## Simplifying the previous adjoint matrix results.

We previously found determinant expressions for the matrix elements of the adjoint for 2D and 3D matrices $$M$$. However, we can extract additional structure from each of those results.

### 2D case.

Given a matrix expressed in block matrix form in terms of it’s columns
M =
\begin{bmatrix}
\Bm_1 & \Bm_2
\end{bmatrix},

we found that the adjoint $$A$$ satisfying $$M A = \Abs{M} I$$ had the structure
A =
\begin{bmatrix}
\begin{vmatrix} \Be_1 & \Bm_2 \end{vmatrix} & \begin{vmatrix} \Be_2 & \Bm_2 \end{vmatrix} \\
& \\
\begin{vmatrix} \Bm_1 & \Be_1 \end{vmatrix} & \begin{vmatrix} \Bm_1 & \Be_2 \end{vmatrix}
\end{bmatrix}.

We initially had wedge product expressions for each of these matrix elements, and can discover our structure by putting back those wedge products. Modulo sign, each of these matrix elemens has the form
\begin{aligned}
\begin{vmatrix} \Be_i & \Bm_j \end{vmatrix}
&=
\lr{ \Be_i \wedge \Bm_j } i^{-1} \\
&=
\lr{ \Be_i \wedge \Bm_j } i^{-1}
} \\
&=
\lr{ \Be_i \Bm_j – \Be_i \cdot \Bm_j } i^{-1}
} \\
&=
\Be_i \Bm_j i^{-1}
} \\
&=
\Be_i \cdot \lr{ \Bm_j i^{-1} },
\end{aligned}

where $$i = \Be_{12}$$. The adjoint matrix is
A =
\begin{bmatrix}
-\lr{ \Bm_2 i } \cdot \Be_1 & -\lr{ \Bm_2 i } \cdot \Be_2 \\
\lr{ \Bm_1 i } \cdot \Be_1 & \lr{ \Bm_1 i } \cdot \Be_2 \\
\end{bmatrix}.

If we use a column vector representation of the vectors $$\Bm_j i^{-1}$$, we can write the adjoint in a compact hybrid geometric-algebra matrix form
A =
\begin{bmatrix}
-\lr{ \Bm_2 i }^\T \\
\lr{ \Bm_1 i }^\T
\end{bmatrix}.

### Check:

Let’s see if this works, by multiplying with $$M$$
\begin{aligned}
A M &=
\begin{bmatrix}
-\lr{ \Bm_2 i }^\T \\
\lr{ \Bm_1 i }^\T
\end{bmatrix}
\begin{bmatrix}
\Bm_1 & \Bm_2
\end{bmatrix} \\
&=
\begin{bmatrix}
-\lr{ \Bm_2 i }^\T \Bm_1 & -\lr{ \Bm_2 i }^\T \Bm_2 \\
\lr{ \Bm_1 i }^\T \Bm_1 & \lr{ \Bm_1 i }^\T \Bm_2
\end{bmatrix}.
\end{aligned}

Those dot products have the form
\begin{aligned}
\lr{ \Bm_j i }^\T \Bm_i
&=
\lr{ \Bm_j i } \cdot \Bm_i \\
&=
\gpgradezero{ \lr{ \Bm_j i } \Bm_i } \\
&=
\gpgradezero{ -i \Bm_j \Bm_i } \\
&=
-i \lr{ \Bm_j \wedge \Bm_i },
\end{aligned}

so
\begin{aligned}
A M &=
\begin{bmatrix}
i \lr{ \Bm_2 \wedge \Bm_1 } & 0 \\
0 & -i \lr { \Bm_1 \wedge \Bm_2 }
\end{bmatrix} \\
&=
\Abs{M} I.
\end{aligned}

We find the determinant weighted identity that we expected. Our methods are a bit schizophrenic, switching fluidly between matrix and geometric algebra representations, but provided we are careful enough, this isn’t problematic.

### 3D case.

Now, let’s look at the 3D case, where we assume a column vector representation of the matrix of interest
M =
\begin{bmatrix}
\Bm_1 & \Bm_2 & \Bm_3
\end{bmatrix},

and try to simplify the expression we found for the adjoint
A =
\begin{bmatrix}
\begin{vmatrix} \Be_1 & \Bm_2 & \Bm_3 \end{vmatrix} & \begin{vmatrix} \Be_2 & \Bm_2 & \Bm_3 \end{vmatrix} & \begin{vmatrix} \Be_3 & \Bm_2 & \Bm_3 \end{vmatrix} \\
& & \\
\begin{vmatrix} \Be_1 & \Bm_3 & \Bm_1 \end{vmatrix} & \begin{vmatrix} \Be_2 & \Bm_3 & \Bm_1 \end{vmatrix} & \begin{vmatrix} \Be_3 & \Bm_3 & \Bm_1 \end{vmatrix} \\
& & \\
\begin{vmatrix} \Be_1 & \Bm_1 & \Bm_2 \end{vmatrix} & \begin{vmatrix} \Be_2 & \Bm_1 & \Bm_2 \end{vmatrix} & \begin{vmatrix} \Be_3 & \Bm_1 & \Bm_2 \end{vmatrix}
\end{bmatrix}.

As with the 2D case, let’s re-express these determinants in wedge product form. We’ll write $$I = \Be_{123}$$, and find
\begin{aligned}
\begin{vmatrix} \Be_i & \Bm_j & \Bm_k \end{vmatrix}
&=
\lr{ \Be_i \wedge \Bm_j \wedge \Bm_k } I^{-1} \\
&=
\gpgradezero{ \lr{ \Be_i \wedge \Bm_j \wedge \Bm_k } I^{-1} } \\
&=
\Be_i \lr{ \Bm_j \wedge \Bm_k }
\Be_i \cdot \lr{ \Bm_j \wedge \Bm_k }
} I^{-1} } \\
&=
\Be_i \lr{ \Bm_j \wedge \Bm_k }
I^{-1} } \\
&=
\Be_i \lr{ \Bm_j \cross \Bm_k } I
I^{-1} } \\
&=
\Be_i \cdot \lr{ \Bm_j \cross \Bm_k }.
\end{aligned}

We see that we can put the adjoint in block matrix form
A =
\begin{bmatrix}
\lr{ \Bm_2 \cross \Bm_3 }^\T \\
\lr{ \Bm_3 \cross \Bm_1 }^\T \\
\lr{ \Bm_1 \cross \Bm_2 }^\T \\
\end{bmatrix}.

### Check:

\begin{aligned}
A M
&=
\begin{bmatrix}
\lr{ \Bm_2 \cross \Bm_3 }^\T \\
\lr{ \Bm_3 \cross \Bm_1 }^\T \\
\lr{ \Bm_1 \cross \Bm_2 }^\T \\
\end{bmatrix}
\begin{bmatrix}
\Bm_1 & \Bm_2 & \Bm_3
\end{bmatrix} \\
&=
\begin{bmatrix}
\lr{ \Bm_2 \cross \Bm_3 }^\T \Bm_1 & \lr{ \Bm_2 \cross \Bm_3 }^\T \Bm_2 & \lr{ \Bm_2 \cross \Bm_3 }^\T \Bm_3 \\
\lr{ \Bm_3 \cross \Bm_1 }^\T \Bm_1 & \lr{ \Bm_3 \cross \Bm_1 }^\T \Bm_2 & \lr{ \Bm_3 \cross \Bm_1 }^\T \Bm_3 \\
\lr{ \Bm_1 \cross \Bm_2 }^\T \Bm_1 & \lr{ \Bm_1 \cross \Bm_2 }^\T \Bm_2 & \lr{ \Bm_1 \cross \Bm_2 }^\T \Bm_3
\end{bmatrix} \\
&=
\Abs{M} I.
\end{aligned}

Essentially, we found that the rows of the adjoint matrix are each parallel to the reciprocal frame vectors of the columns of $$M$$. This makes sense, as the reciprocal frame encodes a generalized inverse of sorts.

## Motivation.

This revisits my last blog post where I covered this content in a meandering fashion. This is an attempt to re-express this in a more compact form. In particular, in a form that is amenable to include in my book. When I wrote the potential section of my book, I cheated, and didn’t try to motivate the results. My cheat was figuring out the multivector potential representation starting with STA where things are simpler, and then translating it back to a multivector representation, instead of figuring out a reasonable way to motivate things from the foundation already laid.

I’d like to eventually have a less rushed treatment of potentials in my book, where the results are not pulled out of a magic hat. Here is an attempted step in that direction. I’ve opted to put some of the motivational material in problems (with solutions at the chapter end.)

## Multivector potentials.

We know from conventional electromagnetism (given no fictitious magnetic sources) that we can represent the six components of the electric and magnetic fields in terms of four scalar fields
\label{eqn:mvpotentials:80}
\begin{aligned}
\BE &= -\spacegrad \phi – \PD{t}{\BA} \\
\BH &= \inv{\mu} \spacegrad \cross \BA.
\end{aligned}

The conventional way of constructing these potentials makes use of the identities
\label{eqn:mvpotentials:60}
\begin{aligned}
\end{aligned}

applying those to the source free Maxwell’s equations to find representations of $$\BE, \BH$$ that automatically satisfy those equations. For that conventional analysis, see section 18-6 [2] (available online), or section 10.1 [3], or section 6.4 [4]. We can also find such a potential representation using geometric algebra methods that are cross product free (problem 1.)

For Maxwell’s equations with fictitious magnetic sources, it can be shown that a potential representation of the field
\label{eqn:mvpotentials:100}
\begin{aligned}
\BH &= -\spacegrad \phi_m – \PD{t}{\BF} \\
\BE &= -\inv{\epsilon} \spacegrad \cross \BF.
\end{aligned}

satisfies the source-free grades of Maxwell’s equation.
See [1], and [5] for such derivations. As with the conventional source potentials, we can also apply our geometric algebra toolbox to easily find these results (problem 2.)

We have a mix of time partials and curls that is reminiscent of Maxwell’s equation itself. It’s obvious to wonder whether there is a more coherent integrated form for the potential. This is in fact the case.

## Lemma 1.1: Multivector potentials.

For Maxwell’s equation with electric sources, the total field $$F$$ can be expressed in multivector potential form
\label{eqn:mvpotentials:520}
F = \gpgrade{ \lr{ \spacegrad – \inv{c} \PD{t}{} } \lr{ -\phi + c \BA } }{1,2}.

For Maxwell’s equation with only fictitious magnetic sources, the total field $$F$$ can be expressed in multivector form
\label{eqn:mvpotentials:540}
F = \gpgrade{ \lr{ \spacegrad – \inv{c} \PD{t}{} } I \eta \lr{ -\phi_m + c \BF } }{1,2}.

The reader should try to verify this themselves (problem 3.)

Using superposition, we can form a multivector potential that includes all grades.

## Definition 1.1: Multivector potential.

We call $$A$$, a multivector with all grades, the multivector potential, defining the total field as
\label{eqn:mvpotentials:600}
\begin{aligned}
F
&=
&=
\lr{ \spacegrad – \inv{c} \PD{t}{} } A

\end{aligned}

Imposition of the constraint
\label{eqn:mvpotentials:680}

is called the Lorentz gauge condition, and allows us to express $$F$$ in terms of the potential without any grade selection filters.

## Lemma 1.2: Conventional multivector potential.

Let
\label{eqn:mvpotentials:620}
A = -\phi + c \BA + I \eta \lr{ -\phi_m + c \BF }.

This results in the conventional potential representation of the electric and magnetic fields
\label{eqn:mvpotentials:640}
\begin{aligned}
\BE &= -\spacegrad \phi – \PD{t}{\BA} – \inv{\epsilon} \spacegrad \cross \BF \\
\end{aligned}

In terms of potentials, the Lorentz gauge condition \ref{eqn:mvpotentials:680} takes the form
\label{eqn:mvpotentials:660}
\begin{aligned}
0 &= \inv{c} \PD{t}{\phi} + \spacegrad \cdot (c \BA) \\
0 &= \inv{c} \PD{t}{\phi_m} + \spacegrad \cdot (c \BF).
\end{aligned}

See problem 4.

## Problem 1: Potentials for no-fictitious sources.

Starting with Maxwell’s equation with only conventional electric sources
\label{eqn:mvpotentials:120}

Show that this may be split by grade into three equations
\label{eqn:mvpotentials:140}
\begin{aligned}
\spacegrad \wedge \BE + \inv{c}\PD{t}{} \lr{ I \eta \BH } &= 0 \\
\spacegrad \wedge \lr{ I \eta \BH } &= 0.
\end{aligned}

Then use the identities $$\spacegrad \wedge \spacegrad \wedge \BA = 0$$, for vector $$\BA$$ and $$\spacegrad \wedge \spacegrad \phi = 0$$, for scalar $$\phi$$ to find the potential representation.

Taking grade(0,1) and (2,3) selections of Maxwell’s equation, we split our equations into source dependent and source free equations
\label{eqn:mvpotentials:200}

\label{eqn:mvpotentials:220}

In terms of $$F = \BE + I \eta \BH$$, the source free equation expands to
\label{eqn:mvpotentials:240}
\begin{aligned}
0
&=
\lr{ \spacegrad + \inv{c} \PD{t}{} } \lr{ \BE + I \eta \BH }
}{2,3} \\
&=
&=
+ \spacegrad \wedge \lr{ I \eta \BH }
+ I \eta \inv{c} \PD{t}{\BH},
\end{aligned}

which can be further split into a bivector and trivector equation
\label{eqn:mvpotentials:260}
0 = \spacegrad \wedge \BE + I \eta \inv{c} \PD{t}{\BH}

\label{eqn:mvpotentials:280}
0 = \spacegrad \wedge \lr{ I \eta \BH }.

It’s clear that we want to write the magnetic field as a (bivector) curl, so we let
\label{eqn:mvpotentials:300}
I \eta \BH = I c \BB = c \spacegrad \wedge \BA,

or
\label{eqn:mvpotentials:301}
\BH = \inv{\mu} \spacegrad \cross \BA.

\Cref{eqn:mvpotentials:260} is reduced to
\label{eqn:mvpotentials:320}
\begin{aligned}
0
&= \spacegrad \wedge \BE + I \eta \inv{c} \PD{t}{\BH} \\
&= \spacegrad \wedge \BE + \inv{c} \PD{t}{} \spacegrad \wedge \lr{ c \BA } \\
&= \spacegrad \wedge \lr{ \BE + \PD{t}{\BA} }.
\end{aligned}

We can now let
\label{eqn:mvpotentials:340}
\BE + \PD{t}{\BA} = -\spacegrad \phi.

We sneakily adjust the sign of the gradient so that the result matches the conventional representation.

## Problem 2: Potentials for fictitious sources.

Starting with Maxwell’s equation with only fictitious magnetic sources
\label{eqn:mvpotentials:160}

show that this may be split by grade into three equations
\label{eqn:mvpotentials:180}
\begin{aligned}
-\eta \spacegrad \wedge \BH + \inv{c}\PD{t}{(I \BE)} &= 0 \\
\spacegrad \wedge \lr{ I \BE } &= 0.
\end{aligned}

Then use the identities $$\spacegrad \wedge \spacegrad \wedge \BF = 0$$, for vector $$\BF$$ and $$\spacegrad \wedge \spacegrad \phi_m = 0$$, for scalar $$\phi_m$$ to find the potential representation \ref{eqn:mvpotentials:100}.

We multiply \ref{eqn:mvpotentials:160} by $$I$$ to find
\label{eqn:mvpotentials:360}

which can be split into
\label{eqn:mvpotentials:380}
\begin{aligned}
\end{aligned}

We expand the source free equation in terms of $$I F = I \BE – \eta \BH$$, to find
\label{eqn:mvpotentials:400}
\begin{aligned}
0
&= \gpgrade{ \lr{ \spacegrad + \inv{c}\PD{t}{} } \lr{ I \BE – \eta \BH } }{0,3} \\
&= \spacegrad \wedge \lr{ I \BE } + \inv{c} \PD{t}{(I \BE)} – \eta \spacegrad \wedge \BH,
\end{aligned}

which has the respective bivector and trivector grades
\label{eqn:mvpotentials:420}
0 = \spacegrad \wedge \lr{ I \BE }

\label{eqn:mvpotentials:440}
0 = \inv{c} \PD{t}{(I \BE)} – \eta \spacegrad \wedge \BH.

We can clearly satisfy \ref{eqn:mvpotentials:420} by setting
\label{eqn:mvpotentials:460}
I \BE = -\inv{\epsilon} \spacegrad \wedge \BF,

or
\label{eqn:mvpotentials:461}
\BE = -\inv{\epsilon} \spacegrad \cross \BF.

Here, once again, the sneaky inclusion of a constant factor $$-1/\epsilon$$ is to make the result match the conventional. Inserting this value for $$I \BE$$ into our bivector equation yields
\label{eqn:mvpotentials:480}
\begin{aligned}
0
&= -\inv{\epsilon} \inv{c} \PD{t}{} (\spacegrad \wedge \BF) – \eta \spacegrad \wedge \BH \\
&= -\eta \spacegrad \wedge \lr{ \PD{t}{\BF} + \BH },
\end{aligned}

so we set
\label{eqn:mvpotentials:500}
\PD{t}{\BF} + \BH = -\spacegrad \phi_m,

and have a field representation that automatically satisfies the source free equations.

## Problem 3: Total field in terms of potentials.

Prove lemma 1.1, either by direct expansion, or by trying to discover the multivector form of the field by construction.

Proof by expansion is straightforward, and left to the reader. We form the respective total electromagnetic fields $$F = \BE + I \eta H$$ for each case.

We find
\label{eqn:mvpotentials:560}
\begin{aligned}
F
&= \BE + I \eta \BH \\
&= -\spacegrad \phi – \PD{t}{\BA} + I \frac{\eta}{\mu} \spacegrad \cross \BA \\
&= -\spacegrad \phi – \inv{c} \PD{t}{(c \BA)} + \spacegrad \wedge (c\BA) \\
&= \gpgrade{ \spacegrad \lr{ -\phi + c \BA } – \inv{c} \PD{t}{(c \BA)} }{1,2} \\
&= \gpgrade{ \lr{ \spacegrad -\inv{c} \PD{t}{} } \lr{ -\phi + c \BA } }{1,2}.
\end{aligned}

For the field for the fictitious source case, we compute the result in the same way, inserting a no-op grade selection to allow us to simplify, finding
\label{eqn:mvpotentials:580}
\begin{aligned}
F
&= \BE + I \eta \BH \\
&= -\inv{\epsilon} \spacegrad \cross \BF + I \eta \lr{ -\spacegrad \phi_m – \PD{t}{\BF} } \\
&= \inv{\epsilon c} I \lr{ \spacegrad \wedge (c \BF)} + I \eta \lr{ -\spacegrad \phi_m – \inv{c} \PD{t}{(c \BF)} } \\
&= I \eta \lr{ \spacegrad \wedge (c \BF) + \lr{ -\spacegrad \phi_m – \inv{c} \PD{t}{(c \BF)} } } \\
&= I \eta \gpgrade{ \spacegrad \wedge (c \BF) + \lr{ -\spacegrad \phi_m – \inv{c} \PD{t}{(c \BF)} } }{1,2} \\
&= I \eta \gpgrade{ \spacegrad (-\phi_m + c \BF) – \inv{c} \PD{t}{(c \BF)} }{1,2} \\
&= I \eta \gpgrade{ \lr{ \spacegrad -\inv{c} \PD{t}{} } (-\phi_m + c \BF) }{1,2}.
\end{aligned}

## Problem 4: Fields in terms of potentials.

Prove lemma 1.2.

Let’s expand and then group by grade
\label{eqn:mvpotentials:n}
\begin{aligned}
\lr{ \spacegrad – \inv{c} \PD{t}{} } A
&=
\lr{ \spacegrad – \inv{c} \PD{t}{} } \lr{ -\phi + c \BA + I \eta \lr{ -\phi_m + c \BF }} \\
&=
-\inv{c} \PD{t}{\phi} + c \inv{c} \PD{t}{ \BA } + I \eta \lr{ -\inv{c} \PD{t}{\phi_m} + c \inv{c} \PD{t}{\BF} } \\
&=
+ I \eta c \spacegrad \wedge \BF
– c \inv{c} \PD{t}{\BA}
– c I \eta \inv{c} \PD{t}{\BF} \\
+\inv{c} \PD{t}{\phi}
+ \inv{c} \PD{t}{\phi_m} } \\
&=
– \PD{t}{\BA}
– \PD{t}{\BF}
} \\
+\inv{c} \PD{t}{\phi}
+ \inv{c} \PD{t}{\phi_m} }.
\end{aligned}

Observing that $$F = \gpgrade{ \lr{ \spacegrad -(1/c) \partial_t } A }{1,2} = \BE + I \eta \BH$$, completes the problem. If the Lorentz gauge condition is assumed, the scalar and pseudoscalar components above are obliterated, leaving just
$$F = \lr{ \spacegrad -(1/c) \partial_t } A$$.

# References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley & Sons, 3rd edition, 2005.

[2] R.P. Feynman, R.B. Leighton, and M.L. Sands. Feynman lectures on physics, Volume II.[Lectures on physics], chapter The Maxwell Equations. Addison-Wesley Publishing Company. Reading, Massachusetts, 1963. URL https://www.feynmanlectures.caltech.edu/II_18.html.

[3] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

[4] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

[5] David M Pozar. Microwave engineering. John Wiley & Sons, 2009.

## Fundamental theorem of geometric calculus for line integrals (relativistic.)

[This post is best viewed in PDF form, due to latex elements that I could not format with wordpress mathjax.]

Background for this particular post can be found in

## Motivation.

I’ve been slowly working my way towards a statement of the fundamental theorem of integral calculus, where the functions being integrated are elements of the Dirac algebra (space time multivectors in the geometric algebra parlance.)

This is interesting because we want to be able to do line, surface, 3-volume and 4-volume space time integrals. We have many $$\mathbb{R}^3$$ integral theorems
\label{eqn:fundamentalTheoremOfGC:40a}
\int_A^B d\Bl \cdot \spacegrad f = f(B) – f(A),

\label{eqn:fundamentalTheoremOfGC:60a}
\int_S dA\, \ncap \cross \spacegrad f = \int_{\partial S} d\Bx\, f,

\label{eqn:fundamentalTheoremOfGC:80a}
\int_S dA\, \ncap \cdot \lr{ \spacegrad \cross \Bf} = \int_{\partial S} d\Bx \cdot \Bf,

\label{eqn:fundamentalTheoremOfGC:100a}
\int_S dx dy \lr{ \PD{y}{P} – \PD{x}{Q} }
=
\int_{\partial S} P dx + Q dy,

\label{eqn:fundamentalTheoremOfGC:120a}
\int_V dV\, \spacegrad f = \int_{\partial V} dA\, \ncap f,

\label{eqn:fundamentalTheoremOfGC:140a}
\int_V dV\, \spacegrad \cross \Bf = \int_{\partial V} dA\, \ncap \cross \Bf,

\label{eqn:fundamentalTheoremOfGC:160a}
\int_V dV\, \spacegrad \cdot \Bf = \int_{\partial V} dA\, \ncap \cdot \Bf,

and want to know how to generalize these to four dimensions and also make sure that we are handling the relativistic mixed signature correctly. If our starting point was the mess of equations above, we’d be in trouble, since it is not obvious how these generalize. All the theorems with unit normals have to be handled completely differently in four dimensions since we don’t have a unique normal to any given spacetime plane.
What comes to our rescue is the Fundamental Theorem of Geometric Calculus (FTGC), which has the form
\label{eqn:fundamentalTheoremOfGC:40}
\int F d^n \Bx\, \lrpartial G = \int F d^{n-1} \Bx\, G,

where $$F,G$$ are multivectors functions (i.e. sums of products of vectors.) We’ve seen ([2], [1]) that all the identities above are special cases of the fundamental theorem.

Do we need any special care to state the FTGC correctly for our relativistic case? It turns out that the answer is no! Tangent and reciprocal frame vectors do all the heavy lifting, and we can use the fundamental theorem as is, even in our mixed signature space. The only real change that we need to make is use spacetime gradient and vector derivative operators instead of their spatial equivalents. We will see how this works below. Note that instead of starting with \ref{eqn:fundamentalTheoremOfGC:40} directly, I will attempt to build up to that point in a progressive fashion that is hopefully does not require the reader to make too many unjustified mental leaps.

## Multivector line integrals.

We want to define multivector line integrals to start with. Recall that in $$\mathbb{R}^3$$ we would say that for scalar functions $$f$$, the integral
\label{eqn:fundamentalTheoremOfGC:180b}
\int d\Bx\, f = \int f d\Bx,

is a line integral. Also, for vector functions $$\Bf$$ we call
\label{eqn:fundamentalTheoremOfGC:200}
\int d\Bx \cdot \Bf = \inv{2} \int d\Bx\, \Bf + \Bf d\Bx.

a line integral. In order to generalize line integrals to multivector functions, we will allow our multivector functions to be placed on either or both sides of the differential.

## Definition 1.1: Line integral.

Given a single variable parameterization $$x = x(u)$$, we write $$d^1\Bx = \Bx_u du$$, and call
\label{eqn:fundamentalTheoremOfGC:220a}
\int F d^1\Bx\, G,

a line integral, where $$F,G$$ are arbitrary multivector functions.

We must be careful not to reorder any of the factors in the integrand, since the differential may not commute with either $$F$$ or $$G$$. Here is a simple example where the integrand has a product of a vector and differential.

## Problem: Circular parameterization.

Given a circular parameterization $$x(\theta) = \gamma_1 e^{-i\theta}$$, where $$i = \gamma_1 \gamma_2$$, the unit bivector for the $$x,y$$ plane. Compute the line integral
\label{eqn:fundamentalTheoremOfGC:100}
\int_0^{\pi/4} F(\theta)\, d^1 \Bx\, G(\theta),

where $$F(\theta) = \Bx^\theta + \gamma_3 + \gamma_1 \gamma_0$$ is a multivector valued function, and $$G(\theta) = \gamma_0$$ is vector valued.

The tangent vector for the curve is
\label{eqn:fundamentalTheoremOfGC:60}
\Bx_\theta
= -\gamma_1 \gamma_1 \gamma_2 e^{-i\theta}
= \gamma_2 e^{-i\theta},

with reciprocal vector $$\Bx^\theta = e^{i \theta} \gamma^2$$. The differential element is $$d^1 \Bx = \gamma_2 e^{-i\theta} d\theta$$, so the integrand is
\label{eqn:fundamentalTheoremOfGC:80}
\begin{aligned}
\int_0^{\pi/4} \lr{ \Bx^\theta + \gamma_3 + \gamma_1 \gamma_0 } d^1 \Bx\, \gamma_0
&=
\int_0^{\pi/4} \lr{ e^{i\theta} \gamma^2 + \gamma_3 + \gamma_1 \gamma_0 } \gamma_2 e^{-i\theta} d\theta\, \gamma_0 \\
&=
\frac{\pi}{4} \gamma_0 + \lr{ \gamma_{32} + \gamma_{102} } \inv{-i} \lr{ e^{-i\pi/4} – 1 } \gamma_0 \\
&=
\frac{\pi}{4} \gamma_0 + \inv{\sqrt{2}} \lr{ \gamma_{32} + \gamma_{102} } \gamma_{120} \lr{ 1 – \gamma_{12} } \\
&=
\frac{\pi}{4} \gamma_0 + \inv{\sqrt{2}} \lr{ \gamma_{310} + 1 } \lr{ 1 – \gamma_{12} }.
\end{aligned}

Observe how care is required not to reorder any terms. This particular end result is a multivector with scalar, vector, bivector, and trivector grades, but no pseudoscalar component. The grades in the end result depend on both the function in the integrand and on the path. For example, had we integrated all the way around the circle, the end result would have been the vector $$2 \pi \gamma_0$$ (i.e. a $$\gamma_0$$ weighted unit circle circumference), as all the other grades would have been killed by the complex exponential integrated over a full period.

## Problem: Line integral for boosted time direction vector.

Let $$x = e^{\vcap \alpha/2} \gamma_0 e^{-\vcap \alpha/2}$$ represent the spacetime curve of all the boosts of $$\gamma_0$$ along a specific velocity direction vector, where $$\vcap = (v \wedge \gamma_0)/\Norm{v \wedge \gamma_0}$$ is a unit spatial bivector for any constant vector $$v$$. Compute the line integral
\label{eqn:fundamentalTheoremOfGC:240}
\int x\, d^1 \Bx.

Observe that $$\vcap$$ and $$\gamma_0$$ anticommute, so we may write our boost as a one sided exponential
\label{eqn:fundamentalTheoremOfGC:260}
x(\alpha) = \gamma_0 e^{-\vcap \alpha} = e^{\vcap \alpha} \gamma_0 = \lr{ \cosh\alpha + \vcap \sinh\alpha } \gamma_0.

The tangent vector is just
\label{eqn:fundamentalTheoremOfGC:280}
\Bx_\alpha = \PD{\alpha}{x} = e^{\vcap\alpha} \vcap \gamma_0.

Let’s get a bit of intuition about the nature of this vector. It’s square is
\label{eqn:fundamentalTheoremOfGC:300}
\begin{aligned}
\Bx_\alpha^2
&=
e^{\vcap\alpha} \vcap \gamma_0
e^{\vcap\alpha} \vcap \gamma_0 \\
&=
-e^{\vcap\alpha} \vcap e^{-\vcap\alpha} \vcap (\gamma_0)^2 \\
&=
-1,
\end{aligned}

so we see that the tangent vector is a spacelike unit vector. As the vector representing points on the curve is necessarily timelike (due to Lorentz invariance), these two must be orthogonal at all points. Let’s confirm this algebraically
\label{eqn:fundamentalTheoremOfGC:320}
\begin{aligned}
x \cdot \Bx_\alpha
&=
\gpgradezero{ e^{\vcap \alpha} \gamma_0 e^{\vcap \alpha} \vcap \gamma_0 } \\
&=
\gpgradezero{ e^{-\vcap \alpha} e^{\vcap \alpha} \vcap (\gamma_0)^2 } \\
&=
&= 0.
\end{aligned}

Here we used $$e^{\vcap \alpha} \gamma_0 = \gamma_0 e^{-\vcap \alpha}$$, and $$\gpgradezero{A B} = \gpgradezero{B A}$$. Geometrically, we have the curious fact that the direction vectors to points on the curve are perpendicular (with respect to our relativistic dot product) to the tangent vectors on the curve, as illustrated in fig. 1.

fig. 1. Tangent perpendicularity in mixed metric.

### Perfect differentials.

Having seen a couple examples of multivector line integrals, let’s now move on to figure out the structure of a line integral that has a “perfect” differential integrand. We can take a hint from the $$\mathbb{R}^3$$ vector result that we already know, namely
\label{eqn:fundamentalTheoremOfGC:120}
\int_A^B d\Bl \cdot \spacegrad f = f(B) – f(A).

It seems reasonable to guess that the relativistic generalization of this is
\label{eqn:fundamentalTheoremOfGC:140}
\int_A^B dx \cdot \grad f = f(B) – f(A).

Let’s check that, by expanding in coordinates
\label{eqn:fundamentalTheoremOfGC:160}
\begin{aligned}
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \partial_\mu f \\
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \PD{x^\mu}{f} \\
&=
\int_A^B d\tau \frac{df}{d\tau} \\
&=
f(B) – f(A).
\end{aligned}

If we drop the dot product, will we have such a nice result? Let’s see:
\label{eqn:fundamentalTheoremOfGC:180}
\begin{aligned}
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \gamma_\mu \gamma^\nu \partial_\nu f \\
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \PD{x^\mu}{f}
+
\int_A^B
d\tau
\sum_{\mu \ne \nu} \gamma_\mu \gamma^\nu
\frac{dx^\mu}{d\tau} \PD{x^\nu}{f}.
\end{aligned}

This scalar component of this integrand is a perfect differential, but the bivector part of the integrand is a complete mess, that we have no hope of generally integrating. It happens that if we consider one of the simplest parameterization examples, we can get a strong hint of how to generalize the differential operator to one that ends up providing a perfect differential. In particular, let’s integrate over a linear constant path, such as $$x(\tau) = \tau \gamma_0$$. For this path, we have
\label{eqn:fundamentalTheoremOfGC:200a}
\begin{aligned}
&=
\int_A^B \gamma_0 d\tau \lr{
\gamma^0 \partial_0 +
\gamma^1 \partial_1 +
\gamma^2 \partial_2 +
\gamma^3 \partial_3 } f \\
&=
\int_A^B d\tau \lr{
\PD{\tau}{f} +
\gamma_0 \gamma^1 \PD{x^1}{f} +
\gamma_0 \gamma^2 \PD{x^2}{f} +
\gamma_0 \gamma^3 \PD{x^3}{f}
}.
\end{aligned}

Just because the path does not have any $$x^1, x^2, x^3$$ component dependencies does not mean that these last three partials are neccessarily zero. For example $$f = f(x(\tau)) = \lr{ x^0 }^2 \gamma_0 + x^1 \gamma_1$$ will have a non-zero contribution from the $$\partial_1$$ operator. In that particular case, we can easily integrate $$f$$, but we have to know the specifics of the function to do the integral. However, if we had a differential operator that did not include any component off the integration path, we would ahve a perfect differential. That is, if we were to replace the gradient with the projection of the gradient onto the tangent space, we would have a perfect differential. We see that the function of the dot product in \ref{eqn:fundamentalTheoremOfGC:140} has the same effect, as it rejects any component of the gradient that does not lie on the tangent space.

## Definition 1.2: Vector derivative.

Given a spacetime manifold parameterized by $$x = x(u^0, \cdots u^{N-1})$$, with tangent vectors $$\Bx_\mu = \PDi{u^\mu}{x}$$, and reciprocal vectors $$\Bx^\mu \in \textrm{Span}\setlr{\Bx_\nu}$$, such that $$\Bx^\mu \cdot \Bx_\nu = {\delta^\mu}_\nu$$, the vector derivative is defined as
\label{eqn:fundamentalTheoremOfGC:240a}
\partial = \sum_{\mu = 0}^{N-1} \Bx^\mu \PD{u^\mu}{}.

Observe that if this is a full parameterization of the space ($$N = 4$$), then the vector derivative is identical to the gradient. The vector derivative is the projection of the gradient onto the tangent space at the point of evaluation.Furthermore, we designate $$\lrpartial$$ as the vector derivative allowed to act bidirectionally, as follows
\label{eqn:fundamentalTheoremOfGC:260a}
R \lrpartial S
=
R \Bx^\mu \PD{u^\mu}{S}
+
\PD{u^\mu}{R} \Bx^\mu S,

where $$R, S$$ are multivectors, and summation convention is implied. In this bidirectional action,
the vector factors of the vector derivative must stay in place (as they do not neccessarily commute with $$R,S$$), but the derivative operators apply in a chain rule like fashion to both functions.

Noting that $$\Bx_u \cdot \grad = \Bx_u \cdot \partial$$, we may rewrite the scalar line integral identity \ref{eqn:fundamentalTheoremOfGC:140} as
\label{eqn:fundamentalTheoremOfGC:220}
\int_A^B dx \cdot \partial f = f(B) – f(A).

However, as our example hinted at, the fundamental theorem for line integrals has a multivector generalization that does not rely on a dot product to do the tangent space filtering, and is more powerful. That generalization has the following form.

## Theorem 1.1: Fundamental theorem for line integrals.

Given multivector functions $$F, G$$, and a single parameter curve $$x(u)$$ with line element $$d^1 \Bx = \Bx_u du$$, then
\label{eqn:fundamentalTheoremOfGC:280a}
\int_A^B F d^1\Bx \lrpartial G = F(B) G(B) – F(A) G(A).

### Start proof:

Writing out the integrand explicitly, we find
\label{eqn:fundamentalTheoremOfGC:340}
\int_A^B F d^1\Bx \lrpartial G
=
\int_A^B \lr{
\PD{\alpha}{F} d\alpha\, \Bx_\alpha \Bx^\alpha G
+
F d\alpha\, \Bx_\alpha \Bx^\alpha \PD{\alpha}{G }
}

However for a single parameter curve, we have $$\Bx^\alpha = 1/\Bx_\alpha$$, so we are left with
\label{eqn:fundamentalTheoremOfGC:360}
\begin{aligned}
\int_A^B F d^1\Bx \lrpartial G
&=
\int_A^B d\alpha\, \PD{\alpha}{(F G)} \\
&=
\evalbar{F G}{B}

\evalbar{F G}{A}.
\end{aligned}

## More to come.

In the next installment we will explore surface integrals in spacetime, and the generalization of the fundamental theorem to multivector space time integrals.

# References

[1] Peeter Joot. Geometric Algebra for Electrical Engineers. Kindle Direct Publishing, 2019.

[2] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

## Three more geometric algebra tutorials on youtube.

Here’s three more fairly short Geometric Algebra related tutorials that I’ve posted on youtube

## second experiment in screen recording

Here’s a second attempt at recording a blackboard style screen recording:

To handle the screen transitions, equivalent to clearing my small blackboard, I switched to using a black background and just moved the text as I filled things up.  This worked much better.  I still drew with mischief, and recorded with OBS, but then did a small post production edit in iMovie to remove a little bit of dead air and to edit out one particularly bad flub.

This talk covers the product of two vectors, defines the dot and wedge products, and shows how the 3D wedge product is related to the cross product.  I recorded some additional discussion of duality that I left out of this video, which was long enough without it.