange equation to f we have:

∂ f
∂xi

= 0

=
d

dλ

∂

∂ẋi

√
∑ ẋ2

j

=
d

dλ

ẋi√
∑ ẋ2

j

Therefore each of these quotients can be equated to a constant:

ẋi√
∑ ẋ2

j

= ci
−2

ci
2 ẋ2

i = ∑ ẋ2
j

(ci
2 − 1)ẋ2

i = ∑
j 6=i

ẋ2
j

(1− ci
2)ẋ2

i + ∑
j 6=i

ẋ2
j = 0

This last form shows explicitly that not all of these squared derivative terms
can be linearly independent. In particular, we have a zero determinant:

0 =

∣∣∣∣∣∣∣∣∣∣∣∣

1− c2
1 1 1 1 . . .

1 1− c2
2 1 1

...
1 1 1− c2

3 1
. . .

1− cn
2

∣∣∣∣∣∣∣∣∣∣∣∣
Now, expanding this for a couple specific cases isn’t too hard. For n = 2 we

have:

0 = (1− c2
1)(1− c2

2)− 1

c2
1 + c2

2 = c2
1c2

2

c2
1 =

c2
2

c2
2 − 1

c2
2 − 1 =

c2
2

c2
1

This can be substuited back into one our c2
2 equation:
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(c2
2 − 1)ẋ2

2 = ẋ2
1

c2
2

c2
1

ẋ2
2 = ẋ2

1

± c2

c1
ẋ2 = ẋ1

± c2

c1
x2 = x1 + κ

This is precisely the straight line that was desired, but we have setup for
proving that consideration of all path variations from two points in RN space
has the shortest distance when that path is a straight line.

Despite the general setup, I’m going to chicken out and show this only for
the R3 case. In that case our determinant expands to:

c2
1 + c2

2 + c2
3 = c2

1c2
2c2

3

Since not all of the ẋ2
i can be linearly independent, one can be eliminated:

(1− c2
1)ẋ2

1 + ẋ2
2 + ẋ2

3 = 0

(1− c2
2)ẋ2

2 + ẋ2
3 + ẋ2

1 = 0

(1− c2
3)ẋ2

3 + ẋ2
1 + ẋ2

2 = 0

Let’s pick ẋ2
1 to eliminate, and subst 2 into 3:

(1− c2
3)ẋ2

3 + (−(1− c2
2)ẋ2

2 − ẋ2
3) + ẋ2

2 = 0 =⇒
−c2

3 ẋ2
3 + c2

2 ẋ2 = 0
±c3 ẋ3 = c2 ẋ2

Since these equations are symmetric, we can do this for all, with the result:

±c3 ẋ3 = c2 ẋ2

±c3 ẋ3 = c1 ẋ1

±c2 ẋ2 = c1 ẋ1

Since the ci constants are arbitrary, then we can for example pick the nega-
tive sign for ±c2, and the positive for the rest, then add all of these, and scale
by two:
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c3 ẋ3 − c2 ẋ2 = c1 ẋ1

and integrating:

c3x3 − c2x2 = c1x1 + κ

Again, we have the general equation of a line, subject to the desired con-
straints on the end points. In the end we didn’t need to evaluate the determi-
nant after all, as done in the R2 case.

5 Problem 2.2

Prove that the geodesics (shortest length paths) on a spherical surface are great
circles.

As a variational problem, the first step is to formulate an element of length
on the surface. If we write our vector in spherical coordinates (φ on the equator,
and θ measuring from the north pole) we have:

FIXME: Scan picture.

r = (x, y, z) = R(sin θcosφ, sin θ sin φ, cos θ)

A differential vector element on the surface is (set R = 1 without loss of
generality) :

dr =
dr
dθ

dθ

dλ
dλ +

dr
dφ

dφ

dλ
dλ

= (cos θ cos φ, cos θ sin φ,− sin θ)θ̇dλ + (− sin θ sin φ, sin θ cos φ, 0)φ̇dλ

= (cos θ cos φθ̇ − sin θ sin φφ̇, cos θ sin φθ̇ + sin θ cos φφ̇,− sin θθ̇)dλ

Calculation of the length ds of this vector yields:

ds = |dr| =
√

θ̇2 + (sin θ)2φ̇2dλ

This completes the setup for the minimization problem, and we want to
minimize:

s =
∫ √

θ̇2 + (φ̇ sin θ)2dλ

and can therefore apply the Euler-Lagrange equations to the function

f (θ, φ, θ̇, φ̇, λ) =
√

θ̇2 + (φ̇ sin θ)2

The φ is cyclic, and we have:

∂ f
∂φ

= 0 =
d

dλ

φ̇ sin2 θ

f
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Thus we have:

φ̇2 sin4 θ = K2
(

θ̇2 + (φ̇ sin θ)2
)

φ̇2 sin2 θ(sin2 θ − K2) = K2θ̇2

φ̇2 =
K2θ̇2

sin2 θ(sin2 θ − K2)

φ̇ =
Kθ̇

sin θ
√

sin2 θ − K2

This is in a nicely separated form, but it is not obvious that this describes
paths that are great circles.

Let’s have a look at the second equation.

∂ f
∂θ

=
d

dλ

∂ f
∂θ̇

sin θ cos θφ̇2

f
=

d
dλ

θ̇

f

=
θ̈

f
− 1

2
(θ̇2 + (φ̇ sin θ)2)′

f 3

=
θ̈

f
− θ̇θ̈ + φ̇ sin θ(φ̈ sin θ + φ̇ cos θθ̇)

f 3

=⇒ − sin θ cos θφ̇2(θ̇2 + (φ̇ sin θ)2) = −θ̈(θ̇2 + (φ̇ sin θ)2) + θ̇θ̈ + φ̇ sin θ(φ̈ sin θ + φ̇ cos θθ̇)

Or,

−θ̈θ̇2− θ̈φ̇2 sin2 θ + θ̇θ̈ + φ̇φ̈ sin2 θ + φ̇2θ̇ sin θ cos θ + φ̇2θ̇2 sin θ cos θ + φ̇4 sin3 θ cos θ = 0

What a mess! I don’t feel inclined to try to reduce this at the moment. I’ll
come back to this problem later. Perhaps there’s a better parameterization?

Did come back to this later, in [Joot(c)], but still didn’t get the problem fully
solved. Maybe the third time, some time later, will be the charm.

6 Problem 2.3

For f = f (y, ẏ, ÿ, x), find the equations for extreme values of

I =
∫ b

a
f dx

Here we want y and ẏ fixed at the end points. Following the first derivative
derivation write the functions in terms of the desired extremum functions plus
a set of arbitrary functions:
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y(x, α) = y(x, 0) + αn(x)
ẏ(x, α) = ẏ(x, 0) + αm(x)

Here we specify that these arbitrary variational functions vanish at the end-
points:

n(a) = n(b) = m(a) = m(b) = 0

The functions y(x, 0), and ẏ(x, 0) are the functions we are looking for as
solutions to the min/max problem.

Calculating derivatives we have:

dI
dα

=
∫ (

∂ f
∂y

∂y
∂α

+
∂ f
∂ẏ

∂ẏ
∂α

+
∂ f
∂ÿ

∂ÿ
∂α

)
dx

Assuming sufficient continuity look at the second term where we have:

∂ẏ
∂α

=
∂

∂α

∂y
∂x

=
∂

∂x
∂y
∂α

=
∂

∂x
n(x)

=
d

dx
n(x)

=
d

dx
∂y
∂α

Similarily for the third term we have:

∂ẏ
∂α

=
d

dx
∂ẏ
∂α

dI
dα

=
∫

∂ f
∂y

∂y
∂α

dx +
∂ f
∂ẏ

d
dx

∂y
∂α︸ ︷︷ ︸

uv′=(uv)′−u′v

dx +
∂ f
∂ÿ

d
dx

∂ẏ
∂α

dx

Now integrating by parts:

dI
dα

=
∫

∂ f
∂y

∂y
∂α

dx +
∫

∂ f
∂ẏ

d
dx

∂y
∂α

dx +
∫

∂ f
∂ÿ

d
dx

∂ẏ
∂α

dx

dI
dα

=
∫

∂ f
∂y

∂y
∂α

dx +

∂ f
∂ẏ

∂y
∂α︸︷︷︸

n(x)


b

a

−
∫

∂y
∂α

d
dx

∂ f
∂ẏ

dx +

∂ f
∂ÿ

∂ẏ
∂α︸︷︷︸

m(x)


b

a

−
∫

∂ẏ
∂α

d
dx

∂ f
∂ÿ

dx
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Because m(a) = m(b) = n(a) = n(b) the non-integral terms are all zero,
leaving:

dI
dα

=
∫

∂ f
∂y

∂y
∂α

dx−
∫

∂y
∂α

d
dx

∂ f
∂ẏ

dx−
∫

∂ẏ
∂α

d
dx

∂ f
∂ÿ

dx

Now consider just this last integral, which we can again integrate by parts:∫
∂ẏ
∂α

d
dx

∂ f
∂ÿ

dx =
∫ d

dx
∂y
∂α︸ ︷︷ ︸

u′

d
dx

∂ f
∂ÿ︸ ︷︷ ︸

v

dx

=

 ∂y
∂α︸︷︷︸

n(x)

d
dx

∂ f
∂ÿ


b

a

−
∫

∂y
∂α

d
dx

d
dx

∂ f
∂ÿ

dx

= −
∫

∂y
∂α

d2

dx2
∂ f
∂ÿ

dx

This gives:

dI
dα

=
∫

∂ f
∂y

∂y
∂α

dx−
∫

∂y
∂α

d
dx

∂ f
∂ẏ

dx +
∫

∂y
∂α

d2

dx2
∂ f
∂ÿ

dx

dI
dα

=
∫

dx
∂y
∂α

(
∂ f
∂y
− d

dx
∂ f
∂ẏ

+
d2

dx2
∂ f
∂ÿ

)
=

∫
dxn(x)

(
∂ f
∂y
− d

dx
∂ f
∂ẏ

+
d2

dx2
∂ f
∂ÿ

)
So, if we want this derivative to equal zero for any n(x) we require the inner

quantity to by zero:

∂ f
∂y
− d

dx
∂ f
∂ẏ

+
d2

dx2
∂ f
∂ÿ

= 0 (1)

Question. Goldstein writes this in total differential form instead of a deriva-
tive:

dI =
dI
dα

dα

=
∫

dx
(

∂y
∂α

dα

) (
∂ f
∂y
− d

dx
∂ f
∂ẏ

+
d2

dx2
∂ f
∂ÿ

)
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and then calls this quantity ∂y
∂α dα = δy, the variation of y. There must be

a mathematical subtlety which motivates this but it isn’t clear to me what that
is. Since the variational calculus texts go a different route, with norms on func-
tional spaces and so forth, perhaps understanding that motivation isn’t worth-
while. In the end, the conclusion is the same, namely that the inner expression
must equal zero for the extremum condition.
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