## Motivation

I initially thought that I might submit a problem set solution for ece1228 using Geometric Algebra. In order to justify this, I needed to add an appendix to that problem set that outlined enough of the ideas that such a solution might make sense to the grader.

I ended up changing my mind and reworked the problem entirely, removing any use of GA. Here’s the tutorial I initially considered submitting with that problem.

## Geometric Algebra in a nutshell.

Geometric Algebra defines a non-commutative, associative vector product

\label{eqn:gaTutorial:20}
\begin{aligned}
\Ba \Bb \Bc
&=
(\Ba \Bb) \Bc \\
&=
\Ba (\Bb \Bc),
\end{aligned}

where the square of a vector equals the squared vector magnitude

\label{eqn:gaTutorial:40}
\Ba^2 = \Abs{\Ba}^2,

In Euclidean spaces such a squared vector is always positive, but that is not necessarily the case in the mixed signature spaces used in special relativity.

There are a number of consequences of these two simple vector multiplication rules.

• Squared unit vectors have a unit magnitude (up to a sign). In a Euclidean space such a product is always positive

\label{eqn:gaTutorial:60}
(\Be_1)^2 = 1.

• Products of perpendicular vectors anticommute.

\label{eqn:gaTutorial:80}
\begin{aligned}
2
&=
(\Be_1 + \Be_2)^2 \\
&= (\Be_1 + \Be_2)(\Be_1 + \Be_2) \\
&= \Be_1^2 + \Be_2 \Be_1 + \Be_1 \Be_2 + \Be_2^2 \\
&= 2 + \Be_2 \Be_1 + \Be_1 \Be_2.
\end{aligned}

A product of two perpendicular vectors is called a bivector, and can be used to represent an oriented plane. The last line above shows an example of a scalar and bivector sum, called a multivector. In general Geometric Algebra allows sums of scalars, vectors, bivectors, and higher degree analogues (grades) be summed.

Comparison of the RHS and LHS of \ref{eqn:gaTutorial:80} shows that we must have

\label{eqn:gaTutorial:100}
\Be_2 \Be_1 = -\Be_1 \Be_2.

It is true in general that the product of two perpendicular vectors anticommutes. When, as above, such a product is a product of
two orthonormal vectors, it behaves like a non-commutative imaginary quantity, as it has an imaginary square in Euclidean spaces

\label{eqn:gaTutorial:120}
\begin{aligned}
(\Be_1 \Be_2)^2
&=
(\Be_1 \Be_2)
(\Be_1 \Be_2) \\
&=
\Be_1 (\Be_2
\Be_1) \Be_2 \\
&=
-\Be_1 (\Be_1
\Be_2) \Be_2 \\
&=
-(\Be_1 \Be_1)
(\Be_2 \Be_2) \\
&=-1.
\end{aligned}

Such “imaginary” (unit bivectors) have important applications describing rotations in Euclidean spaces, and boosts in Minkowski spaces.

• The product of three perpendicular vectors, such as

\label{eqn:gaTutorial:140}
I = \Be_1 \Be_2 \Be_3,

is called a trivector. In \R{3}, the product of three orthonormal vectors is called a pseudoscalar for the space, and can represent an oriented volume element. The quantity $$I$$ above is the typical orientation picked for the \R{3} unit pseudoscalar. This quantity also has characteristics of an imaginary number

\label{eqn:gaTutorial:160}
\begin{aligned}
I^2
&=
(\Be_1 \Be_2 \Be_3)
(\Be_1 \Be_2 \Be_3) \\
&=
\Be_1 \Be_2 (\Be_3
\Be_1) \Be_2 \Be_3 \\
&=
-\Be_1 \Be_2 \Be_1
\Be_3 \Be_2 \Be_3 \\
&=
-\Be_1 (\Be_2 \Be_1)
(\Be_3 \Be_2) \Be_3 \\
&=
-\Be_1 (\Be_1 \Be_2)
(\Be_2 \Be_3) \Be_3 \\
&=

\Be_1^2
\Be_2^2
\Be_3^2 \\
&=
-1.
\end{aligned}

• The product of two vectors in \R{3} can be expressed as the sum of a symmetric scalar product and antisymmetric bivector product

\label{eqn:gaTutorial:480}
\begin{aligned}
\Ba \Bb
&=
\sum_{i,j = 1}^n \Be_i \Be_j a_i b_j \\
&=
\sum_{i = 1}^n \Be_i^2 a_i b_i
+
\sum_{0 < i \ne j \le n} \Be_i \Be_j a_i b_j \\ &= \sum_{i = 1}^n a_i b_i + \sum_{0 < i < j \le n} \Be_i \Be_j (a_i b_j - a_j b_i). \end{aligned} The first (symmetric) term is clearly the dot product. The antisymmetric term is designated the wedge product. In general these are written $$\label{eqn:gaTutorial:500} \Ba \Bb = \Ba \cdot \Bb + \Ba \wedge \Bb,$$ where \label{eqn:gaTutorial:520} \begin{aligned} \Ba \cdot \Bb &\equiv \inv{2} \lr{ \Ba \Bb + \Bb \Ba } \\ \Ba \wedge \Bb &\equiv \inv{2} \lr{ \Ba \Bb - \Bb \Ba }, \end{aligned} The coordinate expansion of both can be seen above, but in \R{3} the wedge can also be written $$\label{eqn:gaTutorial:540} \Ba \wedge \Bb = \Be_1 \Be_2 \Be_3 (\Ba \cross \Bb) = I (\Ba \cross \Bb).$$ This allows for an handy dot plus cross product expansion of the vector product $$\label{eqn:gaTutorial:180} \Ba \Bb = \Ba \cdot \Bb + I (\Ba \cross \Bb).$$ This result should be familiar to the student of quantum spin states where one writes $$\label{eqn:gaTutorial:200} (\Bsigma \cdot \Ba) (\Bsigma \cdot \Bb) = (\Ba \cdot \Bb) + i (\Ba \cross \Bb) \cdot \Bsigma.$$ This correspondence is because the Pauli spin basis is a specific matrix representation of a Geometric Algebra, satisfying the same commutator and anticommutator relationships. A number of other algebra structures, such as complex numbers, and quaterions can also be modelled as Geometric Algebra elements.

• It is often useful to utilize the grade selection operator
$$\gpgrade{M}{n}$$ and scalar grade selection operator $$\gpgradezero{M} = \gpgrade{M}{0}$$
to select the scalar, vector, bivector, trivector, or higher grade algebraic elements. For example, operating on vectors $$\Ba, \Bb, \Bc$$, we have

\label{eqn:gaTutorial:580}
\begin{aligned}
&= \Ba \cdot \Bb \\
&=
\Ba (\Bb \cdot \Bc)
+
\Ba \cdot (\Bb \wedge \Bc) \\
&=
\Ba (\Bb \cdot \Bc)
+
(\Ba \cdot \Bb) \Bc

(\Ba \cdot \Bc) \Bb \\
\Ba \wedge \Bb \\
\Ba \wedge \Bb \wedge \Bc.
\end{aligned}

Note that the wedge product of any number of vectors such as $$\Ba \wedge \Bb \wedge \Bc$$ is associative and can be expressed in terms of the complete antisymmetrization of the product of those vectors. A consequence of that is the fact a wedge product that includes any colinear vectors in the product is zero.

## Example: Helmholz equations.

As an example of the power of \ref{eqn:gaTutorial:180}, consider the following Helmholtz equation derivation (wave equations for the electric and magnetic fields in the frequency domain.)

Application of \ref{eqn:gaTutorial:180} to
Maxwell equations in the frequency domain for source free simple media gives

\label{eqn:emtProblemSet1Problem6:340}
\label{eqn:emtProblemSet1Problem6:360}
\spacegrad \BE = -j \omega I \BB

\label{eqn:emtProblemSet1Problem6:380}
\spacegrad I \BB = -j \omega \mu \epsilon \BE.

These equations use the engineering (not physics) sign convention for the phasors where the time domain fields are of the form $$\boldsymbol{\mathcal{E}}(\Br, t) = \textrm{Re}( \BE e^{j\omega t}$$.

Operation with the gradient from the left produces the Helmholtz equation for each of the fields using nothing more than multiplication and simple substitution

\label{eqn:emtProblemSet1Problem6:400}
\label{eqn:emtProblemSet1Problem6:420}
\spacegrad^2 \BE = – \mu \epsilon \omega^2 \BE

\label{eqn:emtProblemSet1Problem6:440}
\spacegrad^2 I \BB = – \mu \epsilon \omega^2 I \BB.

There was no reason to go through the headache of looking up or deriving the expansion of $$\spacegrad \cross (\spacegrad \cross \BA )$$ as is required with the traditional vector algebra demonstration of these identities.

Observe that the usual Helmholtz equation for $$\BB$$ doesn’t have a pseudoscalar factor. That result can be obtained by just cancelling the factors $$I$$ since the \R{3} Euclidean pseudoscalar commutes with all grades (this isn’t the case in \R{2} nor in Minkowski spaces.)

## Example: Factoring the Laplacian.

There are various ways to demonstrate the identity

\label{eqn:gaTutorial:660}

such as the use of (somewhat obscure) tensor contraction techniques. We can also do this with Geometric Algebra (using a different set of obscure techniques) by factoring the Laplacian action on a vector

\label{eqn:gaTutorial:700}
\begin{aligned}
&=
&=
&=
+
%+
&=
+
\end{aligned}

Should we wish to express the last term using cross products, a grade one selection operation can be used
\label{eqn:gaTutorial:680}
\begin{aligned}
&=
&=
&=
&=
&=
\end{aligned}

Here coordinate expansion was not required in any step.